
Investigating Batoid-Inspired
Propulsion: The Development,

Testing, and Performance Analysis
of a Tensegrity-Based Robotic Fin

for Underwater Locomotion

A Dissertation Presented to the

Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Mechanical and Aerospace Engineering

by

Trevor Hayes Kemp

May 2014



APPROVAL SHEET

The dissertation is submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Mechanical and Aerospace Engineering

Trevor H. Kemp

This dissertation has been read and approved by the Examining Committee:

Hilary Bart-Smith, Advisor

Hossein Haj-Hariri, Chairman

Gavin T. Garner

Silvia S. Blemker

Haibo Dong

Accepted for the School of Engineering and Applied Science:

James H. Aylor, Dean
School of Engineering and Applied Science

May 2014



Abstract

Unmanned underwater vehicles have become an increasingly important tool for

research, industry, and the military to perform surveying, monitoring, exploratory,

and other functions. They are conventionally designed with rigid hulls and rotary

propellers that utilize steady hydrodynamic principles. This is in contrast to biological

swimmers, which generally use flexible bodies and appendages to take advantage of

unsteady hydrodynamics. As a result, fish and other swimming animals are notably

much more maneuverable and efficient compared to conventionally-designed vehicles.

This stark difference motivates the development of biologically-inspired designs that

can meet or exceed performance seen in nature. Recently, manta rays (and batoid rays

in general) have been identified as an ideal platform for an efficient, high endurance,

maneuverable and stealthy underwater vehicle. Towards the goal of creating such a

vehicle, this study is specifically aimed at reproducing the major kinematic features

of oscillatory batoid rays by developing a tensegrity-based robotic pectoral fin and

quantifying the swimming performance of this fin.

In this work, the structural mechanics of cable-clustered active tensegrity beams

are experimentally validated, so that analytical predictions for their response to ex-

ternal loads can be used in the design of a tensegrity-based robotic pectoral fin. In

order to quantify the relationship between kinematic parameters and performance

in ray-like swimming, a tensegrity-based robotic fin, capable of actively producing

large span-wise bending and passively producing chord-wise curvature, is developed.

Two types of experimental hydrodynamic tests are performed in a water tunnel: con-

strained tests that measure net thrust and propulsive efficiency; and unconstrained

tests that measure velocity and free-swimming economy. Constrained tests demon-

strate that the simple fin design can produce significant net thrust that is strongly

correlated to flapping frequency. The maximum efficiency of this heaving motion is
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relatively low, so when compared to a chord-wise rigid fin, this suggests that solely

adding chord-wise compliance is not beneficial for maximum propulsive efficiency, al-

though passive flexibility seems to be important for broadening the operating range

of highest efficiency. Unconstrained tests demonstrate that free-swimming velocity

is correlated to both flapping frequency and amplitude. Importantly though, high

swimming velocities come at the cost of low economy, indicating an inherent oper-

ational trade-off between transport time and energy usage. Kinematic parameters

matching biological observations produce free-swimming velocities that are similar to

batoid rays, but increased kinematic complexity is expected to improve both efficiency

and economy. Flexibility is shown to be an important design parameter for flapping

propulsors, with a compliant artificial skin showing enhanced swimming speeds and

economies compared to a stiff skin. The experiments show that while Strouhal num-

ber (a nondimensional frequency) is correlated with an operating range of maximum

efficiency, it does not uniquely correlate to peak values of economy, indicating that

caution should be exercised when statements are made about the role of Strouhal

number in free-swimming performance. Overall, this study demonstrates that active

tensegrity structures can be effectively used to reproduce biologically-relevant kine-

matics and shows promise for biologically-inspired flapping fins in the application of

underwater vehicles.
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Chapter 1

Introduction

Unmanned underwater vehicles (UUVs) have emerged in the last several decades

as powerful tools for ocean researchers, several industries, and the military, allowing

them to carry out mapping, surveying, monitoring, and inspection tasks for dura-

tions much longer than would be possible with a manned submersible, and at lower

costs [1]. The vast majority of contemporary UUVs have rigid hulls and utilize ro-

tary propellers for both thrust and maneuvering. However, standard propellers have

several drawbacks including undesirable noise, the propensity for entanglement, peak

efficiencies only within a narrow operational band, and limited accelerations. The

result is that current UUV designs are limited in terms of stealth, operating environ-

ments, efficiency, and maneuverability.

Fortunately, biology provides a source of inspiration for the next generation of

UUVs that have the potential to outperform their predecessors in each area of weak-

ness identified above. A plethora of designs for underwater vehicles can be drawn

from the oceans, where animals have been tuned by natural selection over millions

of years to fill ecological niches; this process has resulted in some swimmers that

are highly maneuverable and efficient. Broadly, there is increasing interest towards

biologically-inspired (“bio-inspired”) designs in order to leverage the advantages of

flexible-bodied organisms using unsteady flapping propulsion [2]. Furthermore, the
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U.S. Navy has specifically expressed interest in bio-inspired designs in order to cre-

ate engineered systems that can meet or exceed the performance seen in biological

swimmers [3].

The manta ray (Manta birostris) has recently been identified as an ideal candidate

for the design of an efficient and highly maneuverable biologically-inspired underwater

vehicle [4]. Manta rays use the complex motions of their broad, enlarged pectoral fins

for both propulsion and maneuvering. It is clear from observation that manta rays

(and several other species of batoid rays) are excellent swimmers, exhibiting high

endurance, efficient cruising, large speed bursts, high turning rates, small turning

radii, station keeping in currents, and silent, stealthy propulsion — exactly the types

of qualities that are desirable for a bio-inspired UUV. Noting these qualities, the

overarching goal of this work is to study batoid ray propulsion as a model

for an engineered system with similar performance capabilities.

Towards this overarching goal of understanding and utilizing batoid ray propul-

sion, there are essentially two main challenges to overcome. First, the swimming

performance of batoid rays is not well quantified. Only superficial observations such

as speed, flapping frequency, turning rates, and general descriptions of fin kinematics

are available, and direct measurements of thrust and power in the freely swimming

animals do not exist. With this lack of information, it is difficult to estimate how

efficient or economical their swimming really is. Moreover, the design of a vehicle

propulsion system is impractical without first knowing its thrust production capabil-

ities and power requirements.

Second, the kinematic displacement fields of batoid ray fins are complex, making it

challenging to reproduce the fin motions with an engineered system. If the ultimate

goal is to produce a vehicle with a ray-like propulsion system, then the subject of

physically recreating the complex fin kinematics is non-trivial. Additionally, it is

unclear which kinematic components relate most strongly to swimming performance.

Much is still unknown about the unsteady hydrodynamics of flapping propulsion, but
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it is assumed here that reproducing the kinematics of ray fins will result in similar

hydrodynamic performance, in terms of thrust production and power input to the

fluid.

This proposed research therefore has multiple specific areas of study to address

some of the challenges related to understanding batoid ray propulsion:

• Quantify the swimming performance of an artificial, batoid-inspired

fin.

In order to understand how an artificial fin should be operated to maximize its

performance, specific measurements must be taken. A ray-like, robotic fin allows

for the direct measurement of net thrust (in constrained tests) and swimming

speed (in unconstrained tests) as they relate to kinematic parameters (specifi-

cally, frequency and amplitude of flapping). When mechanical power input is

measured as well, propulsive efficiency and free-swimming economy can be cal-

culated, indicating the level of performance that is possible using an artificial

ray fin. These measures are useful for determining the viability of a ray-like

UUV, guiding the design of future artificial fins, and additionally lend insight

to observed biological swimming patterns.

• Create a tensegrity-based fin that reproduces the major kinematics

of batoid rays.

In order to experimentally measure the performance of batoid swimming, an

artificial robotic fin, which is capable of reproducing the major kinematic com-

ponents seen in biology, must be designed and fabricated. Robotic fins allow

for the creation of prescribed, repeatable kinematics that closely resemble bi-

ological fins, and thereby enable the direct measurement of ray-like swimming

performance. A small number of recent experimental studies have used robotic

fins to produce some of the kinematic components of ray fins, but it appears

that there are currently no studies that fully quantify the swimming perfor-



4

mance of a robotic fin with both large span-wise bending and a chord-wise

traveling wave. Active tensegrity structures have recently been proposed as

a means of recreating the kinematics of batoid rays [5], but this solution has

yet to be experimentally verified or implemented as a fin. Developing robust

fabrication and actuation methods for active tensegrity beams represents an

important contribution that enables the creation of a ray-like fin.

• Verify experimentally the mechanics of tensegrity beams.

In order for tensegrity beams to be implemented as the structural basis for a

robotic fin, their mechanical response to external loading must be verified ex-

perimentally. Active tensegrity beams are advantageous to use in a robotic fin

because they are capable of large amplitude deformations at a low energetic cost,

can have a high stiffness for relatively little mass (high structural efficiency), and

allow for the migration of actuators outside the structure. The loading response

of planar tensegrity beams with an optimal cable routing scheme has previously

been investigated both analytically and in numerical simulations, however the

loading response of these specific structures has not yet been verified experi-

mentally. Performing structural loading tests to verify the response of these

beams directly enables their design and use in a robotic fin, with confidence

that their kinematics will be predictable even when subject to hydrodynamic

loading.

The pursuit of these goals is documented in this dissertation, which is laid out as

follows. Chapter 2 gives an overview of current UUV technology and its limitations,

covers relevant information on the biology of batoid rays, reviews research on the

experimental hydrodynamics of unsteady flapping propulsion, looks at the state of

the art in biologically-inspired propulsors (including other attempts at ray-like fins),

and gives an introduction to tensegrity, the structural approach used here to recreate

ray fin motions. Chapter 3 gives an overview of the design and mechanics of planar



5

active tensegrity beams, and then shows an experimental validation of the loading

mechanics using a beam with an optimal cable routing strategy. Chapter 4 describes

how batoid ray kinematics are recreated in this work, from the structural basis of

active tensegrity to the final implementation as a robotic fin. Chapter 5 explains

the hydrodynamic test setup for this robotic fin and presents swimming performance

results for both constrained efficiency and unconstrained free-swimming economy ex-

periments. Finally, chapter 6 summarizes the major results, gives conclusions drawn

from this work, and indicates fertile areas of research which could follow.
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Chapter 2

Background

A study of biologically-inspired propulsion for use in underwater vehicles naturally

spans several areas of research, including biology, fluid mechanics, structural mechan-

ics, and robotics. A review is given of relevant information relating to underwater

vehicles in general and specifically to biologically-inspired ones. Pertinent details

about the biology of batoid rays are given, and related studies on the fluid mechan-

ics of flapping propulsion are described. Finally, a brief introduction to tensegrity

structures is presented, in order to lay the groundwork for this study’s contributions.

2.1 Underwater Vehicle Technology

Underwater vehicles can be generally classified by whether or not they contain

human occupants, who perform onboard functions such as navigation and control [6].

Those which do are either submarines, used principally for military purposes [7], or

submersibles, used principally for scientific, industrial, and exploratory purposes [8].

Major limitations of manned vehicles are that they need to be large enough to ac-

commodate human occupants, and require multiple systems to support human life

underwater.

Unmanned vehicles are free from these requirements and therefore can be smaller,
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somewhat less complicated, and have extended mission times. Vehicles without

human occupants are classified most generally as unmanned underwater vehicles

(UUVs), sometimes called unmanned undersea vehicles [9]. This broad category

can be further broken down into either autonomous underwater vehicles (AUVs) or

remotely operated vehicles (ROVs) [10]. ROVs have human pilots who operate the

vehicles to accomplish specific tasks. ROVs are typically tethered, due to power and

bandwidth limitations of underwater wireless communication, which obviously limits

their range and presents the possibility of the tether becoming entangled [1]. AUVs,

as the name implies, operate autonomously, with little to no human guidance. These

vehicles typically have arrays of sensors to give navigation cues and collect data for

later analysis. Because they are untethered, their range may be great, reaching depths

of up to 6000 m [11] and even crossing entire oceans unassisted [12].

A number of reviews of existing UUV technology are available [1, 2, 6], and they

reflect that UUVs typically fall into one of two categories based on general shape and

function [10]: many long range AUVs have a streamlined “torpedo-like” shape that

function well for low-drag, efficient cruising; meanwhile, numerous ROVs exhibit a

“box design” that is optimized for low-speed maneuvering. A tradeoff is presented by

these designs: streamlined UUVs suffer from poor low-speed maneuverability while

UUV designs with low-speed maneuverability are either incapable of or are inefficient

at high-speed cruising. Each type of vehicle works well for specific applications, but

a vehicle combining the strengths of both would be desirable [13].

The limited turning ability of traditional streamlined AUVs is often cited as a

major drawback of this general design, with the best reported turning radius being

estimated as around four body lengths (also noting that the rate of turning is much

slower than biological swimmers) [13]. It has been estimated that turning radius of

conventional AUVs is at least 10 times larger than the corresponding value for fish [2].

Both types of UUVs predominantly use standard rotating propellers to produce

thrust [14]. While traditional propellers can perform well in producing high-speed
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steady-state thrust, flapping fins have several advantages such as lower noise and

reduced risk of tangling, and are even reported to have higher thrust-power ratios [15].

The propellers used on traditional UUVs have efficiencies ranging from as low as

40% [16] to as high as 70% [17]. Meanwhile, oscillating biological propulsors have been

estimated to have efficiencies as high as 90% [17, 18]. Additionally, the performance

of rigid propellers is limited to a narrow operational range where their efficiency is

maximal, while flexible appendages of swimming animals maintain a high efficiency

over a broad operational range [19].

Overall, aquatic animals have been observed to be much more capable than tradi-

tional UUVs in several areas: small turning radii, sudden accelerations (burst speeds),

and hovering (also called “station keeping”) [2]. The performance gap between UUVs

using conventional designs and biological swimmers seems to be due (at least in part)

to the lack of several mechanisms found in biology, such as high-lift, unsteady hy-

drodynamics, and the use of structural compliance. Engineered platforms typically

depend on steady flows and avoid flow separation, while fish rely on unsteady flows

that generate forces by shedding vortices, thus utilizing flow separation. With these

differences in mind, it seems that understanding how biological swimmers produce

thrust could lead to performance improvements in man-made UUVs, closing the per-

formance gaps that exist between conventional underwater technology and what has

been observed in biology.

Many types of biologically-inspired AUVs (BAUVs [20]) using various propulsion

mechanisms have already been proposed and tested, including jet-based (squid [10],

jellyfish [21]), caudal fin-based (tuna [22, 23], salmon [24], pike [25], and general

carangiform [26]), and pectoral fin-based (sunfish [27, 28] and penguin/turtle [29]).

Reviews of many other BAUVs are given by Roper et al. [11], Low [30], Kato [31]

and Bandyopadhyay [2]. In these studies, it is emphasized that biologically-inspired

underwater vehicles hold the potential for improving both energy efficiency and ma-

neuverability compared to conventional underwater vehicles. Progress towards this
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goal is discussed in the following section, where several types of flapping propulsors

and freely swminng BAUVs are reviewed, especially efforts related to ray-like plat-

forms. But first it is important to understand the swimming style of real rays, and

therefore a review of relevant biological information is given.

2.2 Taking Inspiration from Biology

The performance gap between current UUV technology and biological swimming

can be narrowed by further study of unsteady propulsion and application of our

understanding to the next generation of UUVs. As Bandyopadhyay explains [2]:

“The goal is not to build a robotic replica of animals. The goal is to distill the science

from biology and implement that on existing platform components with a minimum

of logistical and a maximum of operational impact.” This section covers previous

attempts at understanding and recreating the performance of biology, in order to

identify constructive areas of research for this work and future studies.

2.2.1 Biological Observations

Aquatic organisms exhibit an enormous array of locomotory styles across a wide

range of size scales, from the flagella of bacteria to the tails of whales [32]. While

interesting and complex, low Reynolds number flows are dominated by viscosity and

are typically found on small size scales [33, 34], so they will not be discussed here.

Instead the focus is on swimming animals of moderate body size operating at interme-

diate to high Reynolds numbers, which are dominated by inertial fluid forces. With

the exception of jetters (e.g. squid) and rowers (e.g. a duck’s feet when swimming

on the surface of water), most animals in this regime use a lift-based mechanism for

thrust production [13, 31–33, 35]. This process generally involves the motion of either

appendages or the entire body (or both) to create and control vortices [16, 36–38].

Using oscillatory movements, these swimmers repeatedly form and shed starting and
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stopping vortices at each reversal, creating high levels of lift during each stroke, which

is angled forward to produce thrust. This lift-based locomotion is believed to be up

to 90% efficient in some cases [17, 18].

Although many types of biological swimmers using this general locomotory scheme

are worthy of investigation, this study is inspired by the manta ray. They have re-

cently been identified as having a number of desirable characteristics that should be

emulated in a next generation UUV [4, 5, 20, 39–48]. These include: swimming over

very large distances at impressive sustained speeds, high maneuverability, acceler-

ating quickly to reach high burst speeds, proficiency at station keeping in currents,

having low flapping frequencies compared to many other fish species (reducing the

possibly of noise generation), and importantly, are regarded as very efficient swim-

mers. Additionally, the overall shape of manta rays makes them good candidates for

a UUV platform because their central bodies are approximately rigid (allowing for

easier placement of equipment in a hull, compared to flexible-bodied fish) and the

broad, flat shape allows for the possibility of low energy, long distance gliding using

a buoyancy drive [49].

Limited research has been done on manta rays, with most work relating to their

overall size, structure, population dynamics, behavioral patterns and migrations [50–

53]. Unfortunately, even less information is available specifically relating to their

swimming performance. However the smaller and more common cousins of manta

rays in the family myliobatoidea (including eagle rays, cownose rays, and mobula

rays) use a similar locomotor style and can act as stand-ins for gaining information

about this type of swimming. This family of rays comes in a wide range of sizes,

suggesting that the locomotor strategy is highly scalable, so that UUV platforms of

nearly any desired size could be created.

Members of the myliobatoidea family are more generally classified as batoid rays,

which are a superorder of dorsoventrally flattened cartilaginous fish, closely related

to sharks and are found in every ocean of the world [54, 55]. Although some ba-
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toid species utilize axial undulations of the body (like most sharks), the morphology

of most batoid species is characterized by diminished tails and by greatly enlarged

pectoral fins, which provide both thrust and maneuvering. These median paired fin

(MPF) [56] species are the subject of interest for the current study and axial undu-

lators are excluded, so that the kinematics responsible for swimming can be isolated

to only the fins.

The MPF swimming styles of batoids can be broken down into two major groups:

rajiform, a drag-based swimming style in which the fins undulate, and mobuliform, a

lift-based swimming style in which the fins oscillate [56, 57]. The distinction between

these undulatory and oscillatory swimming modes is drawn from the observed number

of chord-wise waves present on the fin, with undulators having more than one full

wave present and oscillators having less than half a wave present1 [54]. The large-

amplitude oscillatory swimming style is often described as appearing much like the

flapping of bird flight [54, 58]. Both swimming modes feature curvature of the fins in

the chord-wise and span-wise directions, but the undulatory mode is dominated by

chord-wise curvature and the oscillatory mode is dominated by span-wise curvature.

Schaefer and Summers [55] compared the morphology of cartilaginous fin skele-

tal structures for both oscillating and undulating rays. Both groups have a similar

structure in general, which is characterized by a series of fin radials extending out-

ward from the pectoral girdle, with each fin radial comprised of multiple cylindrical

cartilage elements stacked end-to-end. Muscles on both the dorsal (upper) and ven-

tral (lower) side of the fins alternately contract to flex the fin radials up and down,

resulting the overall observed locomotion patterns for each species. Schaefer and

Summers found that specific differences in skeletal morphologies strongly predicted

the locomotory style of swimming. Notably, oscillators were found to have a pattern

of cross-bracing between radials in medial areas, effectively stiffening the fins there,

whereas cross-bracing was absent in most undulators. Their findings suggest that a

1Species showing between half and a full wave present on the fin are sometimes called “semi-
oscillatory” [55].
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somewhat stiffer, less flexible fin structure may be beneficial for oscillatory swimming.

Parson, Fish, and Nicastro [59] compared the maneuverability of oscillators and

undulators by measuring the velocities, turning radii and turning rates for individuals

of each group in a large aquarium. It was found that the minimum turning radii of

both groups were comparable, at about 0.9 body lengths (BL). However, oscillatory

rays had a higher maximum turning rate and velocity (48°/s and 1.1 BL/s) compared

to undulators (at 32°/s and 0.8 BL/s). Parson et al. note that oscillatory rays have

been observed performing essentially zero-radius turns from a resting position and so

the measurements of uncoerced motions from this study may not represent maximum

potential turning performance. By these specific performance measures though, it

appears the oscillatory swimming style is more desirable to emulate for an underwater

vehicle. Additionally, it is thought that lift-based oscillatory swimming should be

more efficient at higher cruising speeds [32] and generally a lift-based oscillatory mode

should produce larger and more efficient thrust compared to a drag-based mode [60].

Rosenberger [54] compared the pectoral fin kinematics of several batoid species

with similar but distinct locomotor patterns. It was found that rather than a clear

division between purely undulatory (rajiform) or oscillatory (mobuliform) locomo-

tion, there is instead a continuum of swimming styles represented across the species.

Some species, such as the butterfly ray (Gymnura micrura), were even found to shift

between swimming modes depending on distance from the bottom surface of the tank

– exhibiting undulatory locomotion close to the bottom and oscillatory locomotion

away from the bottom. This interesting behavior draws attention to an even broader

trend across batoid species: benthic species (near the substratum in a body of water)

are generally undulatory swimmers whereas pelagic species (in the open water col-

umn) are generally oscillatory swimmers. Rosenberger notes that while undulators

are better at low-speed efficiency and maneuverability, oscillators excel at efficient

steady cruising and thrust production. Since efficient steady cruising in open water

has been identified as a desirable characteristic for UUVs, oscillatory locomotion is



13

further justified as the swimming mode of interest for the current study.

In comparing the various batoid species, Rosenberger found that the means by

which swimming speed is modulated depends on swimming style. For oscillators,

swimming speed is most influenced by wavespeed (the stream-wise speed of the partial

wave present on the fin) and fin tip speed, while keeping frequency and amplitude

relatively constant over the range of speeds observed. Of all species studied, the

cownose ray (Rhinoptera bonasus) was the most oscillatory, with a wavenumber of

only 0.4. The oscillatory flapping of the cownose is characterized by a relatively low

frequency (1 Hz) and high amplitude (35% of total wingspan2), both of which are

typical for pelagic oscillators. It is noted that the cownose ray has a somewhat unusual

asymmetric flapping pattern, with the fins staying mostly above the dorsoventral

plane. This flapping pattern is postulated to derive from the dependence of the

cownose on a benthic diet, despite that it spends much of the time in the pelagic

zone. Other pelagic oscillators that do not depend on a benthic diet generally have a

more symmetric flapping pattern.

Heine [58] carried out what is probably the most in-depth biological study of

oscillatory batoid ray swimming kinematics, focusing on the cownose ray and also

the bullnose eagle ray (Myliobatis freminvillei). The kinematics of the pectoral fins

and the body overall were tracked while specimens swam in test tanks. Heine’s

data shows that the vertical amplitude of fin flapping motions are approximately

smooth sinusoidal waves. Horizontal velocity was highly uniform, with no noticeable

oscillation associated with flapping, and the swimming velocities ranged from 0.3 to

0.9 m/s (approximately 1 to 3 BL/s). In examining the relationship between various

kinematic parameters and swimming speed, there was a weak correlation between

flapping frequency and swimming speed, with most flapping frequencies around 1 Hz.

An even weaker correlation was found between flapping amplitude and swimming

2This is equivalent to a fin tip displacement of approximately 88% of a single fin’s span. However
a completely symmetric flapping pattern would sweep through the same distance with an amplitude
of 44% of a single fin’s span.
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speed, with flapping amplitudes (normalized by half the wing span) in the range of

0.4 – 0.9. Again, cownose rays have an asymmetric flapping pattern, so a symmetric

pattern would sweep through the same distance using an amplitude of 0.2 – 0.45 (also

nondimensionalized by the span of a single fin).

The kinematic parameter that correlated most strongly to swimming speed was

the fin tip speed (specifically on the upstroke). Heine notes that many other types

of fish have higher flapping speeds relative to their forward speed, and that this

frequency is generally correlated with swimming speed. However these oscillatory rays

show relatively slow flapping compared to their forward speed, with no correlation

to flapping frequency. It appears this fin tip speed is modulated by changing the

duration of time spent at the maximum amplitude, slightly shifting away from a

purely sinusoidal waveform.

Heine tracked the velocity of several points along the span of the fin (from the pos-

terior direction) and also tracked the twist angle along the span. The measured twist

angle at 60% of the wing span was up to 20° and importantly, this twist maintained

a phase lead over the heaving motion. It was found that there is some correlation

between maximum twist angle and swimming speed. The angle of attack was then

calculated at various points, and not surprisingly it increased along the span (since

the heave component of the local velocity increases along the span). The maximum

angle of attack near the most distal portion of the fin was about 25°.

Additionally, Heine experimentally found force coefficients for sections of the fins

and body by testing rigid castings in steady flow at various angles of attack. Combin-

ing the resulting force coefficients with the kinematic data, his calculations show that

the average net thrust from the fins is about 0.1 N, and no greater than 0.4 N. From

this it was concluded that the thrust produced by the fins is far too small to propel

these rays forward. Instead it is proposed that thrust is produced by the oscillation of

the ray’s rigid body, caused by the heaving of the fins. Potential flow theory applied

to this small amplitude body oscillation predicted thrust to be about 0.75 N, however
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experimental attempts to measure it resulted in a net thrust from the body of only

0.04 N.

While the quality of Heine’s data seems to be good, it appears two major errors

were made in coming to his conclusion about thrust production from the body and

not the fins directly. First, Heine himself admits that a quasi-steady assumption is

probably not valid for determining the instantaneous forces on the fin which derive

from large amplitude flapping. Indeed, it should be expected that the forces found in

steady flow are not the same as those found from unsteady flow of a high amplitude

pitching/heaving motion. There are several effects relevant to unsteady flows that

would not be present in steady flows such as acceleration reactions (the force required

to accelerate a mass of fluid near the fin), the Wagner effect (the delay in formation

of bound circulation about the fin, since the direction of circulation changes every

half-cycle), and vortex shedding dynamics.

Second, it seems that any change in fin shape (such as the camber of a given

section along the span) throughout the flapping cycle, whether from active muscular

contraction or from passive flexibility, has been completely disregarded in the process

of finding steady force coefficients on the rigid fin sections. It is obvious that ray fins

are highly flexible, a point that is even reinforced by some of Heine’s own observations,

and do indeed change shape throughout the flapping cycle, so this provides further

doubt that the calculated net force accurately represents real ray fins.

For these reasons, it will be assumed that Heine’s conclusion about the lack of

thrust from the fins is incorrect3. Despite this shortcoming, Heine’s work provides

many valuable observations about oscillatory ray swimming overall, and there may be

some credence to the idea that an oscillating body can contribute to thrust production.

While biological studies inform us about the swimming styles, fin kinematics, and

performance capabilities of rays, there is a limit to their usefulness for designing

artificial propulsors because large variations can exist amongst both species and in-

3This is an important point, because there would be no purpose in further study of an isolated
fin if Heine’s conclusion was correct.
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dividuals within a species, making it very difficult to isolate individual components

that contribute to swimming performance [61]. Additionally, observations of animals

in the wild or of specimens in a laboratory may not represent maximum performance.

2.2.2 Biologically-Inspired Propulsors

Lauder [61] notes that in recent years swimming hydrodynamics has garnered

attention from both biologists and engineers, but several key issues need to be ad-

dressed in order to fully understand biological locomotion. Both the structure and

deformations/motions of propulsive surfaces need to be studied in three dimensions,

since many biological motions are complex and cannot be represented by only two-

dimensional analyses. Additionally, much is still unknown about the flexibility of

biological appendages and the effects of flexibility on performance. Moreover, even

less is known about the ability of animals to change appendage flexibility during

swimming. Lastly, the extent to which propulsor deformations are either passive (as

a result of fluid forces) or actively controlled is still largely unknown.

Robotic test platforms are one strategy that Lauder suggests for addressing the is-

sues above. Robotic systems offer the advantage of an extremely high level of control

compared to working with biological test subjects: motions can be accurately repeated

and varied within the range of biological observations and beyond. Structural changes,

such as variations in planform or stiffness, can also be studied relatively easily. Addi-

tionally, certain measurements that are difficult to make on biological subjects, such

as direct force measurements, can be carried out routinely on robotic systems. Lauder

indicates that propulsor deformation is one area where the use of robotics can be ex-

tremely useful, because the deformation of flexible robotic appendages would allow

for the study of both performance measures and wake dynamics. It is emphasized

that robotic test platforms should be self-propelling, swimming against an oncoming

flow by generating their own propulsive forces.

Some of the most canonical experimental studies of flapping propulsion are based
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on idealizing the problem to that of a two-dimensional pitching, heaving, or com-

bined pitching/heaving airfoil [62]. Triantafyllou, Triantafyllou, and Grosenbaugh

[63] found that rigid oscillating foils produce net thrust for certain combinations of

parameters and that the thrust production is directly related to a vortex pattern

formed in the wake of the foil. The wake contains a staggered array of vortices with

rotational directions reversed compared to a standard von Kármán vortex street, in-

dicating thrust instead of drag, and averaged over time, appears as a convectively

unstable jet flow. Triantafyllou et al. found that the wake was amplified within a

relatively narrow frequency band, and importantly, that the maximum wake amplifi-

cation is correlated with maximum foil efficiency.

The hydromechanical efficiency used here is the one commonly defined as Froude

propulsive efficiency, η, which is a ratio of useful power output (typically the product

of thrust and swimming velocity) to net power input to the fluid [18]. Oscillating

frequencies in swimming propulsion are nondimensionalized as the Strouhal number,

St, which is the product of vortex shedding frequency and wake amplitude, divided by

flow speed. This nondimensional frequency essentially quantifies how often vortices

are shed, and how closely they are spaced together4 [16].

Triantafyllou et al. found in their experimental work a maximum efficiency of

about 20% at a Strouhal number of about 0.25 (although kinematic parameters were

not optimized to increase maximum efficiency). They note that the highest efficiencies

occur in a range from St = 0.25 to 0.35, which coincides with the range of Strouhal

numbers observed for a wide variety of swimming animals, concluding that animals

swim in this range to achieve maximum efficiency. Taylor, Nudds, and Thomas [64]

reinforce this idea, noting that it applies not only to swimming, but to the cruising

flight of birds, bats, and insects as well. They expand the optimal Strouhal number

range to 0.2 – 0.4, and posit that animals using oscillatory lift-based propulsion tune

4Dabiri [38] makes a strong argument that Strouhal number is merely a consequence of optimal
vortex formation time, limited by the energetics involved, and that optimal vortex formation is a
more fundamental principle.
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their kinematics to be within this range.

Anderson et al. [65] conducted experiments with a rigid, pitching/heaving, two-

dimensional, high aspect ratio foil and found parameter combinations that resulted

in high efficiency, up to 87%. High efficiencies were obtained by ensuring the proper

Strouhal number range was satisfied (0.25 – 0.4), that heave amplitudes were large

(75% of chord length), oscillatory pitching leads heaving by a phase of about 75° and

a nominal angle of attack was between 15° and 25°. These tests were conducted at a

relatively high flow velocity of about 3.6 chord lengths per second, compared to 1.7

chord lengths per second in the experiments by Triantafyllou et al. described above.

The results were compared to linear and nonlinear inviscid numerical simulations and

agreement was mixed: for some sets of parameters there was decent agreement, but for

other sets of parameters there were large discrepancies. Disagreement was attributed

to the formation of strong leading-edge vortices, which were observed with particle

image velocimetry (PIV) wake visualization, and are correlated to high efficiency. This

discrepancy motivates further experimental studies of flapping propulsion, because

computational fluid models may not be able to capture all flow phenomena.

The idea that wake structure qualitatively changes with kinematic parameters

(such as leading-edge vortex formation for large heave amplitudes, as described in

Anderson et al.) was investigated previously by Koochesfahani [66]. Koochesfahani

showed with dye visualizations of a low-amplitude pitching airfoil that wake struc-

ture depends heavily on frequency, amplitude, and waveform (sinusoidal versus non-

sinusoidal). A variety of different wakes were produced by varying these parameters,

including a classic reverse von Kármán vortex street, but also wakes with two or even

three vortices of the same sign shed per half-cycle5. Even more exotic, asymmetric

wakes were produced with non-sinusoidal pitching oscillations (as are sometimes used

by oscillatory batoids). Also it was found from visualizations that axial flow through

the vortex cores was present, further demonstrating how complex the wake structures

5Schnipper, Andersen, and Bohr [67] present excellent visualizations of pitching foil wakes, with
formations up to 8P.
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of flapping foils can be, even for a relatively simple two-dimensional pitching motion.

The oscillating propulsion studies discussed above used rigid foils, while notably

most swimming animals use flexible appendages [68, 69]. Some limited experimental

studies have been done on flexible two-dimensional flapping foils. For example, Prem-

praneerach, Hover, and Triantafyllou [70] found that a pitching and heaving foil with

the properly selected amount of chord-wise flexibility can have 36% higher propulsive

efficiency compared to a rigid foil, with only small loss in thrust. Riggs, Bowyer, and

Vincent [15] found that a flexible pitching foil with chord-wise variation in stiffness

had up 26% better thrust production compared to a stiffer, non-biomimetic foil. Also

the biomimetic foil showed thrust production over a greater frequency range com-

pared to the non-biomimetic foil. Heathcote, Wang, and Gursul [71] found that a

heaving, cantilevered foil benefitted in terms of efficiency from some span-wise flexi-

bility compared to a rigid foil, but that too much flexibility was detrimental to thrust

production, indicating that more flexibility is not necessarily better and that some

intermediate, optimal level might exist (depending on propulsor configuration).

A two-dimensional pitching/heaving foil does generally represent the motions of

a chord-wise slice through an oscillatory ray fin, however it ignores important three-

dimensional features of the problem: oscillatory batoid fins have amplitudes, veloc-

ities, and chord lengths that vary with span-wise location; each span-wise location

oscillates along an arc, not a straight line; large amplitude flapping from span-wise

curvature leads to span-wise flow on the fins, especially near the tips; and a finite

aspect ratio6 fin has tip vortices, further contributing to a three-dimensional wake.

Therefore to properly quantify the performance of an oscillatory batoid fin, swim-

ming performance studies should be conducted using a fin that fully re-

produces three-dimensional kinematics.

Multiple types of biologically-inspired robotic fins with fully three-dimensional

kinematics have been explored [72]. Tangorra et al. [9, 73, 74] developed a propulsor

6Finite aspect ratio effects become even more important when the aspect ratio is relatively low,
as it is for batoid fins [58].
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similar to the pectoral fin of a bluegill sunfish, having multiple independently-actuated

fin rays connected with a thin membrane (a “pleated webbing”). The large number

of degrees of freedom allows for many different sets of kinematics and makes this fin

capable of various flapping modes. Peak instantaneous thrust on the order of 0.5 N

was reported, and specific sets of kinematics were found to produce positive thrust

throughout the flapping cycle. However no data on power input, efficiency, or other

performance measures were given. Palmisano et al. [75] also developed a propulsor

with fin rays, mimicking the pectoral fin of a bird wrasse fish. They present kinematic

and force data, with peak instantaneous thrust on the order of 1 N. Some large power

input data is given, but this is not translated into efficiency or any other type of

performance metric.

Willy and Low [76–78] developed a very low aspect ratio “ribbon fin” with a

series of linkages that is intended to model the undulation of a cuttlefish or stingray.

Freely-swimming velocities are reported, with top speed around one third of a chord

length per second. Epstein, Colgate, and MacIver [79] developed a similar type of

ribbon fin in order to reproduce kinematics of the black ghost knifefish. Experimental

performance data on this fin is reported by Curet et al. [80]. Maximum average thrust

was found to be on the order of 1 N and velocities up to one chord length per second

are reported. Power measurements were not made, but efficiency is reported as wave

efficiency (the ratio of undulatory wave speed to forward travel speed), which has a

maximum of about 0.5 and decreases with wave frequency.

Experiments using robotic fins like the ones just described can provide interesting

insight into different forms of biological swimming, but there are still very few studies

of fins with kinematics similar to oscillatory batoid rays. Experimentally reproducing

batoid kinematics is not a simple task and some attempts are more successful than

others. For example, Brower [43] attempted to develop an artificial fin mimicking a

manta ray, but due to design and fabrication issues with the actuation system, the

kinematics of this fin were very limited and the fin did not self-propel in water. On
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the other hand, one of the most useful experimental studies on batoid propulsion

was performed by Clark and Smits [41], who tested the thrust production of an

undulatory batoid fin. Their fin allowed for the active control of low amplitude (11%

of the fin’s span length) undulatory motions of varying wavelength by changing the

phase between rigid rotating spars embedded in a flexible skin. Thrust and power

measurements were taken by constraining the fin against oncoming flow and Froude

propulsive efficiency was calculated from this setup. Both thrust and power generally

increased with flapping frequency, although there was some local variation in thrust,

where values decreased and then increased again with frequency. Maximum efficiency

of about 54% was obtained near a Strouhal number of 0.3. Dye flow visualizations

were performed on the fin at lower Reynolds numbers and general descriptions of

the complex, three-dimensional wake structures are provided. It was found that the

structure of the wake qualitatively changed based on Strouhal number, and that this

wake seems to be directly tied to thrust production. It is suggested that optimizing

kinematics, changing planform, or introducing span-wise curvature may lead

to increases in efficiency.

Dewey, Carriou, and Smits [81] investigated the wake structure of this fin more

thoroughly using PIV and found that wake structure depended heavily upon both

wavelength and Strouhal number. The number and coherence of vortices shed corre-

spond to these parameters and the time-averaged momentum flux was found to form

a bifurcating jet for certain sets of parameters. Maximum efficiency was associated

with a non-bifurcating 2S (2 single vortices shed per cycle) wake structure.

This undulatory batoid fin was also tested under free-swimming conditions in

another study [40] and is one of the only known flapping propulsor studies to measure

free-swimming economy (velocity divided by average power7). The fin was capable

of freely swimming at high speeds (correlating to high frequencies), up to 2 BL/s at

a 2 Hz driving frequency. Testing included creating a passive version of the fin, in

7Here, the power measurement used was total power, not net power to the fluid.
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which the two trailing actuation spars were removed so that the trailing portion of the

fin was allowed to freely deform. Velocities were about 80% lower for this passive fin

compared to the active version. The Strouhal number for free swimming was between

0.2 and 0.4 for most velocities (St increased for low velocities) and was independent of

wavelength or passivity. Economy generally increased with frequency for most tests8

and the greatest economy occurred at the highest frequency and wavelength using

the passive fin. The results generally demonstrate that passive flexibility might

be key to maximizing the energy economy of swimming.

The most directly relevant experimental study of oscillatory batoid thrust pro-

duction was performed by Moored et al. [4, 40]. A batoid-like, triangular planform

fin capable of span-wise curvature (using a jointed mechanism consisting of 3 rigid

plates, embedded in a flexible polymer) produced pure heaving motion, with no un-

dulatory (chord-wise curvature) component. Thrust and power were measured at a

constant flow speed across a variety of flapping frequencies in order to obtain effi-

ciency measurements across a range of Strouhal numbers. Three other variables were

considered: the amount of span-wise curvature (from flat rotation towards more bi-

ological), the amount of tip lag9, and the tip speed10. Both thrust and power were

higher for the flat mode of flapping compared to the more curved mode. Efficiencies

were similar for both modes, except at the lowest frequencies where the efficiency of

the flat mode increased (to a maximum of just above 20%, near a Strouhal number of

0.15), while it decreased for the curved mode. Varying tip lag had little effect for the

kinematics produced in this study and swimming with tip speed modulation seemed

to decrease thrust compared to sinusoidal flapping. A major implication of this study

is that incorporating chord-wise flexibility in a similar fin might increase

performance.

8This economy measurement showed signs of plateauing towards higher frequencies, but only
decreased for one set of tests, which was the fully actuated fin with largest wavelength.

9The fin tips of oscillatory batoids are often observed to lag behind the more proximal portions
of their fins.

10Since oscillatory batoids typically modulate forward speed with fin tip speed, not fin beat fre-
quency.
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More recently, Russo [48] created artificial oscillatory ray fins with a high level of

biological fidelity, based on a parameterized model of the ray skeletal architecture.

He tested the thrust production of two fins having different inter-radial joint pattern

angles and found that both a higher joint pattern angle and a higher wavenumber

on the fin were correlated with increased thrust production. The results imply that

specific parameters of skeletal architecture are related to swimming performance, both

for biological rays and for engineered fin structures closely resembling ray skeletons. It

seems that the differences in skeletal architecture lead to differences in kinematics, and

that those kinematics drive swimming performance, however the specific differences

between the resulting kinematics of the two fins were not quantified, leaving it unclear

what types of prescribed motions might lead to improved performance (other than

incorporating some amount of chord-wise traveling wave).

Aside from these studies of single fins, there are a few examples of recent at-

tempts at creating freely swimming ray-like vehicles with paired fins [20, 82]. Several

researchers interested in ray-like platforms have noted the AquaRay made by Festo,

however there does not seem to be any technical work published on the vehicle [83]. A

white paper available from the company describes the use of their own fluidic muscles

to create span-wise curvature in the fins, and a maximum speed of about 0.8 BL/s

is given, but there are no other performance metrics reported11 [84]. Love, Arroyo,

and Schwartz [42] built a “Solar Ray” vehicle that was intended to swim like an os-

cillatory batoid while utilizing solar panels for powering the electronics. While their

final prototype had a ray-like appearance, it was not able to propel itself forward

at all. Wang et al. [85] built a ray-like vehicle with undulatory fins, but much of

their discussion is based on control of a buoyancy system and no data is reported on

swimming speeds. A few other examples of robots using undulatory locomotion are

described by Low [86]. Some researchers focus on developing and integrating novel

types of actuators, such as soft pneumatic actuators created by Suzumori et al. [87]

11It appears that this was a demonstration of the company’s actuator technology, and not a
scientific investigation of batoid propulsion.
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or the integration of shape memory allow (SMA) actuators by Wang et al. [88]. These

studies report top speeds between 0.2 and 0.6 BL/s, but no other performance mea-

sures are given. Chu et al. [89] give a review of other recent attempts at integrating

novel actuator technologies into biomimetic swimming robots.

Gao et al. [44] built a fin consisting of a rigid leading edge spar that rotates at

the root and is trailed by a thin membrane to create the fin shape, roughly producing

ray flapping kinematics. This fin was tested alone and found to have thrust that

increases with both frequency and amplitude, with a maximum thrust of about 0.85 N.

Two of these fins were attached to a body and it was reported to swim at a speed

of up to 1.4 BL/s, but no other performance metrics are given. Yang, Qiu, and

Han [46] developed a ray-like vehicle with rotating spars attached to a thin membrane

and report some free-swimming velocities as a function of amplitude, frequency, and

wavenumber. The maximum velocity was about 0.4 BL/s, but no other performance

metrics are given. Low et al. [47, 90, 91] produced several versions of a vehicle they call

“RoMan” which use rotating spars connected to a thin membrane. Various control

strategies were explored and some velocity data is reported, with a top speed of

0.8 BL/s, but no other performance metrics were given. Cai et al. [92–94] developed

several versions of fins and vehicles imitating a cownose ray using a pneumatic muscle

system. Relatively large average thrust of up to 2.75 N is reported for constrained

tests of one of the fins and the maximum speed of one of the prototypes is 0.9 BL/s.

Again though, there were no other performance measures reported.

The common problem amongst all of these studies is that they do not

provide data related to power consumption, and therefore important met-

rics such as propulsive efficiency and free-swimming economy cannot be

determined. While maximum swimming speed is a decent benchmark for deter-

mining the proficiency of a new vehicle platform, it seems far more important to

determine how much power is required to produce a vehicle’s given speed, because

ultimately this will determine the range and duration of a mission using the vehicle.
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Additionally, without efficiency or economy measurements, there is no insight into

the underlying fluid mechanics of the motion. This dearth of performance data mo-

tivates further experimental work on ray-like fins that takes power consumption into

consideration.

2.3 Active Tensegrity

The word tensegrity is a term coined by Buckminster Fuller, which is a port-

manteau of “tensional integrity,” reflecting the idea that these structures derive their

integrity from the continuous network of tension throughout them [95]. Many differ-

ent and sometimes conflicting definitions of tensegrity have been given, but generally

tensegrity can be defined as [95]: “A system in a stable self-equilibriated state com-

prising a discontinuous set of compressed components inside a continuum of tensioned

components.” This definition gets at the idea that a state of self-stress holds compres-

sive elements together using elements in tension, although it could be argued that the

compressive elements need not be discontinuous (as is true of the structures used in

this study).

Man-made tensegrity structures can take many forms, ranging from a balloon (a

structure in self-equilibrium, composed of compressed air within a tensioned mem-

brane) to the space frame of a geodesic dome, however the use of tensegrity as a

structural foundation can actually be seen as biologically inspired. According to Ing-

ber [96], “An astoundingly wide variety of natural systems, including carbon atoms,

water molecules, proteins, viruses, cells, tissues and even humans and other living

creatures, are constructed using a common form of architecture known as tensegrity.”

Ingber explains that tensegrities self-stabilize by redistributing stresses throughout

the entire structure, giving them maximal strength for a given amount of building

material and for this reason, they are found throughout nature. Using the general

definition of tensegrity, the musculoskeletal systems of batoid ray fins actually are



26

active tensegrity structures because muscle fibers (a network of tension elements)

pull against cartilaginous radial segments (discontinuous compression elements) to

produce fin motions. Of course the actual tensegrities studied here differ greatly from

those found in biology, but they take advantage of some of the same principles.

In this implementation, tensegrities refer to special types of pin-jointed truss struc-

tures connected with prestressed tension elements. Here, the compression elements

will be referred to as struts (rigid bars) and the tension elements will be referred to

as cables (with no ability to bear compressive loads). Prestress refers to the fact that

both types of elements are placed in a state of stress, even with no external loading,

meaning the structures are statically indeterminate [97]. This prestress is the key to

stabilizing equilibrium positions of tensegrity structures. The structures are config-

ured such that struts and cables meet at nodes (which are generally assumed to be

frictionless), and no torques are transferred through the nodes, so that loads on all

elements are only axial. The class of a tensegrity structure refers to the maximum

number of strut elements attached at any node [98]; so a class 1 tensegrity has no

struts directly attached to one another (true discontinuous compression), and a class

2 tensegrity has at least one node with two struts connected.

Historically, tensegrity literature has focused on static structures [99], but recently

there has been great interest in creating active tensegrities, in which elements (either

cables or struts) are actuated to change length and thus deform the overall struc-

ture [98, 100–103]. These studies include both dynamic and quasi-static analyses.

Most studies on active tensegrity are theoretical analyses and there are very few ex-

amples in the literature of researchers physically building and using active tensegrity

structures, at least in part because of the complexity of their construction and ac-

tuation. For example, Aldrich, Skelton, and Kreutz-Delgado [104] describe a control

methodology for tensegrity-based robots, but there is no experimental component to

the study. This is in contrast to the numerous examples of static tensegrity that

can be found, especially in art and architecture [97]. Several of the most prominent
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examples of physically-built active tensegrity are given below.

Pinaud, Solari, and Skelton [105] demonstrate solutions for the reconfiguration of

symmetric tensegrity structures, and even show a physical model of a deployable boom

that reconfigures to change its height through length change of active cables. However

it does so very slowly, with no external loading, and the results of this experimental

structure are not compared to predictions. Domer and Smith [106] discuss simulation

and control strategies for deformation of tensegrities and validate these on a very large

structure. Paul, Valero-Cuevas, and Lipson [107] showed the feasibility of producing

a “walking” tensegrity robot, that took advantage of actuations developed through a

genetic algorithm in simulations. Similarly, Shibata, Saijyo, and Hirai [108] developed

a “crawling” tensegrity robot that uses shape memory alloy actuators. The only

known example of active tensegrity being physically implemented for a swimming

robot is in work conducted by Bliss et al. [109, 110], which demonstrated robust

gait entrainment using central pattern generator control applied to a class 2 planar

tensegrity beam (essentially acting as a caudal fin).

Recent studies by Moored lay the foundation for using active tensegrity as the

structural basis for a batoid-inspired artificial pectoral fin [4, 5, 39, 111, 112]. Moored

provides several important contributions towards this goal by developing: the ratio-

nale for using activity tensegrity to produce batoid kinematics; a generalized nu-

merical model for the clustered12 mechanics of tensegrity structures; the concept of

an optimal remote actuation strategy for two-dimensional (planar) beam structures,

realized by cable clustering; and analytical solutions for the actuation and loading

response of two-dimensional beam structures. Multiple methods for creating batoid

kinematics are explored, including fully three-dimensional deformable plate struc-

tures. However the mechanics, optimization, construction, and actuation of such

structures are highly complex compared to two-dimensional beams, which are sug-

gested as a simpler strategy for physically implementing in an artificial fin.

12Moored defines clustering as the combination of several individual cable elements into one con-
tinuous cable.
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The analytical solutions developed for these planar beams (discussed in further

detail in the next chapter) provide insight about the relationship between geometric

and material parameters, and the resulting actuation and loading responses. The

results have been verified by Moored’s numerical model, but experimental validation

is necessary in order for these structures to be used in an artificial fin. Houle [113]

experimentally tested the loading response of cable-clustered planar tensegrity beams

in comparison to numerical simulations, however Houle’s work is insufficient in the

current context because the optimal cable routing strategy for planar beams was not

tested. Therefore experimental validation of the optimal routing strategy is carried

out in the present study.

Overall, a review of the background literature draws out several important con-

cepts that directly motivate the work presented in this study. Conventional underwa-

ter vehicle technology is lacking in several functions where biological swimmers excel

and the swimming style of oscillatory rays has been identified as a desirable model

for a biologically-inspired underwater vehicle. The flapping kinematics of these rays

is dominated by a large span-wise curvature of the fins, with a superimposed undula-

tory component. Many studies have been conducted on the propulsive performance

of various types of pitching/heaving foils, but investigations that directly relate the

specific three-dimensional kinematics of oscillatory rays to swimming performance

are lacking. Relevant experimental work suggests that a fin combining both large

span-wise curvature and a traveling wave component could perform better than ei-

ther kinematic component alone. Active tensegrity structures have been identified

as a viable method for recreating batoid kinematics, but experimental validation of

their mechanics is necessary, and so far active tensegrity has not been physically im-

plemented as a batoid fin. All of these findings lead to the experimental study of

active tensegrity structures, their incorporation into a robotic pectoral fin, and the

subsequent measurement of swimming performance using such a fin.
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Chapter 3

Validating Tensegrity Mechanics

It has been established that batoid rays exhibit coupled span-wise and chord-wise

deformations of their pectoral fins that result in what is believed to be highly efficient

thrust production. To better understand the relationship between these fin motions

and swimming performance, the current study uses a tensegrity-based artificial fin to

create kinematics similar to those seen in biology (chapters 4 and 5). Underlying this

study is the assumption that replicating the fin kinematics of biological swimmers

is key to replicating their performance, and thus to exploring and understanding

their swimming capabilities. Any attempt to accurately mimic the kinematics of the

biological fins using active tensegrity structures must start with a validated design

process that can predict the loaded response as a function of known parameters.

This chapter reviews the mechanics of planar, cable-clustered active tensegrity

structures, showing how they can be designed to achieve large span-wise bending and

resist external loads. These mechanics solutions are then validated through experi-

mental testing. The validation of external loading resistance for a static tensegrity

beam demonstrates the feasibility of implementing these as active structures in an

artificial fin. In the next chapter, the design of an artificial fin using active tensegrity

is described and validations of active deformation are demonstrated.
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3.1 Tensegrity Mechanics

As noted in Chapter 2, active tensegrity structures have been identified as a class

of structures with the potential for reproducing the kinematics of batoids. In addition

to achieving complex deformations, active tensegrities can be designed to have high

stiffness-to-mass ratios and can take advantage of remote actuation schemes, with

actuators migrated out of the structure. High stiffness structures are desirable in

this study so that fin kinematics are minimally affected by the hydrodynamic forces

generated by fluid-structure interaction. Remote actuation schemes both remove

mass from the structure (reducing the energy to actuate) [4] and enable the design of

slender structures which can fit within the envelope of a ray fin.

While numerical solutions exist for determining the actuation and structural re-

sponse of general three-dimensional geometries and configurations [39], the process

of analysis, form-finding, and critically, construction of these tensegrities is complex,

occluding the relationship between design parameters and structural response. For

the purposes of this study, simpler tensegrity structures – namely, two-dimensional

planar beams1 that provide a bending mode – are considered excellent candidates

to replicate the span-wise bending deformation of a batoid fin. These simpler struc-

tures lend themselves to an analysis that elucidates the relationship between design

parameters and structural response.

Moored et al. carried out extensive analysis (analytical and numerical) to design

and predict the response of active tensegrity structures [5]. It was proposed that these

structures could be used as the foundation for a robotic pectoral fin. For example, a

series of active beams could be used to create the necessary tip deflection and traveling

wave component similar to that observed in a candidate ray. For a successful design,

it is necessary to calculate both the amount of input actuation needed to achieve the

required flapping amplitude and the response of this structure due to external loading

1These beams can be either class 2 or class 3, depending on whether or not the vertical elements
are struts or cables — this modification does not significantly change the mechanics of the active
bending mode or response to tip loading.
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(inactive)

Figure 3.1: A tensegrity beam with total length L, made up of N = 3 planar cross
unit cells, showing neutral position and actuation to amplitude A. MC routing is also
shown schematically, with a single cable (red) corresponding to the first cell, another
cable (blue) corresponding to the second cell, and a final cable (green) correspond-
ing to the third cell. In this antagonistic actuation scenario, the amounts of cable
contraction (upper) and release (lower) for each cell, δa, j, are equal in magnitude but
opposite in sign.

(coming primarily from hydrodynamic forces). A review of the relevant mechanics

follows.

Moored et al. concentrated on beams comprised of planar tensegrity cross unit

cells (figure 3.1) because this unit cell gives the desired bending mode, has been

identified as a high stiffness-to-mass topology [114], and conveniently lends itself

to a straightforward analysis.2 Using this unit cell, several cable routing schemes

are possible, each of which can produce equivalent unloaded actuation but which

2The analysis relies on a configuration in which each cell of the beam has the same geometry.



32

have different load bearing characteristics. A routing scheme termed Multiple Cable-

routed3 (MC) has been identified as the optimal choice in terms of stiffness and

therefore will be the only routing scheme discussed in this work. In an MC routing

scheme, each cell has its own pair of active cables that are routed along the cables

of previous cells, resulting in multiple cables per cell (illustrated in figure 3.1). For

this topology and routing, a linearized approximation of the input actuation for the

cables of the jth cell4, δa, j, needed to produce a vertical tip amplitude, A, is derived

for an active tensegrity beam comprised of N planar cross unit cells:

δa, j ≈
Ahj

NL
(3.1)

L is the total length of the beam and h is the height of the beam. The actuation

scheme for this unit cell is based on the assumption that it is purely antagonistic —

i.e. for the pair of top and bottom cables, δa, j refers to a change in the length of each

cable that is equal in magnitude but opposite in sign. Note that for equal actuation

of each cell in an MC actuation scheme, the actuation for the jth cell is simply j

times as large as for the base cell. Given this simple relationship, we can find the

approximate input cable actuation required for a tensegrity beam composed of planar

crosses, with any number of cells, and any aspect ratio L/h to give a desired vertical

tip amplitude.

Next, the response to an external load, P , applied to the beam tip5 is considered.

There are two important aspects of the response to consider: (1) the change in force

and thus pretension level in each of the cable elements, and (2) the deformation

of the beam due to cable element strain. The former is relevant mostly because it

determines the limit of validity for the latter. That is, the predictioned deformation

response relies on all cables elements having nonzero tension, and if the tension in

3Multiple cable routing features a pair of active cables for each cell which are routed along the
the active cables of the previous cell

4Note that j increases from base to tip, such that j ≡ 1 for the base cell and j ≡ N for the tip
cell.

5Applied in the plane of the beam and perpendicular to the length of the beam.
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Figure 3.2: Tensegrity beam with external tip load, P . This tip load causes a change
in tension for the top and bottom cables. Here, a downward (−z) force causes the
tension in the top cables to increase, and tension in the bottom cables to decrease.
This follows expectations for ordinary beam bending, which places one side of the
beam in tension and the other in compression.

any cable element drops to zero because of an external load, then the deformation

predictions are no longer valid. The load at which this occurs is termed the critical

slackening load.

Moored et al. found the change in tension in the jth cell, ∆Tj, associated with an

applied tip load, P , to be [5] :

∆Tj =


PL

Nh
if j 6= N

PL

2Nh
if j = N (tip cell)

(3.2)

Note that the response differs for the tip cell because it is the only cell which does

not have another cell attached to its terminal end. As a direct result from equation

3.2, the critical slackening load, Pcr, is the load at which ∆Tj = T0, j (i.e. when the

decrease in tension is equal to the pretension, the cable is effectively slack):

Pcr =

 NT0, j
h
L

if j 6= N

2NT0, j
h
L

if j = N (tip cell)
(3.3)
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It is optimal to have the bottom6 cables of every cell to go slack at the same

load level. This is made evident by considering the contrary situation: if a single

cable goes slack before others, then either the loading response of the overall beam is

unnecessarily softened by this one errant cable, or all the other cables are excessively

tensioned, which increases actuation resistance7. Equation 3.3 demonstrates that for

equal pretensions in every cell, the cables will not all become slack at the same load.

In order to rectify this situation, the optimal pretensioning ratio for an MC beam

should be set such that the pretension in the tip cell is half that of all other cells, as

dictated by equations 3.2 and 3.3: Topt = PcrL/2Nh, so that for the tip cell T0 = Topt

and for all other cells T0 = 2Topt. Using these results, the pretension distribution

in an MC beam can be properly prescribed to match an assumed maximum level of

loading such that all cables go slack at the critical load, (or such that no cables go

slack if some factor of safety is desired), without making the pretensions unnecessarily

high.

The final important result drawn from this analysis is predicting the amplitude of

beam tip deformation, AP , due to external tip load, P , which is captured in the first

order bending stiffness, Kbend:

Kbend =
P

AP
=

2N2

2N − 1

(
EcAc

L
+

2Topt

L

)(
h

L

)2

(3.4)

It can be seen from this result that the bending stiffness scales with number

of cells (N), the inverse of aspect ratio (h/L), cable material stiffness (Ec), cable

element size (Ac), and pretension level (Topt). This is a useful result because it allows

us to explore how these structural parameters influence stiffness, and we can design

6Here the convention of a downward (−z) tip load is carried forward, so that tensions in the
bottom cables decrease with a tip load applied.

7Pretensional actuation resistance is discussed in Moored et al., but is beyond the scope of this
section (see section 4.1 below for a discussion the topic). It is sufficient for the objectives of this
section to note that pretension above and beyond that required for the critical slackening load
increases resistance to actuation. Additionally, increasing pretension levels will increase friction at
the joints of the structure, but the contribution of this effect is difficult to estimate and depends
upon specific chosen hardware.
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accordingly. It should be noted that for high relative stiffness (kr = EcAc/2Topt), the

level of pretension does not contribute greatly to bending stiffness, which is instead

dominated by material properties.

In summary, this section has reviewed the relevant design equations provided by

Moored et al. that predict the actuation and loading response of planar MC active

tensegrity beams as a function of geometry and material properties. The following

sections describe how the analytical predictions have been experimentally validated

and the results will be used as the basis for designing an active tensegrity beam for

use in an artificial pectoral fin.

3.2 Experimental Validation

In order to implement a tensegrity beam as the structural basis for an artificial

pectoral fin, we must first establish the validity of the design equations introduced in

the previous section. Two separate relationships need to be addressed: (1) the input

actuation to tip amplitude relationship and (2) the load-displacement relationship.

The former will be addressed in section 4.5 using the active tensegrity beam of the

artificial fin. The latter is the subject of this section, wherein validation of the load-

displacement design equations is accomplished through experimentation. A static

(non-actuated) MC tensegrity beam is constructed and subjected to external tip

loads while measuring tip displacement. The results pave the way for using these

beams in an artificial fin, with confidence in their response to external loads.

3.2.1 Test Setup

Several features of the idealized tensegrity structures introduced in the previous

section make it challenging to create an accurate physical representation: frictionless

rotation at all joints, frictionless motion of cables through each node during deforma-

tion, absolutely rigid strut members, linear elastic cables, nodes that are essentially
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Figure 3.3: Static, 3-cell, MC tensegrity beam used for experiments. Strut elements
are machined from aluminum and cable elements are braided stainless steel. On the
left side the beam is rigidly attached to the tensioning base. On the right, the tip
tracking target is centered on the terminal end of the beam.

points (zero radius), precisely prescribed pretensions in every cable element, and the

structure’s inherent two-dimensionality. Every effort was made to satisfy these con-

ditions experimentally, and the physical features used to realize them are described

in this section. This study uses a class 3, 3-cell beam structure composed of planar

tensegrity cross unit cells (see figure 3.3). This topology can be assembled as a class

2 structure, with two struts from adjacent cells meeting at shared nodes, and in this

configuration a cable element acts as the vertical member shared between adjacent

cells. However, replacing those vertical members with rigid strut elements greatly

simplifies construction and does not alter the structural response of interest, which

is dictated by the elongation of horizontal cable elements. As for the choice of three

cells, using only a single cell structure for these experiments would obviously not

demonstrate that the analytical predictions for multiple cell structures hold true, yet

a structure with a very large number of cells is cumbersome to construct. There-

fore the number of cells was chosen to be three: enough to demonstrate multiple-cell

mechanics but few enough to simplify construction.

The rigid strut elements are machined 9.5 mm wide from 5.0 mm thick 6061 alu-

minum plate using a CNC machine with 10 µm resolution. The analytical predictions

assume the nodes are frictionless, so flanged ball bearings with 0.125” (3.18 mm) inner
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diameter are inserted in the ends of each strut for low-friction rotation at the joints.

The nodes are constructed by joining the strut ends of adjacent cells with steel 5-40

(0.125”�) cap screws as axles. In the experimental beam, a pair of parallel struts

represent a single compression element and they sandwich the ball bearing pulleys

at the nodes. This configuration minimizes twisting and out-of-plane bending of the

structure while under load, as it is not possible in this design to have all cables per-

fectly coplanar. The cable tension elements are made of 0.018” (0.46 mm) nominal

diameter braided stainless steel aircraft cable with a rated breaking strength of 40

lbf (178 N). The cable elements are laid out in the beam structure according to the

MC routing scheme, routing through some nodes and terminating at others. Cables

are routed through a node by wrapping around a ball bearing pulley, to simulate

the frictionless routing of the analytical predictions (see figure 3.4). The cables are

terminated at nodes in the structure using copper cable crimps around the pulleys.

The overall structure has a length L = 0.72 m and height h = 0.12 m, giving a beam

aspect ratio of L/h = 6.

One assumption of the analytical model is that the strut elements are completely

rigid and that structural deformation under external loading is due only to axial strain

in the cable elements. To demonstrate the validity of this assumption, we can compare

the axial stiffness, defined as k = AcE/l, for the two structural elements. Ac is the

cross-sectional area for each element, E is elastic modulus of each element, and l is the

length of each element. In addition to the geometry of the elements, it is necessary to

determine the elastic modulus for the strut and cable, which is essential for predicting

the loading response of the structure (see equation 3.4). For the struts we assume a

standard value for 6061 aluminum [115], Estrut = 70 GPa. Since the elastic modulus

and even the alloy of stainless steel for the braided cables are unknown, the modulus

is obtained by tension testing according to standard ASTM A 931-08 [116].

Five cable samples were prepared with the same terminations as used in the tenseg-

rity beam. These samples were each loaded in tension at a crosshead displacement
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Figure 3.4: Detail of joint construction, showing the upper node on the static tenseg-
rity beam between cells 2 and 3. The cable for cell 2 (A) terminates with copper
crimps (B) around a ball-bearing pulley (C). The cable for cell 3 (D) is routed around
a pulley at the node. Struts from cell 2 (E) and cell 3 (I) share this node. The node’s
axle is made by a cap screw (F), which runs through flanged ball bearings (G) in the
strut ends. A vertical strut (H) also connects at this node.
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Figure 3.5: Results of tensile testing for 5 samples of braided stainless steel cable
used in the experimental MC beam. This linear portion of the stress-strain curves
was used to determine the mean elastic modulus, Ecable (plotted in red).

rate of 1 millimeter per minute until failure (complete cable rupture) in an Instron

5848 Microtester. Load readings were taken with a 2 kN load cell and strain values

were measured with a laser extensometer, independent from the crosshead displace-

ment. The stress-strain curves produced from this load-displacement data are shown

in figure 3.5. The modulus value for each specimen was calculated as the slope of a

linear fit to the stress-strain data, up to 110 N (62% of the ultimate load in tension

tests)8. The mean value for the modulus of the cables was found to be Ecable = 97

GPa, with a standard deviation of 3 GPa.

Now to compare the axial stiffnesses we take a worst-case-scenario for the lengths

of each, using the value of the longest strut member9 in the beam (0.268 m) and

the shortest cable member in the beam (0.24 m). Using the measured modulus of

the cable, the calculated stiffness for the shortest cable element is kcable = 68 kN/m

whereas the stiffness for the longest strut element is kstrut = 25× 103 kN/m, making

8110 N is the maximum tension in any cable during the tensegrity load-displacement experiments.
9Note that because of the sandwiched construction of the beam, two struts with the dimensions

described previously take the load as one member, thus doubling the effective area.
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Figure 3.6: Detail of the mounting base for the static tensegrity beam, showing
connections for the upper cables. Each cable (A) routes through the upper base node
(B) before terminating at an in-line load cell (C). The load cells are then connected
to the posts of machine heads (D), which set the pretension in each cable by tuning
at (E). All hardware is secured to a rigid base (F), also machined from aluminum.

the struts approximately 370 times as stiff as the cables. Based on this result we can

proceed with confidence that our rigid strut assumption is valid.

To measure the tension in each cable, a strain gauge-based load cell (Omega

LC201-25) is attached at its terminus and then connected to a tensioning mechanism,

as shown in figure 3.6. These in-line load cells are necessary for both proper preten-

sioning and to validate the predictions for change in cable tension due to external

loading. The tensioning mechanism for each cable is based on a guitar machine head,

which is a compact, non-backdrivable worm gear set. This hardware allows for fine

tuning of the pretension in the structure, which is of critical importance to setting a

predetermined slackening load. This base of the structure is fabricated from machined

aluminum plates and is rigidly secured to an optical table.
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3.2.2 Experimental Procedure

With the tensegrity beam constructed as described above, it is mounted in a

vertical orientation, such that self-weight of the beam in bending does not affect the

tension in the cables. In this orientation, the structure is pretensioned to the specified

optimal pretension ratio for an MC beam of T0 = [2, 2, 1]Topt, as discussed in section

3.1. Since the purpose of these tests is to show the transition of bending stiffness

at the predicted critical slackening load, a range of loads spanning the pre-critical

and post-critical regimes was applied. Also, in order to maximize the signal-to-noise

ratio of the measurements, the maximum external load is chosen to place maximum

tension levels near the full-scale output of the load cells. Since the full-scale output

of these load cells is 25 lbf (111 N), an optimal pretension of Topt = 19.6 N and a

maximum external tip load of 27.5 N (administered as 2.8 kg of brass weights) should

give a maximum cable tension10 of 94 N, or 85% of the load cell’s dynamic range in

tension.

The output voltages of all 6 load cells are measured using a National Instruments

USB-6259 data acquisition device. The loads are sampled via LabVIEW at a rate

of 100 S/s and the mean value over 100 samples was recorded for each load. Pre-

tensioning of the cables is accomplished by rotating the wormshaft on each of the

tensioning mechanisms while monitoring a live reading of the measured load in the

corresponding cable’s load cell. The process is recursive, due to the fact that the

prestress states of each cell are not independent, so the tensions are adjusted from

the base cell outwards repeatedly until the pretension for each cable is within 0.5% of

the target value. The beam is then mounted in a cantilever position (with the plane

of joint rotations perpendicular to the plane of the ground) so that weight applied to

the beam tip will act in the plane of the beam.

With the structure properly pretensioned, load-displacement tests can be carried

out. Loads are applied via hanging masses from the tip of the beam. Cable ten-

10Using equation 3.2
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sions are recorded using the load cells and beam tip displacement is recorded with

photographs. Figure 3.7 shows the beam under load in a typical experiment. By mea-

suring the relative displacement of the target between loaded and unloaded positions,

the vertical displacement of the beam due to each load is known.

The process of measuring the displacement distances for each photograph was

carried out using MATLAB, in order to avoid human error in determining the target

positions. Using a photograph of the beam tip in its unloaded position, a region of

interest (ROI) containing the target is defined in order to set the origin, from which

all distances can be calculated. The code then searches all subsequent tip-loaded

images for pixels similar to those found in the ROI, using an image cross-correlation

technique. The result is a set of [x, z] pixel coordinates which correspond to the set

of applied loads and are relative to the unloaded neutral position. An illustration

of the displacement measurement technique is shown in figure 3.8. The vertical (z)

component of each displacement is then transformed into real units by measuring the

pixel length of an element in the photograph of known length (specifically, the height

of the terminal vertical strut) and scaling by this proportionality.

This procedure was carried out for 14 different loads, ranging from 0.2 kg to 2.8

kg. The lowest load corresponds to 10% of Topt and the highest load corresponds to

140% of Topt, i.e. a range that spans the pre-critical and post-critical regimes. A set

of tests was conducted for all of the loads, and then this process was repeated for a

total of 5 sets, from which mean values and standard deviations are derived.

3.2.3 Results and Discussion

In conducting the load-displacement experiments, it was found that large tip loads

caused noticeable bending of the axle comprising the lower base node of the structure,

due to the axial forces in the attached struts and the relatively large span of this axle

(see figure 3.9). This was the only noticeable deformation of any component which

was assumed to be rigid. The movement of this bottom base node is equivalent to
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Figure 3.7: During a typical load-displacement test the tensegrity beam is loaded at
the tip with brass weights.
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Figure 3.8: Two images from the tip tracking are superimposed to show the amplitude
of deformation AP due to tip load P . The total displacement (red line) is measured
by MATLAB and the vertical (z) component is taken as AP .
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Figure 3.9: Two images overlaid to show the base node axle deforming under load
from the attached struts. Here, dbase = 0.64 mm.

+

+

Figure 3.10: Rigid-body rotation of the beam about the upper base node due to
movement of the lower base node, dbase, in the −x direction.

a rigid body rotation of the beam about the upper base node, as shown in figure

3.10. A correction for this effect is made by measuring the displacement of the base

node axle while tip loads are applied. This displacement was measured optically, as

in figure 3.9, and the correction for tip displacement is approximately:

Acorr = dbase
L

h
(3.5)

Figure 3.11 shows the optically measured lateral base node movement plotted

against applied tip load. The load-displacement relationship was highly linear over

the range tested. These base node movements can be converted to equivalent tip



46

18 19 20 21 22 23 24 25 26 27 28

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Tip load, N

Ba
se

 n
od

e 
di

sp
la

ce
m

en
t, 

 m
m

Figure 3.11: Displacement of base node based on optical tracking plotted against
applied tip load.

displacements using equation 3.5. The maximum tip displacement due to the defor-

mation of the base node axle, as a percentage of the total tip displacement, was found

to be Acorr/AP = 20%. The final load-displacement data for the beam is calculated

using both the measured displacements at the tip and the tip displacements due to

base node movement, so that A∗
P = AP − Acorr.

During the experiments, it was also observed that the structure had a small but

noticeable amount of out-of-plane deformation under load, as shown in figure 3.12.

The source of this deformation appears to be eccentric loading on the nodes of the

structure, arising from its inherent three-dimesionality. Both the analytical and nu-

merical models of the tensegrity beam are for an idealized two-dimensional structure,

yet for experimental purposes the beam is three-dimensional. As a result the cables

are not all coplanar, so they exert loads at termination points within the structure

which are eccentric with respect to the idealized two-dimensional plane of the struc-

ture. The rotational joints of the structure at each node are made with ball bearings,

which have a finite amount of both play and stiffness with respect to radially-induced

moments. These physical characteristics of the bearings allow for the struts to rotate

out-of-plane relative to one another, resulting in the observed out-of-plane deforma-
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Figure 3.12: Overhead view of tensegrity beam deforming under load, showing out-
of-plane motion particularly at the nodes between cells 1 and 2. This out-of-plane
deformation keeps the bottom cables from becoming completely slack at the predicted
critical slackening load.

tions for the overall structure.

The major consequence of these out-of-plane deformations is a delay in slackening:

a situation where not all bottom cables become slack at the same critical load. This

effect is observed in both load-displacement and change in tension results, which are

discussed below. Out-of-plane deformations due to load eccentricities could be further

minimized by using stiffer rotational joints with less play, by rigidly connecting the

pairs of struts with common nodes, and by doubling the number of cables to create

pairs, such that all eccentric cable loads are balanced.

The optically-measured tensegrity beam tip displacements were averaged over

5 sets of tests, and the standard deviations (normalized by the mean displacement

values at each load) were calculated, as shown in figure 3.13. The maximum deviation

is about 8%, which was for the lowest load. That deviation is particularly high

percentage-wise because the displacement at that load was rather small, at only 0.89

mm. All other deviations were no larger than 1% of the mean value.

Figure 3.14 presents the experimental results for tip displacement of the tensegrity

beam (corrected for base node movement as noted above) plotted against applied tip

load. Also shown are plots for the analytical solution (given by equation 3.4) and
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Figure 3.13: Standard deviations of optically measured tip displacement data, nor-
malized by the average displacement value at each load level.

for the full numerical solution (as presented in [5]). Overall, the experimental results

demonstrate excellent agreement to the analytical prediction for loads less than the

critical slackening load. The analytically predicted first-order bending stiffness is

Kbend, anly. = 2217 N/m and the slope of the pre-critical experimental data yields a

stiffness of Kbend, exp. = 2162 N/m, a difference of less than 3%.

Approaching the critical slackening load, the stiffness of the structure begins to

drop. Ideally, the drop in stiffness should occur right at a normalized tip load of

P/Topt = 1, however we see from the experimental results that this drop instead

occurs near P/Topt ≈ 0.9. The reason for this discrepancy is the self-weight of the

structure, which acts as an additional load and thus critical slackening begins at a

lower normalized external tip load. Self-weight is included in the numerical model, and

accordingly the numerical results show a transition from pre-critical to post-critical

stiffness occurring around the same external load as in the experimental results.

As expected, the analytical prediction for stiffness is not valid in the post-critical
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Figure 3.14: Load-displacement data plotted nondimensionally, with the tip load
normalized by the pretension Topt and the tip displacement reported as fraction of
beam length. Experiments closely match the analytically predicted bending stiffness
in the pre-critical regime. In the post-critical regime, the experiments follow numer-
ical predictions, with slight deviations due to three-dimensional effects on the beam.
Standard deviations for the experimental displacements are small enough that they
fit within the markers used, so they are not shown.
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regime, where the experimentally measured stiffness settles to a lower value that is

44.4% of the pre-critical value. The numerical simulation predicts a post-critical

stiffness that is 44.5% of the pre-critical value. So again the experimental results in

the post-critical regime are in good agreement with the numerical simulation, which

does account for critical slackening (and the associated redistribution of loads).

There is some discrepancy in these post-critical results however, with the exper-

imental data showing slightly smaller displacements than expected at loads above

P/Topt = 1. This is due to the delay in slackening discussed above: while the post-

critical stiffness does settle out very close to the predicted value, it does so over a

larger range of loads than is expected because of the delay in slackening — there

is not a sharp transition from pre-critical to post-critical stiffness as is seen in the

numerical simulation. As a result, the experimental post-critical displacements are

offset, shifted left (in figure 3.14) from this delay in slackening. The delay in slacken-

ing from out-of-plane deformations is even more evident in the experimental results

for cable tension.

Figure 3.15 shows the tension in each cable, reported as force density values, over

the range of tip loads. Force density, defined as the force in each element divided

by its length (λ = T/l), is used because of its prevalence in tensegrity mechanics [4].

Here the force density in each element is normalized by the force density in the tip

cell of the unloaded structure, λ0 = Topt/L. Analytical (given by equation 3.2) and

numerical results are also shown.

As expected, the bottom cables demonstrate decreasing force densities as tip loads

increase, while the top cables demonstrate increasing force densities as tip loads in-

crease. The force densities have different values at zero tip load for several reasons:

the optimal pretension distribution dictates that not all cells have the same preten-

sion, the effect of self-weight changes these initial cable pretensions, and the force

densities are scaled (inversely) by the length of each cable, which increases from base

to tip. There is generally good agreement between experimental results and the an-
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Figure 3.15: Tension in each cable, reported as normalized force density. In the top
cables, tension increases with tip load, while in the bottom cables, tension decreases
with increasing tip load. Most notably, this plot shows delay in critical slackening
from three-dimensional effects, with the result being lower than expected tensions in
the top cables for the post-critical regime.
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alytical and numerical predictions. However, there are more noticeable differences

compared to the load-displacement results.

The force density in the top cables of cells 1 and 2 are slightly lower than pre-

dicted in the pre-critical regime, meanwhile the force density in the bottom cable of

cell 1 is noticeably higher than both the analytical and numerical predictions in the

range of about 0.3 < P/Topt < 1. The force density in this cable should drop to

zero at P/Topt = 1, or with self weight included, more like P/Topt ≈ 0.9. However it

appears that the out-of-plane deformations of the beam lead to a residual tension in

this cable, since it is resisting the out-of-plane deformations. During the experiments,

it was observed that manually loading the structure in the out-of-plane direction at

the nodes in order to straighten the beam resulted in the bottom base cable becoming

slack for P/Topt ≥ 0.9. It was therefore concluded that the out-of-plane effects dis-

cussed previously are the major cause for discrepancies between experiment and the

predictions for force density and cable slackening. Even with this delay in slackening,

we see a discontinuous increase in cable tension in the top cables when the bottom

cables do slacken, which matches expectations.

In summary, the experimental observations validate the analytical predictions

for beam stiffness based on geometric design parameters, material properties, and

pretension levels. This result directly enables the design of similar beams for use in a

fin, with confidence that their resistance to external loading will match expectations.

Also, the results clearly demonstrate the effect of critical slackening on beam stiffness,

which reinforces the significance of proper pretensioning in these structures. The

magnitude of any discrepancies is small enough that we can confidently design MC

routed tensegrity beams based on the analytical predictions of section 3.1.
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Chapter 4

Robotic Fin Design

Experimental validation of previously derived tensegrity mechanics allows us to

proceed with implementing these structures towards a robotic underwater propulsor.

The analysis and design procedure to actuate the active bending mode of a tensegrity

beam with minimal resistance is presented. Following this is a walkthrough of the

overall design for the robotic fin, considering constraints and desired outcomes. A fluid

loading model is used in order to estimate forces on the fin surface, to aid in designing

the beam and actuation system. A cam-actuated active tensegrity beam is then

implemented into a batoid ray-like pectoral fin. The analytical prediction of the active

bending amplitude is compared to experimental measurements in order to achieve the

necessary amplitudes for the robotic fin based on prescribed input actuations. The

result is a robotic fin with both shape and kinematics that approximate an oscillatory

batoid ray, which is used quantify hydrodynamic performance.

4.1 Modified Antagonistic Actuation

In order to actuate an active tensegrity beam, some mechanism must be in place

to synchronously contract and release cables in accordance with the analytical results

presented in 3.1. Of all possible solutions, it has been shown in [5] that a rotary
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Figure 4.1: A single tensegrity planar cross unit cell, actuated with a rotary drum and
demonstrating deformation due to contraction of upper cable and release of the lower
cable. In a perfectly antagonistic scenario (circular drum), the cables both change
length by the same amount, so that δrel = δcon. However in a modified antagonistic
scenario, the changes in cable lengths differ, so that δrel 6= δcon.

scheme in which antagonistic pairs are attached to opposite sides of an actuation

drum is advantageous. The main advantage gained in this setup is that equivalent

pretension forces in each cell’s cable pair cancel each other out as equal and opposite

torques on the drum, such that no extra effort is required to bear the pretensional

loads. In this setup, the proposed shape of the rotary actuation drum is circular,

which gives perfectly antagonistic actuation to cable pairs, as shown in figure 4.1.

This antagonistic actuation works well for small angle assumptions upon which the

analytical results were derived.
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However, to match the kinematics of batoids, large amplitude beam bending is

required and in this regime the small angle assumptions of antagonistic actuation

break down. It is straightforward to show that for large deformations of a tensegrity

unit cell, the length changes for the pair of cables are not equal. The difference

between the length changes represents an induced strain for the antagonist pair of

cables — i.e. for perfectly antagonistic actuation, the cell can only deform if one of

the cables strains to make up the difference. Thus the prescribed length changes of

the cables should match the geometric deformations of the unit cell in order to avoid

large loads associated with induced cable strain.

This scenario poses several questions: what is the expected magnitude of forces

from induced cable strain as a function of actuation amplitude? What amount of

modified antagonistic actuation is needed to avoid this cable strain? And ultimately,

how should an actuation mechanism be designed in order to minimize induced cable

strain while achieving large bending amplitudes?

To answer these questions and open the possibility of designing a mechanism to

produce modified antagonistic actuation, free from undesirable induced cable strain,

we should first examine the geometry of a single unit cell (as shown in figure 4.2) to

determine the relationship between the lengths of the cell’s active cable pair. Quan-

tifying the difference in their length changes as the cell deforms directly indicates the

amount of induced cable strain from antagonistic actuation. From the geometry of

the tensegrity unit cell, we can use the law of cosines on internal angles to solve for

the length of the contraction cable, Lcon, as a function of the length of the release

cable, Lrel:

Lcon =

√√√√2h2 + L2
0 − 2h

√
h2 + L2

0 cos

[
arccos

(
L2

rel − L2
0

2hLrel

)
− arccos

(
L2

rel + L2
0

2Lrel

√
h2 + L2

0

)]
(4.1)
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Neutral Actuated

Figure 4.2: Internal angles of the unit cell can be used to find a relationship between
Lcon and Lrel. Here, we know ∠A + ∠B = ∠C, and the law of cosines is used to
describe these angles in terms of both known and desired lengths. Shading is used to
indicate the internal triangles used for the derivation of equation 4.1.

Using the assumption1 {h, L0, Lrel} > 0 and trigonometric identities, the relation-

ship between the two lengths conveniently simplifies to a straightforward equation:

Lcon =
L2

0

Lrel

(4.2)

It is interesting to note that this result is independent of the cell’s height h and thus

aspect ratio, ARcell = L0/h. Equation 4.2 also demonstrates that the product of the

two cable lengths is always a constant (L2
0). Clearly the two lengths are algebraically

interchangeable, so this inverse relationship holds for either length as a function of

the other. The definition of each cable as contraction or release is arbitrary, since

the length changes are symmetric about the neutral, undeformed configuration. For

convenience, the remaining relations will be relative to an input actuation prescribed

to Lcon. We can define the lengths of each cable relative to their original lengths as

follows:

Lcon = L0 − δcon

Lrel = L0 + δrel

(4.3)

1For all physical structures, we know that h, L0, and Lrel will be positive and real.
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For consistency, it should be assumed that {δcon, δrel} > 0 so that Lcon < L0 < Lrel.

Using this convention, the length changes in physical units will have positive values.

The length changes can be expressed in a number of ways, but the most useful is

simply as nondimensional strain values:

δ̄con =
L0 − Lcon

L0

=
δcon

L0

δ̄rel =
Lrel − L0

L0

=
δrel

L0

(4.4)

It is important to note that these strains have been defined as positive for con-

venience, even though δ̄con represents “compression” by cable contraction (which is

ordinarily a negative strain) and δ̄rel represents elongation by cable release.

Up to this point the derivation has been for a single cell. However the results

apply to MC beams with N cells using appropriate normalizations. For instance, in

an MC beam the actuation for the jth cell is simply δcon, j = jδcon and the length of

the cable for the jth cell is Lj = jL0. So if the actuation is normalized as δ̄con, j =

δcon, j/Lj, then δ̄con, j = jδcon/jL0 = δcon/L0 = δ̄con. Hence, the non-dimensional

strains are invariant for all cells of the beam. Since the following relations are based

on these nondimensional strains, they are also invariant with respect to cell number.

Combining equations 4.2, 4.3, and 4.4, we can solve for the nondimensional strain of

one cable as a function of the other:

δ̄rel =
δ̄con

1− δ̄con

(4.5)

Plotting the non-dimensional strains of the unit cell’s cable contraction and release

in figure 4.3, we can clearly see a difference growing between the two as the cell

deforms further. As the contraction cable’s length is shortened at a constant rate,

the release cable’s length increases by an additional amount. The difference between
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these two strains is the geometric actuation delta2 for which a modified antagonistic

actuation system needs to compensate. We can formulate the following expression

for the dimensionless geometric actuation delta between the contraction and release

cables as a function of the contraction cable’s normalized actuation:

∆̄act = δ̄rel − δ̄con =
δ̄2

con

1− δ̄con

(4.6)

The description of induced cable strain arising from purely antagonistic actuation

and the amount of ∆̄act needed for a modified antagonistic actuation system are

equivalent: i.e. by quantifying the amount of induced strain, we automatically know

the extra amount of cable release needed. Having an expression for ∆̄act opens up

the possibility to design a non-circular actuation drum shape which will produce the

modified antagonistic actuation necessary.

It should be noted here that in addition to accounting for geometrically-induced

cable strain, a cam shape could account for other actuation resistance effects as well.

Moored [5] indicates another mechanism counteracting actuation, termed prestress

reorientation, which comes from the reorientation of force vectors in the vertical

members of the tensegrity beam during actuation. The resistance force on a single

unit cell due to this effect is given as:

Fpr = T0
δa
L0

= T0δ̄a (4.7)

This force is directly proportional to the level of pretension and therefore could

be quite substantial if the pretension is large. Meanwhile, the resistance force arising

from the induced strain of ∆̄act can be calculated using Hooke’s Law and equation

4.6:

2The geometric actuation delta of the planar cross unit cell, ∆̄act, should not be confused with
the previously defined antagonistic actuation, δa, which uses a lower-case delta.
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Figure 4.3: Plot of the release cable strain, δ̄rel, as a function of the contraction
cable strain, δ̄con. As the contraction cable strains at a constant rate, the release
cable strains at an increasing rate, governed by equation 4.5. The difference between
these two strains increases with the tensegrity unit cell deformation and creates the
actuation delta, ∆̄act.

F∆ = EcAc∆̄act =
EcAcδ̄

2
a

1− δ̄a
(4.8)

This force, F∆, is caused by induced strain on the release cable (with cross-

sectional area Ac and modulus Ec) during antagonistic actuation if the contraction

cable is actuated by δ̄a. It is clear this force will be large for relatively stiff structures,

which are the focus of this study. For comparison of these two effects, we can take

values from the tensegrity fin design example in [5]: T0 = 5 N, Ac = 5.3 × 10−8 m2,

and Ec = 97 GPa. Using these values we calculate that Fpr = 5δ̄a N and F∆ =

5150 δ̄2
a/(1− δ̄a) N. Plotting these forces in figure 4.4 over a range of δ̄a, we see that

the actuation resistance from prestress reorientation is minuscule in comparison to

that from the geometric actuation delta.

Small as it might be, if it were desired to account for the prestress reorientation
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Figure 4.4: Plot of two contributions to actuation resistance. Clearly the resistance
arising from the geometric actuation delta is much greater than that from prestress
reorientation, for the relatively stiff structure in question.

effect, the amount of extra release, δ∗a, needed for a single cell is calculated as [5] :

δ∗a = δa
2T0

EcAc

(4.9)

The amount of extra release to relieve prestress reorientation resistance is pro-

portional to the nominal actuation, δa, and the proportionality is the inverse of the

structure’s relative stiffness, kr (from section 3.1). Again, from this relationship we

can see that for a high relative stiffness, the prestress reorientation effect diminishes

in importance. Using the relative stiffness of the design example in [5] to put this into

perspective, we see that δ∗a = 0.0019δa. So if, for example, we wanted an actuation

of δa = 2 cm (representing δ̄a = 0.24 for the design example in [5]), the extra cable

release would only be δ∗a = 39 µm.

Clearly this is a small effect and the amount of extra release is likely well below

the manufacturing resolution that might be available. It can be concluded from
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this example that prestress reorientation is only a significant effect for relatively soft

structures (and chiefly those with very high pretension), which are not the focus

of study here, so we can continue designing the cam shape with disregard to this

mechanism.

From the cable strains in figure 4.3 and from the actuation delta of equation

4.6, it is clear that the total actuation for the release cable needs to be larger than

for the contraction cable. In the baseline actuation scheme of a circular drum, the

actuation delta is zero and the absolute value of actuation for both cables wrapped

around the drum is equal to the arc length swept through by the drum rotation angle:

s = rθ = δa(r, θ). Clearly a larger radius increases the actuation amount for a given

rotation, and a smaller radius decreases the actuation amount. From this baseline,

we can imagine a cam-shaped actuation drum with a variable radius such that more

or less cable will be released depending on the angular position of the drum, as shown

schematically in figure 4.5.

The main problem now is: how do we describe a cam shape, defined by r(θ), in

terms of the necessary actuation delta? The actuation delta for the cam shape can

be formulated as:

∆̄cam = s̄rel − s̄con (4.10)

Here, the arc length swept out by each side of the cam is normalized as s̄ =

s/L0 (by the original length of a unit cell, as with previous normalizations) and the

formulation of ∆̄cam is subtractive similar to equation 4.6 under the assumption that

scon > 0. This actuation delta for the cam can then be described in terms of the cam

shape if the arc lengths are related to θ and r(θ). In general, the arc length swept

out by an arbitrary curvilinear path described by r(θ), can be given by [117]:
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Figure 4.5: Schematic of cam concept, showing arc lengths on an actuation drum
with varying radius r(θ). The cam shape is symmetric about the line from θ = π/2
to θ = −π/2. The radius increases on the release side of the cam, so that r(θ) > r0

for 0 < θ < π/2 and the radius decreases on the contraction side of the cam, so that
r(θ) < r0 for 0 > θ > −π/2. This general shape ensures that srel > scon.
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s =

∫ θ

0

√
r(θ)2 +

(
dr(θ)

dθ

)2

dθ (4.11)

It would be convenient to solve for the radius at any point, r(θ), in terms of the

desired actuation delta using this relation, however there is no general closed-form

solution. Instead we can start with an assumed form of the solution for r(θ), and

try to solve for the parameters of the model. The simplest possible solution form to

achieve our goal of matching the actuation delta would be a linear one, in which the

radius varies linearly with θ, such as: r(θ) = mθ+r0. Again normalizing3 this relation

by the unit cell length L0 such that r̄(θ) = r(θ)/L0, m̄ = m/L0, and r̄0 = r0/L0 we

have a simple dimensionless model for the radius as a linear function of θ:

r̄(θ) = m̄θ + r̄0 (4.12)

For this simplest model, a closed-form solution for the arc length can be found

using a symbolic manipulation tool like Mathematica, but it is unduly complex and

only valid for θ > 0. Taking a two-term series approximation of the solution about

θ = 0 and solving for m̄ in terms of r̄0, θ, and s̄ yields multiple explicit solutions, but

again are extraordinarily complicated algebraically. A more straightforward approach

for determining the appropriate value of m̄ would be one in which the arc lengths for

both sides of the cam are calculated numerically over a range of m̄ so that ∆̄cam can

be compared to the desired actuation delta, ∆̄act.

Equations 4.11 and 4.12 indicate that the arc lengths should depend not just on

the value of m̄, but also upon r̄0. An appropriate value of r̄0 is chosen by considering

the desired maximum tip amplitude of the tensegrity beam and approximating the

3When normalized as the cell actuations δ̄ above, this formula for radius also applies to multiple-
cell beams and is invariant to cell number for the same reason. This simplifies the analysis that
follows, because it only needs to be done once for the whole beam, not for each cell. To be explicit, if
the nominal drum radius corresponding to the jth cell of the beam is rj = jr0 and if it is normalized
by the length of cable for the jth cell, then we see that r̄j = rj/Lj = jr0/jL0 = r0/L0 = r̄0, which
is invariant with respect to the cell number. By this normalization, the real radius with units does
scale with cell number as rj = jr̄0L0 as does the value of mj = jm̄L0.
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actuation giving rise to that tip amplitude by the arc length swept out by a circular

drum of the same radius. Using equation 3.1 and the arc length of a circular drum,

we can estimate an appropriate radius for an MC tensegrity beam as:

r̄0 ≈
Āh

θL
(4.13)

Here Ā is the tip amplitude of the beam normalized by the total beam length, L.

This relation shows that for a fixed maximum θ, the tip amplitude is proportional

to both r̄0 and the beam aspect ratio L/h. Due to the symmetry of the cam, the

absolute maximum θ is π/2 but it is not necessary to use the entire surface of the cam.

The maximum practical value for θ depends on the specifics of each application, such

as the actuator being used to drive the rotation. Similarly, the radius r̄0 depends

on the specifics of the application, so the value given by equation 4.13 is only an

approximate value that would be appropriate, and different values could be used

successfully. The radius given by 4.13 represents the minimum in order to achieve

the desired amplitude using rotation θ. A maximum radius is governed by physical

considerations for the actuation system, and limits the maximum θ that can be used.

For a typical biological amplitude of Ā = 0.5, a sample beam aspect ratio of L/h = 6,

and assuming θmax = π/4, we have r̄0 = 0.1. This value can be used for the following

example of finding m̄.

Proceeding with a candidate r̄0, we can make an array of values for θ (from 0 to

θmax for s̄rel and from 0 to −θmax for s̄con) and an array of possible values for m̄. Note

that m̄ has a maximum practical value defined by the model of equation 4.12: for

θ < 0 (i.e. the contraction side of the cam) there is a value of m̄ sufficiently large

such that the radius goes to zero. If we consider the limiting case at θ = −π/2 (at

the line of symmetry for the cam), then m̄max = 2r̄0/π. For r̄0 = 0.1, m̄max = 0.064.

The case of m̄ = 0 represents a circular drum, so we can search in the range from 0

to m̄max.

For each candidate m̄, the radius r̄(θ) is calculated at every θi using equation
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4.12. Transforming these points describing the cam surface from polar coordinates to

cartesian coordinates, we can calculate the arc length cumulatively as the Euclidean

distance between each point:

s̄i =
√

(x̄i+1 − x̄i)2 + (ȳi+1 − ȳi)2 (4.14)

The required actuation delta of the unit cell is calculated for each m̄ with s̄con

acting as δ̄con using equation 4.6, and the actuation delta of the cam shape is calculated

using 4.10. The error between these two actuation deltas at each point along the cam

surface is calculated as:

ei = (∆̄cam, i − ∆̄act, i)
2 (4.15)

The total error for each candidate value of m̄ is simply the integration of all ei

over the range of θ, so that etot =
∑
eidθ. The total error has been plotted for this

example in figure 4.6. The minimum total error, which is 7.3 × 10−13, occurred for

m̄ = 0.0101. Figure 4.7 shows the error between the actuation deltas (using this best

m̄) at each point along the cam, which is largest near θmax. However the magnitude of

even the largest error is quite small, at less than 4.5× 10−12. The fact that this error

is small can also be seen in figure 4.8, where there is excellent agreement between the

required actuation delta and the actuation delta produced by the cam shape.

From the arc lengths shown, it may seem like the actuation delta produced by

the shape of the cam would be almost inconsequential. However consider that the

actuation delta at θmax is more than 0.006, which represents a cable strain of 0.6%.

Using Ac and Ec of braided stainless steel cable from the force estimations earlier in

this section, that strain translates to more than 30 N of force, which is a substantial

effort just to actuate an unloaded tensegrity beam. However, using the cam shape

provided here, that unnecessary actuation resistance is eliminated. The final cam

shape producing this actuation delta is shown in figure 4.9, with a circular drum of
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Figure 4.6: Minimum total error of the cam shape for target actuation delta, based
on r̄0 = 0.1.

radius r̄0 shown for comparison.

The example of this particular cam shape using typical values of a tensegrity

beam has been for the purposes of demonstrating the efficacy of the design method

proposed, which eliminates induced strain when actuating. The same method can

be carried out using different design parameters to similar effect. It is interesting

to note however that the value of m̄ does depend on r̄0. In order to determine the

nature of the relationship between these parameters, the process outlined above was

carried out for a wide range of r̄0 and for each case the optimal (minimum total

error) value of m̄ was found. The result is shown in figure 4.10. Clearly the value

of m̄ increases along with r̄0, however there is an apparent discontinuity around the

value of r̄0 ≈ 0.35, after which the optimal value of m̄ does not rise nearly as quickly.

From the plot of total error (corresponding to each m̄), we can see that soon after

this transition, around r̄0 ≈ 0.5, the total error rises substantially. This indicates

that for large enough values of r̄0, this model for a cam shape fails to provide the

necessary actuation delta. Therefore in using this method values of r̄0 should be kept

low, preferably below r̄0 ≈ 0.35. The cam design process for the active tensegrity

beam used in the fin is carried out with this limit in mind.
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Figure 4.7: Actuation delta error along the surface of the cam for r̄0 = 0.1 and
m̄ = 0.0101. The error is largest at θmax, but the magnitude of this error is very
small.
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Figure 4.8: Resulting actuation delta for the cam with r̄0 = 0.1 and m̄ = 0.0101, show-
ing excellent agreement with the actuation delta required for the unit cell. Also shown
are the cumulative amounts of arc length (corresponding to cable length changes) for
both the release and contraction sides of the cam, with the arc length of a circular
drum shown for comparison.
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4.2 Fin Concept

With validated tensegrity mechanics and a means of actuation to minimize induced

cable strain for large amplitude beam bending, the next issue is the design of a fin

which incorporates a tensegrity beam for the structural basis and is also capable of

handling fluid loading to produce thrust. The overall idea is to implement the kind of

tensegrity beams previously discussed in order to create kinematics similar to batoid

rays. Since this is an open-ended design problem with many possible solutions, the

following discussion serves to justify the design choices made for this study, not as

the only or absolute best way to create batoid kinematics using tensegrity.

The goal of this fin design is to produce the major components of oscillatory batoid

ray kinematics — i.e. large span-wise bending (oscillatory flapping) with some amount

of chord-wise curvature (an undulatory wave) — using the simplest arrangement of

tensegrity beams possible. Considering the number of design choices that must be

taken into account, it seems that increasing complexity obscures us from the objective

of studying batoid swimming performance. Therefore it is suggested here that a fin

using only one beam near the leading edge of a compliant skin could accomplish the

objective, creating the appropriate kinematics and allowing us to quantify swimming

performance.

It should be noted that there has been a recent proposal [5] to use a series of

tensegrity beams actuated in sequence to actively produce both the span-wise bending

and the chord-wise traveling wave components of batoid kinematics. This overall

design choice presents two problems though: first, the level of difficulty for both

constructing and controlling the entire structure scales with the number of beams;

second (and more importantly), this design could lead to large amounts of energy

wasted on straining an artificial skin. If multiple beams are actuated with a phase

difference to create a traveling wave, then the distance between adjacent beams would

be constantly changing, an effect most extreme at the beam tips. The result is that a
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skin material spanning across these beams would undergo significant strain4, the level

of which would be determined by the specific kinematics of the beams (amplitude

and phase difference). Straining the skin material would not contribute to thrust

production and would be a waste of input energy5, so for these reasons a multiple-

beam approach is not taken here.

The active tensegrity beams covered in the previous chapter can produce the large

span-wise bending desired, but some means of producing chord-wise curvature with

only one beam is still needed. Looking towards biology for inspiration, there are

two notable observations: fish and most biological swimmers in general are highly

flexible [68, 118]; and the musculature of batoid rays is heavily concentrated towards

the leading edge of the fin (see figure 4.12), leaving far less muscle for active fin de-

formation in the distal and posterior portions of their fins. It therefore seems likely

that the full kinematics seen on the fins of biological rays are a product of both ac-

tive and passive mechanisms6 [61, 119]. The assumption then is that a simple design

can produce the appropriate kinematics by using a tensegrity beam near the leading

edge to actively deform for large span-wise flapping amplitude and a compliant skin

to passively deform for chord-wise curvature. Several recent bio-inspired propulsor

studies [4, 41, 48, 120] have used a general design in which some mechanism is embed-

ded in a compliant polymer skin in order to form a smooth, streamlined propulsive

surface for hydrodynamic loading7 — an approach that will be adopted here.

With a general concept of the fin in place, the next item to resolve is a planform

4This skin straining scenario could possibly be avoided by using some kind of flexible corrugated
or baffled material for the skin, which would easily accommodate the strain. However this type
of design is undesirable because it would not allow for a smooth, streamlined airfoil shape seen in
actual ray fins.

5Unless the strain energy could be released in some way to excite a resonance of the structure,
which would further complicate the design process. Taking advantage of structural resonance is an
important issue to consider, but is beyond the scope of this study, which is based on reproducing
kinematics.

6But this is a subject of study for biologists and currently there are no definitive answers on this
pertaining to batoid rays.

7At the extreme edge of simplicity, other recent studies have shown that highly flexible panels
actuated only at the leading edge can be used to produce thrust [121].
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for this fin, which defines the chord length as a function of span position, and thus

determines the overall fin aspect ratio as well. Variations in planform and aspect

ratio certainly exist amongst batoid rays, but the overall morphology of oscillatory

rays is remarkably consistent and the general fin planform shape is triangular with

differing levels of sweep [58]. The influence of swept-back tips and other planform

variants is not well-studied for this type of swimming so the default planform shape

for this study is chosen to be the simplest possible, which is purely triangular. While

this may not seem very representative of biology, the pectoral fin of the spotted eagle

ray (Aetobatus narinari) is indeed very nearly an isosceles triangle, as shown in figure

4.11. This planform is simple and does not confuse the design with unknown effects

of swept tips or other features, therefore it will be used for this study.

Aspect ratio for the body of a ray can be defined as ARbody = b2/S, where b is the

total tip-to-tip wingspan and S is the total area, including the rigid body. Since the

bodies of oscillatory rays are rhombic in planform, the area can be approximated as

S ≈ bcBL/2, where cBL is the chord length of the body (not including the tail), which

makes the aspect ratio ARbody ≈ 2b/cBL. Typical values of this body aspect ratio

for oscillatory batoids are in the range of 3.2 – 3.5 [58]. To convert this body aspect

ratio to an aspect ratio for the fin alone, it will be assumed that ARfin = ARbody/2,

since the span of a fin is approximately half of the total wing span. A value of

ARfin = 1.65 (which corresponds to ARbody = 3.3) will be used for the design of this

fin moving forward, creating a fixed relationship between root chord and span such

that croot = 1.22 b.

As mentioned above, the tensegrity beam should be positioned near the leading

edge of the fin for two reasons: we see in oscillatory batoid rays the majority of

the musculature toward the leading edge, and the objective of a passive traveling

wave on the fin will only be accomplished if the flexible portion of the fin trails

the active tensegrity beam. However with this information alone it is unclear where

exactly to position the base of the tensegrity beam along the root chord and what
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Figure 4.11: Spotted eagle rays, another common myliobatoid species, exhibit a re-
markably triangular fin planform (with very little sweep or other curvature). Image
source: [122].

angle the beam should make relative to the span line (or x-axis, perpendicular to the

stream-wise direction). We can determine both of these parameters simultaneously

by considering two things: the fineness ratio, which is the ratio of chord length to

maximum thickness (inverse of thickness-to-chord ratio), is large for biological fins in

general, essentially meaning they are streamlined; and that a tensegrity beam of finite

minimum thickness must fit within this envelope. Therefore, in order to maximize

the fineness ratio it is desirable to place this tensegrity beam of minimum thickness8

along the thickest chord-wise position of the fin. The fineness ratio for myliobatoid

rays is in the range of about 5 to 10 (meaning a thickness-to-chord ratio of 0.2 to

0.1) [58], so this gives a target for the design of the artificial fin.

To determine the portion of the fin with maximum thickness, consider that the

cross sections of batoid ray fins (and of most biofoils in general) are very similar to

8 The mechanics of section 3.1 demonstrate that reducing the height of the beam (corresponding
to thickness of the fin) while keeping its length fixed reduces the beam’s bending stiffness. However
it is important to match the shape of a biological fin, so minimum height is desired. Fortunately, the
reduction in bending stiffness due to increased beam aspect ratio can be compensated for simply by
using stiffer (larger diameter) cable elements.
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Figure 4.12: Chord-wise slice through the pectoral fin of a cownose ray at the fin
root. Dissection clearly shows musculature concentrated towards the leading edge
(LE) and relatively little towards the trailing edge (TE), resulting in an airfoil-like
shape. Like a NACA airfoil, the thickest portion of the biofoil occurs around 1/3 of
the chord length away from the leading edge.

modern airfoils used in fixed-wing aircraft. Take for example a chord-wise cut through

the fin of a cownose ray, shown in figure 4.12, which is clearly reminiscent of a typical

airfoil. Noting this, we can simplify our design by using common airfoils to create the

cross-sectional shape of the fin. Standard four-digit NACA foils9 have a maximum

thickness at 0.3 chord lengths away from the leading edge (or approximately c/3).

This distance away from the leading edge at which maximum thickness occurs can

be used as the line along which the tensegrity beam lies, thus simultaneously fixing

its base position along the root chord and its angle with respect to the span line.

For the isosceles triangular planform, the line of maximum thickness along which the

beam should lie is tilted backwards (towards the trailing edge) relative to the span

line (x-axis) at an angle of φ = tan(croot/6b), as shown in figure 4.13.

A major constraint on further choices for physical design of the fin is on overall

size. The fin will undergo hydrodynamic testing in a water tunnel (described further

9Note that four-digit NACA foils have a format cctt where cc denotes the amount and location of
maximum camber, while tt gives the thickness-to-chord ratio as a percentage. For example, NACA
0015 is an uncambered foil with t/c = 0.15. Only uncambered foils will be used here.
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Figure 4.13: Schematic of triangular planform, showing the line of maximum thickness
along which the tensegrity beam should ideally lie, at angle φ with respect to the span-
wise direction (x-axis). The foil at the root section here is a NACA 0020 and the foil
at c(x) is a NACA 0040, demonstrating the need for a lower fineness ratio approaching
the tip to accommodate a beam of constant thickness (shown in red).
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in section 5.1), and therefore must fit within a fixed-size test section, which is 15”

(38.1 cm) wide and 20” (50.8 cm) deep. As mentioned in section 2.2.1 the maximum

tip amplitude of batoids is typically in the range of 50% of the span length. Therefore

the absolute maximum span for a fin flapping in this water tunnel would be 15”, so

that the tip-to-tip flapping amplitude just matches the tunnel width. The span length

of the fin was chosen to be 8” (20.3 cm), so that the minimum distance between the

fin tip and tunnel walls is 88% of the maximum tip amplitude (A/b = 0.5), in order

to avoid flow interaction with the tunnel boundary as much as possible while still

keeping the fin at a reasonable size for manufacturability.

The effects of wall proximity on unsteady flapping performance have not been

well-documented in the literature, although two recent studies offer some insight on

unsteady propulsion near a solid boundary. Quinn et al. [123] performed hydrody-

namic experiments with a rigid airfoil, pitched at the leading edge while the distance

from a solid boundary was varied. They found that at an optimal distance from

the wall, thrust could be enhanced by as much as 40%, however within experimental

error, the measured efficiency was independent of distance from the wall. In another

study, Quinn et al. [124] tested the propulsive performance of various thin flexible

panels that were actuated through a heaving motion at the leading edge and varied

the distance of these panels to a solid boundary. The results indicated that for cer-

tain frequency ranges thrust could be increased with proximity to the solid boundary.

For the most rigid panel, this increase in thrust came at the cost of more power,

and as a result the efficiency was independent of distance from the wall. For the

more flexible panels, some increases in efficiency were observed when either resonant

heaving modes of the panels were excited or when torsional modes of the panels were

suppressed. Self-propelled swimming tests showed that swimming speed could be

increased with wall proximity (especially for the stiffest panel), however swimming

economy appeared to be completely independent of wall proximity for all panels.
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Therefore while there has been an attempt in this study to minimize wall effects10, it

is assumed here that the impact of any such effects upon hydrodynamic results should

be minimal, so long as the measures of performance include power consumption (i.e.

efficiency and economy).

With the span and fin aspect ratio determined, this gives a root chord of croot =

9.75” (24.8 cm). For the triangular planform with these values of b and croot, this

gives a beam angle with respect to the span line of approximately 12°. The amount

of detail about the fin geometry determined so far is sufficient to estimate the overall

fluid loading on the fin, while the remaining attributes of the fin geometry (such

as fineness ratio at various span-wise locations) are based on features of the active

tensegrity beam (beam length and minimum beam height), which are dictated by

hardware considerations and are the subject of section 4.4.

4.3 Fluid Loading Model

In order to determine necessary pretension levels in the structure to avoid a crit-

ical slackening condition, some estimate of external loading on the fin is required.

Additionally, this loading estimate will dictate both the selection of an appropriate

actuator to drive the active tensegrity beam and also the sizing of components (either

based on minimum bending stiffness to allow a maximum deflection, or to avoid com-

ponent failure). Estimating dynamic fluid loading on a surface with unsteady motion

is no simple task, but an approach is laid out here which gives a rough estimate in or-

der to obtain the order of magnitude for these forces. Let us assume a simple motion

for the fin to approximate flapping, which is given by a rigid plate (with the triangular

planform described previously) rotating about the root chord line, as shown in figure

4.14.

The forces on this rotating fin can be analyzed as drag perpendicular to a flat

10Through the choice of fin size, limited by the constraints of both the water tunnel and manu-
facturing capabilities.
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Figure 4.14: Schematic showing fin model used for fluid loading estimate. The fin is
simplified to a flat, rigid triangular planform which rotates about the root chord.

plate by taking into account the dynamic pressure resulting from local flow velocities

stagnating. Additionally, using a coefficient of drag, cd, for a finite flat plate takes

into consideration forces measured experimentally in steady flow, which are higher

than only the forces expected for pure flow stagnation, due to suction on the back

side of the plate and other intricacies of the flow11. Reported values for cd on a flat

plate perpendicular to flow can vary widely, depending on experimental conditions,

aspect ratio of the plate and other conditions. To be conservative in the estimate of

force on the fin (erring higher), a high value of cd =1.98 will be used [32]. The total

force on the plate is then given by the dynamic pressure multiplied by the fin area,

both of which are integrated over the span of the fin:

11Note that this analysis does not take into account effects such as added-mass inertial loading
or vortex interactions, which are both complicated and beyond the scope of this analysis. It is also
worth noting that added-mass inertial forces should be maximal when the fin is accelerating near
the maximum amplitude for each-half cycle of flapping, while the dynamic pressure forces should be
maximal when the fin is passing through the neutral plane at maximum velocity. Since these effects
don’t occur simultaneously, they should not be additive.
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Fplate =
1

2
cd ρ

∫ b

0

Umax(x)2 c(x) dx (4.16)

Here ρ is the density of the fluid, Umax(x) is the local fluid velocity induced by

flapping motion at some span x, c(x) is the chord length of the fin at x and b is the

maximum span. The chord length at any x for the isosceles triangle planform is given

by:

c(x) = croot

(
1− x

b

)
(4.17)

If we assume the fin is flapping sinusoidally by sweeping through angle θ with

with frequency f and amplitude θmax, then the angular position at any time is θ(t) =

θmax sin(2πft) and the angular velocity is thus θ̇(t) = 2πfθmax cos(2πft). The velocity

at some point along the span normal to the fin surface is given by U(x, t) = xθ̇. The

maximum fluid loads are of interest and we expect these to occur at maximum fin

velocity, so we can express the maximum velocity normal to the fin surface as:

Umax(x) = 2πfxθmax (4.18)

Thus by combining equations 4.16, 4.17, and 4.18 we have an expression for the

total force on the plate:

Fplate = 2π2 cd ρf
2θ2

max croot

∫ b

0

x2 − x3

b
dx (4.19)

Integrating over the span gives the maximum drag-based force over the entire fin

as it passes through the neutral plane:

Fplate =
π2

6
cd ρf

2θ2
max crootb

3 (4.20)

However it proves interesting to examine the distribution of the force per unit



81

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Normalized span, 

N
or

m
al

iz
ed

 fo
rc

e 
pe

r u
ni

t s
pa

n

Figure 4.15: Plot of force per unit span from dynamic pressure, normalized by maxi-
mum value. Values of force per unit span, Πj can be determined from this distribution
at each position x̄j, in order to estimate loading contributions, using equation 4.21.

span arising from dynamic pressure, given by the integrand of equation 4.19 and

shown in figure 4.15. This plot demonstrates the variation in force over the span

length, based on the chosen planform and assumed velocity profile for flapping. Thus

different planforms and flapping patterns would produce different distributions. The

maximum force per unit span occurs at x = 2
3
b. As should be expected, this value

drops to zero both at the fin root (because the velocity goes to zero) and at the fin

tip (because the loading area goes to zero).

This distribution can be used to estimate how the loading distribution over the

surface of the fin would translate to point loads on the nodes of a tensegrity beam

embedded in the fin. If we look at the force per unit span at these nodal locations, we

can estimate the relative force contribution that will act at each cell of the tensegrity

structure. The normalized force per unit span at each node location (normalized by

span length) x̄j is Πj. We can renormalize these contributions relative to each other

and assume they represent the distribution of the total force so that the force at each

node, Pj, is:
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Figure 4.16: Fluid loading of equation 4.19 visualized on a triangular planform fin.

Pj =
Πj∑

Π
Fplate (4.21)

The loading analysis of section 3.1 (specifically using equation 3.2) can be extended

to account for these distributed forces at each node of an MC tensegrity beam. By

simply taking the superposition of the change in tension for the cable of the jth cell,

∆Tj, caused by each load Pj, we can derive an expression for the total change in

tension for the jth cable:

∆Tj, tot =
L

2Nh
(Pj + 2

N∑
i=j+1

Pi) (4.22)

One implication of this result is that the change in cable tension will be highest in

the first cell, since it is the only cell affected by all of the distributed loads. Therefore

the criterion for cable failure due to external loading should be based on this first

cell. Additionally, the optimal pretensions defined previously for a single tip load

are no longer valid for this distributed loading scenario and instead the pretension
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distribution will depend upon the values of each Pj.

To actuate an MC beam against this distributed loading using a drum with radii

rj = jr0, the total actuator torque required to produce this flapping would be:

τtot = r0

∑
j∆Tj, tot (4.23)

In summary, a methodology for estimating the fluid loading on the flapping fin is

described, so that actuators and other components can be sized appropriately. The

total loading and distribution on the nodes of the tensegrity beam will depend on

final fin and beam parameters, which are determined in the following section.

4.4 Implementation of an Active Tensegrity Beam

Having laid out the framework for tensegrity design, the general concept of the

robotic fin, and a method to estimate the fluid loading, the design and implementation

of an active tensegrity beam can be completed. This beam will act as the structural

basis for leading-edge span-wise bending in the artificial fin. As with the tensegrity

mechanics experiments of section 3.2, the number of cells was chosen to be 3. Three

cells give adequate shape resolution for the span-wise bending mode while minimizing

complexity of design and fabrication.

Similar to the tensegrity structure used for load-displacement experiments, ball

bearings are needed at the ends of each strut to create nodes with low-friction rotation.

The diameter of these ball bearings is the limiting factor for the height of the beam,

since the beam must be at least two ball bearing diameters tall, plus the width of

strut material containing them, plus clearance for the vertical strut to rotate. The

smallest flanged extended inner ring ball bearings that could be readily obtained as

off-the-shelf items have an outer diameter of 0.25” (6.35 mm) and a flange diameter

of 0.296” (7.52 mm). The result is a minimum strut height of approximately 0.75”

(1.9 cm), which is shown in figure 4.19.
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Allowing for a minimum skin material thickness at any point along the beam of

about 0.3” (7.6 mm), this gives a minimum fin thickness of 1.35” (3.43 cm). At the

root chord, we then have a maximum possible fineness ratio of 7.2. If this minimum

thickness remains constant, the fineness ratio will decrease moving outwards span-

wise (as the chord length decreases). In order to avoid a very small fineness ratio at

the distal portion of the fin (approaching a bluff body), the tensegrity beam must

terminate before the maximum span length of the fin so that the thickness can taper

down. A final tensegrity beam length of 5” (12.7 cm) was chosen to give a minimum

fineness ratio of about 2.5 just beyond the terminal node of the beam.

Using these size constraints, a 3D model of the fin can be created. To accom-

modate the variable fineness ratio along the span, several NACA foils were placed

at various span-wise locations, and the solid shape is created by lofting between the

foil sections, as shown in figure 4.17. Fineness ratio is maximum at the root, then

decreases towards the beam tip as the maximum thickness remains roughly the same,

but the chord length decreases. Past the beam tip, the fin tapers down and fineness

ratio increases again. The distal end of the fin ends in a small foil section with chord

length 0.5” (1.3 cm), so it is not exactly triangular in planform (actually rhombic

instead). This is done to simplify both 3D modeling and the skin molding process.

With a beam 5” long swept back at an angle of 12°, the 3 cells have nodes at

the span-wise locations of xj = [0.204, 0.408, 0.611]b. Using the values of Πj at these

locations (given by the integrand of equation 4.19) the distribution of forces are

estimated as P = [0.12, 0.36, 0.52]Fplate. So by this method, about half of the total

loading on the fin will be applied at the beam tip, with the rest distributed to the

other two cells, in decreasing amounts away from the tip.

To complete the estimate of Fplate, the parameters of f and θmax are still needed.

Biological observations of oscillatory rays demonstrate maximum flapping frequencies

of about 1.5 Hz [54], so for the purposes of this study, the maximum flapping frequency

(where maximum dynamic loading is expected to occur) will be f = 1.5 Hz. The non-
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Figure 4.17: Fin shape based on beam length and minimum thickness. Numbers
indicate the four-digit NACA code for the foil section shown. The final shape was
created by lofting between these foil sections.

dimensional amplitude, A/b, achieved by the rigid fin rotating through angle θ is given

simply by sin(θ) = A/b. A typical batoid amplitude of A/b = 0.5 gives θmax = 30°.

Using values of cd = 1.98 and ρ = 1000 kg/m3 (and values for b and croot given above),

the maximum force over the entire fin is estimated to be Fplate = 4.2 N. This gives a

final distribution at each node of Pj = [0.50, 1.50, 2.17] N. Using these values of Pj,

the change in tension of each cable due to this loading distribution is determined by

equation 4.22, giving ∆Tj = [16.2, 12.1, 4.5] N.

The torque required to resist all of these cable loads depends on the radii rj. These

are determined by rj = jr0 for an MC beam and using equation 4.13 to determine

an appropriate value of r̄0. For a desired amplitude of Ā = 0.5, the aspect ratio

L/h = 12.4 (determined by beam parameters above), and an example θmax = 30°, this

gives a nominal radius of r̄0 = 0.077. However, this gives a drum radius corresponding

to the first cell of r0 = r̄0L0 = 0.128”, which is quite small, making manufacturing

difficult. As mentioned in section 4.1, the radius given by equation 4.13 is merely a

guideline and not a strict design requirement. In order to improve manufacturability,
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the size of the radius is increased to r0 = 0.3”, corresponding to r̄0 = 0.18. To

achieve the same amplitude of Ā = 0.5 with this radius, the necessary drum rotation

is reduced to only θ = 12.8°. The numerical procedure outlined in section 4.1 is

used for r̄0 = 0.18 to find the optimal cam shape parameter m̄ = 0.0336. Putting

the results in real units, the radii corresponding to each cell of the tensegrity are

rj = [0.3, 0.6, 0.9]” and the cam shape parameters for each portion of the drum are

mj = [0.056, 0.112, 0.168]”.

Using these drum radii and cable loads, the total maximum torque expected on

the actuation drum during flapping12 is τtot = 0.41 Nm, given by equation 4.23. This

estimate of torque allows for the selection of an appropriate rotary actuator to drive

the tensegrity beam. Ultimately, a servomotor was chosen actuation due to ease of

position control and compact size. The model HS-7950TH by Hitec has a maximum

torque of 3.4 Nm, which is more than sufficient given the estimate above.13 It is

rated for a maximum (no load) rotational speed of 462 degrees/s, and a maximum

rotational range of 151° was measured. Although it is expected that the angular

position (and thus angular velocity) of the servo will align closely with the position

commands given to the controller, the servomotor was modified so that analog voltage

signals from the servo’s internal potentiometer could be measured during all tests in

order to verify the angular position.

With design parameters set and an actuator chosen, the actuation system can

be fabricated and assembled. The final cam shape design is modeled and fabricated

using a fused deposition modeling 3D printer. The material used is acrylonitrile

butadiene styrene (ABS) polymer with 0.01” (0.254 mm) resolution. The servomotor

drives the cam drum using a 1⁄4”� (6.35 mm) aluminum shaft, with a torque sensor

mounted between the two in order to measure power input for the hydrodynamics

12Due solely to fluid loading from dynamic pressure. This torque estimate does not account for
the acceleration of the fin or surrounding water.

13Having such a high factor of safety (more than 8) for the maximum torque is desirable, because
the servomotor’s speed is load dependent — as the load on the servomotor approaches its maximum,
speed can drop considerably.
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Figure 4.18: Actuation system for the active tensegrity beam. The cam drum (C) is
mounted on an aluminum shaft (F), which connects to the torque sensor (H) with
coupler (G). The sensor connects to the servomotor (K) with a flanged hub (I). The
shaft rotates on ball bearings (E) placed in the cam/tensegrity mount (D). Both
this mount and the servo mount (J) are attached to the main aluminum chassis (L).
The cam/tensegrity mount penetrates through the chassis, leading to the tensioning
system (M) and tensegrity beam below. The frame structure (A) allows the whole
assembly to attach to the water tunnel rail from above at (B).

experiments (explained further in section 5.1). These actuation system components

are mounted to a common aluminum chassis, again using ABS printed parts. The

assembled system is shown in figure 4.18.

The struts of the tensegrity beam are machined with a CNC mill from 1⁄8” (3.18

mm) thick aluminum sheets and the flanged ball bearings are pressed into the ends

of each strut to create the nodes of the tensegrity structure. The vertical struts

have holes at each end to permit the actuation cables to either route through to the
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Figure 4.19: Detail of assembled nodes, showing aluminum struts connecting to a
vertical strut (ABS plastic) with button head screws going through the ball bearings.
Also in the perspective view, a cable from the first cell terminates with a cable crimp,
while the two other cables route through the node.

next cell or terminate14, and they are 3D printed from ABS plastic. The terminal

vertical strut has a 1.5” (3.81 cm) long extension in the span-wise direction in order

to stiffen the tip of the fin. The aluminum struts attach to each vertical strut using

5-40 button-head machine screws through each bearing. Joint assembly details are

shown in figure 4.19.

The assembled tensegrity beam is mounted on the chassis in line with the cam

actuation drum. Nylon-coated braided stainless steel cables 0.024”�(0.61 mm) rated

at 70 lbf (311 N) breaking strength are routed through the structure. Each cable pair

is actually one continuous cable that is threaded through the cam drum such that it

14Ball bearing pulleys were omitted from this structure in the interest of minimizing beam thick-
ness. It was found that routing nylon-coated braided cables through filleted holes in the ABS resulted
in a node with acceptably low friction.
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does not slip15, and each end of the cable is terminated in the structure with copper

crimps (also shown in figure 4.19). The cables are attached to the beam while in a

vertical hanging orientation to give them the correct nominal lengths.

In order to adjust the pretension of the cables in the structure, a tensioning system

was devised, consisting of a pulley attached to a lead screw and two idler pulleys (see

figure 4.20). As the lead screw is driven inwards, the cable deflects between the

two idler pulleys. Since the cable is fixed at both ends (one end terminates in the

structure and the other end at the actuation drum), the tension in that cable increases

by the action of the lead screw. There are six of these tensioning mechanisms in total,

corresponding to both the top and bottom cables of all three cells of the beam.

Using the tensioning mechanism, the pretension is increased slightly in each cable

to achieve a stable prestress state for the structure while the neutral position of the

beam is maintained. Then the correct pretension is set by considering a conservative

estimate for the critical slackening load: if the entire load Fplate is applied at the

tip and no cables go slack, then the structure is considered properly tensioned. To

accomplish this, Fplate is applied to the beam tip as hanging brass weights and the

tension in each cable is recursively increased (on the side of the beam corresponding

to decreasing tension from the tip load) until this no-slack condition is met. The

process is repeated for the other side of the beam, and then checked once again for

each side of the beam. Unlike the larger static tensegrity beam from section 3.2, there

is no room for in-line load cells in this compact structure, so the condition of slackness

is determined manually. While this method is somewhat subjective and exact tension

values are unknown16, the transition from slackness (no tension) to some tension is

quite distinct, so the method at least ensures the beam will not experience critical

slackening under this load. The assembled, pretensioned beam attached to the test

15The cam drum is designed with holes that tunnel through each radius so that the cables loop
through several times, essentially forming a self-tightening knot around part of the drum. This
configuration was never found to slip by any measurable amount for any external load applied.

16Estimating the error in this tension is difficult, but based on extensive prototyping with other
tensegrity beams, it is likely on the order of 5 N.
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Figure 4.20: Detail of tensioning mechanism in the active tensegrity beam. Lead
screws (G) drive tensioning arms (F), made of acetyl pulleys allowed to freely rotate
in a lubricated pocket. These tensioning arms deflect the cables between sets of idler
pulleys (D) before the cables (C) route through the base nodes (B) of the tensegrity
structure (A). The mechanism is rigidly attached to the tensegrity mount (E), which
penetrates through the main chassis (H).
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Figure 4.21: The active tensegrity beam assembled and pretensioned, shown in three
different views. The extension on the terminal node stiffens the tip of the fin.

chassis is shown in figure 4.21.

To turn the fin shape design (figure 4.17) into a mold for making the skin, the 3D

model is inverted so that the fin shape is a cavity within a solid block that is then

split in two. The root chord section was extended 1” (2.54 cm) in order to allow for

embedding anchors that hold the skin in place (these anchors were 3D printed using

ABS and attach to the main chassis). This model was used to fabricate a two piece

mold from 1.5” (3.81 cm) thick acrylic sheets using a CNC mill, shown in figure 4.22.

Using this mold, a skin material can be set around the tensegrity beam to form

the final fin shape. The material used to make the skin is a two-part addition curing

(platinum catalyst) liquid silicone rubber (which sets at room temperature) called

Ecoflex from Smooth-On, Inc. The formula used is rated at a nominal Shore hard-

ness of OO-10, but a non-reactive silicone thinner was added to comprise 20% of the

mixture (by weight) in order to make the final material even softer and more flex-
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Figure 4.22: Mold for skin, based on fin shape from 4.17 and milled from acrylic.

ible. This material is slightly positively buoyant when cured. The tensegrity beam

was encased in a close-fitting polyisoprene sleeve in order to exclude the liquid skin

material from the beam while molding. The entire fin assembly was placed on top of

the closed mold using mounting guides to ensure proper positioning and alignment.

The two-part liquid silicone (plus thinner) was mixed, degassed, and poured into the

mold. When fully cured, the mold was separated and the fin was released. At this

point the skin is removable, by detaching the skin anchors from the chassis and sim-

ply sliding the skin off of the beam. In this way, inspections, repairs, or adjustments

can easily be made to the underlying beam and the skin is interchangeable so that

different skins can be tested. The entire assembly with the skin attached is shown in

figure 4.23.
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Figure 4.23: Complete fin, with tensegrity embedded in elastomer skin.
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4.5 Actuation Results

Using the fully-assembled tensegrity beam described in the previous section, the

active bending amplitude can be measured and compared to the linearized analytical

prediction for bending amplitude, which is obtained for an MC beam by rearranging

equation 3.1:

A ≈ δa, jNL

hj
=
r0θNL

h
(4.24)

Where the actuation amount δa, j for the MC beam can be approximated by a

circular actuation drum, as discussed in section 4.1. In order to predict bending

amplitudes for large input actuation (which is expected to deviate from the linearized

prediction), a full, non-linearized analytical prediction for the 3-cell beam has been

adapted from [4] to give:

A =
L

N

(
sin

r0θ

h
+ sin

3r0θ

h
+ sin

5r0θ

h

)
(4.25)

Additionally, with an artificial skin in place, the tip amplitude of the whole fin

(which is the measure of interest for hydrodynamic purposes) can be predicted and

tested as well. The total fin amplitude can be estimated by assuming that the tip

stiffener (see figure 4.21) and tip portion of the molded silicone skin beyond the

stiffener undergo a rigid body rotation, the angle of which is determined by the

rotation of the terminal face of the tensegrity beam. Using the geometry of the

deformed tensegrity cells, this additional tip amplitude is given by:

Atip = Ltip sin

(
2N arctan

r0θ

h

)
(4.26)

To experimentally obtain the actuation amplitudes, tests are conducted measuring

the amplitude of both the beam tip and fin tip over a range of rotational positions

of the actuation drum. Positioning of the active tensegrity beam is prescribed by
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rotation of the servomotor, which connects to the cam-shaped actuation drum, which

then in turn simultaneously contracts and releases cables to activate the bending

mode of the beam.

For the purposes of both amplitude tests and for actuating the flapping fin in the

hydrodynamics tests of chapter 5, the servomotor is controlled by a LabVIEW pro-

gram that outputs position signals to a Parallax USB Servo Controller board. This

board then translates these position commands and sends them to the servomotor’s

internal controller in the form of a pulse-width modulated (PWM) signal. The the-

oretical positioning resolution of this control arrangement is 0.2°, corresponding to

δ̄a = 6× 10−4 and A = 1 mm (based on the linear prediction).

For amplitude tests of the beam alone with no skin, the servomotor is statically

set to rotational positions in the range of ±30°, which corresponds to a maximum

nondimensional actuation of approximately17 δ̄a = 0.095. Amplitude measurements

are made optically, by taking photos of the beam with a camera positioned orthogonal

to the plane of beam movement, as shown in figure 4.24. Amplitude is measured as

the perpendicular distance from the middle of the terminal vertical strut (as with the

experiments of section 3.2) to the line of neutral position of the beam.

The measured amplitudes are plotted against rotational position in figure 4.25.

Both the linearized prediction of actuation amplitude (equation 4.24) and the exact

analytical solution (equation 4.25) are overlaid for comparison. The results show the

tensegrity beam is capable of achieving large amplitude bending, up to A/L = 0.73

at 30°. Notice that the exact solution starts to noticeably diverge from the linear

prediction at high amplitudes, above A/L ≈ 0.4 (because the linear prediction is

based on a small angle assumption that breaks down). The exact solution accounts

for the fact that at a high enough level of actuation, the beam tip is displacing

noticeably in the span-wise direction (−x), and therefore the slope of the amplitude–

actuation curve falls. This same trend is exhibited in the experimental results, which

17Using the antagonistic circular drum prediction; the actual contraction and release actuations
will be less than and greater than, respectively, this estimate because of the cam shape.
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Measured Amplitude

Figure 4.24: All images from the optical amplitude measurements are overlaid in com-
posite to demonstrate the actuation range of the active tensegrity beam. Each image
corresponds to servomotor rotation increments of 2°. The neutral and maximum am-
plitude positions are shown atop the intermediate amplitudes. Measured amplitudes
are taken from the end of the terminal cell, not the end of the tip stiffener.
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Figure 4.25: Plot of active tensegrity beam amplitude versus actuation drum rotation.

have a general shape quite close to the exact solution, however the actual amplitudes

for some rotational positions (8° to 28°) are somewhat lower than the exact solution,

on average being about 10% lower.

While it is not completely clear what caused this deviation, there are a few likely

sources. First, the beam was actuated with a cam drum, not perfectly antagonistically

as in the analytical predictions; since the radius on the contraction side of the cam is

slightly smaller than it would be for an equivalent circular drum, this would contribute

to the decreased amplitude. Second, some components in the structure are made

of ABS plastic, which is significantly softer than the rest of the components (that

are either aluminum or stainless steel), so it is possible that some of these plastic

components are deforming during actuation such that amplitudes are made slightly

lower. Third, there is some friction experienced by all moving components in contact

and the cables are not routed over low friction pulleys within the beam, but rather

through small holes, so some amount of rubbing on the cables could be resisting the

beam’s actuation.
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Figure 4.26: The fin is actuated in a horizontal plane and the amplitude from the
neutral line at each position is measured optically.

Despite the fact that the bending amplitudes are slightly lower than predicted,

these results quantify the relationship between drum rotation amount and unloaded

tip amplitude for this beam, making it possible to achieve a desired nominal tip

amplitude using this data. Additionally, for the purposes of hydrodynamic testing,

the amplitude of the fin tip is the measure of importance, not the underlying beam,

so fin tip amplitude is measured next.

The amplitude of the fin tip is measured in a manner similar to the tensegrity

beam alone, except with the artificial skin on, as shown in figure 4.26. This shows

the fin is clearly the fin is capable of large span-wise bending amplitudes.

Figure 4.27 shows the measured amplitudes normalized by fin span length and

plotted against drum rotation angle. Measurements were made for drum rotation
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Figure 4.27: Plot of optically measured fin amplitudes versus actuation drum rota-
tions.

angles in the range of ±30°. The analytical prediction used for the tensegrity beam

alone can be extended to apply to the whole fin by assuming the fin length beyond the

end of the tensegrity beam (this includes the 1.5” stiffener attachment seen in figure

4.24 and another 1.5” of passive skin material) is a straight, rigid segment that rotates

with the angle of the terminal face of the tensegrity beam. The measured amplitude

matches fairly well to the analytical prediction, although as with the tensegrity beam

the amplitude is slightly lower for most of the actuation range (also about 10% lower,

averaged across all points), which should be expected if the underlying tensegrity

amplitudes are lower than the analytical prediction.

Overall, these experimental results show that for low amplitudes (up to about

A/L ≈ 0.4), the linear prediction of section 3.1 works reasonably well for predicting

tensegrity beam tip amplitudes. For higher amplitudes, the linear prediction breaks

down and experimental results track more closely with the exact analytical solution,

although a large portion of the measured amplitudes are around 10% lower than

expected. Measurements of the entire fin — the tensegrity beam with the artificial

skin on — demonstrate that large amplitude flapping (up to A/b = 0.82) can be
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achieved with this system. These results only reflect amplitudes with no external

loading and it is expected that amplitudes will be lower when hydrodynamic loading

is applied to the fin. This scenario is investigated in the next chapter, where the fin

is subjected to hydrodynamic testing and amplitudes in the water tunnel are again

measured optically.

In summary, this chapter has demonstrated several important contributions to-

wards the overall goal of being able to quantify swimming performance for an artifi-

cial pectoral fin. It sets forth the concept, design, and fabrication of an artificial fin

that meets the basic requirements and constraints of the hydrodynamic experiments.

In support of this effort, the amount of modified antagonistic actuation necessary for

minimizing induced strains was quantified, which directly enabled the design method-

ology laid out for a cam-shaped actuation drum. Additionally, an estimate was given

for fluid loading on the fin during flapping, which allowed for the sizing of components

and proper pretensioning of the tensegrity beam. Lastly, bending amplitudes relative

to input actuation were quantified and the fin demonstrated the desired span-wise

bending mode, similar to the kinematics observed in biological oscillatory rays. All

of these individual components are necessary for the creation of the fin which is used

in the following chapter to quantify swimming performance.
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Chapter 5

Hydrodynamic Experiments

With the ability to reproduce the major kinematic motions seen in batoid rays

using the artificial batoid fin described in the previous chapter, the goal is to quantify

the swimming performance of this robotic fin by taking specific bulk measurements

in hydrodynamic experiments while systematically varying kinematic parameters. Of

greatest interest is the relationship between thrust production and two important

flapping parameters: frequency (temporal) and amplitude (spatial). Swimming per-

formance is measured in a water tunnel with two different types of tests, in which

the fin is either constrained or unconstrained to move along the direction of flow.

Additionally, the effects of several other experimental variables are explored: the ex-

istence of a free surface in the water tunnel, the imposed flow speed in constrained

tests, allowing for acceleration in free swimming, and stiffness of the fin’s artificial

skin material. What follows in this chapter is a description of both the experimental

methods and the results of hydrodynamic tests performed with the tensegrity-based

fin.
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5.1 Experimental Setup

As introduced in chapter 2, a variety of methods for quantifying swimming per-

formance (both biological and artificial) have been established by others [63, 65, 125,

126]. One of the prevailing measures for the performance of flapping propulsors is

Froude propulsive efficiency, which is a non-dimensional ratio of output power to in-

put power. Determining Froude propulsive efficiency requires the measurement of net

thrust produced at a known flow speed, and also a measurement of mechanical power

input to the fluid. In addition to this efficiency measure, free-swimming performance

of the fin, which can be measured as swimming economy, is also of interest. The ex-

perimental rig should therefore be capable of two types of tests: constrained, in which

the relative flow speed across the fin is fixed, for measuring thrust and efficiency; and

unconstrained, in which the fin is allowed to freely swim in the stream-wise direction,

for measuring free-swimming speed and economy. The following is a description of the

experimental test rig designed and constructed to quantify the net thrust produced

by the fin and the free-swimming speed of the fin for these two types of tests.

5.1.1 Equipment

All experiments related to swimming performance were carried out using a recircu-

lating water tunnel (also known as a “flow tank”) in which the fin can flap submerged

up to the root chord line. The equipment used is a Model 1520 water tunnel made

by Rolling Hills Research Corporation. The test section of this water tunnel has a

width of 15” (38.1 cm), depth of 20” (50.8 cm) and length of 60” (152.4 cm). The

construction of the tunnel allows for viewing from three orthogonal directions. The

maximum flow speed is 36 in/s (approximately 0.9 m/s) with turbulence of less than

1% RMS. Flow velocity can be set with a resolution of 0.1 in/s (2.5 mm/s) and is

controlled by a calibrated flow sensor embedded in the return side of the closed-loop

system. It was found that in practice, the flow control system resulted in a reading
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of flow speed that could fluctuate randomly within ± 0.1 in/s of the set speed, so

it is assumed that the standard deviation in flow speed measurements is 0.058 in/s

(1.5 mm/s).

To allow for free swimming along the length of the test section (along the direction

of flow), the fin (described in section 4.4) is mounted to a slider bearing on a linear

motion guide rail. This setup also isolates the forces from the fin to act only along

the stream-wise direction for the thrust measurements of the constrained tests. The

linear rail hardware is a model LWLF18-BCS from IKO, which was selected because

it has the smallest form factor that comes in the length desired for the water tunnel

test section1. The load rating for this model is 2.3 kN, which is more than sufficient

for the weight of the fin assembly, which is 22 N (out of water). The rail is 1.3 m

long, which provides more than 5 full chord-lengths of travel for the fin.

The static friction along the rail was estimated by placing a brass weight on the

slider bearing and slowly raising one end of the rail until the slider bearing traveled

freely. By simple trigonometry the component of the weight acting along the rail

direction is determined by the rail length and elevation of the raised end of the rail.

After some modifications to the linear motion system (sandblasting material from the

rail channels, removing the slider bearing end seals, and replacing the stock lubricant

with a far less viscous one), the maximum resistance to sliding was found to be less

than 0.1 N.

The linear motion guide rail is attached to a rigid mounting frame for the entire

test rig. The frame is constructed from aluminum U-channels and is designed to

straddle the rails of the water tunnel with adjustable length feet such that the fin

can be submerged in the free surface of the water tunnel just up to the root chord

line. A 1/4” thick acrylic plate can be attached to the frame with threaded rods so

that the height of the plate can be adjusted to meet the free surface of the water in

1The sliding resistance of these systems generally scales with size, so the smallest form factor
was desired in order to have low friction. However, maximum monolithic rail length also scales with
form factor, so a very small (low friction) form factor rail would also be very short, requiring abutted
joints, which are difficult to align properly.
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Figure 5.1: Assembled test rig for flow tank experiments. The tensegrity fin (G) is
attached to the linear motion guide rail with a slider bearing (C). The rail is attached
to the mounting frame (D), which straddles the side rails of the water tunnel with
adjustable feet (B). In constrained tests, thrust measurements are taken with the
load cell (F) and in unconstrained tests, position along the rail is measured with the
laser distance sensor (A). The height of the surface wave suppression plate (E) can
be adjusted to meet the fluid surface in the water tunnel.

the tunnel. This plate has a hole cut out that is slightly larger than the cross section

of the fin at the root chord, so that the fin can penetrate through the hole and flap

without contacting the plate. The purpose of this plate is to optionally suppress

motions of the fluid’s free surface, in order to evaluate the effect of waves and other

surface disturbances. The assembled test rig is shown in figure 5.1.

To measure net thrust in the constrained tests, a strain gauge–based load cell is

attached at the front end of the test rig’s frame. The load cell used is an Omega

model LC601-1, which has a range of ±1 lb (±4.45 N) with a stated repeatability of

0.02% of full-scale output (0.9 mN). The fin carriage transmits force to the load cell

via contact between a plate on the fin carriage and an acorn nut on a screw attached
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Figure 5.2: Configuration for thrust measurements. As the fin produces net thrust,
the force is transmitted through the fin carriage and onto an acorn nut attached to
the load cell. The fin is biased forward by a hanging weight so that it remains in
contact with the load cell even if there is drag.

to the load cell (see figure 5.2). The load is biased forward by hanging a 100 g weight

over a low friction pulley. In this way, the fin carriage remains in contact with the load

cell even if there is net drag (up to 100 gf) on the fin, and therefore this setup allows

for the measurement of instantaneous net drag. This configuration with a single point

of free contact also eliminates the possibility of binding, which could occur if the fin

were rigidly attached to the load cell. The forward bias is simply zeroed out in the

data recording system, so that net thrust/drag is measured relative to this biased

configuration (with the flow off).

Free-swimming velocity in the unconstrained tests is measured using a laser dis-

tance sensor, which is mounted at the front of the frame such that it is aimed at a

target on the fin carriage. By measuring the position of the fin along the rail dur-

ing tests (without contact), the free-swimming velocity can be calculated by simply

adding the fin’s velocity relative to the water tunnel to the flow speed of the water.

The laser distance sensor used is a Baumer model OADM 250U1101/S14C, which has
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a measurement range of 0.2–4.0 m, resolution of 1.3 mm, and stated repeatability of

±5 mm. The sensor works by triangulation, detecting the perceived lateral movement

of the diffuse reflection of the emitted laser beam, so the target on the fin carriage is

painted matte black.

To measure the mechanical power input to the tensegrity fin, a torque sensor is

placed in the drive train of the actuation system between the servo motor and cam

drum (as mentioned in section 4.4). The torque sensor used is an Omega model

TQ202-25, which can measure ±25 in lb (±2.8 N m) of torque with a stated accuracy

of 0.2% of full-scale output (5.7×10−3 N m).

The analog voltage signals from the torque sensor, servomotor internal poten-

tiometer, load cell, and laser distance sensor are measured using a National Instru-

ments USB-6259 data acquisition device and recorded with LabVIEW software at a

sampling rate of 100 S/s. LabVIEW is also used to control the servo motor driving the

tensegrity fin actuation (as described in section 4.5). The signals to and from the fin

carriage (torque sensor, servomotor potentiometer, power and control to the servomo-

tor) are carried over ultra-flexible cables (braided 26 AWG with silicone insulation)

suspended from overhead with ample slack to ensure the cables do not apply any

measurable amount of force to the carriage, so that thrust and speed measurements

are unaffected.

5.1.2 Experimental Procedures

For the constrained efficiency tests, the flapping amplitude is set at a fixed nominal

value that is typical for batoid rays and the flapping frequency is varied2 over a range

similar to that seen in biology. A fixed flow speed is chosen to span a Strouhal

number range which is expected to correlate to peak efficiency — as discussed in

section 2.2, this range is generally considered to be 0.2 < St < 0.4. For example, a

2While it has been observed that oscillatory rays do not primarily use frequency to modulate
thrust production [58], sweeping through a frequency range for this type of test is somewhat stan-
dard [4, 41, 65] and provides results that can be compared against literature.
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fixed amplitude of A = 10.2 cm (corresponding to A/b = 0.5) and a frequency range

of 0.5 < f < 1.25 Hz, would produce a Strouhal number range of 0.2 < St < 0.5 for a

flow speed of U = 0.25 m/s. Tests can then be performed with various combinations

of flow speed or amplitude over a range of flapping frequencies. All flapping tests use

a symmetric sinusoidal actuation waveform.

The constrained test protocol is as follows. The fin carriage is positioned at the

front of the linear motion guide rail, attached to the forward bias weight with a

braided cable so that the carriage is in contact with the load cell. With the water

tunnel flow turned off and the fin motionless, the load cell measurement is balanced

(zeroed). The flow velocity of the water tunnel is then set and turned on. Each test

for a group of parameters (fixed A and U , and a range of f) is then run for 12 flapping

cycles3 while the resulting thrust production and power input are measured. Once

the frequency range has been spanned to complete a set, each test set is then repeated

5 times so that mean values and standard deviations can be calculated. During the

tests, the flapping fin is recorded with video and still images from both the span-

wise and posterior (downstream) views, so that the in-water tip amplitudes can be

measured and used in Strouhal number calculations and so that passive deformation

of the skin can be observed. This procedure can be carried out either with or without

the surface wave suppression plate.

The unconstrained free-swimming tests are similar to the constrained tests in that

the actuation amplitude is held constant over a range of frequencies. However the

procedure for the unconstrained tests differs in that the water tunnel flow speed is

adjusted for each flapping frequency so that the fin travels upstream at a constant

velocity for a minimum number of cycles over the length of the rail. This adjustment of

flow speed ensures that the fin is indeed freely swimming and that there is an adequate

number of cycles over which the data can be averaged to represent performance for

that set of parameters. If the flow speed is too low, the fin will traverse the entire

3In post-processing the data, the first 2 flapping cycles are omitted to eliminate any transient
effects, and thus cycle-averaged measurements are taken over 10 full flapping cycles.



108

rail distance in a small number of cycles, reducing the duration of constant-velocity

swimming over which measurements can be taken. If the flow speed is too high, the

fin will not propel itself upstream at all. Therefore appropriate flow speeds were

found through iteration in order to provide a minimum of 5 full cycles over the length

of the rail (although most tests completed at least 7 cycles)4. This procedure was

carried out 5 times for each set of parameters to provide mean values and standard

deviations. The basic setup for both types of testing is shown in figure 5.3.

In addition to tests performed in the water tunnel, the power input required to

flap the fin in air is measured so that it can be subtracted from the power required

to flap the fin in water (for the same set of frequency and amplitude parameters) in

order to calculate the net power to the fluid. Since the angular velocity is prescribed

at each instant for a set of parameters, the difference in power for water and air tests

is caused by the amount of torque required to actuate the fin. The power to flap in

air represents the torque needed to deform the skin material, overcome any friction

in the structure, and the effort required to accelerate the mass of the fin throughout

the flapping motion. Additional torque is needed when flapping in water, in order to

impart energy to the fluid through momentum transfer. The difference between these

two cycle-averaged power measurements is the net power input to the fluid, which is

the measurement of interest for calculating both efficiency and economy (since only

the net power input to the fluid can contribute to thrust production).

The fin was initially flapped with a given frequency and amplitude in 8 different

orientations, all with the plane of the fin perpendicular to the plane of the ground,

in order to find the orientation which required least power (thus giving the most

conservative estimate of net power). The orientation requiring least power to flap

in air was that with the tensegrity beam parallel to the ground, as shown in figure

5.4. All air power tests were performed in this orientation for each set of parameters

{f , A} corresponding to tests carried out in the water tunnel.

4Similar to the constrained tests, in post-processing the first few cycles of data are omitted from
the calculation of cycle-averaged velocity for each test.
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Figure 5.3: Schematic showing the two types of hydrodynamic tests performed: the
setup for constrained efficiency tests, with the fin producing thrust against against a
load cell at a fixed flow speed (top image); and the setup for unconstrained economy
tests, with the fin allowed to free-swim upstream (bottom image).
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Figure 5.4: Pair was initially measured in 8 different orientations to find one using the
lowest power. Four of the orientations place the root chord either horizontal or vertical
and four of the orientations place the tensegrity beam either horizontal or vertical
(note the beam is tilted back from the span-wise axis by φ =12°). The orientation at
102° (tensegrity beam horizontal, leading edge up) was found to consume the lowest
power to flap in air, and was used for the remainder of air power tests.

5.1.3 Performance Calculations

The raw data collected from both the water tunnel and air power experiments

is post-processed in MATLAB to calculate swimming performance. For both con-

strained and unconstrained tests and for air power measurements, the instantaneous

mechanical power of the tensegrity fin, Pi, is calculated as the product of the mea-

sured torque, τi, and the angular velocity of the drive shaft, ωi, so that: Pi = τi ωi

(each corresponding to the ith sample of the test). The angular velocity is simply

the derivative of the drive shaft’s angular position with respect to time (where the

shaft position is measured with a rotary potentiometer, as explained in section 4.4.),

calculated as a centralized finite difference: ωi = θi+1− θi−1

2dt
. For each test, the in-

stantaneous power is then averaged over the test duration (of n samples) to give

the cycle-averaged power: P̄ =
∑
Pi/n. This calculation is performed for both the

air tests and water tunnel tests so that the net power (for matching f and A) is

P̄net = P̄water− P̄air. For both types of water tunnel tests, the net power measurement
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can be nondimensionalized as the coefficient of power:

CP =
P̄net

1
2
ρSU3

(5.1)

Here ρ is the density of the fluid5, S is the planform surface area of the fin

(S = 0.0252 m2), and U is the flow speed for each kind of test. For constrained

tests, U is recorded from the digital readout of the water tunnel’s flow sensor. For

the unconstrained tests, the flow speed experienced by the free-swimming fin is the

water tunnel speed plus the speed at which the fin travels upstream along the rail:

Ūfree = Utunnel +Ūfin. The instantaneous speed of the fin along the rail is the derivative

of its position, yi, (measured with the laser distance sensor) with respect to time,

calculated as a centralized finite difference: Ufin, i = yi+1− yi−1

2dt
. The speed used for

performance calculations is the average of this instantaneous speed, taken over n

samples: Ūfin =
∑
Ufin, i/n. Again, the sampling period is a subset of the original test

data with the initial acceleratory portion removed, so that only constant-velocity free

swimming is measured.

In constrained experiments, the instantaneous thrust measurement from the load

cell is Ti, which is averaged over the test duration to give the cycle-averaged thrust

for each constrained test: T̄ =
∑
Ti/n. This thrust can be nondimensionalized as

the coefficient of thrust by:

CT =
T̄

1
2
ρSU2

(5.2)

The nondimensional measures CP and CT are useful because they give an indica-

tion of power and thrust magnitudes if the fin size or flow speed were to be scaled.

Additionally, they allow for the comparison of the thrust produced and power input

5A standard value for water, ρ = 1000 kg/m3, is assumed since it is expected that the density
would vary by less than 0.2% over the widest imaginable temperature range for the water tunnel.
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for this particular fin with other artificial fins in the literature [40, 41].

The Froude propulsive efficiency can then be calculated for constrained tests as

the ratio of these two coefficients:

ηF =
CT
CP

=
T̄U

P̄net

(5.3)

As discussed earlier in this chapter and in section 2.2, this measure of efficiency

represents the ratio of useful power output to the net power input to the fluid, and

has been widely used in studies of oscillating propulsion. Each of the individual

measurements used to calculate this efficiency has an uncertainty associated with it,

therefore the uncertainty in the efficiency measurement itself must calculated using

a standard propagation of error [127]. Thus the standard deviation of the propulsive

efficiency measurements is calculated as:

σηF =

√(
∂ηF

∂T̄
σT̄

)2

+

(
∂ηF

∂U
σU

)2

+

(
∂ηF

∂P̄net

σP̄net

)2

=
1

P̄net

√
(UσT̄ )2 +

(
T̄ σU

)2
+

(
T̄U

P̄net

σP̄net

)2

(5.4)

Where σT̄ , σU , and σP̄net
are the standard deviations of the thrust, flow speed,

and power measurements, respectively. This shows that as a the net power input to

the fluid becomes small (typically for low flapping frequencies), the uncertainty in

propulsive efficiency inherently increases.

For the unconstrained tests, it is desirable to compare the free-swimming speed

with the power input required to produce that speed, so free-swimming economy of

the fin is calculated as:

ξ =
Ūfree

P̄net

(5.5)
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The result of this metric is a quantification of distance traveled per unit energy

input (m/J in SI units). The uncertainty in the economy measurements can be

calculated in the same manner as above for the efficiency, so the standard deviation

in economy measurements is:

σξ =
1

P̄net

√(
σŪfree

)2
+

(
Ūfree

P̄net

σP̄net

)2

(5.6)

Where σŪfree
is the standard deviation in the free-swimming velocity measure-

ments. Similar to the uncertainty in efficiency, this shows that as a the net power

input to the fluid becomes small (typically for low flapping frequencies), the uncer-

tainty in free-swimming economy inherently increases.

As discussed in section 2.2.1, the Strouhal number is an important measure of

nondimensional frequency often used to characterize oscillatory swimming. The

Strouhal number is calculated as:

St =
fA

U
(5.7)

Here f is the flapping frequency and U is the fin speed (as defined above for

either constrained or unconstrained tests). The amplitude, A, used for Strouhal

number is intended to represent the size of the wake, which is fairly straightforward

for two-dimensional flows. However it is difficult to estimate a priori for this case

because the amplitude of the fin varies along the span and so the wake should be

highly three-dimensional. To estimate this amplitude, we can assume the peak-to-

peak amplitude at each point along the span represents the wake width there. In

this way, the wake width at the fin root is zero and the wake width at the tip is the

peak-to-peak amplitude, which is 2Atip, or twice the normal tip amplitude. Therefore
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the average wake width along the span should be about half the wake width at the

tip, or simply Atip, the tip amplitude of the fin. This convention has been adopted

in [4, 41], and should provide estimates of St consistent with those and other similar

studies. Uncertainty in Strouhal number measurements can also be estimated with

a propagation of error, considering the uncertainties in amplitude and flow speed

measurements.6 The standard deviation of these measurements is then calculated as:

σSt =
f

U

√
σA2 +

(
A

U
σU

)2

(5.8)

Where σA is the standard deviation in amplitude measurements (explained next)

and σU is the standard deviation in flow speed measurements, which is either a con-

stant value (1.5 mm/s as mentioned previously) for constrained tests, or is calculated

as the standard deviation in free-swimming speed measurements across the number

of unconstrained tests.

5.2 Results and Discussion

5.2.1 Amplitude Measurements

Due to variability in the fluid loading (depending on flapping parameters) and

its effect on resulting flapping amplitudes, the actual fin tip amplitudes were mea-

sured by optical analysis (similar to the in-air static amplitude validations) over the

range of frequencies used for the flapping experiments. From a posterior view of the

fin (behind the test section of the water tunnel, looking upstream), the tip excur-

sions from the neutral plane were recorded using long-exposure photographs for each

flapping frequency while the fin was constrained along the rail. The tip-to-tip ampli-

tude (2Atip) for each test was measured from these photographs, as shown in figure

6It is assumed that the flapping frequency is exact, and frequency analysis of the measured signals
indicates this is a sound assumption.
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(A ) (B )

(C) (D)

Figure 5.5: Measurement of fin tip amplitudes using posterior view long-exposure
photographs. (A) f = 0.5 Hz, free surface in the water tunnel, with tip-to-tip ampli-
tude marked. (B) f = 1.3 Hz, free surface. (C) f = 0.5 Hz, wave suppression plate
applied to water surface. (D) f = 1.3 Hz, wave suppression plate applied. All images
for a nominal amplitude of A/b = 0.67 and at a flow speed of 1 BL/s.

5.5. This value is divided in half to provide the amplitude, A, for Strouhal number

calculations.

This procedure was performed both with and without the surface wave suppres-

sion plate applied to the free surface of the water for a range of flow speeds, and the

recorded amplitudes demonstrated several results. First, as expected, the mechanical

system comprising the fin (artificial skin, underlying tensegrity beam, and servomotor

driving the actuation) exhibited a dynamic frequency response in which the actual

fin amplitude generally decreased with increasing flapping frequency. Second, when

the free surface of the water tunnel is left unconstrained, the flapping fin is capable
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of generating significant surface waves, an effect which itself had a notable frequency

dependence. Third, the occurrence of a coupled resonance between the fin and the

free surface of the water tunnel resulted in a local peak in fin tip amplitude. Fourth,

application of the surface wave suppression plate effectively eliminated the two pre-

viously mentioned surface wave effects, resulting in monotonically decreasing fin tip

amplitude with increasing flapping frequency.

Figure 5.6 shows the measured tip amplitudes for 3 flow speeds, both with and

without the surface wave suppression plate applied. The nominal amplitude — mean-

ing the analytical amplitude predicted by the amount of rotation sent as an instruction

to the servomotor (see section 4.5) — for these tests was A/b = 0.67. Note that the

flow speeds have been normalized by the root chord length of the fin, which repre-

sents the “body length” of the fin (0.248 m), providing a useful, biologically-relevant

reference for flow speed, so “BL/s” (body lengths per second) will be used through-

out the results to report flow speeds. When the surface wave suppression plate is

not applied, the resulting tip amplitudes generally decrease with increasing flapping

frequency, until some critical frequency where there is a local peak in amplitude.

These local peaks correspond with significant (up to 3.3 cm peak-to-peak, measured

at the tunnel wall) observed surface waves across the tunnel width. At these critical

frequencies, the heaving motion of the fin excites a resonance of the surface waves

in the water tunnel and this coupled resonance results in increased fin amplitudes

(compared to neighboring frequencies). When the surface wave suppression plate is

applied, the surface wave resonance effect is eliminated and fin amplitudes decrease

monotonically with increasing frequency. Also, fin amplitudes were slightly higher in

general when the surface plate was applied.

For both sets of tests there was a correlation between fin amplitude and imposed

flow speed, where a larger flow speed generally decreased the fin amplitude. The

flow speed also influenced the critical frequency of the surface wave resonance in the

three flow speeds tested: as flow speed increased, the resonant frequency decreased.
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Figure 5.6: Actual fin tip amplitudes over a range of frequencies, at 3 different flow
speeds, both with a free surface in the water tunnel (left) and with the surface wave
suppression plate applied (right). All tests were for a nominal amplitude of A/b =
0.67.

For U = 0.5 BL/s, the resonant frequency is between 1.40 and 1.45 Hz and for

U = 1.0 BL/s, the resonant frequency is between 1.30 and 1.35 Hz. For U = 1.5 BL/s,

the resonant frequency appears between 1.05 and 1.25 Hz, although the effect was

much less pronounced at this high flow speed as the lateral momentum (in the heave

direction) imparted to the fluid was swept downstream away from the fin more rapidly.

Correspondingly, the observed maximum surface wave amplitudes were less significant

at this high flow speed.

Further tests were conducted with the surface wave suppression plate in place, over

an even larger range of speeds and with higher resolution between the speeds. Again,

the results were consistent, in the sense that the plate was effective at eliminating

effects from any surface disturbances, so that amplitudes dropped with increasing

flapping frequency. Figure 5.7 shows the results over a range of speeds from 0.5 BL/s

to 2.0 BL/s. As before, across the range of frequencies increasing flow speed was

generally correlated with lower amplitudes. This figure also shows that over a wide

range of frequencies and flow speeds, a nominal amplitude of A/b = 0.67 results

in actual amplitudes centered around A/b ≈ 0.5, which is comparable to biological

observations of oscillatory batoid rays.
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Figure 5.7: Actual fin tip amplitudes over a wide range of flow speeds. All tests were
for a nominal amplitude of A/b = 0.67. Across a range of frequencies, actual fin
amplitude generally decreases with increasing flow speed.

This data set of amplitudes is used in the determination of Strouhal number for

constrained efficiency tests (both with and without the wave suppression plate). In

unconstrained tests, the fin moves along the rail so the same optical measurement

method cannot be used (the fin amplitude would appear to decrease as the fin moved

away from the camera due to perspective). Also the effective flow speed in uncon-

strained tests cannot be completely prescribed, so instead these optical amplitude

measurements can be used to create an interpolation surface, from which the actual

amplitude is estimated using the pair of {f, U} for each unconstrained test. From

repeated tests, the standard deviation in these measurements (both from optical

measurement error and from variability in actual fin amplitude from test to test) is

estimated to be about 13 mm.

Using equation 5.8 we can now estimate the uncertainty in calculated Strouhal

number over the parameter range of interest. The form of equation 5.8 suggests that

the standard deviation in St will be maximized when f is high, A is high, and U is

low (this corresponds to a large value of St). So for f = 1.5 Hz, A = 0.14 m, and
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U = 0.12 m/s (giving a high Strouhal number of 1.75), we have σSt = 0.16, or about

13%. Conversely, the standard deviation in Strouhal number will be minimized for low

f , low A, and high U . For example with f = 0.5 Hz, A = 0.08 m, and U = 0.37 m/s

(giving a low Strouhal number of 0.11), we have σSt = 0.02, or about 0.8%. Given a

more biologically-relevant set of parameters for this fin, such as f = 0.9 Hz, A = 0.1 m,

and U = 0.25 m/s (giving a Strouhal number of 0.36), then we have σSt = 0.05, or

about 2%.

This section has described both the frequency response and the effect of surface

waves on actual fin amplitudes. Results show that while surface wave effects can

be considerable, they can be accounted for in terms of Strouhal number (since the

amplitudes can be measured) and the effect can be eliminated through surface wave

suppression. In the next section, the effect of surface waves on power, thrust, and

efficiency measurements will be considered.

5.2.2 Constrained Tests: Surface Wave Suppression

Constrained water tunnel tests were performed over a range of flapping frequencies

from 0.5 to 1.5 Hz at a nominal amplitude of A/b = 0.67. A flow speed of 0.248 m/s

(1.0 BL/s, normalized by root chord) was chosen to give a nominal Strouhal number

range from about 0.27 to 0.82. Tests with these parameters were performed both

with and without the use of the surface wave suppression plate (hereafter referred

to as “the plate” for brevity) to determine the influence on swimming performance

measurements of flapping near a free surface in a water tunnel of limited width.

The power input to the fluid during these flapping experiments is captured by the

measurement of cycle-averaged net power, but first the cycle-averaged gross power

for each test is calculated from torque and angular velocity. Figure 5.8 shows a

sample of instantaneous torque and angular velocity measurements used to calculate

the gross power in a test with the plate on. In this plot, signals have been filtered

with a Fourier transform (FFT) to remove broadband noise. Across all frequencies
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Figure 5.8: Instantaneous torque, angular velocity, and gross power measurements
superimposed (FFT filtered), for f = 1.0 Hz with the plate on. There is a small
period of negative power that occurs twice per flapping cycle, corresponding to the
reversal of the fin at each extreme of its travel.

there was no qualitative change in the torque signals, only the magnitudes varied,

so a representative sample at 1.0 Hz is shown. The oscillating torque signal has a

constant phase lag behind the angular velocity of the actuation system, indicating

maximum torque output occurred just after passing through the neutral plane each

half-cycle. Also as a result of this phase lag, there is a period in every half-cycle when

the power measurement becomes negative, corresponding to the applied torque being

opposite the direction of rotation, which occurs just after the fin changes direction

at its maximum amplitude. The negative power can be attributed most likely to an

added-mass effect of the fluid: a mass of fluid following the fin must decelerate against

the fin as it changes direction.

Figure 5.9 shows the total (gross) cycle-averaged mechanical power during water

tunnel tests, the cycle-averaged power to flap in air at the same amplitude and fre-

quencies, and also the cycle-averaged net power to the fluid (the difference between

total power and air power). At the lowest frequencies, the measured net power is

quite small (on the order of 0.1 W) and the net power to flap in water increases

considerably with frequency. This is not surprising since the fluid loading estimate

of section 4.3 predicts the loading should scale with the square of flapping frequency.
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Interestingly, in the lower half of the testing frequency range, the power required

to flap with the plate on is actually slightly higher than the power required to flap

without the plate. Starting at around 1.1 Hz, the effect of the water tunnel surface

waves becomes evident: the total power, and therefore net power, without the plate

drops considerably compared to the power with the plate. This decrease in power

without the plate corresponds to observed surface wave resonance (maximum ampli-

tude). The local minimum in power around 1.25–1.3 Hz matches closely with the

local maximum amplification in fin amplitude (see figure 5.6), meaning the surface

wave resonance simultaneously increases the fin amplitude while decreasing the power

necessary to reach that amplitude. This indicates that the mass of water oscillating

laterally across the tank is actually assisting the fin flapping motion. Meanwhile, the

net power with the plate applied increases monotonically as predicted by the fluid

loading model and shows none of the surface wave resonance effects. Beyond the

resonant frequency (around 1.4–1.5 Hz), the net power without the plate rejoins the

trend in net power with the plate.

The net thrust for these experiments derives from an average over several cy-

cles of the instantaneous thrust signals. Figure 5.10 shows a representative sample

of the instantaneous thrust signals from the load cell for all frequencies tested at

U = 1.0 BL/s with the plate off (signals FFT filtered for display). Positive thrust is

generated throughout most of the flapping cycles above about 0.8 Hz, however each

of the signals dips into negative net thrust (drag) for every frequency. This plot also

clearly shows two peaks in thrust per flapping cycle, corresponding to vortex shed-

ding observed during testing. Results are similar for the case with the plate on, just

with different magnitudes for the thrust (which are explained in the cycle-averaged

measurements).

The oscillatory thrust signals can be spectrally analyzed using a Fourier transform

to examine magnitudes of the frequency components. Figure 5.11 shows a distinct

peak in thrust at twice the forcing frequency, again corresponding with the thrust
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Figure 5.9: Cycle-averaged power measurements both with and without the wave
suppression plate, taken at U = 1.0 BL/s and A/b = 0.67. Net power to the fluid is
the gross mechanical power minus the power to flap the fin in air. Error bars reflect
the standard deviation from 5 tests.
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Figure 5.10: Instantaneous thrust signals for all flapping frequencies with a free sur-
face in the water tunnel (FFT filtered to remove signal noise), showing the magni-
fication in thrust peaks as frequency increases. Note that the phase angle for each
frequency does not necessarily align because of the way sampling is performed during
data capture.
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Figure 5.11: Magnitude of thrust over the frequency spectrum. The peak at the first
harmonic shows magnitudes increasing with frequency until reaching a saturation
point. The second harmonic shows a much stronger contribution to thrust, especially
at higher frequencies. Also the DC bias, corresponding to the cycle-averaged thrust,
is present on the far left.

peaks seen every half-cycle in the time domain signals. Thrust peaks are also observed

at several harmonics of the fundamental frequency, with the second highest peak

occurring at four times the flapping frequency. The peaks in thrust are noticeably

larger for the top few frequencies (this effect is explained by examining surface wave

effects, which are discussed next). The 0th harmonic (DC component) represents the

cycle-averaged thrust signal for each frequency.

The cycle-averaged thrust measurements for this set of tests at 1.0 BL/s is shown

in figure 5.12. For the lower portion of the frequency range, the thrust produced

in both cases (with and without the plate) was essentially the same (within the

uncertainty range), with the fin producing net thrust for all frequencies above 0.6 Hz

and below this frequency the result was net drag. As seen in the power measurements,

the effect of free surface waves becomes apparent starting around 1.1 Hz, at which

point the net thrust drops for the test without the plate. There is a local minimum

in net thrust around 1.3 Hz, again corresponding to the maximum observed surface
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Figure 5.12: Cycle-averaged net thrust measurements for constrained water tunnel
tests at 1.0 BL/s and A/b = 0.67. Thrust production clearly drops around the surface
wave resonant frequency for the case of a free surface in the water tunnel. Error bars
reflect standard deviations from 5 sets of tests.

wave amplitude and local maximum of fin amplitude. The simplest explanation for

this drop in thrust is that the lateral (heave direction) loading on the fin decreases

as the fluid oscillates in resonance with the fin. The thrust produced by this fin is

based on lift, which has components in the lateral (heave) direction and in the stream-

wise direction (thrust). So as the lift loading decreases (as indicated by the power

measurements), the component of that lift load pointing upstream (the thrust) also

decreases in magnitude. Meanwhile for the test set with the plate on, thrust increased

monotonically with flapping frequency (until the very highest flapping frequency of

1.5 Hz where the thrust basically levels off — this could be attributed to the decrease

in fin amplitude seen in earlier results), reaching a maximum of about 0.35 N.

The Froude propulsive efficiency for these tests, calculated with equation 5.3, is

shown in figure 5.13. The first item to note about these results is that the efficiency

is relatively low, peaking at about 12% for the case with no plate and at about 11%

for the case with the plate. This low efficiency is somewhat counter to expectations,

but will be discussed in more depth with a larger set of results in the next section.

The other important thing to note about these results is that even though the power
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Figure 5.13: Resulting propulsive efficiency measurements for constrained water tun-
nel tests at 1.0 BL/s and A/b = 0.67. Error bars reflect the propagated error in
standard deviations from 5 sets of tests.

and thrust measurements are both reduced significantly by the presence of resonant

free surface waves in the water tunnel, the decrease in both measures is proportional,

so that the resulting efficiency is largely unaffected. Below about 1 Hz flapping, the

efficiency results for both tests are essentially identical (certainly within the range of

error). From about 1–1.25 Hz, the efficiency with no plate is slightly higher than the

efficiency with the plate (12% vs. 10%). This appears to come from the fact that the

power input in this frequency range is slightly lower for the case with no plate (refer

back to figure 5.9), as it starts to benefit from the surface waves without as much

reduction in thrust. From about 1.25–1.5 Hz the efficiency with no plate is slightly

lower than the efficiency with the plate (7% vs. 11%). In this range, for the case with

no plate the thrust reaches a local minimum while the power input starts to climb

again, so the resulting efficiency is slightly lower.

The efficiency results can also (more appropriately) be plotted against Strouhal

number, as shown in figure 5.14. This plot demonstrates that in the range of interest

for free swimming (0.2 < St < 0.4), there is no significant difference between the
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Figure 5.14: Resulting propulsive efficiency measurements for constrained water tun-
nel tests at 1.0 BL/s and A/b = 0.67, plotted against Strouhal number. In the range
expected for free swimming (St = 0.2–0.4), the results are essentially identical.

efficiency results with and without the plate. Even in the higher Strouhal number

range (where free swimming is not expected to occur), the difference in measured

efficiencies is fairly small. This plot also shows that if this fin were freely swimming

at 1.0 BL/s, we should expect a Strouhal number of about 0.3 — since that is where

there is zero net thrust — which matches well with the observed Strouhal number

range for biological swimmers.

5.2.3 Constrained Tests: Flow Speed Variation

While the presence or absence of a free surface does not appear to make a sig-

nificant difference in measured efficiency, further constrained tests were conducting

with the wave suppression plate applied so that any surface wave effects did not fur-

ther complicate the results. In this set of tests, the frequency range and amplitude

are kept constant while the imposed flow speed is varied to see what effect this has

on efficiency measurements. Five different flow speeds were used, ranging from 0.5

to 1.5 BL/s, corresponding to a Reynolds number range of approximately 34,000 to
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Figure 5.15: Net power to the fluid over a range of flow speeds. Error bars represent
the standard deviation from 5 tests.

103,000 (based on the root chord length). Again a flapping frequency range of 0.5 to

1.5 Hz was used, with a nominal amplitude for all tests of A/b = 0.67.

Figure 5.15 shows the cycle-averaged power measurements for these tests. At

lower flapping frequencies (from about 0.5–0.8 Hz) there is a slight increase in power

input to the fluid as the flow speed increases. Interestingly, there is an inflection

point at about 0.8 Hz where the power measurement seems to be independent of

flow speed. Above this inflection point (from about 0.8–1.5 Hz), there is a negative

correlation between power and flow speed, in which lower flow speeds actually require

more power input to the fluid.

The net power can be nondimensionalized as the coefficient of power (see equation

5.1) and plotted against Strouhal number, as shown in figure 5.16. Since Strouhal

number and coefficient of power both scale inversely with flow speed (∝ 1/U and

∝ 1/U3, respectively), the resulting values are both quite large for the lowest flow

speed of U = 0.5 BL/s. Overall this scaling shows that all the power results basically

collapse onto a single curve. Only the power data from the slowest flow speed showed

an exception: the functional relationship between CP and St seems consistent, just
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Figure 5.16: Coefficient of power over a range of flow speeds. Error bars represent
the standard deviation from 5 tests.

offset slightly from the rest of the data.

Figure 5.17 shows the net thrust results for this set of tests over a range of flow

speeds, which demonstrates that increasing flow speed effectively scales down the net

thrust produced by the fin. For example, at the highest frequency tested (1.5 Hz),

the net thrust at U = 0.5 BL/s is approximately 0.64 N; if the flow speed is scaled

up to U = 1.5 BL/s (by a factor of 3), the net thrust is scaled down to 0.18 N (a

factor of 1/3.6). This reflects the idea that the net thrust produced by the fin should

be proportional to the momentum added to the wake; as the imposed flow speed

increases, the wake velocity relative to the surrounding flow is not as great, meaning

net thrust is reduced.

This thrust data can be nondimensionalized as the coefficient of thrust (see equa-

tion 5.2) and the flapping frequency as Strouhal number, as shown in figure 5.18.

Similar to the coefficient of power, this effectively collapses the data down to a single

curve, although not as cleanly. For one thing, there is more uncertainty in the thrust
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Figure 5.17: Cycle-averaged net thrust over a range of flow speeds. Error bars repre-
sent the standard deviation from 5 tests.

data (compared to the power data), so deviations from the single curve are somewhat

expected. However there also seems to be a systematic trend which makes the coeffi-

cient of thrust slightly higher for tests performed at higher speeds. For example, we

can compare the results along a vertical line drawn at St = 0.3: for the flow speed

of U = 1.0 BL/s, CT ≈ 0; for the flow speed of U = 1.25 BL/s, CT ≈ 0.06. This

scaling reflects the fact that the tests each have a different Strouhal value where the

net thrust is zero (at least for the 3 fastest flow speeds, which did cross the zero thrust

line and showed net drag). This result implies that faster swimming would have a

lower Strouhal number (0.2–0.25) and slower swimming would have a higher Strouhal

number (0.3–0.35).

This nondimensionalization also allows for comparison against other data in the

literature. Two of the most relevant studies of robotic pectoral fin flapping for a

batoid ray are by Clark et al. [41], who tested a fin with low amplitude undulatory

kinematics, and Moored et al. [40], who tested a fin with large amplitude oscillatory

flapping, but with no undulation (passive or active). Both previous studies exhibit

the same trend of monotonic increase of CT with St. Measurements of CT reported

here are similar in magnitude to those found by Moored: for example, Moored reports
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Figure 5.18: Coefficient of thrust over a range of flow speeds. Error bars represent
the standard deviation from 5 tests.

CT ≈ 0.2 − 0.5 (depending on flapping mode) for St = 0.4, whereas the results here

show CT ≈ 0.1− 0.2 for St = 0.4. So it appears this tensegrity-based fin with passive

undulation actually produces slightly less thrust compared to a similar fin with no

undulation. In contrast, Clark reports CT ≈ 1.75 − 3.0 for St = 0.4, which is an

order of magnitude more thrust compared to the tensegrity fin. The power input

required to produce this thrust must be taken into consideration, as is covered next

by propulsive efficiency measurements, but it seems from this result that an actively

produced undulatory wave is important for creating thrust.

Taking the ratio of thrust produced to net power input to the fluid (see equation

5.3), the resulting propulsive efficiency is shown in figure 5.19. The results show a

general trend over a fairly wide range (factor of 3) of imposed flow speeds: as Strouhal

number is increased the efficiency rises sharply from zero (transitioning from net drag

to net thrust), comes to a peak value, then decreases gradually. While this is the

general trend, there are differences between the tests performed at different flow

speeds. For the lowest flow speed (0.5 BL/s), the Strouhal number range is such

that net drag is never reached, there is no distinct peak in efficiency, and instead
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Figure 5.19: Efficiency measurements for different flow speeds, plotted against
Strouhal number. Peak efficiency is about 12%. Error bars represent the propagated
standard deviations from 5 tests.

efficiency is relatively constant. As flow speed increases, Strouhal number is reduced

for the parameter set, net thrust is reduced and peaks in efficiency become apparent.

For the two cases with clear peaks in efficiency there appears to be a slight scaling

in the maximum efficiency: ηmax = 11% for U = 1.0 BL/s and ηmax = 12% for

U = 1.25 BL/s, although these values are both within the same range of error.

The highest flow speed did not exhibit a clear peak (did not reach a point at which

efficiency decreased with increasing Strouhal number).

Two items are notable about these efficiency results. First, the overall efficiency

is rather low. The highest peak in efficiency, ηmax = 12%, occurred at St = 0.37

Comparing to the same two studies cited above for the thrust results [40, 41], Moored

et al. found a peak efficiency of 22% and Clark et al. report a peak efficiency of

54%. So the efficiency of this fin with a passive chord-wise undulatory component

is actually somewhat lower than the fin from Moored et al., which was similar, but

with no undulatory component. This is counter to expectations, since Moored et

al. hypothesized that adding an undulatory component might be one way of improving
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efficiency. Meanwhile, the fin from Clark et al. exhibits significantly higher efficiency,

but not by the same margin as CT results, because power input to the fluid was

higher as well. As was indicated by the thrust data, these results imply that an

actively produced undulatory component is superior to a passively produced one in

terms of propulsive efficiency.

Second, both of the other studies show distinct peaks in efficiency occurring around

St = 0.2−0.3, and efficiency drops off significantly for higher Strouhal numbers. The

tensegrity fin in this study does not demonstrate such a distinct peak in efficiency,

but instead the efficiency gradually declines across a broad range of Strouhal num-

bers from 0.5 to 1.1. While the maximum efficiency of the fin is rather low, it is

somewhat unusual that there is not such a prominent peak in efficiency and instead a

broad plateau of relatively constant efficiency. This effect is attributed to the passive

compliance of the fin, which is not present in either of the other two studies.

Another difference to note about this study compared to the other two is flow

velocity: The tests by Moored et al. were conducted at U = 0.48 BL/s and those by

Clark et al. at U = 0.46 BL/s, where body length (BL) is the root chord length in each

case. Both flow velocities are comparable to the lowest flow speed demonstrated here

(which is low for biological rays [54]), and to operate in the Strouhal number range 0.2–

0.4 they have used low amplitudes (Clark et al. ) and low frequencies (Moored et al. ).

Strangely though, variation of flow velocity seems to be disregarded in other relevant

studies. The results here indicate the measured efficiency has some dependence on

imposed flow speed. Take for example the efficiencies measured at St ≈ 0.35: for

U = 0.75 BL/s the efficiency is about 3%, for U = 1.0 BL/s the efficiency is about

6%, for U = 1.25 BL/s the efficiency is about 11%, and for U = 1.5 BL/s the efficiency

is about 9%.

The fact that flow speed affects measured propulsive efficiency leads inevitably to

the following question: how should an imposed flow velocity be chosen in order to

determine the “true” efficiency of a flapping fin? The answer has two parts: first,
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it may be that there is no single “true” efficiency — in the same sense that the

efficiency varies across a range of Strouhal numbers, it can also vary across a range

of flow velocities; second, it depends on what conditions these tests are designed to

imitate. Ultimately, the subject of interest is a free-swimming vehicle. In steady

(constant velocity) free-swimming, the average thrust and drag balance out so that

net thrust is zero, meaning that Froude propulsive efficiency would also be zero. So

really, efficiency defined this way is only meaningful if net thrust is positive. An

example where this would be the case is a traditional rigid-hulled vessel with a rotary

propeller: the hull has some coefficient of drag that can be determined for a cruising

velocity of interest, and the propeller can be tested to find a coefficient of thrust to

match the drag at that velocity — its efficiency at that operating point is meaningful

because the sources of thrust and drag can be separated.

However, for biological swimmers (especially rays, whose fins make up a very

large portion of the entire body) the sources of thrust and drag cannot be so easily

separated. Even though the central bodies of myliobatoid rays are mostly rigid,

they oscillate during swimming [58] and therefore a coefficient of drag for the body

(determined under steady conditions) is probably not a good indicator of the thrust

that needs to be produced. Even if that approach were taken, it should be noted

that coefficient of drag for a streamlined body is quite low, and has been measured

as CD = 0.029 for the body of a cownose ray [58]. At a coefficient of thrust matching

that drag7, all the efficiencies measured in this study are extremely low. The same

also holds true when looking at the results from Moored and Clark: the efficiencies

corresponding to such a low value of CT are nowhere near as high as their peak values.

This difficulty motivates the search for some other form of performance mea-

sure that does not depend on imposed flow speed and represents the performance

of a freely swimming vehicle (or animal). While the constrained tests are useful for

demonstrating that the fin produces thrust (and even showing how this relates to vor-

7Assuming approximately equivalent areas for the definition of each coefficient. Even if the ratio
of body to fin area is varied, the conclusion is maintained.
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tex shedding), the use of Froude propulsive efficiency seems ill-suited for predicting

performance of a free-swimming vehicle. This is not to say that the efficiency measure

has no use at all though: if two fins8 are tested under similar conditions (with match-

ing flow velocities) and one fin has higher efficiency than the other, then clearly the

one with higher efficiency is superior at producing thrust at that flow speed. How-

ever, it is proposed here that for an oscillating propulsor where the sources of thrust

and drag are inseparable, the most appropriate method for conducting performance

tests is at free-swimming velocity, i.e. by running unconstrained tests. Therefore the

results of tests conducted under free-swimming conditions are described next.

5.2.4 Unconstrained Tests: Speed and Economy

Unconstrained water tunnel tests were performed at a nominal amplitude of A/b =

0.57 for a range of frequencies from 0.5 Hz to 1.25 Hz. It was found that at frequencies

below 0.5 Hz, the fin could not consistently produce enough thrust to overcome the

friction of the linear rail (estimated to be about 0.1 N).

Figure 5.20 shows the net power of these tests plotted against flapping frequency.

The magnitude of net power for the free-swimming tests was not substantially different

from the constrained tests, but the shape of the curve is different for frequencies above

about 0.9 Hz. Instead of continuing to increase, the power input plateaus briefly, and

then climbs even more sharply for the highest frequencies. This is in contrast to

the power for the constrained tests, which all started leveling off for the highest

frequencies.

Nondimensionalized as the coefficient of power (figure 5.21), this result looks dras-

tically different than for the constrained tests. The reason for such a difference is that

the coefficient of power is scaled by 1/U3. For constrained tests, the flow velocity U

is constant, so the shape of the power curve is unaffected. However for the un-

constrained tests, the swimming velocity changes with flapping frequency (discussed

8This could be two completely different fins, or the same fin with different sets of kinematics.
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Figure 5.20: Net power for unconstrained tests plotted against flapping frequency.
The magnitudes overall are similar to constrained tests, but the shape of the curve is
noticeably different for higher frequencies.

next), so that a low velocity causes CP to become large, while a high velocity causes

CP to become small. In this way, even though the net power to the fluid is increasing

with flapping frequency, CP remains at a low, relatively constant level (for flapping

frequencies above 0.8 Hz) because the swimming velocity is increasing as well.

Figure 5.22 shows the instantaneous position of the fin along the rail for all fre-

quencies, averaged over the 10 sets of tests. Two cycles have been removed from

the beginning of each test to exclude any acceleratory portion, such that the velocity

over the entire test has little variation and represents the steady swimming velocity

(demonstrated by the linearity of the position plots). Note that the velocity along

the rail (the slopes of these lines) does not correlate to flapping frequency because the

total fin velocity is calculated as the slopes from this data plus the flow tank velocity

for each test.

Figure 5.23 shows the free-swimming velocity of the fin plotted against flapping

frequency. The overall trend in swimming velocity is quite similar to the net power

of figure 5.20, in that it rises with frequency, then has a plateau, and rises sharply
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Figure 5.21: Coefficient of power versus flapping frequency for the unconstrained tests.
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Figure 5.22: Instantaneous fin position along the rail of the experimental rig for all
frequencies. The linearity of the measurements demonstrates that steady cruising
was achieved. Even though total swimming velocity does correlate with flapping
frequency (see figure 5.23), the slopes here do not correlate to frequency because the
water tunnel velocity has not been incorporated.
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Figure 5.23: Free-swimming velocity for the unconstrained tests, shown in both m/s
(left axis) and body lengths per second (right axis).

again for the highest frequencies. The maximum swimming velocity was 1.86 BL/s

(0.46 m/s) and slowest swimming velocity was 0.35 BL/s (0.09 m/s). This covers

the range of velocities used for constrained tests and shows that the fin is able to

free-swim at significantly higher velocities than were used in constrained tests. Also,

this data shows 1 Hz flapping produces U ≈ 1.5 BL/s. In comparison, observed

swimming speeds for cownose rays flapping at 1 Hz are between 1 and 3 BL/s [58],

so the artificial fin lies directly in the middle of that range.

This velocity can also be represented as stride length, or the distance traveled per

flapping cycle, as shown in figure 5.24. A maximum stride length of 1.63 BL occurred

at f = 0.9 Hz. This is about 20% lower than reported values of stride length for cow

nose rays, which are around 2 BL [54].

Free-swimming economy is defined here as the ratio of the free-swimming velocity

to net power input to the fluid. Having units of m/J, this measure directly repre-

sents the distance that can be traveled (m) for a given amount of energy (J)9. Figure

5.25 shows this measure plotted against both flapping frequency and swimming veloc-

ity. Both representations have a similar shape, since swimming velocity is (roughly)

9In this way, the measure is not unlike fuel economy for automobiles, which also has units of
distance per energy (miles per gallon).
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Figure 5.24: Stride length of the fin in unconstrained tests, calculated as velocity
divided by frequency.

monotonically correlated to flapping frequency. This data shows a peak in economy

of ξ = 0.875 m/J at low frequency/velocity (at 0.6 Hz and about 0.18 m/s). The

two very lowest frequencies/velocities have worse economy compared to the peak, and

economy decreases monotonically with frequencies/velocities higher than the peak.

Why is it that the measured economy actually decreases for the two lowest flapping

frequencies? The most likely explanation is that the decreased economy at the two

lowest frequencies is actually an artifact of the test setup based on the inherent friction

of the rail system. While the free-swimming system was made to be as low-friction

as possible, it still does have friction of around 0.1 N, which represents a finite, non-

velocity-dependent drag on the fin. Notice that the net thrust in the constrained

experiments (see figure 5.17) just reaches 0.1 N (equal to the rail friction) at 0.6 Hz

and 0.5 BL/s. In real free swimming (not attached to any rail), drag only depends

on flow around the swimmer and its magnitude should be velocity dependent, so as

swimming speed slows, the drag that must be overcome by thrust decreases. Here, the

friction of the rail resists very slow swimming speeds, which most likely is artificially

lowering the economy measurement.

Assuming the peak in economy is an artifact of the test setup, the results show



139

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Frequency, Hz

Ec
on

om
y,

 m
/J

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Velocity, m/s

Figure 5.25: Free-swimming economy of the fin, plotted against both flapping fre-
quency (left) and velocity (right).

that swimming as slow as possible is most economical if the goal is to minimize energy

usage for a given distance traveled (without concern for the time it takes to the travel

that distance). This is certainly not the only possible measure of free-swimming

performance and other measures could change the conclusion about a slow optimal

operating point (for instance if low velocity is penalized by some cost function).

One drawback of this economy measure is that there is no immediate sense of what

constitutes the best possible economy. Propulsive efficiency makes clear that 100%

is the best theoretical value, and likewise that 12% is a relatively poor efficiency.

However there is no clear upper limit to economy as defined here.

Also, economy measurements are extremely scarce in the literature, which makes

further comparisons difficult. For example, Lauder [128] studied the thrust production

of a biorobotic pectoral fin (modeled after a sunfish) and reported free-swimming

velocities, but not the corresponding power measurements. Moored et al. [40] report

the energy economy of an undulatory batoid fin (the same fin described in [41]), but

economy is defined slightly differently, using total power of the fin not net power to

the fluid, making direct comparisons difficult. Economy of the fin in this study can

be calculated using total power, but that does not guarantee the results would be
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comparable, since the power to actuate each fin (in the absence of fluid loading) as

a function of frequency may not be similar. When economy of the fin in this study

is calculated with total power, the results are very similar to figure 5.25, just scaled

downward.

Interestingly though, the results from [40] indicate the opposite trend from what

is shown here: that energy economy (using total power) generally increases with fre-

quency. The qualitative difference in the economy-frequency relationship most likely

comes from the difference in actuation mechanisms, which have dissimilar mechanical

efficiencies as a function of frequency10. Also, a major difference is that the power

in [40] is total electrical power, whereas the total power in this study is mechanical,

not considering inefficiencies of the servomotor. In an attempt to make a comparison,

the maximum economy reported in [40] is about11 0.18 BL/J, while the maximum

economy (based on total mechanical power) for the tensegrity fin in this study is

2.3 BL/J. However, this does not consider inefficiency of the servomotor — even if

we assume the servomotor is only 10% efficient, this gives an economy of 0.23 BL/J,

which is larger than, but comparable to that reported in [40]. Moreover, there does

not appear to be a standard method of measuring the free-swimming performance of

flapping underwater propulsors, which motivates the establishment of some quantity

which can be applied to a variety of swimming devices. It is proposed here that a

free-swimming economy based on net power to the fluid (as for Froude propulsive

efficiency) is a meaningful measure that could be applied across a wide variety of

swimming devices.

Another commonly cited metric related to swimming performance is Strouhal

number and Taylor [64] notes that a large variety of swimmers (and even flyers)

operate within the range of St = 0.2− 0.4 in order to optimize propulsive efficiency.

The Strouhal number for these free-swimming tests is shown in figure 5.26. Indeed,

10Based on personal correspondence with the authors of [40]. Mechanical efficiency of that fin is
more fully described in [41]

11Body-lengths per Joule, with body length reported as the root chord, the same as in this study.
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Figure 5.26: Strouhal number for unconstrained tests, showing that for most param-
eters, the fin operates within St = 0.25− 0.35.

the majority of steady swimming velocities from these unconstrained tests fall right

within the range mentioned above, with data points at higher velocities centered

around St = 0.3. The two points at lowest velocities (and lowest flapping frequencies)

are the only ones with Strouhal numbers outside this range, and they correspond to

the same two points with lower economy, lower stride length and high CP . All of

these shifts are consistent with a low velocity compared to the other parameters of

swimming, again indicating the fin may have been encumbered by friction of the

linear rail at such low flapping frequencies.

Figure 5.27 shows an interesting result of the economy measurement when com-

pared to the relative invariance of Strouhal number for most cruising speeds: for a

fairly narrow range of Strouhal numbers (from about 0.28 to 0.32) there is a significant

variation in the measured swimming economy. The highest economy in this range is

60% larger than the lowest. This is unexpected, since a variety of previous studies

(as mentioned above) correlate specific Strouhal numbers uniquely with high perfor-

mance, as measured by propulsive efficiency. However when using a free-swimming

measure, such as the economy defined here, it appears that Strouhal number is not a

unique indicator of free-swimming performance, since swimming at nearly the same

Strouhal number can have both the lowest and one of the higher (85% of maximum



142

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Ec
on

om
y,

 m
/J

Figure 5.27: When free-swimming economy is plotted against Strouhal number, it is
clear that St does not have a one-to-one correlation with this performance measure.

ξ) values of free-swimming economy.

In addition to steady (constant velocity) free-swimming tests, the robotic fin was

tested under acceleratory conditions to examine burst speeds for the same amplitude

and range of frequencies as the tests above. The tests were conducted with no flow

through the water tunnel, so that the fin accelerated from complete stop in still water.

Most tests were constrained by the length of the rail to only 2 full cycles, especially at

higher frequencies. Figure 5.28 shows the fin velocities after 1 and 2 cycles compared

to the steady velocities discussed previously. This illustrates that flapping at 1 Hz,

the fin can reach a speed of 1 BL/s in less than 2 flapping cycles. Averaged across all

frequencies, after only one flapping cycle the fin reached 40% of the steady cruising

velocity, and after two cycles it reached 64% of steady cruising velocity. Overall this

demonstrates the artificial fin is capable of significant accelerations, which could be

a desirable trait for an underwater vehicle.

5.2.5 Unconstrained Tests: Amplitude Variation

All tests discussed up to this point have been conducted at a constant amplitude

of A/b = 0.57. To investigate what role amplitude modulation might play in the
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Figure 5.28: Velocity of the fin after only one and two flapping cycles (accelerated from
rest in still water) compared to steady cruising velocity with the same parameters.

free-swimming performance of this fin, unconstrained tests at steady velocities were

conducted for two other amplitudes: A/b = 0.42 and A/b = 0.71. The fin did

not reliably propel itself forward at a steady velocity for the lowest amplitude until

a flapping frequency of 0.9 Hz. Figure 5.29 shows the resulting velocities for each

amplitude. For each frequency, higher amplitude corresponds to higher free-swimming

velocity. The largest amplitude at the highest frequency is capable of swimming at

0.61 m/s, which corresponds to 2.5 BL/s (near the upper limit of 3 BL/s recorded

for cownose rays). The smallest amplitude does not swim very fast and plateaus to

a fairly constant velocity of 0.25 m/s for the highest frequencies tested. This is an

interesting trend because for both of the higher amplitudes, their velocity continues

to increase at the highest frequencies.

Examining the net power to swim in each case (figure 5.30), it is clear that sub-

stantially more power is required to accomplish these high velocities at high amplitude

and frequency. This result also demonstrates that there is a fairly continuous power

curve for all frequencies and amplitudes that correlates to swimming velocity.

The Strouhal numbers for all three amplitudes is shown in figure 5.31. The lowest

amplitude tests have a somewhat higher value of St for the same velocities as the
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Figure 5.29: Steady cruising velocity of the fin using three different amplitudes.
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Figure 5.30: Net power input to the fluid using three different amplitudes (A/b = 0.42
closely overlaps with A/b = 0.57.
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Figure 5.31: Strouhal number in free swimming using three different flapping ampli-
tudes.

intermediate amplitude. This is because those same velocities were reached at much

higher flapping frequencies. Meanwhile, the largest amplitude flapping has a relatively

constant and low Strouhal number across all swimming velocities (average of St =

0.22).

The free-swimming economy for these other two amplitudes (see figure 5.32) fol-

lows a pattern similar to that seen for the intermediate amplitude. The lowest am-

plitude has similar economy values to the intermediate amplitude, and only swims at

low velocities. The highest amplitude follows the trend of decreasing economy with

increasing velocity. This shows that while much higher swimming velocities can be

reached, they come at the price of reduced economy. In terms of operating an under-

water vehicle equipped with fins like this one, this economy curve provides valuable

guidance specific to the goals at hand: if least energy expenditure over a distance

is desired, swimming at a low velocity is preferable; but if covering a given distance

as fast as possible is desired, it can be accomplished, just at a cost of high energy

expenditure.
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Figure 5.32: Free-swimming economy of the fin for three different flapping amplitudes.

5.2.6 Unconstrained Tests: Skin Stiffness

In order to investigate what role the skin material’s passive compliance might

play in swimming performance, a second skin was fabricated using the same mold

and process as the first skin. The first skin was intended to be as soft and flexible

as possible in order to maximize passive deformations and so the second skin was

intended to be much stiffer, in order to minimize passive deformations, especially in

the trailing edge portion of the fin. The stiffer material is a product called Dragon

Skin 10, also from Smooth-On Inc., and is also a two-part liquid silicone that cures at

room temperature. It is rated for a Shore hardness of 10A. To determine the stiffness

of both skin materials, 6 “dog bone” samples were made with each silicone mixture

and then subjected to tensile testing according to ASTM standard D 638 [129] using

an Instron 5848 MicroTester. The resulting elastic moduli for the two skins were 13

kPa and 167 kPa — more than an order of magnitude difference.

This second, stiffer skin underwent unconstrained water tunnel tests similar to the

first, softer skin. The amplitude was similar to the intermediate amplitude of the first
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Figure 5.33: Velocity of the two different skins compared. For all frequencies, the soft
skin swims faster than the stiff skin.

skin12, with A/b = 0.52. The same frequency range was tested, but it was found that

the stiffer fin did not reliably swim at a constant upstream velocity for frequencies

lower than 0.9 Hz, which is a similar result to the low amplitude flapping of the first

skin. Figure 5.33 shows the resulting velocities for this stiff skin compared to the

original soft skin. Velocities were lower at every flapping frequency and interestingly

the velocity actually decreased at higher frequencies.

Figure 5.34 shows economy for the stiff skin plotted against free-swimming veloc-

ity. While this stiffer skin is capable of swimming within the velocity range of the

softer skin, it does so at significantly lower economy. This is attributed to the fact

that the stiff skin swims at velocities comparable to the soft skin only by flapping at

higher frequencies, which are correlated to higher power input to the fluid, and so the

economy is lower. These results demonstrate that flexibility can play an important

role in the free-swimming performance of a flapping fin, a finding that has been shown

in other studies as well [15].

To examine the amount of passive fin deformation present, photos of each skin

12Due to the high stiffness of the skin, a larger servomotor rotation amplitude was required to
produce an approximately equivalent tip amplitude. While the resulting amplitude is slightly lower
for the stiff skin, that does not fully account for the velocity difference (see figure 5.29) and lower
amplitude does not correlate with lower economy (compare figure 5.32 with figure 5.34)
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Figure 5.34: Free-swimming economy of the two different skins, showing the stiff skin
has poor performance.

were taken as the fin passed through the neutral plane (triggered externally by the

LabVIEW control program) at various frequencies in the water tunnel. Markers were

placed at the mid-span location along both the leading edge and trailing edge, so

that an angle formed by the two points could be measured. Figure 5.35 shows the

results for both skins. Clearly the soft skin deforms much more under hydrodynamic

loading: undulation can be seen along the soft skin that generally increases with

flapping frequency, with a maximum angle from the leading edge to trailing edge of

just over 7°; meanwhile, the stiff skin hardly deforms by any noticeable amount for

any frequency (measured angle is 1° at most), making it essentially chord-wise rigid.

While the magnitude of this angle on the soft skin is not very large, based on the

velocity and economy results it seems that this passive deformation is an important

factor in the performance difference measured between the two skins. Additionally,

the very tip of the soft skin lags behind fin motion and the tip of the stiff skin does

not show noticeable lag, so it is possible this has some effect on performance as well.
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Stiff Skin Soft Skin

Figure 5.35: Passive deformation of both the stiff skin (left) and soft skin (right)
as they pass through the neutral plane during flapping (moving downwards). The
centerline along the leading edges and trailing edges have been outlined in green.
The red line indicates the angle between the leading edge and trailing edge at the
mid-span.
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5.2.7 Chapter Summary

In summary, this chapter has described the experimental methods and major

results for two types of water tunnel tests on the tensegrity-based robotic pectoral

fin. An experimental rig was developed to measure both the thrust produced by the fin

in constrained tests and the free-swimming velocity of unconstrained tests while the

fin itself is used to measure power input the fluid. Both types of tests were conducted

by varying flapping frequency over a range larger than that seen in biology. It was

seen that in constrained tests, both power and thrust scale with frequency. As thrust

increases, the vortex shedding off the fin actually changes structure, as seen in both

instantaneous thrust measurements and qualitatively in wake visualizations. The

efficiency of the fin was found to be low overall, with ηF = 16% at best. Based on the

assumption that biological rays do maximize propulsive efficiency to very high levels,

the results suggest that the kinematics of this particular fin may be insufficient to

reproduce biological performance, motivating the development of increased kinematic

complexity. It was found that Froude propulsive efficiency scales based on the imposed

flow velocity. It is suggested that this particular measure may not be representative

of free-swimming performance if efficiencies are measured at such high levels of net

thrust.

In unconstrained tests, both power and free-swimming velocity scale with flapping

frequency. The artificial fin was demonstrated to be capable of swimming at speeds

comparable to biological rays. A measure of free-swimming economy as the ratio of

velocity to power is established, and results show this metric is generally inversely re-

lated to swimming velocity. Whether or not a true peak in economy exists is unclear,

but it is shown that there is a trade-off between velocity and energy expenditure for

this type of flapping propulsion. Under free-swimming conditions, this fin operates at

a Strouhal number within 0.2−0.4 (for most parameters), which is identified by many

other investigators as optimal for flapping propulsion. However, based on the econ-

omy measurement established here, Strouhal number does not appear to be a unique
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indicator of swimming performance. The fin also displayed impressive accelerations,

reaching on average two-thirds of steady cruising speed within just two flapping cycles.

Flapping amplitude was shown to be strongly correlated with swimming velocity, but

at the price of generally lower economy for the higher velocities associated with large

amplitudes. Finally, it was shown that flexibility of the artificial skin seems to be

important for swimming performance. Overall this study demonstrated the feasibility

of using tensegrity as the basis for an artificial pectoral fin, and that this type of fin

shows promise for use in underwater vehicles. There are many ways of quantifying

the performance of such a fin and while several have been shown here, suggestions for

further work relating to this fin are discussed in the next chapter.
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Chapter 6

Conclusions

A new generation of biologically-inspired underwater vehicles with flapping, flexi-

ble propulsors shows promise for outperforming conventional underwater vehicles that

use rigid hulls and rotary propellers. Manta rays appear to be an excellent model

for an efficient, high-endurance, maneuverable, and stealthy underwater vehicle. Like

their biological counterparts, these vehicles would use large fins with complex defor-

mations for both thrust and maneuvering. However, progress towards this ambitious

objective requires further work in many areas, including (but not limited to): biome-

chanics, to better understand how and why biological rays swim the way they do;

unsteady hydrodynamics, to unlock the foundations of efficient propulsion produced

by flapping surfaces that create and control vortices; and advanced robotic structures,

to combine the findings from biomechanics and hydrodynamics into propulsors and

vehicles that can reproduce or even exceed biological performance.

Towards the goal of understanding and reproducing batoid ray propulsion, the

work described in this dissertation has had several specific aims: to verify the me-

chanics of cable-clustered planar tensegrity beams, so that these structures can be

implemented in novel fin designs; to design and construct a robotic fin that reproduces

the major kinematic components of oscillatory batoid rays, using active tensegrity as

the structural foundation; and to quantify the swimming performance of this robotic
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tensegrity-based fin, in order to understand how design and kinematic parameters

contribute to propulsion in ray-like fins. The major contributions and findings from

each area of investigation are recapitulated here.

6.1 Summary of Contributions

An overview of the relevant analytical mechanics for planar cross, multiple cable-

routed (MC) active tensegrity beams (as developed by Moored et al. [4, 5]) has been

presented. These analytical solutions provide predictions for both input actuations

to achieve large bending amplitudes and the structural response to external loading,

based on geometric and material properties. The analytical solutions compare well to

numerical simulations, but have not previously been verified experimentally. In this

study, an experimental tensegrity beam was fabricated to verify the analytical solu-

tions, so that they can be used for the design of robotic fins. Experiments indicate

excellent agreement to predictions of first-order bending stiffness, with experimen-

tally measured stiffness differing from the analytical prediction by less than 3%. The

results provide confidence that similar beams can be designed according to antici-

pated loading scenarios. Additionally, predictions for critical slackening and optimal

pretension distribution were verified, further validating the tensegrity design methods

laid out.

With confidence in the predicted loading response of MC tensegrity beams, an

actuation strategy was devised to minimize the energy input required for large-

amplitude bending of active beams. An analysis of the tensegrity planar cross unit

cell geometric nonlinearities indicates that the induced strain effect is non-trivial for

relatively stiff structures when large-amplitude bending is desired, such as that ob-

served in batoid ray fins. Induced strain minimization was accomplished by a rotary

actuation system, using a cam drum to produce modified antagonistic actuation. A

simple model for the cam drum shape was presented, along with a numerical search
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method for minimizing induced strain during actuation.

Next, a novel robotic fin was designed, consisting of an active beam embedded in

the leading edge of a molded compliant polymer skin. The fin has a planform, aspect

ratio, and chord-wise foil cross-sections that are similar to typical oscillatory batoid

rays. The embedded active tensegrity beam was designed based on estimates from

a simple fluid loading model, and uses a cam-based, modified antagonistic actuation

system to minimize induced strain. The active tensegrity beam’s tip amplitudes were

measured as a function of input actuation, showing the beam is capable of large-

amplitude bending, although the measured amplitudes were somewhat lower than

predicted by the linearized analytical model. At high amplitudes (above A/L ≈ 0.4),

the exact analytical prediction diverges from the linear prediction (because small angle

assumptions become invalid), so agreement with the linearized model is not expected

in the high-amplitude regime. However, differences between the experimentally mea-

sured active beam amplitudes and the exact analytical model are less than 10% for

the highest amplitudes tested, which is attributed to specific fabrication details of the

beam and actuation system.

Measured amplitudes of the entire fin (tensegrity beam with artificial skin) in air

also showed large span-wise bending amplitudes, demonstrating a set of kinematics

similar to biological oscillatory rays. Dynamic measurements of flapping amplitudes in

water showed a frequency response of the system due to fluid loading, with amplitudes

generally decreasing as flapping frequency increases, but these amplitude decreases

were accounted for in experiments by incorporating the actual amplitudes in Strouhal

number calculations.

A hydrodynamic testing rig was designed and constructed to allow for both con-

strained flapping experiments (to measure thrust and efficiency) and unconstrained

flapping experiments (to measure free-swimming speed and economy). The imple-

mentation of an active tensegrity beam into a biologically-inspired fin resulted in a

robust propulsor design for carrying out these experiments. The fin reliably performed
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a large number of tests, on the order of 105 flapping cycles, thus demonstrating the

viability of this general design concept for use in an underwater vehicle.

Constrained water tunnel experiments showed that both net thrust produced by

the fin and net power to the fluid generally increased with frequency. During these

experiments, it was observed that certain sets of operating parameters produced sig-

nificant surface waves, essentially exciting a resonant motion of the fluid across the

width of the water tunnel. This surface wave resonance was correlated with decreases

in both thrust and power, and when a plate was applied to the surface of the wa-

ter to suppress these waves, thrust and power increased monotonically with flapping

frequency. Comparing the propulsive efficiency when surface waves were either sup-

pressed or not, it was found that efficiency measurements were largely unaffected

by the presence of the free surface, because when the thrust and power decreased,

they did so proportionally. In the Strouhal number range relevant to free swimming,

the efficiency measurements were essentially identical (because surface waves were

minimal in this range).

With the wave suppression plate applied, constrained tests were performed over

a range over imposed flow speeds, showing that net thrust scales inversely with flow

speed. When thrust and power are both nondimensionalized (as CT and CP ) and

plotted against nondimensional frequency (St), the results at different flow speeds

generally collapse along single curves, showing only minimal variation with flow speed

(mainly for thrust). The maximum coefficient of thrust was CT ≈ 3.3 (corresponding

to average thrust of 0.65 N, taken at a flow speed of 0.5 BL/s).

The maximum Froude propulsive efficiency for this fin was found to be rather low,

at only ηF = 12% within a Strouhal number range of 0.3 – 0.4. There were several

interesting points arising the efficiency results. First, previous work by Moored et

al. [40] suggested that adding chord-wise flexibility to a heaving oscillatory batoid

fin could increase efficiency, and the fin in this study was designed to test that hy-

pothesis, by allowing for passive chord-wise deformations. However, the efficiency
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of this fin was slightly lower (compared to the maximum of 22% from Moored et

al.), showing that, based on these results, solely adding chord-wise flexibility does not

appear to improve performance over a chord-wise rigid fin. Also, work by Clark et

al. [41] suggested that adding span-wise curvature might improve efficiency, but the

efficiency of the fin in this study (with span-wise curvature) was significantly lower

(compared to the 54% by Clark et al.). The kinematics of the two fins are significantly

different, in that Clark et al. actively produced an undulatory wave, whereas in this

study the undulatory component of the fin was completely passive. The combina-

tion of these two results suggest that the kinematics of the single tensegrity beam fin

presented here are insufficient for producing the high propulsive efficiency expected

of flapping biological propulsors. Other studies of two-dimensional pitching/heaving

foils indicate that high efficiencies (up to 87% [65]) can be achieved on high aspect

ratio propulsors with the proper combination of kinematics, so recommendations for

kinematic improvements to a tensegrity-based fin are given in section 6.2.

A second finding from the efficiency results was that a relatively broad plateau

of highest efficiency was demonstrated, instead of a sharp, distinct peak as shown

in other studies [4, 41]. This is attributed to the flexibility of the fin in this study,

which could be accommodating more optimal vortex formation over a broader range

of St, compared to the completely prescribed kinematics on the entire fins by Moored

et al. [4] and Clark et al. [41]. This finding indicates that flexibility could be very

important in the design of flapping propulsors in order to increase their range of

optimal thrust production.

A third finding from these results is that measured propulsive efficiency has some

sensitivity to the imposed flow speed in these constrained tests. It was demonstrated

that measured efficiency scaled with flow speed, especially in the range 0.2 < St < 0.4,

making it difficult to claim there is a single value of efficiency for this fin at a given

Strouhal number. Thus, it seems that for this low aspect ratio, high amplitude flap-

ping propulsor with passive flexibility, propulsive efficiency is not uniquely determined
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by Strouhal number. This is a somewhat surprising conclusion, since many studies

have emphasized the importance Strouhal number in determining optimal propul-

sion [63–65]. While the peak efficiency does occur within the expected optimal range

of St, it also varies with flow speed, thus the following question naturally arises: what

is the “correct” flow speed at which to perform these types of tests? There is no clear

answer from the results of this study, but it seems that performing constrained tests

under an imposed flow speed to create net thrust may not be the best measure of

swimming performance for a biologically-inspired oscillating propulsor. Instead, a

more appropriate measure of swimming performance could come from unconstrained,

free-swimming tests, where average net thrust is zero (and thus propulsive efficiency

would be zero as well), and the flow speed is self-determined by the motions of the

fin and the surrounding fluid.

Unconstrained tests showed that free-swimming speed is strongly correlated with

both flapping frequency and amplitude. The highest free-swimming speed reached by

the fin was 2.5 BL/s (0.61 m/s), and occurred for high values of frequency (1.25 Hz)

and amplitude (A/b = 0.71). Both the speed and kinematic parameters of this fin

are fairly similar to those seen in biological oscillatory rays [58]. Using the ratio of

free-swimming speed to net power to calculate economy, it was apparent that the

high velocities and amplitudes used to reach the fastest speeds come at the cost of

low economy. The peak economy measured was 0.875 m/J, and economy was found

to generally increase as swimming speed decreased. However this was not the case

for the very lowest swimming speeds (corresponding to lowest flapping frequencies),

where economy was lower than the peak. This was mostly likely an artifact of the

experimental test rig caused by the small but finite friction along the rail. Based on

results of the constrained tests, net thrust at the lowest flapping frequencies was small

enough that free-swimming speed would be affected by friction of the rail. Indeed,

the peak in economy corresponds to the frequency at which net thrust just exceeds

the measured friction of the rail (0.1 N). Therefore it is expected that a completely
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free-swimming fin (not attached to a velocity-independent source of drag) would show

monotonically increasing economy for decreasing swimming speed.

The implication for the design and operation of an underwater vehicle is that the

cost associated with covering some distance is directly related to speed at which that

distance is covered — high speeds can be attained, but at the tradeoff of low economy,

and economical transport can be achieved if the time it takes to cover a given distance

is not important. It is possible that some other performance metric or cost function

which combines the importance of economy and travel speed could reveal an optimal

operating point of intermediate speed and intermediate economy. There are very

few examples in the literature of free-swimming economy measurements for flapping

propulsors1, and it is suggested that the economy measurement used here — the ratio

of free-swimming speed to net power to the fluid (similar to the power used for Froude

propulsive efficiency) — could be used in other studies for comparison.

Other studies [63, 64] often note that biological swimmers operate within a range

of Strouhal numbers between 0.2 and 0.4, and that doing so indicates some optimiza-

tion of propulsive performance. When free-swimming, the tensegrity fin operated

within that range for most parameters, but at the lowest speeds (mostly below about

0.75 BL/s) the Strouhal number increased, up to a maximum of nearly St = 0.7 (how-

ever the highest Strouhal numbers correlate to low velocity and economy, and were

likely impacted by friction of the linear rail). Towards higher speeds, the Strouhal

number settles to a narrow band that is amplitude dependent: higher amplitudes

(A/b = 0.71) correlate to lower Strouhal numbers (St ≈ 0.2), and lower amplitudes

(A/b = 0.57) correlate to higher Strouhal numbers (St ≈ 0.3). For a fixed ampli-

tude, an interesting result arises from the range in economy observed compared to

the relative invariance of Strouhal number: a wide range of free-swimming economy

values, from the lowest to one of the highest (a 60% difference), occurred for a very

narrow band of Strouhal number (0.28 < St < 0.32). The implication is that Strouhal

1Biological studies often used cost of transport (COT), which is similar to the inverse of economy,
but accounting for body mass and often using total metabolic power.
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number is not a unique indicator of free-swimming economy. As with the efficiency

results, this is somewhat counter to expectations, considering Strouhal number is

typically associated with high propulsive performance. The combination of these two

findings indicates that while high performance (however that might be measured)

occurs within a Strouhal number range, just operating within that range does not

guarantee high performance.

In addition to the steady-state experiments, the fin was tested for acceleration

performance. It was found that after only 2 flapping cycles the fin reached nearly

two-thirds of its steady-state speed, averaged across all frequencies. This type of

acceleration performance could be desirable for a highly maneuverable underwater

vehicle.

Additionally, a stiff artificial skin (with a modulus of elasticity one order of mag-

nitude higher than the compliant skin) was tested under free-swimming conditions.

Results demonstrated that the stiff skin only self-propelled starting at higher fre-

quencies compared to the soft skin (minimum free-swimming frequency of 0.9 Hz for

the stiff skin versus 0.5 Hz for the soft skin). While the stiff skin was able to swim

at speeds comparable to those of the soft skin, it only did so at much higher fre-

quencies, and as a consequence, at much lower values of economy (about one-third

lower economy at best). Optical measurements of passive fin deformation indicate the

differences in performance can only be attributed to the passive deformations of the

skins, since the other major kinematics (frequency and amplitude) were comparable.

Swimming at a high economy over a wide range of speeds is desirable for an under-

water vehicle, so these results demonstrate that passive compliance and deformations

should be taken into account when designing and testing flexible propulsors.

Overall, this work has demonstrated that active tensegrity structures can be suc-

cessfully implemented into a biologically-inspired propulsor that is capable of approxi-

mating the kinematics and swimming speeds of oscillatory batoid rays. Unfortunately,

there is minimal quantification of the swimming performance of biological rays (with
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no direct measurements of propulsive efficiency or free-swimming economy), so other

direct comparisons are difficult to make. To reproduce the complex motions and fine

control seen on manta ray pectoral fins, far more work must be done in several areas,

but hopefully this research has shown that significant progress can be made using

relatively simple structures and methods. The potential benefits of an unmanned un-

derwater vehicle that can meet or exceed biological manta ray capabilities are enough

to motivate further research, so a few of the most obvious and promising areas of

study are given next.

6.2 Future Work

Many fertile areas of research exist based on studying batoid ray swimming, with

opportunities that build upon this work, and in areas completely unexplored here.

Since this study has mainly focused on reproducing batoid kinematics and experi-

mentally measuring the resulting performance related to those kinematics, ideas in

this section will be closely related to those efforts.

In order to open up the possibility of more closely matching certain aspects of

batoid kinematics, several modifications to tensegrity-based fins could be made. By

using multiple actuators for a single beam, an actuation system could control the

deformation of each cell of a tensegrity beam independently, such that the phase

between each cell could be varied, in order to actively control various bending modes.

Manta rays demonstrate non-monotonic curvature in the span-wise direction of the

their fins during flapping, and while some of this motion may be passive, the influence

of this kinematic component could be explored2 with relatively simple modifications

to the type of fin presented here. Along this same line, the influence of passive

deformations in the span-wise direction could be investigated by “under-actuating”

2The effect of a “tip lag” was explored by Moored et al. [40]. It was not found to have a large
influence on efficiency, but it is possible the parameter space was not large enough to see differences,
and that other changes to the fin (like swept tips or chord-wise curvature) would allow for larger
performance differences.
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the fin, either by selectively deactivating the more distal cells in the tensegrity beam,

or by building several different beams of varying number of cells, so that a beam with

only one or two cells (and being 1/3 or 2/3 the original beam length) could drive

the fin. If it were uncovered that similar performance could be achieved with fewer

active cells and by exploiting passive deformations in the span-wise direction, this

could simplify the design and construction of fins and vehicles.

One advantage of the tensegrity approach is that the actuation results are indif-

ferent to the source of active cable strain, so as new types of actuators (especially

“artificial muscles”) are developed, they can be used. Implementing novel types of

actuators into the tensegrity fin could provide more silent operation for a UUV com-

pared to conventional servomotors. Additionally, improved actuator efficiencies would

be useful for extending operating ranges and times in a free-swimming vehicle. While

a remote actuation strategy has proven to be effective, new types of actuators that

are strong, light, and small could make embedded actuation less prohibitive, enabling

more complicated structures without concern for cable routing and friction across

nodes.

The design and analysis tools for much more complex tensegrity structures ex-

ist [4], but they seem prohibitively difficult to construct compared to simple beam

structures. However, having fully prescribed fin kinematics coming from an underly-

ing three-dimensional tensegrity plate structure could be advantageous compared to

relying on passive fin deformations. This could be especially true if more complex

active motions are necessary, such as for turning and maneuvering, compared to rela-

tively simple straight-line swimming. Therefore it seems worthwhile to investigate the

construction and actuation three-dimensional tensegrity structures for the purpose of

recreating batoid kinematics.

Based on the relatively low propulsive efficiency measured using the one degree of

freedom, single-beam fin in this study, it appears that trying to create the undulatory

component of batoid fins completely passively is insufficient for producing a fin design
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with high propulsive efficiency. The maximum passive deformation measured on the

compliant skin in this study was only about 7° (angle between the leading edge to

trailing edge line and the neutral plane), while Heine [58] measured twist angles on the

fins of cownose rays in the range of about 10° to 25°. It is possible that increasing the

passive deformation angle up to this biological range could improve performance. For

instance, if the total area of the fin is increased, but the beam width and maximum

fin thickness were maintained, then the beam width would be a lower percentage of

the chord length, leaving much more of the fin available for passive deformations.

There is also significant potential for investigating ways to influence the direc-

tionality of passive deformations and the effect this could have upon propulsive per-

formance. The passive portion of the fin used in this study is composed of artificial

skin made with an isotropic material (silicone elastomer), however manipulation of

passive deformations could be accomplished through either material anisotropy or

passive structural patterns embedded within the skin. For example, Russo [48] stud-

ied the influence of inter-radial joint pattern angles, based on observations of the fin

architecture in biological rays, finding that the underlying joint patterns could have

a significant influence on swimming performance by changing the undulatory compo-

nent of fin kinematics. Furthermore, the stiffness of the fin in this study is constant,

whereas biological swimmers are thought to actively change the stiffness of their fins

through muscular contractions. Investigating ways to actively change the stiffness of

artificial structures during flapping could potentially lead to increases in performance

or extend the operating range over which high performance can occur.

Based on a combination of other findings and the observed kinematics of this fin,

it seems that adding at least one more degree of freedom could be important for

improving performance. Heine [58] measured the maximum angle of attack for most

portions of cownose ray fins to be less than 20°. Anderson [65] found that high values

of efficiency (up to 87%) could be attained with a two-dimensional pitching/heaving

foil by maintaining a nominal angle of attack between 15° and 25°. In this study,
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the maximum angle of attack at the mid-span of the fin during free-swimming3 was

more than 40°, which is obviously much higher than both that observed on biological

rays and for optimal thrust production in other flapping foil studies. At such high

angles of attack, undesirable flow conditions (such as separation, even considering the

Wagner effect) that reduce the performance of the fin could occur. Therefore it is

suggested that an additional degree of freedom should be added to the fin to actively

control pitch angle, which would maintain a more optimal angle of attack throughout

the flapping stroke. This additional degree of freedom could be accomplished with a

fairly simple design modification to the current fin, solely by mounting the tensegrity

beam on a rotational stage that is actively rotated by a second servomotor. Doing

so would allow for the experimental study of combinations of pitch and heave (and

importantly, the phase between the two) on a batoid-like fin, which is absent from

the literature. It is expected that kinematic combinations could be found on such a

fin that have considerably higher efficiency compared to the purely heaving fin in this

study.

Creating an artificial fin that could span the undulation–oscillation continuum

of batoid locomotion could prove to be a valuable tool for understanding how these

two swimming modes are related, and why some ray species switch between these

gaits. One way of accomplishing this while still using planar tensegrity beams is to

arrange a series of beams chord-wise along the fin, with the possibility of creating a

phase difference between each beam, as suggested by Moored et al. [5]. Such a fin

design would allow for large-amplitude span-wise bending and also an actively con-

trolled undulatory wave, so that kinematic modes ranging from pure heaving (extreme

oscillation) to highly undulatory. One obstacle to overcome with this design is the

potentially large amounts of skin strain that could be created between each beam. For

3The maximum angle of attack at the midspan can be estimated as α = arctan(πSt) since
Strouhal number is a ratio of the fin’s heave velocity to the free-stream velocity. Passive deformations
of the fin can be thought of as effectively reducing the actual angle of attack, but only slightly, since
the maximum measured deformation angle is about 7°. The angle of attack is even higher towards
the tip of the fin, and is much higher at some of the Strouhal numbers used in constrained tests.
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large amplitudes and large phase differences (high wavenumber), the change in length

between each beam tip could be large, meaning a substantial amount of actuation

energy would be spent on straining the skin. This situation could be circumvented by

allowing only sets of parameters that permit a certain maximum amount of strain be-

tween each beam tip. Alternatively, other types of artificial skins could be developed

instead of the molded compliant polymer strategy used in this study. That could be

some kind of corregated/baffled membrane to accommodate the high strain, or even

a skin made of thin plates allowed to slide past one another4.

Regardless of the underlying structure, variations in the planform of the fin should

be investigated, to determine what effect aspect ratio, swept tips, and other features

have upon swimming performance. Studying variations of planform even beyond what

is extant biologically has important implications for explaining why the planform of

oscillatory batoids is actually quite consistent. Other subtle changes to fin shape

may have importance for performance as well. For instance, the addition of tubercles

(basically bumps along the leading edge of the fin) — a feature not found in rays —

has recently been shown to delay stall in foils at high angle of attack [19, 119], and

could lead to performance improvements.

Without changes to the fin, additional water tunnel tests could be performed with

the current structure, studying several areas unexplored in this study. Many biological

swimmers, including rays, demonstrate burst and coast behavior, and the implications

of this on swimming economy could be tested with the same fin and experimental

setup in this study. Also, a detailed study of the effects of waveform profile could be

performed, in which the actuation waveform is perturbed from sinusoidal. This type

of work might help uncover why some batoid rays modulate swimming speed with fin

tip speed instead of flapping frequency5.

4Such a design is biologically-inspired, since many fish actually use a similar scheme, in which
their scales (rigid plates) are allowed to slide past one another to accommodate a highly flexible
body [130].

5Moored [4, 40] investigated this somewhat with a chord-wise rigid fin, and it was not found to
be beneficial to efficiency, but it was hypothesized that this outcome could change for a fin which
chord-wise flexibility.
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The current experimental setup could be altered to measure forces in other di-

rections, most importantly laterally (in the heave direction). Doing so would give

information about how much the flapping motions transfer momentum to the fluid

laterally, which is unproductive for creating thrust. Measurements of this sort would

help explain why the efficiency of the fin in this study was quite low — if the heaving

fin is generating lateral forces that are much higher than the thrust produced, this

further motives kinematic changes, such as the addition of active pitch angle con-

trol (which could act to convert lateral forces into thrust forces by simply changing

the angle of the instantaneous lift vector). This idea could be incorporated experi-

mentally rather easily, by mounting the fin to a multi-axis force/torque sensor, and

mounting that sensor to the linear rail. Such a setup would allow for the measurement

of forces (except thrust) and moments during free-swimming tests, which would be

informative.

The results of this study indicate that flexibility seems to be important for swim-

ming performance, but only coarse measurement of the passive fin deformations were

made. Fully characterizing passive deformations of a flexible fin will be important

for relating flexibility to performance. Ideally the tracking of deformations would be

fully three-dimensional, which could be be accomplished with a variety of technolo-

gies, including time-resolved 3D scanners, laser range-finding techniques, and optical

stereo photogrammetry. These technologies could be applied not only to artificial

fins, but to biological swimmers as well, which could be immensely helpful for deter-

mining the kinematics of rays in order to establish baseline target deformations for

an artificial fin6. Fully resolved fin deformations (either artificial or biological) would

also be of great use to researchers performing computational fluid dynamics, because

it would allow for the direct comparison of performance and could help validate their

computational tools.

To fully understand force production mechanisms, three-dimensional flow visu-

6One recent study has measured the 3D kinematics of undulatory batoid rays [131].
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alizations need to be performed. Other studies have shown that wake structure is

intimately tied to thrust production [41, 63], so to more fully understand swimming

performance, wake structures should be visualized. Ideally this would be quantita-

tive, meaning the use of particle image velocimetry (PIV). This type of work would

definitively link force production to 3D wake structures, and elucidate the sources of

optimal swimming performance.

By studying kinematics using stiff structures with prescribed motions, the work

presented here has ignored the effects of structural resonance and the potential this

effect may have to increase overall propulsive efficiency. Recent work by Bliss et

al. [109, 110] has shown robust entrainment of a compliant tensegrity caudal fin to

optimal gaits, using advanced control schemes. Thus it is entirely possible that kine-

matics similar to a stiff fin could be accomplished with reduced energy expenditure

by using a more compliant structure and exploiting its resonant properties. Recent

work by Moored et al. [132, 133] demonstrates that coupling together the resonance of

unstable wakes with structural resonance of flexible propulsors can lead to a “global”

optimal efficiency of thrust production. This coupled resonance may be exploited

by biological systems, and biologically-inpspired vehicles that harness both wake and

structural resonances have the potential for high performance.
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