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AN EXAMPLE IN PERIODIC ORBITS, THE SECOND-ORDER PERTURBATIONS
OF JUPITER AND SATURN INDEPENDENT OF THE ECCENTRICITIES
AND OF THE MUTUAL INCLINATION,

By JAMES PARK McCALLIE.

IxrrRODUCTORY. .
A periodic solution is a particular integral in the prob-
It is possible only under certain

restricting conditions which do not exist in nature. Yet

such solutions are of great beauty and interest, and often

possess real value in assisting us to obtain a more general

solution of the differential equations of motion; as, for
-example, the periodic orbit used as an intermediary by

Dr. G. W. Hiwn in his ¢ Researches in the Lunar Theory.”’!
Analytically a solution is said to be periodic when
the coordinates, referred to.axes rotating with a uniform

.angular velocity, may be expressed in series periodic with

respect to the time, while geometrically a periodic orbit is

-one in which a body, referred to the same rotating axes,

returns periodically to the same position with refelence o
the other two bodies.

LAGrANGE in a very elegant manner discovered the first
periodic solutions in the problem of three bodies, which
however are without mueh practical value, since to obtain
them he assumed the mutual distances as always being in
These are the straight line
and equilateral triangle solutions.

The next periodie solutions were obtained by G. W. Hrrr.*
By neglecting the lunar inclination and the solar parallax
and eccentricity he finds a particular integral of the equa-

‘tions for the moon’s motion about the earth under the
influence of the disturbing force of the sumn.
corresponding to this particular integral is closed when

The curve

referred to rotating axes, and is what is known as the
variational orbit of the moon. This is used by Dr. Hirs

.as an intermediary instead of the ellipse or modified ellipse

of other lunar theorists.

Porncaré has shown that there are an infinite number
Since PoincaArE’s
wholly analytical treatment, the subject of peuodlc orbits

1 The American Journal of Mathemaucs, Vol. 1.

has attracted many astronomers and mathematicians, and a
number of memoirs, both analytical and numerical, have
been produced. The whole field of periodic orbits is recog-
nized as a fertile one, though by no means easy of entrance.

Of the memoirs on the subject may be mentioned one by
C. V. L. CHARLIER,! in which he obtains analytically some
of the results found by DARwIN in his extensive numerical
work on periodic orbits.® In the majority of memoirs one
mass is assumed infinitesimal, but periodic orbits exist,
whether the mass be infinitesimal or not. It is in the case
where none of the masses are infinitesimal that I have
selected the following numerical example in periodic
orbits. The case is purely an ideal one, but it was in the
hope that the results might be of some interest to astrono-
mers that the work was undertaken.

The suggestion of the problem is dne to Dr. G. W. Hiwz,
and I desire to express my great indebtedness to him, and
also my appreciation to Prof. Ormonp StoxE for his en-
couragement and helpful suggestions, and to Mr. T. McN.
Simpson, Jr., for qhecking some of the numerical work.

Example. If two masses, small relatively to a third
mass, revolye around the latter in coplanar orbits, having
no proper eccentricities, they will have symmetrical con-
junctions and oppositions, ¢.e., their conjunctions and oppo-
sitions will Be symmetrically placed with regard to their
mutually perturbed orbits, which will cut the line of
syzygies perpendicularly. Let us take the time of such a
symmetrical conjunction as the origin of time, and the
longitude of this conjunction as the origin of longitudes.
The differential equations of the two bodies will then have
particular integrals, or periodiec solutions, as is shown by
Hixn and Poincarf  Assume the masses of the two
planets to be, for the inner, the mass of Jupiter, and for
the outer, the mass of Setwrn, with periods also respec-

1Meddelandenfr<.m Lunds Astronomiska Observalorium, No. 18.
2 Acta Mathematica, Vol. 21,
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tively equal to those of Jupiter and Saturn, while the mass
of the largest body is the mass of the sun. The problem
in hand is-to find the expressions for the coordinates of the
two small bodies as far as the terms proportional to the
squares and products of the masses. These terms have
been found before, as for instance in Hrrvr’s ¢ New Theory
of Jupiter and Saturn,” but they are there mixed up with
terms involving the eccentricities, etc., and it is the present
purpose to determine them entirely separate from such in-
fluences, and in the light of a periodic solution. It may
be of some interest to know just how large these terms of
the second order are.

Coordinates. 1 shall refer to the three bodies in ques-
tion as the Sun, Jupiter, and Saturn. That the latter two

may have the same expression for their perturbative

functions it is necessary only to use symmetrical differ-
ential-equations as explained in TrssErAND, Vol. I, Chap. IV.
Jupiter is referred to the center of the Sun as origin, while
Saturn is referred to the center of mass of Jupiter and the
Sun. Allowing the subscripts 0, 1, 2 to refer to the Sun,
Jupiter, and Saturn respectively, and denoting the masses
severally by m, (i =0,1,2), we have for the heliocentric
coordinates of Jupiter and Saturn

§ =1 ’
"= ’

b= ayt rm,
10 =Y T 1Y
where
m .
Ky = — , o= my o, +,
o
If v, v, ({ =1, 2) represent the radii vectores and true

longitudes of Jupiter and Suturn respectively, then

Lt omy

@) =71 C08v; , Y =1 siny ; x,=1,008v, , ¥, = I, sin v,

PrrrUuRBATIVE FUNCTION.
The potential of the system is

L}
7 MM MMy Ty,
AO,I A0 B4 Al,')
My My | Mg
=1 2pmym, I

1
where

1 1 mm
mymy i’ = mym, — 422
Boz Ty Ay,

= momg[ $T 4w "r 2k, 1 1, €OS (1, —11) i _:l-f-

z
If we put
”"‘_—-rﬂ, Vp— v =0 e J,

77&
o
F has the approximate expression

m oo r\? )t
= —2.1 e
r 7‘9[; 1 7.20056+<7_2> ;

__cos 9+J(_-m1< ) g 1+3cos26 g:’

h=7r ,

= F,+F,

in which F, is the part having as a factor the small mass
m,. Since the planets have no proper eccentricities, and
lie in the same plane, the perturbations will depend on the
single argument »,—v;, or the elongation.: Hence it is
sufficient to put in the function 7, as a first approzimation,
"I, Ty=ay , y=lh=nt, vi=l=mnt , =(n,—n)t

Then F may be written separately in its two parts,

+0
I, = m,:g- z Aicosi b — % cos 6, + %A{]
i o
—C0 =

®)
F =1 mmla—ié [1-+3 cos 26,]
where i}
+00 1
%lei‘ cosif, = - [1—2 cosf,+ 2]
—0

In F the value of 4ifor ¢{=0 has been taken from
under the sign X, and so hereafter.

DrirrERENTIAL EqQUuaTIiONS oF MoOTION.
1. For Jupiter.
lar coordinates are

The equations for Jupiter in rectangu-

cl~x, U
de 9z, ' 2,
These equations expressed in the polar coordinates »,, v,
after the manner of DEPoONTECOULANT’S equations in the
“ Lunar Theory,” ! are

‘th_( )——1+§l=m~[ -9—+‘7f¢l/1’+ mgl:l
1

dv, oI
- = . [lz +mj~ dt]

In these equatmns the new expressions introduced have
the following signiticance:

U a2y
FeoKy '(E;‘ =

@

oF dr,
or, dt

o9r dv,

1R — — =
@“F .f_?)'u1 dt

g dé¢ , m, = mam,

[}
2m,a,

+ m g,= constant of integration attached to _/‘ ar
h, = constant of integration.

2. For Saturn. The equations for Seturn formed in

the same way are : 3)
. _,u.,m pem?  pm 'm]r or A L0
dt (7 ) + a, = m, L Famy,
dv, 1 ,ugm m, K )
dt ?(kﬁ- m, J 9,

where the corresponding terms have an exactly similar
meaning to those employed in Jupiter's equations.

3. Equations Connecting Constants. The above equa-
tions for Jupiter, or Saturn, are of the second and first

1See BrowN's Lunar Theory, pp. 16, 17.
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order respectively, and are sufficient to determine three
arbitrary constants, besides %; and «; (i =1o0r2). But
.since the orbits have no inclinations or nodes there are only
four constants, e, m, n;, ¢ (i =1or2), to be determined
for each body, and therefore we must have another equation
-connecting the constants. Three of the constants are im-
mediately determined by the special conditions of the prob-
lem. For since the orbits of the planets have no eccen-
tricity other than that caused by their mutual perturbations,
and hence their perihelia are indeterminate, we have

¢ sing, = 0

e;cosm = 0

By reason of the way in which we have chosen our

origins of longitudes and of time, ¢ and ¢, are zero. Hence
the only two independent constants are », and n,. The
equations above referred to are, for Jupiter and Saturn,
respectively,?

1diry fdo\* m, 9F

S r, det (dt) +'7-I3 = 7 or
S ( 1 d*%, [(de,\® p,m® p,mm;1 OF
e ROMERY

dt ) 7, my 1, Oy
Units Employed. Let us take m,, the mass of the Sun,

.as our unit of mass, and let the mean distance of the earth

from the Sun be the unit of length. Then that %, the
Gaussian Constant, may also be unity, the unit of time
must be 58.13245 mean solar days. Hence we may put

wo=1+my=n'u? , pm?= A4u,+w)1d+m)'=n,’
i
o = % = [ +m+m,) (1+m)]H (%)
2 1

The values of m,, m,, n,, n, are taken from p. 558 of
Hinv’s ¢« New Theory of Jupiter and Suturn,”’ and are

My = ygytary 2 Ny = 109256”.62552
My = yxdz , M, = 43996".21500

The above mean motions are for a sidereal year. Taking
as our values for the mass and mean motion (in a sidereal
year) of the earth,

= 1295977".41516

from the equation a/ = (1+m/)} n/= we obtain the numeri-

I 1
m = gwyge0

-cal value of «/, which, used as the unit of distance, gives

log @, = 0.716237409
log a, = 0.979909852
Integration of Equations of Motion.

log v = log % = 9.604967534
1
log « = 9.736327557

In order to solve

equations (3) and (4) it seems best to put

" = a?A+u o) Z—% = n,+z+ 8z
2 2 dl”‘.’.
r? = at(1+u,+ou) = nyt 2,82,

1BrowxN’s Lunar Theory, pp. 16, 17.

where u,, 2, u,, 2, represent perturbations of the first
order with respect to the masses and 8u,, &, du,, 8z, are
of the second order.

1. First Order Terms for Jupiter. The radius-vector
equation for Jupiter becomes, to terms of the first order,

d*u,

- ' nfu, = 202 a17712|:a1 o +2n 1f oL, dt+2m 91:] ®)
a7

This linear differential equation of the second order may
be solved by indeterminate coeficients. Since its right
member is a cosine function of the elongation, 6, only, we

put
+0
w, = 2°) a,cosi 6,
2

Substituting this value of «, in the above equation, and
equating coefficients of the same argument on either side

we have
40

i\
3 me[{’ “12%— +2“1.’/1:]
1
' m, 1—v “ ,041
v(1—v)(Z—v) ! Du,
9A'

m, 1—v .
a, =(1—-v)§ RIS %!: == 5a +u1A](z-—:i:2, )

To the same order the longitude equation is

! 2F, 1-— !
ny o2 — g—}., = |:/L’1-!-81h1+m2 7l° z:\ w_ My

1

a_j== a, =

+adt — 3—;V a"’]

a,’ n*

where %, has been replaced by 4/, + 8 %,. In the circular
orbit 4, = &/, = n,0,>. Hence §,/, is a small constant of

the order of the masses. Then
Z = % - ngy + %’ 7%, ad—]lf‘ dt (6)
Putting o
& = fa dt = Zui sint 6,
we find -
1
== 20 5 .

+ (v —2vt+4) alAl—(u —4v+6) aﬂJ
m, 24
+ §3+i2(1-v)"'§ alA'] (ft=%2,...)

@, =

1

. &R '
The constant term of z, is 72‘ but we shall

— 2na;

define %, as the mean motion of lelpz'ter in disturbed as well
as in undisturbed orbit, and it will be obtained directly
from observation. Hence :

iy

2

2] —
2na, = 0
[¢2) %




Since the arbitraries ¢, and =, of the general solution of
the problem are zero in this case, and «, is not independent
of n,, all the arbitrary constants have now been fixed, for ¢
is zero by the conditions laid down. Hence g, is not inde-

pendent of the other arbitraries, and we find it by means

of the first of equations (4). This equation will also
enable us to verify the preceding work, inasmuch as the
coefficients of cost 6, on each side of the equation should
be identical. To terms of the first order the equation is

2,
d “ 2 — 3nuy = 2 Xe na? zﬂ’
dt? m da,
Substituting in this the above values of u, and z, we find
1 a, 24 or a Lm, a? o4
f, = = L a, -— = — oy —
N v Mg 0 sl @7 S

2. First Order Terms for Satwrn. The radius-vector

equation for Saturn is

(M ddt"e +nfu,= 2;& n’a, [ S ‘)j 9,()—5"’ dt+ 2m g{l
0 )
Let u, = 2 z b, cos ¢ 6,
—c0
In forming a,9F, [9a, we make use of the relation
oF, oF,
%WL,_,_HL‘ 2q, - o
Then
Q
b, = 7:;1[:4(1,, . ala,a,i — a, 4°
SRR
—b = [1=v,, 24 Y g, A
b=b = ATy | T Y% s, T “]
m, v 1—y odi  1+v
b = 7 L 0 o Yo ST n'A‘
: (l—v)gz-(l—v)“—v'g[ g Uy TTE % ]

The differential equation for longitude of Saturn is, to
terms of first order,

®) Ry = %]— — M, + ! n,%a, f =2 dt
Putting )
~+00
8, = [#dt = D Bisini6,
we find N
— _my [ o4
Boy=Pp= 2 (1""’)2(1‘—211) [-41’(1 )al A 9

+ 1+2v%)q, Al - +2v)a:,

D4¢
= 2v(1— —
= [ v(l—v)aa, 74,
+ §2v+v2+i2(1—-v)2$a2x’1‘]
and since the constant term in 8, v, is zero
h

81 :‘l — Ono bO —

8 2

2

mv

A= T2 (=) (1

(4)

The equation determining the consfant term in 4, is to
terms of first order,

d*u, m oF
—2 — dn,z, — 32, = 2 =1 nla? 0
dt* m ¢ 2a,

This gives

24
by = $mag, = tm, [a a, +a A"]

DrrrerENTIAL EQuarions INcLupING SecoNp ORDER
TrrMs.

Having now solved the differential equations as far as
the terms proportional to the masses we are prepared to
push our approximation still further and include all terms
proportional to the squares and products of the masses.
It is well known that the form of the solution remains un-
changed in all the successive approximations of including
the squares, cubes, and higher powers of the masses, and
hence our differential equations preserve the same form,
and are solved precisely in the same way as before.

1. For Jupiter.—«) Radius Vector Equation. When
we extend the radius vector equation to terms of the second
order, and omit all terms of the first order, we get

d2 ) s Q nl? o aF
Et—ﬁ Sul +7Zl"'8161 = :‘}- 7l12261'+ 2 ;E nl.a'1 !:8 <7'1 -9_7'1> + 28./le

aFl-|—2fcl’F+2m 8g
1 Q(L] 1 1

In this equation Z) has the value given above, and méy,
is the constant of integration attached to 8 [d'F, and is of
the second order. We shall proceed to express fully the
right member of this equation.

Since
- 1 ®
r,=a (1+fu 38 — L))
we have
S 8,7
1t = Lo 5 also L2 =1,
D= b 2y

Also since F is a funetion of {, — [, we have

- 9F,  OF,
a9l, ol

With these relations and that given above, with refer-
ence to «,@F,[du, we may easily express &(r,2F/on).
We also have '

oIt dr, oI dv

1T7 Rl |
dfdiF = fa{:’h dt it 9, cltJ a
a, di,

dr1 d _
3 <m> = 5@

ZZE @) = 2 dt
dv
8<dt)

in which

dt (Slvl) ==z
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Then the above differential equation in its expanded
form is -

® |
d2 al & a m, O.Z’V ,,’)QF U
C—l?(Sul)-i' n?8u, = "’1"[‘}"1"*-2—' t, {( 10 a? (.8712) 72.1
9F, 9°F\ u, oF,
__.<919 % 1a 19a )‘)-i- 15 0 (81111 81)..)+a,1()

+ 2 fd'F, + 2m 87,

()".[1
P (8, —8w,)

)

We see immediately that the right member is composed
of products of series, either cosine by cosine, sine by sine,
or, underneath the integral sign, cosine by sine. In every
case we get, after multiplication, and integration of the last
mentioned products, a cosine series. If now we attach the
factor 2m,e /m above to F,, every coefficient in each
factor is of the order of the masses. We shall designate
the coefficients of cosine series by Roman letters, of sine
series by Greek letters. In each series the subscript ¢ has
every integral value from —co to -+co including zero.
For cosine series we may put a, = a_;, for sine series
Hence we may write

Sa,c0876, X = b cosj 6, = ;% a,b;cos (i+)) 6,
3.a, cosaé X 3 e;8ing 0, = 2,3 8,¢;sin (1)) 6
.| i 0 -—i ,/ i Aj () ./ 0
Sa,sinify X X, 3;sinj 00 = —3,2; ¢ p,cos (i+7) 6,

@By (v, w\  OF,u,
+2"1f[(m ZAVEE 37> 202"
1 (a AE, du oF,

;{ 2 da dt _9_[1-

o = —_.

whence the equation for 8», becomes

11y €08 (117) 8, + 2om 8y,]

d* N
77 (Bu,) +afdu = n XS

the solution of which gives

S,
= ¥ +j
du, = X% T=GF)) (1 e

and
th, — ey, T k;

cos (i+y) 6,4+ 20 m dy,

‘where ¢ = 2m,q,/m

0
Syy= 3aa, + ea, — i T iy

2 ,
+ gy [0 — Eb ¥ g+ + L]
These letters express in order the coefficients of the

various factors just as they occur in the right-hand mem-
ber of the expanded equation (9) given above.

1) Longitude Equation. To terms of the second order
this equation becomes, when we put 7, = 2/, +8/ +38},
and omit terms of the first order,

(10)
2, fu 2,
8,-«1_-——-“,—71811-}-——4—1; f% ()l()“ <_.- §>
91' , r)-]'
~ S s SR e+ 5y | e
=n, X, 3; P, cos (it+)) 6,
where .

' 1
= —2 —_———
PH‘j a d./ 1— (i_i_?')n(l_v)n Sl+j
1
where the whole constant part is included in P, which for
reasons given above must be equated to zero.
Then

Oy =

Zib +g ot'}’J] +Jr1,+j — .,amSgl-}- -—

na'

[ 8z dt = Pty sin (i+5) 6,

= 5% @61

¢) IFquation Determining Constant Part of du,. The
first of equations (4) extended to terms of the second order
is sufficient to determine the constant 8g, which occurs in
u,, and at the same time to verify our equations for du,
and 8z,. For on summing the coefficients of like cosines
we shall find that they vanish identically, and only a con-
stant term is left. If we let ‘

this equation is 11
e L a0
n,° 0, n* 7,° 2
or oI oI
= to| —a, 2500+ 20,8 (25 ) 4 20,2
to [ 1 Daq, 1 ©\ G + Sy

Substituting in this equation the expressions for &u,,
8iiy, 82;, and making use of equations (5) and (6) we arrive
at the equation

it,? 2,2 3.l
f— 3 — 20 mdg, — 4 = 1
pouf— 3 e n* +2om g, Wt
oliy DI
+2 f e Oz =
¢ la(bl & + E)ll ! dt 0

We shall find a different expression for the last term.
Equation (6) is
3 Slhl e ';)1”

e — +5 747
7, YT oma? eI

By means of this relation and its derivative we find

or &/,
20-le o gp= 92 ,,+L — 1ty — 22,

()ll ma,’

+f~o-n,'z't, sfz-lz— dt ; dt
1
Qaf;( ol u, gt
dal &

to each member of this equation, the integral in the right

member becomes
’dl" or .
f ( lll —— + l.f—f_)—ll_o (Jt } AUy ot

which by means of eqmt1011 (5) may be completely inte-
grated. Hence we obtain

. oF, i, OF, 22 e
2 “ 2 9F a2+
a‘j % (j(( 2 + 8[ S dt = [ ’I'L]Q B " - 77412]_0

By adding
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et

(6)

where [ ]_, means that the constant term is absent. The
equation under consideration then gives for the constant

in du, 8}
o/l

L+I: — 4wt +in,:]

]

77/ ay”

Here [ ], means that only the constant part is present.
Thus it is seen that all periodic terms identically vanish,
and the equations for 8w, and 8z are verified. We shall
use this same equation to verify the numerical work.

Since the constant term in 8z, is zero we have

Bl oom g, + 2[ad,], + 8,

"

omdg, =

Hence

—3om 8y, = 4[ad,],+ 25, +[——:’i~ul + 1—

n® g

2. For Saturn.—a) Radius Vector Equation. The
equations for Saturn, being formed in a manner exactly
similar to that pursued in forming Jupiter’s equations, may
simply be writter down. The first is

12) —CL,Z (81t) + my® Sy

r m aF DEN fuy uy
= w2 dul—2—a, 2 6 22
7 Lz/ ma'§<al?) +a19a ><Z 2)

nq oF, N
(F'“‘]au )z (az + ‘ozcu)(a”“am)
oF
— —2 -9
’9 fd”l“l moy,

9°F, (u, DI uy, O
+2,,f oo () Doty — 8,
" ["" o, (2 7)o 2 o G
OLFN i, I z
F+ — 8 dt

+< e >°n1+ al, n] %}
We see that, as in Jupiter’s radius vector equation, the
right member is composed of the products of series, all of
which result in cosine series. Many of the individual series
are the same as those entering Jupiter’s equation, except

for the constant factor 2m,«,/m. Denoting this constant
by w, we can put

w
w=—-.0
g

and we can then use the same letters as before to denote
the same coefficients here. New letters will be used where
we have new coefficients, and arranging them in exactly
the order in which they occur above, we may write the
equation for du,,

2
s Sy + 128wy = w2 [ 3,3, B, cos(i+y) 6, + Zemdy,]

the solution of which is

2
Suy, = 3, 3 ————— y iy cos (i17) 6,1 Zomdy,

= () A—v)’

where

w ' £
Ri+l = 3btbj - [ficj - qibj - 00’; — My, — ')‘nl+j

2v
(L+/)(1 ) % €C; — z.:ibj + gy + qm; + C‘p‘/ }:[

8) Longitude Equation. To terms of the second order

this is (13)
Sry = —UsRa—NdU Sola
¥y = —Ug¥y—Ny0Uy + a.’
0 fu,
" ] 2
tiofd F°—%nzwf% QIW&:IQ_——7>
or u, Cad

— TZO eI 3 (8w —8,vy) }
ny X, 3, K, cos (i+7) 6,

where
2 Sult
> — __2 ) — 4 > 2 o ._“._“.
K., b.p, B G B, —2emdg, + ot
w w v
+3 P ¥ p Wi—_”) Lee,~ L, +gw,]
Then
Sy = fOr,dt = .3 m {.r; sin (i+7) 6,

¢) Equation Determining Constant Part of Su,. The
second of equations (4), expressed to terms of the second
order, is

i, 8xy il it
B8, — 44— {;-L—" 2 +‘f w?  (14)
g7 Ny N nq

U, Us 2%, oF
= —w |:A <§} — 2“) 3B = 5 + (8 ¥ — 8)vy) — @y 5&-"']

where

or, 2%, oF,
A = 2q —-—+ )u Y, B=1I+4q 74,

From this equatlon we get, exactly as in the equation for
Jupiter,

a

—8uwm 8y, = £[bp,], T .,PU+[:—: — Fu, 41 - :l
by 2 o
which is exactly similar to the expression for 8¢, .

RErereENCE oF CoorpiNaTEs oF Saturn 10 CENTER

oF Sun.

Let r,/, », be the polar coordinates of Suturn referred to
the center of the Sum as origin. Then in the triangle of
Sun, Saturn, mass-center of Sun and Jupiter, the angles are
respectively v,/—uv,, ¢, and = — (v,—v;), and the sides
opposite Iy, kry, and ry.  If we put
Vp—ty = l—0 t 8 =8t =0t 6+ ...,

we geb ) = [+ 20T, cos (vp—vn) ]!
or, approximately

r, = 1yt w2y cos (6,+6) + & K,Q? [1—cos 2 (6,+6)]

= aﬂ[l-i-é_rug-i-a} dus— L 0t 1k z—‘ (1—cos26,)

+ K -Zi‘ g (1+%w) cos6,— 0, sin 6, } J
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since 6, = 8v, — §v, is a very small angle. As far as
to terms of the first order

) = a, [1 + iyt ;‘ cos 90]

so that to terms of this order r,’ differs from r, only in the
berm of argument 6,. It is also seen that r,/ has the same
mean value as hasr,. When terms of the second order
are included this ceases to be true.

In the same triangle as mentioned above we have

sing KT .
and —_—— = =, approximately,
é SIn (05— ) vy 5900 » PP y
Hence

. P
sing = ¢ = 1—17‘ sin (v,—v,)
and therefore

a 1 . & .
vy = vy — K :L—'I:l +o— 5 — K E] ¢os 00:] [sing,+ 6, cos 6,]
o K 2

&

2y
= 172 — Ky
ay

l:sin 6,+ 6, cos 6,

J

({2 U, . a .
+ <—)’ - 0—> sing, — 4« -* sin 260]
e -t

oy

It is seen that »,’ has the same mean rate of increase, (T
as has v,, being as much less than the latter in the first
and second quadrants as greater in the third and fourth.

CompuraTioN oF Frrstr-OrpER TERMS.

It is necessary first to obtain the values of the functions
A’ entering into the perturbative function. Let

+co
[1—2ccosf,+ ] = 4 Z b cos < 6,
—

. . dbt A% .
Hence if we compute ¥, « — , «® Z—, we can obtain from
de de®
_ 4t 94! .
them A", ¢, = ,a*—— by well known relations.
o, duy”

These quantities may be computed in several ways, all
well known, and it is unnecessary here to reproduce the
formulas. By glancing at the perturbations under consid-
eration as given by DEPoNTAcOULANT, % Théorie Analytique
du Systéme du Monde,” it is seen that several coefficients
are quite large; for instance, 196” is the coefficient of
sin26, in §v,. For this and similar terms nine-place
logarithms are necessary, but only a few terms demand so

many figures. In general seven-place logarithms suffice
for terms of the first order, while five-, and for one or two
terms, six-place logarithms, will give the same accuracy
for the second-order terms. The b and their derivatives
have been computed for loge = 9.736327557, and the
computations were checked twice, and in some cases, three
times by recomputation.

I 204
The values found for ¥, « ﬂ , @ ﬂ are
do de?
. dbt . !
I3 bt a _d(;. a” Ea-,_,
0 0.338438916 9.643539018 9.930590
1 9.792423038 9.907211461 9.878787
2 9.410262287 | 9.779191774 0.018692
3 9.07072475 9.59673039 0.020155
4 8.7510906 9.3914979 9.948196
5 8.4430357 9.173599 9.833742
6 8.1425680 8.947617 9.691950
7 7.847463 8.715983 9.53118
8 7.556353 8.480187 9.35651
9 7.268330 8.24120 9.17124
10 6.98277 7.99967 8.97758
11 6.69922 7.75609 8.7772
12 6.4174 7.5105 8.5716

From these data we immediately compute the first-order
terms of Jupiter given below. The coefficients are expressed
in abstract numbers for 87 /a,, in seconds of arc for 8y,.

[ —0.00001 14252 h
+0.00012 45421 cos 4,
—0.00053 33873 cos 26,
—0.00005 55968 cos 34,
~0.00001 43934 cos 446,
—0.00000 47600 cos 54,
4 —0.0000017772 cos 66,
“ —0.0000007141 cos 76,
—0.00000 03016 cos 84,
—0.00000 01320 cos 94,
—0.00000 00593 cos 104,
—0.00000 00273 cos116,

L —0.00000 00127 cos 126, |

& _

"

(+ 79.24829 sing,
—195.77043 sin 26,
— 16.33180 sin 36,
— 875436 sin 46,
— 1.15702 sin 56,
s — 4 — 041297 sin 66,
PI= Y — 0.16100 sin 76, [
—  0.06656 sin 86,
— 0.02868 sin 96,
— 0.01275 sin 106,
—  0.00581 sin114,
-~ 0.00269 sin126, |

~

The corresponding values for Saturn are
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(+0.00041 67147 N
+0.00034£ 91670 cos @,
+0.00014 74618 cos 26,
+0.00003 40816 cos 36,
+0.00001 05662 cos 44,
+0.00000 37863 cos 56,
—2 = J +0.0000014794 cos 66,
Uy +0.0000006123 cos 76,

-+0.00000 02639 cos 86,
+0.0000001173 cos 96,
+0.00000 00534 cos 106,
+0.00000 00247 cos114,
+0.0000000116 cos 126,
(+103.82924 sing,
+ 32.01024 sin 24,
+  6.66903 sin 34,
+  1.99553 sin 44,
-+ 0.70687 sin 54,
S o= J +  0.27562 sin'66,
P20 4+ 011428 sinTh, |
-+ 0.04944 sin 86,
- 0.02206 sin 94,
-~ 0.01008 sin 104,
-+ 0.00469 sinl116,
+  0.00222 sin 126, J

.

We have shown that in order to reduce 8,/ a, and 8,
to §r,’ /a, and 8.’ respectively, it is necessary to change
the coefficient of argument §, only, adding «a,/a, in the
first case, and subtracting it in the second. This amounts to

Red. to —+0 00052 00157

Red. to §,v,/= —107".26093

0

CompuTATIoN oF Srcowp-Orprr TERMS.

. . ) 4 2 4i
With the values obtained for 4, a, i—‘i aﬁLA‘, were
da 2a)’
computed the coefficients a,, ..., q, 'md “y . ony B, In

order then to find the numerical values of 8u,, 8z, , du,, 3z,
it was necessary to multiply together series having the above
as coefficients. This multiplication was performed by the
method of special values as set forth in HANSENS ¢ dusein-
andersetzung,” pp. 159-164, or in T1SSERAND’S “Mécanique
Céleste,” Tome IV. The semi-circumference was divided
into twelve equal parts, and to §, were given the thirteen
equidistant values 0°, 15°, 30°, . . .. » 180°. It is important
in these computations to take adx.mta,ge of any checks
that may present themselves. When no checks were avail-
able the computations were repeated. After all the pro-
ducts had been computed equation (11), determining the
coustant part of the radius-vector, was employed as a partial
verification of the work,

1. Computation of du, and 8z [n,. The numerical
values of the coeflicients entering into §u, and 8z, are tabu-
lated below in terms of their logarithms. It will be

denoted whether the series (which is a product of two
other series) is a cosine or a sine series, and by the num-
bers 47 at the left what is the multiple of the argument

6, whose coefficient is opposite.
each of the coefficients a,, ..
¢ = 0, we may rega

By multiplying by two

vy gy e

., except when
rd ¢+7 as always positive.

cosine cosine cosine cosine
i+j a;d; ey by —&7;
0 | 3.18127 3.130687 3.39200 3.37675n
1 1 2.588179n | 3.260253%n | 3.681298 3.506168n
2 | 2.322029 3.261497n | 3.741587 3.331918n
3 | 2.80822x 3 10171n 3.70378 2.97340n
4 | 313372 <‘ 3.21001% 3.61656 3.07604
5 | 244947 3 15498n 3.48959 3.22051
6 i 1.9421 u 05598n 3.33996 3.19793
7 ‘ 1.501 l 2.9239n 3.17452 3.10977
S | 1.098 ; 2.5740n 2.99747 2.98594
9 l 0.718 2.6055n 2.8098 2.8358
10 ¢ 0.35 S 242419 2.6133 - 92,6738
11 ; 9.95 2.181%n 2.3949 2.56558
12 ;9.7 i 2.0110n 21544 2.3660
sine sine sine sine
1'+j £iCy (:,-])‘; gﬁj hpdj
1 8.298778n | 2.624453 3.264226n | 1.597713
2 3.502550n | 2.976050 3.256116n | 2.420552n
3 3.54078n 2.95902 o.0492.L7L 2.19131n
4 3.59282n 2.84670 296747 275957 n
5 3.52926n 2.67205 3.15861 2.64359n
6 3.42139n | 2.4729 3.15214 2.45659n
7 3.28530n 2.2601 3.07239 2.5024n
8 3.12894n 2.037¢ 2.9536 2.1014n
9 ".‘):)‘)m 1.812 2.8096 1.8935n
10 T7620 1.577 7506 1.680n
11 2 55760 1.33 2 .'32()1 1.472n
12 2.34506n 1.06 234577 1.249n
) sine cosine cosine cosine
i+f il aul; Kty ligs
0 e e e 3.50648n 2.64482
1 2.349305 2.796439 e e e e e e
2 2.340550 2.514531n | 3.121940 3.044708
3 204846 3.10381
4 2.95104 3.46114n
5 2.858504 2.81880%
6 | 2.69805 2.35268n
7 2.5099 1.9517n
S 2.3051 1.5856n
9 2.0929 1.245m
10 1.872 0.926n
11 1.613 0.573n
12 1.395 0.282 i

In order to find the-constant 87, which enters into u,,

and at the same time verify the preceding caleulations, it
is necessary to compute the additional produets in equation
(11), namely,

e TN and oa oF, u,
T3 " L ]
dn 2’ o dn?’ Pa, 2
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(9)

the numerical values of which are tabulated below. The
same nomenclature is used as before, and the tabulation is
in the same order in which the terms are here written.

cosine cosine cosine cosine
7.+] —'848_/ (lidj Q05 ary
0 3.32522 3.83271 3.32522n | 2.55100n
1 2.30343 2.96510n | 2.12056n | 2.97100x
2 2.12794 2.66130 2.45334n | 2.89591n
3 253772 3.39792xn | 2.68638 2 88204n
4 3.28384n | 3.78892 3.29248n | 2.76675n
d 2.77321n | 3.18525 2.82099n | 2.82824n
6 2.39858n | 2.75328 2.49363n | 2.80472%
7 2.0656n 2. 3816‘) 2.20678n | 2.72459n
S 1.7530n 2.0415 1.9372n 2.60879n
9 1,451 1.7187 1.673n 24579
10 1.158n 1.407 1.4129 2.301n
11 0.886% 1.087 1.14%n 2.068n
12 0.60n 0.80 0.89n 1.911a

It was found that the last three or four coefficients (ex-
cept the twelfth) obtained by the method of special values
did not satisfy the checks, whereas the same coefficients
computed by direct multiplication of series did. Hence
all these coefficients were thus recomputed. In this way
were obtained the twelfth coefficients in the sine series,

¢ +0.00000 02267 h
—0.00000 17952 cos 6,
+0.00000 17830 cos 26,
+0.00000 03800 cos 36,

. —0.00000 00532 cos 46,

20 = J 40.0000000076 cosb6, L

“ +0.00000 00050 cos 66,

+0.00000 00025 cos 74,

+0.00000 00012 cos 86,

+0.00000 00006 cos 946,

|_+0.00000 00003 cos 104,

which are not given by the method of special values.

In

the cosine series the twelfth coefficient is the same for both
ways of computing.

From the above data we get for du, and 8, [ n,,

10

‘We have

,7,

@CI.)-\ICDUIR”—C\DLOHO;!-

cosine
Sy
3.78191
4.559802n
4.554736
3.84237

2005

[orie el
SR
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cosine

8z, /0y
4.501489
4.569894
4.04265n
3.63491
2.6812
1.713
1.125n
1.2324
1.076n
0.78n
0.46
0.45

=} [8u,—}uw*] , 8._,1;1='/'8.e:l dt

The numerical values of these quantities are here given.

[ —1.09575
+0.64134
+0.12699

0 Odl -IO
—0.00332
—0.00030

& = 4 4000007

+0.00007
+0.00005
+0.00002
—0.00001
[ —0.00001

sing,
sin 26,
sin 36,
sin 44,
sin 56,
sin G4,
sin 76,
sin 86,
sin 96,
sin 104,
sin114, |
sin 126, )

These values of 8, /a, and 8v, constitute the solution of the problem for Jupiter’s coordinates, but, that the

expressions for % and v, may be complete, we add the first- and second-order terms, thus forming the tables

1

(1—-0.00001 11980 3
+0.0001227470 cos g,
—0.00055 160L cos 26,
—0.00005 52168 cos 36,
—0.00001 44266 cos 46,

. —0.00000 47524 cos 56,
=1 —-0.0000017722 cos 66, ¢
b —0.0000007116 cos 76,

—0.00000 03004 cos 86,
—0.00000 01314 cos 96,
—0.0000000591 cos 106,
—0.00000 00272 cos118,
[ —0.0000000127 cos 126, ]

v =Mt + 4

"
+ 7815254
—195.12909
— 16.20481
— 3.791061
— 1.16033
—  0.41327
— 0.16095
—  0.06649
— 0.02863
— 0.01275
— 0.00582
— 0.00270

sing,
sin 26, |
sin 36,
sin 46,
sin 50,
sin 66,

sin76, [ °

sin 86,
sin 96,
sin 106,
sin 116,
sin 126

v _J
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Computation of duy and 8z, [ n,.
entering into 8u, and 8z /7, have already been computed

as they enter also into 8w, and 8z, /.

below.
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There is one additional product needed for 8z, /2, and
three for the numerical expression of equation (14). ~ These

cosine
bb;

3.39116
3.041489
3.29549
2.92530
2.52038
2.09649
1.69460
1.3130
0.948
0.595
0.25
9.91
9.60

sine
Q%

3.169687
3.19792
3.09005
3.05805
2.91879
274412
2.55063
234727
2.1352
1.9187
1.7057
1.503

are, respectively,

o

The coeflicients of these products are given below in the
same order in which they oceur here,

U2y

2n,’

cosine
f{Cj

3.63496n
3.849058n
35.89548n
3.81759n
3.797T1n
3.6896G6xn
3.55232n
3.39590n
3.22480%
3.0439n
2.8505n
2.6250n
2.-,LUS()7L

sine
Lipy

2.848613n
2791110
3.00085n
3.00635n
2.88634n
72391
.53883n
34010
1324n
91530
.6
4

X}
D

|amii i SO I SO I O3 8

Sdn
28

[SEY

have the values given.

R ot
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=,

cosine
bip;
3.22296n

3.56529n.
3.32728x
3.01265n
2.66516n
2.33235n,
2.00986n
1.7018n
1.3983n
1.106n
0.80n
0.462n

3.6693706n

cosine
i

3.38700
3.48381
2.35849n
3.25359%
3.18388n
2947510
2.68587n
2.41787Tn
214750
1.8775n
1.60909
1.3485n
1.0995n

cosine
b;

3.32535
3.415321
3.36101
3.19688
3.02462
2.81428
2.59122
2.3614.1
2.12730
1.8916
1.647
1.395
1.119

FSA

dny?’ w2

cosine
m;+;
2.82091n

3.29803%

2 gy
1)

! 4“2‘"

cosine
PiDs
3.59894
3.62334
3.62027
3.60254
3.37820
3.08329
278977
2.50202
2.2185
1.9386
1.6602
1.37

1.080

Several of the series

The remaining
coefficients, in terms of their logarithms, are tabulated

cosine

— 0
3.52548n
3.622736n
3.42446n
3.011294
3.29467
3.36085
3.30380
3.19518
3.05590
2.89760
2,7281
2.5953
24079

cosine

ni+

2.64967n

Then 8, and 8z, [ n,

cosine
S,'bj
3.38700n
3.83723n
3.92742
3.81581n.
3.63415n
35.40628%
3.16908%
2928150
2.6852n
2.44229
2.192n
1.937Tn
1.685n

(10)

:om-Ic:onr-xoow»-noi-

and

8a?s

[
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9
10
11
12

values of

o
— O

[y
o

8,7

@y

D]
L3k .
+4x2 a_l‘-‘ sin 26,— «,
9

8.7

2" 2

a

the tenth decimal.

cosine

— 99292

—52407
— 6585
— 2368
— 768
— 9286
— 115
— 49
- 2
— 10
— 4
— 1

0

cosine cosine

Sus 0za/n0
4.203642 e
5.005758n 5.074954
4.04903n 4.36740
3.59051n 4.07674
3.08096n 3.71344
2.65093% 3.37455
2.25643n 3.0540
1.8850n 2.7447
1.5294n 24442
1.1877n 2.150
0.835n 1.852
0.13n 1.34
9.43n 0.89

"

a,* a,[u
+:}_’ KIQ 'aTITl (1—0082 0) +Kl—‘l[‘—'l

Ay

af /iy 1
2, |\2 2

In order to show the amount of these reductions the

Reduction

+ 690
—4318
— 47T
+1374
+ 109
+ 22
+
-+

OO OoDIWLWS

)

'
&

by

As in the case of 7, and %, we have

sine

Sove

"
—1.65252
—0.16202
—0.05531
—0.01797
—0,00659
—0.00262
—0.00110
—0.00048
—0.00022
—0.00010
—0.00003
—0.00001

8w, —Fu,] , 8w = fS.eQ dt
.o,

In order to determine 2% and 8,v,, the second-order per-

turbations of Swturn’s coordinates when referred to the

center of the sun, we must apply to the former the follow-
ing reductions respectively: —

cos 6, + (8v,—dv,) sin 60:,

> sin 6,— (8,v,—8v.) cos 60]

and 8,v, are placed beside them below. In

and its reduction the numbers are expressed in units of

Reduction

4
—0.04982
+0.02275
—0.02554
—0.00211
--0.00051
—0.00017
—0.00007
—0.00003
—0.00001

0.00000
0.00000
0.00000

We can now form the tables for r,’/a, and 2,




(1+0.00041 58615
+0.00086 35112 cos 4,
+0.00014 67556 cos 26,
+0.00003 39822 cos 34,
+0.00001 05003 cos 46,
o +0.0000037599 cos 56,
, 2 = {4 +0.0000014685 cos 66, |
: ay +0.00000 06076 cos 76,

i +0.00000 02618 cos 86,
+0.00000 01163 cos 96,

! : +0.0000000530 cos 106,
+0.00000 00246 cos118,
+0.00000 00116 cos 126, |

Thus we gét

] =14 5 d,c08i (l—1y)

; a 1

v =L+ 3 Bysind (l—1)

2 =14 54/ cosi (l,—1)
1

v, = I+ by B/!sini (I,—1)
1

Leander McCormick Observatory, 1903 May 15.

(11) | '

L4

(— 5.13402 sin §,

31.87097 sin 24,
6.58817 sin 34,
1.97545 sin46,
0.69977 sin 56,
0.27283 sin 64,
0.11311 sin 74,
0.04893 sin 84,
0.02183 sin 96,
0.00998 sin 104,
0.00466 sinl116,
0.00221 sin124

0)

vy = ngt 4 <

++++ttEt L

—

If we refer the coordinates to axes intersecting in the
Sun, and rotating in the direction of motion with the uni-
form velocity #,, it is evident that we may write

@ . .
w—l = w, = X B, sinilkt
1

w . .
vl =l =w, = kt+ X B!sinikt
1

where % = n,—n,. Then all the coordinates are periodic
with respect to the time.




