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AN EXAMPLE IN PERIODIC ORBITS, THE SECOND-ORDER PERTURBATIONS

OF JUPITER AND SATURN INDEPENDENT OF THE ECOENTRIOITIES

AND OF THE MUTUAL INCLINATION,

Br JAMES PARK l\\I\OCALLIE.

INTRODUCTORY. “

A periodic solution is a particular integral in the prob-

It is possible only under certain

restricting conditions which do not exist in nature. Yet

:such solutions are of great beauty and interest, and often

possess real value in assisting us to obtain a more general

solution of the differential equations of motion; as, for

example, the periodic orbit used as an intermediary by

Dr. G. W. HILL in his “ Researches in the Lunar .’l'heory.”1

Analytically a solution is said to be periodic when

the coordinates, referred to.axes rotating with a uniform

.angular velocity, may be expressed in series periodic with

respect to the time, while geometrically a periodic orbit is

one in which a body, referred to the same rotating axes,

returns periodically to the same position with reference to

the other two bodies.

LAGRANGE in a very elegant manner discovered the first

periodic solutions in the problem of three bodies, which

however are without much practical value, since to obtain

them he assumed the mutual distances as always being in

These are the straight, line

and equilateral triangle solutions.

The next periodic solutions were obtained by G. W. HILL.1

By neglecting the lunar inclination and the solar parallax

and eccentricity he finds a particular integral of the equa-

tions for the moon’s motion about the earth under the

influence of the disturbing force of the sun.

corresponding to this particular integral is closed when

The curve

referred to rotating axes, and is what is known as the

variational orbit of the moon. This is used by Dr. HILL

. as an intermediary instead of the ellipse or modified ellipse

of other lunar theorists.

POINCA-RI': has shotvn that there are an infinite number

Since POINCARIE’s

wholly analytical treatment, the subject of periodic orbits

 

‘The American Journal of Mathematics, Vol. 1.  

has attracted many astronomers and mathematicians, and a

number of memoirs, both analyticaland numerical, have

been produced. The whole field of periodic orbits is recog-

nized as a fertile one, though by no means easy of entrance.

Of the memoirs on the subject may be mentioned one by

C. V. L. Ci—IARLIER,1 in which he obtains analytically some

of the results found by DARWIN in his extensive numerical

work on periodic orbits? In the majority of memoirs one

mass is assumed infinitesimal, but periodic orbits exist,

whether the mass be infinitesimal or not. It is in the case

where none of the masses are infinitesimal that I have

selected the following numerical example in periodic

orbits. The case is purely an ideal one, but it was in the

hope that the results might be of some interest to astrono-

mers that the work was undertaken.

The suggestion of theproblem is due to Dr. G. W. HILL,

and I desire to express my great indebtedness to him, and

also my appreciation to Prof. ORMOND STONE for his en-

couragementand helpful suggestions, and to Mr. T. MCN.

SIMPSON, Jr., for checking some of the numerical work.

Example. If two masses, small relatively to a third

mass, revolve around the latter in coplanar orbits, having

no proper.ec‘centricities, they 'will have symmetrical con-

junctions and oppositions, ie, their conjunctions and Oppo-

sitions will he symmetrically placed with regard to their

mutually perturbed orbits, which will cut the line of

syzygies perpendicularly: Let us take the time of such a

symmetrical conjunction as the origin of time, and the

longitude of this conjunction as the origin of longitudes.

The differential equations of the two bodies will then have

particular integrals, or periodic solutions, as is shown by

HILL and POINCARfi. Assume the masses of the two

planets to be, for the inner, the mass of Jupiter, and for

the outer, the mass of Saturn, with periods also respec-

 

1Meddelandenfran Lands Astronomiska Observatorium, No. 18.
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tively equal to those of Jupiter and Saturn, while the mass

of the largest body is the mass of the sun. The problem

in hand is-to find the expressions for the coordinates of the

two small bodies as far as the terms proportional to the

squares and products of the masses. These terms have

been found before, as for instance in HILL’s “New Theory

of Jupiter and Saturn,” but they are there mixed up with

terms involving the eccentricities, etc., and it is the present

purpose to determine them entirely separate from such in-

fluences, and in the light of a periodic solution. It may

be of some interest to know just how large these terms of

the second order are.

Coordinates. I shall refer to the three bodies in ques-

tion as the Sun, Jupiter, and Saturn. That the latter two

may have the same expression for their perturbative

functions it is necessary only to use symmetrical differ!

ential-equations as explained in TISSERAND, Vol. I, Chap. IV.

Jupiter is referred to the center of the Sun as origin, while

Saturn is referred to the center of mass of Jupiter and the

Sun. Allowing the subscripts 0, 1, 2 to refer to the Sun,

Jupiter, and Saturn respectively, and denoting the masses

severally by m,(i = 0,1,2), we have for the heliocentric

coordinates of Jupiter and Saturn

51:31 7 £2=x2+K1x1

771 = .7/1 , 772 ="3/2 ‘F'Ki 3/1

where

m '

K! = __‘ , It: = mo + m1 + .

PT

If r,, o, (i = 1, 2) represent the radii vectores and true

longitudes of Jupiter and Saturn respectively, then

. + m,

9:, = rI cos a, , 3/, = r1 sino1 ; a3, = r2 cos v2 , 3/, = r2 sin v,

PERTURBATIVE FUNCTION.

The potential of the system is

 

  

 

 

|

U = mo m, mom2 :rnlm2

A0,] A0.-2 A“;

m m, 7_”o m

= —°—-—1 2 +771.l 7/2.. I"

l

where

1 1 m m
mlrnzF = mom,2 — _ + 1 '-’

Am 2 Am

1 m m...

= momc ir22+K12P12+2K1P1r2cos('i)._,—vl);—l__
+ 1 -

1'2 Ana

If we put

”'1 ' ' #1

mr2=7br11=71 , Ug—?/1=9,—=m

0 IU'O

F has the approximate expression

In ' r r 2 ‘5
=- _2_1 __1F 7'2[i 1 7'2cosd+<:2> j

__cos 0+9;::—:;<:>3 1+300s26 j]

=E+E

in which F1 is the part having as a factor the small mass

m,. Since the planets have no proper eccentricities, and

lie in the same plane, the perturbations will depend on the

single argument v2—v1, or the elongation: Hence it is

sufficient to put in the function F, as a first approximation,

r,=al , r2=a2 , v._,=l._,=n2 t, v1=ll=n1t , 6°=(n2—n,)t

Then F may be written separately in its two parts,

+oo

Fo = m'} Ezl‘cosido -— 2%, cos dad-514°]

I n

(1)

F1 = immlgi2:[1+3 cos 290]

where

+00 1

4[2111‘ cos/£90 = I. [1—2a cos 90+aflj‘5

—00

In Fo the value of A" for i: 0 has been taken from

under the sign-,and so hereafter.

DIFFERENTIAL EQUATIONS OF MOTION.

1. For Jupiter.

lar coordinates are

Kd'I, 9 U day, 9 U

clt- = b; ’ ”Kl 75? = 5:171

These equations expressed in the polar coordinates r,, v,

after the manner of DEPONTECOULANT’S equations in the

“Lunar Theory,” 1 are I

The equations for Jupiter in rectangu-

‘lfl :1 H1 l‘l__ .91” 9 / 9%W(r1)—E+al_m2'717+dde+dm!/l

do, 91‘

717 _ 7‘i'—[h1+m2f’71 alt]

In these equations the new expressions introduced have

the following significance:

(9)

91" dr1

9r, Tl?

9F do,
/ = __

dF +91), dt

jolt , m2 = mm2

Pu

2mg (11

 + m (/1: constant of integration attached to fd’F

h1 = constant of integration.

2. For Saturn. The equations for Saturn formed in

the same way are . (3)

22)_Iu2m2 + Vern- = ”cm ”’1?29F5E+2deIF+2m92J

£th a. n:0

 
   

   

 

clv2 1 [1.2111 m, 79F )

(It _ I37<k2+ m . 9112
0

where the corresponding terms have an exactly similar

meaning to those employed in Jupiter’s equations.

3. Equations Connecting Constants. The above equa-

tions for Jupiter, or Saturn, are of the second and first

  1See BROWN’S Lunar Theory, pp. 16, 17.  
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order respectively, and are sufficient to determine three

arbitrary constants, besides h, and a, (i = 1 01-2). But

since the orbits have no inclinations or nodes there are only

four constants, e,, 7r” n,, e, (i = 1 or 2), to be determined

for each body, and therefore we must have another equation

connecting the constants. Three of the constants are im-

mediately determined by the special conditions of the prob-

lem. For since the orbits of the planets have no eccen-

tricity other than that caused by their mutual perturbations,

and hence their perihelia are indeterminate, we have

e, sin 7r, = 0

e, 00571" = 0

By reason of the way in which we have chosen our

origins of longitudes and of time, s, and 62 are zero. Hence

the only two independent constants are n, and 71,. The

equations above referred to are, for Jupiter and Saturn,

respectively,1

g 1 (127', _(dv,>2 u, _ m. _(7_I’1

4 7—, dt‘- dt '7',” _ ), d—r,

“{ Him a fi-Bf_ mum
r2 (th clt ) r,3 m0 r2 9r,

Units Employed. Let us take mo, the mass of the Sun,

.as our unit of mass, and let the mean distance of the earth

from the Sun be the unit of length. Then that h, the

Gaussian Constant, may also be unity, the unit of time

must be 58.13245 mean solar days. Hence we may put

,1, = 1+m, = 71,521,” , loam” = (1 +nt,+m2) (1-1-721,,)2=n._.2a,3

1

a = % = [(1+m,+m,) (1+7n,)]‘5 ($3)

._, 1

The values Of 722,, m._,, n,, n, are taken from p. 558 of

HILL’S “New Theory of Jupiter and Saturn,” and are

m, = mariners , n, = 109256”.62552

7n, = 3,51,, , 722 = 43996”.21506

The above mean motions are for a sidereal year. Taking

as our values for the mass and mean motion (in a sidereal

year) of the earth,

= 1295977”.41516

from the equation a’ = (1+m’)-l 71H" we obtain the numeri-

I _ 1
7n — errant :

cal value of a’, which, used as the unit of distance, gives

0.716237409 log V = log % = 9.604967534

1

log a, = 0979909852 log a = 9.736327557

In order to solve

log a, =

Integration of Equations of Motion.

equations (3) and (4) it seems best to put

rf = a,’-’ (1 +u,+ 8a,) , 3—? = n,+z,+ 82,

2 0 d7").

r, = a2- (1+ u2+ 8a,) , ?l't' = 712+ rag-1'83,

 

1Bnowrz’s Lunar Theory, pp. 16, 17.  

where 11,, 5,, u,, 2, represent perturbations of the first

order with respect to the masses and 8a,, 3a,, 8n,, 83, are

of the second order.

1. First Order Terms for Jupiter. The radius-vector

equation for Jupiter becomes. to terms of the first order,

-cl_t‘-‘”21‘+ n,‘~‘u, = 2n,apn,|:a,%€:1° +2n,f 117° dt+2m 9,] (5)

91,

This linear differential equation of the second order may

be solved by indeterminate coefficients Since its right

membe11s a cosine function of the elongation, 60, only, we

put

+oo

u, = 2 a, cosi 6°

2..
Substituting this value of u, in the above equation, and

equating coefficients of the same argument on either side

we have

,911°

:10 = 1n,[9_r “(EH-+24%]

‘ 111.. 1—v .9211 , 3—v ,,

a_]— al—m[—2— “la—TL, +(L1/1 —T(L]

m, 1—-v 2914'

=—-————————— z - 2

a‘ <1—v121—i-<1—v>z~‘IT “Ta“111“ i ’ )

To the same order the longitude equation is

/ _ /

n, + a, —- 9—1 = h’,+8,h,+m,, 31%;:(It 1 Z“ _ IL:

61/ ‘ " (1ll, a,- n,-
1

 

where It, has been replaced by h’, + 8,h,. I11 the'circular

orbit h, = h’, = n,a,‘-’. Hence 8,h, is a small constant of

the order of the masses. Then

8 h 111,. ,, 9F .

z, .-= I171 — n,u, + IIT- 71,11, c)_l,odt (6)

Putting

+oo

511,1 =fz,(lt ___ Erasiniflo

—oo

we find

_ _ __me_ 2 -911

M“ ‘ 2v<1—vr<2—v>I (1H“)‘ .

+ (v"—2v+4) a,Al—1(u"——4v+6) (49]

m ,911'

= ..__.__L—— 1..

“' 2(1_v).';1—e(1_.)2gI2 ( "“21 9a

+§3+i2(l——v)"§a,A‘] (1. =:t2, . . .)

but we shall.
31r1 ' hi 9

The constant term of z, is I9 —- n,a°;

1

define n, as the mean motion of Jupiter in disturbed as well

as in undisturbed orbit, and it will be obtained directly

from Observation. Hence

3_‘h_1 _ 2 ,a = 0
(L12 0   



 

 

  

Since the arbitraries e, and 7r, of the general solution of

the problem are zero in this case, and a, is not independent

of n,, all the arbitrary constants have now been fixed, for e,

is zero by the conditions laid down. Hence {1, is not inde-

pendent of the other arbitraries, and we find it by means ‘

of the first of equations (4). This equation will also

enable us to verify the preceding work, inasmuch as the

coefficients of cosi 00 on each side of the equation should

be identical. To terms of the first order the equation is

     

2

d if} e, — 371,221, = 2 £2 rifle,” 251°
clt- 111 on,

Substituting in this the above values of u, and .2, we find

1 I 0 or a 1 1n ” 9‘40( =—-—-.-a 6-— =— 0a“—
./1 .3 1 9% 7 o 7: _ 1 9a,

2. First Order Terms for Saturn. The radius-vector

equation for Saturn is

 

 

(7) ddt'? + n,2 12: 2:Ii n29a3[ 0+ "1 99—?" (Zt+ 2111 {72]

+oo ‘

Let u,_, = 2 2 b, cosi 00

—oo

In fOImInw a 0F /’da2 we make use of the IelatIOn

9F, 9Fo

“QQI-a’laal _ _ 1°

Then

7p;1 4 0A _ 0

b0 — 2!:(1, ,, ala, 9‘11 agA

__ __ 777.111“ 1—v 1:11 1+v ,_

bu‘ b1_(1—u)(1_2.) 2 “lama, + 2 “2A a

m 112 —'Va 911‘ 1+v

b = -———-———,7—1——— —* oA‘

. <1—v>2z-<1—v>— v1”2_“2I “nu. + 2 “- l

The differential equation for longitude of Saturn is, to

terms of first order,

(8) 32: g; -— n2flu +27z.-a,f_
F:(lt

Putting '

+00

3,?)2 =szth = 2a sini to

we find
_

_ __ 99/11
3—1: #1: 2 (1__V)g(1_2v> [411(1——-v)a1a2_9_.al

+ (1 +2:;-) a2 A1 — (1 +2v)a:'

QA‘m, v'

BW[2v(1-0 “1% a:

+ §2v+v9+i9(1—-v)9;aflA‘]

and since the constant term in 8,112 is zero

/,
81 :2 __ 975.91% =

L . .

2

  

 

(4)

The equation determining the constant term in u, is to

terms of first order,

cl"a 7n 9F

———' —— 4n,.-.,, — 3n.2n, = 2 —-1 nfaf ——°

alt” 1n ‘ 9a..

This gives

9_A

bo = itmlagyg = 5.172., [“19“a lon+a11°]

DIFFERENTIAL EQUATIONS INCLUDING SECOND ORDER

TERMS.

Having now solved the differential equations as far as

the terms proportional to the masses we are prepared to

push our approximation still further and include all terms

proportional to the squares and products of the masses.

It is well known that the form of the solution remains un-

changed in all the successive approximations of including

the squares, cubes, and higher‘ powers of the masses, and

hence our differential equations preserve the same form,

and are solved precisely in the same way as before.

1. For Jupiter. —— a) Radius Vector Equation. When

we extend the radius vector equation to terms of the second

order, and omit all terms of the first order, we get

d2 1 . o 1112 .1 9F

it? 81L1+7ZIL31¢1 = If 7L12u1-+ 0 E 72171,, [8 (7'1 ’27,) + 28/d/F

 
   9FI+2fle+2m By

1901., 1 1

I11 this equation I", has the value given above, and m3y,

is the constant of integration attached to 8 cl’F, and is of

the second order. We shall proceed to express fully the

right member of this equation.

Since

. _ _ l 2
71 — a,(1+.1_ru,+=l_.-8u, sul)

we have

8 r 8 7:,

1—1- = {:211 ; also ‘—" = 15 It,

a, a2

Also since F0 is a function of l2 — l, we have

- 0F, _ or,

772," at,

With these relations and that given above, with refer-

ence to agaFo/Bag we may easily express smelt/97,).

We also have '

9F 417' 9F do
[ _ ___1

8de= f8l:97lclt#4— 91!, clt] dt

a d'ladr1 (l _

3 In) ‘ “ “‘dd? (8% _ 2 (It

do

8<dtl=d

in which

dt (8101) = 3  
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Then the above differential equation in its expanded

form is '

 

19>
_

d2
:7 - :1 mo 91'“, "()QF 16

@(8u,)+ 77,12 811, = n,~[;in,-+2al_,“Fd
, l<a19a a, (97,2) 72.1

91" 92F,\ 77,,
9F

_<201aa__°+a6621.219“oj2‘+a.,94ga’1(8,77,—— 8,17..)+d,:a11

+.2fd’F + 211ng,

+()"'F,

)—,—,°(8,v,—- 8,17,)

11111
We see immediately that the right member is composed

of products of series, either cosine by cosine, sine by sine,

or, underneath the integral sign, cosine by sine. In every

case we get, after multiplication, and integration of the last

mentioned products, a cosine series. If now we attach the

factor 2m, a, [in above to F,, every coefficient in each

factor is of the order of the masses. We shall designate

the coefficients of cosine series by Roman letters, of sine

series by Greek letters. In each series the subscript 7' has

every integral value from ~—oo to +00 including zero.

For cosine series we may put a, = a_,, for sine series

Hence we may write

.S',a,cos2 60 XL,b, cos7' 6, = E,.‘.-',a, b, cos (7+7) 6,

Ea 005560 X- a sin ',6 = 5.)." ausin 73+” 6
.1 1' 0 -j j .l 1 ,j 1 J J O

2,14,5111 7 6, X 2,78, s1n,76: = —.., 2., 14,73, cos (7+7) 6,

l(19"11', 71, 71,, ._ 9F,11

+2"If[fma1, 7—.17) 51‘, 2+

1 ((41. 911, dd, 9F,

i7“ 9 9d, d—lt ‘97—,-

a, = —-a_, .

whence the equation for 871., becomes

,+, cos (7'+7) 6, + 20111 877,]
d2 ,,

E[7,,(8171) + 77,~ 871., = 7,2[.‘.,E,S

the solution of which gives

S
_. v 1+}

821, — .~.,).‘, 1_ (7' 1)_<1——_172)

and

f,b, — em + k,

cos (i+7') 6, +21rin 87/,

where a' = 2m,a,/1n

4')

31+}: 0 ma, + e,a, “ +7 + 11+}

2 .

+ 117171113) 1.-c.— 4b.- + 3177+ 1,3,1. 111.]

These letters express in order the coefficients of the

various factors just as they occur in the right-hand mem-

ber of the expanded equation (9) given above.

17) Longitude Equation. To terms of the second order

this equation becomes, when we put 77, = h’,+8,/1.,+8,h,

and omit terms of the first order,

(10)
9'F,11 u,

8.9,__——11.—72811+——+Jy,fa§(HF—Ta (4—1;?)

9F, 71 +9'-]1'

9—7: 7+ 06191811+» £111

=n,..,..-.., ,+, cos (£+7',)6

where .  

' 1
= ——-2 — ——-——— .

PH‘} aid] 1_ (i+7’)n(1_v)n SI-fj

——§,b, +0g,y,] +Jrl,+, — 2am89,+8-—,,

7171,04‘

1

Where the whole constant part is included in P,, which for

reasonsgiven above must be equated to zero.

Then

8,11, =f 8z,dt— PM sin (i+j) 6,

= 5'33 (1+jv—)( 1)

6) Equation Determinmg Constant Part of 817,. The

first of equations (4) extended to terms of the second order

is sufficient to determine the constant 877, which occurs in

8711, and at the same time to verify our equations for 8111

and 8:21. For on summing the coefficients of like cosines

we shall find that they vanish identically, and only a con-

stant term is left. If we let ‘

dn, ,, (1277,

' ‘ dt ’ "1 cit-

 

this equation 15 (11)

E‘s—4’s ,_.1;_1_n£:.1_._”1_2;;+1~..,-
771' 711 71.,- n,- 77 -

91Y 9F 9F

= .‘ -—d 077 +2178 -—— 2a—1:1 a'[ 1dd, 1 1 97,] + 1971

Substituting in this equation the expressions for 817,,

8d,, 8.2,, and making use of equations (5) and (6) we arrive

at the equation

 

2'7 ‘-‘ r ‘3 8., 77
.3. 2 _ _ ~L _ 2 :1. _ 4_.1.,_, 771 {r , 7711' +20111871 77. “I,

)11'07'7 911' '

+ 2 f ( ' °-.'-.' =
" “lo—077,7. + 227, 1 dt 0

 

We shall find a different expression for the last term.

Equation (6) is

. 1911‘,
-- —— — odt

nl ' 171111-91,

 

By means of this relation and its derivative we find

91‘ 81h]

2cfrc, —-° (11:.22*7:,4—1 —-—- 11,— 2711'2

()l, mu,"

+f20'nl'z'7, ifZ—IZ— dt i (It

1

2611“,] 911,73, dt

90.109.4

to each member of this equation, the integral in the right

member becomes

911‘, 9/" ,
0-f{ [11%|..___W'i‘”tr—57:0 (1d }- ”I (It

which by means of equation (5) may be completely inte-

grated. Hence we obtain

- 911,, u 91 2 ' 77 ‘-'

2 _1..,? 931. _ :1. ,2 + ,1 .1

0-] {a119C1129+—_96l0h415 dt: [271.12 ‘2 I”! - n12]_0

By adding
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Where [ ]_0 means that the constant term is absent. The

equation under consideration then gives for the constant

inSu, 28}

312

——}+i:;L—i_: ‘éiuzi +7if;L—:::]

0
27721a "

Here [ Jo means that only the constant part is present.

Thus it is seen that all periodic terms identically vanish,

and the equations for 8a, and 32, are verified. We shall

use this same equation to verify the numerical work.

Since the constant term in 32:, is zero we have

3i“, = 2011139, + 2 [221,], + 5,
7141161-

0111391:

Hence

—3a-mSg1 = 4|:adj 0+ 215'o+[——5}n,’-’ +:;1-—1

”'1 o

2. For Saturn. ——a) Radius Vector Equation. The

equations for Saturn, being formed in a manner exactly

similar to that pursued in forming Jupiter’s equations, may

simply be written down. The first is

(12) 55—2 (Sue) + n} 8a.,

Ml. m 9]" 9"1210 u no

= U1 n—-2 1, 9 ° _‘.___-1L;:/._ ma_§<ala—al+a,":-T_,°>(2 2)

163+9110 ’2)"F\

"(Fo+“197?\)2+(9—,1 "I” “‘9122"i]")(8”“8"°)

9I'
__ _2 _925—w- .fd”F, 11189,

9"F0 a 11. 9110 u 9F0
+2.,f __o_._1_-’ ___o_'-’+ _,

’Z- [22, "are“, (2 2 21,2 227’(81”1 3‘”)

OI n” 91‘ .0

F0+ — 0 2n

+< a, 2)——T>2n3+221172;} i]

We see that, as in Jupiter’s radius vector equation, the

right member is composed of the products of series, all of

which result in cosine series. Many of the individual series

are the same as those entering Jupiter’s equation, except

for the constant factor 2m,a,/m. Denoting this constant

by to, we can put

 

(A)

w=—.o-

0'

and we can then use the same letters as before to denote

the same coefficients here. New letters will be used where

we have new coefficients, and arranging them in exactly

the order in which they occur above, we may write the

equation for 8a,,

2

W (3122) + n,“ 8212 = 7L2‘-’[E,E, Ii’“r cos (i+,y) 60 + 201111892]

the solution of which is

2

Ba, = .1, ’ ——-L—————RH, cos (i-i-j) 00+ 2mm892

..’vJ—(itf)(1— V)"

where
 

‘

9m — In,“ — 2n”,

02v

+(L+/)(1-—-
wgE-C —

Lb; + gm
+ (1,17! "l' LP} ;]

12) Longitude Equation.

31+) =' 3b,b, “ 2offici “ (ll-b,- ~

To terms of the second order

 

this is
(13)

3" — 129—7281; 39 "H2 __ __ M 2 0+ “2;,

92F u n
// 1 2

.éimfd Fo_§7lew
f§ (Ll—W; <2—_§>

9F a,.+9"1‘0

—- 782+ 97—-20(3111,—810.)}dt

n2nE,EHK,+ cos (5+7) 60

where

‘-' 811
r = __2 . _ ____V______ 3 .1 q _2._n.

111+: bIPJ 122—— (i+.7.)2(1—v)2 1L,+,—°wm3q + nan,"

(I) (U V

+ 1} 3 711+; — if 3m[Elcj_€lbj+gi71:l

Then

3,1,2; fszdt—= SidJW]32+: sin (i-l-j) 00

0) Equation Determining Constant Part of 8122. The

second of equations (4), expressed to terms of the second

order, is

 

312 32.. n ii it

"—38100—44 ——,-,"'— {rj—Z'Z—'é-Hfiufi (14)

n,” n, n,'- 7123

a ’l o n, 9F

= —u) [A <27} — 2'): 3B—2—',+:—[1131(8 12, — 8,222) —- (£1563)

where

C)!" TF0 7101‘,
-1—= 2al —--—+al22—11!_, , 13—: 1'0 +a1 ’(Ja, 

From this equation we get, exactly as in the equation for

Jupiter,
0

—3u1n13_q2 = 4: [b,1)j]o+ 2R,,+[:—; — f, Ufa-F.1- 7:11;]

I“: 2 0

which is exactly similar to the expression for 82],.

REFERENCE or Coonnmxrns or Saturn TO CENTER

OF Sun.

Let r,’, v._,/ be the polar coordinates of Saturn referred to

the center of the Sun as origin. Then in the triangle of-

San, Saturn, mass-center of Sun and J'Ié].7'l:te)‘, the angles are

respectively raj—7),, q, and 71' — (1122—12,), and the sides

opposite r,, K113, and 1-;.’. If we put

c,—-n,=l_—l,,+8122—3,r+ .=00+0,+...,

we get r_I = [rf +K,'-’r1'-’-2+Klllr, cos (cg—211)]A

or, approximately

r..’ = r,+ 12,1, cos (90+ol) + :1- K3? [l—cos 2 (90+o,)]

= a2[l+{rng+& Sag—lg uf+:};<1‘l :4 (l—cos 200)

+ K1 :11 3 (14-1521,) cos 90—61 sin 90 }]  
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(7)

since 6, = 8102 —- 8101 is a very small angle. As far as

to terms of the first order

r.’ = a. [1 +4 112+... 2‘ cos 0,]

so that to terms of this order rg’ differs from r2 only in the

term of argument 9,. It is also seen that rg/ has the same

mean value as has r._,. When terms of the second order

are included this ceases to be true.

In the same triangle as mentioned above we have

sincp Klrl .
and —.———— = — = -. a roxrmatel .‘ sm (02—01) 1.2/ subs 1 PP 3’

Hence

. K 1' .
$111171 = (p = 1—17‘ s1n (02—0,)

and therefore

34 M 71:. a: .

02/ = '02 — K1 a—‘I? + 3’— ‘7‘ — K1 5' cos 60:] [s1nl9o+9l cos 9,]
z 2 .I 2.I

2'41
— 172 —' Kl ""

a.

[sin 00+ 61 cos 00

1

u, u. . al .

———' S1116 —TLK -- sm20

+<2 2) ° " 1'1 °c.)

It is seen that 02’ has the same mean rate of increase, u._.,

as has 02, being as much less than the latter in the first

and second quadrants as greater in the third and fourth.

COMPUTATION or FIRST-ORDER TERMS.

It is necessary first to obtain the values of the functions

A‘ entering into the perturbative function. Let

+00

[1—2a cos 90 + «23-1 = a Z 0' cos «i 60

—00

. 1 db" , 1726‘ ,
Hence if we compute I), a — , a- ———,, we can obtain from

(la da-

_ 921‘ .. 92.4"
.

them A' , a, —— , (1.1“fl by well known relations.
EM, dal-

These quantities may be computed in several ways, all

well known, and it is unnecessary here to reproduce the

formulas. By glancing at the perturbations under consid-

eration as given by DEPONTficounAN'r, “ The’orie Analytique

du Systéme (In Mantle,” it is seen that several coefficients

are quite large; for instance, 196” is the coefficient of

sin260 in 3101. For this and similar terms nine-place  logarithms are necessary, but only a. few terms demand so

many figures. In general seven-place legarithms suffice

for terms of the first order, while five-, and for one or two

terms, six-place logarithms, will give the same accuracy

for the second-order terms. The 5‘ and their derivatives

have been computed for loga = 9.736327557, and the

computations were checked twice, and in some cases, three

times by recomputation.

- i 2 i

The values found for b‘, 0: fl , «‘3 Q are

(la (la2

, dbi a (130‘
7. bi 0. a; 0.” 3;},

O 0.338438916 9643539018 9.930590

1 9792423038 9907211461 9.878787

2 9410262287 . 9.779191774 0.018692

3 907072475 959673039 0.020155

4 8.7510906 9.3914979 9.948196

5 8.4430357 9.173599 9.833742

6 8.1425680 8.947617 9.691950

7 7.847463 8.715983 9.53118

8 7.556353 8.480187 9 35651

9 7.268330 8.24120 9.17124

10 6.98277 7.99967 8.97758

11 6.69922 7.75609 8.7772

12 6.4174 7.5105 8 5716   
From these data we immediately compute the first-order

terms of Jupiter given below. The coefficients are expressed

in abstract numbers for Slrl/al, in seconds of are for 8101.

’ —0.00001 14252 ‘

+0.00012 45421 cos 60

—0.00053 33873 cos 26.,

—0.00005 55968 cos 36o

——0.0000143934 cos 460

— 0.00000 4-7600 cos 560

4 —0.0000017772 cos 660 {-

“1 —0.00000 0714] cos 790

—0.00000 03016 cos 860

—0.00000 01320 cos 96,

—0.00000 00593 cos 10190

—0.00000 00273 cos 1160

k —0.00000 00127 cos 1260 j

3; _

  
II

{+ 79.2.1320 sin 60 \

49557013
sm260

‘ —— 16.33180
si11360

— 3.75436 same,
i _ 1.15702 sin 50.,

3 _ I— 011207 sin6190
lvl—i — 0.16100 sin 70., 7

_ 0.06656 sinsao
I _ 0.02868 sin960
— 0.01275 sin106o

i — 0.00581 51111119.,
L-- 0.00269 sin1260, 

The corresponding values for Saturn are  
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(8)

’ +0.00041 67147 ‘

+0.00034 91670 cos 6,,

+0.00014 74618 cos 26,,

+0.00003 40816 cos 36,,

+0.00001 05662 cos 46,,

+ 0.00000 37863 cos 56,,

+0.00000 14794 cos 66,, F

“2 +0.00000 06123 cos 76,,

-- + 0.00000 02639 cos 86,,

+0.00000 01173 cos 96,,

+0.00000 00534 cos 1060

+ 0.00000 00247 cos 116,,

+0.00000 00116 cos 126,,1  
\

r+103.”s2921 sin 6,, r

+ 32.01027 51127,

  

+ 6.66903 sin36,,

+ 1.99553 sin 460

+ 0.70687 sin 56,,

871 _ J + 0.27562 si11'66,,

1 2‘ + 0.11428 511170,, F

+ 0.04944 sin 86,,

+- 0.02206 sin 96,,

+ 0.01008 si11106o

+ 0.00469 si11116.,

Ci" 0.00222 sin 1260 ,

We have shown that in order to reduce 8,7-2 / a, and 8,0,.

to 8,r2’ [a2 and 8,02’ respectively, it'is necessary to change

the coefficient of argument 6,, only, adding K,a, / 712 in the

first case, and subtracting it in the second. This amounts to

8,1 ’
c

2

2

 Red. to = +0.00052 00157 Red. to 8,71]: —107”.26093
u.

COMPUTATION OF SECOND-ORDER TERMS.

. . ’7 1" ”)2 ."
With the values obtained for A’, a, :4; , (7,2i were

()77, 977,‘

computed the coefficients a,, . .., q, and 77,, ..., 6,. In

order then to find the numerical values of 877,, 8.2, , 877,, 8.2,

it was necessary to multiply together series having the above

as coefficients. This multiplication was performed by the

method of special values as set forth in HANSEN’S “217736777-

andcrsetzung, ” pp. 159—164, or in Tissmmnn’s “71166777770776

Cc’leste,” Tome IV. The semi-circumference was divided

into twelve equal parts, and to 60 were given the thirteen

equidistant values 0°, 15°, 30°, . . . ., 180°. It is important

in these computations to take advantage Of any checks

that may present themselves. When no checks were avail-

able the computations were repeated. After all the pro-

ducts had been computed equation (11), determining the

constant part of the radius-vector, was employed as a partial

verification of the work.

1. 007777777137777'077 of 877, 777771 8.2,/77,. The numerical

values of the coefficients entering into 877, and 8.2, are tabu-

lated below in terms of their logarithms. It will be  

denoted whether the series (which is a product of two

other series) is a cosine or a sine series, and by the num-

bers 7+j at the left what is the multiple of the argument

6,, whose coefficient is Opposite. By multiplying by two

each of.’ the coefficients a,, .. .., except when

7' = 0, .we may regard 7+7 as always positive.

., 77”.

  

    

 

cosine cosine cosine cosine

1+} 373.1 eta; fibj "5770'

0 I 3.18127 3.1306877 3.39200 3.3767577

1 : 2.58817977 1 3.260253% 3.681298 350616877

2 1 2.322029 1 3.26149777 3.741587 3.33191877

3 § 2.8082277 1 3.1017177 3.70378 2.9734077

4 1 3.13372 1 3.2100177 3.61656 3.07604

5 1' 2.44947 1 3.1549877 3.48959 3.22051

6 1‘ 1.9421 1 3.0539877 3.33996 3.19793

7 i 1.501 1 2.923977 3.17452 3.10977

8 1 1.098 1 2.774077. 2.99747 2.98594

9 I 0.718 2.605577 2.8098 2.8358

10 . 0.35 . 2.424177 2.6133 ‘2.6738

11 1 9.95 2.181777 2.3949 2.5558

12 1 9.7 1 2.011077 2.1544 2.3660

sine sine sine sine

7+7 5707 671),,- gm 11,11,-

1 322877877 2.624453 3.26422677 1.597713

2 2350255077 2.976050 3.25611677 2.42055277

3 3.5407877 2.95902 3.0492477. 2.1913177

4 3.5928277 2.84670 2.96747 2.7395777

5 3.5292677 2.67205 3.15861 2.6435977

6 3.4213977 2.4729 3.15214 2.4865977

7 3.2853077 2.2601 3.07239 2.302477

8 3.1289477 2.037. 2.9536 2.101477

9 2.959777 1.812 2.8096 1.893577

10 2.776277 1.577 2.7506 1.68077

11 2.557677. 1.33 2.5291 1.47277

12 2.345677 1.06 2.3477 1.24977

' sine cosine cosine cosine

7+7 €017 “7‘17 ki+7 . 17+;

0 . . . . 3.5064877 2.64482 ‘

1 2.349305 2.796439 . . . . ' . . . .

2 2.340550 2.51453177 3.121940 3.04.4708

3 2.04846 3.10381 . . . . . . . . .

4 2.95404 3.4611477

5 2.85854 2.8188077

6 2.69805 2.3526877

7 2.5099 1.951777 :

8 2.3051 1.585677 1

9 2.0929 1.24577 ,

10 1.872 0.92677

11 1.613 0.57377.

12 1.395 0.2877 i  
In order to find the constant 89, which enters into 877,,

and at the same time verify the preceding calculations, it

is necessary to compute the additional products in equation

(11), namely,

.., ..2 -- 7 77
77, .., 77,77, are 1
_ _. —— and 71-77, ——-— —

477,2 ’ 77,2 ’ 477,2 ’ 9‘51 2   
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the numerical values of which are tabulated below.

same nomenclature is used as before, and the tabulation is

in the same order in which the terms are here written.

\

 

 

(9)

The

 

which are not given by the method of special values.

the cosine series the twelfth coeflicient is the same for both

ways of computing.

From the above data we get for 877, and 8e, / 77,,

In

cosine cosine cosine cosine

i+j —'873_/ (lid! 8.70} 21.71:; .0 . e c0 .11

0 3.32522 3.33271 3.3252277 2.5510077 ,+,. 7 33,1“ 3,, 5}:

1 1 2.30343 2.9651077 2.1205677 2.9710077 0 3 7819, ‘ ‘

2 9 12794- 2.66130 2.425334% 2.895917); 1 4.5598097). 4. 561487.)

t 3 2.73772 3.39”l 9277/ 2.68638 2 88204717 2 4.554738 4.569894.

1 4 3 2838477 3.78892 3.2924877 2.7667577 3 384237 40426577

1- 5 2 77321727 3.18025 2.8209977; 2.828247]. 4: 2.84305 3.63491.

'1 6 2 3985877 2.75328 2.49336377 2.8047277 5 2:6”3471 2.6812

7; 7 2.065678 2.38169 2.2067877: 2724.)971 6 227-26 1.713

ii, 8 1.7530717 2.0415 1.937271. 2. 60879717 7 1 909 1.125”

if 9 1.45171. 1.7187 1.67377» 2.4579” 8 1.555 1.232“

‘1 10 1.158717 1.407 1.412717 2.301% 9 1.211 1'07676

11 0.886711 1.087 1.14771. 2.06871: 10 0.86 0.78%

,i 12 0.6076 0.80 0.8975 1.91.17]. 11 0:09 0:46

12 9.4 0.45

    
E It was found that the last three or four coefiicients (ex-

cept the twelfth) obtained by the method of special values

did not satisfy the checks, whereas the same coefficients

; computed by direct multiplication of series did. Hence

7. all these coefficients were thus recomputed. I11 this way

were obtained the twelfth coefficients in the sine series,

We have

_._8(7,
=4[8u,—— J577,2] , 8gv,='/'83,dt

The numerical values of these quantities are here given. 

 

(+0.0000002267 ] {—1.”0$):375 sin 6,, V

_0.00000 1.7952 cos 6,, +0.64134 511126,,

‘ +0.0000017830 cos 26,, I | +0. 12699 sin36,,

, +0.0000002800 cos 36,, —0.03725 sin46,,

3”, 1 —0.00000 00?32 00546,, i i —0.00332 sin56,,

1 '—‘ = +0.0000000076 cos 56,, =4 —0.00030 si1166,,

1 “1 +0.00000 00050 c0366, F , +0.00007 sin 76,, >

’: +0.00000 00025 cos 76,, +0.00007 sin 86,,

g +0.00000 00012 cos 86,, i +0.00005 si1196,,

~ » 5 +0.00000 00006 cos 96,, +0.00002 si11106,,

+0.00000 00003 cos 10604 ML:O.00001 sin116,, ,

0.00001 sin126,,,

1 These values of 8271/77, and 8,17, constitute the solution of the problem for Jupiter’s coordinates, but, that the

expressions for $ and 77, may be complete, we add the first- and second-order terms, thus forming the tables

1 .

1—0.00001 11985 1

+0.000122"7470 cos 6,,

—0.0005316043 cos 26,,

‘1 + 78715257 sin 0,, 1

J 4.0000552168 cos 30,,

L

—195.12909 si1126,,

—- 16.20481 si1136,,

— 3.79161 sin 46,.

—— 1.16033 sin 56,,

— 0.41327 sin 66,,

— 0.16093 sin 76,,

— 0.06649 sin 86,,

— 0.02863 511196,,

—— 0.01273 sin 106,,

— 0.00582 sin 116,,

\— 0.00270 sin 126,,

—-—0.00001 44266 cos 46,,

—— 0.00000 47524 cos 56,,

—0.00000 17722 cos 66,, >

—0.00000 07116 cos 76,,

—0.00000 0.3004 cos 86,,

—0.00000 01314 cos 96,,

—0.00000 00591 cos 106,,

—— 0.00000 00272 cos 116,,

— 0.00000 00127

”1:”16'1" 1

 

 

 cos 126,]  
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.1. C'o777y777tutz'o77 of 3112 and 3.22 / 77.9.

entering into 8712 and 322 / 71., have already been computed

as they enter also into 8771 and 831/771.

below.
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1 1‘

There is one additional product needed for 3772/712 and

three for the numerical expression of equation (14). _ These

cosine

brbj

3.39116

3.541489

3.29549

2.92530

2.52038

2.09649

1.69460

1.3130

0.948

0.595

0.25

9.91

9.60 
sine

(11771

3.169687

3.19792

3.09005

3.05805

2.91879

2.74412

2.55063

2.34727

2.1352

1.9187

1.7057

1.503 
are, respectively,

7,

The coefficients of these products are given below in the

same order in which they occur here.

71.._..=:._.

2772 ’

 

 

cosine

1'19!

3.6349677

384905377

3.8954877

3.8175917

3.7977171.

3.6896677

3.5523271

3.3959077

3.2248077

3.043977

2.850577

2.625071.

2.517080”

sine

CID}

284861377.

2.7911177

3.0008577

3.0063577

2.8863471.

.1239171

.5388377

.340177

.1324 71.

.915371.

.6

.4

1

\
‘
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O

8477

2871.l
—
l

have the values given.
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cosine

17,-pj

3.2229677

3.5652971.

3.3272817

3.0126577

2.6651677

2.3323571.

2.0098677.

1.701871.

1.398377

1.10677

0.8077

0.4671. 

366937677

cosine

—7771

3.38700

3.48381

2.3584977

3.2535971.

3.1838871.

2.9475171.

2.6858777

2.4178777

2.147577

1.877571.

1.609077.

1.348571.

1.099577 

cosine

th7

3.32535

3.415321

3.36101

3.19688

3.02462

2.81428

2.59122

2.36141

2.12730

[.8916

1.647

1.395

1.119 

71...- r-_,.

4772” ’ 772‘-

cosine

1117+j

2.8209177

3.2980371.

 

9 71._.'11'2

‘I

, 47112.7

cosine

P7117

3.59894

3.62334

3.62027

3.60254

3.37820

3.08329

2.78977

2.50202

2.2185

1.9386

1 .6602

1.37

1.080  

 

Several of the series

The remaining

coefficients, in terms of their logarithms, are tabulated

cosine

~07”

3.5254877

3.62273677

3.4244677

3.0112977

3.29467

3.36085

3.30380

3.19518

3.05590

2.89760

2.7281

2.5953

2.4079 
cosine

117+;

2.6496777

 

Then 8712 and 8.7:2 / 772

cosine

Sibj

3.3870071.

3.8372377

3.9274271.

3.8158171.

3.6341577

3.4062871.

3.1690877

2.9281577.

2.685277

2.442277

2.19271.

1.93777

1.65577

(10)
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and

8.7:.
 

(Co

‘
1
C
D
C
l
i
'
F
-
O
S
I
O
H
O

C
l
:

9

10

11

12 

values of

 

1
—
u
—
x

H
O

1
.
;

L
0

8173.

(72

 

{I

, a - .
+1} K13 31—12 Sin 2190— K,

2

8.7-
.. 2

n

the tenth decimal.

cosine

__ 9999

—52407

— 6585

—— 2368

— 768

—— 286

— 11.5

— 49

— 21

— 10

— 4

— 1

0

 

 

cosine cosine

8172 329/712

4.2036477 . . .

5.00575877 5.074954

4.0490371. 4.36740

3.5905177 4.07674

3.0809677 3.71344

2.6509377 3.37455

2.2564377 3.0540

1.885077 2.7447

1.529471. 2.4442

1.187777 2.150

0.83571. 1.852

0.1377 1.3 -

9.4377 0.89

a

a2 a 71

+2}: {:12 5171(1—6052 0) +Kl_‘l[—‘l

37.1

a, 77] 7

a2 2 2

In order to show the amount of. these reductions the

Reduction

+ 690

—4318

_ 4.77

+1374

+ 109

+ 22
+

7+

 OOO
O
O
K
’
J
C
}

)
7

.7

‘2

 
As in the case of 7'1 and '7‘. we have

sine

8277-:

ll

—1.65252

—O.16202

—0.05531

——0.0] 797

—-0.00659

—-0.00262

—0.001 10

——0.00048

—0.00022

—().00010

—0.00003

—0.00001  

4 [3113—47129] , 32712 = ffisg (It

. 8..r.’

In order to determine 4; and 8.177;, the second-order per-

turbations of Saturn’s coordinates when referred to the

center of the sun, we must apply to the former the follow-

ing reductions respectively: —

cos 00 + (81711—81772) sin 00:!

> sin 00— (81771— 8172,) cos 90]

and 8277.. are placed beside them below. In

and its reduction the numbers are expressed in units of

Reduction

ll

—0.049
82

+ 0.0227
5

—0.025
54

—0.002
1
1

—— 0.00051
.

—-0.00
017

—0.000
07

—0.000
03

—0.000
01

0.0000
0

0.0000
0

0.0000
0

We can now form the tables for ry/a2 and 73.].  



 

’ 1 +0.00041 58615

+0.00086 35112

+0.00014 67556

+0.00003 39822

+0.00001 05003

1' , + 0.00000 37599

i = < +0.00000 14685

a.._. + 0.00000 06076

+0.00000 02618

+0.00000 01163

+0.00000 00530

+0.00000 00246

+0.00000 00116 
Thus we get

— = 1 + EA, cosi (IQ—l1)

9] 1

171 = 71+ 3* 17,. sin .1 (12—7,)

.3 = 1 + 3 A,’ cosi (lg—l.)

1

772’ = 12+ 5 B" sin 77 (lg—ll)

1

cos 6.,

cos 200

cos 36.,

cos 40.,

cos 590

cos 690 k

cos 7 00

cos 800

cos 960

cos 1060

cos 110o

cos 1200 7 

Leander McCormick Observatory, 1903 May 15.

fl

’ 5.13402 sin 00 1

31.87097 sin 219.,

6.58817 sin3t}0

1.97545 sin400

0.69977 sin 50.,

0.27283 sin 66.,

0.11311 sin’i'oO

0.04893 sin 86.,

0.02183 sin 960

0.00998 sin 10 00

0.00466 sin 11 00

0.00221 sin 126

773’ = 773+ <

  +
+
+
+
+
+
+
+
+
+
+
1

F

(I;

If we refer the coordinates to axes intersecting in the

81777, and rotating in the direction of motion with the uni-

form velocity 771, it is evident that we may write

CD _ '

77,—71 = 701 = 3‘ B. Sin '7 177‘

l

m . . .

val—l = 717., = kt + 3‘ 7’.’ sun/ct
.. 1 .. I

l

where l.'.=71._,—77,. Then all the coordinates are periodic

t with respect to the time.

 


