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Estimating Cell-type-Specific Fractions with Autoencoders

Xin Shu

(ABSTRACT)

In this work, we introduce autoencoder architectures and the evolution of these meth-

ods leading to disentangled representation learning. We apply three autoencoder ar-

chitectures to single-cell RNA sequencing (scRNAseq) data. ScRNAseq characterizes

cellular heterogeneity by measuring the expression profiles of individual cells. How-

ever, this measurement remains relatively expensive compared with bulk RNAseq,

where expression profiles are averaged over many cells of various cell types and at

different cell states, preventing us from capturing cellular heterogeneity. We propose

a new bulk RNA-seq data deconvolution method, termed expDC, to estimate cell-

type-specific proportions from bulk RNA-seq data. The latent codes of autoencoders

offer additional interpretability to explore the grouping of cell types. To do this, we

first learn reliable and denoised representations for each cell type given single-cell

RNAseq as a reference, then we use these representations to deconvolute simulated

bulk RNAseq data to infer cell-type-specific proportions. Our method estimates cell-

type composition in a two-stage process. We evaluate our methods on three PBMC

datasets and found that a shallow autoencoder architecture performs best in decon-

volution.
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Chapter 1

Introduction

Autoencoder is an unsupervised learning approach capable of learning compressed

representations in the latent space. More generally, an autoencoder is a neural net-

work that prioritizes the efficient compression and reconstruction of input features at

the output layer [1]. A compressed representation is learned in an autoencoder’s la-

tent space or Information Bottleneck (IB), and these representations are called latent

codes, or latent representations. Working with representations of lower dimensions

reduces computational costs compared with dealing with the full input expression

matrix.

Variational autoencoder (VAE) [2] is an extension of the autoencoder architecture

that adds a distribution constraint (usually Gaussian for its property of Central Limit

Theorem [3]) on the formations of latent codes. Many innovations in autoencoders

have added characteristic constraints on the latent codes such that these codes would

satisfy certain properties. For instance, the Gaussian constraint on the variational

bottleneck ensures that the latent codes have a spread of an isotropic Gaussian ball,

this nice property has inspired an area of research called disentanglement, where a

single perturbation on one latent factor leads to changes in quantifiable factors of

variation [4]. With applications of VAE, scVI [5] is one of the well-known tools for

scRNAseq that uses a variational autoencoder to learn probabilistic representations

with reduced technical noise and bias. These representations are then used in many
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downstream tasks, for instance, clustering, imputation, and differential expression

analysis. scVI explicitly models both library size and batch effect, which are nuisance

factors in scRNAseq data. In contrast, in Deep Count Autoencoder (DCA) [6], each

cell is represented as a deterministic point or a single latent code in the latent space.

Instead of using a distribution to constrain the latent codes, DCA uses a count-based

distributional loss for reconstruction under the assumptions of data following a Zero-

Inflated Negative Binomial (ZINB) distribution.

The success of VAEs in generation tasks motivated the emergence of controllable

generation, where a single perturbation on one latent factor leads to changes in quan-

tifiable factors of variation [4]. There have been discussions in the community debat-

ing on whether disentanglement benefits downstream tasks, using the latent codes

as input to another method, and the role of variational inference in disentanglement

[7, 8]. Still, we are interested in whether having a distributional constraint on the

latent space improves our cell-type-specific proportion estimation.

Generative Adversarial Network (GAN) is another approach for generation, having

a generator and a discriminator playing a zero-sum game. There is yet a principled

way to combine the benefits of both GAN and VAE. These architectures have dis-

tinct objectives: VAE approximates the posterior distribution, q(z|x), and maximizes

evidence lower bound (ELBO); GAN maximizes the mutual information between a

generator network and a discriminator network. VAE possesses more training sta-

bility compared with GAN, however, its reconstruction quality is inferior to GAN.

Generally, VAE uses an isotropic Gaussian prior to regularizing its latent codes, which

pushes Gaussian balls toward the center. Nevertheless, when the regularization is too

strong, posterior collapse can occur. In the results section, we simulate the strength

of the Gaussian prior to a posterior collapse using βVAE.
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Gene expression profiling is one of the most popular approaches in characterizing

cellular states or disease states [9]. Such profiling technique allows us to observe

the expression pattern of a cell at the transcription level, for instance, tumor evo-

lution and response to treatments [10]. Compared with bulk RNAseq, scRNAseq

profiles individual cells thus capturing cellular heterogeneity within cell populations.

Nevertheless, bulk RNAseq is used in large cohorts of clinical studies due to its in-

expensiveness and experimental simplicity, relative to scRNAseq. For example, The

Cancer Genome Atlas (TCGA) has characterized over 20,000 samples, including nor-

mal and primary cancer samples, across 33 cancer types using bulk RNAseq [11].

These data still hold substantial value in research areas such as cancer classification

[12], risk stratification [13], transcriptome profiling [14], biomarker identification [15],

etc.

Unfortunately, having bulk RNAseq data in abundance does not mitigate its flaw,

namely an inability to account for cellular heterogeneity as bulk RNAseq expressions

are averaged over cells of heterogeneous cell types. Blood and tumor samples are

known for their heterogeneity [16], which posits a challenge for quantifying changes

in gene expression levels. Still, it is possible to uncover the cell type composition of

these samples to correlate with changes in their gene expression. This class of tools

is termed deconvolution or decomposition methods.

Over the years, deconvolution methods have evolved from simple linear regression

methods, such as non-negative least squares (NNLS) [17] and ordinary least squares

(OLS), [18] to support vector regression (SVR), notably CIBERSORT [19] and CIBER-

SORTx [20], to capture existing non-linearity in gene expression profiles. Further-

more, [21] showed that simple linear regression methods without transformation per-

form poorly. Perhaps it is inevitable to redeem non-linearity since gene expression
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data are essentially high-dimensional and sparse. Correspondingly, deep neural net-

works (DNNs) achieve state-of-the-art performance on classification and regression

tasks as a universal function approximator. DNNs’ capacity to model higher-order

relationships within data renders them superior to classical linear regression methods.

[22] developed an ensemble of DNNs called Scaden to estimate cell-type proportions.

They also hypothesized that the hidden layers of a DNN yield non-linear combinations

of optimal features for cell-type deconvolution.
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Chapter 2

Literature Review

2.1 Autoencoder Architectures

We first introduce the simplest autoencoder. It is deterministic, meaning there is no

stochastic sampling occurring in the latent space, nor are the latent codes regularized

by any distributional constraints. Its loss function is reconstruction loss only, which

is usually the Mean Squared Error (MSE):

L(x, y) = 1

n

∑
(x− y)2 (2.1)

Our data input x, which is a vector or a tensor. Reconstructed output/target y is

usually of the same dimension as input x. Finally, we have our number of samples n.

Figure 2.1: Autoencoder architecture

The main components of an autoencoder architecture are an encoder, latent layer(s),

and a decoder. The encoder compresses the input to reduced dimensions, the latent
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layer(s) to perform transformations that yield latent codes, and the decoder recon-

structs the input given the latent codes. This operation is done after many training

iterations until the reconstruction is as close to the input as possible. The benefit

of this three-component framework is three-fold. Firstly, it denoises the data during

its compression phase. Secondly, redundant features are removed in the reduction of

dimensionality. Thus, the neural network’s learning capacity, i.e., the number of hid-

den layers and the dimension of latent codes, becomes a hyperparameter that could

be adjusted according to specific needs. Thirdly, one could exercise anomaly detec-

tion or out-of-distribution (OOD) detection with our models, which can be useful

when attempting to transfer learned knowledge. That said, there is no one-size-fits-

all choice of design for each problem, and we recommend a careful selection of design

choices to optimize model performance.

Next, we have Variational Autoencoder (VAE). This architecture adds variational

inference and reparameterization trick. This is achieved by adding a KL-divergence,

forcing the latent codes to follow Gaussian distribution in the case of Gaussian VAE.

Figure 2.2: Variational Autoencoder architecture

The first term on the RHS is the Kullback-Leibler divergence, and the second term

on the RHS is the likelihood of data at reconstruction. More specifically, q(z|x) is the

posterior, p(z) is the prior, and p(x|z) is the likelihood of data. Being a maximum

likelihood estimation originally, negating the terms yields:
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L(x) = DKL(q(z|x)||p(z))− Eq(z|x)[log p(x|z)] (2.2)

For experiments on image data, we use MSE as reconstruction loss, because our

decoder is continuous Gaussian (greyscale or RGB values). If the data follow a dis-

crete distribution rather than continuous, one could consider count distribution as

reconstruction (e.g. Poisson, Binomial, etc.)

The next question is, what happens when we weigh the KL term differently? β-

VAE[23] does so by adding more penalty on the KL term, strengthening its factorial

prior. The effect of this re-weighting led to disentanglement. Briefly, automatically

isolating factors of variations. For example, a latent factor could be a mixture of

color, shape, orientation, etc. A successful disentangling of one factor is when we

traverse one latent factor, and the rest of the factors remain unchanged.

L(x) = βDKL(q(z|x)||p(z))− Eq(z|x)[log p(x|z)] (2.3)

Then we have β-TCVAE[24], the authors focused on the KL term of the loss, split-

ting the original objective to index-code mutual information, total correlation, and

dimension-wise KL. The authors found that the most useful term for disentanglement

is the total correlation term. Prior work[8, 25] suggests learning a disentangled rep-

resentation, the two important quantities are 1) mutual information between latent

variables and data. 2) independence amongst the latent variables, which is most likely

already addressed by having a Gaussian factorial prior in VAE-like architectures.
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The loss function of β-TCVAE is formulated as follows:

L(x) = −Exq̃(z,x)[log p(x|z)] + αIq(z;n) + βDKL(q(z)||
∏

j

q(zj))

+γ
∑

j

DKL(q(zj)||p(zj))
(2.4)

The first term is the likelihood of data, the second term is the Index-Code Mu-

tual Information, the third term is the Total Correlation, and the last term is the

Dimension-wise KL divergence.

Burgess et al. [26] adds a constant C to β-VAE. This improves reconstruction quality

and information storage. They applied monotonic scheduling of C.

L(x) = γ|DKL(q(z|x)||p(z))− C|− Eq(z|x)[log p(x|z)] (2.5)

2.2 Posterior Collapse

Now that we have seen the most representative model architectures, let us dive into

another big challenge in training variational autoencoders. This problem is often

referred to as posterior collapse, or KL-vanishing, as one can observe the KL term

degenerate to 0 during training. Not to be confused with mode collapse, which

occurs in generative adversarial networks. Extending from the toy dataset, MNIST,

to single-cell gene expression has brought to light identifiability issues in the latent

space. While training VAEs, we observed the posterior quickly collapsed to a single

isotropic Gaussian ball. This led to poor downstream performance in estimating cell

type proportions. To understand the problem of posterior collapse, we showcase the
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ongoing debate in the community and our tools to mitigate such a problem.

There are three major schools of idea.

Firstly, [27, 28, 29] finds the strength of the Kullback-Leibler(KL) regularization be-

ing too strong. The regularization in conjunction with the expected log-likelihood

conditioned on the latent codes forms the Evidence Lower Bound. Thus, heuristi-

cally, one would think the most influential term leading to posterior collapse should

be the KL regularization, which pushes q(z|x) towards prior p(z). Following these

ideas, one trick to mitigate posterior collapse is to warm up, or anneal, the weight in

front of the KL term from 0 to 1. [30] introduced a cyclical annealing scheme that

instead of monotonic annealing, we repeatedly anneal in cycles from 0 to 1, or over a

specified interval. Experiment results show lower reconstruction error and higher KL

divergence.

Secondly, [31] argues posterior collapse is a result of optimization issues, i.e. the

model being stuck at a bad local minimum. Interestingly, when an AE model is stuck

at a bad local minimum, having deeper architecture yields a larger reconstruction

error. In this context, adding a KL regularization term only worsens reconstruction.

[32] analyzed the loss landscapes of probabilistic PCA (pPCA) and linear variational

autoencoder. They found that in pPCA, the stability of the stationary points of the

log marginal likelihood is attributed to σ2. If σ2 increases, we lose our ability to

learn more components. As σ2 decreases, the likelihood at these stationary points

increases. In deep nonlinear VAEs, when σ2 initialization is large, the posterior tends

to collapse towards the prior. Therefore, it is likely that posterior collapse, in some

cases, is an optimization issue.

Thirdly, [33] proposes latent variable non-identifiability, meaning posterior collapse
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occurs when the latent variables could take on two or more values. Consequently,

when we marginalize z, the conditional likelihood becomes the marginal likelihood of

the dataset. This result implies that the posterior collapse is intrinsic to the model

and data, instead of optimization or inference.

2.3 Introduction to scRNAseq analysis

Before we introduce applications of generative models in single-cell RNAseq (scR-

NAseq). Let us revisit the intricacies of scRNAseq. There are two major classes

of scRNAseq technologies [34]. One of them is high-throughput, low-depth, usually

the 10x Chromium platform. The other one is low-throughput, high-depth, isolating

cells into wells followed by SmartSeq2. We then acquire a gene expression matrix

with each entry showing the number of transcripts for each gene per cell. Because

the majority of the genes are only expressed in a small subset of cell types, most

of the expression matrices are zeros. However, some zeros are genes not detected

due to low sequencing depth and insufficient starting material, this is often called

dropout events. Silverman et al. [35] discussed dropout events in detail, where they

tested various zero count models and found disagreement in finding the most differ-

entially expressed sequences. We brief their guidelines as follows: 1) we could simply

use sampling zeros in the model to account for biological zeros. 2) we should avoid

zero-inflated models, as they tend to produce spurious conclusions that ignored differ-

entially expressed sequences. Additionally, they found that zero-inflated models add

bias when sample-specific complete technical processes are absent. In this regard,

they recommend simple models such as Poisson, Negative Binomial to account for

zeros.
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Another noteworthy problem in scRNAseq is batch correction. As described in [34]

technical variations such as time of experiment, technicians doing the experiments,

reagent differences could be present in data. For scRNAseq, we could consider mn-

nCorrect or canonical correlation analysis in Seurat. Nevertheless, there is a possi-

bility of removing biological in the process of batch correction.

It is worth noting the difference between bulk RNAseq and scRANseq. Firstly, bulk

RNAseq measures the average expression level for each gene in a population of cells.

This is useful for comparing samples of the same tissue from different species. How-

ever, bulk RNAseq is insufficient for studying heterogeneity at the cell level. scR-

NAseq solves this problem by measuring the expression levels of individual cells. In

this way, we are able to investigate cell-specific changes. For example, cell type iden-

tification [36], cell responses [37], cell state variations [38], gene regulatory network

inferences [39].

2.4 Applications of Generative Models in scRNAseq

Yu and Welch [40] combined the merits of both VAE and GAN. The training process

of VAEs possesses more stability compared with GANs. Moreover, VAEs tend to

produce more semantically meaningful latent representations yet generate blurry im-

ages. GANs tend to produce sharper images compared with VAEs, but it is notorious

for their training instability. Because single-cell RNAseq data are high-dimensional,

deep generative methods have great potential to extract useful representations, which

could be used for uncovering cellular identity and predicting unseen cell states. This

work is built upon scGen [41], which uses mouse data to predict human cell responses

to perturbation. MichiGAN improves on ScGen’s disentanglement and data gener-
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ation. As for evaluation, they used Spearman correlation, Mutual Information Gap

(MIG), and the one factor of variation disentanglement metric used in FactorVAE

[42]. MIG is the average gap between the largest and the second largest normalized

mutual information, where we look for two latent variables with the largest mutual

information against a given ground truth variable. If the gap is large, then it is very

likely that the ground truth variable is captured by a single latent (largest) variable.

Empirically, PCA has the largest Spearman correlation gap, whereas β-TCVAE has

the best performance in both FactorVAE and MIG metrics. β-TCVAE’s superior

performance in the disentanglement of single-cell RNAseq data is consistent with the

superior disentanglement performance on image data. cscGAN [43] introduced ran-

dom forest error to assess the quality of reconstruction. The higher the error, the

better the reconstruction, being realistic enough to fool the random forest classifier.

Despite having the best disentanglement performance, β-TCVAE has the worst gen-

eration/reconstruction performance. In addition, WGAN-GP [44] performed best at

generation/reconstruction.

MichiGAN attempts to train VAE and GAN in conjunction sacrificed both training

stability and generation. This paper trains a VAE first, and then GAN. GAN can find

complex, multimodal distributions by minimizing the Wasserstein distance between

two distributions, generated vs. true. Use VAE to learn latent codes for GAN, then

use either posterior means or random samples from the posterior as the condition

for GANs. However, the lack of an inference network in GAN prevents us from

measuring the mutual information for the generators. This work could be used for 1)

predicting high-dimensional data from combinations of latent variables and 2) drug

profile expression: First estimate mean profile, then add effects. Interestingly, for

biological data, two hidden layers achieve the best training stability.
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Lastly, despite all the benefits of using this model, one big limitation is that the

latent arithmetic assumes average cell type differences are homogeneous across various

treatments. This assumption may not hold where there exists a strong interaction

effect between cell type and drug treatment.

In the autoencoder survey paper [45], the authors claim multi-omics is the key to

understanding the associated phenotype. Multiomics usually consists of genome, pro-

teome, transcriptome, epigenome, metabolome, etc. By combining multiple datasets,

we are compensating for missing data and errors occurring in a single dataset. This

should more reliably capture the complexity of Rare Diseases, which are diseases

impacting a small percentage of the population and are often undiagnosed.

They provided insights for the following autoencoder architectures/methods. AE’s

dimensionality reduction and reconstruction retain the information that captures the

most variability in the bottleneck layer, leaving out the information with less vari-

ability. SAE [46] has a bottleneck layer enforced by a sparsity loss without reduction

of neurons in the hidden layers. To improve robustness, one could try ensembling

with different random seeds. VASC [47] and scVI [48] used zero-inflated negative

binomial (ZINB) to model scRNA noise. By modeling the noise distribution, ZINB

accounts for RNAseq count distribution, overdispersion, and sparsity. scGEN [41] is

capable of performing vector arithmetic. It learns cell-type and species-specific infor-

mation, separating responding and non-responding cells. scVAE [49] uses Gaussian

or Gaussian-mixture latent prior. Rand index measuring between cluster similarity.

scMM [50] uses statistical multi-omics analysis, learning joint representations that

are interpretable across modalities. DeepDR [51] is a combination of AE and net-

work, i.e. encoder-decoder and a drug response predictor network. It also explored

drug repositioning by converting the topological structure of the network into vector
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representations. The representation is then used to create a pointwise mutual infor-

mation matrix, which is then input to a multimodal deep autoencoder. DeepProfile

[52] combined a pre-trained VAE and a linear model for drug response prediction.

Dr.VAE [53] is a semi-supervised, learning latent representation of gene expression

data. The representation is then fed into a logistic regression classifier. Gene superset

autoencoder (GSAE) [54] has predefined gene sets as a priori, finding the functional

or clinical relevance of learned gene supersets. Gene superset is an unbiased combi-

nation of genesets as nodes the latent, along with weights from training. Multiview

Factorization Autoencoder (MAE) [55] is capable of incorporating domain knowledge.

Autoencoders are also used in correcting batch effect, which is introduced from the

technical variations in experiments, where groups are separated due to non-biological

variations. [56] uses disentangled representation learning to remove batch effect.

Inspired by domain adaptation, this work minimizes the distances among distributions

of various batches, as a single batch or one scRNAseq dataset is analogous to a single

domain. They approach this problem by reserving the mixture of shared cell types and

the independence of distinct cell types by adopting a parameterized gradient reversal

strategy in the discriminator. In addition to the gradient reversal, they also have an

auxiliary classifier to facilitate the integration of shared cell types. The architecture

consists of an autoencoder, a discriminator trained along the encoder for minimizing

distributional differences between different batch distributions, a noise classifier for

predicting batch effect, and an auxiliary classifier to encourage the target batch to be

close to the source batch. The key components to achieving disentanglement are the

noise classifier and the discriminator. They optimize two tasks jointly: 1) batch effect

prediction and 2) reducing the distance between batch distributions. This is achieved

by minimizing reconstruction loss, minimizing classification loss of both noise classifier
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and auxiliary classifier, and maximizing classification loss of the discriminator.

2.5 Disentangled Representations

Do and Tran [57] states that the goal of disentangled learning is to find a set of

independent factors that led to the observation. Unsupervised disentangled repre-

sentation learning typically encourages independence among factors/latent variables,

yet more independence may lead to poor reconstruction. Supervised methods may

be more adequate in matching human interpretation with the latent variables. Cur-

rent challenges are 1) lacking formal definitions of disentangled representations and

2) inadequate robust evaluation metrics. They defined disentangled representation

learning as ”a process of decorrelating information in the data into separate informa-

tive representations, each of which corresponds to a concept defined by humans.” If

the latent codes capture the data distribution well, the mutual information between x

and z should be large, and the posterior q(z|x) should have low variance. To achieve

full interpretability, we need I(zi, yk) = H(zi) = H(yk); for partially interpretable

(to generalize beyond yk), we need I(zi, yk) = H(yk) or H(yk|zi) = 0. They believe

factors should be separated and learned one at a time. There exists a trade-off be-

tween informativeness, independence, and the number of latent variables. A robust

metric for disentanglement should: 1) support both supervised/unsupervised model

2) applicable to real data beyond toy datasets 3) does not require additional training

effort and hence computationally straightforward 4) consistency 5) agrees with visual

evaluation. The authors introduced various evaluation metrics to assess disentangle-

ment. MISJED addresses the flaw in the original mutual information definition by

introducing joint entropy. This changes the objective from noisy and independent to
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informative and independent. WSEPIN and WINDIN concern the residual informa-

tion not captured by a single latent code. Both use I(x, zi|z !=i), which measures how

disentangled a latent code is when the ground truth factors are absent. This quantity

should be close to 0 if the latent code is all noise, and large if zi are disentangled in

terms of informativeness and separability.

Later on, Locatello et al. [7] questioned assumptions of disentanglement. Firstly,

the dimensions of the aggregated posterior are not guaranteed to be independent.

Secondly, unsupervised disentangled representation learning is more contingent on

random seeds and hyperparameters. Thirdly, there is a lack of evidence that disen-

tanglement helps with downstream tasks.

The main conclusion of this paper is that it is impossible to learn disentangled rep-

resentations in an unsupervised manner without adding inductive biases on both

models and data. Inductive biases are extra assumptions such that the model can

generalize to unseen data. These biases can be inherent to model architectures. For

example, one of the most popular architectures in computer vision is a convolution

neural network, and one of its inductive biases is the locality assumption, i.e. neigh-

boring pixels are relevant in the receptive field. Similar to the situation in section

2.2, identifiability is again brought to our attention. Given a set of observations x,

we can find infinitely many generation models with the same marginal distribution,

and the true generation model becomes unidentifiable.

To explain the identifiability issue more formally, let us look at the proof of Theorem

1 in the paper.

We also note that the general sampling process is z ∼ P (Z) and x ∼ P (X|Z).

Overall, the idea of this proof is to find a set of transformations for functions that
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Notation Meaning
P (Z) Prior distribution of the latent space

P (X|Z) Generative distribution
P (Z|X) True posterior
Q(Z|X) Varitational distribution approximating the true posterior
r(X) Learned representation, usually the mean of Q(Z|X)

Table 2.1: Helpful notations for proof of Theorem 1

are invertible with nonzero Jacobian and have the same distribution marginal distri-

bution P (X). To begin with, we take the densities p(z) = Πip(zi), where i refers to

the ith dimension, transform to cdf gi(v) = P (zi ≤ vi) such that g(z) ∼ U . We then

transform g with hi(v), which is the inverse of Guassian cdf hi(v) = ψ−1(vi) so that

h(g(z)) ∼ N (0, I). The next step is critical, which is finding a set of orthogonal matri-

ces A with nonzero entries. To do this, we use Householder transformation to obtain

A, and our operations so far are Ah(g(z)). Finally, we undo our transformation with

h−1, g−1. Finally, we name this sequence of operation f(u) = g−1(h−1(Ah(g(u)))),

where u ∈ supp(z).

In summary, z and f(z) are entangled because the Jacobian fi(u)
uj

%= 0, meaning

changing one dimension in z leads to changes in all dimensions in f(z). Even worse,

z and f(z) have the same marginal distribution, hence it is impossible to identify the

disentangled model.

Alemi et al. [58] also proposed ways to mitigate uninformative latent code issues.

They addressed that most loss functions only depend on p(x|θ) instead of p(x, z|θ),

thus not considering the quality of learned latent representations. More specifically,

if we have a powerful decoder, it is possible to acquire a high marginal p(x|θ) without

using z. Therefore, a good marginal likelihood or a good evidence lower bound does

not necessarily mean we learned good latent representations. The authors postulated
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that by measuring the mutual information between observed variable x and latent

variable z. Because this problem is intractable, there is a need for deriving variational

lower and upper bounds. Moreover, there exists a trade-off between data compression

and information retention. Such a trade-off is represented by a Rate-Distortion (RD)

curve in information theory. Rate (R) measures the average KL divergence between

encoder distribution and learned marginal distribution. Distortion (D) measures the

reconstruction. Echoing Locatello et al [7], having ELBO = −(D + R) in the RD

plane, there is no difference between models that depend on informative latent rep-

resentations and models that do not depend on latent representations at all. The

authors also proposed a solution to posterior collapse, which is simply using β < 1.

Mita et al [59] proposed a prior with ground truth factor information encoded in an

auxiliary observed variable. With the learned network approximating the posterior,

one can reuse the approximate posterior as a prior for another generative model.

CausalVAE uses a Causal Layer, converting independent exogenous factors into causal

endogenous factors.
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Chapter 3

Methodology

Our autoencoders have two main components Fig. 3.1 (A, B), an autoencoder model

and a proportion estimation network. The first component has two variations, au-

toencoder, and variational autoencoder. More specifically, we designed a shallow au-

toencoder (SHAE), a non-linear autoencoder (NLAE), and a variational autoencoder

as a form of ablation study. Both variations reduce the dimensions of the input gene

expression matrix via complex non-linear transformation. The second component

Fig. 3.1 (C) estimates cellular proportions with a separate neural network connected

to the output layer of the encoder. The use of the autoencoder’s latent representation

reduces computational cost because we are not directly using the full gene expression

matrix as input to our proportion estimation network. Moreover, the encoder-decoder

framework reduces noise in the latent representation through compression.

3.1 Generating Latent Representations

By design, we reduce the dimensions as well as preserve maximum information in the

bottleneck layer imposed by reconstruction loss. The preservation of information in

the information bottleneck (IB), where latent codes reside, is enforced by a negative

log-likelihood loss with the Poisson distribution of the target, which accounts for

sparsity and the very nature of count data.
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Figure 3.1: (A) General model architecture for autoencoder. Its input layer takes the
full raw count gene expression data x. Followed by an encoder f(x) that compresses
input into latent codes. Then, a decoder g(f(x)) attempts to reconstruct the full
gene expression matrix. (B) Similar to AE, VAE adds an additional distributional
constraint on the latent codes, forcing them to conform to isotropic Gaussian dis-
tribution (C) is our deconvolution network, the encoder is frozen to retain learned
parameters from training on scRNAseq data. In addition, the frozen encoder of the
deconvolution network takes simulated bulk RNAseq as input, and output cell type
fractions, given a number of cell types.
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Our autoencoder is deterministic, meaning its latent codes are not regularized by

any distributional constraints. This gives the latent space more freedom to encode

compressed information. To model the raw counts directly, our reconstruction loss is

based on the Poisson negative likelihood:

LAE(x, y) = fd(fe(x))− y × log(fd(fe(x))) + log(y!) (3.1)

where y is the gene expression input, fe is the encoder, fd is the decoder, and fd(fe(x̂))

is the reconstructed output.

VAE adds variational inference and reparameterization to produce a more versatile

latent space. The use of Gaussian distribution allows the latent codes to spread

smoothly, forcing the latent codes to follow Gaussian distribution, on top of the

original reconstruction loss of the AE.

LVAE(x, y) = −DKL(q(z|x)||p(z)) + Eq(z|x)[log p(x|z)] (3.2)

where Eq(z|x)[log p(x|z)] = L(x, y) = x−y×log(x)+log(y!). The first term on the RHS

is the Kullback-Leibler divergence, and the second term on the RHS is the likelihood

of data at reconstruction.

3.2 Assigning Cell Type Labels

In practice, cell type assignment is done after clustering analysis given a set of marker

genes for each cell type. Such a procedure is manually laborious and time-consuming

in selecting marker genes, plus adding subjectivity to the assignment. Therefore,

instead of annotating cell type manually, we use a recently established fully automated
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cell type annotation pipeline, scType [36], to label our cells. Aside from its efficient

cell type identification, scType offers a marker gene database as a reference. Moreover,

scType is capable of differentiating between healthy and malignant cell populations.
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Figure 3.2: PBMC3k Cell Type Annotation by scType. scType uses UMAP to visual-
ize a reduced dimension of cell representation. The colors show cell-type assignments.

Since we have two datasets in the absence of cell type assignments, we run scType for

both PBMC3k and PBMC20k datasets. In Fig. 3.2, we see that T cells are closely

clumped together, whereas monocytes, platelets, and dendritic cells are grouped to-

gether. Naive B cells are further away from the two groups. In Fig. 3.3, we can see

the same pattern, but with more diverse cell types. Notably, we see an unknown col-

lection of cells between natural killer cells and groups of T cells. Overall, the quality
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of cell type annotation is satisfactory. After executing scType annotation pipeline,

cell type annotations are saved as labels for simulating bulk samples.
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Figure 3.3: PBMC20k Cell Type Annotation by scType.

3.3 Deconvolution

Our deconvolution task figure. 3.1(C) begins with generating simulated bulk RNA-seq

data [22].

In order to simulate bulk RNAseq data, we first generate cell-type-specific fractions

rcell from U(0, 1). Then, we scale the cell fractions such that all cell-specific fractions
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sum to one:

fc =
rc∑
c r

i
c

. (3.3)

The number of cells for each cell type, Nc, to aggregate is simply Nc = fc × Ntotal,

where Ntotal is the total number of single-cell samples within a simulated bulk sample.

In this work, we set Ntotal = 500. Finally, we randomly sample Nc single-cell samples

from scRNAseq data for each cell type. Finally, a single simulated bulk sample is
∑

c Nc. We simulated 100,000 samples for our deconvolution task.

We treat the simulated bulk samples xb as input to our pre-trained encoder fe(xb).

The model parameters of the encoder are frozen, which means the weights wi and

bias bi remain constant. In this way, we are reusing the encoding process learned

from scRNAseq data. Model parameter updates only occur at the three layers after

the latent code layer. Doing so prevents the downstream neural net from learning

shortcuts [60] that are considered spurious correlation, which sometimes drive better

model performance, yet do not necessarily reflect the desirable patterns underlying

observations. For example, a deep neural net may learn to use the background ’grass’

to classify ’cows’, while not learning the recognition of cows, hindering model gener-

alization outside of grassy backgrounds [61]. In the context of medical applications,

a machine learning model trained on X-ray scans to detect pneumonia was revealed

to classify scans based on the hospital tokens instead of the lungs themselves. This

implies that a deep neural net may learn undesirable characteristics of input and use

those to output unreliable predictions.

We conjectured the latent codes from the autoencoder to perform better at deconvolu-

tion compared with its variational counterpart. An autoencoder is distribution-free at

the bottleneck layer which yields latent codes z = fe(xb), meaning it is deterministic

and is free to model latent codes with fewer constraints.
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However, this leads to worse generalization capabilities as the latent codes are less

regularized and more likely to spread out, leaving holes in the latent space like Swiss

cheese. For example, suppose we have a datapoint x̂ that is not a simulated bulk

sample, its latent code ẑ = fe(x̂) should deviate from the latent codes of simulated

bulk samples, and one can observe an increase in the reconstruction error LAE =

y − fd(fe(x̂)), where y is the input of the deviant, and fd(fe(x̂)) is the reconstructed

output of the deviant if we use L1 as loss function. The property gave birth to an area

called anomaly detection, which utilizes a classifier to separate the normal dataset

from the anomalous dataset [62]. In short, we find an anomaly score ε such that if a

sample exceeded ε, i.e. LAE = y − fd(fe(x̂)) > ε, it is considered anomalous. Surely,

when our dataset has fewer outliers, holes are of minor concern.

Variational autoencoder has more control over the spread of its latent codes con-

strained by an isotropic Gaussian prior. Gaussian distribution is one of the most

popular choices due to its symmetry and closed-form solution. In particular, its

encoder has a posterior distribution pθ(z|x). We see that each latent code z is condi-

tioned upon the new datapoint, and each latent code is sampled from a multivariate

Gaussian distribution given µ,σ, which are learned by the VAE. Visually, this con-

straint gathers the latent codes into isotropic Gaussian balls, where similar latent

codes are grouped within the same ball. Formally, it means our Gaussian distribu-

tion has a covariance matrix Σ = σ2I, with constant variance in all directions, plus

such a simplified form saves computational cost drastically.

In short, an autoencoder benefits from having more flexibility in the latent space,

whereas a variational autoencoder is advantageous for the compactness of its latent

codes.

Because our simulated bulk samples are aggregated scRNAseq samples, the latent
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codes at the output layer of the frozen encoder are no longer within the same space

as the latent code produced by training on scRNAseq data. To clarify, we now have

a different set of samples xb =
∑

c Nc, where c denotes cell types. Thus, we need

another neural net h(·) to learn a mapping from Rlatent dim. → Rn such that the

learned proportions h(fe(xb)) ∈ Rn are close to that of ground truth fractions y.

The proportion estimator has three layers, each layer having matching dimensions

with the latent codes. The output layer is of the same dimension as the number of

cell types. We hypothesize that our deconvolution performance is contingent on the

quality and/or consistency of cell-type annotations.

Our loss function for the proportion estimation network is the Mean Squared Error

(MSE), also known as the L2 loss, between predicted proportions x ∈ Rn and ground

truth proportions y ∈ Rn, where n is the total number of cell types.

LProp.Est.(h(fe(xb)), y) = ‖h(fe(xb))− y‖22 (5)

In addition, we used LeakyReLU(·) as our activation function to enable faster gra-

dient updates, followed by Softmax activation:

Softmax(h(fe(xi
b))) =

eh(fe(x
i
b))

∑
j e

h(fe(x
j
b))

(6)

to output cell-type-specific fractions. Multiple gradient updates per step are facili-

tated by mini-batching of size 10. It is also worth mentioning that our autoencoders

did not see all of the single-cell training examples due to an 80/20 train/test split,

i.e. 20% of the scRNAseq data is unseen for the encoder. We also used the same

80/20 splitting ratio for training our proportion estimator. Furthermore, when we

simulated bulk RNAseq data, we randomly sampled from the entire scRNAseq data
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before aggregation.

The distinction between our method and a black-box feedforward neural network

is that we utilize the latent representation as input instead of the full expression

matrix. This reduces computational load, and the quality of compression in the latent

representation is ensured by the autoencoder architecture. Moreover, our proportion

estimation network can be interpreted as a regression task, having output proportion

estimates as response variables.
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Chapter 4

Results

4.1 Datasets

We choose a peripheral blood mononuclear cells (PBMC) dataset of eight Purified

cell types, from [63], containing filtered raw counts and cell type annotations. We did

not All datasets used in this work are publicly available1.

Name # samples # cells # cell types
Zheng et al. 2017 29 80,830 8

3k Human PBMCs 1 2,700 9
20k Human PBMCs 1 18,470 14

Table 4.1: PBMC datasets used in this work.

There are lymphocytes, monocytes, and dendritic cells in PBMC data, and their

fractions in the cell population vary. Lymphocytes are expected to be in the range

of 70-90%, monocytes from 10 to 20%, and 1-2% of dendritic cells [64]. Still, the

proportions of the cell population are contingent on the donor’s physiological status,

hence a need for multiple donors that allows the model to generalize. The Purified

PBMC dataset we used has 29 samples, with 80830 cells in total and 32738 genes

per cell. Our input is the raw data and we do not perform any additional data
1Data available online: 1. Zheng et al. 2017 [63]; 2. PBMC3k from Seurat, Guided Clustering

Tutorial; 3. 20k Human PBMCs, 5’ HT v2.0., from 10x Genomics
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preprocessing steps, as [63] is already filtered. The other two datasets, however, do

not have multiple samples, but they are from a healthy donor.

4.2 Evaluating Latent Representations

Figure 4.1: t-SNE visualization of latent codes encoded by Shallow Autoencoder
(SHAE)

4.2.1 Qualitative Evaluation

Our latent representation is illustrated as follows, each generated latent code has

dimension 100, compressed by the encoder of an AE. The latent visualizations are

produced by running t-SNE and cell type annotations are given [63].

We see that the latent codes are grouped and well-separated from the shallow au-

toencoder Fig. 4.1. The deeper autoencoder achieved similar separation Fig. 4.2. As

expected, the latent codes of the VAE is more spread out 2.2, yet T cells are blended

more tightly.
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Figure 4.2: t-SNE visualization of latent codes encoded by Deep Autoencoder (NLAE)

Adding non-linear activations to the model architecture Fig. 4.2, we modeled non-

linear combinations of features with a non-linear autoencoder. We see a clearer sep-

aration between cell types, though the shapes of these clustering are more irregular

compared with the shallow autoencoder. Moreover, cytotoxic T and naive cytotoxic

grouped together while the cytotoxic T cluster is further apart.

Figure 4.3: t-SNE embedding visualization of latent representations produced by the
encoder of Variational Autoencoder (VAE).
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4.2.2 Quantitative Evaluation

We use the Silhouette score as part of our criteria for stopping the training of autoen-

coders. Together with qualitative inspection of the latent codes, we double-check the

status of autoencoders to prevent overfitting. The table of Silhouette score is listed

as follows, see Table. 4.2. We took the peak of the score over training epochs as our

second stopping criterion.

Architecture Max. Silhouette score
SHAE 0.4220
NLAE 0.4763
VAE 0.1852

Table 4.2: Silhouette score of Purified PBMC t-SNE embedding.

Interestingly, VAE maintained a decent deconvolution performance despite its lower

Silhouette score.

4.3 Evaluating Proportion Estimator

We compare our method with Scaden [22]. The shallow autoencoder is the top per-

former of the three autoencoder architectures we tested. Among the three datasets,

our autoencoder architectures are more accurate on the Purified PBMC dataset. We

see a more pronounced performance drop in estimating the proportions of simulated

bulk from PBMC 20k, possibly due to confounding cell types. A sample deconvolution

output is shown in Fig. 4.4.

Additionally, looking at the specific cell type fractions shown in Table 4.3 and Table

4.4, we can see our shallow autoencoder performed better in estimating cell fractions

of T cells, approaching ±0.002 from groundtruth fractions.
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Model B cells CD34 CD56 nk Cytotoxic T
Scaden 0.158 0.064 0.175 0.157

SHAE (Ours) 0.169 0.068 0.163 0.175
NLAE (Ours) 0.154 0.064 0.166 0.180
VAE (Ours) 0.156 0.067 0.161 0.178

Ground Truth 0.163 0.061 0.175 0.176

Table 4.3: Specific proportion estimates and groundtruth proportions of Purified
PBMC, corresponding to the same sample in Figure 4.4.

Model Memory T Naive Cytotoxic Naive T regulatory T
Scaden 0.065 0.097 0.137 0.146
SHAE 0.063 0.090 0.140 0.134
NLAE 0.072 0.092 0.112 0.160
VAE 0.059 0.087 0.135 0.158
Truth 0.065 0.085 0.139 0.136

Table 4.4: Table. 4.3 continued.

Dataset Method Pearson’s r RMSE R squared
Purified PBMC Scaden 0.988 0.010 0.972

SHAE 0.980 0.013 0.955
NLAE 0.962 0.018 0.918
VAE 0.953 0.020 0.904

PBMC 3k Scaden 0.998 0.004 0.996
SHAE 0.978 0.014 0.952
NLAE 0.985 0.013 0.963
VAE 0.919 0.023 0.846

PBMC 20k Scaden 0.960 0.009 0.922
SHAE 0.929 0.014 0.848
NLAE 0.887 0.020 0.774
VAE 0.919 0.016 0.827

Table 4.5: Evaluation on all three PBMC datasets with Pearson’s r, Root Mean
Squared Error (RMSE) and R squared, averaged over random test samples.
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Figure 4.4: Deconvolution output of cell-type-specific fractions estimated from a ran-
dom sample.

Our benchmarking results, Table. 4.5, show that Scaden remains the top performer.

One explanation for this compromise in accuracy is that we have a denoising step

before the deconvolution net and it may have removed some of the signals beneficial

to the deconvolution. Despite that, it is easier for us to detect out-of-distribution

samples with our two-step process by either looking at the latent visualization or the

behaviors of loss functions. In addition, our deconvolution allows us to inspect the

composition of the latent layer, thereby having a heuristic opportunity to prevent the

upstream autoencoder from overfitting or over-regularizing by stopping the training

early.

The shallow autoencoder (SHAE) performs best among our three autoencoder archi-
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tectures. This is likely because cell types were annotated with PCA involved such

that a shallow linear autoencoder is akin to a linear matrix factorization, hence having

an encoder architecture close to PCA is potentially beneficial for deconvolution.
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Chapter 5

Discussion

The flexibility of deep learning allows us to investigate from fine-grained cell states

to coarser-grained cell types [65]. For tasks that are linear in nature, for instance,

deconvolution of cell types, it is sufficient to use a shallow autoencoder followed by a

deep neural net for deconvolution. In fact, shallow autoencoders are rather suitable

for sparse data [66]. For tasks that are more sophisticated, such as modeling cell

states, that are non-linear and require incorporation of biological structure, we need

a more complex model architecture to capture such structure. Existing works such

as density-tree biased autoencoder [67] show differentiated cell states and biological

structures. In fact, our visualizations of the latent codes presented similar hierarchical

structures, more so in a nested manner, showing more diversity amongst T cells. After

all, as stated in [67], autoencoders alone do not automatically uncover meaningful

hierarchical properties, and the trick is to choose a reasonable prior.

It is noteworthy that we encountered challenges in training the autoencoder, especially

VAE. Due to the sparsity and high dimensionality of our single-cell data, the posterior

quickly collapsed towards our Gaussian prior. To solve this problem, we tried many

tricks ranging from warming-up and cyclical annealing to early stopping. We found

that early stopping is the most useful. In deciding when to stop training, we use the

peak of the Silhouette Score over training epochs as well as visual inspection of the

latent codes.
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We also note that our model is dependent on the quality of cell-type annotation given

by datasets or annotation pipelines, to fully streamline an analysis that involves

cell-type annotation, it is better to fully integrate an annotation pipeline into the

neural network, possibly in the forms of classification modules, clustering-based loss

functions, etc.
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Chapter 6

Conclusion

Among three candidate architectures in the context of estimating cell-type-specific

fractions, shallow autoencoder, deep non-linear autoencoder, and variational autoen-

coder, we found that shallow autoencoder performs best, and is closest to state-of-

the-art. There has been an ongoing controversy [68, 69] regarding whether disentan-

glement improves downstream tasks.

In our empirical analysis, our VAE performed worse than an autoencoder. Conclu-

sively, modeling single-cell data with autoencoders appears to be a promising direction

as the cost of single-cell sequencing technology decreases. With more data, we could

achieve better reconstruction and obtain informative latent codes to further advance

disease classification and drug re-purposing.
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