

FSAE Data Acquisition Corner Board

A Technical Report submitted to the Department of Electrical and Computer Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

Ethan Jacobson

Spring, 2025

Technical Project Team Members

Jack Basinet

Jack Hebert

Casey Ladd

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Todd Delong, Department of Electrical and Computer Engineering

FSAE Data Acquisition Corner Board

I. STATEMENT OF WORK

Each team member has experience in both hardware and software development. Team debugging, parallel
development, and collaboration were staples of our system design.

Jack Basinet:
In tandem with Ethan, I spearheaded hardware and PCB design. I led the creation of all the power and CAN
systems for our device, performing intensive research, component selections, schematic design, PCB routing, and
device testing. This work spread across multiple PCB iterations and design changes. Managerially, I took on meeting
planning, time and deadline management, and contributed to part orders. Additionally, I designed our team logo.

Jack Hebert:
Alongside Casey, I primarily focused on building and testing the software. I specifically led the combination and
debugging of the final program. I also added documentation to the code so that VME can easily adjust it for their
future needs. Behind the scenes, I also handled bookkeeping for our group.

Ethan Jacobson:
As the electrical team lead of the client, Virginia Motorsports, I defined system-level requirements and planned the
design around integrating the system with the car. I also communicated with the data acquisition team lead, Michael
Clark, to ensure the project stayed up to date with changes to the car.

I designed the embedded Teensy 4.1 circuit and its integration into the CAN and power modules. I also managed
the project’s Altium symbol and component library and routed the transceiver breakout board, the first debug board,
and the final six-layer embedded board.

Casey Ladd:
I focused on writing and testing the device software. Specifically, I performed CAN and Teensy communication
research, wrote the data collection and transmission code, and supported hardware with design specifications.
Managerially, I hosted, managed, and organized our communication platforms.

2

II. TABLE OF CONTENTS

I Statement of Work 2

II Table of Contents 3

III List of Figures 3

IV Abstract 4

V Background 4

VI Project Description 4
VI-A Performance Objectives and Specifi-

cations 4
VI-B Functionality 5
VI-C Technical Details of Design Process . 7
VI-D Test Plans 11

VII Physical Constraints 13

VIII Societal Impact 14

IX External Standards 14

X Intellectual Property Issues 14

XI Timeline 15

XII Costs 15

XIII Final Results 15

XIV Engineering Insights 18

XV Future Work 18

XVI References 19

XVII Appendix 21
XVII-A MCU schematic 21
XVII-B Transciever and connector schematic 22
XVII-C Final board BOM 23
XVII-D Corner Board Code 24
XVII-E ECU / CAN 2.0 Emulator code . . . 28
XVII-F Final PCB Routing 30

III. LIST OF FIGURES

1 VM24 in the paddocks at Michigan In-
ternational Raceway 4

2 Diagram of components of the CAN Bus 4
3 Hardware design flow chart 5
4 MCU bootloader (U7), flash memory

(U5) and external oscillator (Y1) circuits 6
5 3.3V supply 6
6 5V supply 6
7 Schematic of input and output connectors

on board 6
8 ARM Cortex M7 Processor with Labeled

Analog Data Pins 7
9 CAN Transceivers 7
10 TCAN3414 transceiver board used in

software testing. 9
11 CAD of the first iteration of embedded

Teensy board 9
12 CAD of final integrated MCU 9
13 Fully populated embedded MCU board . 10
14 CAD of debug board with socketed

Teensy 4.1 10
15 Teensy 4.1 socketed into debug v2 board

(backwards and upside down) 10
16 Teensy Reference Card 10
17 Power on sequence test setup 11
18 Teensy 4.1 socket board setup for soft-

ware testing 12
19 50mV pkpk DCDC ripple voltage 13
20 Project schedules for the different phases

of the project. 16
21 Final Test Results 17
22 Debug Board Capacitor Explosion 18
23 Whizoo Controleo 3 reflow oven 18
24 Total MCU schematic 21
25 Transciever, connector, and LED schematic 22
26 Gerber files for final board PCB. Ground

planes not shown 30

3

FSAE Data Acquisition Corner Board

IV. ABSTRACT

This project is about updating and simplifying the
wheel sensor data acquisition process for Virginia Mo-
torsports Education’s (VME) FSAE car (VM25). The
customer competes in the Formula Society of Automotive
Engineers (FSAE) competition each year and is iterating
on the data acquisition hardware and software for the new
car. The current system has each sensor in each wheel
wired directly into the central data computer, which will
be replaced by a single CAN bus data line connecting the
four wheels. Each sensor will send its analog signal to
its wheel’s sensor board, which will be multiplexed into
a digital signal and then sent out to the central computer
via the CAN protocol.

V. BACKGROUND

This project aims to develop a unified data system for
VME’s VM25, which will be implemented for the 2025
FSAE competition. The system will replace individual
analog data wires with CAN bus transmission, stream-
lining data transfer between modules and the central
data computer, an Nvidia Jetson. Specifically, this project
focuses on developing the hardware and software to
convert analog data into CAN bus signals, working
in parallel with VME’s data acquisition team as they
develop the software for the Nvidia Jetson and select
sensors for the car.

Fig. 1: VM24 in the paddocks at Michigan International
Raceway

The CAN (Controller Area Network) bus protocol is
commonly used in automotive applications for its high

data rate, reliability, and flexibility for connecting a
variety of electronic control units (ECUs) to a single data
line. Its components are shown in figure 2.

Fig. 2: Diagram of components of the CAN Bus

Currently, VME’s CAN bus is used for transmitting
wheel speed data and controlling the electric motor via
the vehicle control unit (VCU). However, data from
suspension linear potentiometers, brake temperature, and
tire temperature sensors, critical for design validation, are
not integrated into a unified system. This project will
address this gap, significantly reducing wiring harness
complexity by transmitting all data via the CAN bus.

The project builds on prior experience in Altium De-
signer, CAN bus interfacing, and coursework, including
Intro to Embedded Systems, the ECE Fundamentals se-
ries, Computer Architecture, and Dependable Computing
Systems.

VI. PROJECT DESCRIPTION

A. Performance Objectives and Specifications

The board will connect to the VM25 harness, in-
terfacing with CANH, CANL, 24V, and CAN ground
wires. It supports connections for a wheel speed sensor, a
linear potentiometer, and CAN 2.0 sensors for brake and
tire temperatures. The board operates with the CAN FD
protocol at 5.6 Mb/s, with the ability to scale down to 1
Mb/s to ensure compatibility with existing car systems.
To minimize noise on the CAN lines, EMC measures
such as bypass capacitors, choke filters, ESD diodes, and
differential pair matching are incorporated.

The board must withstand power and communication
faults during dynamic FSAE events and be compact,

4

FSAE Data Acquisition Corner Board

resulting in a 3” x 1.125” footprint. It is able to tolerate
EMI in order to ensure that there is no more than a
10% increase in CAN errors during idle operation and is
vibration-resistant, utilizing SMD components and AEC-
Q100-rated ICs [1]. Finally, it operates on the car’s 24V
DC grounded low-voltage (GLV) system.

B. Functionality

Fig. 3: Hardware design flow chart

The sensor data processing is done by embedding a
Teensy 4.1 onto a custom PCB; this allows us to meet
our space and signal integrity requirements, as opposed
to socketing a Teensy 4.1 into a custom PCB with the
power and CAN hardware.

The flow chart in figure 3 shows the system design of
the board hardware. The modules involved are the MCU,
programming, power, CAN out, and sensors in.

MCU and Programming Module Overview:

The MCU is a MIMXRT1062 series ARM Cor-
tex M7 processor, programmed using a preprogrammed
MKL02Z32 bootloader chip from PJRC. It uses a
W25Q64JVXGIM chip for 64 Mb of serial memory
storage and an external 24 MHz oscillator for timing,
as shown in Figure 4.

The bootloader interfaces with the MCU’s JTAG pins
to flash code and completes the hardware power-up
sequence by asserting pin 3 high, enabling the MCU’s
onboard DC-DC converter to supply SOC voltage. A
tactile switch pulls PTB2 on the bootloader to ground
to initiate programming mode, with LED D5 indicating
this status.

Power Module Overview:

24V power is converted to usable levels by two in-
dependent DCDC regulators, one for 5V (figure 6), and
one for 3.3V (figure 5). The 5V regulator powers the
IR temperature sensors and initial power in the MCU
power-on sequence.

During the power-on sequence, the MCU is able to
activate the 3.3V DCDC in Figure 5 to supply power
to GPIO, transceivers, memory, bootloader, and analog
sensors. The TPS62177 is fixed at 3.3V output compared
with the TPS62175 used for the 5V output (Figure 6) [2],
[3].

Sensor Data and Software Module Overview:

The board interfaces with the CAN bus in the VM25
harness and the four sensors in the suspension assembly,
as illustrated in Figure 7. Hirose GT32 series shielded
automotive data cables were selected for both input
and output connections, using 4-pin and 19-pin variants,
respectively [4].

The 4-pin input connector carries CANH, CANL, 24V,
ground wires. The 24V line is fused at 500mA and
filtered with a 120-ohm ferrite. The board supports a
suspension travel linear potentiometer, a hall effect wheel
speed sensor, and two CAN 2.0 IR temperature sensors,
which connect via the 19-pin shielded GT32 output
connector.

Sensor data is processed by the MCU via the analog
pins shown in Figure 8, which follow the same layout
as the Teensy 4.1, enabling their use for analog-to-
digital conversion and CAN bus communication. Linear
potentiometer and wheel speed sensors connect to analog
pins with ADC functionality, while the tire and brake
temperature sensors, after passing through the CAN 2.0
receive transceivers, communicate with the MCU via one
of the three CAN TX and RX ports labeled as CAN B.

These sensors ([5], [6] transmit 8-byte CAN 2.0 sig-
nals to the transceivers. The MCU software integrates all
sensor data into a single 64-byte CAN FD message. This

5

FSAE Data Acquisition Corner Board

Fig. 4: MCU bootloader (U7), flash memory (U5) and external oscillator (Y1) circuits

Fig. 5: 3.3V supply

Fig. 6: 5V supply

consolidated data is sent using the TX and RX ports of
another CAN interface, labeled CAN A.

CAN Module Overview:

The two pairs of TX and RX data lines from the

Fig. 7: Schematic of input and output connectors on
board

MCU feed into the receiving and transmitting CAN
transceivers, shown in Fig. 9. The CAN 2.0 input
transceiver reads the sensor input CAN package on
the differential pair, CAN B H and CAN B L, and
drives the input TX and RX lines accordingly. The
CAN FD output transceiver takes the combined data
packages from the MCU and transmits them efficiently
on the protected output differential pair: CAN A H and
CAN A L. These input and output CAN H and CAN L
lines are optionally terminated, depending on the client’s
implementation, protected from high-frequency spikes

6

FSAE Data Acquisition Corner Board

Fig. 8: ARM Cortex M7 Processor with Labeled Analog Data Pins

Fig. 9: CAN Transceivers

by bypass caps, and shielded from static discharge by
TVS Diodes. Additionally, the CAN FD transmission
is fed through a common mode choke to filter out
electromagnetic interference and stabilize the higher data
rate signals.

C. Technical Details of Design Process

The design process followed several stages: research,
schematic development, test board development, test
board debugging, final board design, and final board
testing.

Power, transmission, and data reception research and

schematic development closely followed product stan-
dards. The documentation for the voltage regulators
used contained component selection recommendations
and routing layouts. Bypass caps around the DCDCs
stabilize input and output ripple, and the inductor and
resistor in the control loop are device standard and limit
ripple current. Additionally, with the 5V regulator, the
pair of resistors (R5 and R6) set the output to 5V with
a standard device reference voltage (Vref) of 7.4V and
the following formula [7]:

R1 = R2 (
Vout

Vref
− 1)

Placing and routing custom on-board regulator circuits
involved closely following device standards [7]. The
component placement had to carefully follow recommen-
dations to keep short current loops, clear power ground
return paths, and strategic bypass capacitor placement
to best protect the IC and provide a stable output.
Routing needed beefy traces for the current flow, proper
output/input ground pathing, and strategic via use.

The chosen industry-used CAN Transceivers were

7

FSAE Data Acquisition Corner Board

selected for their 3.3V operating voltage and high bit
rate potential [8]. Component selection for these devices
was also driven by documentation. Bypass caps of 100pF
paired with the CAN termination resistance of 120Ω filter
out high-frequency noise with a low-frequency passband
cutoff of around 10MHz:

1

2π(120)(100 · 10−12)
= 13.3MHz

This cutoff leaves enough passband for a maximum
bitrate of 8Mbps or around 4MHz (one bit ≈ half period).
Additionally, the caps are kept small to avoid slowing
bus speed and adding to power consumption. The chosen
ESD diodes are designed for CAN application. On the
CAN FD transceiver, a common mode choke is also
designed for CAN applications and added to the series
for current stability and the noticeably higher bit rate
[9], [10]. Lastly, CAN bus realization involved matched
differential pair routing and tight component packing for
line protection.

Of note, at the beginning of the project, we planned on
only designing a single regulator and CAN transceiver.
Further communication with the motorsports club re-
vealed the necessity for 5V power for the on-car sensors
and a second transceiver to read the temperature sensors
at a lower bit rate. This change turned out to be helpful,
as the bootloader power-up sequence also needed 5V
[11], [2].

The MCU and its peripheral ICs were designed by
referencing the schematics for the Teensy 4.1 [3], [12].
We chose to emulate this microcontroller because VME
has chosen it as the main MCU to power VM25’s battery
management main board, dashboard, and vehicle control
unit, and keeping microcontroller architecture consistent
throughout the car will improve design flow across the
car.

The Teensy 4.1 is based on Arm Cortex M7 archi-
tecture with a 600 Mz clock speed, 18 analog i/o pins,
55 digital i/o pins, 8 serial, 3 SPI, 3 I2C, and 3 CAN
ports, of which one has CAN FD support. Its massive
feature count combined with its small size make it perfect

for motorsports applications. The board alone does not
meet the performance requirements for the project since
it lacks CAN transceivers to physically interface with
the CAN bus, cannot run on 24V power, and does not
include shielded data connections. Likewise, socketing a
Teensy 4.1 onto a PCB with the power and transceivers
is not sufficient since the 2.54mm headers are not AEC-
Q100 compliant. Therefore, the project must embed the
hardware of a Teensy 4.1 directly onto a custom PCB.
Fortunately, the Teensy 4.1 schematic is open source and
the programmed bootloader chip used to flash code to
the MCU is sold by PJRC, this will eliminate issues with
low level programming and reduce the complexity of the
microcontroller design.

For each board implemented, surface mount compo-
nents were exclusively chosen to maintain size con-
straints and utilize modern specialty components since
few new through-hole components are manufactured that
meet AEC-Q100 [1]. We chose to use pick-and-place
reflow as our assembly method over a hot plate, hand
soldering, or hot air soldering as it is the most reliable
way to solder small components.

The first board we created was purchased through
the Motorsports Club, doubling as a member education
tool for SMD soldering and CAN transceiver operation.
This shield board contained the TCAN3414 transceiver
and its associated filtering circuits. Since the Teensy
4.1 lacks a built-in CAN transceiver, the external PCB
provided CAN functionality for software development
before transitioning to the final embedded Teensy board.
This board contained some minor design flaws that were
fixed in subsequent revisions of the main boards, which
included utilizing ground pours instead of return traces to
reduce noise in ground return loops and shunting bypass
caps straight to the ground plane as recommended by the
datasheet [8].

The second board we created (Figure 11 was an
attempt to integrate the Teensy 4.1 into a PCB. Header
pins were added for debugging, and a large four-layer
PCB was used for ease of routing. Components were
placed in a similar manner to the Teensy 4.1 to minimize

8

FSAE Data Acquisition Corner Board

Fig. 10: TCAN3414 transceiver board used in software
testing.

rats nest overlap, and traces were routed primarily with
top signal traces horizontally and bottom signal traces
vertically.

A challenge of routing the board was dealing with the
ball grid array (BGA) footprint of the MCU. Routing this
was done by following traditional BGA fanout routing,
where the outer two layers of balls are routed away
from the chip in four directions and the inner layers
use vias to escape on the bottom layer. The 3.3V and
GND plane layers of the PCB greatly improved ease of
routing, but switching to six layers with a third signal
layer would improve component density. Following the
RT1062 hardware design recommendations [2], 4 mil
traces and 8/14 mil vias were used in the BGA footprint,
with 3.78 mil minimum trace separation. Outside of the
BGA footprint, 6 mil traces were used for dense signals,
and 10 mil traces were used for sparse traces. Power
traces used polygon pours and 20-30 mil traces.

The first debug board was dead on arrival because the
MCU’s SOC power was not connected properly, the can
tx and rx were crossed, and the wrong CAN pins were
used. These issues prevented the MCU from powering
on correctly and sending CAN messages.

This setback changed the timeline, as the debug board
could not be used for testing. This caused us to pivot to
rush the final board, which was in progress, and develop
a second debug board that socketed a Teensy 4.1 in case
testing time ran out on the integrated MCU board.

Fig. 11: CAD of the first iteration of embedded Teensy
board

Fig. 12: CAD of final integrated MCU

The final board, shown in Figure 12, was reduced to
3” by 1.125” by using a 6-layer design and placing com-
ponents on both sides. Routing details are in Appendix
XVII-F. The layer stack comprises top signal, ground
1, power plane, intermediate low-speed signal, ground 2,
and bottom signal. Two ground planes provided shielding
for high-speed signals on the top and bottom layers from
DCDC power layer switching fields but reduced available
routing space.

The CAN 2.0 transceiver, 3.3V regulator, and MCU
bypass capacitors were placed on the bottom side, with
shielded GT32 connectors replacing debug header pins.
Test points allowed measurement of regulator outputs
and MCU internal logic for debugging the power-on se-
quence. The Altium differential pair routing tool ensured
impedance-matched traces for CANH/CANL and USB
D+/D-, with careful attention to avoid crossing traces
unless a ground shield was present.

The second iteration of the debug board (figure 14)
included the CAN transceivers, power hardware, and
shielded connectors needed to meet our design goals
but had socket connections for a Teensy 4.1 replacing

9

FSAE Data Acquisition Corner Board

Fig. 13: Fully populated embedded MCU board

Fig. 14: CAD of debug board with socketed Teensy 4.1

the embedded MCU. This board was created to emulate
the final board so software could be fully developed and
demonstrated, but it does not meet our size and vibration
resistance goal. The Teensy socketed into the board in
figure 15 is on the top side of the board, but a mistake
in switching the location of the socket headers required
them to be soldered upside-down on the bottom of the
board.

Fig. 15: Teensy 4.1 socketed into debug v2 board (back-
wards and upside down)

The software component of this project leverages the
hardware and software compatibility of the Teensy 4.1
board. Since the MCU, bootloader, and flash memory are
identical to the Teensy 4.1, all code is cross compatible
between the embedded MCU and the Teensy 4.1.

Programming the Teensy 4.1 is facilitated by the
Arduino IDE, complemented by the Teensyduino add-
on, which provides access to numerous optimized li-
braries [3]. This compatibility streamlines development
by allowing the reuse and adaptation of existing software
designed for the Teensy 4.1.

Fig. 16: Teensy Reference Card

The two main libraries that are used for the software
component are the ADC library [13] and the FlexCAN
library [14]. Using Figure 16, the pins labeled ”A#”
indicate that they are capable of being used in the
ADC library, and the pins labeled ”CTX#” and ”CRX#”
indicate the pins used in the CAN bus library. CAN1 and
CAN2 can only use CAN 2.0, while CAN3 can also use
CAN FD.

For the program, the project incorporates an ADC that
will read analog values synchronously on pins labeled A5
and A6. The project will incorporate two CAN buses,
CAN2, which will use CAN 2.0, and CAN3, which will

10

FSAE Data Acquisition Corner Board

use CAN FD. CAN2 will communicate asynchronously
with TX/RX signals from the CAN 2.0 transceiver to
read via interrupts, and CAN3 will communicate with
the TX/RX signals from the CAN FD transceiver to write
the final packaged signal.

Every Arduino program needs to have a setup and a
loop function. The setup function initializes the ADC
and the CAN buses and initializes the board to begin
clocking. The loop function does not have direct func-
tionality, but it verified that the program does not crash.
The CAN 2.0 bus has a function called canSniff that
runs after an interrupt is triggered due to the arrival of
a CAN 2.0 message. Inside the function, the message is
printed, including its index, flags, length, and contents.
Next, the ADC reads the two pin’s analog values and
prints and saves the value. Lastly, the CAN FD bus writes
a message to be sent out to the CAN FD transceiver. The
CAN FD message incorporates the two possible CAN
2.0 messages that can be read as well as the two values
collected by the ADC, making a message that is roughly
20 bytes long, and the message is printed for debugging.
The full main program can be found in the appendix
XVII-D.

D. Test Plans

Phase 1: Verifying Successful Reflow

The first step is to visually inspect IC solder joints
using a microscope to check for bridged pins. If any
bridged pins are found, they will be repaired with hot air
rework. Due to equipment limitations, it is not possible
to visually verify the soldering of the BGA layout MCU.
Instead, its functionality will be confirmed using the
power-on tests.

Phase 2: Power-On Testing

1) Power Supply Pin out the 4 pin gt32 connector
and connect to 24V power supply.

2) Voltage Regulation: Verify the outputs of the DC-
DC converters.

Fig. 17: Power on sequence test setup

• Measure and confirm the 5V and 3.3V outputs
are stable.

3) MCU Power-On Sequence: Verify the power-
on sequence using the test points (TPs) detailed
below. All measurements are relative to ground
(e.g., GND TPs are the screw mounting holes, TP4,
TP9, TP11, and TP15).
Before proceeding with testing, press the boot-
loader switch and hold for 15 seconds to set the
MKL02 fuses to bond with the MCU.

a) Measure VIn at TP8, should be 5V.
b) Measure the USB Voltage Regulator output

at TP6, should be 2.5V.
c) Verify the SNVS Cap voltage at TP14,

should be 1.1V.
d) Check the PLL and Analog Regulators:

• TP12: Should measure 2.5V.
• TP13: Should measure 1.1V.

e) Verify that the 3.3V Regulator On-Request
Signal is driven high (1-3.3V) at TP1.

f) Ensure the DCDC is Enabled by the boot-
loader. Measure the pin at the via between
the bootloader and C28.

g) Check the SoC Voltage is enabled by the
DCDC at TP5, should measure 1.15V.

Bootloader Diagnostics

After completing the power-on tests, observe the be-
havior of the bootloader:

• Red Error LED (D5):

– Smooth pulsing indicates that MCU is in boot-

11

FSAE Data Acquisition Corner Board

loader mode.
– Repeated blinking indicates a diagnostic error.

Refer to the diagnostic error codes on PJRC’s
MKL02 bootloader page [3].

After verifying the hardware is operational:

1) Flash known good LED blink code by holding the
bootloader switch for 15 seconds.

2) Observe the Green LED (D4):
• Regular blinking confirms successful opera-

tion.

Once the green LED blinks as expected, the MCU
hardware is considered operational.

To verify can transceiver functionality, run code in
software that drives the transceiver STB and SHDN pins
low (teensy pins 9 through 12) and verify the following
with a multimeter.

• Voltage between CANH and GND: 1.9V
• Voltage between CANL and GND: 1.9V

These measurements can be easily taken from the pins
of the ESD protection diodes (D1 and D2)

Phase 3: Software Testing

Phase 3: ADC Testing

The functionality of the analog-to-digital converters
(ADCs) is verified through a series of steps to ensure
accurate and independent operation.

1) Constant Voltage Input Testing
• Apply a stable voltage (e.g., 2.5V) to one ADC

pin.
• Measure the ADC output in software and con-

firm that it matches the expected input voltage.

2) Variable Voltage Input Testing
• Apply a variable voltage signal (e.g., 0-3.3V)

to the same ADC pin.
• Confirm the ADC output tracks the variable

input accurately over the full range.

Fig. 18: Teensy 4.1 socket board setup for software
testing

3) Independent Channel Testing

• Apply distinct constant voltages (e.g., 1.5V
and 2.5V) to two ADC pins.

• Verify that each ADC channel independently
reads the correct input voltage.

• Repeat the test with variable voltages on both
ADC pins to confirm simultaneous functional-
ity.

4) Full ADC Functionality Validation

• Combine constant and variable voltage inputs
on multiple ADC channels.

• Confirm that all ADC pins can independently
and simultaneously read and process input
voltages without interference.

This test plan is applicable to all three boards utilized
in testing to various extents. The transceiver breakout
boards only need the transceiver software test section, the
debug V2 board (figure 18) tests everything except the
MCU power-on sequence, and the final integrated board
requires the entire test plan. In testing the regulators
and final board, we discovered that the board was very
sensitive to ESD and short circuits and had to replace
several regulators throughout the testing process. Testing
the initial embedded debug board before the final test
plan was written revealed that our reflow process was
flawed and that the SOC power on the MCU was not
connected; this prompted revisions to the test plan to
thoroughly inspect the MCU power on sequence and test

12

FSAE Data Acquisition Corner Board

points were included in the final design to do so.

Testing the final board revealed an error in step 7,
where the DCDC PSWITCH pin had failed to be driven
high. This required further investigation into the boot-
loader operation. Consulting with Paul Stoffregen, the
creator of the Teensy 4.1, we created a revised test plan
for bootloader operation.

First, a wire was soldered to TP2 to connect the 3.3V
output to the virtual bench to measure the ripple voltage.
This was to ensure that the 3.3V signal did not drop
below 3V during the ripple, which would cause the
bootloader chip to not enable the DCDC.

Fig. 19: 50mV pkpk DCDC ripple voltage

The voltage measured in figure 19 does not drop
below 3.0V and ripples by 50mV peak to peak, which
is within the stability margin of the bootloader code
according to Paul Stoffregen. Next, the voltage at pin 10
(bootloader switch pin) of the bootloader was measured,
which should be 3.3V. This signifies that the bootloader
code is executed as the first lines of code pull pin 10
high. If the bootloader code is stuck at the DCDC pull
high stage, then it will not flash the error LED, which is
the observed behavior of the embedded MCU board. We
measured 3.3V at pin 10 as expected, and also measured
that pin 9 power on reset was high so the bootloader is
not being held in a reset state. These results, along with
Paul’s approval of the MCU schematic, indicate a likely
soldering error of the BGA chip, so two more boards will
be manufactured after submission of this report to check
the functionality of the final embedded MCU board. This
result validated the team’s decision to design a PCB
that includes a socket for the Teensy 4.1 to demonstrate

software and CAN hardware functionality in the event of
embedded MCU failure.

VII. PHYSICAL CONSTRAINTS

The design and manufacturing process faced several
constraints, including documentation, software libraries,
and project timelines. While most components were
accompanied by comprehensive documentation and im-
plementation guidelines, the MCU bootloader startup
protocol was only discovered late in the process, com-
plicating the MCU hardware design.

Although Teensy 4.1 provides a CAN design library,
it was written in C++, a language unfamiliar to the
team, which required additional learning and adaptation.
Furthermore, part and PCB orders involved lead times
of at least one week, delaying initial board assembly
and significantly limiting the time available for redesigns,
especially near the end of the semester.

Budget constraints were the most restrictive, as there
was no room for professional assembly costs. Hand pick
and place caused several delays as soldering mistakes
and SMD rework had to be conducted on several boards,
the worst culprit being the 196-pin BGA footprint MCU
chip. The largest individual cost of the project was PCB
orders, with the 6-layer final board costing over $70 for
five from JLCPCB. Ordering the full BOM of the corner
board with enough components to populate 3 boards and
2 debug boards cost over $130, as seen in Table I.

The tools used in this project included the soft-
ware Altium Designer, Arduino IDE, and NI Diligent
Waveforms, as well as production tools like soldering
irons and heat guns, a 3D printer, multimeters, a power
bench, a reflow oven, microscope, and breadboards. All
PCB designs were performed on Altium, which is used
in industry; however, platform limitations and learning
processes restricted real-time collaboration and design
fluency. Arduino IDE hosted all project software devel-
opment. Soldering tools, reflow ovens, and microscopes
helped populate all our PCBs. Waveforms, multimeters,

13

FSAE Data Acquisition Corner Board

breadboards, and the power bench assisted in project
testing.

Most of the tools and costs used in product develop-
ment can be attributed to design and lack of experience.
Thus, creating a production version would be extremely
feasible. Bulk PCB and component orders bring down
part costs, the PCB population is redundant and quick
with simple tools, and integrating our project with FSAE
vehicles is efficient and modifiable.

VIII. SOCIETAL IMPACT

The development of this board will primarily impact
Virginia Motorsports (VME) and potentially other FSAE
teams. While the hardware design remains closed-source,
the software is publicly accessible on the VME GitHub
repository. The board must function accurately to col-
lect suspension data for component validation, but any
malfunction poses no safety risk to drivers or spectators
at the SAE electric competition in June. Safety-related
design constraints are limited to proper mechanical fas-
tening to the car, which will be managed by the customer.

The improved data collection enabled by this board
will significantly benefit VME, as suspension data is
critical for design validation and enhancement. Unlike
mathematical models, real-world data provides a more
comprehensive understanding of the suspension system,
driving more effective, data-driven design processes.
This will elevate the quality of VME’s future cars and
contribute to the professional growth of team members
who graduate with refined engineering skills.

These alumni, entering various engineering sectors,
will carry forward the principles of data-driven, expe-
riential learning. This project thus has a broader so-
ciotechnical impact, improving engineering practices and
positively influencing industries and society by raising
the standard of engineering in the field. Given VME
alumni’s presence across nearly every engineering sector,
the ripple effects of this project will extend to a wide
range of sociotechnical systems.

IX. EXTERNAL STANDARDS

As this product interfaces with CAN and a motor
vehicle, each part of our project had to comply with
automotive and CAN conformance standards. Addition-
ally, using integrated circuits, even without wireless
communication, puts the project under FCC jurisdiction
for unintentional electromagnetic emission.

AEC-Q100 standard for automotive IC chips [1]

FCC Regulations Part 15, Subpart B - Unintentional
Radiator [15]

ISO 16845-1:2016: Road vehicles — Controller area
network (CAN) conformance test plan — Part 1: Data
link layer and physical signaling [16]

ISO 16845-2:2018: Road vehicles — Controller area
network (CAN) conformance test plan — Part 2: High-
speed medium access unit — Conformance test plan [17]

X. INTELLECTUAL PROPERTY ISSUES

Patents similar to our product include a CAN Message
Filtering patent [18], a Local CAN Bus Clock Network
patent [19], and a CAN Vehicle Data Acquisition Net-
work Layout patent [20]. All of these patents describe
data acquisition network improvements that impact ve-
hicle performance. Judging by our research, our design,
which mixes hardware and software, is likely patentable,
but we believe open sourcing would be more in the spirit
of FSAE.

If this design is ever monetized, we would likely
utilize a CERN Open Hardware License [21] to promote
open-source modification and use by other FSAE teams.
Additionally, we would sell fully assembled boards and
hardware kits. FSAE is a design competition, so teams
generally prefer to design custom systems themselves.
This board is applicable beyond FSAE, however, since
it interfaces generically with analog and CAN sensors,
which are found in production automobiles, robotics, and
information networks.

14

FSAE Data Acquisition Corner Board

XI. TIMELINE

The Gantt chart in Fig. 20 outlines our project time-
line, including due dates and holidays. The three main
parts of our project are the power and CAN system, the
MCU hardware, and the software.

Because the interactions between the three systems
are standardized, their research, design, and testing were
all performed mostly in parallel. The series of PCB
designs were designed once the main components were
finalized. The MCU software design was written and
tested on the teensy and breadboard with temporary
power, inputs, and outputs (using the small transceiver
PCB). The power system was tested independently with
oscilloscopes. With the final debug PCBs populated,
we tested the power system, MCU, transceiver, and
simulated analog inputs altogether. Lastly, we connected
the sensor board to a temporary wheel chassis instead of
to the FSAE car itself. The project conclusion coincides
with the last few steps of the project, and demos take
place once everything has been completed.

XII. COSTS

The cost split between components and boards was
about 60% component cost and 40% PCB cost. BGA
routing requires small, high-precision drill holes, six-
layer PCBs, ENIG finish, and FR4-Tg155 surface finish.
This results in a PCB that costs $70 for a minimum order
of five, which quickly depletes the budget for iteration.

Given that this project was based on a partnership
with the Virginia Motorsports Club, they purchased
some items to help us stay within budget. Notably,
they purchased transceiver boards that were used for
early software testing, miscellaneous components, and
automotive-grade connectors for the final board. These
costs are not accounted for in the budget in Table I, but
in total sum to about $150.

Scaling this project up to 10000 components would
roughly halve the per unit price from roughly $36 to

around $13. Automation would also greatly reduce the
failure rate in building the boards. This is because the
main source of failure in the boards was the delicate
SMD components, like the CPU, being very difficult to
pick and place by hand.

TABLE I: Project Costs using Capstone Budget

Parts Orders Date Amount
1 9/11/2024 $31.06
2 9/18/2024 0
3 9/25/2024 $0.00
4 10/2/2024 $50.99
5 10/9/2024 $22.34
6 10/16/2024 0
7 10/23/2024 $22.99
8 10/30/2024 $3.17
9 11/6/2024 $0.00

10 11/13/2024 $131.04
11 11/20/2024
12 11/27/2024

Board Orders
1 10/21/2024 $77.11
2 11/12/2024 $112.36
3

Other
Bootloader Order 10/1/2024 $43.63

TOTALS
Total Parts $261.59
Total Boards $189.47
Total Other $43.63
Total $494.69

Budget Remaining $5.31

XIII. FINAL RESULTS

Due to some issues with the DCDC component and the
bootloader of the final board, the final test was conducted
on the socketed debug board. The main setup of the test is
shown in Figure 18. The testing board applies the power
regulator and the CAN transceiver from the final board
but replaces the Teensy 4.1 components with the actual
Teensy board. The final test also includes a secondary
Teensy board that will mimic the two temperature sensors
that produce CAN 2.0 messages, as well as the Nvidia

15

FSAE Data Acquisition Corner Board

(a) 9/2/2024 - 11/3/2024

(b) 10/14/2024 - 12/9/2024

Fig. 20: Project schedules for the different phases of the project.

Jetson that will read the CAN FD messages, a breadboard
that has two Square Trimming Potentiometer and a
TLC272 LinCMOS Precision Dual Operational Ampli-
fier to mimic linear potentiometer sensors for suspension
and wheel speed, two additional VMS created, CAN
transceivers to mimic the CAN bus that would be wired
throughout the VM25, and a Hewlett Packard E3631A
to produce the 24 Volt source mimicking the battery of
the car.

The testing code that the second Teensy 4.1 has
uploaded can be found in Appendix XVII-D. Using
the final program of the main board and the secondary
program, the final test has the following steps. The
secondary board produces CAN 2.0 messages at some
variable frequency that is controlled by the variable
sleep cycles. The messages are sent to one of the pins
labeled for the CAN 2.0 inputs and are read by the main
Teensy asynchronously. The potentiometers and the op-
amp unity gain buffer create signals that are sent to the

WS and LP port pins on the main board and are also read
by the main Teensy synchronously. The main program
processes the data to create a unified CAN FD message
that is sent through the main output of the main board.
Lastly, the secondary board reads the CAN FD message.

An example of the result is shown in Fig. 21. The
secondary board prints to the console the sample CAN
2.0 message that is sent to the main board and the CAN
FD message sent out, and the main board prints out
the CAN 2.0 message sent by the secondary board; the
readings from the ADC analog input pins, and the CAD
FD to be sent. The two messages are verified if they
have the same ID, and the list of data is identical. The
data printed is in hexadecimal. There are 2 IDs that the
secondary message sends out: 0x7FF and 0x7FE, and
this indication is how the two temperature sensors are
mimicked. The CAN FD ID is 0x7FD.

The CAN 2.0 write program creates a sequence of

16

FSAE Data Acquisition Corner Board

(a) Debug Board Data Out

(b) Simulated Temp Data CAN Input and CAN FD ECU Reading

(c) Test Result Visualtization

Fig. 21: Final Test Results

8 numbers for every clock tick as shown with the
incrementing values for every new message. The main
program combines the two messages and the ADC read-
ings together to create the CAN FD message, where the
first 8 values are the same values from the CAN 2.0
message with ID 0x7FF, the next 8 values are the same
values from the CAN 2.0 message with id 0x7FE, the
next 2 values represent the numerical value of one of the
ADC ports, and the last 2 values represent the numerical

value of the other ADC port. The ID for the CAN FD
message is 0x7FD, and the length of the data buffer is 20
bytes. The test code that was deployed on the secondary
Teensy is under Appendix XVII-E.

The results of the final testing show that the software
is sound and that the CAN and power systems are func-
tional. Further testing is needed on the embedded MCU
hardware but it is believed that improving the soldering

17

FSAE Data Acquisition Corner Board

process will fix the board. We tentatively consider our
main design goals met and will be confident once the
embedded MCU is functional. We currently do not have
a way of validating the EMC of the board until VM25
is complete and the corner boards can be tested with the
tractive system running.

XIV. ENGINEERING INSIGHTS

During this project, we learned a plethora of tech-
nical skills. Research honed our component selection
and reference sourcing. Exploring new topics forced
us to problem-solve using documentation, learn and
apply knowledge quickly, lean on each other for help,
and take moments to breathe. Honing our teamwork
was an essential part of project success. That involved
consistently checking one another’s work and rampant
communication, delegation, and flexibility.

Additionally, we learned a series of important lessons.
When ordering USB-C connectors, accidentally copying
the wrong part number resulted in ordering a 1000-
component reel instead of 10 parts on cut tape. Poor
inspection of data sheets and requirements resulted in
ordering a handful of wrong parts. During testing, poor
labeling of header connector polarity caused us to mount
the Teensy Microcontroller on the debug board back-
ward. Connecting the wrongly-populated board to power
resulted in the destruction of our Teensy, fried regulators,
and visible smoke. During the same mishap, accidentally
touching the multimeter leads together caused an onboard
capacitor to explode (Fig. 22). Lastly, on multiple oc-
casions, not closely following spec and documentation
recommendations resulted in several design and redesign
delays.

The importance of proper equipment also proved evi-
dent. The original set of transceiver boards and the first
revision of the debug board were soldered with the old
reflow oven at Lacy Hall, which was just a resistive-
heated toaster oven with old solder paste. The ICs all
flowed incorrectly, proving that better equipment would
be needed to properly assemble the SMD boards.

Fig. 22: Debug Board Capacitor Explosion

Fig. 23: Whizoo Controleo 3 reflow oven

We encouraged the motorsports club to purchase a
proper reflow oven; the oven chosen was the Whizoo
Controleo 3 oven shown in Figure 23. The oven is
a modified toaster oven that includes an extra heating
element, proper thermocouples, improved insulation, and
PID control to follow manufacturer-recommended reflow
profiles instead of direct heating in the oven. Some time
was taken from design to assemble the reflow oven and
dial-in reflow profiles.

For future capstone students, the advice we can share
is that catastrophes and mistakes will happen, but learn-
ing to adapt and problem-solving are the most important
parts of the project process.

XV. FUTURE WORK

Another iteration on the board is needed before final
integration on VM25; this will be conducted over winter
break and will include minor component changes and
several additional features.

18

FSAE Data Acquisition Corner Board

New features will include implementing the real-time
clock (RTC) feature by including a 32.768 Hz oscillator
and 20pF filter caps. This feature will improve DAQ by
adding the ability to send accurate timestamps along with
the transmitted data starting from the power-up time.
Synching with actual time is possible by transmitting the
actual clock via LoRa to the Nvidia Jetson and sending
the time stamp to the corner boards over the CAN bus.

Next, the unused five pins on the 19-pin GT32 con-
nector will be connected to the MCU to support another
lin pot and one two-wire switch, giving further flexibility
to the board’s use cases.

Additionally, a hard-learned lesson in this project is
that the smaller the IC, the more sensitive it is to shorts,
reverse polarity, ESD, and other calamities. As of this
writing, the DCDC kill count is set at five regulators.
The diagnosis points to the inductor size in the regulator
control loops. The chosen ICs contain short protection,
but the recommended inductor sizes have saturation
currents of around 1A. Our inductors, while they have
proper inductance values, have max DC current ratings
of only 350mA. Beefing up the size of these inductors
should trigger the IC’s short protection and keep the
regulators stable in the case of a power short.

Small changes to the board will be conducted to fur-
ther reduce its size. Switching to a smaller tactile switch
will allow the board to shrink to 3” by 1” as desired in
the performance requirements. Further optimization of
component placement and routing can further compact
the board, which is just limited by the width of the 19-
pin GT32 connector.

XVI. REFERENCES

REFERENCES

[1] “Failure mechanism based stress test qualifica-
tion for integrated circuits in automotive appli-
cations,” 2023. [Online]. Available: http:/ /www.
aecouncil . com / Documents / AEC Q100 Rev J
Base Document.pdf (visited on 09/20/2024).

[2] Hardware development guide for the mimxrt1050

/mimxrt1060 processor, MIMXRT105060HDUG,
Rev 0, NXP Semiconductors, Aug. 2018.

[3] P. Stoffregen, PJRC Store. [Online]. Available:
https : / / www. pjrc . com / store / ic mkl02 t4 . html
(visited on 12/06/2024).

[4] GT32 10p 1 5h cl0782 0001 1 00 catalog d49392 en-

1927810. [Online]. Available: https : / / www .
mouser . com / datasheet / 2 / 185 / GT32 10P 1
5H CL0782 0001 1 00 Catalog D49392 en -
1927810.pdf (visited on 12/06/2024).

[5] Multichannel brake ir temperature sensor, IRTS-
V3, Izze Racing, 2023. [Online]. Available: https:
//www.izzeracing.com/products/ewExternalFiles/
IZZE IRTS V3 BRAKE Datasheet.pdf.

[6] Multichannel brake ir temperature sensor, IRTS-
60-V3, Izze Racing, 2023. [Online]. Avail-
able: https : / / www . izzeracing . com /
products / ewExternalFiles / IZZE IRTS V3
BRAKE Datasheet.pdf.

[7] Tps6217x 28-v, 0.5-a step-down converter with

sleep mode, TPS62175, TPS62177, Texas Instru-
ments, Oct. 2012.

[8] Tcan341x 3.3-v can fd transceivers with standby

mode and ±58 v bus standoff, TCAN3413,
TCAN3414, Texas Instruments, Mar. 2023.

[9] Andre Ix, Hartmut Habben, and Caroline Volmari,
“Rules and recommendations for in-vehicle CAN
networks,” NXP Semiconductors, Tech. Rep.,
2012.

[10] CAN-Bus: Designing CAN-Bus Circuitry, en. [On-
line]. Available: https://resources.altium.com/p/
can- bus- designing- can- bus- circuitry (visited on
12/06/2024).

[11] Kinetis kl04 32 kb flash, KL04P48M48SF1, Rev
4, Freescale Semiconductor, Inc., Mar. 2014.

[12] I.mx rt1060 crossover processors for consumer

products, IMXRT1060CEC, Rev 4, NXP Semi-
conductors, Apr. 2024.

[13] P. Villanueva, Teensy 4/3.x/LC ADC implemen-

tation, original-date: 2013-10-20T15:01:07Z, Sep.
2024. [Online]. Available: https : / / github . com /
pedvide/ADC (visited on 12/06/2024).

19

FSAE Data Acquisition Corner Board

[14] A. Brewer, FlexCAN (CAN 2.0 / CANFD) Library

for Teensy 3.x and 4.0, original-date: 2019-01-
14T02:14:21Z, Nov. 2024. [Online]. Available:
https://github.com/tonton81/FlexCAN T4 (visited
on 12/06/2024).

[15] eCFR :: 47 CFR Part 15 Subpart B – Uninten-

tional Radiators. [Online]. Available: https://www.
ecfr.gov/current/title-47/chapter- I/subchapter-A/
part-15/subpart-B?toc=1 (visited on 09/20/2024).

[16] ISO 16845-1:2016(en), Road vehicles — Con-

troller area network (CAN) conformance test plan

— Part 1: Data link layer and physical signalling.
[Online]. Available: https://www.iso.org/obp/ui/
#iso : std : iso : 16845 :- 1 : ed - 1 : v1 : en (visited on
09/20/2024).

[17] ISO 16845-2:2018(en), Road vehicles — Con-

troller area network (CAN) conformance test plan

— Part 2: High-speed medium access unit —

Conformance test plan. [Online]. Available: https:
//www.iso.org/obp/ui/#iso:std:iso:16845:-2:ed-2:
v1:en (visited on 09/20/2024).

[18] M. H. J. V. D. MAAS, “Controller area network
(can) message filtering,” en, EP3206361B1, Feb.
2019. [Online]. Available: https://patents.google.
com/patent /EP3206361B1/en?q=(vehicle+bus+
node) &oq = vehicle + can + bus + node & page = 2
(visited on 12/07/2024).

[19] A. S. Vijayaraj and M. M. Berthold, “Slave Node
For Can Bus Network,” US 10277385 B1, May
2018. [Online]. Available: https : / / lens .org/135-
023-500-962-124.

[20] O. Krieger and A. Meier, “Verfahren zur
übertragung von daten über einen kommunika-
tionskanal, entsprechend ausgelegte vorrichtung
und kommunikationsschnittstelle sowie
entsprechend ausgelegtes computerprogramm,”
de, EP3763091B1, Jul. 2022. [Online]. Available:
https://patents.google.com/patent/EP3763091B1/
en?q=(vehicle+bus+node)&oq=vehicle+can+bus+
node&page=1 (visited on 12/07/2024).

[21] Home — CERN Open Hardware Licence. [On-
line]. Available: https://cern-ohl.web.cern.ch/home
(visited on 12/06/2024).

20

FSAE Data Acquisition Corner Board

XVII. APPENDIX

A. MCU schematic

Fig. 24: Total MCU schematic

21

FSAE Data Acquisition Corner Board

B. Transciever and connector schematic

Fig. 25: Transciever, connector, and LED schematic

22

FSAE Data Acquisition Corner Board

C. Final board BOM

TABLE II: Bill of Materials

Name Designator Quantity Unit Price Subtotal
CAP 0603 100pF C1, C2, C8, C10, C11, C16 6 0.025 0.25
CAP 0402 4.7uF C3, C13, C18, C29, C31 5 0.37 1.85
CAP 0402 0.22uF C4, C14, C19, C22, C23, C30, C32, C33 8 0.024 0.24
CAP 0402 10nF C5, C20 2 0.006 0.012
CAP 0603 0.1uF C6, C15 2 0.018 0.036
CAP 0805 22uF C7, C25 2 0.62 1.24
CAP 0603 2.2u C9, C24 2 0.11 0.22
CAP 0603 10uF C12, C17, C21 3 0.31 0.93
CAP 0402 12pF C26, C27 2 0.1 0.2
CAP 0805 0.22uF C28 1 0.016 0.016
ESD2CANFD24DBZR D1, D2 2 0.35 0.7
BAT54CLT1G D3 1 0.016 0.016
LTST-C171GKT D4 1 0.198 0.198
LTST-C171KRKT D5 1 0.19 0.19
1206L050/24WR F1 1 0.868 0.868
GT32-19DP-0.75H J1 1 3.72 3.72
GT32-4DP-1.5H(A)(10) J2 1 1.52 1.52
USB4105-GF-A J3 1 0.52 0.52
ACT1210D-101-2P-TL00 L1 1 1.64 1.64
MLZ2012M100WT000 L2, L5 2 0.11 0.22
MPZ1608S121ATAH0 L3, L6 2 0.1 0.2
MLZ1608E4R7MT000 L4 1 0.12 0.12
RES 0805 120 R1, R3 2 0.006 0.012
RES 0805 100k R2, R4, R12 3 0.016 0.16
RES 0805 787k R5 1 0.1 0.1
RES 0805 150k R6 1 0.1 0.1
RES 0805 33 R7, R8 2 0.006 0.012
RES 0805 5.1k R9, R11 2 0.016 0.16
RES 0805 2.2M R10 1 0.1 0.1
1825967-2 SW1 1 0.22 0.22
MIMXRT1062DVJ6B U1 1 12.24 12.24
TCAN3414DRBR U2, U4 2 1.42 2.84
TPS62177DQCT U3 1 1.7 1.7
TPS62175DQCR U5 1 0.56 0.56
W25Q64JVXGIM TR U6 1 1.18 1.18
MKL02Z32VFG4 U7 1 1.44 1.44
ECS-240-8-33B2Q-CVY-TR3 Y1 1 0.36 0.36

23

FSAE Data Acquisition Corner Board

D. Corner Board Code

#include <ADC.h>

#include <ADC_util.h>

#include <FlexCAN_T4.h>

const int readPin = A5;

const int readPin2 = A6;

ADC *adc = new ADC();

FlexCAN_T4<CAN2, RX_SIZE_256, TX_SIZE_16> Can1;

FlexCAN_T4FD<CAN3, RX_SIZE_256, TX_SIZE_16> Can2;

void setup() {

pinMode(LED_BUILTIN, OUTPUT);

pinMode(readPin, INPUT_DISABLE);

pinMode(readPin2, INPUT_DISABLE);

Serial.println("Begin setup");

Serial.begin(115200);

adc->adc0->setAveraging(16);

adc->adc0->setResolution(16);

adc->adc0->setConversionSpeed(

ADC_CONVERSION_SPEED::MED_SPEED);

adc->adc0->setSamplingSpeed(

ADC_SAMPLING_SPEED::MED_SPEED);

adc->adc1->setAveraging(16);

adc->adc1->setResolution(16);

adc->adc1->setConversionSpeed(

ADC_CONVERSION_SPEED::MED_SPEED);

adc->adc1->setSamplingSpeed(

ADC_SAMPLING_SPEED::MED_SPEED);

Can1.begin();

Can1.setBaudRate(1000000);

//following 3 lines are what enables interrupts, IMPORTANT: does not work on a CAN FD input via Teensy 4.x

Can1.enableFIFO();

Can1.enableFIFOInterrupt();

24

FSAE Data Acquisition Corner Board

Can1.onReceive(canSniff);

Can2.begin();

Can2.setRegions(64);

CANFD_timings_t config;

Can2.setBaudRate(config);

Serial.println("End setup");

}

int value; //raw ADC 1 output

int value2; //raw ADC 2 ouput

//to convert value to voltage, use "value * 3.3 / adc->adc0->getMaxValue()"

uint32_t firstID = 0x7FE; //ID of first CAN 2.0 signal, placed into CAN FD buffer from 0-7

uint32_t secondID = 0x7FF; //ID of second CAN 2.0 signal, placed into CAN FD buffer from 8-15

uint8_t CANL[8]; //stores data of firstID

uint8_t CANR[8]; //stores data of secondID

//interrupt based on Can1 receiving a message

void canSniff(const CAN_message_t &msg) {

Serial.print("CAN2 ");

Serial.print("MB: "); Serial.print(msg.mb);

Serial.print(" ID: 0x"); Serial.print(msg.id, HEX);

Serial.print(" EXT: "); Serial.print(msg.flags.extended);

Serial.print(" LEN: "); Serial.print(msg.len);

Serial.print(" DATA: ");

for (uint8_t i = 0; i < 8; i++) {

Serial.print(msg.buf[i]); Serial.print(" ");

}

Serial.print(" TS: "); Serial.println(msg.timestamp);

//updates buffer corresponding to correct ID

if (msg.id == firstID){

for (uint8_t j = 0; j < 8; j++){

CANL[j] = msg.buf[j];

}

}else if (msg.id == secondID){

for (uint8_t j = 0; j < 8; j++){

CANR[j] = msg.buf[j];

}

}

25

FSAE Data Acquisition Corner Board

//ADC Reads

value = adc->adc0->analogRead(readPin);

Serial.print("Pin: ");

Serial.print(readPin);

Serial.print(", value ADC0: ");

Serial.print(value);

Serial.print(", value ADC0: ");

Serial.println(value * 3.3 / adc->adc0->getMaxValue(), DEC);

value2 = adc->adc1->analogRead(readPin2);

Serial.print("Pin: ");

Serial.print(readPin2);

Serial.print(", value ADC1: ");

Serial.print(value2);

Serial.print(", value ADC1: ");

Serial.println(value2 * 3.3 / adc->adc1->getMaxValue(), DEC);

//CAN FD write

Can2.events();

CANFD_message_t msgfd;

msgfd.brs = 0;

msgfd.id = 0x7FD;

msgfd.len = 64;

//writes both stored buffers to message buffer

for (uint8_t j = 0; j < 8; j++){

msgfd.buf[j] = CANL[j];

msgfd.buf[j+8] = CANR[j];

}

//writes both ADC values to message buffer

msgfd.buf[16] = value>>8;

msgfd.buf[17] = value;

msgfd.buf[18] = value2>>8;

msgfd.buf[19] = value2;

Can2.write(msgfd);

Serial.print("CANFD ");

Serial.print("MB: "); Serial.print(msgfd.mb);

Serial.print(" ID: 0x"); Serial.print(msgfd.id, HEX);

26

FSAE Data Acquisition Corner Board

Serial.print(" EXT: "); Serial.print(msgfd.flags.extended);

Serial.print(" LEN: "); Serial.print(msgfd.len);

Serial.print(" DATA: ");

for (uint8_t i = 0; i < 20; i++) {

Serial.print(msgfd.buf[i], HEX); Serial.print(" ");

}

Serial.print(" TS: "); Serial.println(msgfd.timestamp);

Serial.println();

}

void loop() {

Can1.events();

}

27

FSAE Data Acquisition Corner Board

E. ECU / CAN 2.0 Emulator code

#include <FlexCAN_T4.h>

FlexCAN_T4<CAN1, RX_SIZE_256, TX_SIZE_16> Can0;

FlexCAN_T4FD<CAN3, RX_SIZE_256, TX_SIZE_16> Can2;

void setup() {

Serial.println("Begin setup");

Serial.begin(115200);

Can0.begin();

Can0.setBaudRate(1000000);

Can2.begin();

Can2.setRegions(64);

CANFD_timings_t config;

config.baudrateFD = 2000000;

Can2.setBaudRate(config);

Serial.println("End setup");

}

//to convert value to voltage, use "value * 3.3 / adc->adc0->getMaxValue()"

uint32_t firstID = 0x7FE; //ID of first CAN 2.0 signal, placed into CAN FD buffer from 0-7

uint32_t secondID = 0x7FF; //ID of second CAN 2.0 signal, placed into CAN FD buffer from 8-15

uint32_t sleepCycles = 100000; //set how many clock cycles occur between writes

uint32_t cycleIndex = 0;

uint8_t offset = 0; //for testing, delete when no longer writing initial message

void loop() {

if (cycleIndex == sleepCycles){

cycleIndex=0;

offset++;

// CAN 2.0 write (for testing) (mimic temp readings)

CAN_message_t msgwrite;

int leftRight = random(0,2);

if (leftRight == 0){

msgwrite.id = firstID;

for (uint8_t i = 0; i < 8; i++) msgwrite.buf[i] = i + 1 + offset;

Can0.write(msgwrite);

28

FSAE Data Acquisition Corner Board

}else if (leftRight == 1){

msgwrite.id = secondID;

for (uint8_t i = 0; i < 8; i++) msgwrite.buf[i] = i + 9 + offset;

Can0.write(msgwrite);

}

Serial.print("CAN1 ");

Serial.print("MB: "); Serial.print(msgwrite.mb);

Serial.print(" ID: 0x"); Serial.print(msgwrite.id, HEX);

Serial.print(" EXT: "); Serial.print(msgwrite.flags.extended);

Serial.print(" LEN: "); Serial.print(msgwrite.len);

Serial.print(" DATA: ");

for (uint8_t i = 0; i < 8; i++) {

Serial.print(msgwrite.buf[i]); Serial.print(" ");

}

Serial.print(" TS: "); Serial.println(msgwrite.timestamp);

Serial.println();

} else {

cycleIndex++;

}

// CAN FD Read (for testing)

CANFD_message_t msg;

if(Can2.read(msg)){

Serial.print("CANFD ");

Serial.print("MB: "); Serial.print(msg.mb);

Serial.print(" ID: 0x"); Serial.print(msg.id, HEX);

Serial.print(" EXT: "); Serial.print(msg.flags.extended);

Serial.print(" LEN: "); Serial.print(msg.len);

Serial.print(" DATA: ");

for (uint8_t i = 0; i < 20; i++) {

Serial.print(msg.buf[i], HEX); Serial.print(" ");

}

Serial.print(" TS: "); Serial.println(msg.timestamp);

Serial.println();

}

}

29

FSAE Data Acquisition Corner Board

F. Final PCB Routing

(a) Top Signal Layer

(b) Power Layer

(c) Intermediate Signal Layer

(d) Bottom Signal Layer

Fig. 26: Gerber files for final board PCB. Ground planes not shown

30

