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ABSTRACT 
 

Chronic liver diseases are a rising global health burden that include chronic viral 

hepatitis C and nonalcoholic steatohepatitis (NASH). Despite differences in their 

etiologies, both hepatitis C and NASH are marked by alterations in systemic lipid 

metabolism that are accompanied by chronic hepatic inflammation. In order to dissect 

how lipid metabolism and the immune response contribute to liver pathology, we 

investigated the role of de novo lipid synthesis in hepatitis C virus (HCV) infection and 

established novel in vitro systems to study the role of a newly described immune 

population, the innate lymphoid cells (ILCs), in NASH. We demonstrate that HCV 

replication, assembly, and infectious virion production are decreased upon inhibition of 

de novo lipogenesis. Suboptimal propagation of the virus is in part due to changes in the 

lipid composition of hepatocytes and alterations in post-translational modifications of 

proteins under conditions of limited de novo lipid synthesis. Conversely, treatment of 

hepatoma cells with an excess of lipids transforms them into steatotic hepatocytes 

characteristic of fatty liver disease. These in vitro equivalents of NASH hepatocytes 

upregulate expression of profibrogenic markers such as TGF-β, which in turn triggers 

expression of collagen I in hepatic stellate cells, thus initiating the fibrotic cascade seen 

in NASH livers. Importantly, a subtype of ILCs secretes IL-22, which facilitates tissue 

repair through inhibition of fibrogenesis, potentially inhibiting the transformation of 

hepatic lipid accumulation to chronic liver disease. Indeed, given that fibrogenesis, 

inflammation, and dysregulation hepatic lipid metabolism are common signatures of all 

chronic liver diseases, the findings from our studies collectively identify metabolic and 
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immunological targets that can be modulated for increased understanding of homeostatic 

and pathological liver biology.  
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CHAPTER 1: Introduction 
 

Included in part in “Narayanan S, Surette FA, and Hahn YS. The immune landscape in 

nonalcoholic steatohepatitis. Immune Network.” (manuscript in press). 

 

 Chronic liver diseases are the 12th leading cause of death in the United States (1). 

These include hepatitis B and C and alcoholic and nonalcoholic fatty liver diseases, 

which can result in cirrhosis, or end-stage liver disease resulting from scarring due to 

recurrent bouts of tissue damage. The economic burden of treating cirrhosis in the United 

States is estimated between $14 million and $2 billion annually (2). Moreover, as 

cirrhosis is an irreversible process, successful treatment is limited to liver transplantation, 

which is available to only ~50% of patients on the waiting list due to a shortage of organs 

(3, 4). Despite widespread use of a prophylactic vaccine against the hepatitis B virus and 

recent development of antiviral agents for the treatment of hepatitis C, the number of 

deaths from chronic liver diseases have not decreased and instead increased by 3% 

between 2012 and 2013 (1). Continued investigation into the pathophysiology of chronic 

liver diseases is needed in order to develop novel prophylactic measures, better 

diagnostic markers, and alternative treatments to contain and reduce the increasing global 

burden of liver dysfunction.  

 

Lipid metabolism in the liver 

The liver’s status as the largest internal organ is matched by the diversity and 

magnitude of its functions. From coagulation factor synthesis to storage of vitamins, the 

liver serves as the intersection point for several essential processes, central among them 
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being its role in nutrient homeostasis (Table 1.1). In particular, following delivery of 

lipids in chylomicrons synthesized in the gut, the liver repackages excess lipids for 

storage or distribution to extrahepatic tissues, such as adipose tissue and muscle (Figure 

1.1). Specifically, triglycerides and cholesterol esters are packaged into very low-density 

lipoproteins (VLDL) that lose their triglyceride content in extrahepatic tissues by 

lipolysis via lipoprotein lipase (LPL). Unused cholesterol is then delivered back to the 

liver as low-density lipoprotein (LDL) and excreted as bile. Hepatic synthesis of high-

density lipoprotein (HDL) also aids in recovering excess cholesterol from the periphery 

for delivery to the liver. In addition to supplying lipids to other tissues, the liver can store 

lipids in lipid droplets, intracellular vesicles bound by a single phospholipid membrane 

that are rich in cholesterol esters and triglycerides.  

Triglycerides are esters composed of glycerol and three fatty acids. While dietary 

lipids constitute 15-25% of hepatic fatty acids, the majority of hepatic triglycerides are 

derived from free fatty acids taken up from the extracellular environment (Figures 1.1 

and 1.2) (5). Transport of fatty acids across the cell membrane is primarily mediated by 

fatty acid transport proteins (FATPs); although they are not essential for fatty acid 

uptake, scavenger receptors such as CD36 have also been known to facilitate the 

accumulation of free fatty acids in hepatocytes (6-9). Once in the hydrophilic cytosol of 

the hepatocyte, fatty acids are bound by fatty acid binding proteins (FABPs) that shuttle 

the fatty acid to acyl-CoA synthetases (ACS) for activation via addition of a –CoA group 

(10, 11). Activation prevents fatty acid efflux and enables esterification and incorporation 

into triglycerides and phospholipids. Activated fatty acids are shuttled to various 

metabolic pathways by binding to acyl-CoA binding proteins (12). The fate of a given 
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fatty acid is determined by a number of factors including rate of uptake, chain length and 

saturation, and metabolic status of the liver (13).  

Hepatocytes are also a major site of de novo lipogenesis, the process of generating 

fatty acids from acetyl-CoA (Figures 1.1 and 1.3.A) (14). Acetyl-CoA is derived from 

pyruvate following glycolysis or from citrate produced during the Krebs cycle. The rate-

limiting step of de novo lipogenesis is the conversion of acetyl-CoA to malonyl-CoA, 

which is catalyzed by the enzyme acetyl-CoA carboxylase (ACC) (14). ACC is a large, 

biotin-dependent enzyme containing multiple functional domains: biotin carboxylase 

(BC), biotin carboxyl carrier protein (BCCP), carboxyltransferase (CT), and an additional 

domain containing phosphorylation sites that regulate enzyme activity (15). Biotin bound 

to BCCP is initially carboxylated at the BC domain; the activated biotin is then 

translocated to the CT domain where the carboxyl moiety is transferred to the methyl 

group of acetyl-CoA to form malonyl-CoA (Figure 1.3.B) (14). Malonyl-CoA is first 

combined with acetyl-CoA to form an acetoacetyl intermediate, a process catalyzed by 

the enzyme fatty acid synthase (FAS) (16). NADPH generated by the pentose phosphate 

pathway reduces the ketone group on the secondary carbon of the malonyl-CoA 

incorporated into the acyl chain. FAS also catalyzes subsequent rounds of addition of 

malonyl-CoA to the acyl chain to produce palmitic acid, a 16-carbon saturated fatty acid 

(16). Modification of palmitate by fatty acyl-CoA elongases and stearoyl-CoA 

desaturases generates a diverse pool of fatty acids.  

Humans express two isoforms of ACC—ACC1 and ACC2. Although both 

isoforms produce malonyl-CoA, their tissue-specific expression confers distinct functions 

to their end product. ACC1 is found in the cytosol of lipogenic tissues such as the liver 
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and adipose tissue, where malonyl-CoA is used to initiate fatty acid synthesis (17, 18). 

ACC2 is expressed in the mitochondria of the liver, heart, and skeletal muscle, where 

malonyl-CoA acts to inhibit fatty acid oxidation (17-19). Coexpression of ACC1 and 

ACC2 thus positions the liver as a central regulator of fatty acid metabolism. 

The complexities of hepatic lipid metabolism are illustrative of the enormous flux 

of nutrients into and out of the liver. The liver’s central role in the processing of 

potentially immunogenic molecules from food, in addition to toxins and microbial by-

products draining from the gut, requires local immune responses to be held in a 

suppressed state to avoid frequent bouts of inflammation (discussed below). It is this 

confluence of the liver’s role in lipid metabolism and its unique tolerogenic immune 

environment that is the focus of my dissertation. Specifically, I describe the investigation 

of two liver diseases, hepatitis C and nonalcoholic steatohepatitis, which are chronic 

inflammatory diseases intimately linked with hepatic lipid metabolism. 

 

Hepatitis C  

 Hepatitis C is a chronic inflammatory disease that poses a significant health 

burden as it affects over 150 million people worldwide, resulting in over 350,000 deaths 

per year (20). First recognized in the mid-1970s as the cause of unexplained liver 

dysfunction in patients that received blood transfusions, hepatitis C is presently the 

leading cause of liver transplants in the United States (21, 22). The etiological agent of 

hepatitis C is the hepatitis C virus (HCV). Upon infection, over 80% of patients develop 

chronic low-grade inflammation that frequently results in end-stage liver diseases such as 

cirrhosis and hepatocellular carcinoma. However, hepatitis C follows a silent course of 
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disease in the majority of infected individuals and typically presents with symptoms 2-4 

decades after exposure (23).  

Until recently, the standard treatment for hepatitis C was pegylated interferon 

(IFN)α and the nucleoside analog, ribavirin. This combination was effective in only 8-

50% of patients and had a number of side effects, including flu-like symptoms, diarrhea, 

and anemia (24). It was only in 2011 that teleprevir and boceprevir, the first generation of 

viral protease inhibitors, were introduced for widespread patient use. Although these 

agents significantly improved the rates of sustained virological responses (undetectable 

viral RNA in blood) to >65%, they were administered in combination with IFNα and 

ribavirin, required multiple daily doses, and resulted in adverse side effects including 

severe anemia and rash (25-27). The second and third generation direct acting antivirals 

currently in use are not only well tolerated, but have also increased the rates of sustained 

virological responses to >90% (28-30). While remarkably effective, these drugs are 

highly cost-prohibitive as the approximate cost per sustained virological response is US 

$150,000 (31). In addition, although increasing screening of blood products and safer 

medical practices have dramatically reduced the incidence of acute hepatitis C in the last 

two decades, HCV-related deaths now surpass the number of human immunodeficiency 

virus (HIV)-related deaths in the United States (32). The development of cost-effective 

prophylactic vaccines has thus reemerged as the next frontier in the field.  

 Such rapid and remarkable progress in the treatment of hepatitis C was not always 

the pace with which HCV was understood. Despite the discovery of non-A, non-B 

hepatitis in the 1970s, the transmissible agent responsible for hepatitis C was not 

identified until 1989 (33). The intervening years were met with several technical 
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difficulties, including the lack of an animal model, as sera from patients were unable to 

establish productive disease in most primates with the exception of chimpanzees (34, 35). 

Inoculation of chimpanzees with serum from a patient with particularly severe disease 

allowed further characterization of the infectious agent as a 30-60 nm sized particle, 

which was inactivated by chloroform, and produced membranous tubules in infected 

animals, tentatively identifying it as an enveloped RNA virus (36-38). Subsequent 

experiments introduced a cDNA library from infected chimpanzees into bacteria, and the 

resulting proteins were screened for reactivity against patient sera (33). The elusive cause 

of post-transfusion hepatitis was thus finally identified as the hepatitis C virus. At 

present, there are over 50 subtypes of HCV spanning 7 genotypes that vary in 

geographical distribution, disease characteristics, and sensitivity to treatment (39). 

Moreover, host selective pressure and an error-prone polymerase can generate 

quasispecies within an infected individual that can vary 1-9% in sequence, making HCV 

a formidable, yet fascinating pathogen (40). 

 

HCV genome and life cycle 

HCV is classified in the genus Hepacivirus within the Flaviviridae family of 

viruses. All members of the Flaviviridae family are enveloped, single-stranded positive-

strand RNA viruses. HCV’s 9.6 kb genome consists of nontranslated regions (NTR) in 

the 5’ and 3’ ends that flank a single open reading frame encoding a 3000 amino acid 

long polyprotein. The polyprotein is cleaved into three structural proteins—core, E1, and 

E2—and seven non-structural proteins—p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B 

(Figure 1.4).  
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The life cycle of HCV begins with viral entry into hepatocytes through binding of 

host receptors on the basolateral surface (Figure 1.5) (41). Initial attachment of HCV to 

hepatocytes is thought to proceed via interactions with the low-density lipoprotein 

receptor (LDLR) and glycosaminoglycans (GAGs) on heparan sulfate proteoglycans (42-

44). As described below, binding of HCV to the LDLR and GAGs is mediated by 

interactions with virion-associated apolipoprotein E (ApoE). However, while LDLR and 

GAGs are thought to enhance HCV entry, they are not as essential as CD81, scavenger 

receptor B1 (SRB1), and the tight junction proteins, claudin-1 (CLDN1) and occludin 

(OCLN). Although the mechanics of HCV entry are still under investigation, current data 

suggests that E2 initially binds SRB1, which exposes the binding site for CD81 (45-47). 

Binding of E2 to CD81 promotes lateral movement of the virion to sites between 

hepatocytes, where CLDN1 and OCLN facilitate internalization of HCV (48). More 

specifically, CLDN1 interacts with CD81 to mediate post-attachment steps of viral entry, 

but does not associate with HCV proteins (49, 50). The role of OCLN is less well-defined 

and it is not known whether it directly interacts with viral proteins (51, 52). Nonetheless, 

hepatic expression of CD81 and OCLN is sufficient to render mice permissive to HCV 

infection (53-55). In addition, HCV’s tropism to the liver is partly dictated by SRB1 as it 

is expressed at high levels in hepatocytes in contrast to other host receptors that 

participate in HCV entry (41). Lastly, the transferrin receptor 1 (TFR1) and the 

cholesterol receptor Niemann-Pick C1-like 1 (NPC1L1) were also found to have a role in 

viral entry as knockdown of either receptor inhibited HCV entry in vitro (56, 57).  

Entry of HCV into the hepatocyte is completed by clathrin-mediated endocytosis, 

after which the viral genome is release into the cytosol by low-pH-mediated fusion, a 
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process regulated by the envelope protein E1 and perhaps E2 (58-62). Subsequent 

translation of the (+)-strand RNA proceeds through the HCV internal ribosomal entry site 

(IRES) as HCV RNA lacks the 5’-7-methylguanosine cap found in eukaryotic mRNAs 

(63). As a result, the HCV IRES overrides the need for group 4 elongation initiation 

factors (eIF), which bind the 5’ cap of host mRNAs; instead, translation of HCV RNA 

only requires eIF3, eIF2, and eIF5 (64). Translation of the viral genome then proceeds 

through a single open reading frame, producing a 3,000 amino acid long polyprotein 

encoding 10 viral proteins (65, 66). Host signal peptidase and signal peptide peptidase 

cleave the structural proteins and the junction between p7 and NS2 (67-69). The 

remainder of the polyprotein is processed by viral proteases; NS2 is an autoprotease that 

cleaves itself from NS3, while the serine protease NS3, with the cofactor NS4A, liberates 

the remaining non-structural viral proteins (70-73).  

The newly synthesized HCV non-structural proteins then assemble onto host 

endoplasmic reticulum (ER) membranes to form replication complexes, similar to the 

double membraned vesicles used by other (+)-sense RNA viruses. Such characteristic 

changes in the ER membrane are identified as membranous webs and are orchestrated by 

NS4B and NS5A (74). Sheltered from degradation within these webs, HCV RNA 

replication is initiated in the absence of a primer and generates a (-)-strand intermediate, 

which in turn serves as a template for synthesis of (+)-strand RNA (75, 76). The ratio of 

(+)-strand to (-)-strand varies across experimental systems and viral genotypes, but 

averages at 10:1 and decreases to 6:1 within replication complexes (77-79). Replication 

of HCV RNA exclusively requires NS3-NS5B. In addition to its role as a protease, NS3 

also has nucleotide triphosphatase and helicase functions, which are thought to displace 
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complementary RNA or resolve secondary RNA structures prior to replication (80, 81). 

NS5A is the most multifunctional protein in the HCV proteome and facilitates replication 

through multiple ways, including protein-protein interactions and protein-RNA 

interactions (82-85). NS5B is the viral polymerase that is responsible for the synthesis of 

both (-) and (+)-strand HCV RNA (86, 87).   

Current knowledge of the shuttling of viral RNA to translation, replication, and 

packing into virions is tenuous, as the fate of a given (+)-strand RNA is not well 

understood. For instance, it is not known whether (+)-strand RNA must be translated 

before it can serve as a template for (-) strand synthesis. Conversely, once synthesized 

from a (-)-strand template, trafficking of the nascent (+)-strand for additional rounds of 

replication, translation, or packaging into virions is not completely defined. As synthesis 

of the (-)-strand proceeds in a 3’-5’ direction, translation cannot occur simultaneously 

with synthesis of (-)-strand RNA (75, 88). Modeling studies further predict that the initial 

synthesis of (-)-strand RNA is at or near the site of translation, as it requires the 

polymerase NS5B to be supplied in cis (76). The (-)-strand RNA is subsequently 

enclosed within double membraned vesicles, which are the site of (+)-strand synthesis. 

The majority of the newly synthesized (+)-strand RNA are then exported back to the 

cytosol, where they can reinitiate translation or be assembled into viral particles (76). 

Assembly of replicated viral RNA into nascent virions is a concerted effort that 

requires all viral proteins except the polymerase. Although the roles of p7, NS2, NS3/4A, 

and NS4B in HCV assembly are not fully defined, the functions of the nucleocapsid core 

protein, the envelope glycoproteins, and NS5A are better understood. For example, 

assembly is dependent on the association of core with the surface of cytosolic lipid 
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droplets (89, 90). Lipid droplets are highly mobile intracellular structures composed of 

triglycerides and cholesterol esters enclosed within a single phospholipid membrane. As 

lipid droplets are thought to bud from the ER membrane, they are typically located in 

close proximity to the ER, the site of HCV replication. NS5A also localizes to the surface 

of lipid droplets and is thought to shuttle newly synthesized RNA from the ER to the site 

of assembly (90). However, given the low efficiency of assembly in live cells, the precise 

location of HCV assembly, e.g., the surface of lipid droplets or lipid droplet-associated 

ER membranes, is unclear (91). Nonetheless, once the viral RNA is encapsulated by the 

icosahedral nucleocapsid, it is enveloped by host ER membranes decorated with E1 and 

E2 heterodimers, which are held facing the ER lumen after being cleaved from the 

polyprotein (92-94).  

Although the minimum requirements for an HCV particle are assembled at this 

point, the virus continues to mature through the ER. Specifically, newly formed virus 

particles are complexed with apolipoproteins in a process that remains enigmatic (95, 96). 

One possibility is that as the virus buds into the ER lumen, it associates with precursors 

to lipoproteins in the ER lumen containing triglycerides, cholesterol esters, and the 

apolipoproteins E and C (ApoE and ApoC). Fusion of the lipidated virus with ApoB that 

is lipidated simultaneously, but independently of the virus, produces a viral particle 

known as the lipoviroparticle (LVP). The virus is subsequently exported through the 

Golgi and released via a noncytolytic pathway (91).  

 

HCV and lipids 
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HCV’s association with lipoproteins produces a heterogenous mixture of secreted 

viral particles that range in density from 1.20 g/mL to 1.03 g/mL (97-100). Particle 

infectivity is inversely proportional to density (100, 101). As a result, LVPs, which 

harbor on average 40% of viral RNA in blood, constitute the most infectious form of 

HCV. The increase in infectivity is in part due to enhanced viral entry, as lipoproteins on 

the LVP can bind SRB1 and LDLR (101, 102). Furthermore, the presence of lipids likely 

masks the binding sites of neutralizing antibodies, enabling HCV to evade anti-viral host 

responses (103). However, the benefits of associating with lipids are not limited to viral 

entry and circumventing host immune responses, as multiple steps of the HCV life cycle 

rely on host lipids. As described above, HCV replication occurs within double 

membraned enclosures on the ER membrane. These membranous webs are highly 

detergent resistant and enriched in cholesterol and sphingomyelin (104, 105). Moreover, 

lipid droplets play a critical role in viral assembly. Maintaining adequate supplies of 

intracellular lipids is therefore essential for the propagation of HCV.  

Indeed, in addition to directly facilitating viral entry, replication, assembly, and 

export, lipids also serve as modifiers of host and viral proteins. Addition of a 

geranylgeranyl group, which is derived from the cholesterol synthesis pathway, to the 

host factor F-box and leucine-rich repeat-containing protein 2 (FBL2) is necessary for 

optimal viral replication (106). S-palmitoylation is another type of lipid-based post-

translational modification of proteins in which a fatty acid is added to a cysteine residue. 

Palmitoylation of proteins can dictate localization to membranes, folding, and ultimately 

function. As a result, inhibiting the palmitoylation of HCV core disrupts its ability to 

trafficking to ER membranes, resulting in decreased virion assembly and release (107). 
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Similarly, palmitoylation of HCV NS4B was previously shown to permit its 

polymerization and interaction with NS5A, where depalmitoylated NS4B was unable to 

form the replication complex resulting in a marked loss of viral replication (108). A more 

recent study, however, found that the majority of NS4B present in replication complexes 

is not palmitoylated (109). Although these contradictory findings indicate the need for 

further investigation, they nonetheless underscore the importance of fatty acids in 

potentially regulating viral protein function and in turn, influencing the outcome of 

disease. Thus, considering the extensive roles of lipids in HCV infection, hepatic 

synthesis and processing of lipids may serve as an intracellular determinant of HCV’s 

tropism to the liver. 

Acute changes in extracellular lipids also impact HCV virulence. To date, two 

studies demonstrate that in the post-prandial state, the amount of viral RNA is increased 

in very low-density fractions, which include chylomicrons and VLDLs (110, 111). While 

Diaz, et al. interpret their findings as preliminary evidence of intestinal involvement in 

HCV infection, Felmlee, et al. suggest that the virus migrates via intravascular transfer 

into more buoyant fractions. Although the exact mechanism is not resolved, these 

findings collectively suggest that in addition to the essential functions of intracellular 

lipids, extracellular lipids also play a distinct role during HCV infection. 

HCV’s dependence on intracellular and extracellular lipids manifests as a number 

of clinical consequences. As an example, steatosis, or the accumulation of intracellular 

lipids in hepatocytes, is present in ~50% of patients and was used as a diagnostic marker 

for non-A, non-B hepatitis before the development of serological tests for HCV (112-

114). The association of HCV with steatosis rises to ~80% in patients infected with 
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genotype 3 virus (115-117). The extent of steatosis parallels the level of viral RNA in the 

liver and serum and can persistent even after sustained virological response is achieved in 

non-genotype 3 patients (115, 118, 119). Steatosis can drive hepatic inflammation in non-

HCV models of fatty liver disease (120). Expression of viral proteins thus augments local 

production of inflammatory cytokines that enhance the development of fibrosis. 

Furthermore, patients infected with genotype 3 HCV are more resistant to treatment with 

the direct acting antivirals (121). Hepatic lipid metabolism thus significantly influences 

the pathogenesis of hepatitis C.  

 

Nonalcoholic steatohepatitis 

Nonalcoholic fatty liver disease (NAFLD) is a formidable health problem as it is 

the third leading cause of liver transplants in the United States and is predicted to surpass 

viral hepatitis and alcoholic cirrhosis as the leading cause in the next decade (122). 

NAFLD is characterized by extensive steatosis, or the accumulation of triglycerides in 

lipid droplets within hepatocytes. The etiology of NAFLD consists of complex 

interactions that often stem from obesity-related insulin resistance resulting in systemic 

dysregulation of glucose and lipid metabolism. Specifically, sedentary lifestyles 

combined with diets high in carbohydrates and saturated fats induce adipocyte 

dysfunction, resulting in increased uptake of free fatty acids by the liver. Hepatic 

steatosis is further exacerbated by the upregulation of de novo lipogenesis, which occurs 

despite a parallel rise in insulin resistance (123). A subset of patients is also predisposed 

to developing steatosis due to mutations in a number of genes, many of which regulate 

lipid metabolism (124, 125). While simple steatosis is considered relatively benign, it can 
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progress to nonalcoholic steatohepatitis (NASH), which is marked by the infiltration of 

immune cells into the liver. NASH can lead to the development of hepatic diseases such 

as fibrosis, cirrhosis, and hepatocellular carcinoma, and is also associated with an 

increased risk of cardiovascular disease (126). At present, treatment of NAFLD is largely 

limited to diet and lifestyle modifications while the gold standard for diagnosis is an 

invasive liver biopsy. Continued investigation of the molecular events that regulate 

disease progression are thus necessary to identify novel targets for the diagnosis and 

treatment of NAFLD. 

The exact triggers that propel steatosis to NASH are not known; increased levels 

of free fatty acids, oxidative damage, hepatocyte death, and altered gut permeability can 

all contribute to the activation of local immune responses. Sustained activation of 

immune responses stimulates production of profibrogenic factors by hepatic stellate cells, 

initiating a tissue repair response that can manifest as end-stage liver diseases if left 

unchecked. Indeed, the contribution of the immune response to NAFLD progression is 

critical as deficiency or inhibition of innate or adaptive immune cells in mice results in 

less severe or no disease (127, 128). Recent advancements in our understanding of the 

roles of specific immune cells in the pathogenesis of NAFLD have identified new 

avenues, including innate lymphoid cells (ILCs), which are discussed in further detail 

below.  

 

Hepatic immune responses 

The liver is a unique immunological site as it is continually exposed to highly 

immunogenic content draining from the gut. This quasi-mucosal nature of the liver 
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microenvironment requires homeostatic suppression of both immune cells resident in the 

liver and those in transit through the liver’s sinusoids. The myeloid arm of liver-resident 

immune cells is enriched in macrophages and dendritic cells (DCs) that induce anergy in 

T lymphocytes, promote the generation of regulatory T cells (Tregs), or maintain 

hyporesponsive natural killer (NK) cells via secretion of immunosuppressive factors such 

as IL-10 (129, 130). The lymphocytic compartment is enriched in NK cells as they 

comprise ~30% of lymphocytes in the human liver (131). Although hepatic NK cells can 

produce lytic agents and cytokines, including granzyme B, IFN-γ, and TNF-α, they also 

contribute to maintaining immune tolerance via fratricide of activated T cells (132). 

Similarly, another innate lymphocyte population in the liver, the natural killer T (NKT) 

cells, can limit T cell responses by inducing the upregulation of the inhibitory molecules 

PD-L1 and PD-L2 on hepatic antigen presenting cells (133). Moreover, interactions with 

T cells are not limited to hematopoietic cells, as they can be primed, albeit inefficiently, 

by hepatocytes, liver sinusoidal endothelial cells, and hepatic stellate cells (134-136). 

Despite the multitude of mechanisms that dampen hepatic immunity, the liver retains the 

ability to stage robust immune responses upon inflammatory insult, such as injured 

hepatocytes in NASH, through recruitment of monocytes, granulocytes, and additional 

lymphocytes. Delineating the interplay among these populations will increase our 

understanding of the molecular switches that convert a quiescent immune environment 

into a cellular battlefield during chronic inflammatory diseases like NASH. Below, I 

describe the role of a newly described population of cells, the innate lymphoid cells 

(ILCs) in the pathogenesis of NASH. The contribution of cells of the myeloid lineage 
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(monocytes, macrophages, dendritic cells, and neutrophils) and other lymphocytic 

lineages (NK cells, NKT cells and T cells) is detailed in the appendix.    

 

Innate lymphoid cells (ILCs) 

Innate lymphoid cells (ILCs) are emerging as potent regulators of inflammation 

and metabolic disease. ILCs are classified into three groups that arise from the common 

lymphoid progenitor (Figure 1.6) (137). Group 1 ILCs include NK cells and ILC1s, 

which are analogous to Th1 cells in that they are regulated by the master transcription 

factor T-bet and produce IFN-γ in response to IL-12. Group 2 ILCs are governed by the 

transcription factor GATA3 and respond to IL-25, IL-33, and TSLP by producing Th2 

cytokines, including IL-4, IL-5, and IL-13. Lastly, group 3 ILCs parallel Th17 cells by 

expression of RORγt, are activated by IL-1β and IL-23, and secrete IL-17 and IL-22, and 

in some cases, IFN-γ. Much like CD4 T cell subsets, there is some plasticity among ILC 

groups. For instance, one subtype of ILC3s, the natural cytotoxicity receptor (NCR)+ 

ILC3, can upregulate T-bet to express IFN-γ (138). Similarly, recent studies 

demonstrated that IL-13+ ILC2s can express IFN-γ or IL-17, resulting in hybrid IL-

13+IFN-γ+ or IL-13+IL-17+ ILCs (139, 140). ILCs are thus as phenotypically and 

functionally complex as T cells and warrant further investigation in chronic inflammatory 

diseases like NASH. We recently reported that under homeostatic conditions, ILC1s 

comprise the majority of group 1 ILCs in murine livers (Krueger, et al. Manuscript under 

review). These liver-resident ILC1s maintain immune tolerance by limiting the influx of 

NK cells during viral infection. Whether ILC1s similarly attempt to curb inflammation 
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during NASH will be interesting to investigate and may uncover novel targets for 

limiting inflammatory injury in the liver.  

Compelling evidence for a protective role of ILCs in metabolic disorders include 

the ability of ILC2s to promote the infiltration of eosinophils and alternatively activated 

macrophages into adipose tissue (141, 142). The influx of these cells into adipose tissue 

is necessary for limiting weight gain and insulin resistance. Remarkably, activation of 

ILC2s follows a circadian pattern and is stimulated by food intake (143). Consequently, it 

is not surprising that loss of TSLP expression, which also activates ILC2 responses, was 

associated with an increased incidence of hypertension in obese patients, reiterating the 

importance of this population in metabolic syndrome-associated conditions (144). 

Furthermore, ILC2s were shown to promote the beiging of white adipose tissue, thus 

conferring protection against the development of obesity (145, 146). These findings 

underscore a distinct function of ILC2s in maintaining metabolic homeostasis. 

ILC3s may also protect against development of obesity and liver injury. For 

example, loss of lymphotoxin, which is produced by the lymphoid tissue inducer subset 

of group 3 ILCs, renders mice resistant to diet-induced obesity by promoting an 

overgrowth of segmented filamentous bacteria in the gut (147). Similarly, exogenous 

administration of IL-22, which is produced by both Th17 cells and ILC3s, was reported 

to induce a remarkable reversal of insulin resistance, weight gain, and bacterial 

dissemination to the liver in obese mice (148). Indeed, ILC3-derived IL-22 is essential in 

preventing systemic inflammation as it also restricts bacterial dissemination from 

lymphoid compartments (149). Additionally, as discussed above, IL-22 protects against 

fibrosis in the liver. These findings collectively suggest that ILC3 responses may play a 
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critical role in limiting the loss of epithelial integrity in the gut and expression of 

fibrogenic markers in the liver during NASH.  

 

Rationale  

 Despite the differences in their etiology, hepatitis C and fatty liver disease are 

both chronic liver diseases that share two features: dysregulated hepatic lipid metabolism 

and inflammation. I aimed to investigate these characteristics by exploring two main 

questions that are either unanswered or poorly defined in the field: 1) with regards to 

HCV infection, what is the contribution of intracellular lipids as compared to 

extracellular lipids (Chapter 2), and 2) what, if any, is the role of mucosal-resident ILCs 

in restoring tissue homeostasis during NASH (Chapter 3). Given the increase in lipogenic 

programs in HCV infection, I hypothesize that intracellular or de novo synthesized lipids 

play a distinct role in the life cycle of HCV that is not redundant to the contributions of 

extracellular lipids. I also propose that the mucosa-like nature of the liver will invite 

ILC3 responses that act to maintain and/or restore tissue homeostasis in NASH. These 

questions might at first appear disparate. However, chronic inflammatory responses 

exacerbate metabolic disturbances, while chronic changes in metabolism lead to tissue 

damage, which in turn induces inflammation. Thus, although I investigate lipid 

metabolism and immune responses using two different disease models, the findings from 

one are likely to have implications not only for the other, but also to all chronic 

inflammatory diseases of the liver.  
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Table 1.1. Role of the liver in energy metabolism in fed and fasting states.  
 FED STATE FASTING STATE 
Carbohydrates  Oxidized to produce ATP 

 Stored as glycogen  
 Converted to fatty acids via de 

novo lipogenesis 
 Diverted to nucleotide synthesis 

via pentose phosphate pathway 

 Glycogenolysis releases glucose 
 Gluconeogenesis  

   
Lipids  Stored as triglycerides, 

phospholipids, and cholesterol 
esters  

 Secreted as lipoproteins for 
delivery to extrahepatic tissues 

 Converted to ketone bodies via β-
oxidation and ketogenesis 

   
Amino acids  Synthesized into proteins  

 Converted to glucose, acetyl-
CoA, or nucleic acids 

 Oxidized to produce ATP 

 Diverted to gluconeogenesis and 
ketogenesis 
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Figure 1.1. Overview of hepatic lipid metabolism.  

Hepatic fatty acid pools are derived from three sources: 1) Lipids delivered in 

chylomicrons from the gut are repackaged into VLDL for distribution to extrahepatic 

sites such as muscle and adipose tissue, where LPL hydrolyzes fatty acids from TAGs. 

The resulting IDL can be taken up by the liver or further hydrolyzed to generate LDL that 

returns residual cholesterol to the liver. The liver also produces HDL that scavenges 

excess cholesterol from extrahepatic tissues for disposal by the liver. 2) Free fatty acids 

released from adipose tissue are activated and esterified upon entry into the hepatocyte. 

3) De novo synthesis of fatty acids from glycolytic products is initiated by the 

carboxlyation of acetyl-CoA to produce malonyl-CoA, which is subsequently converted 

to the 16-carbon fatty acid, palmitate. Esterified fatty acids are stored in lipid droplets as 

TAGs.  

VLDL, very low-density lipoprotein; LPL, lipoprotein lipase; TAG, triacylglycerol; IDL, 

intermediate-density lipoprotein; LDL, low-density lipoprotein; HDL, high-density 

lipoprotein; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase. 
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Figure 1.2. Uptake and processing of free fatty acids by hepatocytes. 

Fatty acids are transported across the hepatocyte membrane via FATP and the scavenger 

receptor, CD36, expressed on the basolateral surface facing the liver sinusoids. Upon 

entry into the hepatocytes, fatty acids are bound by FABP and delivered to intracellular 

membranes such as the outer membranes of the ER and mitochondria, where they are 

activated by the addition of a –CoA group. Activated fatty acids can be bound by acyl-

CoA binding proteins and trafficked to various sites to meet cellular demands.  

FATP, fatty acid transport protein; FA, fatty acid; FABP, fatty acid binding protein; 

ACS, acyl-CoA synthetase; CoA, coenzyme A; FA-CoA, fatty acyl-CoA; Acyl-CoA BP, 

acyl-CoA binding protein.  
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Figure 1.3. De novo synthesis of fatty acids.  

(A) Acetyl-CoA generated from pyruvate or citrate is carboxylated by ACC to form 

malonyl-CoA. Successive addition of malonyl-CoA to a growing acyl chain is catalyzed 

by FAS, using the reducing agent NADPH generated via the pentose phosphate pathway. 

The end product of de novo lipogenesis is palmitate, which can be converted to other 

fatty acids to generate a large repertoire of fatty acids varying in chain length and 

saturation. The majority of hepatic fatty acids are stored as TAG. The glycolytic 

intermediate G-3-P supplies the glycerol backbone for TAG synthesis. Solid arrows 

indicate direct conversion, while dotted arrows indicate conversion via intermediates.  

(B) Mechanism of action of ACC. Conversion of acetyl-CoA to malonyl-CoA proceeds 

via a two-step process. 1) Carboxylatin of biotin bound to the BCCP is driven by ATP 

hydrolysis and catalyzed by the BC domain. 2) The CT domain completes the reaction by 

transferring the carboxyl group from biotin to acetyl-CoA without using an additional 

source of energy. 

G-6-P, glucose-6-phosphate; G-3-P, glyceraldehyde-3-phosphate; ACC, acetyl-CoA 

carboxylase; FAS, fatty acid synthase; TAG, triacylglycerol; NADPH, reduced 

nicotinamide adenine dinucleotide phosphate; ATP, adenosine triphosphate; BCCP, 

biotin carboxyl carrier protein; BC, biotin carboxylase; ADP, adenosine diphosphate; CT, 

carboxyltransferase. 
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Figure 1.4. Hepatitis C virus (HCV) genome and proteome. 

HCV virions are comprised of structural proteins marked by white boxes. Non-structural 

proteins are indicated in grey boxes and function in genome replication, virion assembly, 

and modulation of host responses.  

IRES, internal ribosomal entry site; RNA, ribonucleic acid.  
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Figure 1.5. HCV life cycle.  

HCV enters hepatocytes using a multitude of host receptors, including SRB1, CD81, 

CLDN1, and OCLN. Following endocytosis, the (+)-sense viral RNA is released into the 

cytoplasm and translated to synthesize viral proteins that replicate the RNA in specialized 

membrane structures on the ER. The newly synthesized viral RNA is assembled with the 

nucleocapsid protein that localizes to the surface of host lipid droplets. Addition of 

envelope glycoproteins and host-derived lipoproteins occurs as the virus moves through 

the secretory pathway in the Golgi. A proportion of virus is released as LVP, the most 

infectious form of HCV.  

HCV, hepatitis C virus; SRB1, scavenger receptor B1; CD, cluster of differentiation; 

CLDN1, claudin-1; OCLN, occludin; LVP, lipoviroparticle. 
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Figure 1.6. Diversity of human innate lymphoid cell (ILC) populations.  

ILCs develop from a common lymphoid progenitor (CLP) that differentiates into a 

natural killer precursor (NKp) or a common helper innate lymphoid progenitor (CHILP). 

Subsequent differentiation of CHILP gives rise to ILC1s, ILC2s, and a variety of group 3 

ILCs, which include natural cytotoxicity receptor (NCR) positive and negative ILC3s and 

lymphoid tissue induers (LTi). Intermediate precursors and additional transcription 

factors that contribute to ILC differentiation are not pictured. Figure adapted from 

Sonnenberg and Artis, Nature Medicine 2015 and Hazenberg and Spits, Blood 2014 (137, 

150).  

IL: interleukin; IFN, interferon; TNF, tumor necrosis factor; TSLP, thymic stromal 

lymphopoietin; CD, cluster of differentiation; T-bet, T-box expressed in T cells; ROR, 

retinoic acid receptor-related orphan receptor. 
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CHAPTER 2: De novo lipogenesis in hepatitis C virus infection  

 
Included in part in a “Distinct roles for intracellular and extracellular lipids in hepatitis C 

virus infection” (manuscript under review).  

 

ABSTRACT 

Hepatitis C is a chronic liver disease that contributes to progressive metabolic 

dysfunction. Infection of hepatocytes by hepatitis C virus (HCV) results in 

reprogramming of hepatic and serum lipids. However, the specific contribution of these 

distinct pools of lipids to HCV infection remains ill defined. In this study, we 

investigated the role of hepatic lipogenesis in HCV infection by targeting the rate-

limiting step in this pathway, which is catalyzed by the acetyl-CoA carboxylase (ACC) 

enzymes. Using two structurally unrelated ACC inhibitors, we determined that blockade 

of lipogenesis resulted in reduced viral replication, assembly, and release. The effect of 

ACC inhibition on viral RNA levels was comparable to sofosbuvir, a viral polymerase 

inhibitor used in hepatitis C patients. Supplementing exogenous lipids to cells treated 

with ACC inhibitors rescued HCV assembly with no effect on viral replication and 

release. Intriguingly, loss of viral RNA was not recapitulated at the protein level and 

addition of 2-bromopalmitate, a competitive inhibitor of protein palmitoylation, mirrored 

the effects of ACC inhibitors on reduced viral RNA without a concurrent loss in protein 

expression. These correlative results suggest that newly synthesized lipids may have a 

role in protein palmitoylation during HCV infection wherein inefficient palmitoylation of 

viral and/or host proteins may limit their ability to function in HCV replication, thus 

leading to a loss in viral RNA and an accumulation of nonfunctional viral protein.
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INTRODUCTION 

The liver is the primary site of synthesis, storage, and oxidation of lipids and other 

macromolecules. As such, hepatic lipid metabolism is essential for the maintenance of 

systemic nutrient homeostasis. Dysregulation of hepatic lipid metabolism is a hallmark of 

several diseases including diabetes, alcoholic and non-alcoholic fatty liver disease, and 

parasitic and viral infections, including hepatitis C virus (HCV) infection (151-155). 

HCV infection is associated with the development of liver disease characterized by 

chronic hepatic inflammation leading to cirrhosis and hepatocellular carcinoma (156, 

157). At present, as many as 2-3% of the world’s population is infected with HCV, 

although the recent development of viral protease and polymerase inhibitors has made 

notable advancements in the treatment of the disease (158-161). However, many patients 

are precluded from receiving treatment due to comorbidities or infection with resistant 

genotypes of HCV (162). Thus, understanding the pathogenesis of HCV infection is 

essential for providing insights into the development of novel pan-genotypic therapeutic 

agents.  

The life cycle of HCV relies on hepatic lipids, which results in metabolic 

disturbances. This manifests clinically as insulin resistance, dysregulated serum 

lipoproteins, and abnormal accumulation of intracellular lipids, i.e., steatosis (117, 163-

168). These metabolic shifts are partly due to virus-induced increases in de novo 

lipogenesis (167, 169, 170). Despite the enhanced synthesis of lipids during HCV 

infection, de novo lipogenesis contributes to less than 5% of hepatic lipid stores, 

indicating that the bulk of lipids available to HCV may be derived from extracellular 

sources (171-174). Indeed, the lipoviroparticle, the most infectious form of HCV 
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consisting of virus packaged with triglyceride-rich lipoproteins, is enriched in viral RNA 

post-prandially when compared to fasting states (110, 111, 175, 176). These observations 

point to an intimate link between HCV and lipids; yet, the specific contributions of de 

novo synthesized lipids compared to those obtained from the extracellular environment 

have not been well elucidated in HCV infection or other viral diseases. Indeed, 

considering that changes in host lipid metabolism are characteristic of many positive-

strand RNA viruses, understanding the contributions of de novo synthesized and 

exogenous lipids may have significant implications for the biology of formidable 

pathogens, such as encephalitic Togaviruses and Flaviviruses.   

The acetyl-CoA carboxylase enzymes (ACC1 and ACC2) catalyze the rate-

limiting step of de novo lipogenesis, in which acetyl-CoA is carboxylated to form 

malonyl-CoA. Malonyl-CoA is subsequently converted to palmitate, a 16-carbon 

saturated fatty acid. In addition to their role as the building blocks of most lipids, fatty 

acids also participate in numerous cellular processes, including post-translational 

modification of proteins. Covalent addition of palmitate to a cysteine residue on proteins, 

termed S-palmitoylation, regulates protein conformation, stability, function, trafficking to 

membranes, and interactions with other proteins (177-179). In addition to the 

indispensable role of protein palmitoylation in many cellular processes, it also has been 

reported to play a crucial role in regulating virion composition, infectivity, and evasion of 

host immune responses (180-182). In particular, palmitoylation of HCV core and NS4B 

was previously shown to influence the efficiency of viral assembly and replication (107, 

108). Conversely, while palmitoylation of the host protein CD81 increases susceptibility 

to HCV, it also confers anti-viral activity to interferon-induced transmembrane proteins 
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(183, 184). Both exogenously derived and de novo synthesized lipids can be used to 

palmitoylate proteins; however, de novo lipogenesis is required for palmitoylation of 

specific host proteins (179). Therefore, the metabolic imbalances in de novo lipogenesis 

and extrahepatic lipids in HCV-infected patients may uniquely influence both the virus 

and the host through changes in protein palmitoylation. 

Here, we investigated the respective roles of de novo lipogenesis and extracellular 

lipids in HCV infection using two non-competitive inhibitors of ACC enzymes, K1 and 

soraphen A. We found that blockade of de novo lipogenesis through ACC inhibition 

decreased HCV RNA by limiting viral replication, lipid droplets available for assembly, 

and viral export. Supplying ACC inhibitor-treated cells with exogenous fatty acids, the 

end products of de novo lipogenesis, selectively rescued lipid droplets, with no effect on 

viral replication and release; this suggests that solely repleting lipids is insufficient to 

overcome the effects of inhibiting de novo lipogenesis. Furthermore, inhibiting protein 

palmitoylation recapitulated the effects of ACC inhibition. These results suggest that 

intracellular and extracellular lipids contribute differentially to HCV infection. 

 

MATERIALS AND METHODS 

Virus, cells, and reagents. 

The JFH-1 strain of HCV was kindly provided by Takaji Wakita (185). UV-

inactivated virus was generated by exposing virus stocks to 2-3 minutes of UV light in a 

Stratalinker 3000 (Agilent Technologies). Huh7.5.1 cells were maintained in DMEM 

with 10% FBS, 100 U/mL penicillin/streptomycin, 2 mM L-glutamine, and 1% non-

essential amino acids and infected with cell culture-derived JFH-1 at a multiplicity of 
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infection (MOI) of 0.1. Primary hepatocytes were obtained from Life Technologies and 

infected at an MOI of 0.5. Huh7.5 cells harboring the HCV subgenomic replicon 

(Huh7.5-SG), a gift from Charles Rice, were cultured in Huh7.5.1 media in the presence 

of 750 µg/mL of G418 (Invivogen) to maintain viral RNA (186). K1 and soraphen A 

(Figures 2.1.A and 2.1.B) were provided by Crop Solution, Inc. K1 was synthesized as 

described (187). Sofosbuvir, the NS5B polymerase inhibitor (PSI-7977), was purchased 

from MedChem Express. The inhibitor of palmitoylation, 2-bromopalmitate (2-BP), was 

obtained from Sigma-Aldrich.  

 

Real-time PCR. 

Cellular RNA was extracted using the GenElute Mammalian Total RNA Miniprep 

Kit (Sigma-Aldrich) or the RNAeasy Plus Mini Kit (Qiagen). Viral RNA in the 

supernatant was extracted using the QIAamp Viral RNA Mini Kit (Qiagen). As a loading 

control, RNA from the influenza virus strain A/PR/8/34 (kindly provided by Dr. Braciale) 

was added to all samples after extraction and before cDNA synthesis. Following reverse 

transcription with the High Capacity RNA-to-cDNA kit (Life Technologies), RT-PCR 

was run on the StepOnePlus Real-Time PCR System with Taqman RT-PCR assays (Life 

Technologies) for ACTB (Assay ID Hs99999903_m1), HPRT1 (Assay ID 

Hs99999909_m1), HCV JFH-1 (Custom design; forward 5’-

CCTTCACGGAGGCCATGA-3’; reverse 5’-ACAGGATGTTATTAGCTCCAG-

GTCATA-3’; probe 5’-CCTCCTGGTGATCCC-3’; FAM reporter; MGB-NFQ 

quencher), and M gene of A/PR/8/34 (Custom design; forward 5’-

GGACTGCAGCGTAGACGCTT-3’; reverse 5’- 
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CATCCTGTTGTATATGAGGCCCAT-3’; probe 5’- 

CTCAGTTATTCTGCTGGTGCACTTGCCA-3’; VIC reporter; TAMRA quencher) 

(188). Data are presented as relative fold increases in HCV RNA. ACC1 and ACC2 

mRNA were detected using SYBR green dye (Life Technologies) using the primers 

ACC1 forward, 5’- ATCCCGTACCTTCTTCTACTG-3’ and reverse, 5’- 

CCCAAACATAAGCCTTCACTG-3’, and ACC2 forward, 5’- 

CGGATGCGTAACTTCGATCTG-3’ and reverse, 5’- 

CTATGGTCCGTCACTTCCACAC-3’.   

 

Crystal violet assay. 

Huh7.5.1 cells were grown in 96-well plates at 20,000 cells/well. At the time of 

assessment, culture supernatants were aspirated and cells were treated with crystal violet 

solution (0.5% crystal violet in 50% methanol/water) for 20 minutes. The stain was 

solubilized with 1% SDS for 3 hours. Absorbance was read at 570 nm on a PowerWave 

XS spectrophotometer (BioTek).  

 

MTT assay. 

Uninfected and infected Huh7.5.1 were grown in 96-well plates at 20,000 cells/well. At 

three hours before reading the absorbance, the cells were incubated at 37oC with 20 

µL/well of 5 mg/mL of MTT (3-(4,5-dimethylthizaol-2-yl)-2,5-diphenyltetrazolium 

bromide). Precipitates were solubilized in isopropanol containing 4 mM HCl and 0.1% 

NP-40. Absorbance was read at 570 nm on a BioTek PowerWave XS.  
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Intracellular ATP quantification.  

Uninfected and infected Huh7.5.1 were grown in 96-well plates at 20,000 cells/well.. 

Intracellular ATP content was quantified using the CellTiter-Glo® Luminescent Cell 

Viability Assay (Promega) according to the manufacturer’s instructions.  

 

siRNA and plasmid transfections. 

siRNA pools against ACC1, ACC2, or a negative control were purchased from 

Dharmacon and transfected with DharmaFECT 4 Transfection reagent. pFR_HCV_xb 

plasmid, a gift from Phil Sharp (Addgene plasmid #11510), was transfected using 

Lipofectamine 2000 (Invitrogen) (189). pSGR_JFH1/GND_Fluc was a gift from 

Zhensheng Zhang and Jake Liang and was transfected using calcium phosphate 

(Invitrogen). Luciferase activity for translation assays were determined using the Dual-

Luciferase® Reporter Assay System (Promega) and quantified on a GloMax®-Multi 

Detection System (Promega). 

 

Mass spectrometry. 

Cultured cells were trypsinized, centrifuged at 400 × g for 5 minutes at 4oC, and 

resuspended in PBS. 50 µL of cell lysate was added to 1 mL acidified methanol (0.1 N 

HCl) containing internal standard cocktails for sphingolipids (containing 0.5 nmol each: 

C17-ceramide, C12-glucosylceramide, C8-dihydroceramide, and C12-sphingomyelin) and 

glycerolipids (0.1 nmol each of C15-diacylglycerol and C17-lysophosphatidic acid). 

Sphingolipids, glycerolipids, and phospholipids were extracted and measured via liquid 

chromatography-tandem mass spectrometry (LC/MS/MS) as previously described with 
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slight modifications for the measurement of phospholipids (190). Phosphatidic acids, 

lysophosphatidic acids, and phosphatidyl-serines were analyzed in negative mode after 

separation in a Discovery (Supelco) C18 column (50 mm × 2.1 mm, 5 μm bead size). 

Mobile phase A consisted of 60% acetonitrile, 40% H2O, 0.1% formic acid, and 1 mM 

ammonium acetate. Mobile phase B consisted of 90% isopropyl alcohol, 10% 

acetonitrile, 0.1% formic acid, and 1 mM ammonium formate. Chromatography was run 

for a total of 10 min using the following gradient: 1 minute 100% solvent A; a linear 

gradient to 100% solvent B over 6 min; 2 min 100% solvent B; 1 min 100% solvent A. 

Total flow was 0.6 ml/min. Total values were normalized to protein concentration. 

Significance in fold change was determined by Student’s t test (p<0.05) and further 

corrected by a false discovery rate adjustment (p<0.1).  

 

Immunoblot analysis. 

Cells were lysed in radioimmunoprecipitation assay (RIPA) lysis buffer, 

suspended in Laemmli buffer, resolved on a 4-15% Mini-PROTEAN® TGX gel (Biorad) 

or a 6% polyacrylamide gel (for detecting ACC), and blotted on a PVDF membrane with 

antibodies for ACC1 (Millipore), ACC2 (Cell Signaling), HCV core (Anogen), NS3 

(Abcam), LDLR (Cayman Chemical), SRB1 (GeneTex), the ER stress makers, BiP, 

calnexin, IRE1α, PDI, and PERK (all from Cell Signaling Technology) and vinculin 

(Cell Signaling Technology). 

 

HCV titration. 
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Virus stocks generated from culture supernatants of Huh7.5.1 cells following 6-8 

days of infection were centrifuged to remove debris. HCV titer was determined by 

infecting Huh7.5.1 cells in Lab-Tek® chamber slides at various dilutions for 3 days, after 

which the cells were fixed in 4% paraformaldehyde/PBS. Cells were blocked in 0.3% 

Triton-X/5% goat serum, stained using mouse anti-HCV core antigen antibody (Thermo 

Scientific) and highly cross-adsorbed APC goat-anti-mouse IgG (Life Technologies), and 

mounted in ProLong® Gold Antifade Mountant with DAPI (Life Technologies). Images 

were captured on Zeiss LSM 710 Multiphoton microscope and the number of focus 

forming units was calculated from at least 10 fields in each experiment.  

 

Confocal microscopy. 

Cells were stained as described under “HCV titration.” For assembly studies, 

bodipy (Life Technologies) was added along with the secondary antibody. Adjustments 

to brightness and contrast made in Adobe Photoshop CS were kept to a minimum and 

applied to all images from a given experiment. The number of pixels was quantified over 

10 fields/condition in each experiment using ImageJ. In brief, each image was split into 

individual channels. Thresholds for each channel were kept constant within each 

experiment. The “measure” function was used to quantify the number of pixels in each 

channel. To calculate the percentage of red pixels that co-localized with green pixels, 

both channels were inverted, after which a selection was created for red pixels and pasted 

onto the green channel using the “ROI (region of interest) manager” tool. 

 

Addition of exogenous fatty acids. 
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Sodium salts of palmitate, oleate, and linoleate were purchased from Sigma-

Aldrich and mixed in methanol in a 1:2:1 ratio (191). The methanol was removed using 

nitrogen and the fatty acid mixture was reconstituted in culture media containing 0.25% 

fatty acid free BSA (Sigma-Aldrich) to a final concentration of 25 μM palmitate, 50 μM 

oleate, and 25 μM linoleate.  

 

Electron microscopy. 

Cell cultures were fixed in 4% paraformaldehyde/2.5% glutaraldehyde in PBS, 

post-fixed with 1% osmium tetroxide and potassium ferricyanide, dehydrated in ethanol, 

and embedded in Epon 812. Sections were cut on a Leica Ultracut UCT at a thickness of 

60-80 nm and placed on 200 mesh copper grids for viewing in a JEOL 1010 transmission 

electron microscope. Images were obtained with a Hamamatsu ORCA-HR.  

 

Protein aggregate staining. 

Huh7.5.1 cells were grown in Lab-Tek® chamber slides. Protein aggregates were 

stained using the ProteoStat® Aggresome detection kit (Enzo Life Sciences) as per the 

manufacturer’s instructions. Images were captured on Zeiss LSM 710 Multiphoton 

microscope with 5-10 fields for each condition per experiment. 

 

Statistical analysis. 

Results are the mean ± SEM. Statistical significance was determined by an 

unpaired t test, one-way analysis of variance (ANOVA) with Tukey’s post-test, or two-
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way ANOVA with Bonferroni post-test. Statistical analyses were performed using Prism 

GraphPad software v4.0c. ns: not significant, *p<0.05, **p<0.01, ***p<0.001. 

 
 
RESULTS 

ACC inhibition decreases intracellular HCV RNA. 

De novo lipogenesis, the process of generating fatty acids from acetyl-CoA, is 

upregulated upon expression of HCV proteins (169, 192, 193); however, the specific 

contribution of enhanced de novo lipogenesis to HCV infection is not well defined. The 

enzymes ACC1 and ACC2 catalyze the rate-limiting step of de novo lipogenesis and 

represent a potential pharmacological target for delineating the function of de novo 

synthesized lipids in HCV infection. Utilizing a well-established in vitro model of HCV 

infection, i. e., the human hepatocyte cell line Huh7.5.1 infected with the JFH-1 strain of 

HCV, we treated hepatocytes at D1 post-infection with two non-competitive ACC 

inhibitors, K1 or soraphen A, or vehicle control (DMSO) (Figures 2.2.A, and 2.2.B) 

(194). While intracellular HCV RNA was notably decreased in K1 and soraphen A-

treated cells compared to vehicle-treated cells beginning at D2 post-treatment (PT), this 

decrease was most prominent at D3 PT, and was maintained through D5 PT (Figure 

2.2.B). Notably, there were no additive or synergistic effects of K1 and soraphen A on 

intracellular HCV RNA (Figure 2.2C). The effect on viral RNA was dose-dependent for 

both K1 and soraphen A, and began to plateau at doses of 1 µM K1 and 100 nM soraphen 

A (Figures 2.2.D and 2.2.E). All subsequent experiments were therefore conducted at D3 

PT with 1 µM K1 and 100 nM soraphen A.  
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Next, we verified that the anti-viral effects of ACC inhibition were not limited to 

the Huh7.5.1 cell line. Addition of K1 or soraphen A to HCV-infected primary human 

hepatocytes reduced viral RNA to levels comparable to sofosbuvir, an NS5B polymerase 

inhibitor used in HCV patients (Figure 2.2.F). We also confirmed that the effect on viral 

RNA was due to specific inhibition of ACC through transient knockdown of the two 

ACC isoforms—ACC1 and ACC2. Viral RNA was decreased even with a partial loss of 

ACC1 or ACC2, verifying that inhibition of de novo lipogenesis leads to a loss in 

intracellular HCV RNA (Figures 2.2.G and 2.2.H). However, gene expression of ACC1 

appeared to slightly increase upon treatment with K1 and soraphen A, while expression 

of ACC2 mRNA was reduced (Figures 2.2.I and 2.2.J). These findings indicate that 

despite differential effects on the two isoforms of ACC, the loss in intracellular viral 

RNA upon K1 and soraphen A treatment was likely due to the inhibition of both ACC1 

and ACC2.     

Importantly, inhibition of de novo lipogenesis did not significantly affect the 

viability of uninfected or infected cells, as total DNA content, redox capacity, and ATP 

production were similar among all treatment groups (Figure 2.3). These results indicate 

that inhibition of de novo lipogenesis via K1 and soraphen A treatment significantly 

decreases intracellular HCV RNA, without compromising hepatocyte viability.  

 

ACC inhibition limits HCV replication, lipid droplets required for viral assembly, 

and virion production. 

The decrease in HCV RNA observed upon ACC inhibition may reflect changes in 

one or more steps of the HCV life cycle. Therefore, we sought to identify the effects of 
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ACC inhibition on multiple steps of the HCV life cycle, namely entry, replication, 

translation, assembly, and release of infectious virions. We first examined the effects of 

K1 and soraphen A on viral entry. Negative-strand HCV RNA, which is an RNA 

intermediate during viral replication, appears within five hours of infection in vitro (76). 

In order to exclude any replicated viral RNA intermediates in our analysis, we measured 

the genomic viral RNA in K1 and soraphen A-treated Huh7.5.1 cells infected with HCV 

for one hour. Untreated HepG2 cells, which do not express CD81 and are thus less 

permissive to infection with JFH-1, were used as a negative control. Cells treated with 

either K1 or soraphen A had equivalent, if not increased, intracellular viral RNA 

compared to vehicle-treated cells (Figure 2.4.A), suggesting that a defect in viral entry 

was not contributing to the loss in intracellular HCV RNA following inhibition of de 

novo lipogenesis. Furthermore, ACC inhibition did not affect the expression of select 

HCV entry receptors, including LDLR and SRB1 (Figure 2.4.B).  

We next evaluated the effect of ACC inhibition on viral replication using Huh7.5-

SG cells, which harbor an HCV subgenomic replicon lacking structural proteins. These 

cells do not produce intact virus capable of initiating secondary infections, yet provide an 

ideal model to study the impact of inhibiting de novo lipogenesis on HCV replication. 

Similar to treatment of Huh7.5.1 cells infected with infectious virus, addition of either K1 

or soraphen A significantly reduced viral RNA (Figure 2.4.C). These findings were 

further supported by a similar loss in viral RNA in cells treated with the polymerase 

inhibitor, sofosbuvir. De novo lipogenesis thus plays a critical role in viral RNA 

synthesis.  
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Given that the inhibition of de novo lipogenesis decreased replication of viral 

RNA, we expected to see a similar loss in viral proteins. Surprisingly, the amounts of 

HCV core and NS3 proteins were comparable between DMSO, K1, and soraphen A-

treated cells (Figure 2.4.D). To address if the mismatch in viral RNA and protein was due 

to an increase in translation, we transfected cells with a bicistronic construct expressing 

renilla luciferase under the control of the HCV internal ribosome entry site (IRES) (189). 

Firefly luciferase activity is thus an indicator of transfection efficiency while renilla 

luciferase activity is a measure of translation directed by the HCV IRES. As seen in 

Figure 2.4.E, both firefly and renilla luciferase activities were also comparable among all 

three treatment groups. Luciferase activity was also unaffected by ACC inhibition in 

Huh7.5.1 cells transfected with a replication deficient subgenomic replicon, which allows 

the study of HCV translation in the absence of replication (Figure 2.4.F). These results 

suggest that the discrepancy between viral RNA and viral protein levels resulting from 

the inhibition of ACC was not due to enhanced translation through the HCV IRES.  

We next evaluated subsequent steps of the viral life cycle. To this end, we tested 

the effect of ACC inhibitors on viral assembly. HCV assembly requires the co-

localization of the HCV core protein with lipid droplets (90, 195, 196). As expected, 

DMSO-treated cells had an abundance of core protein that co-localized with lipid 

droplets (Figures 2.5.A-C). In contrast, K1 and soraphen A-treated cells displayed a 

marked loss of lipid droplets, yet retained expression of HCV core as demonstrated in the 

immunoblots of total lysates (Figures 2.4.2D and 2.5.A-C). The prerequisite for viral 

assembly, namely, the colocalization of HCV core and lipid droplets, thus appeared to be 

compromised in cells with reduced ACC activity. These findings indicate that de novo 
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lipogenesis plays a critical role in propagating HCV in part by supplying the scaffold for 

viral assembly.  

Lastly, we assessed viral titer in the supernatants of cells treated with ACC 

inhibitors and found that the infectious titer was reduced in K1 and soraphen A-treated 

cells when compared to the vehicle controls (Figure 2.5.D). The decrease in intracellular 

RNA was matched by the loss in viral RNA in the supernatant (Figure 2.5.E). 

Collectively, these results demonstrate that ACC inhibition affects multiple steps of the 

HCV life cycle, specifically replication, assembly, and production of infectious virions.  

 

ACC inhibition changes the hepatocyte lipidome.  

Given the loss of lipid droplets in K1 and soraphen A-treated cells, we sought to 

identify changes in the lipidome that may be contributing to the loss of viral replication, 

assembly, and virion production. We used liquid chromatography tandem mass 

spectrometry (LC-ESI-MS/MS) to measure different lipid species in uninfected and 

infected hepatocytes treated with DMSO, K1, or soraphen A. Because HCV upregulates 

lipogenesis, it was not unexpected that several classes of lipids were increased upon 

infection (Figure 2.6.A-J). Importantly, the majority of lipids measured were decreased 

upon inhibition of ACC in both uninfected and infected hepatocytes (Figure 2.7, 

Appendix tables 1 and 2). In particular, phosphatidic acid, phosphatidylcholine, 

diacylglycerol, and ceramide species were decreased significantly in both K1 and 

soraphen A treated cells (based on p<0.05 in Appendix tables 1 and 2). Of these, the 

glycerophospholipids, i. e., phosphatidic acid, phosphatidylcholine, and diacylglycerol 

were significantly increased with infection but were returned to levels comparable to 
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uninfected cells upon K1 and soraphen A treatment (Figures 2.6.B, 2.6.D, and 2.6.E). 

These lipids are key players in maintenance of cellular membranes. Consequently, their 

loss upon treatment with K1 and soraphen A may be indicative of changes in the quality 

of intracellular membranes that facilitate viral replication.  

 

Exogenous fatty acids restore lipid droplets but fail to rescue viral replication and 

virion production. 

The end product of de novo lipogenesis is palmitate, a 16-carbon saturated fatty 

acid, which can then be modified to generate a diverse repertoire of lipids. Given that 

inhibition of de novo lipogenesis decreases HCV replication, cellular lipid droplets, and 

infectious titer, we tested whether supplementing fatty acids would rescue these defects. 

We added a mixture of saturated and unsaturated fatty acids including palmitate, oleate, 

and linoleate, at concentrations found in blood, to cells treated with ACC inhibitors (191). 

Notably, cells were treated with ACC inhibitors in media containing serum; as such, the 

addition of these fatty acids is in excess of fatty acids in the serum. Supplementing with 

the fatty acid mixture restored lipid droplets in K1 and soraphen A-treated cells (Figures 

2.8.A, 2.8.B, and 2.8.D). Importantly, the lipid droplets co-localized with HCV core, 

indicating that extracellular sources of fatty acids contribute to lipid droplet formation 

even in the absence of de novo lipogenesis (Figures 2.8.A-E). However, supplementation 

with fatty acids did not restore intracellular or extracellular HCV RNA and did not affect 

the infectious virions released in culture supernatants HCV (Figures 2.8.F-H). These 

results indicate that viral replication is a limiting factor for the production of infectious 

virus. Alternatively, changes in the export of lipids through lipoproteins may also be 
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compromised upon ACC inhibition. Consequently, decreased export of lipids and lipid-

containing viral particles may also underlie the loss in viral titer and extracellular viral 

RNA. Collectively, these results support the hypothesis that while de novo lipogenesis is 

necessary for viral replication and perhaps viral export, exogenous sources of lipids can 

supply triglycerides for the formation of lipid droplets that contribute to HCV assembly.    

 

Changes in ER stress response and replication complex formation do not explain the 

link between de novo lipogenesis and HCV replication.  

Significant changes in hepatocyte lipid metabolism activate the endoplasmic 

reticular (ER) stress response. The ER stress response, also known as the unfolded 

protein response, alleviates the translational burden in the ER by inhibiting protein 

translation, inducing transcription of chaperones that aid in protein folding or genes that 

aid in ER-associated degradation of proteins, and upregulating lipogenesis to facilitate 

expansion of the ER (197). Importantly, expression of HCV proteins upregulates ER 

stress markers, which in turn facilitate viral replication via induction of autophagy (198-

203). We therefore assessed whether the ER stress response was altered by treatment of 

infected hepatocytes with ACC inhibitors. As seen in Figure 2.9, there were no 

significant changes in ER stress markers upon K1 or soraphen A treatment. Although 

phosphorylated forms of PERK and IRE1α are more sensitive measures of activation of 

the ER stress response, the lack of notable changes in the expression levels of the 

chaperones BiP, phosphate disulfide isomerase (PDI), and calnexin, verifies that 

differences in ER stress were not contributing to the loss in viral RNA upon inhibiting de 

novo lipogenesis in HCV-infected hepatocytes.  
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A recent study reported that soraphen A inhibits HCV replication by reducing the 

number and size of double-membraned vesicles where HCV replication complexes are 

thought to reside (204). To compare our results with these findings, we used electron 

microscopy to study ultrastructural features of hepatocytes treated with ACC inhibitors. 

Lipid droplets were completely absent in K1 and soraphen A-treated cells, confirming the 

results obtained by fluorescent microscopy (Figures 2.5.A-C and 2.10.A). More 

importantly, double-membraned vesicles were present in cells treated with DMSO and 

ACC inhibitors, indicating that replication complexes were not absent upon inhibition of 

de novo lipogenesis (Figure 2.10.B). In contrast to the study mentioned above, we did not 

evaluate the number and size of these vesicles; therefore, quantitative and qualitative 

differences in replication complexes may be contributing to the loss of viral RNA in K1 

and soraphen A-treated cells.  

 

Inhibiting protein palmitoylation mimics effects of ACC inhibition. 

Fatty acids are essential for several cellular functions including post-translational 

modification of proteins by palmitoylation. Palmitoylation of HCV core and NS4B was 

previously shown to be required for optimal production of virions and formation of the 

HCV replication complex, respectively (107, 108). We therefore investigated whether 

inhibiting protein palmitoylation during HCV infection would produce results similar to 

inhibition of de novo lipogenesis. To test this hypothesis, HCV-infected cells were treated 

with 2-bromopalmitate (2-BP), a competitive inhibitor of palmitoyl acyltransferases. Our 

results demonstrate that addition of 2-BP to HCV-infected hepatocytes decreased viral 

RNA with minimal loss in viral protein, recapitulating the effects of ACC inhibitors 
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(Figures 2.11.A and 2.11.B). Depalmitoylation of proteins is known to alter their cellular 

membrane localization, function, and aggregate formation (205, 206). Previous studies 

had demonstrated that palmitoylation of HCV core regulated trafficking to ER 

membranes, while palmitoylation of NS4B was necessary for its interaction with other 

viral proteins (107, 108). In addition to these well-established functions of palmitoylation 

in HCV infection, our study investigated the function of this process in protein aggregate 

formation. As seen in Figure 2.11.C, protein aggregates were increased in cells treated 

with K1, soraphen A, or 2-BP compared to those treated with DMSO. Cells treated with a 

proteasome inhibitor served as the positive control. These results may be indicative of 

mislocalization of viral proteins, essential host factors, or both. In fact, as the requirement 

for palmitoylation of NS4B in HCV replication was recently challenged, our results may 

be more suggestive of defects in palmitoylation of host proteins (109). Nonetheless, 

although the similarities with 2-BP treatment are correlative and do not definitely prove a 

role for ACC inhibitors in regulating protein palmitoylation, they offer the possibility that 

de novo lipogenesis may facilitate palmitoylation of proteins necessary for optimal 

replication of HCV. 

 

DISCUSSION 

The link between lipid metabolism and HCV is a well-defined relationship that is 

thought to partly dictate the tropism of the virus to the liver (96, 207). HCV-induced 

upregulation of de novo lipogenesis contributes to viral replication, assembly, and 

packaging for export through biogenesis of membranes, lipid droplets, and lipoproteins. 

In this report, we define an additional role for de novo lipogenesis in HCV infection 
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where the specific inhibition of ACC activity, which catalyzes the rate-limiting step of de 

novo lipogenesis, decreases viral RNA replication without a concurrent loss in viral 

protein levels. Importantly, inhibition of protein palmitoylation in the infected host 

mirrored the effects of inhibiting the ACC enzymes, suggesting a potential role for ACC 

inhibitors in altering HCV replication through palmitoylation. Moreover, ACC inhibition 

resulted in a notable reduction in lipid droplets, which were restored by the addition of 

exogenous fatty acids. Collectively, our results posit distinct roles for de novo 

synthesized and extracellular lipids in HCV infection: de novo lipogenesis facilitates viral 

RNA replication potentially through palmitoylation of host and viral proteins, while 

exogenous lipids are trafficked to lipid droplets that act as scaffolds for viral assembly 

(Figure 2.12). 

To dissect the roles of intracellular and extracellular pools of lipids in HCV 

infection, we used K1 and soraphen A, two non-competitive inhibitors of ACC, the 

enzyme that catalyzes the rate-limiting step of de novo lipogenesis. ACC is a large multi-

domain enzyme that exists in two isoforms, ACC1 and ACC2, both of which are 

expressed in the liver (208). ACC1 is localized to the cytosol where it functions in 

carboxylating acetyl-CoA to malonyl-CoA for nascent fatty acid synthesis. ACC2 is 

targeted to the mitochondria where it inhibits β-oxidation of fatty acids. Although ACC1 

is thought to be responsible for the bulk of fatty acid synthesis, previous studies have 

demonstrated that ACC2 can also function in de novo lipogenesis (209). It is likely for 

this reason that even partial inhibition of either ACC isoform resulted in a loss in viral 

RNA.  
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Our finding that inhibition of ACC decreases viral replication corroborates 

previous studies demonstrating that lipogenesis is essential for HCV replication. 

Specifically, previous reports identify a role for fatty acids in the formation of the 

membranous web, which is the site of HCV replication (204, 210, 211). Our findings do 

not exclude this possibility as lipidomic analysis revealed a significant loss in lipids in 

cells treated with K1 or soraphen A for 3 days (Figures 2.6 and 2.7 and Appendix tables 1 

and 2). Surprisingly, treatment with K1 resulted in a loss of sphingomyelins in contrast to 

the slight increase in these lipids upon soraphen A treatment. In addition, K1 treatment 

produced a more pronounced loss in ceramides and glucosylceramides, with little to no 

effect on dihydroceramides, when compared to the effects of soraphen A. We cannot 

discount the possibility that these differences are due to off-target effects of the drug, 

which may also be contributing to the effect on HCV. Nevertheless, the concerted loss of 

other classes of lipids in both K1 and soraphen A-treated cells suggests that specific 

inhibition of ACC may be a common mechanism by which these inhibitors impact HCV 

infection. For example, the loss of diacylglycerols substantiated the absence of lipid 

droplets upon ACC inhibition, since diacylglycerols are the precursor to triacylglycerols, 

the predominant lipid found in lipid droplets. Notably, the striking loss of phosphatidic 

acids and phosphatidylcholines indicated potential changes to cellular membranes, as 

both classes of lipids are major membrane components (212). Therefore, in keeping with 

previous studies, altered cellular membranes are thus likely contributing to the loss in 

viral RNA seen upon inhibition of de novo lipogenesis (204). In addition, viral RNA in 

membranous webs has a longer half-life than its cytosolic counterpart (76), providing a 

potential explanation for the loss in viral RNA in K1 and soraphen A-treated cells.  
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Our findings also suggest that HCV assembly may be compromised in K1 and 

soraphen A-treated cells as lipid droplets were notably lost upon ACC inhibition. 

Historically, the association of HCV core with the surface of lipid droplets was thought to 

facilitate viral assembly as disrupting this association significantly reduced virus 

production (90, 195). In recent years, this view has been challenged by reports of the ER 

being the more critical site for HCV assembly (213, 214). It is therefore possible that the 

loss of lipid droplets in K1 and soraphen A-treated cells does not necessarily indicate a 

defect in viral assembly as core could contribute to assembly at the ER instead. However, 

these reports delineating the role of the ER in HCV assembly employed genomes of HCV 

isolates other than JFH-1 or assessed JFH-1 after an extended period of culture (213, 

214). Our results may thus represent the impact of ACC inhibitors on HCV assembly 

exclusively in JFH-1 isolates early in infection. Future investigations that evaluate the 

effect of ACC inhibitors on other HCV genotypes may help identify a more universal 

function of de novo lipogenesis in HCV assembly. 

Nonetheless, to our knowledge, this study is the one of the few reports in which 

viral protein does not parallel viral RNA in HCV infection. Differences in experimental 

systems could explain this discrepancy as previous studies investigating the role of de 

novo lipogenesis targeted pathways downstream of ACC, employed transfected HCV 

replicons or chimeric viruses, or infected cells with cell-culture derived HCV for longer 

than 24 hours before adding lipid-depleting agents (204, 210, 211, 215-217). In contrast, 

our studies were performed by inhibiting de novo lipogenesis at 24-hours post-infection 

with cell-culture derived HCV. As HCV RNA is exponentially increased early in 

infection and begins to plateau at 30-72 hours post-infection (76), the time at which 



	   54 

inhibition of de novo lipogenesis is initiated may be important. Therefore, the 

discrepancy in viral RNA and protein levels may reflect the early impact of de novo 

lipogenesis in HCV infection, which is compounded over time with changes in 

membrane lipids, and distinct from the contributions of exogenous lipids.      

In particular, protein palmitoylation may be one of the events dependent on de 

novo lipogenesis early in infection. More specifically, palmitoylation of host or viral 

proteins necessary for HCV replication may be temporally or spatially coupled to de novo 

lipogenesis, such that the target proteins would not be palmitoylated upon the addition of 

ACC inhibitors. As a result, these host or viral factors would not be able to participate in 

viral replication, yet would continue to be translated from input viral RNA and the low 

levels of replicated RNA. The fates of these depalmitoylated proteins could be explained 

by the increased incidence of protein aggregates upon treatment of HCV-infected 

hepatocytes with ACC inhibitors or 2-bromopalmitate. Indeed, previous studies have 

established that loss of palmitoylation does not necessarily target the protein for 

degradation; instead, depalmitoylated proteins accumulate as stable aggregates (177, 218, 

219). The diversion of proteins to these aggregates may be one explanation for the 

accumulation of viral protein in cells treated with ACC inhibitors. These data thus raise 

the possibility that inhibition of de novo lipogenesis results in redirection of 

depalmitoylated host and, potentially, viral proteins to aggregates where they cannot 

function in replicating the viral genome. However, addition of a mixture of exogenous 

fatty acids restored lipid droplets without rescuing viral replication or infectious titer. We 

therefore hypothesize that palmitoylation of proteins that participate in HCV replication 

may require de novo lipogenesis and be independent of exogenously derived lipids.  
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Alternatively, ACC inhibition could result in the deliberate diversion of 

exogenously derived fatty acids, or fatty acids liberated from intracellular sources, away 

from proteins that require palmitoylation. This phenomenon of actively directing fatty 

acids toward various metabolic fates is known as channeling (220). It is intriguing to 

speculate that inhibition of de novo lipogenesis during viral infection forces the cell to 

channel the limited supply of fatty acids towards alternative fates. Such tactics may help 

combat invasion by the virus by sequestering metabolites essential for viral propagation. 

These findings may be particularly relevant to infections with HCV genotype 3, which is 

characterized by extensive steatosis that corresponds to the course of infection (118, 221). 

Selective depletion of hepatic lipids in genotype 3 infections may be a promising 

alternative to direct acting anti-viral agents, especially since these treatments are 

ineffective against this genotype (121, 158). Moreover, as steatosis can initiate and 

exacerbate chronic hepatic inflammation, hypolipidemic agents like the ACC inhibitors 

may help reduce tissue damage caused by persistent immune responses.  

Even before HCV was identified as the causative agent of hepatitis C, its link with 

hepatic lipid metabolism was foreshadowed by the high incidence of steatosis in patients 

with what was then called non-A, non-B hepatitis (112). Our results establish a putative 

distinction between de novo synthesized and exogenously derived lipids in HCV 

infection using a novel ACC inhibitor, K1, in comparison to an established counterpart, 

soraphen A. Our findings have important implications for all Flaviruses and other 

positive-sense RNA viruses, which rely extensively on manipulating host lipid 

metabolism for their propagation (222-225). Future studies examining whether host-

derived metabolites in turn dictate the metabolome of invading microbes may help 
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identify novel points of therapeutic intervention. In addition, further investigation of the 

relationship between cellular metabolic processes and pathogens will help improve our 

understanding of the selective pressures driving the evolution of host-microbe 

interactions. 
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Figure 2.1. Structures of ACC inhibitors. 

(A) Structure of the novel ACC inhibitor, K1.  

(B) Structure of soraphen A (obtained from the PubChem database maintained by the 

National Center for Biotechnology Information). 
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Figure 2.2. Inhibition of de novo lipogenesis decreases intracellular HCV RNA.  

(A) Experimental setup.  

(B) Kinetics of changes in HCV RNA. Infected Huh7.5.1 cells were treated with 1 μM 

K1 or 100 nM soraphen A. DMSO was added at an equivalent volume. The media was 

replaced with fresh ACC inhibitors on D3 post-treatment (PT). HCV RNA was detected 

by qRT-PCR. The plotted values are fold increases relative to D0 PT (1 day post-

infection, before addition of ACC inhibitors). Significance was calculated relative to the 

DMSO controls from the same time point.  

(C) Co-treatment of K1 and soraphen A. Infected Huh7.5.1 cells were treated with 

DMSO, 1 μM K1 or 100 nM soraphen A, both K1 and soraphen A. Cells were collected 

for qRT-PCR analysis on D3 PT.  

(D, E) Dose response of K1 (D) and soraphen A (E). Infected Huh7.5.1 cells were treated 

with DMSO, K1, or soraphen A for 3 days before qRT-PCR analysis.  

(F) Effect on primary cells. Infected primary hepatocytes were treated daily (D0-D2 PT) 

with DMSO, 2 μM K1, 200 nM soraphen A, or 500 nM of the NS5B polymerase 

inhibitor, sofosbuvir. Cells were collected for qRT-PCR analysis on D3 PT.  

(G, H) Silencing of ACC1 and ACC2. Infected Huh7.5.1 cells were transfected with a 

pool of siRNA against ACC1 or ACC2 for 3 days before immunoblot (G) and qRT-PCR 

analysis (H).  

(I, J) Infected Huh7.5.1 cells were treated with DMSO, 1 μM K1 or 100 nM soraphen A. 

Cells were collected for qRT-PCR analysis on D3 PT.  

Results are the representative or mean ± SEM of 2 (F) or 3-5 independent experiments. 

Statistical significance was calculated by two-way ANOVA with Bonferroni post-tests 
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(B, D, E) or one-way ANOVA with Tukey’s post-test (C, H-J). nd: not detected, *p<0.05, 

**p<0.01, ***p<0.001. 
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Figure 2.3. Inhibition of de novo lipogenesis does not significantly alter cell viability. 

(A) Cell viability upon treatment with K1 and soraphen A. Uninfected and infected 

Huh7.5.1 were treated with media, DMSO, 1 μM K1, or 100 nM soraphen A for 3 days. 

Viability was determined by crystal violet staining.  

(B) Redox capacity upon K1 and soraphen A treatment was determined by MTT assay 

using the setup described in (A). 

(C) Intracellular ATP content was quantified in DMSO, K1, and soraphen A-treated cells 

using the setup described in (A).  

Results are the mean ± SEM of 3 independent experiments. 
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Figure 2.4. De novo lipogenesis is required for HCV replication, but does not 

contribute to translation of viral genome or viral protein expression.  

(A) Effect on entry. Huh7.5.1 cells were treated with DMSO, 1 μM K1, or 100 nM 

soraphen A for 3 days after which the media was replaced with JFH-1 (MOI 0.1). HepG2 

cells were used as a negative control. Cells were collected for qRT-PCR analysis at 1 

hour post-infection.  

(B) Effect on expression of viral entry factors. Huh7.5.1 cells were treated with DMSO, 1 

μM K1, or 100 nM soraphen A for 3 days. Protein was assessed by immunoblotting. 

Densities of LDLR and SRB1 staining were calculated relative to vinculin and then 

normalized to DMSO in each experiment.  

(C) Effect on replication. Huh7.5 cells harboring HCV subgenomic replicons were 

treated with DMSO, 1 μM K1, 100 nM soraphen A, or 250 nM of the NS5B polymerase 

inhibitor, sofosbuvir, for 3 days. HCV RNA was detected by qRT-PCR.  

(D) Effect on viral protein. Infected Huh7.5.1 cells were treated with DMSO, 1 μM K1, 

or 100 nM soraphen A for 3 days. Intracellular viral protein was assessed by 

immunoblotting. Densities of NS3 and core staining were calculated relative to vinculin 

and then normalized to DMSO in each experiment.  

(E) Effect on translation. Huh7.5.1 cells were transfected with the bicistronic 

pFR_HCV_xb construct in which the HCV IRES regulated translation of renilla 

luciferase. Mock transfected cells served as controls. Twenty-four hours post-

transfection, the media was replaced with DMSO, 1 μM K1, or 100 nM soraphen A for 3 

days. Cellular lysates were assessed for both firefly and renilla luciferase activity.  
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(F) Effect on translation of a replication deficient replicon. Huh7.5.1 cells were 

transfected with the pSGR_JFH1/GND_Fluc construct, which expresses HCV NS3-

NS5B, but is unable to replicate due to a point mutation in NS5B. pUC19 vector 

transfected cells served as controls. Twenty-four hours post-transfection, the media was 

replaced with DMSO, 1 μM K1, or 100 nM soraphen A for 3 days. Cellular lysates were 

assessed for firefly luciferase activity.  

Results are the representative or mean ± SEM of 2-6 independent experiments. Statistical 

significance was calculated relative to the DMSO treated cells by one-way ANOVA with 

Tukey’s post-test. ns: not significant, **p<0.01, ***p<0.001.  
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Figure 2.5. De novo lipogenesis provides the platform for viral assembly and 

contributes to infectious virion production.  

 (A-C) Effect on assembly. Infected Huh7.5.1 cells were treated with DMSO, 1 μM K1 or 

100 nM soraphen A for 3 days and stained for the nucleocapsid core protein and lipid 

droplets. Number of red (HCV core, F) and green (lipid droplets, G) was quantified over 

10 fields in each experiment. Scale bar is equivalent to 20 μm.  

(D) Effect on infectious titer. Huh7.5.1 were infected with serially diluted supernatants of 

infected Huh7.5.1 cells that had been treated with DMSO, 1 μM K1, or 100 nM soraphen 

A for 3 days. The number of HCV-core positive focus forming units (FFU) was 

quantified 3 days post-infection.  

(E) Effect on extracellular RNA. HCV RNA was detected by qRT-PCR in supernatants 

of infected Huh7.5.1 cells that had been treated with DMSO, 1 μM K1, or 100 nM 

soraphen A for 3 days. 

Results are the representative or mean ± SEM of 3-4 independent experiments. Statistical 

significance was calculated by one-way ANOVA with Tukey’s post-test. ns: not 

significant, **p<0.01, ***p<0.001.  
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Figure 2.6. Inhibiting de novo lipogenesis changes the lipid repertoire in uninfected 

and HCV-infected hepatocytes.  

(A-J) Uninfected and infected Huh7.5.1 cells were treated with DMSO, 1 μM K1, or 100 

nM soraphen A for 3 days. The relative abundance of (A) phosphatidylserine, (B) 

phosphatidic acid, (C) phosphatidylethanolamine, (D) phosphatidylcholine, (E) 

diacylglyercol, (F) lysophosphatidic acid, (G) sphingomyelin, (H) glucosylceramide, (I) 

dihydroceramide, and (J) ceramide was calculated by mass spectrometry.  

Results are from 3-4 independent experiments. Statistical significance was calculated by 

two-way ANOVA with Bonferroni post-tests. ns: not significant, *p<0.05, **p<0.01, 

***p<0.001.  
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Figure 2.7. Inhibiting de novo lipogenesis leads to broad changes in the hepatocyte 

lipidome.  

(A, B) Uninfected (A) and infected (B) Huh7.5.1 cells were treated with DMSO, 1 μM 

K1, or 100 nM soraphen A for 3 days. Indicated lipids were quantified by mass 

spectrometry and are plotted as normalized values relative to the average in DMSO 

treated cells. Fatty acid chain length and degree of saturation are indicated on the left. 

Hashed gray boxes represent replicates that were not detected by the spectrometer. 

Results are from 3-4 independent experiments.   
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Figure 2.8. Exogenous lipids contribute to HCV assembly via lipid droplet 

formation but are dispensable for replication and release. 

(A-E) Infected Huh7.5.1 cells were treated with 1 μM K1, 100 nM soraphen A, or an 

equivalent volume of DMSO in media containing BSA (A) only or BSA + fatty acids 

(palmitate, oleate, and linoleate) (B). At D3 of treatment, cells were stained for the HCV 

nucleocapsid core protein and lipid droplets. Nuclei are indicated in blue. Areas of co-

localization are indicative of assembly of infectious virions. Scale bar is equivalent to 20 

μm. Number of red (HCV core, C) pixels and green (lipid droplets, D) pixels were 

quantified over 10 fields in each experiment. E, Percentage of red pixels that colocalized 

with green pixels.  

(F) Infected Huh7.5.1 cells were treated as described in A-E. Intracellular HCV RNA was 

detected by qRT-PCR.  

(G) Supernatants of cells treated as described in A-E were used to infect Huh7.5.1 cells 

for 3 days after which the number of core positive foci was quantified.  

(H) Effect on extracellular RNA. HCV RNA was detected by qRT-PCR in supernatants 

of cells treated as described in A-E. 

Results are the representative or mean ± SEM of 3-5 independent experiments. Statistical 

significance was calculated by one-way ANOVA with Tukey’s post-test. ns: not 

significant, *p<0.05, **p<0.01, ***p<0.001.  
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Figure 2.9. ACC inhibition does not induce ER stress.  

Huh7.5.1 cells were treated with DMSO, 1 μM K1, or 100 nM soraphen A for 3 days. 

Protein was assessed by immunoblotting. Densities of total proteins were calculated 

relative to vinculin and then normalized to DMSO.  

Results are the representative of 3 independent experiments. 
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Figure 2.10. Inhibition of de novo lipogenesis leads to a loss of lipid droplets but 

retains replication complexes.  

(A) Uninfected and infected Huh7.5.1 cells were treated with DMSO, K1, and Soraphen 

A for 3 days. Lipid droplets are indicated by the arrowheads. Scale bar is equivalent to 2 

μm.  

(B) Higher magnification images of infected Huh7.5.1 cells were treated with DMSO, 

K1, and Soraphen A for 3 days. Arrows indicate double membrane vesicles that are 

thought to be sites of HCV replication. Scale bar is equivalent to 500 nm for DMSO and 

K1 and 100 nm for soraphen A.  

Images are representative of 2-3 independent experiments.  
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Figure 2.11. Inhibition of protein palmitoylation also leads to a loss in viral RNA 

without a concurrent loss in viral protein.  

(A, B) Infected Huh7.5.1 cells were treated with 60 μM 2-bromopalmitate (2-BP) or an 

equivalent volume of DMSO for 3 days. A, Intracellular HCV RNA was detected by 

qRT-PCR. B, Intracellular viral protein was assessed by immunoblotting. Densities of 

NS3 and core were calculated relative to vinculin and then normalized to DMSO.  

(C) Infected Huh7.5.1 cells were treated with DMSO, 1 μM K1, 100 nM soraphen A, or 

60 μM 2-BP for 3 days and stained for protein aggregates. Cells treated for 6 hours with 5 

μM MG-132, a proteosome inhibitor, served as the positive control.  

Results are the representative or mean ± SEM of 3-4 independent experiments. Statistical 

significance was calculated by an unpaired t test. ns: not significant, **p<0.01. 
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Figure 2.12. Working model of the roles of intracellular and extracellular lipids in 

HCV infection.  
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CHAPTER 3: Group 3 innate lymphoid cells in nonalcoholic steatohepatitis 
 

ABSTRACT 

 Innate lymphoid cells (ILCs) are a recently discovered group of immune cells that 

initiate and regulate responses, often at mucosal surfaces. The hepatic microenvironment 

is partially mucosal in nature: similar to conventional epithelial surfaces, the liver is 

continually exposed to potentially foreign drug and food products in addition to a high 

burden of bacterial components draining from the gut. Considering the similarities 

between mucosal surfaces and the liver, we hypothesized that ILCs will play a significant 

role in liver diseases. Specifically, we proposed that group 3 ILCs (ILC3s) play a 

beneficial role in the pathogenesis of nonalcoholic steatohepatitis (NASH), a chronic 

inflammatory disease characterized by dysregulated hepatic lipid metabolism. To test our 

hypothesis, we have established a novel method to enrich ILCs from human blood and 

tonsils. In addition, we developed an in vitro model of NASH in which the human 

heptoma cells HepG2 are treated with fatty acids and LPS to mimic the steatotic and 

inflammatory environment of NASH livers, respectively. Culturing hepatocytes with 

fatty acids increased expression of TGF-β, which induces fibrosis in hepatic stellate cells 

(HSCs), and the chemokine CCL20, which is known to recruit ILC3s. Importantly, ILC3s 

produce IL-22, which is known to promote tissue repair, supporting a model wherein 

ILC3s are recruited to the liver during NASH to produce IL-22 in an effort to restore 

homeostasis. Collectively, our results are a promising start to investigate ILCs in the 

pathogenesis of chronic inflammatory diseases of the liver.    
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INTRODUCTION 

 The increased incidence of obesity worldwide is accompanied by a number of 

systemic diseases, including nonalcoholic fatty liver disease (NAFLD). NAFLD is 

marked by extensive steatosis, or the accumulation and enlargement of hepatic lipid 

droplets, which results from the increased uptake of fatty acids by the liver and elevated 

rates of hepatic de novo lipogenesis. Although steatosis is not pathological, undefined 

cellular and molecular triggers can propel this benign condition to a chronic 

inflammatory disease called nonalcoholic steatohepatitis (NASH). Importantly, NASH 

can lead to significant clinical sequelae, including cirrhosis, malignancy, and 

cardiovascular events (126). Development of these end-stage diseases is preceded by 

fibrosis of the liver, which is the deposition of scar tissue in response to chronic 

inflammatory injury. Importantly, fibrosis is thought to be reversible and therefore 

presents an ideal target to limit the development of more significant liver and systemic 

pathologies.  

   The immune response in NASH presents several potential diagnostic and 

therapeutic avenues as it regulates fibrogenesis and disease outcome (Chapter 1, pp. 18-

35). Specifically, the cytokine IL-22 has emerged as a critical regulator of metabolic 

diseases as administration of exogenous IL-22 reverses weight gain, insulin resistance, 

and translocation of gut bacteria to the liver in mouse models of obesity (148). 

Furthermore, IL-22 administration was also protective against fibrosis in a biliary 

cirrhosis model, underscoring its universal role in regulating fibrogenesis in the liver 

(226). The beneficial effects of IL-22 in liver fibrosis are in part due to its ability to 

inhibit proliferation and induce senescence in hepatic stellate cells (HSCs), which secrete 
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copious amounts of extracellular matrix components upon activation (227). Additionally, 

IL-22 protects hepatocytes from immune-mediated damage and promotes their 

proliferation and survival, thus aiding in tissue regeneration (228, 229). IL-22 also has 

extrahepatic roles that contribute to its favorable role in NASH and other liver 

pathologies. Similar to its role in promoting tissue repair in hepatocytes, IL-22 preserves 

colonic epithelial integrity that is necessary to contain commensal bacteria within the gut 

(149). As leakiness in the gut barrier is characteristic of NASH patients, IL-22’s role in 

extrahepatic tissues may also regulate the extent of injury in the liver (230).  

 IL-22 belongs to the IL-10 family of cytokines and signals through a 

heterodimeric receptor consisting of the IL-10R2 and IL-22R1 subunits (231, 232). 

Expression of the IL-22R is restricted to cells of nonhematopoetic origin, verifying its 

importance in mediating protection of host tissues during inflammatory responses (233). 

Conversely, production of IL-22 is limited to T cells and innate lymphoid cells (ILCs). T 

cell subsets that produce IL-22 include Th17, Th22, γδ T cells, and a subset of CD8 T 

cells (234-239). Although the contribution of these T cell subsets to the pathogenesis of 

NASH is only partially explored, several of them have been shown to play a pathogenic 

role in NASH (Chapter 1, pp. 30-33). Consequently, amplifying responses of non-T cell 

sources of IL-22 may be beneficial in regulating disease progression in NASH.  

 ILCs are a recently discovered subset of immune cells that are emerging as 

critical regulators of metabolic diseases (Chapter 1, pp. 33-35). Specifically, group 3 

ILCs (ILC3s) produce copious amounts of IL-22 and may therefore be an important 

player in mediating protection against inflammatory injury in NASH. However, while 

ILC responses have begun to be characterized in adipose tissue, their role in regulating 
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hepatic inflammation in the liver during NASH is yet to be described. We hypothesized 

that the hepatic injury combined with loss of epithelial integrity in the gut of NASH 

patients will mobilize ILCs, specifically ILC3s, to the liver, where they will promote 

hepatocyte regeneration and inhibit stellate cell-induced fibrogenesis through production 

of IL-22. Here, we report the establishment of a novel in vitro model of NASH and a 

customized technique to enrich ILC populations from human peripheral blood and 

tonsils. These methodological advancements will be further developed to test the 

hypothesis that ILC3s are necessary to maintain and/or restore tissue homeostasis in the 

chronic inflammatory environment of NASH livers.  

 

MATERIALS AND METHODS 

Cells and fatty acids. 

HepG2 cells were maintained in low glucose MEM (Gibco 11095080) with 10% 

FBS and 10 U/mL penicillin/streptomycin. PBMCs were maintained in RPMI with 10% 

FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, 10 mM HEPES, and 10 U/mL 

penicillin/streptomycin. Sodium salts of palmitate and oleate were purchased from 

Sigma-Aldrich and mixed in methanol in a 1:2 ratio (240). The methanol was removed 

using nitrogen and the fatty acid mixture was reconstituted in culture media containing 

1% fatty acid free BSA (Sigma-Aldrich) to a final concentration of 333.3 μM palmitate 

and 666.6 μM oleate. LPS (Sigma-Aldrich) was added at 200 ng/mL. LX2 cells were a 

gift from Dr. Lucy Golden-Mason (University of Colorado-Denver). Recombinant human 

TGF-β was purchased from Peprotech. 
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Flow cytometry for neutral lipids. 

 HepG2 cells were plated in 12-well plates at 0.3 X 106 cells/well. At 12 h post-

seeding, the media was replaced with BSA ± oleate/palmitate ± LPS for 24 h at which 

time the monolayer was rinsed in PBS and the cells were collected by treatment with 

trypsin + EDTA (Gibco) and spun down. Cells were fixed in 4% PFA/PBS for 15 

minutes, washed in PBS, and stained for 30’ at room temperature in PBS containing 

1:1000 HCS LipidTOXTM Deep Red neutral lipid stain (Invitrogen). Cells were then 

pelleted again by centrifugation, washed 1X in PBS, and run on a BD FACS Canto II 

(BD Biosciences) and analyzed using FlowJo software version 10.1 (TreeStar).  

 

Crystal violet assay. 

HepG2 cells were plated in 96-well plates at 40,000 cells/well. At the time of 

assessment, culture supernatants were aspirated and cells were treated with crystal violet 

solution (0.5% crystal violet in 50% methanol/water) for 20 minutes. The stain was 

solubilized with 1% SDS for 2-3 hours. Absorbance was read at 570 nm on a PowerWave 

XS spectrophotometer (BioTek).  

 

Quantitative RT-PCR. 

 RNA was extracted using the RNeasy Plus Kit (Qiagen) and reverse transcribed 

using the high-capacity RNA-to-cDNA kit (Life Technologies). qRT-PCR was run on a 

StepOnePlus RT-PCR system (Applied Biosystems) with SYBR green dye (Life 

Technologies) using the following primers: TGFB1 forward, 5’-

CTGGCGATACCTCAGCAACC-3’ and reverse, 5’-
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CCGGTAGTGAACCCGTTGATGT-3’, Col1A1 (Collagen I) forward, 5’- 

CGGCTCCTGCTCCTCTT-3’ and reverse, 5’- GGGGCAGTTCTTGGTCTC-3’, ACTA2 

(αSMA) forward, 5’- CGTGGCTATTCCTTCGTTAC-3’ and reverse, 5’- 

TGCCAGCAGACTCCATCC-3’, TIMP2 forward, 5’- 

AGAGGATCCAGTATGAGATCAAGCAG-3’ and reverse, 5’- 

TGGTACCTGTGGTTCAGGCTCTTC-3’, and HPRT1 forward, 5’-

GAAAAGGACCCCACGAAGTG-3’ and reverse, 5’-

AGTCAAGGGCATATCCTACAAC-3’. Expression levels of each gene were first 

calculated relative to HPRT1 and then normalized to the average of the control group.  

 

ILC enrichment by magnetic selection. 

 Approximately 60-80 X 106 mononuclear cells from peripheral blood (PBMCs) or 

tonsils from healthy donors were depleted of T cells, B cells, monocytes, and NK cells 

using a custom designed magnetic selection kit (StemCell Technologies). Although the 

markers for depleting T cells, B cells, and monocytes were proprietary, NK cells were 

depleted using antibodies against CD94. The remaining cells were cultured at 0.05-0.15 

X 106 cells/200 µL of PBMC media in 96-well plates for 72 hours. In the experiment 

assessing the impact of TGF-β on ILC cytokine production, 2.5 ng/mL TGF-β was added 

to half of the enriched tonsillar cells for the last 48 hours of culture.  

 

Flow cytometry for ILCs. 

 Cells were stained for 20’ on ice with the following surface antibodies: FITC 

conjugated anti-CD3, CD5, and CD14 (all from Tonbo Biosciences) and CD19 and CD94 
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(both from eBioscience) were added at 0.5 µL/test; PE-CD161 (Tonbo biosciences) or 

PerCP-Cy5.5-CD161, APC-eF780-CD127, PE-Cy7-cKit, and eF450-NKp44 (all from 

eBioscience) were added at 1 µL/test. APC-CRTH2 (eBioscience) was added at 5 

µL/test. Live cells were distinguished by fixable viability dye eFluor-506 (eBioscience). 

For intracellular IL-22 staining, cells were treated with 100 ng/mL PMA and 1 µg/mL 

ionomycin with 1:1000 dilutions each of Golgi Stop and Golgi Plug (both from BD 

biosciences) for the last 5 hours of culture. Cells were fixed in Cytofix/Cytoperm (BD 

biosciences) and stained with PE-conjugated anti-IL-22 at 5 µL/test for 30’ on ice 

(eBioscience). All samples were run on a CytoFLEX flow cytometer (Beckman Coulter) 

and analyzed using FlowJo software version 10.1 (TreeStar).  

 

Luminex assay. 

 Cytokines in culture supernatants of HepG2 cells ± oleate:palmitate ± LPS were 

quantified using the Luminex MAGPIX bead-based multiplex analyzer at the University 

of Virginia Flow Cytometry Core Facility.  

 

Statistical analysis 

Results are the mean ± SEM. Statistical significance was determined by one-way 

analysis of variance (ANOVA) with Tukey’s post-test. Statistical analyses were 

performed using Prism GraphPad software v4.0c. ns: not significant, *p<0.05. 

 
 
RESULTS 

Addition of fatty acids and LPS to HepG2 cells is an in vitro model of NASH.  
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 Current in vitro models of NAFLD use a combination of fatty acids to induce 

lipotoxic injury in primary hepatocytes or hepatoma cell lines (241, 242). However, these 

models do not account for the loss of gut integrity in NASH patients, which increases 

hepatic concentrations of immunogenic stimuli, such as lipopolysaccharide (LPS). We 

therefore modified a previously established model of benign steatosis, in which the 

human hepatocellular carcinoma line HepG2 is treated with an excess of the fatty acids 

oleate and palmitate in a 2:1 ratio (240). Specifically, we added 200 ng/mL of LPS to 

HepG2 cells treated with albumin or albumin complexed with 1 mM oleate:palmitate at a 

2:1 ratio. As expected, addition of fatty acids increased the neutral lipid content of 

HepG2 cells when compared to cells treated with BSA ± LPS (Figures 3.1.A). LPS 

treatment further enhanced lipid accumulation in fatty acid loaded cells, although this 

increase did not reach statistical significance; interestingly, this trend was not seen in 

cells loaded with the vehicle BSA (Figures 3.1.A). In addition, treatment with an excess 

of oleate:palmitate or LPS did not reduce cell viability (Figure 3.1.B).  

To further verify that these in vitro conditions mimic the fibrogenic 

microenvironment of NASH livers, we evaluated gene expression levels of TGF-β, which 

is a potent stimulator of fibrogenesis in hepatic stellate cells (HSCs). Upregulation of 

TGF-β was most prominent in HepG2 cells loaded with fatty acids (Figure 3.1.C). It is 

surprising that treatment of steatotic hepatocytes with LPS reduces the production of 

TGF-β, as it is a well-known inducer of TGF-β production (243). Nonetheless, we 

confirmed the profibrogenic effects of TGF-β by assessing the expression of fibrogenic 

genes in the human HSC line, LX2, treated with increasing concentrations of TGF-β. As 

seen in Figure 3.1.D, gene expression of type I collagen increased proportionally to the 
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dose of TGF-β. Surprisingly, additional markers of fibrogenesis, namely the 

myofibroblast marker α-SMA and the matrix metalloproteinase inhibitor TIMP-2 did not 

appreciably change in response to TGF-β (Figure 3.1.D). Thus, some of our initial 

observations are at odds with reported findings. However, our findings indicate that 

culturing HepG2 cells with fatty acids is a model of simple steatosis while the addition of 

LPS may be a model of NASH.  

 

ILC3s are found in nonmucosal sites and produce IL-22 upon stimulation. 

 Liver fibrosis is initiated by the activation and proliferation of HSCs. Previous 

studies have reported that while TGF-β activates HSCs, the cytokine IL-22 and its 

downstream signals counter the effects of TGF-β and limit expression of fibrogenic genes 

in HSCs (226, 227, 244). This was of interest to our hypothesis as IL-22 is produced by 

ILC3s. Cellular sources of IL-22 include T cells and ILC3s. As T cells are known to play 

pathogenic roles in NASH, ILC3s may be a more beneficial source of IL-22 during 

disease development. We therefore sought to establish a system that would allow 

investigation of human ILC subsets in conjunction with our in vitro model of NASH. All 

3 groups of ILCs have been reported in human blood and tonsils (150). However, ILCs 

are a rare population in both tissues; we therefore used negative selection to magnetically 

enrich for ILCs by depleting T cells, B cells, monocytes, and NK cells (Figure 3.2.A). 

Following 72 hours of culture, cells were assessed by flow cytometry for surface 

expression of ILCs defined as Lin-CD127+CD161+ cells, which were further divided into 

the 3 subsets: cKit-CRTH2-NKp44- ILC1s, CRTH2+ ILC2s, and cKit+CRTH2-NKp44- 

natural cytotoxicity receptor negative (NCR-) ILC3s or cKit+CRTH2-NKp44+ NCR+ 
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ILC3s. The enrichment process resulted in ~40% lineage- cells compared to <1% of 

lineage- cells present in total PBMCs (Figure 3.2.B). Additionally, in agreement with 

previously published reports, ILC3 populations in PBMCs were limited to NCR- ILC3s 

(150).  

 While the presence of ILC3s in PBMCs is encouraging, the lack of NCR+ ILC3s 

limits functional assessment of these cells, as only NKp44+ ILC3s were shown to produce 

IL-22 (245, 246). In contrast to blood, human tonsils are reported to harbor a notable 

population of NCR+ ILC3s (150). We therefore enriched for ILCs in human tonsils using 

the same strategy as we did for blood-derived ILCs (Figure 3.3.A). Compared to ~9% 

lineage- cells from the total mononuclear population, enrichment resulted in 68% lineage- 

tonsillar cells (Figures 3.3.B and 3.3.C). As described in previous studies, ILC3s in the 

tonsils included both NCR- and NCR+ subsets (Figure 3.3.C)(150). Importantly, these 

NCR+ ILC3s produced IL-22 upon stimulation with PMA/ionomycin (Figure 3.3.D). 

These observations indicate that tonsil-derived ILCs are a reliable cellular source of IL-

22 that could be used to investigate the role of these cells in NASH.  

 Recently, TGF-β was shown to impair the development of NCR+ ILC3s in mice 

(247). Seeing as gene expression of TGF-β was upregulated in HepG2 cells loaded with 

fatty acids, and that NCR+ ILC3s are the sole ILC population capable of producing IL-22, 

we investigated the possibility that TGF-β could directly impair NCR+ ILC3s’ ability to 

produce IL-22. To test this idea, we cultured enriched tonsillar ILCs in 2.5 ng/mL of 

TGF-β for the last 48 hours of the 72 hour culture. Cells were stimulated with 

PMA/ionomycin 5 hours before collection for analysis by flow cytometry. Surprisingly, 

addition of TGF-β increased the mean fluorescence intensity (MFI) of IL-22+NCR+ILC3s 
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(Figure 3.3.D). Collectively, these data identify IL-22 production by NCR+ILC3s as a 

potential target of immune modulation in the fibrogenic microenvironment of NASH.  

 

CCL20 is an ILC3 chemotactic factor that is upregulated during NASH in vitro.  

  As ILCs are conventionally mucosal-resident populations, we investigated 

whether it would be possible for them to migrate to the liver during NASH. To this end, 

we quantified cytokines and chemokines released in supernatants of HepG2 cells cultured 

with fatty acids ± LPS for 24 hours. The chemokine CCL20, which binds the ligand 

CCR6, trended towards an increase in hepatocytes treated with fatty acids and LPS 

(Figure 3.4). CCR6 is expressed on all subsets of human ILC3s (248). These preliminary 

results thus indicate that the molecular signals driving infiltration of ILC3s to the liver are 

present in the inflammatory milieu in NASH.    

 

DISCUSSION 

 To identify novel cellular and molecular factors that contribute to the 

inflammatory environment in NASH, we aimed to establish a novel in vitro model of the 

disease that accurately reflected both hepatic steatosis and heightened inflammation. 

Surprisingly, the addition of LPS did not result in notable upregulation of TNF-α or IL-

1β at the transcriptional or translational level (data not shown, Figure 3.4), initially 

suggesting that TLR4 was insufficiently activated in the conditions used. However, the 

conditions used to grow the HepG2 cells were optimized to promote growth as a 

monolayer in contrast to the spheroids in which this cell line usually grows. These growth 

conditions facilitated visualization of neutral lipid accumulation and consistency in 
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cellularity between experiments. Unfortunately, spheroid HepG2 cultures were shown to 

respond more robustly to LPS as they express higher levels of CD14, the co-receptor for 

TLR4, which binds LPS on the cell surface (249). Thus, while the trend towards 

increased steatotis and elevated levels of CCL20 in HepG2 cells treated with fatty acids 

and LPS is thus a promising start to an in vitro model of NASH, these experiments need 

to be replicated in spheroid HepG2 cultures to accurately model the inflammatory 

environment in NASH.  

 We further aimed to investigate the role of ILCs in an in vitro model of NASH. 

Enrichment for lineage- cells identified a clear population of ILC1s, ILC2s, and NCR-

ILC3s in PBMCs. Use of the same magnetic enrichment strategy on tonsil mononuclear 

cells also demarcated populations of tonsillar ILCs and that included NCR+ILC3s, which 

produced IL-22 upon stimulation. These findings corroborate previous reports of 

NCR+ILC3s ability to produce IL-22 and suggest that if ILC3s were to migrate to the 

liver during NASH, then they have the capacity to regulate the extent of local 

inflammation by dampening the damage to non-immune cells. Interestingly, addition of 

TGF-β increased the production of IL-22 by NCR+ILC3s on a per cell basis. Of course, 

as these findings are very preliminary and from a very small population of cells, they will 

need to be confirmed in subsequent experiments. If true, however, the finding that TGF-β 

amplifies the responses of ILC3s is intriguing for multiple reasons. Firstly, as mentioned 

above, TGF-β was recently shown to hinder the development of NCR+ILC3s in mice. 

Therefore, if TGF-β instead strengthens the functional responses of fully developed 

NCR+ILC3s in humans, it would identify a dichotomous, developmentally distinct effect 

of this cytokine on ILC3 function. Secondly, Th17 cells are known to promote TGF-β 
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signaling on hepatic stellate cells (250). Our current experimental strategy excludes other 

sources of IL-22, including Th17 cells, which can also produce copious amounts of IL-

17. These observations prompt the possibility that Th17 cells, which are known to 

aggravate disease progression in NASH, upregulate TGF-β-mediated production of IL-22 

in ILC3s, thus initiating a compensatory response to the local pro-inflammatory milieu in 

NASH livers. Upon defining a role for ILC3s in NASH, it will therefore be beneficial to 

include other immune cells in vitro experiments in order to identify additional cellular 

networks that regulate the quality and quantity of inflammation in NASH livers. 

Nonetheless, our current findings give support to the hypothesis that damage to 

hepatocytes in NASH releases chemotactic factors that recruit ILC3s, which in turn 

participate in tissue repair through production of IL-22, and may be additionally 

regulated by immunoregulatory factors such as TGF-β (Figure 3.5).    
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Figure 3.1. Treatment of HepG2 cells with fatty acids±LPS may model the 

fibrogenic NASH microenvironment. 

(A) Representative flow plot of neutral lipids in HepG2 cells were treated with 1 mM 

fatty acids (oleate:palmitate at a 2:1 ratio) for 24 hours in the presence or absence of 200 

ng/mL LPS. Mean fluorescence intensity (MFI) is presented as relative to the BSA 

control in each experiment.   

(B) Cell viability of HepG2 cells upon treatment with fatty acids ± LPS for 24 hours. 

Viability was determined by crystal violet staining. 

(C) Gene expression of TGF-β in HepG2 cells loaded with fatty acids ± LPS for 24 

hours. mRNA levels were first normalized to HPRT1 and then to the average of cells 

treated with BSA alone.  

(D) Fibrogenic gene expression in response to TGF-β. LX2 cells were plated in 12-well 

plates at 0.25 X 106 cells/well. At 12 hours post-plating, the media was replaced with 

media containing increasing concentrations of TGF-β. Cells were collected for qRT-PCR 

analysis at 48 h post-treatment. mRNA levels were first normalized to HPRT1 and then to 

the average of untreated cells.  

Results are the representative or mean of 3-4 independent experiments. Statistical 

significance was calculated by a one-way ANOVA with Tukey’s post-test. p values are 

relative to cells treated with BSA alone. ns: not significant, *p<0.05. 
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Figure 3.2. ILC3s are the predominant ILC population in PBMCs.  

(A) Experimental setup for enrichment of ILCs from human PBMCs.    

(B) Flow plots and gating strategy for all 3 groups of ILCs in human PBMCs. Population 

gates were based on fluorescence minus one (FMO) of freshly thawed, unenriched 

PBMCs from the same donor. Lineage markers included CD3, CD5, CD14, CD19, and 

CD94.  

Results are representative of 1-3 independent experiments. 
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Figure 3.3. Tonsillar ILC3s produce IL-22 upon stimulation.  

(A) Experimental setup for enrichment of ILCs from human tonsils.    

(B) Gating strategy and frequency of lineage- cells in total mononuclear cells from 

human tonsils. Flow plots and gating strategy for all 3 groups of ILCs in human tonsils. 

Population gates were based on fluorescence minus one (FMO) of freshly thawed, 

unenriched PBMCs from the same donor. Lineage markers included CD3, CD5, CD14, 

CD19, and CD94.  

(C) Gating strategy for all three subsets of ILCs in ILC-enriched cells from human 

tonsils. Population gates were based on fluorescence minus one (FMO) of unenriched 

tonsils (B) from the autologous donor cultured for the same length of time as enriched 

cells. Lineage markers included CD3, CD5, CD14, CD19, and CD94.  

(D) Histogram of IL-22 production by NCR+ILC3s in tonsillar ILCs described in (C). 

TGF-β was added at 2.5 ng/mL for the last 48 hours of culture. Mean fluorescence 

intensities (MFI) of the IL-22+ population is noted in black for untreated cells and red for 

cells that were cultured with TGF-β.  

Results are from one experiment. 
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Figure 3.4. The ILC3 chemotactic factor CCL20 is elevated in NASH in vitro.   

Cytokines and chemokines were quantified in supernatants from HepG2 cells treated with 

fatty acids ± LPS for 24 hours by multiplex analysis. The following cytokines were 

below the limit of detection: IL-1β, -2, -4, -5, -6, -9, -10, -12p70, -13, -15, -17A, -17E, -

17F, -21, -22, 23, -27, -28A, -31, -33, GM-CSF, IFNγ, TNF-α, and -β. 

Results are the mean of 2 independent experiments.  
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Figure 3.5. Working model of the interplay between steatotic hepatocytes, HSCs, 

and ILC3s in NASH.  

Hepatocyte injury in NASH is initiated by dysregulated lipid metabolism, which is in part 

due to increased uptake of free fatty acids from adipose tissue. Damage to the liver is 

accompanied by loss of epithelial integrity in the gut. We hypothesize that increased 

translocation of gut contents combined with production of chemotactic factors will recruit 

ILC3s to the liver, where they will produce IL-22 in an effort to limit hepatocyte death 

and fibrogenesis by HSCs. Production of TGF-β by steatotic hepatocytes may further 

enhance ILC3 responses. Solid lines indicate observations from published studies. Dotted 

lines are hypotheses that require further validation.  

CCL: C-C motif chemokine ligand; ILC, innate lymphoid cell; IL, interleukin; TGF-β, 

transforming growth factor β; HSC, hepatic stellate cell. 
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CHAPTER 4: Conclusions and future directions 

 

In contrast to skin or conventional mucosal sites, which serve as the first line of 

defense against potential pathogens in our environments, the liver acts as a secondary, 

internal firewall, shielding the body from perceived or true molecular and cellular threats 

that breach our initial safeguards. Yet, it is surprising that the organ that has evolved to 

detoxify blood of inflammatory contents, and as a result maintains a high level of 

tolerance to immunogenic insults, is the site of production of acute-phase reactants that 

trigger systemic alarms. This paradoxical immune response occurs within a 

microenvironment that is constantly undergoing a high rate of metabolic flux. As a result, 

it is not surprising that immune responses in the liver alter local and systemic 

metabolism; in turn, changes in nutrient homeostasis in the liver can induce cellular stress 

that mounts immune responses. To understand how metabolic changes influence host 

immunity and inflammation, I explored facets of hepatic lipid metabolism either 

independently (Chapter 2) or in confluence with the immune response (Chapter 3).  

Chronic hepatitis C and NASH are two chronic inflammatory liver diseases that 

intersect in their reliance on lipid metabolism and the immune response. Despite the 

similarities in their pathogenesis, chronic hepatitis C and NASH differ not only in their 

etiology, but also in their evolutionary history. HCV is a hepacivirus whose origins are as 

yet unresolved. The present genetic diversity of the virus is thought to have grown from 

two endemic genotypes in Central Africa and South East Asia that have been in existence 

for 100-200 years (251). Zoonotic transmission is a plausible mode by which the virus 

was introduced into human populations; however, non-HCV hepaciviruses have only 
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been reported in horses and dogs, making them unusual zoonotic reservoirs, as most viral 

infections that arise endemically are transmitted from non-human primates (251-253). 

Advances in medicine that allowed access to parental routes and increased worldwide 

travel facilitated the more recent dispersion of the virus. In contrast to HCV, NASH is a 

very young disease, one that has paralleled the rise of western diet and sendentary 

lifestyles. Alarmingly, the frequency of pediatric patients with fatty liver disease is on the 

rise, prompting the question of whether NASH will act as a selective pressure on liver 

homeostasis in coming generations. Such possibilities give pause to our understanding of 

the liver and would certainly be fascinating to explore. In this dissertation, I investigated 

liver biology through more specific lenses of the impact of hepatic lipogenesis on a 

hepatotropic pathogen and the characteristics of the immune response to dysregulated 

hepatic lipid metabolism (Figure 4.1).  

 

De novo lipogenesis in HCV infection 

 To explore the role of de novo synthesized lipids in HCV infection, I used two 

non-competitive inhibitors of ACC, K1 and soraphen A. Soraphen A was first described 

in 1994 as an antifungal compound isolated from the soil bacterium Sorangium 

cellulosum (254). Given the potency with which soraphen A inhibited eukaryotic ACC, 

the idea of using it to control HCV infection was patented in 2012 (WO 2012139028 A2). 

Soraphen A is a macrolide and therefore has poor solubility in water and low 

bioavailability when administered orally. Therefore, I investigated its effects on HCV in 

comparison to a novel spiro compound, K1. The maximal reduction in intracellular HCV 

RNA was ~70% of the DMSO control upon treatment with both ACC inhibitors (Figure 
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2.2.B, p. 77). Given that the inhibitors are added at 24 hours post-infection, it is possible 

that the 30% of intracellular viral RNA that persists regardless of the dose or duration of 

infection is sequestered in areas that are not exposed to cellular factors that degrade 

RNA. A previous study reported that soraphen A reduced the number and size of double-

membraned vesicles that are the site of HCV RNA sequestration and replication (204). 

Consequently, HCV RNA may be retained in previously unidentified areas of the cell 

upon ACC inhibitor treatment; identifying these sites may help define novel cellular 

factors that contribute to HCV infection. Furthermore, the functionality of the residual 

RNA can be determined by quantifying viral RNA and titers upon replacing the media on 

cells previously treated with ACC inhibitors.  

 Interestingly, the loss in viral RNA was partially replicated in siRNA knockdown 

of both ACC1 and ACC2 (Figure 2.2.H, p. 77). As mentioned above, previous studies 

suggest redundancy in the two isoforms with regards to de novo fatty acid synthesis 

(209). However, I was still surprised that the reduction in viral RNA was comparable 

between knockdown of both isoforms, especially since transcript levels of ACC1 were 

unaffected by K1 and soraphen A, while ACC2 mRNA was partially reduced (Figure 

2.2.I and 2.2.J, p. 77). Instead, I had hypothesized that if ACC1 and ACC2 were indeed 

functionally redundant, then the expression of both isoforms would be upregulated upon 

K1 or soraphen A treatment in an attempt to restore lipid homeostasis. Therefore, 

interpreting the relative contributions of ACC isoforms to HCV infection requires further 

experimentation, including quantifying relative expression levels of ACC1 and ACC2 

proteins in infected hepatocytes, evaluating enzyme activation through changes in 
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phosphorylation, and identifying whether lipogenic functional redundancy of the 

isoforms is preserved upon K1 and soraphen A treatment.  

In addition to its canonical role in de novo lipogenesis, ACC is also known to 

affect histone acetylation and has been detected in the nucleus of human hepatocytes (17, 

255). It would be interesting if inhibiting de novo lipogenesis induces epigenetic changes 

that either act to limit propagation of HCV in infected hepatocytes or confer resistance to 

viral infection in uninfected hepatocytes. This possibility is further supported by the 

reduction in membrane phospholipids and diacylglycerols upon inhibition of ACC in 

uninfected and infected hepatocytes, as they may be indicative of changes in the activities 

of master transcription factors involved in the synthesis of these lipids. Evaluating 

epigenetic marks at genes that participate in lipid metabolism or genomic occupation by 

transcription factors such as SREBPs will be useful in testing the possibility that 

inhibiting ACC activity regulates lipogenic and perhaps other transcription programs that 

contribute to HCV infection.   

Regardless of the mechanism by which inhibition of de novo lipogenesis mediates 

changes in the hepatocyte lipidome, it is remarkable that a process that typically 

contributes <5% of the hepatic fatty acid supply is essential to the cell. As an example, 

despite being cultured in complete media, which contains fatty acids, both uninfected and 

infected hepatocytes displayed a marked loss in lipid droplets upon K1 and soraphen A 

treatment (Figure 2.10.A, p. 94). The near complete absence of lipid droplets suggests 

that ACC inhibition stimulates a state of starvation in the cell, such that all intracellular 

depots of lipids are depleted and the supply of lipids from extracellular sources is 

insufficient to replete these depots. Only when fatty acids are supplied in excess do the 
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lipid droplets return (Figure 2.8.A, 2.8.B and 2.8.D, p. 90). Furthermore, the addition of 

exogenous fatty acids restores lipid droplets only when the fatty acids are added in a 

specific ratio. Indeed, my attempts to load various hepatoma cell lines with just palmitate 

did not produce any changes in the neutral lipid content as measured by lipid droplets 

(data not shown). These observations suggest that while both de novo synthesized lipids 

and exogenous lipids can supply lipid droplets, inhibition of de novo lipogenesis 

reprograms the uptake and/or channeling of extracellular fatty acids away from lipid 

droplets under unsaturated conditions.  

It is intriguing to speculate on the fate of fatty acids in this starved state: the 

easiest explanation is that these fatty acids are oxidized to provide fuel for the cell. In 

fact, given that ACC2 mRNA is decreased upon K1 and soraphen A treatment, it is 

possible that the functions of ACC2, which include inhibiting β-oxidation, are 

compromised, resulting in accelerated breakdown of fatty acids in lipid droplets and 

those taken up from extracellular sources. Alternately, de novo synthesized lipids may be 

unique, perhaps in their intracellular trafficking patterns, making them an essential source 

of fatty acids for processes such as palmitoylation. HCV proteins are produced in excess 

of what is required for the formation of the replication complex (78). Yet, the inability of 

excess viral protein to replicate viral RNA indicates a functional defect resulting from 

reduced de novo lipogenesis, which might include deficiencies in protein palmitoylation. 

Admittedly, my data on changes in palmitoylation upon ACC inhibition are merely 

correlative. However, formation of protein aggregates, which have been reported to 

accumulate depalmitoylated proteins, was increased upon treatment of HCV-infected 

hepatocytes with ACC inhibitors or 2-bromopalmitate (Figure 2.11, p. 96). 
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Unfortunately, the spectral range of the aggregate stain precluded their co-localization 

with HCV proteins. Furthermore, the aggregated proteins likely include unidentified host 

proteins that may be essential for viral replication. Identifying the contents of these 

aggregates by subcellular fractionation followed by proteomic analysis may provide 

compelling evidence for palmitoylation of viral and host proteins in HCV infection.  

Indeed, palmitoylation of HCV core was previously shown to be important in 

targeting it to ER membranes near lipid droplets (107). Conversely, palmitoylation of 

NS4B was thought to be necessary for the formation of the replication complex and the 

interaction of NS4B with other viral proteins (108). However, more recent evidence 

negated these findings as artifacts of overexpression as NS4B produced in a replicating 

virus (as opposed to a subgenomic replicon or transfection of NS4B alone) did not 

require palmitoylation to function in HCV replication (109). Nonetheless, even if changes 

in palmitoylation were the mechanism by which K1 and soraphen A decrease HCV RNA, 

the question of whether de novo synthesized fatty acids themselves are necessary to 

palmitoylate viral or host proteins remains unknown. Inhibition of de novo lipogenesis 

has been shown to reduce palmitoylation of eNOS through direct loss of de novo 

synthesized fatty acids, leading to redistribution of eNOS from the membrane to the 

cytoplasm (179). Importantly, addition of exogenous fatty acids failed to reverse the 

mislocalization of eNOS, suggesting that exogenous fatty acid may not be sufficient to 

restore palmitoylation (179). These findings provide additional support for the hypothesis 

that de novo synthesized lipids play a unique role in HCV infection.  

Loss of protein palmitoylation could also result from changes in localization of 

the DHHC family of protein acyltransferases. The specificity of DHHC enzymes is partly 
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dependent on their co-localization with the substrate (206). Expression, localization, and 

function of DHHC enzymes during HCV infection have not been explored and may 

prove to be an exciting means of altering the course of disease. In contrast, expression of 

depalmitoylating proteins, namely palmitoyl-protein thioesterases (PPTs), may also be 

altered in HCV infection. In fact, if K1 and soraphen A treatment simulates a state of 

starvation in the cell, enhanced activity of PPTs may be a means to recycle the limited 

supply of fatty acids. Similar to DHHC proteins, the role of PPTs in HCV infection has 

not been reported and may provide interesting insights into the pathogenesis of HCV 

infection, even if it is independent of de novo lipogenesis.  

 

De novo lipogenesis: beyond the pathogenesis of hepatitis C 

 The inhibition of de novo lipogenesis resulted in a marked loss in HCV 

replication. These findings have critical implications for other positive-sense RNA 

viruses, which also replicate within intracellular membranes, producing characteristic 

ultrastructural changes that resemble double-membranes vesicles seen in HCV-infected 

hepatocytes (256). Furthermore, the C protein of the liver-tropic dengue virus is 

analogous to HCV core in that it associates with lipid droplets and the ER to facilitate 

viral assembly (257, 258). In fact, the genome of all hepatotropic flaviviruses is near 

identical to HCV in that it consists of structural proteins and nonstructural proteins, 

which include helicases, proteases, and polymerases that serve identical functions to their 

HCV counterparts. It is therefore likely that inhibition of de novo lipogenesis would 

hinder the replication of other positive-sense RNA viruses using the same mechanisms as 

HCV infection. If so, inhibiting de novo lipogenesis may have some therapeutic value, for 
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while the idea of limiting de novo lipogenesis in vivo seems too drastic for Flaviviridae 

viruses that can be treated with less adverse measures, it may be an option for infections 

with encephalitic members of the Togaviridae, for which there are no existing treatments.  

In addition to its potential role in the life cycles of other viruses, de novo 

lipogenesis is also necessary for inducing optimal responses in non-hepatocyte host cells. 

Since 2011, the use of direct-acting antivirals has revolutionized the treatment of hepatitis 

C and has been hailed as a cure for over 95% of patients infected with genotype 1. 

Although genotypic limitations and emergence of resistant strains continue to be a cause 

for concern, the newest frontier in hepatitis C research is a renewed effort at generating 

prophylactic or therapeutic vaccines. In parallel, studies in the past 5 years have 

identified specific metabolic requirements for optimal immune responses. Unfortunately, 

I did not find any measurable differences in the innate immune responses of hepatocytes 

upon ACC inhibition. However, the lessons learned from the hypolipidemic state of 

hepatocytes upon ACC inhibition may be applicable to immune cells as well. Indeed, 

treatment of T cells with soraphen A was shown to inhibit differentiation of CD4 T cells 

toward Th17 fates (259). In contrast, Tregs do not depend on de novo lipogenesis for 

lipid synthesis and instead meet their metabolic requirements using exogenous fatty acids 

(259). We previously showed that both Th17 cells and Tregs are increased during HCV 

infection at the cost of Th1 responses, which are necessary for generating effective anti-

viral responses (260-262). Modulating de novo lipogenesis in immune cells may thus be 

an effective way of generating effective anti-viral CD4 T cell and likely other immune 

responses.  
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ILCs: newcomers to liver diseases 

The recent discovery of ILCs has opened new avenues of investigation in several 

immune-mediated pathologies. In the liver, non-NK cell ILCs are only beginning to be 

understood as significant cellular players that can ameliorate or aggravate tissue injury in 

viral or chemical hepatitis, biliary disease, or hepatatectomy (263-269). However, there 

are no reports of the contributions of ILCs to NAFLD or its progression to NASH. 

Furthermore, several of these studies use mouse models; murine ILCs are not always 

phenotypically or functionally comparable to human ILCs. The preliminary experiments 

described in Chapter 3 are therefore a promising start to fill the niche for the role of 

human ILCs in the pathogenesis of NASH.   

Blood or tonsil derived cells present a unique opportunity to identify and monitor 

molecular triggers that regulate ILC responses at various stages of NASH. However, as 

ILCs are typically mucosal-resident cells, results obtained from blood and lymphoid 

organs must be interpreted with caution. In particular, expression of transcription factors 

that define each ILC subset, namely T-bet for ILC1s, GATA3 for ILC2s, and RORγt for 

ILC3s, must first be demonstrated in these cells. Furthermore, although I have 

preliminary data demonstrating production of IL-22 by ILC3s upon stimulation with 

PMA/ionomycin, it would be useful to verify these findings upon cytokine stimulation 

with IL-23 and/or IL-1β. Similarly, production of cytokines such as IFN-γ by ILC1s and 

classic Th2 cytokines by ILC2s may help confirm that these blood and tonsil-derived 

ILCs are identical in phenotype and function to their mucosal counterparts. Lastly, while 

blood derived ILCs may have opportunities to encounter steatotic hepatocytes in vivo, 

tonsillar ILCs may be representative of those found in liver draining lymph nodes. 
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Despite the differences in murine and human ILCs, it may be necessary to employ mouse 

models to at least identify if these lymphoid-resident ILCs are able to circulate to the 

liver. Alternatively, evaluating the expression of chemokines in NASH livers and 

associated chemokine receptors on ILCs will help establish if these cells are capable of 

migrating to the inflamed liver. If these peripheral ILCs are proven to be bona fide ILCs, 

they present innumerable possibilities for studying ILC responses in humans under 

healthy and pathological conditions. However, with regards to NAFLD or NASH, 

identification of healthy controls presents an interesting challenge, as estimates of 

NAFLD are as high as 30% of adults in the U.S. Comparing ILC distributions across 

various liver pathologies may better inform ILC changes that are unique to NASH.  

Assuming that the caveats of using non-mucosal sources of ILCs to study quasi-

mucosal responses in the liver are adequately addressed, there are several interesting 

biological outcomes that could be investigated with regards to ILCs in NASH. I 

hypothesize that ILC3s responses will predominate in NASH livers, given that these cells 

will migrate from the gut to the liver due to the loss of epithelial integrity and increased 

translocation of bacterial products. However, as studies in other models of liver injury 

have described pathogenic and beneficial roles for ILC1s and ILC2s, it is highly possible 

that all three subsets of ILCs will participate in the progression of NASH. Identifying the 

respective contributions of ILC1s, ILC2s, and ILC3s to NASH pathogenesis will provide 

a more thorough understanding of the complexity of the disease. Similarly, the 

experimental setup I have used thus far eliminates the majority of immune cells in both 

blood and tonsil-derived ILC cultures. Determining the interactions between ILCs, other 
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immune cells, and non-immune cells such as hepatocytes, liver sinusoidal endothelial 

cells, and stellate cells are sure to provide intriguing insights into liver biology.     

The existence of various types of ILCs has also prompted inquiries into the 

plasticity between subsets. Thus far, reversible plasticity has been established between 

ILC1s and ILC3s, while ILC2s have been reported to adopt ILC1-like features (139, 270-

274). Given the inflammatory environment in NASH, it is possible that ILC populations 

that are initially recruited to restore tissue homeostasis convert to more proinflammatory 

and pathogenic phenotypes. Tracking expression of T-bet, GATA3, and RORγt in 

enriched ILCs cultured with supernatants of steatotic hepatocytes will help determine if 

functional plasticity of ILCs can also occur in NASH. Furthermore, I was captivated by 

the recent report of the contrasting effects of Notch signaling and TGF-β on development 

of NCR+ILC3s (247). I had expected TGF-β to similarly impede ILC3 function by 

decreasing the production of IL-22. However, the MFI of IL-22 was elevated in cells that 

were cultured in the presence of TGF-β, indicating that TGF-β’s role in ILC3 function 

may differ from its role in development (Figures 3.3.D, p. 117 and 3.5, p.121). 

Alternately, these differences may also reflect divergent effects of TGF-β on human and 

mouse ILC3s. Importantly, as TGF-β is known pathogenic factor in all chronic liver 

diseases, my preliminary findings regarding its effect on ILC3 function may have 

significant implications for NASH and other equally challenging hepatic diseases.   

 

Chronic liver diseases 

 The contributions of hepatitis C and NASH to chronic liver diseases are predicted 

to diverge in the upcoming years. The development of highly effective direct-acting 
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antivirals, improved testing of blood products, and decline of the baby-boomer generation 

is predicted to significantly reduce the burden of hepatitis C both in the U.S. and 

worldwide. In contrast, the continued spread of the obesity epidemic and Western 

lifestyles forecast fatty liver disease as the leading cause of liver transplants. Hepatitis C 

stands as a remarkable example of how scientific inquiry can go from identifying a virus 

to developing agents that combat it in nearly 95% of infected individuals in just over 25 

years. Meanwhile, our understanding of the pathogenesis of fatty liver disease presents a 

challenge greater than combating a foreign pathogen—changing human behavior. 

Researching these highly convoluted pathologies at such critical epidemiological 

junctures provides a rare opportunity to participate in understanding how molecular and 

cellular elements inform the evolution of human society. 

 Specifically, the following concepts in the pathogenesis of chronic liver diseases 

warrant further investigation regardless of the etiology: 1) metabolic flux among 

parenchymal (e.g. hepatocytes) and non-parenchymal cells (e.g. sinusoidal cells, stellate 

cells, hematopoietic stem cells, and immune cells); 2) changes in the immune responses 

of non-immune and resident and infiltrating hematopoietic cells as a result of disease-

induced metabolic flux; 3) conversion of the hepatic microenvironment to a mucosal site 

due to alterations in the gut-liver axis through migration of immune cells from 

extrahepatic tissues or proliferation and differentiation from liver-resident progenitors. A 

deeper understanding of these processes will help identify pathogenic mechanisms that 

can be manipulated to restore homeostasis.    
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Figure 4.1. Lipid metabolism and inflammation in the pathogenesis of chronic liver 

diseases.  

Chronic liver diseases are marked by dysregulated lipid synthesis that initiates 

inflammatory responses that further aggravate disease. Such changes in hepatic lipid 

metabolism can be caused by pathogens such as the hepatitis C virus (HCV) or by 

consumption of lipid-rich foods. Pathogeneses of these diseases are further complicated 

by the influx of lipids from extracellular sources and immune cells from extrahepatic 

sites. Green arrows mark lines of investigation undertaken in this dissertation.   
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APPENDIX 

Included in part in “Narayanan S, Surette FA, and Hahn YS. The immune landscape in 

nonalcoholic steatohepatitis. Immune Network.” (manuscript in press). 

 

Contribution of immune cells to the pathogenesis of NASH  

The immune response accelerates and magnifies the extent of injury, yet 

paradoxically facilitates the resolution of inflammation and fibrosis in NASH (Figure 

A1). Although several studies have helped define precise roles for immune cells in the 

development of NAFLD, continued investigation of the interplay between various 

immune compartments is necessary to arrive at a complete understanding of the 

immunopathogenesis of NASH.  

 

Monocytes and macrophages 

 As the first line of defense against potentially pathogenic content draining from 

the gut, the liver must maintain a large population of phagocytic cells that can engulf and 

clear a diverse array of foreign compounds and bacterial products. It is perhaps for this 

reason that over 80% of the body’s macrophages reside in the liver, including liver-

resident Kupffer cells and their monocyte-derived counterparts, both of which play 

significant roles in the pathogenesis of NASH (275). Indeed, macrophage markers have 

been proposed as potential biomarkers of disease severity as levels of soluble CD163 and 

CD14 in the blood of NASH patients correlate with NAFLD activity score, degree of 

steatosis, fibrosis, and inflammation (276, 277).  
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Macrophages first appear in damaged adipose tissue, where they engulf dying 

adipocytes to form histological hallmarks called crown-like structures (278). Subsequent 

recruitment of monocytes to the liver is driven by chemotactic factors, such as monocyte 

chemotactic protein-1 (MCP-1). Production of MCP-1 is initiated by hepatocytes during 

simple steatosis and is sustained by infiltrating macrophages in a feedforward loop (128, 

279). As a result, blockade or absence of MCP-1 or CCR2, the receptor for MCP-1, 

reduces the influx of monocytes and macrophages into NASH livers, effectively halting 

the development of chronic inflammation (280, 281). Although MCP-1 is arguably the 

most well studied macrophage chemotactic factor in NASH, recent studies have 

identified additional molecules that regulate the influx of monocytes and macrophages 

into the liver, including the release of ATP or TRAIL from lipid-laden hepatocytes (282, 

283). In addition, extracellular vesicles containing ceramide or CXCL10 released from 

injured hepatocytes are highly chemotactic to a number of immune cells, including 

macrophages (284, 285). Although these studies use bone marrow derived macrophages 

and cell lines to assess migration, their findings suggest that the trafficking of monocytes 

and macrophages to injured hepatocytes in NASH is a multifactorial process that can be 

targeted for therapeutic intervention. In fact, inhibition of CCR2 in NASH patients with 

fibrosis is an ongoing phase 2 clinical trial (NCT02217475). While such advances are 

promising, it will be interesting to determine whether the influx of monocytes occurs in 

parallel to in situ proliferation of liver-resident Kupffer cells and to further identify the 

relative contributions of each population toward the pathogenesis of NASH.  

Upon infiltrating the liver during NASH, macrophages produce copious amounts 

of inflammatory cytokines such as TNF-α and IL-1β, which enhance steatosis and 
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facilitate the development of fibrosis and hepatocellular carcinoma (128, 286, 287). Pro-

inflammatory cytokine production is triggered by imbalances in macrophage fatty acid 

and cholesterol metabolism or in response to damage associated molecular patterns 

released by injured hepatocytes (288, 289). These stimuli act in concert with toll-like 

receptors (TLRs), which are stimulated by elevated levels of endotoxin and other TLR 

ligands, as small intestinal bacterial overgrowth and loss of intestinal barrier integrity is 

characteristic of patients and animal models of disease (290-292). Moreover, in a mouse 

model of NASH, Kupffer cells were hyperresponsive to low-levels of endotoxin, which 

was paralleled in blood monocytes of NAFLD patients (293, 294). These observations 

underscore a critical role for the gut-liver axis in NAFLD, wherein damage initiated in 

lipotoxic hepatocytes is converted to inflammation by recruited macrophages and further 

propagated by immunogenic products leaking from the intestine.   

The pro-inflammatory nature of classically activated M1 macrophages that initiate 

NASH is in contrast to the anti-inflammatory phenotype of alternatively activated M2 

macrophages that aid in the repair of damaged liver tissue. For instance, ablation of 

macrophages during liver fibrosis improves scarring; however, loss of macrophages 

during recovery from fibrosis increases scar formation, as macrophages are a critical 

source of collagenases that remodel fibrotic tissue (295, 296). In a carbon tetrachloride 

(CCl4) model of liver injury, restorative macrophages expressing some markers of both 

M1 and M2 macrophages infiltrate the liver at a late stage of disease, phagocytose dying 

cells, and resolve scar formation (297). Conversely, M2 macrophages induce 

proliferation and collagen production in fibroblasts and are strongly correlated with the 

expression of fibrogenic genes (298). Additionally, macrophages can directly contribute 
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to fibrogenesis through collagen secretion (299). Crosstalk between M1 and M2 

macrophages can also regulate inflammation as M2 macrophages induce apoptosis of M1 

macrophages in a mouse model of alcoholic fatty liver disease (300). Nonetheless, in 

unresolved NASH, the restorative capacity of macrophages is perturbed given the 

decrease in their phagocytic ability, which correlates to the degree of steatosis (301). 

Promoting M2 macrophages or reducing M1 macrophages early in disease thus appear to 

ameliorate the progression of NASH, while sustained M2 skewing later in disease 

impairs effective wound healing responses and contributes to fibrogenesis. 

 

Dendritic cells (DCs) 

DCs are highly efficient antigen presenting cells that regulate immune responses 

through cytokine production and activation of T cells. Similar to macrophages, DCs play 

a dichotomous role in the pathogenesis of NASH and liver fibrosis. For instance, in a 

mouse model of NASH, DCs steadily accumulate in the liver in early stages of disease 

and produce significant amounts of the pro-inflammatory cytokines TNF-α, IL-6, and 

MCP-1 and the anti-inflammatory cytokine IL-10 (302). Surprisingly, depletion of DCs 

did not ameliorate disease and instead lead to increased hepatic infiltration of immune 

cells, elevated levels of pro-inflammatory cytokine production, notable loss in IL-10 

production, and upregulation of fibrogenic markers (302). The beneficial effects of DCs 

in liver fibrosis are in part due to their ability to clear apoptotic debris and produce matrix 

metalloproteinases that enable clearance of fibrotic deposits (302, 303). Fibrosis is 

mediated by the activation and proliferation of hepatic stellate cells (HSCs), which are 

the pericytes of the liver that differentiate into myofibroblasts during fibrosis. In contrast 
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to the net beneficial effect of DCs in fibrosis, culturing DCs from fibrotic livers with 

HSCs results in HSC proliferation and inflammatory cytokine production, suggesting that 

the effect of DCs in liver disease may vary by cell type (304).  

Interestingly, DCs from fibrotic livers are able to induce robust cytolytic and 

proliferative antigen-specific T cell responses (304). On the contrary, DCs obtained from 

extrahepatic sites in high fat diet-fed mice are unable to initiate robust T cell responses 

(305). Although these studies differ in the models used, including a purely fibrosis model 

or diet-induced models of liver injury, they suggest that DC responses may be distinct 

between hepatic and extrahepatic sites in NASH and/or liver fibrosis. One explanation for 

these discrepancies may be intrinsic differences in lipid metabolism of liver-resident DCs 

compared to DCs in extrahepatic sites. Indeed, inhibiting global fatty acid synthesis 

resulted in ~20% loss of DCs from the spleen and bone marrow, while hepatic DCs were 

reduced by 80% (306). The increased sensitivity of hepatic DCs to changes in lipid 

metabolism may provide a potential therapeutic avenue, especially since DCs enriched in 

lipids are more immunogenic when compared to DCs with lower lipid content (307). 

Lastly, the distinct subsets of DCs in the liver could also be differentially modulated to 

alter local immune responses. A recent report of liver fibrosis following infection with 

Schistosoma mansoni found that a subset of DCs suppresses Th2 responses that lead to 

liver fibrosis (308). Moreover, DC depletion in a mouse model of NASH altered the ratio 

of CD8:CD4 T cells and reduced the intrahepatic frequency of regulatory T cells that 

dampen inflammation (302). Modulating DC responses may thus be an approach to limit 

T cell mediated liver injury (discussed below) in NASH.  
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Neutrophils  

Neutrophils are myeloid cells of the granulocytic lineage that are among the first 

cells to arrive at the site of inflammation. Unlike macrophages and T cells, neutrophils 

are not as prolific in the hepatic inflammatory infiltrate in NASH (309). Their muted 

presence may be reflective of the inflammatory mileu, as high-fat diet fed mice treated 

with LPS and IL-1β had an increased influx of mononuclear cells, while hepatic injury 

via carbohydrates and cholesterol stimulated the influx of both mononuclear and 

polymorphonuclear cells (310). Given the increased levels of endotoxins and metabolic 

insults in the liver during NASH, the resulting heterogeneity of the inflammatory 

infiltrate may thus mask the contribution of neutrophils to the progression of NASH. 

Nonetheless, a number of mouse models and neutrophil markers in NASH patients have 

helped identify effector mechanisms by which neutrophils contribute to the 

immunopathology of NASH. Specifically, expression of myeloperoxidase (MPO), an 

enzyme stored in the azurophilic granules of neutrophils that generates cytotoxic 

hypochlorous acid, is increased in the plasma and livers of NASH patients compared to 

patients with simple steatosis (311). MPO can oxidize phosphatidylcholine that further 

activates neutrophils and acts as a ligand for scavenger receptors, which in turn 

exacerbates fibrogenesis (312). Consequently, it is not surprising that deficiency of MPO 

results in a marked reduction in the production of pro-inflammatory cytokines and 

development of hepatic fibrosis (311, 313).  

Release of MPO is part of the respiratory burst of activated neutrophils, which 

results in the production of reactive oxygen species (ROS). The importance of ROS in 

NASH pathogenesis is underscored by decreased circulating levels of antioxidants in 
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obese children (314). Furthermore, neutrophils in the peripheral blood of NASH patients 

produce elevated levels of ROS upon stimulation when compared to controls (315). Local 

production of ROS can lead to lipid peroxidation and HSC migration, thus facilitating 

cellular injury and fibrosis (316). In addition to oxidative mechanisms of injury, 

neutrophils also secrete neutrophil elastase, which promotes hepatic insulin resistance by 

degrading insulin receptor substrate-1 (317). It is therefore conceivable that inhibitors of 

MPO, ROS, and neutrophil elastase may provide therapeutic benefit in NASH. Indeed, 

treatment of NASH patients with the antioxidant vitamin E reduced steatosis and serum 

levels of liver enzymes (318). Given the potential benefit in reducing neutrophil 

involvement during NASH, the increased ratio of neutrophils to lymphocytes in blood 

has been proposed as a potential noninvasive marker of disease severity (319). Although 

there is some debate as to the usefulness of this ratio in patients with comorbidites such 

as type 2 diabetes mellitus, further investigation of the role of neutrophils in the 

development of NASH may improve strategies for their use in diagnosis and treatment of 

disease (320).   

 

NK cells 

NK cells develop from common lymphoid progenitors, yet like many innate 

immune cells, respond to immunogenic insults early and in an antigen-independent 

manner. Mice lacking NK cells are resistant to developing steatosis following a high 

fructose diet, indicating that NK cells may have a role in facilitating the transition from 

NAFLD to NASH (127). Moreover, NK cells play a prominent role in chronic liver 

diseases, as they are critical players in inhibiting the development of fibrosis through 



	  156 

direct killing of newly activated and senescent HSCs (321, 322). The increased cytolytic 

activity of NK cells is triggered by upregulation of activating stress ligands or 

downregulation of inhibitory ligands on HSCs (322, 323). However, HSCs that are “fully 

activated” or fail to become senescent are resistant to killing by NK cells (321, 322). In 

contrast, senescent HSCs downregulate fibrogenic programs and upregulate 

inflammatory genes (324). Considering that HSCs are chronically activated in the 

proinflammatory environment of the liver during NASH, these findings may be indicative 

of dysregulated senescence of HSCs in NASH. Yoshimoto, et al. demonstrate that 

induction of the senescence phenotype in HSCs is associated with increased rates of 

hepatocellular carcinoma in mice exposed to a carcinogen that were fed a high-fat diet 

compared to normal diet fed mice (325). Given that these experiments were conducted in 

mice with intact immune responses, these data may be indicative of defective NK cell 

function in NAFLD, as NK cells kill senescent HSCs.  

We recently reported that depletion of hepatic NK cells expressing the activating 

marker NKp46 promotes fibrogenesis by skewing macrophages toward M2 phenotypes 

late in disease (326). The importance of NKp46 expression in regulating HSC activity 

was previously demonstrated in fibrosis resulting from viral hepatitis, as loss of robust 

NKp46 expression was inversely related to fibrosis grade (327). Moreover, blockade of 

NKp46 results in decreased NK cell degranulation, IFN-γ production, and HSC killing 

upon in vitro co-culture with HSCs (327). In contrast, total NK cells and expression of 

the NK cell activating receptor NKG2D and its ligand MIC A/B are elevated in NASH 

patients and are associated with increased fibrosis grade (328). While the authors of this 

study interpret the data as indicative of a potential pathogenic role for NKG2D-MIC A/B 
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interaction in NASH, their findings could also reflect a compensatory, yet ineffective, 

increase in NK cell activity. This alternative interpretation further implies that NK cell 

responses may be compromised in NASH, thus permitting uncontrolled HSC 

proliferation and activation. Indeed, in a CCl4 model of liver fibrosis, production of IFN-

γ by NK cells was diminished in advanced stages of disease (329). Interestingly, the 

reduction in NK cell IFN-γ production was partly alleviated by blocking TGF-β released 

from HSCs (329). Continued investigation is thus required to thoroughly understand the 

complex interactions among NK cells, HSCs, macrophages, and likely other immune and 

nonimmune cells in NASH.   

 

Natural killer T (NKT) cells  

NKT cells are defined by the co-expression of an invariant T cell receptor and NK 

cell markers and recognize lipid antigens presented by the non-classical antigen 

presenting molecule CD1 (330). Classical CD1d reactive hepatic NKT cells are 

differentially distributed in mice and humans, where Vα14Jα18 NKT cells constitute 

~22% of hepatic mononuclear cells in mice, while the human homologue Vα24Vβ11 

NKT cells comprise only ~0.6% of CD3+ cells that bind CD1d tetramers (331, 332). 

However, the counterpart to mouse invariant NKTs may instead be human mucosal 

associated invariant T (MAIT) cells, which make up ~15% of intrasinusoidal 

lymphocytes in humans (333). Given the differences between NKT cells in mice and 

humans, translating data obtained from mouse models of NASH to human disease may 

require caution.  
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NKT cell accumulation during NAFLD and NASH has been reported by several 

studies in both the liver and blood of patients (334, 335). Yet, other studies report that 

hepatic NKT cells are decreased in NASH patients and associate decreased frequencies of 

NKT cells in the peripheral blood with an increased risk of NAFLD (336, 337). These 

differences may in part reflect when and how NKT cells were detected. For instance, in a 

mouse model of NASH, NKT cells were selectively increased in the liver, but were 

unchanged in the spleen (338). However, the same study reported that NKT cells that 

infiltrate steatotic livers undergo apoptosis (338). Identifying the kinetics of NKT cell 

infiltration into the liver during the progression of disease in NASH patients may provide 

further insight into the frequency of NKT cells in NAFLD.   

Influx of NKT cells into the liver during NASH is mediated by enhanced 

expression of the chemokine CXCL16 on endothelial cells and macrophages, which binds 

CXCR6 on the surface of NKT cells (339). Upregulation of CXCL16 coincides with the 

production of IL-4 and IFN-γ by NKT cells, which aggravates inflammation via 

macrophage activation (339). Activation of the Hedgehog pathway has also been 

implicated in NKT cell recruitment in NASH livers. Specifically, overactivation of 

Hedgehog signaling recruits increased numbers of NKT cells to the livers of methionine 

choline-deficient diet-fed mice, which developed higher grade fibrosis compared to wild 

type mice (334). CD1d-/- mice lacking NKT cells did not develop fibrosis, suggesting that 

Hedgehog mediated NKT cell responses are pathogenic in NASH (334). Indeed, 

activation of the Hedgehog pathway in NKT cells upregulates expression of osteopontin 

production, which drives HSC activation and fibrogenesis (340). Thus, the net 

contribution of NKT cells appears to be pathogenic in NASH. Nonetheless, modulating 
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the ability of NKT cells to produce cytokines may permit tuning of macrophage 

responses to favor the resolution of inflammation and clearance of fibrotic tissue.  

 

T cells 

 T cells are a diverse class of lymphocytes that include CD4 and CD8 T cells, 

which respond to antigens displayed on MHCII and MHCI, respectively, to exert effector 

functions such as cytokine production and cytolysis. T cells play a critical role in the 

development and progression of NAFLD as high fructose-diet fed mice lacking T cells 

fail to develop steatosis and hepatic inflammation (127). These findings are validated in 

NASH patients as they have increased frequencies of IFN-γ+ memory CD4 and CD8 T 

cells (315). Elevated peripheral blood T cells in NASH patients are reflective of cells 

infiltrating the inflamed liver (341). One of the molecular mechanisms driving T cell 

infiltration into the liver is dysfunctional chemotaxis, as peripheral CD4 T cells from 

obese mice and NASH patients migrate more readily toward the chemokine CXCL12 

when compared to T cells from healthy mice or donors (342). These results suggest that 

imbalances in systemic lipid metabolism may result in intrinsic alterations in immune 

cells. In addition, increased oxidative stress in the hepatic microenvironment of NASH 

livers generates neoantigens that can induce the recruitment of T cells (343). Collectively, 

these studies identify T cells as a prominent immune population in NASH that plays a 

critical role in influencing the course of disease.  

Functionally, CD4 T cell responses in NASH are skewed toward Th1 and Th17 

phenotypes. Th1 responses in NASH are characterized by secretion of IFN-γ and TNF-α, 

which in turn help polarize macrophages toward M1 responses (315, 341, 343). Although 
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the lack of steatosis and inflammation in the absence of T cells would suggest that T cell 

derived IFN-γ is pathogenic in NASH, there are no studies to date that detail the 

progression of disease upon neutralization of IFN-γ (127). In contrast, IL-17 is well 

known to propagate NASH via multiple mechanisms, including neutrophil activation. 

Moreover, exposure of HepG2 cells to fatty acids in the presence of recombinant IL-17 

promotes accumulation of intracellular triglycerides (344). Additionally, IL-17 signaling 

in HSCs upregulates expression of profibrotic genes while lack of IL-17 in a chemically-

induced murine model of liver fibrosis reduces the levels of proinflamamtory cytokines 

and extent of cell death (226, 345). Interestingly, fibrosis was exacerbated in mice 

lacking expression of IL-22, a cytokine produced by Th17 cells that promotes epithelial 

regeneration (226). Although the above studies provide ample evidence for a pathogenic 

role of Th17 cells in NASH, perhaps tuning Th17 responses to increase IL-22 production 

may uncover a beneficial role for the increased presence of this population in NASH 

livers.  

The marked increase in Th1 and Th17 responses in NASH is complemented by a 

loss in regulatory T cells (Treg) in the adipose tissues, peripheral blood, or livers of 

NASH patients or mice that replicate facets of the disease (346-348). In the liver, the 

reduced presence of Tregs is not only relative to the influx of other T cell subsets, but 

may also be due to increased susceptibility to death by oxidative damage (347). 

Importantly, adoptive transfer of Tregs into high-fat diet mice decreases hepatic 

inflammation and serum levels of liver enzymes, indicating that Tregs may regulate the 

transition from NAFLD to NASH (347). These findings were corroborated by the 

association of elevated hepatic lipogenesis and inflammation and reduced Treg frequency 
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in mice lacking expression of the costimulatory molecules CD80 and CD86 (349). 

Interestingly, blockade of CD80 and CD86 in mice with an intact Treg compartment had 

the opposite effect as the grade of steatosis and fibrosis was decreased with a concurrent 

improvement in glucose tolerance (349). These contrasting results indicate that 

modulating costimulatory molecules in the presence of Tregs may be an attractive means 

to regulate T cell responses in NASH. Indeed, blockade or genetic deficiency of another 

costimulatory molecule, CD40L, impeded inflammation in both adipose tissues and livers 

of mice fed obesogenic diets (350, 351). Surprisingly, deficiency of CD40, which binds 

CD40L, produces the opposite results, as steatosis and insulin resistance were 

exacerbated in CD40-/- mice compared to wild type controls despite reduced hepatic 

levels of inflammatory cytokines (352). CD40L can also bind the integrins α5β1 and 

Mac-1 (353, 354). The contrasting progression of disease in CD40 and CD40L deficient 

mice may thus reflect interactions that are independent of CD40 and T cells as α5β1 and 

Mac-1 are expressed on several cells of nonlymphocytic origin.  
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Figure A1. Immunopathogenesis of nonalcoholic steatohepatitis (NASH).  

Interactions between immune cells and steatotic hepatocytes or HSCs in NASH can 

exacerbate or ameliorate disease.  

DCs, dendritic cells; IL, interleukin; TNF, tumor necrosis factor; DAMPs, damage 

associated molecular patterns; IFN, interferon; NK cell, natural killer cell; NKT, natural 

killer T cell HSC, hepatic stellate cell; MPO, myeloperoxidase; ROS, reactive oxygen 

species.  
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Metabolite
DMSO K1 Soraphen A K1 Soraphen A K1 Soraphen A K1 Soraphen A

Phosphatidylserine (PS)
16:0 16:0 PS 61.46±7.18 129.05±79.15 92.60±11.63 0.276836 0.006090 1.000000 0.651642 1.070 0.591
16:0 18:2 PS 459.85±58.42 356.67±234.59 461.03±53.95 0.528232 0.977408 1.000000 1.000000 -0.367 0.004

16:0 20:3, 18:1 18:2 PS 723.28±168.96 457.20±315.13 740.16±131.93 0.280463 0.880338 1.000000 1.000000 -0.662 0.033
16:0 20:4 PS 262.61±32.39 293.02±187.08 446.18±102.35 0.805824 0.031650 1.000000 1.000000 0.158 0.765
 16:0 22:6 PS 151.61±19.68 230.88±152.85 310.27±48.06 0.464249 0.003698 1.000000 0.414150 0.607 1.033
 18:0 18:1 PS 644.37±154.27 500.58±259.89 574.21±263.01 0.455663 0.665306 1.000000 1.000000 -0.364 -0.166
 18:0 20:2 PS 313.72±93.94 182.90±113.02 172.31±48.26 0.180673 0.049161 1.000000 1.000000 -0.778 -0.864
 18:0 22:5 PS 623.20±149.49 566.34±327.92 588.52±232.24 0.800484 0.811501 1.000000 1.000000 -0.138 -0.083

 18:0 22:6, 20:2 20:4 PS 1701.98±232.89 1451.93±885.51 1322.42±301.20 0.676506 0.096246 1.000000 1.000000 -0.229 -0.364
 18:1 18:1, 18:0 18:2 PS 1151.68±171.17 643.62±399.46 743.39±179.52 0.146459 0.016626 1.000000 1.000000 -0.839 -0.632
 18:1 20:4, 18:0 20:5 PS 466.73±30.82 887.30±575.90 1109.63±276.59 0.333277 0.018082 1.000000 1.000000 0.927 1.249

 18:1 22:6 PS 251.53±20.83 583.50±370.68 558.61±97.57 0.260851 0.006659 1.000000 0.705836 1.214 1.151
Phosphatidic acid (PA)

16:0 16:0 PA 17.02±12.65 24.66±18.09 16.48±5.34 0.570766 0.941035 1.000000 1.000000 0.535 -0.047
16:0 18:1 PA 32.57±11.62 25.76±13.21 24.24±9.60 0.516462 0.313084 1.000000 1.000000 -0.338 -0.426
16:0 18:2 PA 17.12±5.61 10.29±2.27 10.78±4.16 0.089335 0.123558 1.000000 1.000000 -0.735 -0.667
16:0 20:3 PA 15.61±2.38 9.20±6.52 7.99±1.65 0.225066 0.002692 1.000000 0.304156 -0.763 -0.967
16:0 20:4 PA 15.51±2.06 16.37±5.64 16.50±7.47 0.822935 0.814432 1.000000 1.000000 0.077 0.088
16:0 22:4 PA 3.71±.95 3.88±0.95 3.86±NA 0.857248 NA 1.000000 NA 0.066 0.059
 16:0 22:6 PA 75.66±34.68 22.98±11.75 16.66±6.08 0.049468 0.040269 1.000000 1.000000 -1.719 -2.183
 18:0 18:1 PA 15.65±5.52 19.30±9.89 14.39±4.39 0.606177 0.749308 1.000000 1.000000 0.302 -0.122
 18:0 18:2 PA 38.96±12.13 16.30±11.23 17.73±3.86 0.054654 0.033936 1.000000 1.000000 -1.257 -1.136
 18:0 20:2 PA 11.62±10.74 1.55±0.94 29.77±23.42 0.157368 0.460855 1.000000 1.000000 -2.905 1.358
 18:0 20:4 PA 95.21±17.63 67.35±42.34 66.88±23.71 0.375263 0.107561 1.000000 1.000000 -0.500 -0.510
 18:0 20:5 PA 1.62±NA 2.18±1.74 NA±NA NA NA NA NA 0.431 NA
 18:0 22:5 PA 57.97±10.30 19.88±8.98 16.59±3.29 0.003892 0.002356 0.439843 0.270900 -1.544 -1.805
 18:0 22:6 PA 130.17±47.91 63.86±38.70 54.36±19.81 0.099844 0.043108 1.000000 1.000000 -1.028 -1.260
 18:1 18:2 PA 9.88±2.58 24.05±16.89 17.22±4.80 0.282387 0.046752 1.000000 1.000000 1.283 0.802
 18:1 20:3 PA 9.51±6.47 20.42±14.34 14.89±4.75 0.318208 0.232358 1.000000 1.000000 1.103 0.648
 18:1 20:4 PA 14.36±2.97 36.64±23.54 37.43±10.49 0.241794 0.017901 1.000000 1.000000 1.351 1.382
 18:1 22:6 PA 314.07±77.96 164.14±93.72 148.39±15.39 0.089334 0.021656 1.000000 1.000000 -0.936 -1.082

Appendix Table 1. Lipidomics of uninfected hepatocytes treated with ACC inhibitors. Uninfected Huh7.5.1 cells were treated with DMSO, 1 μM K1, or 100 nM soraphen A for 3 days. 
Indicated lipids were quantified by mass spectrometry and mean values were used to determine significant changes in K1 and soraphen A-treated cells compared to DMSO control. The column 
“p value” was determined by student’s t test and p<0.05 (bolded) was considered significant. The column “corrected p value” was adjusted for false discovery rate (FDR). Because FDR is more 
stringent than a t test, p<0.1 (bolded) was considered significant. Positive and negative values in the column “Log (fold change)” indicate an increase or decrease in the lipid, respectively. NA 
indicates insufficient replicates to calculate value. Results are the mean ± SEM of 3-4 independent experiments.           

p value (t test) Corrected p value (FDR adjusted) Log (fold change)Average±SD (relative abundance)
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Phosphatidylethanolamine (PE)
16:0 16:0 PE 0.10±.02 0.05±0.04 0.05±0.03 0.171983 0.024378 1.000000 1.000000 -0.983 -1.008
16:0 18:0 PE 0.07±.03 0.06±0.04 0.05±0.02 0.839950 0.446573 1.000000 1.000000 -0.128 -0.362
 16:0 18:1 PE 0.76±.11 0.59±0.32 0.70±0.12 0.450814 0.451206 1.000000 1.000000 -0.373 -0.131
 16:0 18:2 PE 2.03±.24 1.63±0.96 2.31±0.53 0.546086 0.384106 1.000000 1.000000 -0.317 0.188

 16:0 20:3, 18:1 18:2 PE 2.32±.40 1.77±1.13 2.53±0.64 0.495863 0.590728 1.000000 1.000000 -0.386 0.129
 16:0 20:4 PE 2.16±.33 1.42±0.79 2.38±0.60 0.243171 0.551197 1.000000 1.000000 -0.603 0.140
 16:0 22:6 PE 1.37±.19 1.35±0.83 2.27±0.47 0.969544 0.023030 1.000000 1.000000 -0.022 0.729
 18:0 18:1 PE 0.22±.04 0.22±0.12 0.27±0.05 0.981689 0.175478 1.000000 1.000000 0.012 0.287

 18:1 18:1, 18:0 18:2 PE 1.12±.15 1.31±0.74 1.56±0.36 0.703641 0.090774 1.000000 1.000000 0.225 0.475
 18:1 20:3, 18:0 20:4 PE 3.62±.38 2.52±1.47 2.87±0.52 0.322963 0.063487 1.000000 1.000000 -0.522 -0.335
 18:1 20:4, 18:0 20:5 PE 2.38±.19 2.54±1.40 3.75±0.76 0.862999 0.033806 1.000000 1.000000 0.093 0.653

Phosphatidylcholine (PC)
 16:0 16:0 PC 30.63±4.33 16.17±8.76 15.99±2.59 0.086347 0.002272 1.000000 0.263603 -0.921 -0.938
 16:0 18:0 PC 9.03±1.17 3.93±2.30 4.23±0.59 0.043706 0.001231 1.000000 0.143983 -1.201 -1.095
 16:0 18:1 PC 98.81±10.55 40.71±23.68 49.61±4.20 0.037068 0.001057 1.000000 0.124674 -1.279 -0.994
 16:0 18:2 PC 85.09±5.16 62.63±39.99 77.54±12.01 0.433360 0.311017 1.000000 1.000000 -0.442 -0.134
 16:0 20:3 PC 42.27±4.59 24.72±17.67 33.40±5.24 0.223669 0.044452 1.000000 1.000000 -0.774 -0.340
 16:0 20:4 PC 22.11±3.14 19.58±13.44 32.03±5.90 0.777347 0.034892 1.000000 1.000000 -0.175 0.535
 16:0 22:6 PC 8.25±.72 7.84±4.85 13.96±2.17 0.898011 0.009456 1.000000 0.992875 -0.073 0.759
 18:0 18:1 PC 11.43±1.72 6.18±3.45 7.04±0.62 0.101935 0.009968 1.000000 1.000000 -0.888 -0.700
 18:1 18:1 PC 34.90±4.05 24.89±15.67 31.33±3.06 0.384337 0.212577 1.000000 1.000000 -0.487 -0.156
 18:1 20:3 PC 14.31±.86 11.19±7.55 14.77±2.67 0.549774 0.756886 1.000000 1.000000 -0.354 0.046
 18:1 20:4 PC 8.56±.49 10.56±6.76 17.90±2.67 0.659558 0.005059 1.000000 0.556438 0.303 1.065

Diacylglycerol (DAG)
 16:0 18:1 DAG 0.91±.22 0.09±0.01 0.11±0.03 0.005293 0.005168 0.561096 0.563286 -3.318 -3.007
 16:0 18:2 DAG 0.39±.06 0.04±0.01 0.04±0.02 0.001140 0.000790 0.133428 0.093974 -3.455 -3.335
 18:1 18:2 DAG 0.34±.10 0.10±0.02 0.10±0.03 0.012605 0.011401 1.000000 1.000000 -1.774 -1.798
 18:2 18:2 DAG 0.06±.03 0.04±0.01 0.04±0.03 0.179644 0.424218 1.000000 1.000000 -0.687 -0.613

Lysophosphatidic acid (LPA)
 16:0 LPA 0.73±.29 0.43±0.26 0.61±0.43 0.210079 0.649122 1.000000 1.000000 -0.768 -0.270
 16:1 LPA 1.08±.27 0.45±0.18 0.60±0.26 0.013640 0.042644 1.000000 1.000000 -1.257 -0.854
 18:0 LPA 6.74±1.78 2.90±0.72 3.87±1.92 0.016188 0.071703 1.000000 1.000000 -1.218 -0.799
 18:1 LPA 0.74±.26 1.09±0.28 1.47±0.67 0.165844 0.113120 1.000000 1.000000 0.557 0.987
 18:2 LPA 0.52±.15 0.34±0.08 0.50±0.18 0.101926 0.887885 1.000000 1.000000 -0.590 -0.048
 20:4 LPA 1.07±.38 1.12±0.27 1.40±0.46 0.856662 0.310911 1.000000 1.000000 0.062 0.386
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Sphingomyelin (SM)
SM 13:0 2.47±.76 1.81±0.88 2.42±0.27 0.356782 0.894839 1.000000 1.000000 -0.447 -0.034
SM 13:1 0.25±.18 0.09±0.11 0.32±0.31 0.269832 0.709503 1.000000 1.000000 -1.432 0.354
SM 14:0 8.30±1.83 6.10±4.87 7.57±1.86 0.522602 0.597473 1.000000 1.000000 -0.444 -0.132
SM 14:1 0.50±.09 0.62±0.35 0.73±0.18 0.609971 0.074684 1.000000 1.000000 0.314 0.545
SM 15:0 10.51±2.45 6.92±5.26 8.36±1.97 0.361935 0.222044 1.000000 1.000000 -0.603 -0.331
SM 15:1 0.60±.37 0.49±0.23 0.71±0.15 0.680441 0.606231 1.000000 1.000000 -0.298 0.247
SM 16:0 164.43±63.95 92.27±58.75 108.54±25.46 0.186340 0.181026 1.000000 1.000000 -0.834 -0.599
SM 16:1 23.33±2.16 13.98±8.70 19.87±3.96 0.199549 0.190045 1.000000 1.000000 -0.738 -0.232
SM 17:0 8.03±1.20 3.07±1.62 4.41±1.00 0.014338 0.003858 1.000000 0.428237 -1.387 -0.866
SM 17:1 2.38±.19 1.03±0.54 2.14±0.35 0.040440 0.302932 1.000000 1.000000 -1.200 -0.148
SM 18:0 10.63±1.14 3.18±1.25 6.09±1.37 0.001025 0.002456 0.120920 0.280030 -1.740 -0.804
SM 18:1 5.82±.54 2.28±0.77 4.30±0.73 0.004093 0.017502 0.458437 1.000000 -1.355 -0.437
SM 19:0 1.34±.33 0.36±0.15 1.09±0.24 0.005063 0.276143 0.546848 1.000000 -1.891 -0.295
SM 19:1 0.75±.71 0.14±0.05 0.47±0.24 0.179079 0.494765 1.000000 1.000000 -2.442 -0.684
SM 20:0 6.35±1.49 2.05±0.76 6.03±0.84 0.005189 0.722155 0.555172 1.000000 -1.632 -0.075
SM 20:1 2.59±.87 0.75±0.34 2.34±0.60 0.017466 0.652120 1.000000 1.000000 -1.780 -0.147
SM 21:0 1.74±.59 0.57±0.18 1.95±0.52 0.022833 0.613483 1.000000 1.000000 -1.616 0.164
SM 21:1 0.60±.31 0.24±0.17 0.79±0.09 0.116738 0.299969 1.000000 1.000000 -1.305 0.416
SM 22:0 9.57±2.48 3.43±1.06 8.82±1.64 0.009815 0.633666 0.991318 1.000000 -1.479 -0.118
SM 22:1 9.66±4.07 3.13±0.77 8.49±1.21 0.046073 0.615500 1.000000 1.000000 -1.625 -0.186
SM 22:2 0.79±.32 0.24±0.07 0.79±0.13 0.037756 0.995647 1.000000 1.000000 -1.725 0.002
SM 23:0 2.72±.75 0.99±0.38 2.81±0.24 0.012840 0.832108 1.000000 1.000000 -1.451 0.047
SM 23:1 4.23±1.97 1.62±0.74 4.48±0.28 0.071267 0.818331 1.000000 1.000000 -1.386 0.082
SM 24:0 7.65±1.19 2.95±1.06 5.12±0.88 0.003232 0.015934 0.371704 1.000000 -1.373 -0.579
SM 24:1 21.37±5.40 7.41±2.85 15.86±2.76 0.008079 0.135468 0.837892 1.000000 -1.528 -0.430
SM 24:2 6.29±2.20 2.96±0.99 5.59±0.62 0.050264 0.579353 1.000000 1.000000 -1.085 -0.169
SM 24:3 0.53±.30 0.28±0.10 0.61±0.13 0.198341 0.639483 1.000000 1.000000 -0.913 0.208
SM 25:0 0.63±.20 0.20±0.12 0.38±0.12 0.018864 0.086227 1.000000 1.000000 -1.629 -0.746
SM 25:1 1.42±.30 0.46±0.32 0.89±0.21 0.013596 0.030229 1.000000 1.000000 -1.610 -0.677
SM 26:0 0.18±.05 0.06±0.06 0.13±0.07 0.049209 0.249483 1.000000 1.000000 -1.713 -0.506
SM 26:1 0.50±.18 0.16±0.09 0.36±0.13 0.028438 0.264169 1.000000 1.000000 -1.595 -0.479
SM 26:2 0.42±.14 0.20±0.08 0.33±0.10 0.051785 0.362251 1.000000 1.000000 -1.077 -0.336
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Glucosylceramide (GlcCer)
GlcCer 16:0 60.37±13.44 3.61±0.74 104.30±70.68 0.003397 0.303993 0.387309 1.000000 -4.065 0.789
GlcCer 18:0 6.15±2.21 0.31±0.04 10.75±8.63 0.013232 0.369416 1.000000 1.000000 -4.326 0.806
GlcCer 20:0 2.01±.79 0.08±0.01 2.11±1.79 0.016589 0.927866 1.000000 1.000000 -4.566 0.066
GlcCer 21:1 0.34±.08 0.03±0.01 0.32±0.13 0.004678 0.830330 0.509853 1.000000 -3.661 -0.076
GlcCer 21:2 2.14±1.14 0.06±0.00 1.14±0.38 0.035659 0.179633 1.000000 1.000000 -5.202 -0.906
GlcCer 22:0 1.33±.55 0.07±0.02 1.41±0.94 0.019346 0.886406 1.000000 1.000000 -4.213 0.086
GlcCer 22:1 0.29±.04 0.03±0.02 0.24±0.08 0.000150 0.312411 0.017955 1.000000 -3.176 -0.285
GlcCer 23:0 0.50±.16 0.02±0.01 0.34±0.16 0.009489 0.191781 0.967874 1.000000 -4.447 -0.580
GlcCer 23:1 0.48±.15 0.02±0.00 0.28±0.09 0.008057 0.061262 0.837892 1.000000 -4.494 -0.806
GlcCer 24:0 1.72±.43 0.07±0.02 0.78±0.23 0.004439 0.013487 0.488249 1.000000 -4.614 -1.145
GlcCer 24:1 1.09±.37 0.06±0.01 0.62±0.19 0.011030 0.075936 1.000000 1.000000 -4.248 -0.823

Dihydroceramide (DCer)
DCer 16:0 6.25±3.68 10.23±1.04 11.62±9.37 0.116242 0.347703 1.000000 1.000000 0.711 0.894
DCer 18:0 0.71±.32 1.42±0.65 1.15±0.57 0.189456 0.238602 1.000000 1.000000 0.992 0.695
DCer 20:0 1.01±.66 1.52±0.13 2.45±1.74 0.225889 0.200646 1.000000 1.000000 0.586 1.276
DCer 22:0 0.68±.45 0.99±0.42 1.09±0.56 0.394907 0.307237 1.000000 1.000000 0.537 0.671
DCer 24:0 1.28±.73 2.21±0.59 1.86±0.74 0.122433 0.311916 1.000000 1.000000 0.786 0.535
DCer 24:1 1.43±.86 2.22±0.40 2.18±1.60 0.177695 0.449824 1.000000 1.000000 0.630 0.607

Ceramide (Cer)
Cer 16:0 1.66±1.66 53.25±8.66 77.23±4.87 0.006659 0.000378 0.699152 0.045390 -1.037 -0.501
Cer 18:0 12.86±.82 7.15±2.25 8.45±1.57 0.037621 0.005400 1.000000 0.583193 -0.847 -0.607
Cer 18:1 2.45±.09 1.34±0.02 2.66±0.66 0.000075 0.568950 0.009042 1.000000 -0.868 0.120
Cer 20:0 10.05±4.60 2.37±0.48 9.44±4.92 0.043427 0.862275 1.000000 1.000000 -2.082 -0.090
Cer 20:1 1.10±.21 0.62±0.36 1.21±0.47 0.131770 0.679930 1.000000 1.000000 -0.830 0.142
Cer 20:2 1.85±.48 0.81±0.30 2.66±1.61 0.017173 0.399373 1.000000 1.000000 -1.191 0.519
Cer 22:0 11.06±1.37 6.55±1.03 12.67±1.68 0.004290 0.188985 0.476216 1.000000 -0.755 0.196
Cer 22:1 1.93±.60 1.10±0.25 1.96±0.42 0.064876 0.949445 1.000000 1.000000 -0.814 0.018
Cer 23:0 10.19±1.89 5.74±2.45 14.97±5.13 0.063934 0.159206 1.000000 1.000000 -0.829 0.555
Cer 24:0 20.62±2.62 9.21±1.70 13.88±2.60 0.000954 0.010614 0.113486 1.000000 -1.163 -0.571
Cer 24:1 29.63±3.45 17.40±2.39 24.36±2.65 0.002650 0.054442 0.307414 1.000000 -0.768 -0.282
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Metabolite
DMSO K1 Soraphen A K1 Soraphen A K1 Soraphen A K1 Soraphen A

Phosphatidylserine (PS)
16:0 16:0 PS 49.71±19.46 91.77±40.11 86.48±27.83 0.202178 0.133616 1.000000 1.000000 0.885 0.799
16:0 18:2 PS 402.35±94.31 330.43±199.23 419.17±153.36 0.607921 0.877173 1.000000 1.000000 -0.284 0.059
16:0 20:3 PS, 18:1 18:2 PS 729.21±181.59 432.57±281.26 656.49±296.05 0.202504 0.731185 1.000000 1.000000 -0.753 -0.152
16:0 20:4 PS 271.54±54.51 276.47±224.96 365.93±159.65 0.973495 0.416058 1.000000 1.000000 0.026 0.430
16:0 22:6 PS 248.20±87.76 249.86±185.07 268.11±95.09 0.989547 0.790307 1.000000 1.000000 0.010 0.111
18:0 18:1 PS 1003.80±275.01 542.50±292.46 488.46±177.84 0.097034 0.030274 1.000000 1.000000 -0.888 -1.039
18:0 20:2 PS 395.79±67.84 228.58±107.80 183.13±20.74 0.094620 0.005188 1.000000 0.513156 -0.792 -1.112
18:0 22:5 PS 1049.85±109.94 764.96±502.66 566.11±110.52 0.430640 0.003291 1.000000 0.342243 -0.457 -0.891
18:0 22:6 PS, 20:2 20:4 PS 3040.31±407.08 2053.23±1264.91 1555.42±239.81 0.307414 0.001991 1.000000 0.223047 -0.566 -0.967
18:1 18:1 PS, 18:0 18:2 PS 1329.13±264.22 640.52±361.86 670.65±197.64 0.056837 0.013070 1.000000 1.000000 -1.053 -0.987
18:1 20:4 PS, 18:0 20:5 PS 755.60±64.14 1047.70±706.97 1038.00±322.00 0.548803 0.266329 1.000000 1.000000 0.472 0.458
18:1 22:6 PS 411.16±59.44 795.01±435.24 676.60±115.15 0.265282 0.039797 1.000000 1.000000 0.951 0.719
Phosphatidic acid (PA)
16:0 16:0 PA 19.56±13.97 17.07±10.50 14.45±0.89 0.798690 0.517809 1.000000 1.000000 -0.196 -0.437
16:0 18:1 PA 32.88±20.65 32.41±18.84 17.43±7.21 0.976040 0.239222 1.000000 1.000000 -0.021 -0.916
16:0 18:2 PA 17.29±7.25 8.96±0.18 8.62±4.64 0.184750 0.168513 1.000000 1.000000 -0.949 -1.004
16:0 20:3 PA 9.68±4.77 10.03±8.90 5.99±1.56 0.958634 0.463828 1.000000 1.000000 0.051 -0.693
16:0 20:4 PA 17.43±2.57 14.20±9.75 13.84±3.65 0.632087 0.290376 1.000000 1.000000 -0.296 -0.333
16:0 22:4 PA 8.36±5.11 2.69±4.43 1.69±0.86 0.179393 0.076512 1.000000 1.000000 -1.638 -2.309
16:0 22:6 PA 334.94±100.01 48.31±38.41 21.96±10.88 0.006083 0.007678 0.626550 0.744748 -2.794 -3.931
18:0 18:1 PA 22.12±5.84 16.13±10.68 16.55±2.05 0.446274 0.163634 1.000000 1.000000 -0.456 -0.418
18:0 18:2 PA 40.69±15.69 19.11±13.44 14.62±1.64 0.110047 0.043915 1.000000 1.000000 -1.090 -1.477
18:0 20:2 PA 42.95±26.46 10.41±4.09 27.78±18.24 0.163047 0.464960 1.000000 1.000000 -2.045 -0.629
18:0 20:4 PA 165.51±24.19 102.26±60.82 72.05±20.79 0.205899 0.003088 1.000000 0.324194 -0.695 -1.200
18:0 20:5 PA 8.33±4.58 1.82±0.88 2.58±0.33 0.126623 0.160536 1.000000 1.000000 -2.192 -1.693
18:0 22:5 PA 159.65±46.21 31.16±20.22 17.69±3.15 0.006336 0.008332 0.639964 0.791513 -2.357 -3.174
18:0 22:6 PA 578.15±231.02 99.73±45.11 76.33±1.64 0.022753 0.022511 1.000000 1.000000 -2.535 -2.921
18:1 18:2 PA 7.99±7.26 18.70±15.51 10.73±6.09 0.377838 0.704392 1.000000 1.000000 1.227 0.425
18:1 20:3 PA 9.87±5.44 19.11±10.47 15.95±7.23 0.263489 0.296354 1.000000 1.000000 0.952 0.692
18:1 20:4 PA 13.49±7.42 39.61±27.98 29.98±9.22 0.243901 0.066850 1.000000 1.000000 1.554 1.152
18:1 22:6 PA 1084.59±337.31 295.80±75.73 232.78±40.75 0.015397 0.014032 1.000000 1.000000 -1.874 -2.220

Average±SD (relative abundance) p value (t test) Corrected p value (FDR adjusted) Log (fold change)

Appendix Table 2. Lipidomics of HCV-infected hepatocytes treated with ACC inhibitors. Infected Huh7.5.1 cells were treated with DMSO, 1 μM K1, or 100 nM soraphen A for 3 days. 
Indicated lipids were quantified by mass spectrometry and mean values were used to determine significant changes in K1 and soraphen A-treated cells compared to DMSO control. The column 
“p value” was determined by student’s t test and p<0.05 (bolded) was considered significant. The column “corrected p value” was adjusted for false discovery rate (FDR). Because FDR is more 
stringent than a t test, p<0.1 (bolded) was considered significant. Positive and negative values in the column “Log (fold change)” indicate an increase or decrease in the lipid, respectively. 
Results are the mean ± SEM of 3-4 independent experiments.           
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Phosphatidylethanolamine (PE)
16:0 16:0 PE 0.39±0.13 0.16±0.07 0.12±0.03 0.036451 0.025404 1.000000 1.000000 -1.278 -1.645
16:0 18:0 PE 0.23±0.07 0.12±0.07 0.10±0.03 0.095342 0.019541 1.000000 1.000000 -0.969 -1.224
16:0 18:1 PE 2.46±0.32 1.45±0.78 1.18±0.31 0.142141 0.001146 1.000000 0.129508 -0.765 -1.061
16:0 18:2 PE 4.37±1.33 3.59±2.12 3.81±1.13 0.612640 0.542886 1.000000 1.000000 -0.283 -0.199
16:0 20:3 PE, 18:1 18:2 PE 3.93±1.42 3.08±1.94 3.82±1.46 0.561254 0.919111 1.000000 1.000000 -0.352 -0.040
16:0 20:4 PE 3.44±0.65 2.32±1.61 3.17±1.24 0.353082 0.723740 1.000000 1.000000 -0.567 -0.115
16:0 22:6 PE 3.23±0.76 2.66±1.86 3.32±1.23 0.653674 0.910816 1.000000 1.000000 -0.284 0.037
18:0 18:1 PE 0.86±0.17 0.68±0.40 0.47±0.09 0.526964 0.012904 1.000000 1.000000 -0.336 -0.860
18:1 18:1 PE, 18:0 18:2 PE 3.06±0.82 3.24±1.91 2.74±0.71 0.887555 0.582379 1.000000 1.000000 0.084 -0.157
18:1 20:3 PE, 18:0 20:4 PE 5.88±1.06 4.39±2.43 4.02±1.09 0.404677 0.050434 1.000000 1.000000 -0.421 -0.548
18:1 20:4 PE, 18:0 20:5 PE 4.25±0.98 4.93±3.46 5.51±2.05 0.771312 0.324530 1.000000 1.000000 0.213 0.375
Phosphatidylcholine (PC)
16:0 16:0 PC 102.20±5.97 36.45±23.05 26.89±6.02 0.033288 0.000002 1.000000 0.000250 -1.488 -1.926
16:0 18:0 PC 31.58±0.90 10.76±7.41 7.00±2.08 0.038406 0.000023 1.000000 0.002759 -1.553 -2.173
16:0 18:1 PC 320.84±1.81 106.08±77.31 78.24±22.22 0.040537 0.000195 1.000000 0.022981 -1.597 -2.036
16:0 18:2 PC 196.41±17.84 137.13±93.06 116.79±28.58 0.384970 0.005132 1.000000 0.513156 -0.518 -0.750
16:0 20:3 PC 91.81±14.73 49.41±34.05 47.30±12.67 0.151887 0.003982 1.000000 0.410105 -0.894 -0.957
16:0 20:4 PC 63.14±4.93 40.45±28.02 47.70±15.93 0.294961 0.146204 1.000000 1.000000 -0.642 -0.405
16:0 22:6 PC 29.05±2.15 20.50±16.73 18.77±6.09 0.469672 0.036769 1.000000 1.000000 -0.503 -0.631
18:0 18:1 PC 45.74±2.43 17.58±13.00 11.24±3.37 0.060773 0.000007 1.000000 0.000841 -1.379 -2.024
18:1 18:1 PC 96.16±3.64 66.50±50.36 45.89±11.99 0.415027 0.002140 1.000000 0.233270 -0.532 -1.067
18:1 20:3 PC 36.23±3.79 27.98±21.70 22.33±4.98 0.578989 0.005149 1.000000 0.513156 -0.373 -0.698
18:1 20:4 PC 26.02±0.54 28.91±22.54 25.97±8.11 0.844969 0.990615 1.000000 1.000000 0.152 -0.003
Diacylglycerol (DAG)
16:0 18:1 DAG 2.32±0.19 0.26±0.03 0.20±0.06 0.000143 0.000054 0.017416 0.006436 -3.142 -3.549
16:0 18:2 DAG 0.75±0.09 0.12±0.02 0.08±0.04 0.000501 0.000215 0.058570 0.025206 -2.642 -3.165
18:1 18:2 DAG 0.66±0.09 0.26±0.08 0.22±0.08 0.002285 0.000401 0.255877 0.045726 -1.351 -1.557
18:2 18:2 DAG 0.17±0.02 0.08±0.04 0.10±0.04 0.029427 0.034102 1.000000 1.000000 -1.116 -0.735
Lysophosphatidic acid (LPA)
16:0 LPA 0.49±0.25 0.71±0.10 0.77±0.01 0.282166 0.203665 1.000000 1.000000 0.518 0.636
16:1 LPA 0.88±0.15 0.81±0.11 1.07±0.38 0.498958 0.490176 1.000000 1.000000 -0.123 0.274
18:0 LPA 8.59±0.76 5.74±0.89 6.38±1.29 0.011156 0.076047 1.000000 1.000000 -0.582 -0.429
18:1 LPA 0.88±0.34 1.94±0.26 2.10±0.27 0.014968 0.009320 1.000000 0.876099 1.142 1.262
18:2 LPA 0.44±0.19 0.52±0.09 0.65±0.15 0.532144 0.162008 1.000000 1.000000 0.225 0.565
20:4 LPA 1.37±0.38 2.02±0.38 1.99±0.35 0.081698 0.078755 1.000000 1.000000 0.559 0.537
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Sphingomyelin (SM)
SM 13:0 6.70±0.81 2.20±0.51 3.86±1.13 0.000301 0.008078 0.035866 0.775466 -1.608 -0.794
SM 13:1 1.15±0.14 0.27±0.21 0.48±0.32 0.006176 0.016830 0.629968 1.000000 -2.114 -1.264
SM 14:0 12.08±1.47 14.20±0.75 11.20±2.33 0.059186 0.547937 1.000000 1.000000 0.233 -0.110
SM 14:1 0.68±0.26 1.19±0.17 0.85±0.37 0.025966 0.483112 1.000000 1.000000 0.806 0.324
SM 15:0 17.79±4.72 16.71±1.63 13.46±2.53 0.694089 0.171895 1.000000 1.000000 -0.090 -0.403
SM 15:1 0.52±0.32 0.72±0.21 1.06±0.67 0.364432 0.215315 1.000000 1.000000 0.472 1.027
SM 16:0 284.22±61.23 210.69±41.84 177.57±27.60 0.118086 0.031748 1.000000 1.000000 -0.432 -0.679
SM 16:1 32.30±7.14 27.34±1.44 31.55±6.38 0.260248 0.879598 1.000000 1.000000 -0.241 -0.034
SM 17:0 11.05±1.86 6.38±1.41 7.03±0.74 0.012996 0.016602 1.000000 1.000000 -0.793 -0.653
SM 17:1 2.74±0.76 2.74±0.06 2.96±0.40 0.996469 0.639693 1.000000 1.000000 -0.001 0.109
SM 18:0 17.18±2.23 6.42±1.68 9.74±0.81 0.000777 0.004029 0.089300 0.410988 -1.421 -0.819
SM 18:1 7.78±1.01 4.43±0.48 7.49±1.86 0.003066 0.792757 0.334196 1.000000 -0.812 -0.056
SM 19:0 1.58±0.20 0.78±0.36 1.78±0.37 0.039957 0.395339 1.000000 1.000000 -1.031 0.170
SM 19:1 0.47±0.20 0.24±0.03 0.63±0.15 0.105426 0.251236 1.000000 1.000000 -0.966 0.427
SM 20:0 7.52±1.23 3.17±1.24 8.81±0.42 0.007897 0.123190 0.789704 1.000000 -1.247 0.229
SM 20:1 2.76±0.25 1.17±0.09 3.48±0.47 0.000310 0.046283 0.036544 1.000000 -1.232 0.336
SM 21:0 1.87±0.37 0.99±0.43 2.77±0.38 0.047068 0.014477 1.000000 1.000000 -0.918 0.565
SM 21:1 0.73±0.14 0.47±0.15 1.00±0.21 0.073739 0.080126 1.000000 1.000000 -0.643 0.454
SM 22:0 10.66±1.14 5.03±2.11 13.44±1.83 0.026818 0.049042 1.000000 1.000000 -1.083 0.334
SM 22:1 9.09±0.98 4.99±1.17 12.89±1.11 0.008351 0.002260 0.826705 0.244048 -0.865 0.503
SM 22:2 0.71±0.35 0.47±0.13 1.41±0.40 0.268133 0.039734 1.000000 1.000000 -0.607 0.986
SM 23:0 3.30±0.30 1.75±0.78 3.79±0.98 0.063349 0.396060 1.000000 1.000000 -0.915 0.201
SM 23:1 4.22±0.99 2.30±0.74 6.72±0.88 0.032752 0.009610 1.000000 0.893712 -0.875 0.671
SM 24:0 9.26±1.55 5.46±1.77 7.54±0.83 0.040821 0.112845 1.000000 1.000000 -0.761 -0.296
SM 24:1 22.13±1.57 11.95±2.91 23.34±2.44 0.013193 0.443613 1.000000 1.000000 -0.889 0.076
SM 24:2 6.69±0.56 5.22±0.52 8.69±1.14 0.017856 0.029834 1.000000 1.000000 -0.358 0.379
SM 24:3 0.56±0.14 0.59±0.12 1.02±0.11 0.777744 0.002429 1.000000 0.259912 0.074 0.865
SM 25:0 0.65±0.09 0.46±0.14 0.67±0.15 0.120852 0.885684 1.000000 1.000000 -0.493 0.029
SM 25:1 1.28±0.11 0.96±0.16 1.43±0.48 0.049447 0.579077 1.000000 1.000000 -0.404 0.160
SM 26:0 0.21±0.11 0.14±0.05 0.15±0.06 0.381259 0.426109 1.000000 1.000000 -0.576 -0.502
SM 26:1 0.60±0.14 0.40±0.07 0.52±0.11 0.113538 0.449407 1.000000 1.000000 -0.601 -0.214
SM 26:2 0.35±0.18 0.42±0.04 0.49±0.24 0.509427 0.389852 1.000000 1.000000 0.262 0.489
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Glucosylceramide (GlcCer)
GlcCer 16:0 166.12±39.31 7.56±2.69 154.12±70.17 0.003839 0.778191 0.406884 1.000000 -4.458 -0.108
GlcCer 18:0 15.22±3.42 0.71±0.27 15.39±8.69 0.003272 0.971997 0.353400 1.000000 -4.426 0.016
GlcCer 20:0 3.71±0.77 0.16±0.03 3.36±2.51 0.002681 0.801857 0.297637 1.000000 -4.575 -0.145
GlcCer 21:1 0.69±0.09 0.04±0.01 0.49±0.18 0.000675 0.105091 0.078310 1.000000 -4.245 -0.500
GlcCer 21:2 3.41±1.28 0.13±0.02 1.69±0.85 0.014272 0.073064 1.000000 1.000000 -4.689 -1.011
GlcCer 22:0 3.02±1.15 0.12±0.02 2.07±1.27 0.015058 0.311919 1.000000 1.000000 -4.696 -0.545
GlcCer 22:1 0.55±0.18 0.04±0.00 0.40±0.25 0.010844 0.370702 1.000000 1.000000 -3.765 -0.457
GlcCer 23:0 1.03±0.25 0.05±0.02 0.70±0.46 0.004494 0.277920 0.471912 1.000000 -4.269 -0.549
GlcCer 23:1 0.78±0.21 0.04±0.01 0.48±0.28 0.005393 0.133275 0.560847 1.000000 -4.147 -0.719
GlcCer 24:0 3.12±1.01 0.14±0.02 1.38±0.49 0.009664 0.032506 0.937428 1.000000 -4.530 -1.177
GlcCer 24:1 2.32±0.89 0.12±0.01 1.23±0.45 0.015819 0.088016 1.000000 1.000000 -4.305 -0.913
Dihydroceramide (DCer)
DCer 16:0 33.97±5.41 28.47±7.47 23.20±13.84 0.348048 0.222329 1.000000 1.000000 -0.255 -0.550
DCer 18:0 3.74±0.88 3.46±1.19 3.16±0.66 0.744985 0.331663 1.000000 1.000000 -0.115 -0.246
DCer 20:0 5.64±1.58 4.56±0.95 2.99±2.11 0.315644 0.095184 1.000000 1.000000 -0.306 -0.916
DCer 22:0 3.58±0.92 3.02±1.39 2.27±0.45 0.588981 0.058173 1.000000 1.000000 -0.242 -0.657
DCer 24:0 5.00±0.70 4.86±0.62 4.27±1.97 0.787436 0.524919 1.000000 1.000000 -0.042 -0.228
DCer 24:1 7.81±1.59 6.95±2.18 4.72±2.39 0.600409 0.082206 1.000000 1.000000 -0.167 -0.725
Ceramide (Cer)
Cer 16:0 270.73±39.69 119.80±7.65 133.62±17.98 0.003651 0.002803 0.390629 0.297066 -1.176 -1.019
Cer 18:0 35.05±4.06 10.94±0.67 15.35±3.16 0.000969 0.000344 0.110420 0.039885 -1.680 -1.191
Cer 18:1 6.08±1.16 2.78±0.22 4.74±1.30 0.009031 0.176240 0.885021 1.000000 -1.128 -0.359
Cer 20:0 24.67±6.52 7.59±1.32 17.34±8.32 0.011315 0.217307 1.000000 1.000000 -1.700 -0.509
Cer 20:1 2.67±0.89 1.03±0.44 1.98±0.60 0.027171 0.247543 1.000000 1.000000 -1.379 -0.437
Cer 20:2 4.00±0.95 1.28±0.09 3.86±2.03 0.009895 0.910702 0.949943 1.000000 -1.647 -0.049
Cer 22:0 33.90±4.65 12.37±3.69 20.34±3.48 0.001082 0.004177 0.122302 0.421879 -1.455 -0.737
Cer 22:1 4.39±0.23 2.00±0.27 3.16±0.36 0.000247 0.002038 0.029835 0.226179 -1.136 -0.476
Cer 23:0 31.70±11.78 10.85±3.71 29.19±10.96 0.032164 0.766056 1.000000 1.000000 -1.547 -0.119
Cer 24:0 71.75±8.25 20.60±3.62 26.81±4.21 0.000251 0.000362 0.030143 0.041607 -1.800 -1.420
Cer 24:1 76.85±10.45 40.71±7.17 41.53±7.54 0.002901 0.002095 0.319120 0.230429 -0.916 -0.888


