
Simulated Data Sets

for the Megamaser Cosmology Project

Jiwon (Jesse) Han

College of Arts and Sciences

University of Virginia

A thesis submitted for partial completion of the requirements of

B.S. Astronomy-Physics

May 2018



Abstract

The Megamaser Cosmology Project (MCP) is an NRAO Key Science

Project to measure the Hubble Constant, H0, by determining geometric

distances to circumnuclear 22 GHz H2O megamasers in galaxies well into

the Hubble flow. Two independent measurements from VLBI mapping

and single-dish spectral monitoring are fitted to a 3 dimensional thin disk

model to determine the distance to the megamaser host galaxy. This the-

sis contributes to the MCP by simulating VLBI data sets through which

numerous studies on systematic errors and optimizing observations can be

accomplished. As a sample analysis, we investigate the relationship be-

tween the a priori uncertainties from the observations and the a posteriori

distance uncertainty. In particular, we span the observational error space

from (δν, δA) = (0.2mJy, 0.05km/s/yr) to (2.0mJy, 0.25km/s/yr), where

δν represents the VLBI mapping noise and δA is the uncertainty in accel-

eration. The nominal value (δν, δA) = (1.5mJy, 0.2km/s/yr) is accepted

as the current position of the MCP in the error space; the simulated data

set using this value yields a 14% a posteriori distance uncertainty. To

achieve a 10% distance uncertainty instead, we conclude that an accelera-

tion uncertainty improvement of 0.15 km/s/yr is needed from the current

error values.
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Chapter 1

Overview of the Megamaser
Cosmology Project

The Megamaser Cosmology Project (MCP) aims to determine the Hubble constant

(H0), a measure of the rate of expansion of the universe, down to the few percent

level to improve the extragalactic distance scale and to constrain the nature of dark

energy. We achieve this goal by measuring distances to galaxies deep into the Hubble

flow with a method that is independent of the cosmic distance ladder. Instead, the

MCP searches for active galaxies that host 22 GHz H2O megamasers in the accretion

disk of the central black hole. The high rotational velocity of this disk generates three

distinct groups of masers in blue shifted, red shifted, and systemic velocities, which

allows us to determine the rotation curve of the disk and also the black hole mass.

Combined with independent acceleration measurements of the systemic masers, these

measurements yield the physical size of the disk, which can then be simply divided

by its angular size to yield the distance. In this chapter, we motivate the MCP by

introducing two scientific topics of interest: the Hubble constant and the MBH—σ

relation. Then, we proceed to describe the strategy of the MCP, and introduce the

need for a simulated data set.

1.1 The Hubble Constant

Despite its self-evident significance in cosmology, the Hubble constant remains

contested in its exact value. A recent measurement based on an updated cosmic

distance ladder by Riess et al. [10] reports H0 = 73.24 ± 1.74 km/s/Mpc, which

is at a 3.4σ tension with H0 = 67.31 ± 0.96 km/s/Mpc, a calculation based on

Cosmic Microwave Background (CMB) measurements by the Planck Collaboration

[3] under the standard cosmological model. An independent analysis of three multiply
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imaged quasar systems with measured gravitational time delays yield H0
∼= 71.9± 3

km/s/Mpc [1]. Thus, the need for an H0 measurement independent of the distance

ladder or a cosmological model is now evident more than ever. This is precisely the

goal of the MCP. While the exact measurement strategy of the MCP will be further

discussed in section 1.3, the single-step estimation of extragalactic distances of the

MCP provides an invaluable addition to the discussion on H0. The MCP has so far

determined H0 = 69.3 ± 4.2 km/s/Mpc from published observations of UGC 3789

[9], NGC 6264 [7], NGC 6323 [6], and NGC 5765b [4].

1.2 MBH—σ Relations

Since the observation targets of the MCP consist of active galaxies and, specifi-

cally, their central supermassive black holes (SMBH), another scientific interest is the

relation between SMBH masses and properties of the host galaxy. Such a relation

provides insight into the co-evolution of SMBHs and their host galaxies. For example,

Greene et al. [5] draws upon a wealth of black hole mass (MBH) measurements based

on megamaser observations to conclude that galaxy properties such as total stellar

mass, central mass density, and central velocity dispersion are not correlated tightly

with MBH . Such a study is possible because the megamaser disks are well within the

”gravitational sphere of influence,” thus allowing the observer to directly probe the

gravitational potential of the central black hole. Unlike distance measurements, which

require independent acceleration measurements, the MBH can be directly measured

with high precision from the rotation curve alone.

1.3 Strategy of the MCP

The MCP fully exploits the detection of 22 GHz H2O megamasers embedded in

the accretion disks of AGN that are deep in the Hubble flow (D > 50Mpc). Owing

to their fantastic intensities, narrow linewidths (δν ∼ 2km/s), and small angular size,

these masers can be resolved from one another with VLBI. Since these masers are

amplified within the disk material, maximum amplification occurs when the line of

sight is aligned with the radius of the disk. This configuration is termed as ”edge-on,”

while the orientation that is 90◦ offset is referred as ”face-on.” For an edge-on disk,

as depicted in figure 1.2(a), the masers are grouped into blue shifted, red shifted, and

systemic velocities, thus effectively delineating the rotation of the host accretion disk.

Figure 1.1 provides an example spectrum of an edge-on galaxy, UGC 3789.
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The distance to the galaxy is determined from two independent measurements

from VLBI mapping and single-dish spectral monitoring. From the VLBI map, we

can spatially resolve the masers to obtain the rotation curve of the accretion disk,

which is Keplerian. From spectral monitoring, we obtain the acceleration in the line-

of-sight velocity of the systemic masers. These two independent measurements are fed

into a Markov Chain Monte Carlo (MCMC) fitting code that imposes a 3-dimensional

thin disk model to the data. The disk model is described by 14 global parameters:

the mass, velocity, and position of the black hole; the inclination and position angle

of the disk with their respective first and second derivatives; the eccentricity of the

disk; the angle of periastron and its first derivative; and the peculiar velocity.

Figure 1.1: Triple-peaked velocity spectrum of UGC 3789 as presented in the first
MCP paper [8].

1.4 Need for a Simulated Data Set

The challenge in determining the Hubble constant is mainly that of reducing

systematic and random errors. The latter is obtained through many iterations of

carefully planned observations. The former is a significant challenge, however, re-

gardless of the measuring strategy. Simulated data can help to greatly improve and

better understand systematic errors. By generating a synthetic data set and simulat-

ing its observation, we can accurately assess the robustness of the measuring strategy

and also even discover unknown systematic errors that may have been glazed over by

comparing the observed values with the exactly known generated values. Fortunately,

the MCP is based on observations of systems with simple Keplerian dynamics that

are relatively simple to simulate within some reasonable physical assumptions. Thus,
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(a) (b)

Figure 1.2: (a) Edge-on view of a maser galaxy with nonzero position angle.
(b) Face-on view of a maser galaxy. Inner and outer radii marked light blue.

in this thesis, we simulate realistic observations motivated by physics, and thus pro-

vide the MCP collaboration with a means to assess systematic errors and to optimize

obserations. The simulation process can be broken down into four stages as summa-

rized in the flow chart in figure 1.3. An emphasis is made on constructing a modular

structure so that individual pieces can be easily updated or modified. For example,

we can probe the systematic errors that arise from different disk parametrization by

simply modifying the disk generation module while fixing all other parts.

Figure 1.3: Workflow of simulating a data set.
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Chapter 2

Simulating the Disk

There are three steps in simulating a realistic maser disk. The first step is to

recreate the global dynamics of the accretion disk accurately. In particular, the

rotation of the disk must be modeled to determine the line of sight velocities of the

individual maser features. To first order, the gravitational potential of the central

black hole dominates these velocities. Higher order effects from self-gravity, finite

disk thickness, or relativity may also be introduced as perturbations on the order of

a few percent. In this thesis, however, we keep such complications to minimum by

assuming a thin disk1 conforming to the Keplerian rotation curve defined by equation

2.1. Here, r0 is the dynamic center of the black hole and r is the coordinate-free

position vector.

v =

√
GM

|r− r0|
(2.1)

The second step is to properly distribute the masers within the rotating disk.

Under the assumption that the masers are scattered throughout the disk without a

preferential azimuthal angle, the observer would detect masers distributed along the

mid-line that is perpendicular to the line of sight, as illustrated in figure 1.2(a) and

1.2(b). As the final step, we assign observational properties to the masers. Specifi-

cally, the intensity and natural line width of each maser feature must be determined,

since those two quantities are what we measure in an observation.

2.1 Global Parameters

The fundamental global parameters that generate the disk dynamics are the fol-

lowing: the black hole mass, the inner and outer radius of the maser disk, the position

1”Thin” does not exclude the possibility position angle and inclination angle warping.
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and inclination angle of the disk, and the number of blue shifted, red shifted, and

systemic maser features to be simulated. For the purpose of simulating a generic

accretion disk, the poster child maser galaxy UGC 3789 provides a reference point

for these parameters. Table 2.1 compares the parameters used in the simulated disk

to that of UGC 3789.

Parameter UGC 3789 Simulated Disk
MBH 1.16× 107M� 107M�

Inner Radius 0.08 pc 0.1 pc
Outer Radius 0.30 pc 0.2 pc
Position Angle 221.5◦ 90◦

Inclination Angle 90.6◦ 90◦

Table 2.1: Global Parameters of UGC 3789 and the simulated disk.

2.2 Position Distribution

To best recreate the observed maser distribution, we explore a number of dif-

ferent regimes for the position distribution. For example, in the equidistant model,

the masers are placed evenly throughout the disk, while in the clustering model, we

generate clusters of masers throughout the disk within which masers are populated

randomly. Throughout the rest of this thesis, a uniform random distribution is used

to produce simulated data sets, while maintaining the interchangeability of the dis-

tribution scheme. In any given regime, an inner and outer radius is determined first

to recreate the pronounced boundaries in the maser distribution observed in actual

galaxies. In addition, we are also free to warp the inclination and position angle by

defining their derivatives, as shown in figure 2.1(b).

2.3 Feature Assignment

For an unsaturated maser, the pumping process dominates losses from stimulated

emission to maintain population inversion, generating an exponential amplification

along the gain path. Thus, the slightest change in position can result in a stark

contrast in amplitude; this results in a seemingly stochastic amplitude distribution.

However, once the maser saturates, equilibrium population inversion is no longer

maintained, and the amplification becomes linear with respect to the gain path and
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(a) (b)

Figure 2.1: (a) 3D map of a flat disk with distributed masers.
(b) 3D map of a disk with finite position angle curvature.

population size. Thus, an amplitude envelope is set under which random fluctuations

occur from unsaturated masers.

In the setting of an accretion disk, the maximum gain path is limited by velocity

coherence along the line of sight due to the rotation. Assuming a Keplerian veloc-

ity profile, we can calculate this maximum gain path, l(x), that preserves velocity

coherence within the limits of Doppler broadening δv, as described in figure 2.2 and

equation 2.2.

Figure 2.2: Maximum gain path dependence on impact parameter, x.

l(x) =

[
x

(
δv
GM

+
1

x

)
− x2

]1/2
(2.2)

7



Under this envelope, we randomly sample the individual amplitudes from an expo-

nential distribution. This choice also has the benefit that it recovers the pedestal-like

structure around groups of maser features observed in real data. In addition, to match

the observed spectra, we choose the natural line width to be 2 km/s. As a final step,

the velocity for all of the simulated masers are adjusted for the recession velocity

of the galaxy, which is calculated from the distance and Hubble constant. For the

purpose of simulating a data set, we are free to simply set the Hubble constant to

a nominal value, which can later provide a testament to the accuracy of the MCP

fitting code.
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Chapter 3

Generating the Data Cube

Any simulated physical object must be complemented by an accurate ”observa-

tion.” That is, the simulated data must be appropriately corrupted in a such a way

that reflects a realistic observation. Thus, in this chapter, we emulate a VLBI obser-

vation of the simulated, idealized maser disk. The observation can be broken down

into three steps. First, the simulated maser disk is converted into a signal data cube.

In actual VLBI data, this cube consists of right ascension, declination, and velocity

axes. Similarly, the data cube created here is assigned two position axes (x and y)

and a velocity axis. Second, a noise cube is separately generated to represent beam-

convolved Gaussian noise. By adding the signal cube to the noise cube, we obtain the

data cube that is analogous to reduced data from a VLBI observation, which we will

hereby refer to as the ”science cube.” The last step is then to glean the positionts of

the observed maser features from the science cube. This is accomplished by applying

a fitting code used in actual MCP observations to the science cube.

3.1 Creating the Signal Cube

The signal cube is generated by treating each maser as a perfect point source, con-

volved with the observing VLBI beam shape. In practice, this convolution amounts to

assigning each simulated maser feature a 3 dimensional Gaussian function parametrized

by the beam size and maser line width. Assuming that each axis is uncorrelated with

another, this function takes the form of equation 3.1.

Ae
−
[
(x−µx)2

2b2x
+

(y−µy)2

2b2y
+

(v−µv)2

2σ2v

]
(3.1)

9



Here, µx and µy are respectively the simulated positions of the maser, while bx and

by are the respective beam size in each axis. In general, the beam shape is elliptical

due to the asymmetric distribution of VLBI antennae that are scattered longer in the

East-West direction than North-South. To incorporate this asymmetry, by is set to

be three times wider than bx. Next, µv is the simulated line-of-sight velocity of the

maser, while σv is the natural line width of the maser. A corresponds to the physical

intensity of the maser. In practice, an intensity per velocity channel is generated,

which is then scaled by the total number of position pixels spanned by the beam to

yield the intensity per channel per position pixel. This brings us to the next step,

which is to construct a cube domain in which the masers can be placed in as described

by their corresponding 3D Gaussian.

There are two important criteria to consider when constructing the cube domain.

First, the channel spacing in each axis must satisfy the Nyquist Theorem to prevent

aliasing errors. In the case of the position axes, an additional condition is that the

boundaries must be wide enough to fully represent the beam shape. Then, the second

criterion is that the size of the cube must be computationally feasible. This turns out

to be a surprisingly strong condition, in particular due to the wide velocity range and

narrow line width of the maser features: vred,max−vblue,min
∼= 2000km/s, δv ∼= 2km/s.

For these reasons, we decide on a position axis channel spacing of 1/5 of the narrower

beam width, and a velocity axis channel spacing of half of the line width. This

results in roughly 2 × 107 vertex points to calculate per maser feature. Fortunately,

this computation time can be improved exponentially by creating a meshgrid of the

3D coordinates, contrary to iterating through three nested loops that are the x axis,

y axis, and v axis.

3.2 Creating the Noise Cube

Once the signal cube is created, the next step is to reconstruct the random obser-

vational noise present in VLBI images. To accomplish this, for each velocity channel,

we generate Gaussian random noise in each position pixel and convolve the image

with the beam shape. Here, similar to the issue of A as discussed in the previous

section, it is important to scale the Gaussian noise by the number of pixels covered

by the beam. This is crucial in scaling the noise and signal cubes to the desired

ratio later on. In addition, for consistency, the noise cube domain is created to have

the exact same dimensions as the signal cube. To convolve the random noise with

the beam, we take the Fourier transform of the Gaussian noise image and the beam
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(a) (b)

Figure 3.1: (a) A velocity channel slice of the beam convolved noise cube.
(b) A single maser signal added to beam convolved noise.

shape, multiply them element-wise in the Fourier space, and inverse Fourier trans-

form the resulting image back to position space. This is mathematically equivalent

to convolving the Gaussian noise image with the beam1, but computationally much

faster as it relies on parallel computation rather than a serial convolution algorithm.

Figure 3.1(b) shows the resulting beam-convolved gaussian noise added to a signal.

Once the noise cube is generated, the next step is to add the noise cube to the

signal cube, thus creating the science cube. By integrating over all positions, we can

obtain a spectrum that can be visually compared to observed spectra, as shown in

figure 3.3. By integrating over all velocity channels, we can also obtain a map of the

maser disk, as displayed in figure 3.2.

3.3 Beam-Fitting the Cube

The science cube created from the method outlined above can now be processed

exactly the same as a real VLBI data set. For each velocity channel, a 2 dimensional

Gaussian is fit to the position map with the amplitude and central position as the free

parameters. The standard deviation in each axis is fixed such that the fitting function

matches the beam shape. Once the fitting is performed for all velocity channels, a

maximum χ2 threshold is imposed to remove the low-quality fits that do not represent

an actual maser signal. Any fit that passes this threshold corresponds to a maser

1The convolution theorem.
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Figure 3.2: Position map of 40 maser features integrated over velocity.

Figure 3.3: Velocity spectrum of figure 3.2 with 2mJy noise per 1km/s channel.

detection. Finally, the fitted amplitude is divided by the measured RMS noise level

per velocity channel to obtain the signal-to-noise ratio for each maser detection. The

SNR is then used to estimate the uncertainty in position measurement as described

in equation 3.2.

σi =
bi

2× SNR
(i = x, y) (3.2)
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Chapter 4

Analysis

4.1 Spanning the Observational Error Space

As stated in the Introduction, the main goal of the MCP is to narrow the er-

ror constraint on the Hubble constant down to a few percent. This constraint is

determined from the a posteriori uncertainties from the MCP fitting code, which in-

evitably depend on the a priori uncertainties that are the observational errors. The

MCP strategy depends on two independent measurements, i.e. VLBI observations

and single-dish spectral monitoring, meaning that there are two independent obser-

vational errors that we can improve on. The first improvement is to reduce the RMS

noise in the VLBI map, which would reduce the uncertainty in the masers’ positions.

This improvement could be achieved, for example, by increasing the VLBI observing

time to enhance the signal to noise ratio. Independently, the acceleration uncertainties

could also be reduced to achieve our target total uncertainty on the Hubble constant,

and we must allocate finite resources to the two areas of improvement. Thus, an

understanding of how the a posteriori uncertainties depend on observational errors is

critical in optimizing observations.

The simulation process presented in this thesis provides an effective method to

explore the relationship between input observational error and the a posteriori error

from the fitting code. By simply adjusting the noise cube as described in Chapter 3,

we are free to set the mapping noise to the desired level while fixing or changing the

nominal acceleration uncertainty.

For the purpose of spanning the observational error space, we adopt the 2D fit-

ting code used by Braatz et al.[2] instead of the full 3D MCMC fitting code. This

substitution saves computation time, allowing us to explore a greater range of error

space. The main difference from the 3D fitting code is that the 2D fitting code as-

sumes a ”single-ring” model: the systemic masers originate from a single radius in
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the accretion disk, which is not uncommon for real galaxies. This feature can be ob-

servationally inferred from the position-velocity (PV) diagram as illustrated in figure

4.1(a). By extending the systemic line (marked green) in the PV diagram along its

slope, we can connect the line to the high velocity curves; the two points of contact

show the angular size of the ring from which the systemic features originate, and also

the rotational velocity of this ring.

(a) (b)

Figure 4.1: (a) Position-velocity (PV) diagram for a single-ring maser disk. (b) PV
diagram for a two-ring maser disk as a comparison. Each slope originates from a

different ring radius.

Based on the observational uncertainties reported by Braatz et al. [2], we span the

error space from (δν, δA) = (0.2mJy, 0.05km/s/yr) to (2.0mJy, 0.25km/s/yr), where

δν represents the noise level per channel and δA is the uncertainty in acceleration.

The nominal value (δν, δA) = (1.5mJy, 0.2km/s/yr) is used as the current position

of the MCP in error space. A simulated data set from this error value yields an a

posteriori distance uncertainty of 14%.

Figures 4.2, 4.3(a), and 4.3(b) summarize the results from this analysis from which

we can draw a number of notable conclusions. For example, suppose that our goal is

to reduce the distance uncertainty to 10% for a single galaxy1 from the current value

of 14%. How much improvement is required in either δν or δA to achieve this goal?

Following the δA isocurve in figure 4.3(a), down from the current point marked in

green, we see that even at 0.25 mJy, which is 6 times lower than the current value,

δD remains at approximately 12%. On the other hand, following the δν isocurve

in figure 4.3(b), a factor of 4 improvement in δA lowers δD down to approximately

1The total uncertainty on MCP distance measurements scale by the square root of the number
of galaxies observed
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Figure 4.2: Various a posteriori uncertainties in distance generated from different
points in the observational error space. The z-axis has been inverted, so the highest

point indicates the lowest error in distance.

(a) (b)

Figure 4.3: (a) RMS Noise cross-section of figure 4.2. (b) δA cross-section of figure
4.2. Green indicates the current uncertainty level in both plots.

10%. Thus, future observing strategies should be focused on improving δA in order

to achieve a lower δD. A similar point can be made by observing the overall scatter

in the y axis in figures 4.3(a) and 4.3(b). While the former shows a clear widening

in δD as the x axis decreases, the latter shows a less dramatic change. Thus, for

improvements in δν to take greater effect on δD, δA must be reduced first to a lower

isocurve in figure 4.3(a).
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4.2 Future Projects

Exploring the a priori uncertainty space is only one of many projects that can be

accomplished with simulated data sets. For example, the method described in the

previous section can easily be applied to other parameter spaces such as the warping

parameter, number of maser features, black hole mass, and even the distance to the

galaxy. Understanding the role of such parameters in determining the a posteriori

distance uncertainty would provide an invaluable tool to maximize the efficiency in

allocating MCP resources.

Independent of optimizing observations, another important component of the

MCP method that can be thoroughly studied with simulated data sets is the 3D

MCMC fitting code. For example, different MC sampling algorithms can show dis-

tinct converging characteristics in both efficiency and effectiveness. In terms of ef-

ficiency, the convergence times of different algorithms can be compared; in terms of

effectiveness, we can examine the issue of the fitting code reporting undesired local

minima as the converged estimate.
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Chapter 5

Conclusion and Summary

In this thesis, we presented a method to simulate data sets of maser hosting accre-

tion disks for the Megamaser Cosmology Project. This method could be broken down

into two steps, the first of which is to simulate the disk itself, and the second step to

simulate the observation of the disk. In simulating the disk, we made an assumption

that the gravity of the central black hole would dominate the disk dynamics to first

order, which is also seen in observations of actual maser galaxies. In addition, the

intensities of individual masers were randomly sampled from an exponential distribu-

tion to reflect the stochastic nature of maser amplification, under an envelope defined

by the maximum gain path set by the disk geometry and velocity coherence. Once all

of the physical properties of the disk had been generated, we constructed a data cube

with two positional axes and one velocity axis to contain the disk. To incorporate

noise in VLBI mapping, we added a beam-convolved Gaussian noise to the data cube.

From this point on, we could process the data cube with the same tools used in real

MCP observations, and thus produce a simulated data set for the fitting code.

As an immediate application of the simulated data, we investigated the rela-

tionship between the a priori uncertainties in the fitting code and the a posteri-

ori distance uncertainty. In particular, we spanned the observational uncertainty

space in δA, the acceleration uncertainty, and δν, the VLBI mapping noise. As

expected, a decrease in either uncertainty led to a monotonic decrease in the a pos-

teriori distance uncertainty. The vertex in the error space with lowest uncertainty,

(δA, δν) = (0.05km/s/yr, 0.2mJy), yielded a distance error of 4%. A more interest-

ing conclusion could be drawn from comparing the gradient in each axis from the

current uncertainty level of the MCP, defined by the observations of UGC 3789, at

(δA, δν) = (0.2km/s/yr, 1.5mJy) and δD = 14%. A steeper decrease in distance

uncertainty for the δA axis was observed; in particular, to obtain the benchmark
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distance uncertainty of 10%, a δA improvement to 0.05km/s/yr was enough, while

δν required an improvement beyond the error range that we explored in this thesis.

Thus, we concluded that a strategic improvement of the acceleration measurements

would greater benefit the MCP than reducing the VLBI mapping noise.
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