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Abstract

Intelligent Transportation System is a major application field for Cyber-Physical Sys-

tems (CPS). Future public transportation system will be featured by Electric Vehicles

(EVs). However, due to battery capacity limit, the driving range of an EV is limited.

To fulfill metropolitan transit demands, public transportation EVs are expected to

be continuously operable without recharging downtime. Although there have been

many previous mature works on plug-in cable charging systems, EVs must stop and

get plugged in the charging points of the charging stations to get recharged, which

wastes time and becomes an obstacle for the continuous operability of public trans-

portation EVs.

Wireless Power Transfer (WPT) techniques that charge an EV when it is tem-

porarily parked (stationary wireless charger) and in motion (dynamic wireless charger)

is a solution. The key contribution of this dissertation is building a hybrid WPT

charging system composed of stationary and dynamic wireless chargers to support

the charging demands of a metropolitan-scale group of public transportation EVs.

The designed methodologies for building the hybrid WPT charging system consists

of (1) a stationary wireless charger deployment approach that utilizes spatial and tem-

poral analysis of passenger appearance and a generic traffic model to both maximize

the taxicabs’ opportunity of picking up passengers at the chargers and support the

taxicabs’ continuous operability on roads with the minimal deployment cost. (2) a

dynamic wireless charger deployment approach that utilizes categorization and clus-

tering of traffic flow attributes and a generic traffic model to support the continuous

operability of electric vehicles on roads with the minimal deployment cost; and (3)

a taxicab dispatching and charging approach that utilizes customized selection and

training of suitable historical passenger demand data and charging optimization to

minimize the taxicab’s number of missed potential passengers due to charging. By



saying suitable historical data, we mean the data that are under the influence of

random factors (e.g., weather, holiday) similar to current passenger demand.

Through simulation based on a metropolitan-scale mobility dataset of public trans-

portation vehicles, we demonstrate that our proposed methodologies for developing

the hybrid WPT charging system can better serve public transportation EVs in terms

of continuous operability, electricity utilization efficiency, and service efficiency.
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Contents

Contents v

List of Figures ix

List of Tables x

Acknowledgements xi

1 Introduction 1

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Proposed Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Dataset Description 11

2.1 Wireless Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Large-scale Mobility Dataset of Public Transportation Vehicles . . . . 13

2.3 Simulator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 System Model and Assumptions . . . . . . . . . . . . . . . . . . . . . 15

3 Deployment of Stationary Wireless Chargers 18

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Building Functionality and Passenger Appearance . . . . . . . 23

3.2.3 Frequency of Passenger Appearance . . . . . . . . . . . . . . . 26

3.2.4 Idle Trip Time & Taxicab Traffic . . . . . . . . . . . . . . . . 28

3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 System Design of PickaChu . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Framework of PickaChu . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Measuring Passenger Appearance . . . . . . . . . . . . . . . . 32

3.3.3.1 Building Functionality . . . . . . . . . . . . . . . . . 33

3.3.3.2 Frequency of Passenger Appearance . . . . . . . . . . 34

3.3.3.3 Likelihood of Passenger Appearance . . . . . . . . . 36

3.3.4 Supporting Continuous Operability . . . . . . . . . . . . . . . 38

3.3.5 Describing Drivers’ Routing Choice . . . . . . . . . . . . . . . 40

3.3.6 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 42

3.3.7 Taxicab Dispatching . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Comparison Methods . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Validation of Likelihood of Passenger Appearance . . . . . . . 51

3.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.4.1 Ratio of Each Operation Phase . . . . . . . . . . . . 52

3.4.4.2 SoC Maintenance of Taxicabs . . . . . . . . . . . . . 56

3.4.4.3 Overall Energy Supply Overhead . . . . . . . . . . . 57

3.4.4.4 Service Performance . . . . . . . . . . . . . . . . . . 58

3.4.4.5 Effectiveness of Components . . . . . . . . . . . . . . 60

3.4.4.6 Impact of the Number of Chargers . . . . . . . . . . 62

ii



3.4.4.7 Performance Evaluation on Multiple Days . . . . . . 63

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Deployment of Dynamic Wireless Chargers 67

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.0.1 Vehicle Velocity at Charging Lanes Matters . . . . . 69

4.1.0.2 Vehicle Visit Frequency and Multi-source Vehicle Traf-

fic Matter . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 System Design of CatCharger . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Vehicle Mobility Normalization . . . . . . . . . . . . . . . . . 79

4.3.3 Charging Lane Location Candidate Extraction . . . . . . . . . 80

4.3.3.1 Categorization of Original Mobility Data . . . . . . . 81

4.3.3.2 Clustering of Landmarks . . . . . . . . . . . . . . . . 82

4.3.3.3 Extracting Top Ranked Landmarks from Clusters . . 84

4.3.4 Charging Lane Location Determination . . . . . . . . . . . . . 85

4.3.4.1 Inferring Expected Residual Energy . . . . . . . . . . 85

4.3.4.2 Formulating Optimization Problem . . . . . . . . . . 87

4.3.4.3 Objective Transformation and Normalization . . . . 90

4.3.4.4 Solution Algorithm . . . . . . . . . . . . . . . . . . . 90

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.2 Validation of The KDE Based Traffic Model . . . . . . . . . . 94

4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.3.1 Average Ratio of Operable Vehicles . . . . . . . . . . 96

4.4.3.2 Average Residual Energy of Vehicles . . . . . . . . . 98

iii



4.4.3.3 Average Number of Charges of Vehicles . . . . . . . 99

4.4.3.4 Performance in Distributing Energy Supply Overhead 99

4.4.3.5 Impact of Variance of Vehicle Passing Speed and Visit

Frequency . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.3.6 Performance Evaluation on Multiple Days . . . . . . 103

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Dispatching and Charging Approach for Electric Taxicabs 107

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1.1 Suitability of Historical Data for Passenger Demand

Inference . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1.2 Variance of Taxicab Passenger Demand . . . . . . . 116

5.2.1.3 Charging Time Must Be Considered in Taxicab Dis-

patching . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 System Design of CD-Guide . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 Framework of CD-Guide . . . . . . . . . . . . . . . . . . . . . 120

5.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.3 Taxicab Passenger Demand Inference . . . . . . . . . . . . . . 122

5.3.3.1 Extracting Suitable Historical Data . . . . . . . . . . 123

5.3.3.2 Inference Model of Taxicab Passenger Demand . . . 124

5.3.3.3 Maximum Predictability of Taxicab Passenger Demand125

5.3.4 Optimization of Taxicab Dispatching and Charging . . . . . . 127

5.3.4.1 Determination of Taxicab Service Ability . . . . . . . 127

5.3.4.2 Optimization Models . . . . . . . . . . . . . . . . . . 129

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 138

iv



5.4.1 Comparison Methods . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.2 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . 139

5.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.3.1 Passenger Demand Inference sMAPE . . . . . . . . . 142

5.4.3.2 The Number of Served Passengers . . . . . . . . . . 144

5.4.3.3 Taxicab SoC . . . . . . . . . . . . . . . . . . . . . . 146

5.4.3.4 Performance Evaluation on Multiple Days . . . . . . 148

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Related Work 151

6.1 Wireless Power Transfer for EVs . . . . . . . . . . . . . . . . . . . . . 151

6.2 Deployment of Plug-in Chargers . . . . . . . . . . . . . . . . . . . . . 152

6.3 Optimal Deployment of Wireless Chargers for EVs. . . . . . . . . . . 154

6.4 Taxicab Passenger Demand Inference . . . . . . . . . . . . . . . . . . 155

6.5 Prediction of Traffic Demand . . . . . . . . . . . . . . . . . . . . . . 156

6.6 Taxicab Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Conclusions 158

7.1 Summary of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

v



List of Figures

1.1 Stationary wireless charger for EVs. . . . . . . . . . . . . . . . . . . . 2

1.2 Dynamic wireless charger for EVs. . . . . . . . . . . . . . . . . . . . . 2

2.1 SUMO simulation platform . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Gridded road map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Heat map of passenger pick-ups. . . . . . . . . . . . . . . . . . . . . . 24

3.3 Distribution of buildings. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Num. of passengers for each building class. . . . . . . . . . . . . . . . 25

3.5 Average number of passengers per hour. . . . . . . . . . . . . . . . . 25

3.6 Frequency comparison of passenger requests’ appearance. . . . . . . . 26

3.7 Passenger time series of regions. . . . . . . . . . . . . . . . . . . . . . 26

3.8 Periodogram of the passenger time series. . . . . . . . . . . . . . . . . 28

3.9 Distribution of duration of idle trips. . . . . . . . . . . . . . . . . . . 28

3.10 Traveling trip lengths & KDE estimation. . . . . . . . . . . . . . . . 29

3.11 Framework of PickaChu. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12 EV drivers’ routing choice behavior. . . . . . . . . . . . . . . . . . . . 40

3.13 Comparison of deployed chargers. . . . . . . . . . . . . . . . . . . . . 49

3.14 Distribution of error ratios in all regions. . . . . . . . . . . . . . . . . 52

3.15 Ratio of each operation phase. . . . . . . . . . . . . . . . . . . . . . . 53

3.16 Ratio of each idle phase ratio over time. . . . . . . . . . . . . . . . . 53

vi



3.17 CDF on the durations of different operation phases. . . . . . . . . . . 53

3.18 Revenue and cost of each method. . . . . . . . . . . . . . . . . . . . . 54

3.19 Cost variation of each idle phase over time. . . . . . . . . . . . . . . . 54

3.20 CDF on the cost/revenue of different operation phases. . . . . . . . . 55

3.21 Vehicle SoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.22 Energy supply overhead. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.23 Num. of served passengers. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.24 Waiting time of passengers. . . . . . . . . . . . . . . . . . . . . . . . 58

3.25 Heat map of service rates. . . . . . . . . . . . . . . . . . . . . . . . . 59

3.26 Heat map of passengers. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.27 Effectiveness of components. . . . . . . . . . . . . . . . . . . . . . . . 60

3.28 Served passengers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.29 Travel phase durations. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.30 Distribution of taxicabs’ revenues. . . . . . . . . . . . . . . . . . . . . 61

3.31 Impact of the number of regions with chargers. . . . . . . . . . . . . . 63

3.32 Distribution of the number of chargers in regions. . . . . . . . . . . . 63

3.33 Ratios of travel phase of all vehicles in different days. . . . . . . . . . 63

3.34 Hourly average SoC of all vehicles in different days. . . . . . . . . . . 63

3.35 Impact of building functionality and passenger appearance frequency

on charger deployment in different days. . . . . . . . . . . . . . . . . 65

4.1 Distribution of potential positions for placing charging lanes. . . . . . 71

4.2 Average vehicle passing speed & daily vehicle visit frequency. . . . . . 73

4.3 Density scatter of vehicle passing speed w.r.t. vehicle visit frequency. 73

4.4 Variance of vehicle visit frequency of landmarks. . . . . . . . . . . . . 73

4.5 Variance of vehicle passing speed of landmarks. . . . . . . . . . . . . 73

4.6 Distribution of vehicle traffic flow rate of landmarks. . . . . . . . . . 75

vii



4.7 Correlation between each vehicle source and public transit traffic. . . 75

4.8 Distribution of trajectory lengths & estimation of KDE. . . . . . . . . 76

4.9 Framework of CatCharger. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 Original mobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.11 Normalized mobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.12 K-S test values of all the passed tests. . . . . . . . . . . . . . . . . . . 94

4.13 P-values of the passed tests. . . . . . . . . . . . . . . . . . . . . . . . 94

4.14 Performance in supporting EV charging demands. . . . . . . . . . . . 96

4.15 Performance in supporting EV charging demands. . . . . . . . . . . . 98

4.16 Performance in distributing energy supply overhead. . . . . . . . . . . 99

4.17 Performance in distributing energy supply overhead. . . . . . . . . . . 100

4.18 Impact of components on the ratio of operable vehicles. . . . . . . . . 102

4.19 Impact of components on average energy supply overhead. . . . . . . 102

4.20 Ratio of operable vehicles by the end of different days. . . . . . . . . 103

4.21 Residual energy of vehicles by the end of different days. . . . . . . . . 103

4.22 Impact of considering drivers’ routing choice behavior. . . . . . . . . 104

5.1 Gridded road map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 A region with 18 buildings. . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Comparison of histograms of passengers’ building tags. . . . . . . . . 112

5.4 Comparison of suitability for passenger demand inference. . . . . . . 114

5.5 Distribution of sMAPEs. . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Distribution of passenger demand entropies. . . . . . . . . . . . . . . 117

5.7 The number of passengers in two regions. . . . . . . . . . . . . . . . . 117

5.8 Scatter plot of passenger demand entropies vs. sMAPE. . . . . . . . . 118

5.9 Taxicabs’ charging events vs. passenger demand. . . . . . . . . . . . . 119

viii



5.10 Distribution of charging event durations and number of missed passen-

gers during charging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.11 Framework of CD-Guide. . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.12 Training of reinforcement learning model. . . . . . . . . . . . . . . . . 135

5.13 Distribution of passenger demand inference sMAPEs. . . . . . . . . . 142

5.14 Distribution of the APEs of all inference results. . . . . . . . . . . . . 142

5.15 The number of served passengers of all taxicabs. . . . . . . . . . . . . 144

5.16 Distribution of the numbers of taxicabs’ served passengers. . . . . . . 144

5.17 Taxicabs’ SoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.18 Passenger demand inference sMAPEs in different days. . . . . . . . . 148

5.19 The number of served passengers in different days. . . . . . . . . . . . 148

ix



List of Tables

3.1 Comparison between two regions. . . . . . . . . . . . . . . . . . . . . 37

3.2 Table of parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Table of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Table of parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Table of parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

x



Acknowledgements

I would like to thank many people who have helped and supported me through this

long Ph.D. journey.

First, I thank my advisor, Professor Haiying Shen, whose encouragement, guidance

and support from the initial to the final level of my Ph.D. study enabled me to develop

an understanding of the subject. Apart from research expertise, I also learn a lot from

her about organizing and managing research activities such as project/grant proposals

and international conferences. I am especially thankful for her guidance and valuable

suggestions at every step of my career and life.

I acknowledge my committee members, Professor John A. Stankovic, Professor

Madhav Marathe, Professor John Lach, Professor Brian Smith and Professor Joachim

Taiber for providing me valuable comments and suggestions in writing this disserta-

tion.

I am grateful to my collaborators for sharing their time, ideas and enthusiasm.

I had been fortunate to collaborate with each one of them at Clemson University,

University of Virginia, and etc.

I am proud of knowing many colleagues and friends in Pervasive Communications

Laboratory. I am thankful to all of you for supporting my research and providing me

suggestions. Thank you for the laughs and happy days in the office.

All my friends and family have been a source of inspiration in my life. I thank my

family for their love and support at all times. None of my achievements would have

xi



been possible without their infinite support, and steely determination to give me the

best possible education.

To my parents, Zhixin Yan and Ping Jiang, thank you for your love and all your

advices through the years. I want to express my deepest gratitude to you for your

financial support, raising me up, and encouraging me to complete this doctoral degree

when I was depressed.

xii



Chapter 1

Introduction

Developing Intelligent Transportation Systems, which is a major application field for

Cyber-Physical Systems (CPS), to tackle various urban issues (e.g., traffic congestion,

energy consumption) is increasingly needed [13, 86, 124, 127, 133, 138, 139]. Among

them, charging of public transportation Electric Vehicles (EVs) in a metropolitan-

scale road network is with great importance since EVs are foreseen to be the major

carrier of future public transportation systems, which generally consist of taxicabs,

buses and customized transit vehicles [43, 62, 136, 138]. To fulfill metropolitan transit

demands, public transportation EVs are expected to be continuously operable with-

out recharging downtime [23]. By operable, we mean that an EV’s residual energy

measured by State of Charge (SoC) (i.e., percentage of stored energy) is non-zero.

However, due to the limit of battery capacity, the driving range of most EVs is still

limited (e.g., 100 miles) [116]. Hence, EVs must be recharged frequently during driv-

ing time. Although there have been many previous mature works on plug-in cable

charging systems [5, 26, 58, 93, 108, 119, 137], EVs must stop and get plugged in

the charging points of the charging stations to get recharged, which wastes time and

becomes an obstacle for the continuous operability of public transportation EVs.

Recently, Wireless Power Transfer (WPT) techniques for EV charging are emerg-

1
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EVs.

ing as a solution to keeping the EVs continuously operable [48, 53]. There have been

multiple existing WPT charger products for sale in market [11, 25, 28, 40, 82, 88,

90]. Based on charging approach, WPT chargers can be grouped into two categories:

stationary wireless charger (Figure 1.1) and dynamic wireless charger (Figure 1.2).

As illustrated in Figure 1.1, a stationary wireless charger consists of a transmitter coil

on ground and a receiver coil on EV. Whenever an EV is parked over a stationary

wireless charger, electric energy is transferred from the transmitter coil to the receiver

coil via electromagnetic field. Such a charger allows EVs to get charged when they

are temporarily parked at somewhere (e.g., traffic lights, roadside parking lots) with-

out plugging in a cable, which is called opportunistic charging [30]. As illustrated

in Figure 1.2, a dynamic wireless charger consists of an array of transmitter coils on

ground and a receiver coil on EV. The array of transmitter coils is embedded in a

road segment, which is called a wireless charging lane. Similar to a stationary wireless

charger, whenever an EV drives through a wireless charging lane, electric energy is

transferred from the transmitter coil array to the receiver coil via electromagnetic

field [48, 50].

1.1 Research Questions

A stationary wireless charger is potentially beneficial to charge electrified taxicabs

in a public transportation system, of which idle time spent on cruising for passen-

gers, seeking chargers, and charging should be maximally saved to increase profit and

2



passenger service efficiency. This is because taxicab drivers usually prefer to wait

at certain places (e.g., airports, malls) in order to pick up the next passenger with

reduced idle miles in cruising for passengers [122, 123]. So taxicabs have relatively

fixed parking patterns determined by the appearance of passengers, but random driv-

ing routes. Then, if the taxicabs can be offered sufficient opportunities of charging

during parking from a proper deployment of stationary wireless chargers, it can en-

able charging and waiting for passengers to occur simultaneously before picking up

the next passenger, which will greatly reduce the taxicabs’ idle time. Therefore, we

need a set of methods to extract suitable parking locations with many and frequent

appearance of passengers.

Moreover, to keep the flow of all public transportation EVs operable at any po-

sition in the road network, we need to ensure that the EVs have a certain level of

SoC when they arrive at any position. This SoC level enables an EV to move to its

nearest wireless charger before battery exhaustion. Therefore, we need to infer the

EVs’ traffic (i.e., the probability of reaching each position in the road network) in

order to estimate the expectation of the EVs’ SoC when they arrive at each posi-

tion given deployed wireless chargers. However, it is challenging to model the EVs’

traffic without fine-grained analysis of their mobility characteristics. In summary, a

major research question is: How to measure the likelihood of passenger appearance at

each position and establish a generic EV traffic model for selecting the positions for

deploying stationary wireless chargers?

Deploying stationary wireless chargers alone cannot completely suffice the charg-

ing demands of electrified buses and customized transit vehicles, which have relatively

more determined driving routes and are expected to be continuously running (i.e., no

long-time parking) on road during working hours [48, 50]. This makes the supplemen-

tary utilization of dynamic wireless chargers necessary. Different from a stationary

wireless charger, when an EV drives through a dynamic wireless charger, the amount
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of electricity energy transferred to the EV depends on the EV’s passing velocity and

the length of the wireless charging lane. Slower velocity or longer charging lane leads

to more received energy and vice versa, while a longer wireless charging lane costs

more to deploy. Thus, locations with slower EV passing velocity are better options

for deploying charging lanes in order to reduce the deployment cost. Moreover, to

ensure that the deployed dynamic wireless chargers can serve as many EVs as pos-

sible, the locations with higher EV visiting frequency should have higher priority to

deploy chargers. Therefore, another research question we need to handle is: How

to measure the suitability of each position based on its traffic flow attributes (e.g.,

driving velocity, vehicle visiting frequency) and establish a generic EV traffic model

for selecting the positions for deploying dynamic wireless chargers?

On the one hand, unlike buses, which have determined driving routes and can

receive repeated charging once dynamic wireless chargers are deployed on their routes,

the movement of taxicabs is not fixed. According to some previous studies [62, 104],

the full recharge of a mainstream electric taxicab generally lasts for 0.5 to 2.5 hours.

On the other hand, the profiting of taxicabs is highly dependent on efficient discovery

of passengers. When dispatching an electric taxicab, if we let the taxicab follow

the traditional pattern of “keep driving-SoC exhaustion-charge”, such a long bulk of

idle charging time may cause the taxicab to miss many potential passengers during

busy hours [81]. Therefore, in addition to the proper deployment of chargers, another

research question rises up: How to design a taxicab dispatching and charging approach

that minimizes the taxicab’s number of missed potential passengers due to charging?

The approach should provide guidance for the taxicab on where to pick up a passenger

or receive a recharge based on future passenger demand. Therefore, how to infer a

future passenger demand with a sufficiently high accuracy, and utilize the inference

result to optimize the charging of taxicabs becomes important. However, how to

generate a highly accurate inference result is challenging because it is difficult to
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consider the influence of all the random factors. What’s more, how to utilize the

inference result to design a charging optimization strategy for an electric taxicab,

which minimizes the taxicab’s number of missed potential passengers during charging,

is also non-trivial.

1.2 Proposed Methodologies

Considering increasingly abundant mobility dataset of public transportation EVs be-

come available, it is practical to apply fine-grained data analysis on the movement

characteristics of the EVs as dynamic flows and find solutions for above research

questions. Accordingly, we propose new methodologies, which consist of

(1) a stationary wireless charger deployment approach that utilizes spatial and tem-

poral analysis of passenger appearance and a generic traffic model to both max-

imize the taxicabs’ opportunity of picking up passengers at the chargers and

support the taxicabs’ continuous operability on roads with the minimal deploy-

ment cost;

(2) a dynamic wireless charger deployment approach that utilizes categorization and

clustering of traffic flow attributes and a generic traffic model to support the

continuous operability of electric vehicles on roads with the minimal deployment

cost;

(3) a taxicab dispatching and charging approach that utilizes customized selection

and training of suitable historical passenger demand data and charging opti-

mization to minimize the taxicab’s number of missed potential passengers due

to charging. By saying suitable historical data, we mean the data that are un-

der the influence of random factors (e.g., weather, holiday) similar to current

passenger demand.
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Proposed methodologies will be based on the analysis of a large-scale mobility

dataset of public transportation vehicles including buses, taxicabs and customized

transit vehicles. In addition to transportation scenarios, the proposed fundamental

traffic model and dispatching method can also be applied to other CPS related fields

such as human mobility modeling and control, air traffic prediction and scheduling,

traffic control in video-on-demand system, etc.

The goal of the proposed research is to find solutions for effective integra-

tion of the proposed methodologies with the state-of-the-art WPT techniques toward

developing a hybrid WPT charging system composed of stationary and dynamic wire-

less chargers. For this purpose, we will use the mobility dataset to evaluate the

proposed methodologies through comparing their performance with representative

existing methods in terms of keeping the EVs continuously operable, efficient utiliza-

tion of electricity, and service efficiency of a hybrid system of wireless chargers. This

leads us to the following thesis statement:

By exploiting our generic traffic model and methodologies based on spatial and

temporal analysis of passenger appearance, entropy-based categorization and

clustering of flow attributes, and customized selection and training of suitable

historical taxicab passenger demand data, we can develop a hybrid WPT charg-

ing system that can better serve public transportation EVs in terms of continuous

operability, electricity utilization efficiency, and charging service efficiency com-

pared to the state of the art.

1.3 Contributions

I have done extensive and comprehensive study on the application of computer science

methodologies, which is of great value for the application of computer science theo-

ries and methodologies in engineering domains, especially in transportation domain.
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The primary application-specific contributions of the dissertation are summarized as

follows:

(1) A novel approach for deploying stationary wireless chargers that incorporates

different factors regarding passenger appearance, a Kernel Density Estimator

(KDE) based traffic model and queuing theory based driver routing behav-

ior model to develop a multi-objective optimization problem and its solution

(Chapter 3). In this approach, the fundamental contributions include:

1. A KDE based traffic model for estimating EVs’ expected SoC in different

regions of the road network.

2. A queuing theory based driver routing behavior model designed for sta-

tionary wireless charging, which is used for estimating the possible impact

of deployed chargers on existing traffic.

3. Formulation and solution of an optimization problem and setting of spe-

cific constraints for obtaining the deployment plan of stationary wireless

chargers.

The application-specific contributions include:

1. Application of Discrete Fourier Transform (DFT) [106] and AutoCorrela-

tion Function (ACF) [106] for analyzing the frequency of passenger ap-

pearance.

2. Trace-driven analysis and utilization of building functionality for deter-

mining the likelihood of passenger appearance.

3. Extensive trace-driven experiments that consider multiple sources of ve-

hicle traffic under standard parameter settings and multiple days with

different scenarios.
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(2) A novel approach for deploying dynamic wireless chargers that incorporates

entropy-based categorization and clustering of traffic flow attributes, and a

KDE based traffic model to develop an optimization problem and its solution

(Chapter 4). In this approach, the fundamental contributions include:

1. An entropy minimization based traffic attribute clustering method for the

selection of candidate dynamic wireless charger deployment positions.

2. A queuing theory based driver routing behavior model designed for dy-

namic wireless charging, which is used for estimating the possible impact

of deployed chargers on existing traffic.

3. Formulation and solution of an optimization problem and setting of specific

constraints for obtaining the deployment plan of dynamic wireless chargers.

The application-specific contribution is extensive trace-driven experiments on

the SUMO [56] urban mobility simulator under standard parameter settings

and multiple days with different scenarios.

(3) A taxicab dispatching and charging approach that utilizes customized selection

and training of suitable historical passenger demand data and charging opti-

mization to minimize the taxicab’s number of missed potential passengers due

to charging (Chapter 5).

In this approach, the fundamental contributions include:

1. An entropy based estimation of passenger demand randomness for the

customized selection and training of suitable historical passenger demand

data.

2. Formulation and solution of a multi-objective combinatorial optimization

problem for minimizing the number of missed potential passengers caused
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by charging, maximize the probability of picking up a passenger, and mean-

while avoid the taxicab’s SoC from exhaustion in the rest time of a day..

3. A Reinforcement Learning model based taxicab dispatching and charging

method that outputs the action on which region the taxicab should drive

to and whether to get charged.

The application-specific contribution is extensive trace-driven experiments on

the SUMO [56] urban mobility simulator under standard parameter settings

and multiple days with different scenarios.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 first provides the in-

troduction of the status-quo of EV wireless charging. Then it describes the dataset

used for analysis and evaluation of the proposed methodologies, and simulation spec-

ifications. Finally, it presents the system model and global assumptions for this

dissertation.

Chapter 3 proposes the approach for stationary wireless charger deployment that

utilizes spatial and temporal analysis of passenger appearance and a generic traffic

model to both maximize the taxicabs’ opportunity of picking up passengers at the

chargers and support the taxicabs’ continuous operability on roads with the minimal

deployment cost. Chapter 4 proposes the approach for dynamic wireless charger

deployment that utilizes categorization and clustering of traffic flow attributes and

a generic traffic model to support the continuous operability of electric vehicles on

roads with the minimal deployment cost. Chapter 5 proposes the approach for taxicab

dispatching and charging that utilizes customized selection and training of suitable

historical passenger demand data and charging optimization to minimize the taxicab’s
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number of missed potential passengers due to charging.

Chapter 6 provides an overview of the related work. Finally, Chapter 7 concludes

this dissertation with future remarks.
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Chapter 2

Background and Dataset

Description

In this dissertation, we focus on fulfilling the methodologies of building a WPT charg-

ing system in EV based transportation scenarios. While we present our designs and

results under the vehicle traffic based settings, they generalize to any traffic flow

based CPS related fields, such as human mobility modeling and control, air traffic

prediction and scheduling, traffic control in video-on-demand system, etc.

In this chapter, we first provide a brief introduction of the status-quo of EV

wireless charging. Then we describe the dataset used for analysis and evaluation

of the proposed methodologies, and simulator specifications. Finally, we specify the

system model and global assumptions for this dissertation.

2.1 Wireless Charging

WPT charging for EVs is gaining more ground, since it enables power exchange

between the EV and the power grid without cable connection and brings much con-

venience. Installed infrastructure can be utilized very effectively, since many vehicles
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use the same road segments that are facilitated with WPT charging capabilities.

WPT charging can take place in a parking lot, in a bus stop during passenger disem-

barkation, along a highway or near traffic lights. As discussed in Chapter 1, WPT

chargers can be grouped into two categories: stationary wireless charger (Figure 1.1)

and dynamic wireless charger (Figure 1.2).

Recently, Telewatt project [92] introduced an approach to reuse existing public

lighting infrastructures for WPT charging. A fraction of the power not consumed by

the lamps at night can be used for the benefit of the charging stations. The service is

accessible by a smartphone application, where clients specify to the Telewatt server

their destination and their battery level and take as a response a list of available

charging terminals close to the destination. Hevo [40] announced a novel dynamic

charging system where manhole covers will be used as charging stations. The Hevo

Powers pilot program is scheduled to be performed in New York City in 2014. Two

buses that use dynamic wireless charging during travel have been put into service for

the first time in the world on normal roads in the city of Gumi-Korea by the Korea

Advanced Institute of Science and Technology (KAIST) [48, 50, 54]. The power

is transmitted through magnetic fields embedded in the roads. Power comes from

the electrical cables buried under the surface of the road, creating these magnetic

fields. The length of power strips installed under the road is generally 5%-15% of

the entire road. In [24], the authors present a method for Power Transfer between

Electric Vehicles, where drivers “share” charge with each other using Inductive Power

Transfer (IPT) of charge between vehicles at rendezvous points.

As for the charging model of WPT charging systems, according to prior works

focusing on the technical details of stationary and dynamic wireless chargers [48, 50,

54], given a constant charging rate r, the amount of energy an EV receives from a

wireless charger (denoted by E) is proportional to the length of time t the EV spends

over the wireless charger. That is, for stationary wireless chargers, the amount of
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energy that the EV receives is calculated as E = r · t. For dynamic wireless chargers,

given the length of a charging lane L and the EV’s passing velocity over the charging

lane v, the amount of energy that the EV receives is calculated as E = r · L/v.

2.2 Large-scale Mobility Dataset of Public Trans-

portation Vehicles

Our mobility dataset for research is collected in Shenzhen, China. It records the

status (e.g., timestamp, position, speed) of vehicles with a recording period less than

30 seconds, which include:

(1) Taxicab data. It is collected by the Shenzhen Transport Committee, which

records the status (e.g., timestamp, position, speed) of 15,610 taxicabs. The

daily size of the uploaded data is around 2GB.

(2) Bus data. It is also collected by the Shenzhen Transport Committee, which

records the status of 14,262 buses (e.g., timestamp, GPS position).

(3) Dada bus data. It is provided by the Dada Bus corporation (a customized

transit service similar to UberPool), which records the status (e.g., timestamp,

position, speed) of 12,386 reserved service buses.

(4) Road map data. The road map of Shenzhen is obtained from OpenStreetMap [84].

According to the municipal information of Shenzhen [98], we use a bounding

box with coordinate (lat = 22.4450, lon = 113.7130) as the south-west corner,

and coordinate (lat = 22.8844, lon = 114.5270) as the north-east corner, which

covers an area of around 2,926km2, to crop the road map data.

For data management, we utilized a 34 TB Hadoop Distributed File System

(HDFS) [3] on a cluster consisting of 10 nodes, each of which is equipped with 16
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Figure 2.1: SUMO simulation platform

cores and 64 GB RAM. For data processing, we used Apache Spark [4], which is a

fast in-memory cluster computing system running on Hadoop [3].

2.3 Simulator Specifications

In this dissertation, we use SUMO (Simulation of Urban MObility) [56] to implement

and evaluate the proposed methodologies. SUMO is a free, open, microscopic and

continuous road traffic simulation suite designed to handle large road networks. It al-

lows modelling of intermodal traffic systems including road vehicles, public transport

and pedestrians. SUMO includes a wealth of supporting tools, which handle tasks

such as route finding, visualisation, network import and emission calculation. SUMO

can be enhanced with custom models and provides various APIs to remotely control

the simulation. The interface of SUMO is illustrated in Figure 2.1.
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2.4 System Model and Assumptions

In this section, we define the system model, present the terminology and the global

assumptions in this dissertation.

System Model: We consider the road network as a directed graph G = (E, V ), in

which vertices V represent landmarks (i.e., intersections or turning points), and edges

E represent road segments [124, 135]. For a road segment longer than 200 meters,

which is the general length of a metropolitan road segment [135], we broke it into

several road segments no longer than 200 meters, and set the breaking positions as

new landmarks. The movement record of a taxicab is continuous, namely a sequence

of GPS positions with corresponding timestamps. If a vehicle has arrived at its

destination, it will usually spend a long time staying at the destination before starting

its next trajectory [135]. Therefore, we suppose that a vehicle has finished its previous

trajectory if its position does not change for more than 10 minutes. Such positions

will cut the vehicle’s movement record into multiple trajectories.

Terminologies: Based on the road network, we introduce the following definition

for vehicle trajectory:

Definition 1 Vehicle Trajectory. A vehicle’s trajectory is a sequence of N s time-

ordered landmarks, {(p0, t0), . . . , (pj, tj), . . . , (pNs−1, tNs−1)}, where each landmark is

represented by a latitude and a longitude pj = (latj, lonj).

We partition the road network into multiple different regions and use them as the

unit for the extraction and analysis of passenger appearance and charging demand.

Specifically, we have the following definition for region:

Definition 2 Region. The road network is partitioned into a set of NG = 496 regions

G = {g0, g1, . . . , gNG−1} according to administrative region planning of Shenzhen city

government.
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Unless otherwise specified, the trajectories and regions in this thesis follow the above

definitions.

Global Assumptions: In this dissertation, we have the following global assump-

tions:

(1) All buses, taxicabs and customized transit vehicles are autonomous EVs, and

are fully controlled by the dispatch center (source: [42, 67]). In addition, if a

vacant taxicab (i.e., no passenger onboard) encounters a hand-waving passenger

on route, the taxicab can change its destination road segment to serve the

encountering passenger instead (source: [122, 125]).

(2) The deployment cost of chargers mainly consists of excavation cost at the charg-

ing position, installation cost of the charger body, and the wiring cost to the

chargers (source: [20, 45]). The extra cost due to policy or other regulation

factors is not the focus of this dissertation. We leave the detailed analysis and

optimization of economical aspects of building a WPT charging system as one

of our future works.

(3) The chargers are deployed one time. We have developed a queuing theory based

driver routing behavior model to take into account the possible impact of charger

deployment on existing traffic distribution. When the long-term traffic flows in

the city change significantly, the wireless chargers need to be re-deployed.

(4) Based on existing tests of Electreon Wireless Ltd (an Israeli company focus-

ing on wireless charging for EVs) in Sweden and Tel Aviv [27, 46] and existing

wireless charging standard SAE J2954 [95], the charging power level is currently

very low (e.g., maximally 22kW). However, with the most recent research im-

plementations (e.g., Oak Ridge National Laboratory [85]), it is expected that

within a 10-year timeframe, it is possible to reach a charging rate over 100kW
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for EV wireless charging. Therefore, we use 150kW as the charging rate in the

performance evaluations of this thesis.
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Chapter 3

Deployment of Stationary Wireless

Chargers

The profiting of taxicabs is highly reliant on efficient discovery of passengers [122].

To maximize the profit of electric taxicabs, their idle time (i.e., cruising time for

passengers, seeking time for chargers and charging time) must be reduced as much as

possible [123]. Although many taxicab dispatching methods have been proposed to

guide taxicabs to efficiently pick up passengers with reduced cruising miles [122, 123,

125, 134], the taxicabs still have to spend much time driving before picking up the

passengers. Moreover, none of the previous taxicab dispatching works considers the

time wasted on seeking chargers and charging. It has been reported that the daily

average time wasted on seeking the nearest charging station can be almost 1 hour,

and the time for charging an EV can be as long as 150 minutes [62]. Such a long

idle time greatly degrades the profiting efficiency of the electric taxicabs [80]. Also,

since a taxicab cannot be in service all the time due to charger seeking and charging,

a metropolitan city needs to put more taxicabs on roads to satisfy taxicab demands,

which increases investment cost and traffic congestion on roads.

Meanwhile, driven by the traffic flow and city-wide travel patterns of people re-
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flected in the ubiquitous taxicab movement data, several recent works studied the

problem of minimizing average seeking time for the nearest charging station of EVs

from the perspective of urban facility planning [62, 89, 115, 130]. These works gen-

erally adapt the deployment of charging stations to cover the EV traffic flows so that

EVs anywhere can reach the nearest charging stations with the minimal seeking time.

However, no matter how well these methods place the charging stations, upon the

exhaustion of a battery, the taxicabs must spend extra idle time on seeking a charger

and waiting to be charged.

Previous studies have found that taxicabs have relatively fixed parking patterns

determined by the appearance of passengers, but random driving routes [122, 123].

As discussed in Chapter 1, a stationary wireless charger allows EVs to get charged

when they are temporarily parked at somewhere (e.g., traffic lights, roadside parking

lots) without plugging in a cable, which is called opportunistic charging [30]. Then, if

the taxicabs can be offered sufficient opportunities of charging during parking from a

proper deployment of stationary wireless chargers, the taxicabs’ processes of charging

and waiting for passengers may occur simultaneously before picking up the next

passenger, which will greatly reduce the taxicabs’ idle time. Therefore, in this chapter,

we propose PickaChu, a stationary wireless charger deployment scheme that enables

the taxicabs to Pick up a passenger with reduced idle time and supports the taxicabs’

continuous operability (i.e., always having enough energy to drive) via opportunistic

Charging in an urban road network.

The remainder of this chapter is organized as follows. Section 3.1 identifies the

background and challenges in the design of PickaChu. Section 3.2 presents our

metropolitan dataset measurement results. We describe the main design of PickaChu

in Section 3.3 and present our experiment evaluation in Section 3.4. Section 3.5

concludes this chapter with remarks on our future work.
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3.1 Background

Several efforts [122, 123, 125, 134] aim to guide taxicabs to pick up the expected

passengers with the shortest route to reduce the taxicabs’ time wasted on cruising

for passengers. Yuan et al. [122] introduced a method that schedules the pick-up

locations with the shortest routes for taxi drivers and the waiting locations for pas-

sengers to reduce the cruising time. Zheng et al. [134] modeled the behavior of vacant

taxicabs with a non-homogeneous Poisson process to find the optimal waiting posi-

tions for passengers. Zhang et al. [123] proposed a method to estimate the revenue of

each route, and guide the taxicab to the route with the maximum estimated revenue.

Zhang et al. [125] proposed pCruise, in which each taxicab collects the passenger re-

quests from nearby taxicabs and accordingly cruises on the routes with the maximum

probability of finding a passenger. However, these works still require the taxicabs to

spend much time on driving to the suggested locations without passengers on board.

Moreover, the time wasted on seeking chargers and charging is not considered in these

works.

Several recent works studied the problem of minimizing average seeking time for

the nearest charging station of EVs from the perspective of urban facility planning

[62, 89, 115, 130]. Qin et al. [89] scheduled the plug-in charging stations to minimize

the time on seeking and waiting in charging stations based on the estimated time and

location that each EV needs to be charged. Zhang et al. [130] further considered the

uncertainty of the EVs’ arrival times at the charging stations to shorten the time on

seeking chargers and charging. Li et al. [62] determined the locations for deploying

plug-in charging stations that minimize the time on seeking chargers. Yan et al. [115]

proposed a method on deploying dynamic wireless chargers based on the features

of the positions (i.e., vehicle passing speed, vehicle visiting frequency). Although

these works can support the continuous operability of the taxicabs by adapting the
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deployment of chargers to cover the actual traffic, the taxicabs still have to spend

extra idle time on seeking chargers and charging upon the exhaustion of the battery.

To maximize the service performance of the taxicabs, we need to design a mecha-

nism that provides opportunity of picking up passengers for the taxicabs, and mean-

while keeps the SoC of taxicabs above a threshold. Specifically, we identify two main

challenges in designing such a mechanism:

(1) Measuring likelihood of passenger appearance. The historical average num-

ber of passengers that appeared during a unit time (e.g., per hour, per day) can be an

indicator of the passenger appearance likelihood. However, using this metric alone for

the likelihood measurement may not be accurate for guiding taxicab pick-ups in terms

of waiting time. We hope that when a taxicab arrives at a charger and gets charged

at a random time, it does not have to wait long before discovering a passenger. For

example, in an area mostly consisting of residential buildings, many passengers may

appear during rush hours (e.g., 08:00-09:00), resulting in a relatively high hourly av-

erage number of appeared passengers. However, this high value does not mean that

passengers frequently appear at other times. Thus, the first challenge is how to design

a new metric that can more accurately reflect the passenger appearance likelihood to

guide taxicab pick-ups.

(2) Supporting taxicabs’ continuous operability. Regions with higher passenger

appearance likelihood should have a higher priority to be deployed with a charger in

order to offer sufficient passenger pick-up opportunity at the chargers. In addition,

we aim to minimize the number of chargers (i.e., deployment cost) while maintaining

the taxicabs’ continuous operability. Thus, the second challenge is how to optimize

the deployment of stationary wireless chargers considering the above goals.

21



Figure 3.1: Gridded road map.

3.2 Dataset Analysis

3.2.1 Definitions

We first build a road network, in which vertices represent landmarks (i.e., intersections

or turning points), and edges represent road segments [23, 135]. The movement record

of a taxicab is continuous, namely a sequence of GPS positions with corresponding

timestamps. We presume that a taxicab has finished its previous trajectory if it stops

at a location for more than 10 minutes or its occupancy status changes. Thus, such

stopping locations cut the movement record of a taxicab into multiple trajectories.

The original GPS positions are scattered around the road segment. If we apply the

optimization on all the GPS positions, we will need to ensure that the taxicabs’

SoC on each position is above the threshold. This will be too complex to obtain

an optimal solution for the optimization problem. To map them to a uniform road

network for the reduction of optimization complexity, we normalize the original GPS

positions to their respective nearest landmarks (in Euclidean distance) as in previous

methods [112, 122, 125, 139]. Note we only use landmarks in the traffic estimation and

optimization of the chargers. For the extraction and analysis of passenger appearance,

we still rely on the original GPS positions. We introduce two definitions below.

Definition 3 Vehicle Trajectory. A vehicle vi’s trajectory is a sequence of time-
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ordered landmarks, Tri : {(p0, t0), (p1, t1), . . . , (pr, tr)}, where each landmark is rep-

resented by a latitude and a longitude pj = (latj, lonj).

Definition 4 Region. The road map is partitioned into a set of 557 regions G =

{g0, g1, . . . , gM−1} with a size of 2,000 m × 2,000 m (Figure 3.1). Each region is

represented by gi = {(lat0i , lon0
i ), (lat

1
i , lon

1
i )}.

For the ease of analysis, we use a static region size to partition the road map. Some

recent works have proved that partitioning the road map with dynamic region sizes

can better adapt to the geographical distribution of the passenger appearance [76,

136]. We will use dynamic region size in our future work, but the region size de-

termination does not change the fundamental methods proposed in this dissertation.

The reason we choose 2,000 m × 2,000 m as the region size is to ensure that for the

taxicabs within a region, they can reach any position of the region within roughly

6 minutes, which is an acceptable waiting time length for most passengers [122], at

the driving speed of 40 km/h (i.e., the approximate average speed limit of Shenzhen

[115]). Combining the taxicabs’ trajectories with the changes of their occupancy sta-

tus, we extracted the pick-up and drop-off locations of the passengers. We calculated

the number of passenger pick-ups in each region per unit time (e.g., 30 minutes).

3.2.2 Building Functionality and Passenger Appearance

It was indicated that the passenger appearance in a region is closely related to its

composition of buildings, and the likelihood of passenger appearance varies for differ-

ent classes (i.e., functionalities) of buildings [123, 139]. In this analysis, we attempt

to verify if the density and functionalities of buildings (e.g., Residential, Commercial

buildings) in a city region influence the number of taxicab passengers in the region.

To study the relation between buildings and the appearance of passengers, we

derived the distribution of passenger pick-up events in a part of the road map. As
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Figure 3.2: Heat map of passenger pick-
ups.

Figure 3.3: Distribution of buildings.

shown in Figure 3.2, we plot each passenger pick-up event happened in 2015 with a

point and drew the heat map. The warmer color a region has, the more concentrated

in a short time duration the passenger pick-up events occur. Based on [44, 120] and

OpenStreetMap [84], we obtained the class and position of each building in Shenzhen.

The building classes include Residential, Commercial, Civic, Basics, Professional and

Tourism, as shown in Figure 3.3. The Residential class consists of buildings primarily

for residential purposes (e.g., apartments). The Commercial class consists of buildings

for commercial activities (e.g., supermarkets). The Civic class consists of buildings

for municipal purposes (e.g., library). The Basics class consists of buildings for public

service (e.g., garage). The Professional class consists of buildings for specific usage

(e.g. train/subway stations, airports). The Tourism class consists of buildings for

recreation (e.g., garden).

By comparing the two figures, we can see that the occurrence of passenger pick-up

events generally concentrates at the regions with abundant buildings (e.g., the two

regions on the bottom marked with solid circles). In the region on the top marked by

red dashed circles, there are much fewer pick-up events though it has many buildings.

This is because the majority are residential and civic buildings, where people often

have planned travel schedules using private vehicles or public transportation. This

result implies that building functionality also influences passenger appearance.
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Figure 3.5: Average number of passengers
per hour.

Next, we study the correlation between the building functionalities and the num-

ber of passengers. We measured the average number of passengers that appeared

within 100 meters around each building in a building class during each hour of a

day throughout the 365 days, as illustrated in Figure 3.4. Though we have already

considered the number of passengers that appeared around each building in the mea-

surement, additionally considering building size may further increase the precision of

the measurement, which is left as our future work. We further calculated the average,

5th and 95th percentiles of the hourly number of passengers that appeared nearby for

each building class, which are illustrated in Figure 3.5. We see that significantly more

passengers appeared nearby the Professional buildings than the other building classes

during all times. This is because the Professional class mostly consists of offices and

business buildings that are frequently visited by many people. The Civic class has

the second most passengers because it mostly consists of libraries and community

centers with many public activities. The Commercial and Residential classes have

much fewer passengers than the former two classes because these buildings are not

continuously visited by people during a day. The Basics and Tourism classes have

the fewest passengers because there are fewer such buildings. Therefore, the building

functionality can be used as a factor to infer the likelihood of passenger appearance

in the regions. As the number of pick-ups does not necessarily equal to the number
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Figure 3.7: Passenger time series of re-
gions.

of passenger requests, we need to use other additional factors to more accurately

estimate the likelihood of passenger appearance.

3.2.3 Frequency of Passenger Appearance

We hope that when a taxicab arrives at a region deployed with a wireless charger, it

does not need to wait long before it discovers a passenger. This means that the fre-

quency of passenger appearance in the region must be high, namely the time interval

between two consecutive passenger appearances must be short. Note that one pas-

senger appearance means the appearance of passenger(s) at one time. In Figure 3.6,

in Region1, three passengers appearing at one time is considered as one passenger

appearance, and in Region2, one passenger appearing at one time is also considered

as one passenger appearance. Then, the frequency of passenger appearance for Re-

gion1 is 1/8, and that for Region2 is 1/2. However, the average number of passengers

per unit time (i.e., a day) cannot reflect this frequency. For example, Region1 has 3

passengers in every 8 time units, while Region2 has 1 passenger in every 2 time units.

Though both regions have 6 passengers in every 12 time units, Region2 has a higher

passenger appearance frequency (1/2) compared with Region1 (1/8), which makes a

taxicab wait for a shorter time before it discovers a passenger. As a result, we need

to develop a new method to determine the frequency of passenger appearance in a
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region.

To find the frequency, we draw passenger appearance time series. For each re-

gion, we calculated the number of passengers that appeared in every 30 minutes (i.e.,

a sample) in each day for the 365 days in the dataset. Among the regions mostly

consisting of (i.e., more than 50%) Residential, Professional and Tourism buildings,

we randomly chose one region respectively, and denote them as Region1:Residential,

Region2:Professional and Region3:Tourism. Figure 3.7 shows the number of pas-

sengers that appeared per unit time (i.e., 30 minutes) in the first day of the three

regions, respectively. We define a pattern as the periodic occurrence of a certain

number of passengers in a certain time period, and its frequency as the number of

such occurrences per unit time. If the time series of every region has only one pat-

tern, identifying its frequency is easy. However, the time series may have multiple

patterns, which makes it hard to measure the passenger appearance frequency in

the region. In the signal processing field, the time series curve in Figure 3.7 can be

considered as a composition of multiple patterns with different frequencies. To find

out the frequencies of the patterns, we can decompose the time series to a group

of time series with different frequencies using a signal processing technique. Specifi-

cally, we applied the Discrete Fourier Transform (DFT) on the passenger time series

and got their periodogram [106], as shown in Figure 3.8. In the figure, the X-axis

is the possible frequencies of the patterns in the time series, and the Y-axis reflects

the number of passengers in a pattern with a frequency (e.g., 3 and 1 in the above

example). We notice that the periodogram of Region2 has relatively more patterns

with high frequencies than Region1 and Region3, although the numbers of passen-

gers in the high-frequency patterns are much smaller than that of the low-frequency

patterns. This is because the Professional buildings are frequently visited by many

people, which results in more frequent passenger appearances than the Residential

and Tourism buildings. Compared with Region3, Region1 has more patterns with

27



0 0.1 0.2 0.3 0.4 0.5
0

10

20
Region1:Residential

0 0.1 0.2 0.3 0.4 0.5
0

50

100

M
a
g
n
itu

d
e
 P

(f
)

Region2:Professional

0 0.1 0.2 0.3 0.4 0.5

Frequency (normalized)

0

50

100
Region3:Tourism

Figure 3.8: Periodogram of the passenger
time series.

0 1 2 3 4 5 6

 

0

0.5

1

 

Cruising

0 2 4 6 8 10 12

 

0

0.5

1

C
D

F
 o

f 
ta

xi
ca

b
s

Seeking

0 1 2 3 4 5 6

Duration (hour)

0

0.5

1

 

Charging

Figure 3.9: Distribution of duration of
idle trips.

higher frequencies. This is because people’s visiting patterns at the Tourism build-

ings is more likely to follow certain routine (e.g., open and close times) than the

Residential buildings, which is more randomly visited by people.

Thus far, we have verified that the time series of the passenger appearance of

a region can be decomposed to a group of time series with different frequencies.

Then, we design a method to combine these frequencies to measure how frequently

passengers appear in a region, which will be introduced in Section 4.3.3.2. As a result,

the region with a higher final frequency metric should have a higher priority to deploy

chargers.

3.2.4 Idle Trip Time & Taxicab Traffic

As discussed before, taxicabs may waste much time on cruising for passengers, seek-

ing chargers and getting charged. We then analyzed the Shenzhen dataset to see how

much time is spent on these idle operations. We first introduce the definitions for the

operations of the taxicabs. We define the cruising time as the time interval between

the taxicab dropping off a passenger and picking up the next passenger. From the

Shenzhen Transport Committee, we obtained the locations of all the existing plug-

in charging stations in Shenzhen. If a taxicab’s movement record shows that it has

stayed at a charging station for more than 5 minutes, we consider that it was being
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charged at the station at that time. Therefore, we define the time for seeking a charger

as the time interval between the taxicab dropping off its last passenger and entering

a charging station to charge. We define the charging time of a taxicab at a charging

station as the time duration that the taxicab stayed at the charging station. For each

vehicle, we calculated the duration of each idle operation in each day throughout the

365 days, and then calculated the average duration per day. We show the Cumulative

Distribution Function (CDF) of the taxicabs in terms of the daily average duration

of each operation in Figure 3.9. We can see that about 50% of the taxicabs spent

more than 4.17 hours on cruising per day in average, about 50% of the taxicabs spent

more than 2.78 hours on seeking chargers per day in average, and about 50% of the

taxicabs spent more than 0.83 hours on charging per day in average. The analytical

results indicate that we should try to avoid or reduce the time duration in these idle

operation phases when determining the locations to deploy chargers. We can choose

the locations where many passengers appear with high frequency, so that when a

taxicab is being charged, it has a high probability to quickly pick up a passenger.

We should also make sure that the deployed chargers can support the continuous

operability of the taxicabs considering the taxicabs’ traffic flows in the city. Because

the taxicabs’ trajectories reflect their traffic flows between different locations [120],

and the trajectory length generally determines energy consumption of a taxicab, we
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calculated the lengths of the taxicabs’ trajectories to determine the taxicab traffic that

the deployed chargers need to support. Figure 3.10 shows the Probability Density

Function (PDF) of the trajectory lengths. If we can describe the taxicabs’ trajec-

tory lengths with a certain distribution, we can further determine the deployment

of chargers to support these trajectory trips so that the expected SoC of a taxicab

at a landmark is always above a certain threshold that allows it to reach its nearest

charger. Obviously, the distribution of the trajectory lengths cannot be modeled using

a parametric distribution (e.g., Gaussian). Since KDE is a non-parametric method

to estimate the PDF of a random variable, we input the trajectory lengths to the

KDE model to output a taxicab’s probability of reaching each landmark in the road

network. The red curve in Figure 3.10 represents the fitting result from the KDE.

We will present more details of this model in Section 4.3.4.1.

3.2.5 Summary

Based on the above observations, to deploy the chargers that maximally reduce the

idle time of taxicabs, we need to i) consider the density and functionality of buildings

and their respective influence weights on the appearance of passengers, ii) measure the

passenger frequency in a region from the region’s passenger appearance time series,

and iii) estimate the taxicabs’ SoC based on the taxicabs’ traffic flows. Considering

these factors, we will find a solution in Section 3.3 for the following problem.

Problem: Given a road network comprised of a set of regions G, and taxicabs’

trajectory datasets {Tr}, how to select regions to deploy chargers with the minimum

cost so that the expected SoC of the taxicabs at each landmark is no less than a

threshold, and the taxicabs have high probability of discovering passengers while

being charged?
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Figure 3.11: Framework of PickaChu.

3.3 System Design of PickaChu

3.3.1 Framework of PickaChu

PickaChu consists of the following three stages as shown in the three dashed boxes

in Figure 3.11.

1. Map gridding & information derivation. First, the entire city area is parti-

tioned into a Gridded Roadmap consisting of several equal-sized regions. Also, the

taxicab dataset is cleaned up (e.g., filtering out positions out of the actual range

of Shenzhen, redundant positions). Then, based on the cleaned data, we derive the

Taxicab Trajectories, which will be used for extracting passenger requests and build-

ing traffic models. From the taxicabs’ change of occupancy status from 0 to 1, we

extract the Passenger Appearance Records (i.e., location and time). Finally, based

on the Gridded Roadmap and the Passenger Appearance Records, we calculate the

Passenger Appearance Time Series for each region.

2. Measuring likelihood of passenger appearance (Section 5.3.4). Based on the

output from the first stage, we consider the Number of Passengers Per Unit Time, the

Building Functionality, and the Passenger Appearance Frequency for each region to

31



assign Region Scores to regions to measure their likelihood of passenger appearance.

3. Charging position determination (Section 4.3.4.1 and Section 4.3.4.2) We first

use the lengths of the trajectories to model the Continuous Operability Support using

KDE, which is used to estimate the taxicabs’ expected SoC at different regions. Then,

we formulate a multi-objective optimization problem to solve the wireless charger

deployment problem, and its solution is the Charger Position Determination (i.e.,

where and how many wireless opportunistic chargers we should deploy).

3.3.2 Assumptions

Above all, we have the following assumptions for EVs:

1. Each EV that expects the charging service provided by the stationary wireless

chargers is equipped with a receiver coil (source: [55, 71, 78]).

2. Each taxicab is equipped with a navigation system, which generates trajectories

during the driving of the vehicle (source: [135]). Each taxicab is willing to report

its driving trajectory to a central traffic control center for traffic information analysis

(i.e., passenger appearance analysis, SoC consumption estimation). A trajectory is

periodically updated whenever the vehicle starts driving.

3. The deployed stationary chargers are only available for taxicabs and work in a first-

come-first-served manner (source: [14, 42]). For the deployment of stationary wireless

chargers for private vehicles, travel trajectory data of private vehicles and detailed

analysis are needed, which is not the focus of this work and left as a future direction.

3.3.3 Measuring Passenger Appearance

In the following, we firstly introduce how PickaChu estimates the likelihood of pas-

senger appearance via a weighted sum of building functionalities. Then, we elaborate
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how PickaChu measures the frequency of passenger appearance in a region. Finally,

we design a scoring mechanism for measuring each region’s likelihood of passenger

appearance.

3.3.3.1 Building Functionality

Different regions have different densities of buildings with different functionalities

(e.g., Residential buildings, Commercial buildings). For example, the region in a

central business district is likely to be filled with office buildings and shopping centers

where passengers frequently appear, while the region in a residential area is likely to

be filled with dwellings where a large number of passengers only appear during specific

hours. Correspondingly, we use a weighted sum of building functionalities within a

region to measure the buildings’ potential contribution to passenger appearance.

We set the weight of a building class as the hourly average number of passengers

that appeared nearby (e.g., within 100 meters) each building in the class throughout

the dataset. For example, according to Figure 3.5 of our trace analysis, the weights of

the building classes are: Residential=0.9, Commercial=0.7, Civic=2.0, Basics=0.2,

Professional =4.4, and Tourism=0.2.

Suppose C is the set of the building classes in a region gi, and Pi(c) is the proba-

bility function of building class c, i.e., the percentage of buildings with building class

c in gi. w(c) is the passenger appearance weight of building class c. We define the

weighted sum of the building functionalities in gi as:

H̄i =
Bi

Bmax

∑
c∈C

w(c)Pi(c) (3.1)

where Bi is the total number of buildings in gi, and Bmax is the maximum number of

buildings in a region among all the regions, i.e., Bmax = maxgi∈GBi. Suppose a region

has the following composition: {Residential (20%), Commercial (5%), Civic (20%),
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Basics (5%), Professional (10%), Tourism (40%)}, and Bi = 100, Bmax = 500. Its

weighted sum of the building functionalities is 100
500
× (0.9 × 0.2 + 0.7 × 0.05 + 2.0 ×

0.2+0.2×0.05+4.4×0.1+0.2×0.4) = 0.23. From Section 3.2.2, we know if a region

has more heavy-weighted buildings, it has a larger Hi, meaning it tends to have more

passengers.

3.3.3.2 Frequency of Passenger Appearance

When deploying chargers, we hope that when a taxicab arrives at a charger at a

random time, it has a high probability of discovering a passenger nearby. It means that

the region has a high frequency of passenger appearance and the number of passengers

should be high at a time. As shown in Section 3.2.3, a passenger appearance time

series can be considered as being composed by a group of patterned time series with

different frequencies. We call the area size (i.e., the number of passengers) of a pattern

(i.e., Y value in Figure 3.8) the magnitude of the pattern. Thus, we need to i) derive

passenger appearance frequency, ii) derive the patterns with a high magnitude, and

iii) find a way to measure the global frequency given multiple patterns. For tasks i)

and ii), we use the approach introduced in [106]. For task iii), we design a metric.

The details are introduced below.

In Section 3.2.3, we show that we can detect the potential patterns and their fre-

quencies of a region’s passenger appearance time series through DFT. However, DFT

may generate false frequencies in the periodogram [63]. AutoCorrelation Function

(ACF), another method for detecting repeated patterns, can avoid false detection of

frequencies of a time series [106], but may result in the detection of integer times of

true periods (i.e., reciprocal of the frequencies) [63]. For example, in addition to the

true frequency of a pattern, say 1/30, the frequencies, which are integer multiples

of 1/30 (i.e., {1/60, 1/90, . . .}), are also falsely considered as the frequencies of this
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pattern. Therefore, solely using DFT or ACF cannot accurately determine the true

frequencies in a time series. To more accurately find the patterns, we adopt the ap-

proach in [106] that combines the results from DFT and ACF to identify frequencies.

Below, we first present how to derive patterns with significant magnitude [106]

from the periodogram generated by DFT. We then present how to get the intersection

of the two groups of frequencies from DFT and ACF as the final detected frequencies.

Finally, we propose a method that combines all the frequencies to get a global metric

to evaluate the frequency of passenger appearance in a region.

(1) Deriving patterns with significant magnitude. As shown in Figure 3.8, some pat-

terns have an extremely low magnitude. Therefore, we first determine the base

magnitude and then derive the patterns with magnitude larger than the base mag-

nitude [106]. Considering that any random time series has patterns with certain

magnitudes [106], we use its maximum magnitude (denoted by pmaxi ) as the base

magnitude. In a region gi, the passenger appearance time series is defined as:

xi(n), n = 0, . . . , N − 1, where N is the total number of samples and xi(n) is the

value of the nth sample. To create random time series, we randomly shuffle the origi-

nal xi(n) into a new sequence x̃i(n). To ensure 99% confidence level on the selection

of the base magnitude, we repeat the shuffling for 100 times and record the maximum

magnitude each time. Finally, we choose the 99th value as the base magnitude.

(2) Determining global frequency. In step (1), for gi, we select potential significant

patterns with frequencies denoted by FDFT
i = {f 1

i , f
2
i , . . . , f

m′
i }. Then we use ACF

to identify the patterns with frequencies denoted by FACF
i = {f 1

i , f
2
i , . . . , f

m′′
i }. The

final frequency set is calculated by: Fi = FDFT
i ∩ FACF

i .

(3) Measuring passenger request frequency in a region. Suppose the magnitudes of

the significant patterns with frequencies Fi = {f 1
i , f

2
i , . . . , f

m
i } in the time series are

Pi = {p1
i , p

2
i , . . . , p

m
i }. Since the magnitude of a pattern reflects how significant this

pattern is to the entire time series, we use the weighted sum of the frequencies of the
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significant patterns to describe passenger appearance frequency in each region. We

call it region gi’s weighted frequency of passenger appearance and denote it by F̄i.

F̄i =
m∑
k=1

pki∑m
j=1 p

j
i

· fki . (3.2)

For example, consider a time series which has two significant patterns with magnitudes

of 2 and 3, and frequencies of 1/10 and 1/20, respectively. The weighted frequency

of this region is calculated as 2
5
× 1

10
+ 3

5
× 1

20
= 7

100
.

3.3.3.3 Likelihood of Passenger Appearance

PickaChu assigns scores to the regions to show their likelihood of passenger appear-

ance considering the above metrics. We favor the regions with more passengers, and

higher frequency of passenger appearance. Therefore, we define the score of a region,

say gi, as:

ρ(gi) = (
x̄i
x̄min

)α · F̄ β
i · H̄

γ
i (3.3)

where x̄i =
∑N−1

n=0 xi(n)

N
is the average number of passengers over all the N samples

of gi, x̄min is the minimum average number of passengers in a region among the

regions, F̄i is gi’s weighted frequency of passenger appearance, H̄i is the weighted

sum of building functionalities in gi, and α, β, and γ are constants that control the

respective influence of the three metrics. We scale x̄i by x̄min to constrain the scores of

the regions that have few passengers, which have almost no contribution on increasing

the score. To find the best values for α, β, and γ, we vary each variable within a

certain range (e.g., [1, 5]) and test different combinations of the values. Specifically,

we use each combination to determine the deployment of the chargers and run our

experiment for 1 hour randomly chosen among the 24 hours of a day. Then, we choose

the combination of the values that results in the minimum time duration of the idle

phases on the vehicles (i.e., cruising, seeking for chargers and charging) as the final
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setting. We find α = 1.2, β = 2 and γ = 1 is the best combination for the case of

Shenzhen.

Table 3.1: Comparison between two re-
gions.

g1 g2

x̄i 110 22

F̄i 1/10 1/2

Composition
1 airport

2 houses
1 barn

Building wgt
Professional=4.4

Residential=0.9
Basics=0.2

W/o building 11 11

W/ building 25.3 9.9

Note that the region scores calculated

by Equation (3.3) is not the optimal way

to reflect the likelihood of passenger ap-

pearance, and it is only a heuristic ap-

proach. It is difficult to find the optimal

way to describe the distribution of the like-

lihood of passenger appearance in different

regions. In order to make the scores more

accurately reflect the likelihood of passen-

ger appearance, in addition to using parameters x̄i and F̄i, we further consider the

weighted sum of the building functionality (H̄i) that also reflects the number of pas-

sengers in a region. In other words, parameter H̄i enlarges the difference between

the regions with higher likelihood of passenger appearance and the regions with low

likelihood of passenger appearance. That is, the distribution of region scores cal-

culated by Equation (3.3) is closer to the actual distribution of the likelihood of

passenger appearance in different regions. In spite of the simplicity of this approach,

it is helpful for differentiating the likelihood of passenger appearance in the regions.

We use a simple example to show the effectiveness of additionally considering param-

eter H̄i. Suppose we have two regions, say g1 and g2, with different compositions

of buildings, of which details are summarized in Table 3.1. We can see that in g1,

there is an airport (50% of the buildings, classified as Professional), and a barn (the

other 50% of the buildings, classified as Basics); while in g2, there are 2 houses

(100% of the buildings, classified as Residential). Suppose the weights of the build-

ing classes are: Professional=4.4, Basics=0.2, and Residential=0.9. For simplicity

for this example, we set α = β = γ = 1. Without considering buildings, the re-
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gion scores are ρ(g1) = 110 × 1
10

= ρ(g2) = 22 × 1
2

= 11, which means we cannot

differentiate which region is better for picking up passengers. The reason that g1

has the same region score as g2 even though g1 has an airport (i.e., Professional

building class), which has a high frequency of passenger appearance, is because the

low frequency of passenger appearance of the barn makes the frequency of passenger

appearance of region g1 low. The region scores calculated with considering buildings

are ρ(g1) = 110× 1
10
× (1

2
×4.4 + 1

2
×0.2) = 25.3, and ρ(g2) = 22× 1

2
×0.9 = 9.9. The

result shows that g1 is better than g2 for picking up passengers, which is consistent

with our intuition that regions with airports are more likely to have high and constant

flows of passenger appearances. This example shows that the additional considera-

tion of buildings in Equation (3.3) can help more accurately reflect the likelihood of

passenger appearance.

3.3.4 Supporting Continuous Operability

One of our objectives in the charger deployment is to ensure that the taxicabs can

reach a nearby charger when their SoC is about to be exhausted (e.g., below 20%).

To this end, we need to infer the taxicabs’ expected SoC at each region given certain

regions are installed with wireless chargers. KDE can be used to describe the taxicabs’

probability of reaching a region from another region based on their distance in the

road network. Also, the SoC of a taxicab is a function of the distance from the

taxicab’s source landmark to the destination landmark. Then, the expected SoC of a

taxicab at a landmark in the road network can be calculated. We present the details

below.

Since taxicabs’ mobility patterns imply their traffic flows between certain loca-

tions [120], we feed their trajectories into a KDE model to infer the Probability

Density Function (PDF) of the distribution of the trajectory lengths as in Equation
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(4.7). Given a trajectory length d, the KDE model outputs the probability that a

taxicab takes a trajectory with length d.

f̂(d) =
1

R · h

R−1∑
t=0

K(
d− dt
h

); −∞ < d <∞, (3.4)

where R is the total number of the taxicab trajectories, dt is the length of the tth

trajectory, h is the smoothing parameter influencing the estimation accuracy of the

KDE and is determined according to the MISE criterion [107], K(·) is the kernel

function whose value decays with the increasing of d, which is set to the Gaussian

function based on [60, 114, 115].

According to the state-of-the-art EV energy consumption model [57], the energy

consumption of a taxicab (Ec) is primarily determined by air drag (Eair) and rolling

resistance (Eroll):

∆Ec = ∆Eair + ∆Eroll

= cwv
2∆l + ceκg∆l

(3.5)

where cw is the air drag coefficient determined by vehicle front surface area; v is

the driving speed; ∆l is the distance that the taxicab has moved; ce is the rolling

resistance coefficient; κ is the taxicab’s mass; and g is the gravity acceleration.

Suppose the taxicabs have the same battery capacity, E0, and each taxicab gets

fully charged before leaving a charger. We define the shortest distance between two

regions as the distance of the shortest route between their respective central land-

marks, which are the landmarks located the nearest to the middle of the two regions,

respectively. Given a taxicab starting from a charger, based on Equation (4.9), its

residual energy at a location, which is d distance away from the charger through the

shortest route, can be estimated as Ed
r = E0−

∑R′−1
t=0 (cwv

2
t + ceκg)lt [57], where R′ is

the number of road segments of the shortest route, and vt and lt are the speed limit

and length of the tth road segment, respectively. The taxicab’s SoC at the location
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Figure 3.12: EV drivers’ routing choice behavior.

can be represented as:

SoC(d) =


Ed
r/E0, if Ed

r > 0

0, otherwise.

(3.6)

We use a natural number µi to denote the number of chargers deployed in region

gi. We set bi = 0, if µi = 0; bi = 1, if µi > 1. Then, the expected SoC of the taxicabs

at a region gj ∈ G is:

SoC(gj) =
M−1∑
i=0

f̂(di,j)SoC(di,j)bi, (3.7)

where M is the total number of regions, and di,j is the distance of the shortest route

from gi to gj .

3.3.5 Describing Drivers’ Routing Choice

Charging facility presence might affect EV drivers’ routing choice in a way that they

are more likely to choose routes with charging facilities to mitigate range anxiety

[38, 51]. Therefore, the deployment of new wireless chargers may affect the traffic

distribution on the existing road network due to the mutual interaction between the

location of charging facilities and the resultant network traffic flow. For example,

as shown in Figure 3.12, there are 2 candidate routes with approximate distances

between the EV’s origin landmark and destination landmark. Given the well-known

range anxiety of EVs [19, 73, 91], the EV driver might choose route A, which has

a charging lane, even if its travel time cost (35 minutes) is a bit longer than that

of route B (30 minutes). The decision of choosing whether to charge on the way or
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drive directly to the destination depends on two factors: the travel time cost and

the benefit brought by charging facilities. Therefore, it is necessary to consider EV

drivers’ routing choice behavior in formulating the charger deployment optimization

problem.

Previous studies on EV drivers’ routing behavior have confirmed that for an EV

driver, the probability of choosing a candidate route can be described with a multi-

nomial logit model [19, 73, 91]. Specifically, the model estimates the EV driver’s

probability of choosing a route as below:

Pw
u =

exp(ε 1
Tw
u

+ εywu )∑
k∈Uw exp(ε 1

Tw
k

+ εywk )
,∀u ∈ Uw, w ∈ W, (3.8)

where Pw
u is the probability of choosing the route u among all the candidate routes

between the origin-destination (O-D) pair w; Twu is the travel time cost of the route u

between the O-D pair w; ywu is the binary variable indicating the presence of chargers

on the route u, ywu = 1 if there is at least one charger in u, ywu = 0 otherwise; Uw is

the set of all feasible routes of the O-D pair w reflected in all the historical trajectory

data; W is the set of all possible O-D pairs on the road network; ε and ε are the

scaling parameters for travel time cost and the presence of chargers, respectively,

which describe the routing decision sensitivity in terms of travel time cost and the

presence of chargers. In practice, ε and ε are calibrated by using survey data. In this

study, we follow the settings of these parameters as recommended in [91]: ε = 0.1

and ε = 0.8. According to Equation (3.8), the longer travel time cost a route has,

the lower probability an EV driver will choose the route, and vice versa. This is

consistent with the real-world driver’s expectation of minimizing the travel time cost.

According to [20, 38], the travel time cost of a candidate route consists of the

driving time of normal road segments (tdu), the driving time of charging lanes (tcu)

and the waiting time at the charging lanes (twu ). The driving time of normal road

segments included in the route u can be calculated as:
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tdu =

NR
u −1∑
n=0

ln
vn
, (3.9)

where NR
u is the number of road segments of the route u, vn and ln are the speed

limit and length of the nth road segment, respectively.

The time spent at stationary chargers consists of the EVs’ waiting time before

charging and charging time. Let λi denote the arrival rate of EVs at the chargers

located at landmark pi (i.e., the number of EVs arriving at pi for charging per time

unit), which is actually the vehicle flow rate of pi. Let µi denote the service rate

of the chargers located at landmark pi (i.e., the number of EVs that the chargers

can charge per time unit), which is calculated as µi = ni/Tc [45, 48], where ni is the

number of chargers at the landmark and Tc is the time required to fully charge an

EV from 0% to 100% SoC. Thus, an EV’s charging time at the charging lane is:

tcu = 1/µi. (3.10)

The utilization ratio of the chargers is ξi = λi/µi. According to the M/M/1

queuing theory [36, 38], the EVs’ waiting time at the chargers is:

twu =


ξi/µi
1−ξi , if ξi < 0

ξi, otherwise.

(3.11)

Finally, the travel time cost of route u can be calculated as:

Twu = tdu + ywu (tcu + twu ). (3.12)

3.3.6 Optimization Problem

Our objective is to minimize the total deployment cost of the chargers, maximize the

opportunity of picking up passengers at the charger positions, and meanwhile ensure

that at each region, the expected SoC of a taxicab is higher than a threshold η (e.g.,
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20%). η is determined so that a taxicab can reach the nearest charger with η SoC left.

We can set η to be a relatively high value, so that the taxicabs are always operable

with high confidence. Meanwhile, the charging rate of the deployed chargers must

be able to support the power demands from all the taxicabs. According to Equation

(4.9), we can derive the battery consumption rate for each taxicab as φ = ∆Ec

∆t
=

cwv
3 + ceκgv. Hence, the battery consumption rate depends on the speed limit of

every road segment. That is, as the speed limit v increases, the battery consumption

rate increases. To derive the maximum battery consumption rate φmax, we use the

maximum speed limit vmax of the entire road map. Finally, the optimization problem

is formulated as:

minimize
∑
gi∈G

ω0ni

maximize
∑
gi∈G

ρ(gi)ni
∑
w∈W

∑
u∈U i

w

f̄ iuP
w
u

subject to SoC(gi) > η,∀ gi ∈ G

C
∑
gi∈G

ni > φmaxV

ni ∈ N,∀ gi ∈ G,

(3.13)

where ω0 is a constant representing the unit cost of deploying a charger, C is the

charging rate of one charger, and V is the total number of taxicabs driving in the

road map. f̄ iu is the average vehicle flow rate (i.e., average vehicle visit frequency) at

pi, which is caused by the vehicles that drive through route u, recall that U i
w is the

set of historical routes that pass through landmark pi, W is the set of all possible

O-D pairs on the road network. This problem tries to minimize the total deployment

cost of the chargers and maximize the total region scores covered by the chargers

with two constraints: i) the expected SoC at any region is no less than threshold

η, and ii) the total charging rate of the deployed chargers is not less than the total

43



battery consumption rate of the electric taxicabs. Given source location gi and des-

tination location gj , the coefficient f̂(di,j)SoC(di,j) in Equation (4.12) is determined.

Therefore, we can use a constant λij to represent f̂(di,j)SoC(di,j). As a result, the

optimization problem (3.13) is actually a classic Multi-objective Integer Programming

(MIP) problem, and its optimal solutions can be found through a branch-and-bound

search [2]. We can use an existing solver (i.e. JuMP [68], MultiJuMP [79]) to obtain

its integer-feasible solution. After solving the optimization problem, we obtain the

number of chargers (µi) in each selected region for charger deployment. For each

selected region, we rank the landmarks within the region by their daily average num-

ber of passenger requests in descending order, and assign the µi chargers to the top

ranked µi landmarks accordingly.

Note that the more passengers appear in a region (i.e., larger ρ(gi)), the more

opportunity the taxicabs will have in picking up the passengers in the region [134].

Meanwhile, the chargers will attract vacant taxicabs to wait in the region, namely

create the opportunity of picking up passengers for the taxicabs. Therefore, our opti-

mization problem has considered maximizing the opportunity of picking up passengers

for the regions. In our future work, we will explore the accurate relationship between

the likelihood of passenger appearance and the distribution of vacant taxicabs to

better describe the opportunity of picking up passengers in the regions.

3.3.7 Taxicab Dispatching

During the driving process, the taxicabs follow the rules below in order to quickly

discover passengers.

1. If a vacant taxicab finds that its SoC is below certain level θ (e.g., 80%), it moves

to the nearest charger and randomly selects a period of waiting time (e.g., 5 to

30 minutes), which is the usual waiting time of taxicab drivers [134].

2. When a taxicab’s SoC is below η (e.g., 20%), it seeks the nearest charger to get
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a full recharge. Note the charging rate of the state-of-the-art vehicular wireless

charging system, say C, is 150 kW [48]. This means for a taxicab with a battery

capacity of 75 kWh, it can be charged with 20% of SoC within around 7 minutes,

which is consistent with the length of time that the taxicabs usually spend on

waiting for passengers [123]. In this case, the time required for fully recharging

a taxicab is around 30 minutes. Note a full charge can only support a taxicab

to drive for around 300 km. However, a taxicab in a metropolitan road network

usually needs to drive 800 km in one day [123]. This means that a taxicab needs to

charge around 3 times (i.e., roughly 2 hours) to support its daily operation, during

which it cannot serve any passenger. Therefore, instead of letting a taxicab be

idle for such a long time, we let it charge opportunistically while waiting for

passengers.

3. When a vacant taxicab’s SoC is above θ, it cruises between chargers to seek

passengers.

4. When a taxicab receives a passenger request before or during charging, if its

SoC is above η and is sufficient for the travel and subsequent charging, it will

stop charging and pick up the passenger; otherwise, it declines the request since

maintaining operability has the highest priority. Note that once the taxicab starts

to serve a passenger request, it won’t stop to charge again until it completes the

current request. For the detailed scheduling of the taxicabs, we refer to existing

taxicab dispatching methods [122, 125, 134].

5. Our charger deployment ensures that there are chargers in less popular regions

because the deployed chargers need to maintain the taxicabs’ SoC to be above

the threshold. However, the taxicabs may not want to serve in less popular

regions. To motivate the taxicabs to stay in less popular regions more often, we

specify the unit charging price in less popular regions to be lower (e.g., $0.11 per

kWh), and the unit charging price in popular regions to be higher (e.g., $0.22 per
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kWh). We leave the exploration of the optimized pricing strategy for balancing

the taxicabs to our future work.

Since a taxicab only waits for 5 to 30 minutes at a charger, cruises between chargers

to seek passengers, and meanwhile our charger deployment makes it very likely for a

taxicab to pick up a passenger while waiting, the taxicabs are moving around and able

to serve the passengers widely distributed in the city. Note the above parameters can

be adjusted according to different service requirements. PickaChu can easily adopt the

taxicab dispatching strategies in previous works [122, 125, 134], which is not our focus

in this dissertation. In a centralized dispatching system, when the system receives a

passenger’s request, it will find the nearest vacant taxicab and notify it of the pick-

up location [134]. In a distributed dispatching system [122, 125], a taxicab receives

passenger request from nearby taxicabs through vehicle-to-vehicle communication,

and decides the route to the location.

Though we allocate different numbers of chargers to different regions, it is still

possible that when a taxicab arrives at a charger, it must wait in a waiting queue.

Currently, the number of chargers in each region is determined based on the likelihood

of passenger appearance. Therefore, each taxicab can quickly pick up a passenger and

leave the charger. Namely the case of a taxicab waiting for an available charger should

be rare. Moreover, we let each taxicab start looking for an available charger as long

as its SoC is below 80%, and it will keep moving between the chargers until it finds

an available charger. Thus, the taxicab will not just wait at a charger position for

its turn of charging. Therefore, the possible waiting time caused by an unavailable

charger is included in the seeking time for charger. We will further study how to

optimize the number of chargers at a charging position so that the taxicabs’ seeking

time caused by looking for an available charger can be minimized.

In the current design of PickaChu, we mainly focus on regular passenger appear-
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ance with stable periods (e.g., airport passenger flows, daily rush hours). For dis-

ruptions or unplanned events, we rely on existing taxicab dispatching methods [122,

125, 134] to guide the taxicabs to adapt to the variation of passenger appearance

frequency. We leave the comprehensive solution of this problem as our future work.

The chargers are deployed one time. When the long-term traffic flows in the city

change significantly, the wireless chargers need to be re-deployed.

3.4 Performance Evaluation

3.4.1 Comparison Methods

To evaluate PickaChu’s performance in reducing the idle time and supporting the con-

tinuous operability of electric taxicabs in a city, we compare it with a representative

charging station deployment algorithm: Optimal Charging Station Deployment [62]

(OCSD in short), and a representative taxicab guiding system: cruising on purpose

(pCruise in short) [125]. We also evaluate the performance of existing deployment of

plug-in charging stations in Shenzhen (Baseline in short) as the baseline.

To make the methods comparable, we assume that they all use the same wire-

less chargers. In OCSD, based on the analysis of taxicab mobility, the chargers are

deployed to minimize the taxicabs’ average seeking time for the nearest charger. To

make methods comparable, in PickaChu, the deployment of chargers is determined by

our optimization solution with the same cost as in OCSD. To demonstrate that Pick-

aChu can further reduce the deployment cost, we also evaluated PickaChu with its

optimization problem solution that minimizes deployment cost (denoted by OptPick-

aChu). We let OCSD, PickaChu, OptPickaChu, and Baseline all use the centralized

taxicab dispatching system explained in Section 3.3.7. As OCSD and Baseline do not

have a strategy to guide pick-ups, the taxicabs wander around in the road network
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to discover passengers before receiving notifications. In pCruise, the taxicabs share

passenger information and cruise on the route with the most passenger requests. By

communicating with its nearby taxicabs, each taxicab creates a cruising graph, which

is the taxicab’s nearby road network with vertices representing intersections, and

edges weighted by the probability of finding a potential passenger. The probability

is calculated as the number of unserved passenger requests over the total number of

passenger requests found on the route. Then it uses the cruising graph to select the

route that has the maximum probability of finding a passenger. In pCruise, we use

the same charger deployment as that in OCSD. In all the methods, when a taxicab’s

SoC is below 20%, it drives to the nearest charger to get a full recharge, during which

they won’t serve passengers.

3.4.2 Experiment Settings

Parameter Settings: The parameters related to chargers, vehicles, and batteries

are listed in Table 3.2. As BYD e6 is a widely used vehicle model among the taxicabs

in Shenzhen [62], we use it to determine the parameters for taxicabs. With the most

recent research implementations (e.g., Oak Ridge National Laboratory [85]), it is ex-

pected that within a 10-year timeframe, it is possible to reach a charging rate over

100kW for EV wireless charging. Therefore, we use 150kW as the charging rate of a

stationary charger. After solving the optimization problem, OptPickaChu selects 93

regions out of 557 regions to deploy 350 wireless opportunistic chargers. PickaChu

selects 125 regions to deploy 480 chargers, as shown in Figure 3.13. We observe that

OptPickaChu results in fewer chargers than PickaChu since OptPickaChu addition-

ally aims to minimize deployment cost. We can see that PickaChu’s deployment is

generally consistent with the distribution of the existing 81 charging stations, which

means it is extensible from the current charger deployment scheme. As for the cal-
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Figure 3.13: Comparison of deployed chargers.

culation of revenue and cost, the unit electricity cost of driving was set to $0.5/mile,

the unit service loss cost of charging (which is the possible loss of revenue earning

opportunity) was set to $0.1/hour, and the unit revenue of traveling with passengers

was set to $1.5/mile.

Table 3.2: Table of parameters.

Parameters Setting Source
Charging rate C 150 kW Chen et al. [20, 31, 113]
Charger unit price ω0 $30,000 Chen et al. [20]
Air drag coefficient cw 0.3 Kurczveil et al. [57]
Rolling resistance coefficient ce 0.01 Kurczveil et al. [57]
Mass of a taxicab κ 2,020 kg Tian et al. [104]
Gravity acceleration g 9.8 m/s2 Tian et al. [104]
Battery capacity of a taxicab E0 75 kWh Tian et al. [104]
SoC threshold η 20% Author’s assumption
Vacant SoC threshold θ 80% Author’s assumption
Maximum speed limit vmax 60 mph Tian et al. [104]
Scaling parameters of drivers’ choice behavior ε and ε ε = 0.1 and ε = 0.8 Riemann et al. [91]

Simulation Settings: With the deployment schedule, we use SUMO [56] to

simulate the operation of 1,000 taxicabs on Shenzhen’s road network for 24 hours

in multiple days, which are January 12 (Monday), March 10 (Tuesday), May 13

(Wednesday), July 16 (Thursday), September 18 (Friday), November 21 (Saturday)

and December 13 (Sunday) in 2015. These days are representative because they

are unrelated to each other, belong to 4 different seasons, and cover weekdays and
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weekends [121]. In SUMO, taxicabs drive by following the traffic model we built

in Section 4.3.4.1. The location and time of passenger requests follow the actual

passengers’ requests happened on January 12, March 10, May 13, July 16, September

18, November 21 and December 13 in 2015. We converted OpenStreetMap road

network of Shenzhen to a SUMO road network file. We assume that each taxicab can

only serve one passenger in a travel [125].

We use the movement records of the taxicabs mentioned in Section 2.2 for per-

formance evaluation. Below, Figure 3.15 to Figure 3.32 demonstrate the metrics

of the vehicles under different hours on July 15, 2015. Figure 3.33 to Figure 3.35

demonstrate the metrics of vehicles in multiple days, which are January 12 (Mon-

day), March 10 (Tuesday), May 13 (Wednesday), July 16 (Thursday), September 18

(Friday), November 21 (Saturday) and December 13 (Sunday) in 2015. Specifically,

we measured the following metrics:

•Ratio of an operation phase: the average hourly ratio of the time duration of re-

spective operation phase (i.e., cruising, travel, seeking chargers, charging) of all the

taxicabs. For an operation phase, we first record the average hourly ratio of each taxi-

cab during the day. Then, we calculate the average of the ratios of all the taxicabs.

We also show the CDF of vehicles in terms of the time duration for each operation

phase.

•Revenue: the daily average revenue earned by all the taxicabs through traveling

with the passengers. It is calculated by multiplying all the taxicabs’ daily traveling

distance with the unit revenue of traveling with passengers. We also show the CDF

of vehicles in terms of the daily revenue for traveling phase.

•Cost : the sum of the daily average cost of the electricity consumed by all the taxicabs

through driving (i.e., cruising, seeking chargers, and traveling) and the daily average

service loss cost caused by charging. The cost of cruising, seeking chargers and
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traveling is calculated by multiplying the driving distance of respective phase with

the unit electricity cost of driving. The cost of charging is calculated by multiplying

the charging time with the unit service loss cost. We also show the CDF of vehicles

in terms of the daily cost for each idle operation phase.

•Vehicle SoC : we measure the SoC of each taxicab at each hour during a day, and

calculate the median, 5th percentile and 95th percentile values to compare the perfor-

mance of the methods in supporting the continuous operability of taxicabs.

•Overall energy supply overhead : the energy supply overhead on all chargers in kWh.

We measure it under different hours during a day to observe different methods’ charg-

ing pressure on the power grid.

•The number of served passengers : the number of passengers served by the taxicabs.

We measure it under different hours during a day to compare the performance of the

methods in serving passengers.

3.4.3 Validation of Likelihood of Passenger Appearance

To validate the effectiveness of our method on estimating the likelihood of passenger

appearance, we measured the error ratios between the actual number of passenger ap-

pearances and the estimated likelihood (scores) of passenger appearance in different

regions with the historical passenger appearance data of 7 different days, which are

January 12 (Monday), March 10 (Tuesday), May 13 (Wednesday), July 16 (Thurs-

day), September 18 (Friday), November 21 (Saturday) and December 13 (Sunday)

in 2015. These days are representative because they are unrelated to each other,

belong to 4 different seasons, and cover weekdays and weekends [121]. Specifically,

since these two metrics have different units, we first normalize them to have values

between 0 and 1 (Min-Max Normalization) [34]. Then, we calculated the error ratio

between the two metrics as:
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Figure 3.14: Distribution of error ratios in all regions.

ER =
|vp − vρ|

vρ
· 100%, (3.14)

where vp and vρ represent the values of the same region for the normalized actual

number of passenger appearances and the normalized likelihood (score) of passenger

appearance, respectively. Figure 3.14 shows the distribution of error ratios between

the normalized average actual number of passenger appearances per day and the

normalized likelihood (score) of passenger appearance in all regions. We can see that

on most days (except Jul 16), our method of estimating the likelihood of passenger

appearance can achieve an error ratio lower than 20% in more than 80% of the regions.

This means that the estimated scores reflect the passenger appearance in most regions

with a low error.

3.4.4 Experimental Results

3.4.4.1 Ratio of Each Operation Phase

Figure 3.15 shows the average hourly ratio of each operation phase of all the taxicabs

throughout a day. We see that for all the idle operation phases (i.e., cruising, seek-

ing and charging), PickaChu has the lowest ratio. We also see that compared with

pCruise, OCSD and Baseline, the cruising time in PickaChu is greatly reduced. Cor-
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over time.
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Figure 3.17: CDF on the durations of different operation phases.

respondingly, the time that PickaChu’s taxicabs spend on traveling with passengers

on board (92%) is about 15% higher than that of pCruise (77%), 35% higher than that

of OCSD (57%), and 33% higher than that of Baseline (59%). In OCSD, to discover

passengers, the taxicabs must wander around in the road network, which increases

cruising time. What’s worse, with more time spent on cruising, the taxicabs have to

charge more frequently to remain operable, which leads to higher ratios of seeking

phase and charging phase than the other methods. As for pCruise, the taxicabs are

always guided to the route with the highest probability of discovering passengers,

which greatly reduces cruising time. However, the effective discovery of passengers

still causes the taxicabs to waste much time on approaching the potential passengers.

Compared with Baseline, only OCSD spends more time on cruising, which is caused

by its inefficient discovery of passengers. But we also notice that Baseline’s time of
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Figure 3.19: Cost variation of each idle
phase over time.

seeking chargers ranks the highest, which means Shenzhen’s current deployment of

charging stations needs improvement in accessibility. In PickaChu, since the taxicabs

are allowed to stay at an opportunistic charger for some time, and the regions with

chargers have high likelihood of passenger appearance, many taxicabs find passen-

gers during their stay. Compared to pCruise, this strategy further reduces the time

wasted on cruising for passengers and saves energy for the taxicabs. We notice that

compared with other methods, PickaChu also reduces the charger seeking time. This

is because that taxicabs cruise between chargers, and are less likely to exhaust their

power.

Figure 3.16 shows the variation of the ratios of the idle phases by hour throughout

a day. We can see that in pCruise and OCSD, the taxicabs have to spend a large

portion of time on cruising during each hour. Also note that there are small bumps

on the cruising time curves in pCruise and OCSD. This is because there are not

enough passenger pick-up requests appearing between 05:00 and 07:00, so the ratios

of cruising phase in pCruise and OCSD are increased during these hours. In contrast,

in PickaChu, except for the first few hours, during which most of the taxicabs do

not need to get charged, and keep cruising between the regions with opportunistic

chargers, the time on cruising is largely replaced with the time of seeking chargers

and charging in the following hours.
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Figure 3.20: CDF on the cost/revenue of different operation phases.

Figure 3.17 demonstrates the CDF of the taxicabs on the time durations of dif-

ferent phases. Figure 3.17 (a) shows that the taxicabs’ cruising phase durations in

PickaChu (< 1 hour) are much shorter than those of the other methods. Figure 3.17

(b) shows that the taxicabs’ traveling phase durations in PickaChu and OptPick-

aChu (> 20 hours) are significantly longer than those of the other methods. This

is caused by their difference in operation strategies. Figure 3.17 (c) shows that due

to the same deployment of chargers in pCruise and OCSD, they have similar distri-

butions of seeking phase durations (1 hour ∼ 2.5 hours). Baseline has much longer

seeking phase durations (1 hour ∼ 6.5 hours), which means that the current charger

deployment needs improvement. In Figure 3.17 (d), all the taxicabs in PickaChu have

much shorter charging phase durations (< 0.8 hours) than the others, which means

it also reduces the need for recharge. Except for the seeking phase, the distribution

of other operation phase durations in PickaChu is much more concentrated than the

others, which further proves the consistency of PickaChu’s effectiveness on all the

taxicabs. We also see that OptPickaChu is slightly worse than PickaChu in reduc-

ing idle operation time, though it still outperforms other methods. This shows that

PickaChu can achieve better performance on operation efficiency even with relatively

lower deployment cost than the others.

In addition, we also measured the average revenue resulted from the traveling
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Figure 3.21: Vehicle SoC.

phase, and the average cost resulted from the other idle phases during the day, which

are shown in Figure 3.18. We can see that compared with pCruise, OCSD and

Baseline, OptPickaChu and PickaChu can increase the average revenue of all the

taxicabs’ by approximately more than $250, $500 and $600 per day, respectively,

with almost the same average cost. We also measured the changes of the costs of

different methods under various hours, which are shown in Figure 3.19. The reason is

the same as that of Figure 3.16. We also measured the distribution of the revenues,

and the distribution of the costs of the taxicabs, which are shown in Figure 3.20.

We can see that most of the taxicabs in PickaChu and OptPickaChu spend less than

$50 on cruising and less than $300 on seeking chargers, which are less than those of

the other methods. The taxicabs’ costs spent on seeking chargers in PickaChu and

OptPickaChu are comparable to those of the other methods. However, the revenues

of the taxicabs in PickaChu and OptPickaChu (> $1,400) are conspicuously higher

than those of the other methods.

3.4.4.2 SoC Maintenance of Taxicabs

We measured the SoCs of all the taxicabs at each hour throughout a day. As we

cannot show all the SoCs in a figure, we plot the median, 5th and 95th percentiles of

SoCs of all the taxicabs at a few time points in Figure 3.21. We see that OptPickaChu
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Figure 3.22: Energy supply overhead.
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Figure 3.23: Num. of served passengers.

and PickaChu maintain almost the same SoC levels as the other methods. However,

as observed in Section 4.4.3.1, the taxicabs in the other methods spend more time

on idle phases, which results in a lower energy efficiency and lower profits. Note that

OptPickaChu provides a comparable SoC as the other methods during most of the

time, although it has fewer deployed chargers. This demonstrates its effectiveness on

minimizing the deployment cost while still guaranteeing the SoC of taxicabs.

3.4.4.3 Overall Energy Supply Overhead

Figure 3.22 shows the overall energy supply overhead of different methods under differ-

ent hours throughout a day. The results follow: OCSD>Baseline>pCruise>PickaChu

≈OptPickaChu. We can see that PickaChu and OptPickaChu result in the least pres-

sure on the power grid given the same number of taxicabs. Rather than cruising for

passengers as pCruise, Baseline and OCSD, the taxicabs in PickaChu and OptPick-

aChu can wait at the chargers for their next passengers. Moreover, since the taxicabs

in OCSD and Baseline cannot effectively harvest passengers from chargers, they drive

more idle trips and require more charging.

It is worth mentioning that in the first few hours, the energy supply overhead

increases significantly. For pCruise, Baseline and OCSD, the peak that appears be-

tween 05:00 and 07:00 is caused by the lack of passengers. Taxicabs start with 100%

SoC. Since there are few passengers during 00:00-07:00, the taxicabs in pCruise, Base-
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Figure 3.24: Waiting time of passengers.

line and OCSD keep cruising for passengers and their SoC keeps decreasing. Finally,

all taxicabs exhaust their SoC and recharge at about the same time, resulting in a

peak in charging overhead. After then, their SoC exhausts at different times caused

by different passengers. Therefore, they charge at different times, resulting in no

peaks in charging overhead. The energy supply overhead in PickaChu and OptPick-

aChu stabilize more quickly, which reflects their resilience against the variation of

passengers.

3.4.4.4 Service Performance

Figure 3.23 shows the numbers of served passengers of different methods during

different hours throughout a day. We see that during the hours with relatively

fewer requests (01:00-08:00), the results follow: PickaChu>OptPickaChu>pCruise>

OCSD≈Baseline. After then, pCruise can serve slightly more passengers (< 1,000)

than PickaChu, OCSD and Baseline. Figure 3.24 shows the distribution of the wait-

ing time of the passengers (upper part), and the average, 5th and 95th percentiles of

the waiting time of the passengers (lower part) in different methods. We can see that

the passengers’ average waiting time in OptPickaChu (8 minutes) is longer than the

other methods. Since there are fewer chargers in OptPickaChu, so the chargers are

more sparsely distributed in the road network. Since the vacant taxicabs cruise be-
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tween the chargers, the waiting time of the passengers in the regions without chargers

is usually very long, which results in the longer average waiting time of passengers

in OptPickaChu. We also find that the results of PickaChu (5 minutes), OCSD (5

minutes), and Baseline (6 minutes) are comparable to each other, and the result of

pCruise is the shortest (2 minutes). In PickaChu, most of the passengers are picked

up in the regions with chargers. Since the distance from the taxicabs to the pas-

sengers is bound by the region size (i.e., 2,000 meters), the passengers’ waiting time

is not very long. In OCSD and Baseline, the taxicabs randomly cruise in the road

network, which means most of the passengers are picked up during the cruising of the

taxicabs. Thus, the passengers’ waiting time is comparable to that of PickaChu. In

pCruise, the taxicabs are always cruising on the routes with the maximum probability

of finding a passenger, so the passengers have the shortest waiting time.

When there are few pick-up requests, PickaChu serves more passengers than

pCruise. This is because in pCruise, through vehicle-to-vehicle communication, a

taxicab may not discover sufficient passengers to generate an effective cruising graph

for guidance. On the contrary, the taxicabs in PickaChu wait at the regions with

high likelihood of passenger appearance, which helps the taxicabs efficiently discover

passengers. When there are many pick-up requests, the taxicabs in pCruise can easily

discover requests. Hence, pCruise can serve more passengers than PickaChu during

this time, but at the cost of more energy consumption, as mentioned in Section 3.4.4.3.

We see that PickaChu always outperforms OCSD and Baseline, which spend more
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Figure 3.27: Effectiveness of components.
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Figure 3.28: Served passengers.

time on cruising, seeking and charging. In addition, OptPickaChu provides service

performance comparable to PickaChu, although PickaChu deploys more chargers.

This is because the redundant chargers do not significantly benefit the discovery of

passenger requests. This shows the effectiveness of OptPickaChu on minimizing the

deployment cost while achieving our objectives.

Figure 3.25 shows the service rate (i.e., ratio between the number of served pas-

sengers and the total number of passenger requests) of each region. Figure 3.26 shows

the distribution of daily average passenger requests in the regions. We can see that

even for the distant regions with rare appearance of passengers (e.g., northwestern

regions), the service rates were kept at high levels. Namely, the distribution of service

rates is balanced among the regions. Note the service rates in the southern regions

are relatively low. This is because in the simulation, the 1,000 taxicabs, which is

limited by the simulator, cannot serve all the passenger requests.

3.4.4.5 Effectiveness of Components

As discussed in Section 4.3.3.3, the additional consideration of building functionalities

(H̄i) in calculating the region scores in Equation (3.3) can help more accurately reflect

the likelihood of passenger appearance in different regions, and then better guide the

deployment of wireless chargers. Additionally considering the frequency of passenger

appearance in Equation (3.3) serves the same purpose. To demonstrate the effective-
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ness of these two components, we recalculated the score of each region (ρ(gi)) without

multiplying the weighted sum of the building functionalities (denoted as NoBuilding),

and without multiplying the weighted sum of the passenger appearance frequencies

(denoted as NoFrequency). Based on the new region scores, we redetermined the

deployment of chargers, and measured the average costs and revenues of the taxicabs

during the day as shown in Figure 3.27. In addition, we also measured the number of

passengers served by the taxicabs in different methods under different hours as shown

in Figure 3.28, and the distribution of the travel phase durations of the taxicabs as

shown in Figure 3.29 and the distribution of the revenues of the taxicabs as shown in

Figure 3.30.

We can see that compared with NoBuilding and NoFrequency, PickaChu increases

the average revenue by $150 and $75 per taxicab, respectively, while the costs are

almost equal. Also, PickaChu can serve at most 1,000 more passengers than NoFre-

quency, and at most 2,500 more passengers than NoBuilding. This is because with

considering these two components, the region scores can more accurately reflect the

likelihood of passenger appearance and the resultant charger deployment in PickaChu

can provide higher opportunity of picking up passengers for the taxicabs.
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3.4.4.6 Impact of the Number of Chargers

Our optimization problem outputs the selected regions for deploying chargers, and

the number of chargers at each selected region. To illustrate the impact of the total

number of chargers on the taxicabs’ operation efficiency, from the optimally selected

regions, we randomly picked 10 to 90 regions to deploy the chargers, while the number

of chargers per region remains the same as that in the optimization output. We then

measured the average, 5th and 95th percentiles of the revenues and the costs of the

taxicabs under various total numbers of chargers, which is shown in Figure 3.31. We

can see that along with the increasing of the total number of chargers, the average

revenue of the taxicabs keeps increasing, and the average cost of the taxicabs keeps

reducing. This is because the more chargers deployed, the less idle miles the taxicabs

need to drive in seeking the chargers, which reduces the taxicabs’ cost. Meanwhile,

the taxicabs’ opportunity of picking up passengers also increases with the increased

number of chargers, which increases the taxicabs’ revenue.

We also measured the distribution of the numbers of the chargers in the regions,

which is shown in Figure 3.32. We can see that there are fewer regions deployed

in OptPickaChu than in PickaChu (93 vs. 125), and the majority of the regions in

OptPickaChu have 3 chargers, and the majority of the regions in PickaChu have 4

chargers. This is because OptPickaChu has smaller total deployment cost, it must

deploy fewer chargers per region so that the chargers can be deployed to a sufficient

number of regions to support the SoC of the taxicabs. While PickaChu has a higher

budget, so it can select more regions to deploy wireless chargers and deploy more

chargers per region.
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Figure 3.33: Ratios of travel phase of all
vehicles in different days.
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Figure 3.34: Hourly average SoC of all ve-
hicles in different days.

3.4.4.7 Performance Evaluation on Multiple Days

To further validate the effectiveness of our charger deployment method under different

scenarios, we measured the ratio of travel phase and hourly average SoC of all the

vehicles on different days. Figure 3.33 shows the median, 5th and 95th percentiles

of the ratios of travel phase of all the vehicles on different days. Figure 3.34 shows

the median, 5th and 95th percentiles of the hourly average SoC of all the vehicles on

different days. In these experiments, we assume that all the taxicabs are fully charged

at the beginning of a day. This assumption is reasonable because many previous

studies have confirmed that most EVs are fully charged overnight at their home

or dispatch center [10, 49]. In addition, we also measured the impact of considering

building functionality and the frequency of passenger appearance on the ratio of travel
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phase of the vehicles on different days. The measurement results are illustrated in

Figure 3.35.

From Figure 3.33, we can see that the median values of the ratios of travel phase

of the vehicles generally follow: PickaChu>OptPickaChu>pCruise>OCSD≈Baseline

on weekdays. The only exceptions are on weekends where the ratios of travel phase

significantly drop under all methods. This is because that the appearance positions

of passengers on weekends are quite different with those on weekdays. The charger

positions cannot provide sufficient passenger pick-up opportunities as on weekdays,

which causes the taxicabs to drive less time with passengers onboard (i.e., shorter

travel phase). To let the taxicabs fully adapt to the changed appearance positions, a

dispatching method that schedules the driving and charging of taxicabs according to

the real-time distribution of passenger pick-up requests is needed, which is the focus

of Chapter 5. From Figure 3.34, we can see that the median values of the SoC of the

vehicles in PickaChu and OptPickaChu are generally the same as those of the other

methods on different days, which is consistent with Figure 3.21. This result demon-

strates that although the taxicabs cannot pick up sufficient passengers by temporary

parking at chargers during weekends, the deployed chargers can still maintain the

SoC levels of the taxicabs. Note that the maintaining of the taxicabs’ SoC is at the

expense of the taxicabs’ extra time spent on seeking chargers and charging. Although

Figure 3.15 has already shown that many taxicabs can pick up sufficient passengers

during their stay at an opportunistic charger, which greatly shortens their extra time

spent on seeking chargers and charging, the passenger discovery ability of taxicabs

is significantly dependent on the positions of the chargers. In the scenarios with a

much more different passenger appearance pattern than the charger deployment (e.g.,

weekends, holidays), a dispatching as CD-Guide (Chapter 5) is needed.

To confirm the impact of considering building functionality and the frequency

of passenger appearance on the ratio of travel phase of the vehicles under differ-
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Figure 3.35: Impact of building functionality and passenger appearance frequency on
charger deployment in different days.

ent scenarios, we redeployed the chargers without multiplying the weighted sum of

the building functionalities (denoted as NoBuilding), and without multiplying the

weighted sum of the passenger appearance frequencies (denoted as NoFrequency) in

Equation (3.3). The results are illustrated in Figure 3.35. We can see that the

median values of the ratios of travel phase of the vehicles generally follow Pick-

aChu>NoBuilding≈NoFrequency on weekdays. We also notice that although the

ratios of travel phase under all methods drop on weekends, NoBuilding suffers from

much more drop compared with the others. This result shows that although the pas-

senger appearance positions on weekends differ significantly with those on weekdays,

building functionality is a relatively more stable indicator of passenger appearance.

3.5 Summary

The idle time of electric taxicabs is wasteful against making profits and energy con-

sumption. Wireless charging techniques enable EVs to be charged at their parked

positions. Our proposed PickaChu is the first work that aims at both maximally

reducing the taxicabs’ idle time and supporting the continuous operability of the

taxicabs through proper deployment of wireless opportunistic chargers. Our analyt-
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ical results on a metropolitan-scale taxicab dataset lay the foundation of the design

of PickaChu. We assign scores to regions to represent the likelihood of passenger

appearance in the regions, and model taxicab mobility to calculate the expected SoC

of the taxicabs in each region. We design a multi-objective optimization problem

to minimize the total deployment cost of chargers, maximize the passenger pick-up

opportunity at the chargers, and ensure the continuous operability of the taxicabs.

We conducted trace-driven experiments on SUMO to verify the performance of Pick-

aChu. Compared with the previous methods, PickaChu reduces the taxicabs’ daily

average idle time by 81% and increases the taxicabs’ daily revenue by more than 50%

under the same charger deployment cost. When minimizing the charger deployment

cost, PickaChu reduces the number of chargers by 27%, but still reduces the taxicabs’

daily average idle time by 61% and increases the taxicabs’ daily revenue by more than

40%.

The components of PickaChu can also be used for the planning of many existing

charging facilities, such as fast charging stations, and battery swapping stations. In

future work, we will explore some other region partitioning methods to improve the

charger deployment (e.g., considering building size, city layout plan, and possible

waiting queue length). We will also consider the pattern of passenger appearance to

guide the taxicab pick-ups proactively before receiving passenger requests.
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Chapter 4

Deployment of Dynamic Wireless

Chargers

To fulfill metropolitan transit demands, public transportation EVs (e.g., buses), al-

though only have limited battery capacity, must be continuously driving without

recharging downtime [23]. As discussed in Chapter 1, a dynamic wireless charger is

suitable to charge electrified buses and customized transit vehicles, since their driving

routes are fixed or pre-determined by a ride-hailing service. A road segment deployed

with a dynamic wireless charger is called a wireless charging lane. It however brings

up a new challenge: how to deploy dynamic wireless chargers (i.e., determine the lo-

cations and lane lengths) in a metropolitan road network to minimize the deployment

cost while enabling EVs to be continuously operable on the roads. By operable, we

mean that an EV’s residual energy measured by State of Charge (SoC) (i.e., percent-

age of stored energy) is non-zero. Although there have been multiple works proposed

for optimally deploying plug-in charging stations [5, 26, 58, 93, 108, 119, 137], the

methods cannot be applied to deploying dynamic wireless chargers because of their

different charging approaches. Therefore, in this chapter, we propose CatCharger,

an approach that uses Categorization and clustering of vehicle traffic attributes (i.e.,
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passing velocity, visiting frequency) to determine the deployment of dynamic wireless

Chargers considering metropolitan-scale charging demands of electrified buses and

customized transit vehicles.

The remainder of this chapter is organized as follows. Section 4.1 identifies

the background and challenges in the design of CatCharger. Section 4.2 presents

our metropolitan dataset measurement results. We describe the main design of

CatCharger in Section 4.3 and present our experiment evaluation in Section 4.4.

Section 4.5 concludes this chapter with remarks on our future work.

4.1 Background

Several previous works [5, 26, 137] deploy charging stations based on the demands

deduced from models (e.g., queueing theory, driver preference, and parking patterns).

Bae et al. [5] proposed to deploy charging stations through analyzing the spatial

and temporal dynamics of charging demand profiles at potential positions using the

fluid dynamic model. Zheng et al. [137] formulated an optimization problem trying

to maximize the number of EVs charged while minimizing the life cycle cost of all

the stations. Eisel et al. [26] aimed at dealing with drivers’ range anxiety (i.e., fear

of being unable to reach destination due to insufficient charging opportunities) by

transforming the drivers’ preference in charging into planning of stations.

Further, several traffic flow based charging station deployment algorithms have

been proposed [58, 93, 108, 119]. Lam et al. [58] formulated the station placement as

a vertex cover problem, proved its NP-hardness and proposed four solutions. Wang

et al. [108] determined constraints (e.g., driving range, traffic volume) from EV traffic

statistics, and formulated and solved a multi-objective location optimization problem

to maximize the coverage of EV traffic. Sánchez-Mart́ın et al. [93] proposed to deploy

charging stations at the positions with many parking events and suitable parking time
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length with the minimum deployment cost to offer EVs enough charging opportuni-

ties. Yao et al. [119] formulated a problem trying to minimize deployment cost to

maximize the covered EV traffic flow.

However, the methods for deploying plug-in charging stations cannot be used

for deploying wireless charging lanes due to their different charging approaches as

explained in the beginning of this chapter. There are two main challenges that need

to be addressed in handling the dynamic wireless charger deployment problem:

(1) Reducing charging lane length. The charging lanes need to be as short as

possible in order to reduce the deployment cost, while still enabling EVs to be fully

charged when they pass a lane. However, how to select locations for charging lane

deployment to achieve this objective is challenging.

(2) Reducing the number of deployed charging lanes. The problem of determin-

ing the locations of the charging lanes on a metropolitan road network to maintain the

continuous operability of the EVs on roads, while minimizing the number of deployed

charging lanes, is non-trivial.

4.1.0.1 Vehicle Velocity at Charging Lanes Matters

The amount of energy transmitted to an EV from a wireless charging lane (E) equals:

E = L · r/v, where L denotes the length of the charging lane, r denotes its energy

supply rate, and v denotes the vehicle’s speed passing through the charging lane.

Since EVs with different battery capacities may pass a charging lane with various

speeds, to ensure that any EV can be charged certain amount of energy after it

passes a charging lane with a speed slower than a certain value (average vehicle

passing speed in this paper), we can manually specify an expected minimum charge

amount threshold Emin (e.g., the 50%, 80%, or 100% of the EVs’ maximum battery

capacity). That is, any EV can be charged with at least Emin if it passes through

the charging lane with a speed slower than the average vehicle passing speed at the
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charging lane. A larger Emin enables the charging lanes to maintain higher SoC

levels in application, but requires higher cost (i.e., longer charging lane length) and is

limited by technology issues [45], and vice versa. Thus, the value of Emin should be

adjusted according to city planner’s expectations. Therefore, when a landmark i with

average passing speed vi is chosen to deploy a charging lane, its length is determined

to meet the above condition:

Li =
Emin
r

vi. (4.1)

Note Emin

r
is a constant, so the charging lane length (Li) is directly determined

by vehicle average passing speed (vi). Since a longer charging lane leads to higher

deployment cost [48, 50, 83], the charging lanes should be placed at the positions with

the slowest passing speed. Then, the charging lane has the shortest length that can

fully charge passing EVs.

4.1.0.2 Vehicle Visit Frequency and Multi-source Vehicle Traffic Matter

To keep the EVs operable at any location in the city without downtime, the placement

of charging lanes must cover the majority of the EV traffic. Therefore, the selection of

the charging positions should also consider EV visit frequency. Meanwhile, to support

the operability of all EV-based public transit services, considering a single source of

vehicle traffic may generate bias and we must consider all sources of vehicle traffic.

Our datasets meet this requirement.

4.2 Dataset Analysis

A road network is essentially a directed graph, in which nodes represent intersections

and edges represent road segments [135]. The movement records of a vehicle are

continuous. We first generate the driving trajectory of each vehicle. We view a
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Figure 4.1: Distribution of potential positions for placing charging lanes.

vehicle has finished its previous trajectory if it stops at a location for more than

10 minutes. Thus the stopping locations cut the movement records into multiple

trajectories. Since vehicles usually change movement at intersections, we map each

position record to its nearest landmark (in Euclidean distance). Then, a vehicle

trajectory can be represented by a sequence of landmarks [121]. We define vehicle

trajectory as:

Definition 5 A vehicle ni’s trajectory is a sequence of time-ordered spatial positions,

Tri : {(p0, t0), (p1, t1), . . . , (pm, tm)}, where each position is represented by a latitude

and a longitude pj = (latj, lonj).

Through measurement, we found that the range and the average of vehicle visit fre-

quency at a landmark are [0/day, 96, 637/day] and 3, 840/day, and the range and the

average of vehicle passing speed in a landmark are [0km/h, 142km/h] and 20km/h.

Figure 4.1 shows the distribution of landmarks (black dots) whose vehicle visit fre-

quency is higher than 104/day, and vehicle passing speed is lower than 60km/h. The

territory of Shenzhen consists of 7 functional regions (e.g., commercial, residential).

We can see that each region has several candidate landmarks with both high vehicle

visit frequency and slow passing speed.

Figure 4.2 shows the Cumulative Distribution Function (CDF) of average vehicle

passing speed and average vehicle visit frequency per day of each landmark. Figure 4.3

71



plots the density distribution of vehicle passing speed with respect to (w.r.t.) vehicle

visit frequency to illustrate the distribution of positions with both slow vehicle passing

speed and high vehicle visit frequency. In Figure 4.2, we see that the landmarks

with vehicle visit frequency higher than 104/day only take less than 25% of all the

landmarks, and the landmarks with vehicle passing speed less than 60km/h take up

about 80% of all the landmarks. In Figure 4.3, we can see the landmarks with both low

vehicle passing speed (60km/h) and high vehicle visit frequency (104/day) take up a

small portion within the red square circle. Additionally, even for the landmarks with

high average vehicle visit frequency, their actual vehicle visit frequency may vary a lot.

Considering that the charging lane length is determined after deployment, a landmark

with a relatively more stable vehicle visit frequency is more suitable for deploying

wireless charging lanes since there will be continuous flows of EVs passing through

them (e.g., landmarks nearby train station, airport). Therefore, we also measured the

variance of the vehicle visit frequency of the landmarks in the square circle of Figure

4.3. The measurement results are illustrated in Figure 4.4. We can see that although

the standard deviation of vehicle visit frequency at around 80% of the landmarks is

lower than 1,000, the standard deviation of vehicle visit frequency at the other 20%

landmarks can be as high as 10,000 in the worst case. Even for some landmarks with

extremely high average vehicle visit frequency, their actual vehicle visit frequency can

vary significantly. This means that the variance (standard deviation) of vehicle visit

frequency of the landmarks needs to be considered in measuring the suitability of

deploying wireless charging lanes.

In addition, we also measured the variance of vehicles’ passing speed at the land-

marks. The results are illustrated in Figure 4.5. We can see that the variances of

vehicles’ passing speed differ a lot in different regions. More than 40% of the positions

have a variance of vehicle passing speed higher than 20km/h, and the variance can

72



0 5 10
x 10

4

0

0.5

1

Vehicle visit frequency

 

0 50 100 150
0

0.5

1

Vehicle passing speed (km/h)

 
C

D
F

 o
f l

an
dm

ar
ks

Figure 4.2: Average vehicle passing speed
& daily vehicle visit frequency.

0 5 10
x 104

0

50

100

150

Vehicle visit frequency

Ve
hi

cl
e 

pa
ss

in
g 

sp
ee

d 
(k

m
/h

)

0.2

0.4

0.6

0.8

1

Figure 4.3: Density scatter of vehicle pass-
ing speed w.r.t. vehicle visit frequency.

be as high as 50km/h. It means that if we solely determine the charging lane length

by vehicles’ average passing speed at these positions, the deployed charging lane may

not be able to fully charge most vehicles passing through the positions. However,

simply deploying charging lanes with the maximum possible length to ensure all the

vehicles can be fully charged is unrealistic due to high deployment cost. Therefore,

in addition to average vehicle passing speed, we need to also consider the variance

of vehicle passing speed at the potential charging positions. The above observations

motivate us to find an innovative method to properly extract candidate charging lane

placement positions considering the diversity in vehicle passing speed and visit fre-

quency, and their distribution in different regions. The details will be elaborated in

Section 5.3.4.

Average vehicle flow rate of a landmark is defined as the average number of vehicles

driving through the landmark per unit time [6, 35]. From the definition of average

vehicle flow rate of a landmark, it equals to the product of average vehicle density

and average vehicle passing speed on the landmark. A landmark with a high vehicle

flow rate means that there are many vehicles that pass through the landmark per unit

time, and the vehicles can pass the landmark with a relatively high velocity (i.e., no

traffic congestion). Thus, it is usually a good indicator on how well a charging facility

can serve EVs. Therefore, in addition to vehicle visit frequency, we also measured the
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Figure 4.5: Variance of vehicle passing
speed of landmarks.

average vehicle flow rate of all the landmarks. We consider the landmarks in the red

square in Figure 4.3 as potential candidate landmarks (i.e., landmarks with vehicle

visit frequency higher than 104/day and vehicle passing velocity lower than 60km/h).

We also measured the average vehicle flow rate of the candidate landmarks. The

CDF of the measurement results are illustrated in Figure 4.6. The black curve is the

measurement results of all the landmarks. The red dashed curve is the measurement

results of candidate landmarks suitable for deploying in-motion wireless chargers. We

can see that the black curve is about to reach 1 at a vehicle flow rate of 1000/h (i.e.

almost all landmarks have a vehicle flow rate that is less than 1000/h). About 80% of

all the landmarks have a vehicle flow rate less than 125/h. About 60% have a vehicle

flow rate less than 62/h. The trend of the result is similar to that in Figure 4.2.

From the measurement results of candidate landmarks (i.e., red dashed curve in

Figure 4.6), we can see that its general trend is similar to that of the black curve but

shifts to the right significantly. This means that the potential candidate landmarks

typically have much higher average vehicle flow rate than other landmarks. Specif-

ically, the CDF is about to reach 1 at a vehicle flow rate of 2500/h. About 80%

of all candidate landmarks have a vehicle flow rate less than 750/h. About 60% of

all candidate landmarks have a vehicle flow rate less than 625/h. We can see that

although all the candidate landmarks have a much higher vehicle flow rate than other
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landmarks, their vehicle flow rates still vary a lot. We must consider deploying in-

motion wireless chargers to the positions with the highest vehicle flow rate to ensure

the total charging capability of the deployed chargers. In Section 4.3.4.2, we will ex-

plicitly explain how we consider the average vehicle flow rates of candidate landmarks

in determining the locations to deploy wireless charging lanes.

We further compare the mobility of each vehicle source with the total public transit

mobility to demonstrate the necessity of using multiple sources of vehicle mobility in

collecting traffic statistics. We define an activity of a vehicle as a position change in

the vehicle’s trajectory. Then, we calculate the average number of the activities of

each kind of vehicles during each hour throughout a day for one month. Next, we

use the Pearson correlation coefficient [87] to measure their respective correlation to

the total movement activity of public transit vehicles (i.e., bus+taxi+Dada bus), as

shown in Figure 4.7. The result shows that during morning hours (i.e., 00:00∼06:00),

the activity of taxis is more correlated with the public transit mobility than bus and

Dada bus, which means that the taxis play the main role in public transit service

during this period of time. This is because most bus lines and customized transits

are not in service during this period. Starting from 07:00, the correlation between

the bus and the public transit mobility is higher than the others. This is because the

buses are in service after this time point, so they represent the public transit mobility
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the most. Since the operation of Dada buses is driven by crowdsourced requests, so

they do not operate throughout 24 hours. Therefore, it has low correlation to the

public transit traffic at many time points in the figure. We see that at around 12:00,

13:00 and 18:00, the correlation of Dada buses to the public transit mobility is close to

the others. It means that during these times, Data buses provide a majority service

to meet the public transit demands, and the mobility of the Dada buses must be

considered in measuring the public transit demands that the charging lanes need to

satisfy.

Considering that the vehicles’ trajectories reflect their traffic between different

locations [120], and the length of a trajectory determines the energy consumption, we

calculated the length of the trajectories of each vehicle in one month. The distribution

of the collected trajectory lengths is shown in Figure 4.8. We can see that most of the

trajectories are less than 10,000 meters. The long trajectories are mostly generated by

buses, as they drive continuously on scheduled routes when in service. However, the

distribution of the trajectory lengths cannot be simply modeled using a parametric

distribution. Since KDE is a non-parametric method to estimate the probability

density function of a random variable, we feed the lengths of the trajectories to the

KDE model to infer the vehicles’ probability of reaching each landmark in the road

network. The curve in Figure 4.8 represents the distribution fitting result from the
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KDE. The KDE is a function of the trajectory length. Based on a trajectory’s length,

we can calculate an EV’s residual energy after it drives through the trajectory. Then,

using the probability of reaching each landmark from the KDE, we can estimate the

expectation of residual energy of EVs at each landmark on the road network given

deployed charging lanes. Then, we can formulate an optimization problem that aims

to maintain the expected residual energy above a threshold at each landmark with

the minimum charging lane deployment cost.

Summary: We observed that different landmarks have different vehicle pass-

ing speeds and vehicle visiting frequencies. We conclude that the determination of

wireless charging lane positions needs to: (i) consider vehicle passing speed since

it determines the deployment cost of the charging lane required for fully charging

EVs, (ii) consider vehicle visit frequency since it determines the landmark’s capabil-

ity of serving charging demands, and (iii) comprehensively analyze vehicle mobility

from various types of vehicles to ensure that the deployed charging lanes can meet

the charging demands from various vehicles. This conclusion motivates us to design

a novel approach using multi-source vehicle mobility to extract candidate positions

suitable for placing wireless charging lanes, and properly choose the positions so that

they can meet all the charging demands of EVs with the minimum deployment cost.

We find a solution for the charging lane placement challenge as follows:

Solution: Given a road network comprised of a set of landmarks LM , and tra-

jectory datasets of multiple sources of vehicles {Tr}, we first extract candidate po-

sitions from LM that have both slow passing speed and high visit frequency (i.e.,

short length of charging lane required for fully charging an EV and high capability

for serving charging demands). We then further select positions to place charging

lanes to ensure that the expected residual energy of EVs at each landmark is no less

than a threshold with the minimum deployment cost.
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Figure 4.9: Framework of CatCharger.

4.3 System Design of CatCharger

As shown in Figure 4.9, the CatCharger consists of following three stages (highlighted

as three dashed boxes):

1. Vehicle mobility normalization (Section 5.3.3). First, we need to apply the

Data Cleaning on the vehicle datasets. Then, based on OpenStreetMap, we extract

all intersections (landmarks) and generate the Roadmap with Intersections. Finally,

by mapping each position record to respective nearest intersection (in Euclidean dis-

tance), we represent a vehicle’s mobility by a Trajectory in Intersections.

2. Charging lane location candidate extraction (Section 5.3.4). With the data

output from the first stage, we apply the Vehicle Visit Frequency Quantization and

the Vehicle Passing Speed Quantization to generate the traffic attribute values for

each intersection. Then, we apply the Clustering & Sorting of the Intersections’

Attribute Values to extract the intersections with both high vehicle visit frequency

and short required charging lane length.

3. Charging lane location determination (Section 4.3.4). We first use the lengths

of the trajectories to build the Kernel Density Estimator (KDE), which is used to
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estimate the vehicles’ traffic at different landmarks. Then we formulate an optimiza-

tion problem to solve the wireless charging lane deployment problem, and its solution

outputs the locations and lane lengths for Optimal Deployment of Charging Lanes.

4.3.1 Assumptions

Above all, we have the following assumptions for EVs:

1. When an EV needs to recharge its battery, it will drive to the nearest charging lane

for charging. If necessary, the EV will utilize a charging guidance method [72, 104] to

direct its driving route to the most suitable charging station, which is not the focus

of CatCharger.

2. The EVs’ traffic pattern during the time when they do not demand charging (i.e.,

the EVs’ trajectories between their origin and destination) will remain similar as

the EVs’ traffic pattern before the deployment of dynamic wireless chargers. This is

reasonable because that the daily transit demand of city population, which determines

the traffic pattern of the EVs, remains relatively stable among different days (source:

[14, 135]).

3. On a charging lane, an EV driver can only drive a relatively low passing speed

between a maximum allowable speed and a minimum speed limit. The former is

specified according to the planned charging lane length determined by Equation (4.1),

while the latter is a predetermined constant no greater than the former (source: [19]).

4.3.2 Vehicle Mobility Normalization

The original movement records of vehicles are mixed with noises (e.g., records with

duplicated GPS position, timestamp and etc., and records with GPS positions out of

the area range of Shenzhen), so we first need to clean the datasets by removing the

duplicated records. Moreover, as a road network can be abstracted into intersections
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and road segments [135], we map each position record to its nearest intersection in

Euclidean distance. Finally, the original position records generated by the vehicles

in a time period (Figure 4.10 for 07:00–07:30 on July 1, 2015) are normalized to

sequences of landmarks (Figure 4.11).

La
tit

ud
e 

(d
eg

)

Longitude (deg)

Figure 4.10: Original mobility.
La

tit
ud

e 
(d

eg
)

Longitude (deg)

Figure 4.11: Normalized mobility.

4.3.3 Charging Lane Location Candidate Extraction

Vehicle visit frequency on different landmarks varies in different regions [124]. For ex-

ample, the vehicle visit frequency of a landmark in Downtown is generally much higher

than a landmark in an Industrial region. The deployment of charging lanes still needs

to consider the charging demands in Industrial areas as well in order to support the

traffic of the EVs on the entire road network. For this purpose, considering that the

landmarks belonging to the same region usually have similar attribute values (i.e., av-

erage vehicle passing speed, daily vehicle visit frequency), we cluster such landmarks

to one group. Since the landmarks in each group have similar attribute values, they

are almost equally important in deploying location selection. We then choose groups

with better attribute values for deploying charging lanes. Next, from each group, we

further extract the landmarks with the best attribute values from different regions.

Finally, the extracted candidate landmarks are the ones with high suitability for de-

ploying charging lanes, and geographically distributed in different functional regions.
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In the following, we first introduce how CatCharger categorizes attribute values,

and then clusters the landmarks using the entropy minimization based clustering

method.

4.3.3.1 Categorization of Original Mobility Data

As previously indicated, we need to consider two attributes of the landmarks (i.e.,

vehicle passing speed, and vehicle visit frequency) in the deployment. But directly

clustering the landmarks with different numerical attributes is non-trivial because it is

not easy to define “closeness” between the attributes based on the Euclidean distance.

For example, given three landmarks: A(50km/h, 10000/day), B(50km/h, 9000/day)

and C(100km/h, 10000/day). With K-means using Euclidean distance, C is more

similar to A than B, though actually A is more similar to B because they require the

same charging lane length and have high vehicle visit frequency.

To handle this problem, we propose to properly categorize the attribute value

range into several intervals, with each interval representing a range of speed (v) and

visit frequency (f). Jang et al. [48] used a speed variance of 5km/h in determining

the charging lane length, so we use it in categorizing speeds. As for vehicle visit

frequency at landmarks, since there are around 51,000 vehicles being considered, we

use 1,000 as the categorization interval. Each interval has an ID. Thus, the attributes

are categorized into IDs like:

v :{0, 0 ∼ 5km/h}, {1, 5 ∼ 10km/h}, . . . ,

f :{0, 0 ∼ 1000/day}, {1, 1000 ∼ 2000/day}, . . . .
(4.2)

Each attribute has the form <attribute ID, description>. For example, the attributes

of a landmark with an average vehicle passing speed of 3km/h and a daily average

vehicle visit frequency of 1500/day are represented as {0, 1}.
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4.3.3.2 Clustering of Landmarks

After categorization, each landmark is described with two attribute IDs. CatCharger

clusters the landmarks with the most similar attribute values into one group. We

use entropy, which measures categorical disorder (i.e., dissimilarity of attribute IDs

within a group) [7] for clusering. Let’s take the attribute of vehicle passing speed as

an example. Suppose a group has two landmarks with attribute IDs {0} and {1},

respectively. F is a discrete random variable representing an attribute (e.g., average

vehicle passing speed), A(F ) is the set of the attribute IDs of F in a group (e.g., 0,

1), and p(f) is the probability function of F , namely the ratio of the attribute ID in

the group (e.g., 0.5). The entropy of the attribute H(F ) within the group is defined

as:

H(F ) = −
∑

f∈A(F )

p(f) log2(p(f)), (4.3)

where − log2(p(f)) measures the dissimilarity of the attribute in the group. The

entropy of the two landmarks in the example is 1
2

log2 2 + 1
2

log2 2 = 1. Higher dis-

similarity between two landmarks’ attribute IDs leads to a larger entropy. Since each

landmark has two attributes, the entropy of a cluster Ci can be calculated as the sum

of the entropies of the two attributes:

H(Ci) = Hi(F0) +Hi(F1). (4.4)

Suppose all candidate landmarks LM are clustered into k clusters C = {C0, . . . , Ck−1}.

To measure the quality of the clustering, we use the weighted sum of the entropies

of all clusters as the expected entropy resulted from the clustering. The weight for

each cluster is calculated as |Ci|
|LM | , where | · | means the number of landmarks in the

set. Thus, the expected entropy is calculated by:

H(C) =
k−1∑
k=0

|Ci|
|LM |

H(Ci). (4.5)

Given a set of landmarks for clustering, we first find all possible clustering ar-

rangements, and then choose the one with the minimum expected entropy. For ex-
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ample, assume that we have a set of landmarks, lm0 = {1, 2}, lm1 = {0, 2}, and

lm2 = {2, 1}, and we want to form two clusters. We find all possible clustering ar-

rangements, and then choose the one with the minimum expected entropy. Table 4.1

shows all possible arrangements of the landmarks. Since the first clustering results in

the minimum expected entropy, it results in the best clustering quality.

Table 4.1: Table of clusters.

Cluster ID Member landmarks H Exp. Entropy
Cluster 0 lm0 1.0 0.66

lm1

Cluster 1 lm2 0.0
Cluster 0 lm0 2.0 1.33

lm2

Cluster 1 lm1 0.0
Cluster 0 lm0 0.0 1.33
Cluster 1 lm2 2.0

lm1

As a result, the optimal clustering strategy renders clusters whose member land-

marks have the least dissimilar attribute IDs between each other. Unfortunately,

such a clustering strategy is difficult to execute because it is NP-complete [77]. Then,

CatCharger instead follows a heuristic method introduced in [7] to approximate the

best solution. The steps of the landmark clustering are as follows:

(i) Initialization: To cluster landmarks into k groups, we must start with k most

dissimilar landmarks. But directly extracting such k landmarks from the entire set

of landmarks is non-trivial. To handle this problem, we take a sample S from the

set of landmarks LM (|S| � |LM |). In S, we enumeratively calculate the entropy

generated by each pair of landmarks, and place the two landmarks that generate the

maximum entropy in two clusters (C0, C1) as the two starting clusters. Then, the

remaining k − 2 starting landmarks will be incrementally found as the ones that are

most dissimilar with the already determined ones.

(ii) Incremental clustering: After the initialization, the remaining |LM |−k landmarks

will be clustered to the respective starting landmark that renders the minimum total

expected entropy (Equation (4.5)) one by one.
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The major problems with such heuristic clustering include: i) how to select the

sample S, ii) how to determine the number of clusters k, and iii) incrementally clus-

tering the landmarks may deteriorate the clustering quality. For i), we randomly

select γ% (e.g., 10%) of the landmarks from every functional region of Shenzhen, and

combine them as the sample because each region needs several charging positions to

support the EV traffic. For ii), within the sample, we follow the algorithm developed

in [18] to find the most suitable k that results in the maximum difference in entropy

changing rate, of which complexity is O(|S|2). As for iii), we repeat the clustering

steps (in which landmarks are randomly picked) for several times and choose the

result with the minimum entropy.

4.3.3.3 Extracting Top Ranked Landmarks from Clusters

Note the required length of charging lane i (Li) can be calculated by Equation (4.1)

based on the average passing speed of a landmark. Since the shorter charging lane

a landmark requires, and the higher vehicle visit frequency the landmark has, the

more suitable it is for placing a charging lane. In Section 4.2, we also verified that the

variance (standard deviation) of the vehicle visit frequency and the variance (standard

deviation) of the vehicle passing speed of the landmark are two important factors that

will influence how stable the landmark can provide charging service to EVs once it

is equipped with a wireless charging lane. Generally, the less variance of vehicle visit

frequency and the less variance of vehicle passing speed a landmark has, the more

stable a wireless charging lane can serve many EVs and fully charge the EVs at this

landmark. Therefore, we need to extract landmarks that have short charging lane

length, high vehicle visit frequency, and small variance of vehicle visit frequency and

vehicle passing speed. Then, we define the rank of a landmark lmi ∈ Cj as:
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R(lmi) =
log( f̄i

σf
i

)

Liσvi
, (4.6)

where f̄i is the average vehicle visit frequency at lmi, σ
f
i is its standard deviation, and

σvi is the standard deviation of vehicle passing speed at lmi. Thus, the larger f̄i and

the smaller Li that lmi has, and meanwhile the smaller σvi and σfi the landmark has,

the higher rank it will have. We use logarithmic value of f̄i because f̄i is generally

much larger than Li. To ensure the suitability of selected landmarks, we need to

remove landmarks with low ranks. For this purpose, we calculate the average rank

of each group, and then remove groups with ranks lower than a threshold. Next, we

order the landmarks in each group in decreasing order of the rank. In one group,

if there are several landmarks in one region, we remove the low-rank landmarks.

Finally, we select the top ranked η% (e.g., 10%) of the landmarks from each group,

and use them as the candidates for charging lane deployment, which are denoted as

L̃M = {lm0, lm1, . . . , lm|L̃M |}.

4.3.4 Charging Lane Location Determination

To determine the deployment plan on the selected candidate locations, we first use

the KDE, which is fed with vehicle mobility, to infer the EVs’ expected residual

energy at each landmark given that certain landmarks are installed with charging

lanes. Then, we formulate an optimization problem that aims to minimize the total

cost of deployment while ensuring that the EVs can have a certain level of expected

residual energy when they arrive at each landmark. This residual energy level enables

an EV to move to its nearest charging lane.

4.3.4.1 Inferring Expected Residual Energy

KDE can be used to describe the vehicles’ probability of reaching a landmark on

the road network given a source landmark. Also, the residual energy of a vehicle
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is a function of the distance from the vehicle’s source landmark to the destination

landmark. Then, the expected residual energy of a vehicle at a landmark in the road

network can be calculated. We present the details below.

Since vehicles’ mobility patterns imply their traffic at certain locations [120], we

feed the vehicles’ trajectories into a KDE model to infer the probability density func-

tion (PDF) of the distribution of the trajectory lengths as in Equation (4.7), namely

the trip lengths that need to be supported.

f̂h(d) =
1

mh

m−1∑
i=0

K(
d− di
h

); −∞ < d <∞, (4.7)

where m is the number of sample trajectories, di is the length of the ith trajectory,

and h is the smoothing parameter influencing the estimation accuracy of the KDE

and is determined according to the MISE criterion [107]. K(·) is the kernel function

whose value decays with the increasing of d. It is set to the Gaussian function as in

Equation (4.8) based on [60, 61].

K(
d− di
h

) =
1√
2π

exp

[
−(d− di)2

2h2

]
. (4.8)

According to the state-of-the-art EV energy consumption model [57], the energy

consumption of a taxicab (Ec) is primarily determined by air drag (Eair) and rolling

resistance (Eroll). Therefore, the consumption rate is:

∆Ec = ∆Eair + ∆Eroll

= cwv
2∆l + ceκg∆l

(4.9)

where cw is the air drag coefficient determined by vehicle front surface area; v is

the driving speed; ∆l is the distance that the taxicab has moved; ce is the rolling

resistance coefficient; κ is the taxicab’s mass; and g is the gravity acceleration.

According to Equation (4.1), any EV can be at least charged to the expected

charge amount threshold Emin if it drives through a charging lane with a speed slower

than the landmark’s average vehicle passing speed. Given an EV starting from a
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charger, based on Equation (4.9), its residual energy (i.e., SoC) at a location, which

is d distance away from the charger through the shortest route, can be estimated as

[57]:

Edr = Emin −
NR−1∑
n=0

(cwv
2
n + ceκg)ln, (4.10)

where NR is the number of road segments of the shortest route, and vn and ln are the

speed limit and length of the nth road segment, respectively. Then, the EVs’ SoC at

the location can be represented as:

SoC(d) =


Edr /E0, if Edr > 0

0, otherwise.

(4.11)

Thus, given a binary integer xi to denote whether a candidate landmark lmi ∈

L̃M is installed with a charging lane or not, the expected SOC of EVs at a landmark

lmj ∈ LM in the road network is:

SOC(lmj) =

|L̃M |−1∑
i=0

f̂(di,j)SOC(di,j)xi, (4.12)

where di,j is the shortest route distance from lmi to lmj .

4.3.4.2 Formulating Optimization Problem

Our objective is to minimize the total deployment cost through properly selecting

landmarks from L̃M to install charging lanes while ensuring that at each landmark,

the expected residual energy of an EV is higher than a threshold η (e.g., 20%). The

threshold is determined so that an EV uses the residual energy to reach the nearest

charging lane. We can set η to be a relatively high value, so that the taxicabs are

always operable with high confidence. Meanwhile, the charging rate of the deployed

chargers must be able to support the power demands from all the EVs. According to

Equation (4.9), we can derive the battery consumption rate for each EV as φ = ∆Ec

∆t
=

cwv
3 + ceκgv. Hence, the battery consumption rate depends on the speed limit of
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every road segment. That is, as the speed limit v increases, the battery consumption

rate increases. To derive the maximum battery consumption rate φmax, we use the

maximum speed limit vmax of the entire road map. In Section 4.2, we have identified

that vehicle traffic flow rate is an important indicator of the charging service capacity

of deployed in-motion wireless charging lanes, and different landmarks have various

vehicle traffic flow rates. Therefore, in addition to the above objective of minimizing

the charger deployment cost, we also have another optimization objective to maximize

the average vehicle traffic flow rate covered by the deployed wireless charging lanes.

Finally, the optimization problem can be formulated as below:

minimize
∑

lmi∈L̃M

ω0xiLi, (4.13)

maximize
∑

lmi∈L̃M

xi
∑
w∈W

∑
u∈U i

w

f̄ iuP
w
u , (4.14)

subject to SOC(lmj) > η,∀ lmj ∈ LM, (4.15)

xiLi 6 Lmaxi , ∀ lmi ∈ L̃M, (4.16)

C
∑

lmj∈L̃M

xi > φmaxNv, (4.17)

xi ∈ {0, 1},∀ lmi ∈ L̃M (4.18)

where ω0 is a constant representing the cost of deploying a unit length of charging

lane, C is the charging rate of one charger. f̄ iu is the average vehicle flow rate (i.e.,

average vehicle visit frequency) at lmi, which is caused by the vehicles that drive

through route u, recall that U i
w is the set of historical routes between O-D pair w

that pass through landmark lmi, W is the set of all possible O-D pairs on the

road network, and Nv is the total number of EVs driving on the road network. This

problem tries to minimize the total deployment cost of the in-motion wireless chargers
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(Equation (4.13)), and maximize the average vehicle traffic flow rate covered by the

deployed in-motion wireless chargers (Equation (4.14)) with three constraints: i) the

expected residual energy of an EV is no less than a threshold η (Equation (4.15)),

ii) each individual charging lane cannot exceed the maximum road segment length

(denoted by Lmaxi ) allowed at its scheduled landmark (Equation (4.16)) [20, 45] and

iii) the total charging rate of the deployed chargers is able to support the total battery

consumption rate of all the EVs (Equation (4.17)).

Note the reason we filter candidate landmarks by their attribute values of ve-

hicles’ passing speed and visit frequency is that CatCharger does not consider the

landmarks that require a too long charging lane to fully charge an EV or have low ve-

hicle visit frequency. Therefore, the binary integers for the non-candidate landmarks

are 0, namely xi = 0,∀ lmi ∈ LM \ L̃M . Given source landmark lmi and destina-

tion landmark lmj , the coefficient f̂(di,j)SoC(di,j) in Equation (4.12) is determined.

Therefore, we can use a constant θij to represent f̂(di,j)SoC(di,j). As a result, the

final multi-objective optimization problem is actually a classic Multi-objective Inte-

ger Programming (MIP) problem. Multi-Objective Evolutionary Algorithm based on

Decomposition (MOEA/D) is effective for solving MIP problem with lower compu-

tational complexity than traditional multi-objective genetic local search algorithm

[129]. Therefore, we employ MOEA/D to solve our formulated optimization prob-

lem. Generally, MOEA/D first uses the Tchebycheff approach [129] to decompose

the MIP problem into several optimization sub-problems. Then, MOEA/D solves the

sub-problems simultaneously and maintains the population of best solutions to each

sub-problem during the evolution of solutions until the stop criteria has been reached.
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4.3.4.3 Objective Transformation and Normalization

The first objective of the proposed model is to minimize the overall deployment cost of

the chargers, while the second objective is to maximize the average vehicle traffic flow

captured by the deployed chargers. Therefore, it is necessary to make the following

transformation:

F (x) = [min f1(x),max f2(x)]T

= min[f1(x),−f2(x)]T
(4.19)

where x = {xi|lmi ∈ L̃M} is the vector of binary decision variables of all the candi-

date landmarks. f1(x) =
∑

lmi∈L̃M ω0xiLi and f2(x) =
∑

lmi∈L̃M xiv̄if̄i are the two

objective functions: Equation (4.13) and Equation (4.14), respectively. To make f1

and f2 comparable within the same scale, we normalize them as fi =
fi−fmin

i

fmax
i −fmin

i
,∀i =

1, 2 where fmax
i and fmin

i are the maximum and minimum values of fi, respectively.

These values are obtained by solving the optimization problem with each single ob-

jective function as the optimization goal.

4.3.4.4 Solution Algorithm

The major steps of MOEA/D for solving the MIP problem are specified below in

Algorithm (1). We follow [129] on utilizing the Tchebycheff approach to decompose

the MIP problem into sub-problems. More technical details can be found in [129].

4.4 Performance Evaluation

4.4.1 Experiment Settings

We used our Shenzhen datasets to drive our experiments. We built a trace-driven

simulator with Apache Spark 1.5.2 [4]. Since there are no previous methods that
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Algorithm 1: Solution process of MOEA/D.

Input : MIP problem;
A stopping criterion;
The number of decomposed sub-problems N ;
N weight vectors: θ1, . . . , θN ;
The number of closest weight vectors T ;

Output: EP , the external population, which stores non-dominated solutions
found during each iteration;

1 Step 1) Initialization:
2 Set EP = ∅;
3 Obtain the T closes weight vectors to each weight vector through calculating the

Euclidean distances between any two weight vectors B(i) = {i1, . . . , iT };
4 Initialize the solution population of each sub-problem x1,x2, . . . ,xN and set

F i = F (xi), where F i is the objective function value of the ith sub-problem;
5 Step 2) Update solutions of sub-problems:
6 for i = 1, 2, . . . , N do
7 Randomly select two indices t, s from B(i), and generate a new solution y

from xt and xs by using genetic operators;
8 Calculate the deployment cost resulted by y according to Equation (4.13), and

calculate the vehicle flow rate captured by the charger deployment plan y
according to Equation (4.14);

9 Check whether a constraint is violated. If yes, decrease the objective function
value resulted by y by a penalty mechanism;

10 for j ∈ B(i) do
11 if F (y) < F (xj) then
12 Set xj = y;
13 Set F j = F (y);

14 In EP , remove all the vectors dominated by F (y);
15 Add F (y) to EP if no vectors in EP dominate F (y);

16 Step 3) Stop criteria checking and obtaining results:
17 if stopping criterion is met then
18 return final EP

handle the wireless charging lane deployment in a road network, we created two

methods to compare with CatCharger : random placement (denoted by Random),

and a method that maximally covers traffic flows (denoted by MaxFlow) [119]. In

addition, we also evaluate the performance of a variance of CatCharger (denoted

by CatCharger+), which considers the variances of vehicle visit frequency and vehicle

passing speed in extracting the candidate landmarks, and the maximization of vehicle
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traffic flows in determining the landmarks for deploying in-motion wireless chargers.

In simulation, the battery capacities of the EVs follow a uniform distribution

ranging from 5kWh to 10kWh [20]. We suppose every vehicle starts driving with full

energy in battery at the beginning of a day. With the most recent research implemen-

tations (e.g., Oak Ridge National Laboratory [85]), it is expected that within a 10-year

timeframe, it is possible to reach a charging rate over 100kW for EV wireless charg-

ing. Therefore, we use 150kW as the charging rate of a charging lane. The unit price

of a charging lane is $500/m [20, 48]. In CatCharger, the length of a charging lane

is calculated by Equation (4.1). According to [20, 45], the length of a charging lane

cannot exceed the maximum road segment length at its scheduled deployment land-

mark, which ranges from 100.4m to 926.7m based on the map information extracted

from OpenStreetMap [84]. Since Random and MaxFlow do not have methods to

determine the charging lane length, we suppose they deploy a maximally 500m-long

charging lane (maximum length in CatCharger) at each charging landmark, which

can charge 50% SoC for the EVs with a battery capacity smaller than 10kWh and a

passing speed slower than 15km/h. For fair comparison, the deployment cost in Ran-

dom and MaxFlow is the same as CatCharger. In Random, the locations for placing

charging lanes are chosen randomly from the collection of landmarks. MaxFlow is for

charging station deployment and we use it for charging lane deployment. We choose

the landmark that covers the most traffic sequentially until the deployment cost is

reached. MaxFlow is a traffic flow based method. Since traffic flow based methods

can more accurately estimate the charging demands than the charging demand based

methods [58], we do not include a charging demand based method for comparison. In

landmark categorization (Section 4.3.3.1), the speed interval and the frequency inter-

val are 5km/h and 1,000, respectively. In clustering initialization (Section 4.3.3.2),

the ratio for selecting landmarks from every administrative region of Shenzhen, γ, is

10%. In candidate position extraction (Section 4.3.3.3), the ratio of the top ranked
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landmarks, ε, is 10%. The threshold of expected residual energy, η, is set to 20%.

The expected minimum charge amount threshold Emin is set to 80% of the EVs’

maximum battery capacity. As for the scaling parameters of drivers’ choice behavior

(i.e., ε and ε), we follow the settings as recommended in [91]: ε = 0.1 and ε = 0.8.

The parameters are listed in Table 4.2.

Table 4.2: Table of parameters.

Parameters Setting Source
Charging rate C 150 kW Chen et al. [20, 31, 113]
Charger unit price ω0 $500/m Chen et al. [20]
Air drag coefficient cw 0.3 Kurczveil et al. [57]
Rolling resistance coefficient ce 0.01 Kurczveil et al. [57]
Mass of a taxicab κ 2,020 kg Tian et al. [104]
Gravity acceleration g 9.8 m/s2 Tian et al. [104]
Battery capacity of an EV E0 5kWh – 10kWh Tian et al. [33]
Ratio for selecting landmarks from regions γ 10% Author’s assumption
Ratio for selecting top ranked landmarks ε 10% Author’s assumption
Residual energy (SoC) threshold η 20% Author’s assumption
Expected minimum charge amount threshold Emin 80% Author’s assumption
Scaling parameters of drivers’ choice behavior ε and ε ε = 0.1 and ε = 0.8 Riemann et al. [91]

We use the movement records of the taxicabs, buses and Dada buses mentioned

in Section 2.2 for performance evaluation. Below, Figure 4.17 to Figure 4.19 demon-

strate the metrics of the vehicles under different hours on July 15, 2015. Figure 4.20

to Figure 4.22 demonstrate the metrics of vehicles in multiple days, which are Jan-

uary 12 (Monday), March 10 (Tuesday), May 13 (Wednesday), July 16 (Thursday),

September 18 (Friday), November 21 (Saturday) and December 13 (Sunday) in 2015.

These days are representative because they are unrelated to each other, belong to 4

different seasons, and cover weekdays and weekends [121]. Specifically, we measured

the following metrics:

•Average ratio of operable vehicles. The average ratio of vehicles that have residual

energy above 0%. We measure this ratio, and different deployment costs to compare

the ability of supporting EVs’ operability and cost efficiency of different methods.

•Average residual energy of vehicles. The vehicles’ average amount of energy (in

percentage) left in the EVs’ batteries. We measure it to compare the level of energy
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Figure 4.12: K-S test values of all the
passed tests.
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Figure 4.13: P-values of the passed tests.

that different methods can maintain.

•Average number of charges of vehicles. The average number of charges that the EVs

receive per hour. We measure it to compare the methods’ ability in offering charging

opportunities to EVs.

•Performance in distributing energy supply overhead. The average amount of energy

(in logarithmic scale) transferred per charging lane per hour. We measure it to

compare the charging overhead generated by different methods. Meanwhile, we also

measure the average number of charges (in logarithmic scale) occurred per charging

lane per hour. We measure it to compare the energy supply opportunity generated

by different methods. In addition, we also measure the CDF of the energy supply

overhead over all charging lanes. We measure it to compare the balance of energy

supply overhead of different methods.

4.4.2 Validation of The KDE Based Traffic Model

The validation of the KDE based traffic model is conducted by applying the One-

sample Kolmogorov-Smirnov test (K-S test in short), which verifies whether the pop-

ulation CDF of the actual data (say F (d)) is equal to the hypothesized CDF (say

F̂h(d)) [15, 65, 75]. Specifically, the K-S test value between F (d) and F̂h(d) is calcu-

lated by the following:
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K = max
d

(|F (d)− F̂h(d)|), (4.20)

where K is the K-S test value, and maxd is the maximum absolute difference between

F (d) and F̂h(d). Then we use K to calculate the significance level by using an

approximation formula or by interpolation in a table as in [75]. If the test approves

the hypothesis that the F (d) is similar to F̂h(d) inferred by the KDE based traffic

model (i.e. small K-S test value) at the significance level (measures the reliability of

this test) of 5%, we view the observed distribution of trajectory lengths is consistent

with the KDE based traffic model.

To validate that the CDF determined by our KDE based traffic model can describe

the distribution of trip lengths during different days, we used the daily trip data of

four months (January, April, July and October in 2015) as the dataset for parameter

training, and the daily trip data of other four months (February, May, August and

November in 2015) as the testing dataset for applying K-S tests. The training of

the CDF is completed by using cross-validation maximum likelihood [37]. Then we

applied K-S tests on each day’s trip data of the testing dataset. The test pass rate is

91.8%. Figure 4.12 shows the CDF of the K-S test values of all the passed tests. We

can see that all the passed tests have a K-S test value lower than 0.025, which means

the maximum absolute difference between F (d) and F̂h(d) is quite small.

However, the test result only has a certain level of confidence to be reliable. There-

fore, we need to further measure the p-value of the test. The p-value is the probability

that the data samples will actually follow the target CDF (i.e., the CDF determined

by the KDE), which measures the doubt on the test result. A small p-value (e.g.,

less than 0.1 in our case) means that even if the trajectory lengths passed the K-S

test, the validity of the test is in doubt [75]. Figure 4.13 shows the p-values of all

the passed tests. We can see that more than 85% of the passed tests resulted in a

p-value higher than 0.1. This means most of the test results are reliable. Therefore,
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Figure 4.14: Performance in supporting EV charging demands.

the actual distribution of trip lengths is consistent with the CDF determined by our

KDE based traffic model.

4.4.3 Experimental Results

Based on the traffic data extracted from the 1-year long dataset mentioned in Sec-

tion 2.2, from total 26,036 landmarks, CatCharger+ chose 930 landmarks to deploy

charging lanes, CatCharger chose 922, while Random and MaxFlow chose 228. Since

CatCharger and CatCharger+ place most of the charging lanes at positions with

short required lane lengths, while Random and MaxFlow use the same deployment

cost and set the length of each charging lane to the longest length in CatCharger and

CatCharger+, so they result in much fewer charging lanes.

4.4.3.1 Average Ratio of Operable Vehicles

Figure 4.14(a) shows the average ratios of operable vehicles (SOC>0%) in each hour

in a day during the month. Figure 4.14(b) shows the ratios of operable vehicles

resulted from different residual energy thresholds. In both figures, the ratios follow:

CatCharger+>CatCharger>MaxFlow>Random.

Figure 4.14(a) shows that at the beginning of a day, the dropping rate of the

ratio of operable vehicles is slow because most of the vehicles are not in service
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and their batteries remain full. Starting from 06:00, the result drops dramatically

because the EVs start driving on the road network, which consumes much battery.

In Random, during the time between 06:00 and 14:00, the dropping rate is almost

linear with the change of time, which means that many vehicles cannot be charged

during this time. This observation demonstrates that Random cannot cover the traffic

of most vehicles since it does not consider the mobility of vehicles in determining

charging positions. After 15:00, the ratio of operable vehicles gradually stabilizes at

around 30%. This is because the buses and Dada buses gradually stop service so

their energy levels do not change anymore, while taxicabs are still driving on roads

and get charged randomly. As for MaxFlow, since it deploys charging lanes at the

landmarks with the most traffic flows, and each vehicle passing a charging lane can be

fully charged, it can keep most vehicles operable most of the time. During the time

between 06:00 and 14:00, the ratio of operable vehicles drops 15%. This is because

MaxFlow does not consider maintaining the operability of the EVs. When the EVs

drive to some landmarks not frequently visited by vehicles, they may not be able to get

recharged. Similar to Random, after 15:00, the metric gradually stabilizes at around

80% due to the same reasons. CatCharger can keep most of the vehicles operable

throughout the day. The stabilized ratio of operable vehicles stays at around 90% in

the end of the day. CatCharger chooses landmarks that have both high average daily

vehicle visit frequency and require short required charging lane length. Thus given

the same objective of minimizing the total deployment cost, each charging position of

CatCharger consumes low cost because it generally has shorter lane length. Therefore,

CatCharger can offer more charging opportunities (positions) than the other two

methods. These positions may not necessarily be the most frequently visited ones,

but they altogether can support the continuous operability of the vehicles in the road

network.

Figure 4.14(b) shows that the ratio of operable vehicles of CatCharger increases
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Figure 4.15: Performance in supporting EV charging demands.

linearly with the increase of the threshold of expected residual energy, since a higher

residual energy guarantee increases the probability that an EV can be operable at any

position. A higher expected residual energy threshold results in a higher deployment

cost of the deployment solution. As a result, as the allowed deployment cost increases,

the ratio of operable vehicles in Random and MaxFlow increases. The increase rate

of CatCharger is higher than Random and MaxFlow, which means that CatCharger

can more effectively plan the positions and lengths to maintain the highest ratio of

operable vehicles given a deployment budget.

Since CatCharger+ further considers the variances of vehicle visit frequency and

vehicle passing speed, and the maximization of vehicle traffic flow at the chargers,

the deployed chargers can fully recharge most EVs with their lane length since the

EVs’ passing speed at the charger landmarks does not vary a lot, and are free from

vehicle traffic congestion. Therefore, CatCharger+ can maintain the highest ratio of

vehicles operable by the end of a day (Figure 4.14(a)) and under different residual

energy thresholds (Figure 4.14(b)).

4.4.3.2 Average Residual Energy of Vehicles

Figure 4.15(a) shows the average residual energy of vehicles under different hours

throughout a day. The results follow CatCharger+>CatCharger>MaxFlow>Random.
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Figure 4.16: Performance in distributing energy supply overhead.

The relationship between the methods and the changing trends of this metric are sim-

ilar to those in Figure 4.14(a) due to the same reasons.

4.4.3.3 Average Number of Charges of Vehicles

Figure 4.15(b) shows the average number of charges of all vehicles under different

hours throughout a day. The results follow CatCharger+>CatCharger>MaxFlow>Random.

We can see that CatCharger+ and CatCharger offer the most and second most charg-

ing opportunities to vehicles due to the same reasons as in Section 4.4.3.1. Note that

the result of Random is almost 0. This is because only a small portion of the EVs

can receive charging opportunities from Random deployment.

4.4.3.4 Performance in Distributing Energy Supply Overhead

Figure 4.16(a) shows the average energy supply overhead (i.e., amount of transferred

energy) per landmark (in logarithmic scale) under different hours in a day. Fig-

ure 4.16(b) shows the average number of charges per landmark (in logarithmic scale)

under different hours in a day. In both figures, the results follow MaxFlow�CatCharger+

>CatCharger>Random. Random has the lowest supply overhead because it fails to

cover most of the vehicle traffic. MaxFlow suffers from a much larger average supply

overhead. This is because MaxFlow aims to place charging lanes at the landmarks

99



0 2 4 6

x 10
4

0

0.5

1

 

 
 

 

CatCharger CatCharger+

 0  2  4  6  8 10
0

0.5

1

 

 

Random

0 2 4 6 8 10

x 10
5

0

0.5

1

Charging overhead (kWh)

 

MaxFlowC
D

F
 o

f 
c
h
a
rg

in
g
 p

o
s
it
io

n
s

× 10
3

(a) Distribution of supply overhead.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Length of lane (km)

C
D

F
 o

f 
c
h
a
rg

in
g
 p

o
s
it
io

n
s

 

 

CatCharger
CatCharger+

(b) Distribution of charging lane length.

Figure 4.17: Performance in distributing energy supply overhead.

most frequently visited by vehicles. But the popular positions generally concentrate

on a few areas. Moreover, the higher cost of a charging lane in MaxFlow results in

fewer charging positions. Since CatCharger tries to deploy short charging lanes by

considering vehicle passing speed, it leads to more charging lanes with a certain de-

ployment cost. Also, it tries to cover most vehicle traffic. Then, vehicles in CatCharger

can be more frequently charged at more landmarks, resulting in lower average energy

supply overhead per landmark. CatCharger+ further avoids deploying chargers at the

landmarks with variant vehicle passing speed an vehicle visit frequency, and enables

more EVs to receive recharge than CatCharger. Therefore, it achieves the highest

results in both Figure 4.16(a) and Figure 4.16(b).

Figure 4.17(a) shows the CDF of the energy supply overhead over all charging

lanes. Figure 4.17(b) shows the CDF of the length of the charging lanes deployed in

CatCharger and CatCharger+, and Random and MaxFlow are not included since they

have the same charging lane length. In Figure 4.17(a), we see that the distribution

of energy supply overhead in CatCharger is more balanced than the others. In Fig-

ure 4.17(b), we see that most of the charging lanes in CatCharger and CatCharger+

have lengths shorter than 0.1km due to the constraint 4.16. This result is consistent

with the results in [12, 20, 45, 48]. From Figure 4.17(a), we see that in CatCharger,

80% of the charging lanes only need to supply less than 5,000kWh energy. This
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can be verified with Figure 4.17(b), in which 80% of the charging lanes have length

shorter than 0.1km. In Random, most of the charging lanes have 0kWh supply over-

head. While in MaxFlow, around 75% of the charging stations have supply overhead

higher than 200,000kWh, which is caused by the fewer charging positions. These

observations illustrate that CatCharger and CatCharger+ can better balance the dis-

tribution of the energy supply overhead among charging lanes while satisfying the

charging demands of EVs.

4.4.3.5 Impact of Variance of Vehicle Passing Speed and Visit Frequency

As discussed in Section 4.3.3.3, the additional consideration of the variance of vehi-

cle visit frequency (σfi ) and the variance of vehicle passing speed (σvi ) in Equation

(4.6) can help extract the candidate landmarks for charging lane deployment with

more stable vehicle visit frequency and vehicle passing speed, and then better guide

the deployment of in-motion wireless chargers. To demonstrate the impact of these

two components, we recalculated the score of each landmark without considering the

variance of vehicle visit frequency (denoted as NoFreqVar), and without considering

the variance of vehicle passing speed (denoted as NoSpdVar). Based on the new land-

mark scores, we redetermined the deployment of chargers, and measured the average

ratio of operable vehicles. The measurement results are illustrated in Figure 4.18. In

addition, we also measured the average energy supply overhead per landmark under

different hours in a day. The measurement results are illustrated in Figure 4.19.

From Figure 4.18, we can see that CatCharger+ increases the final ratio of operable

vehicles by the end of the day by 11.8% when compared to NoFreqVar and 8.6%

when compared to NoSpdVar, respectively. This is because that NoSpdVar selects

some landmarks with high variance of vehicle passing speed to deploy chargers. At

the landmarks where the vehicle passing speed is very high during some time, the
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Figure 4.18: Impact of components on the
ratio of operable vehicles.
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Figure 4.19: Impact of components on av-
erage energy supply overhead.

deployed chargers can not fully charge the EVs after they pass by, which made only

around 87.5% of the vehicles remaining operable by the end of the day. Similarly,

NoFreqVar selects some landmarks with high variance of vehicle visit frequency to

deploy chargers. At the landmarks where the vehicle visit frequency is very low during

some time, the deployed chargers can not serve the charging demand of many EVs,

which resulted in that there are only around 85% of the vehicles remaining operable

by the end of the day. Since the lack of considering vehicle visit frequency causes

more EVs to fail to charge than the lack of considering vehicle passing speed, the

ratio of operable vehicles in NoSpdVar is a bit higher than that in NoFreqVar.

From Figure 4.19, we can see that CatCharger+ increases the average energy sup-

ply overhead of all the chargers by 10% when compared to NoFreqVar and 7% when

compared to NoSpdVar, respectively. This is due to the same reasons as explained

in Figure 4.18. The consideration of the variances of vehicle passing speed and ve-

hicle visit frequency enables the deployed chargers to serve more EVs. Therefore,

the charging energy supply overhead per charger is increased in CatCharger+. These

measurement results verify that the consideration of the variances of vehicle passing

speed and vehicle visit frequency is effective in selecting landmarks that are more

suitable for deploying in-motion wireless chargers.
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Figure 4.20: Ratio of operable vehicles by
the end of different days.
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Figure 4.21: Residual energy of vehicles
by the end of different days.

4.4.3.6 Performance Evaluation on Multiple Days

To validate the effectiveness of our charger deployment method under different sce-

narios, we measured the ratio of operable vehicles and residual energy of the vehicles

by the end of different days. Figure 4.20 shows the ratios of operable vehicles by the

end of different days. Figure 4.21 shows the median, 5th and 95th percentiles of the

residual energy (i.e., SoC) of all the vehicles by the end of different days. In these

experiments, we assume that all the vehicles are fully charged at the beginning of a

day. This assumption is reasonable because many previous studies have confirmed

that most EVs are fully charged overnight at their home or dispatch center [10, 49]. In

addition, we also measured the impact of considering drivers’ routing choice behavior

on keeping the vehicles operable. The measurement results are illustrated in Figure

4.22.

From Figure 4.20, we can see that the ratios of operable vehicles generally follow:

CatCharger+>CatCharger>MaxFlow >Random in different days. From Figure 4.21,

we can see that the median residual energy of the vehicles follow: CatCharger+>CatCharger

>MaxFlow>Random on different days. These results confirm that the charger de-

ployment determined by our method can better support the continuous operability of

EVs under various scenarios. We can also observe that the ratio of operable vehicles
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Figure 4.22: Impact of considering drivers’ routing choice behavior.

and the vehicles’ SoC significantly drop on weekends, especially for CatCharger+ and

CatCharger. This is because that the traffic pattern on weekends is quite different

from that on normal weekdays. One possible reason to the significant change of traffic

pattern is that during weekends, the appearance pattern of passengers significantly

changes. Some EV drivers (e.g., electric taxicab drivers) need to change their regular

route to cover the changed passenger appearance pattern. If the charger deploy-

ment plan fully considers the drivers’ routing behavior and place more charging lanes

on the routes which the drivers are willing to drive through during both weekdays

and weekends, the determined charger deployment plan may provide more charging

opportunities to the EVs.

To confirm the impact of considering drivers’ routing choice behavior on determin-

ing the charging lanes, we vary the sensitivity of our optimization problem towards the

availability of chargers. Specifically, since the parameter ε in Equation (3.8) describes

how sensitive EV drivers are to driving a route equipped with charging facilities while

making routing choices [91], we vary the value of ε between 0.0 and 1.0 and measured

the ratios of operable vehicles in different days. From Figure 4.22, we can see that

a larger value of ε generally increases the ratio of operable vehicles in all days. This

is because that according to Equation (3.8), a larger value of ε will cause the route
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that has a shorter travel time cost to have higher weight of deploying chargers. We

can also notice that increasing the value of ε brings only about 12.5% improvement

on the ratio of operable vehicles during weekdays (i.e., Jan 12, Mar 10, May 13, Jul

16 and Sep 18), but brings about 75% improvement on the ratio of operable vehicles

during weekends (i.e., Nov 21 and Dec 13). This means that despite the significant

change of traffic pattern on weekends, the drivers still prefer to drive the routes with

a relatively lower travel time cost. Increasing the value of ε enables the routes that

are not frequently driven during weekdays to be covered with charging lanes, thereby

significantly increases the charging opportunities of EVs during weekends. Note that

Figure 4.20, Figure 4.21 and Figure 4.22 aim to compare how well the charger deploy-

ment can support the original driving routes of the vehicles without forcing them to

spend extra effort in seeking for chargers. In reality, the vehicles that become out of

SoC will change their original driving routes and seek for nearby chargers for battery

replenishment.

4.5 Summary

The rapid development of vehicular WPT techniques brings up a new challenge of

deploying wireless charging lanes in a metropolitan road network that support the

continuous movement of vehicles with minimum deployment cost. Previous methods

for deploying plug-in station are not qualified due to different charging approaches.

Previous methods for deploying wireless charging lanes cannot handle the challenge

in metropolitan scale. Our proposed CatCharger is the first work that tackles this

challenge. Our analytical results on a dataset consisting of the mobility records of all

public transit vehicles in the city of Shenzhen, China lay the foundation of the design

of CatCharger. Using an entropy minimization based method, we conduct catego-

rization and clustering on the intersections (landmarks), and extract the candidate
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positions for placing charging lanes that have low vehicle passing speed (hence short

charging lanes) and high vehicle visit frequency (hence high covered traffic), and low

variances of these two metrics. Then by using KDE to model vehicle mobility and to

estimate the residual energy of EVs at a landmark, we formulate a multi-objective

optimization problem to minimize the total deployment cost, maximize the vehicle

traffic flow at the landmarks with chargers, and meanwhile ensuring the continuous

operability of the vehicles on roads. We conducted trace-driven experiments to verify

the superior performance CatCharger over other methods. In the future, we plan to

consider more human activities that affect the movement of public transit vehicles

(e.g., pickup requests).
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Chapter 5

Dispatching and Charging

Approach for Electric Taxicabs

Unlike buses which have determined driving routes, the profiting of taxicabs is highly

dependent on efficient discovery of passengers. Also, the recharge of electric taxicabs

must be properly considered in parallel with dispatching to minimize the taxicab’s

number of missed potential passengers during charging. Therefore, in addition to the

proper deployment of chargers, it is necessary to develop an electric taxicab dispatch-

ing and charging methodology that can minimize the taxicab’s number of missed

potential passengers due to charging. The approach provides guidance for the taxi-

cab on where to pick up a passenger or receive a recharge based on future passenger

demand. Therefore, how to infer a future passenger demand with a sufficiently high

accuracy, and utilize the inference result to optimize the charging of taxicabs becomes

important. In this chapter, we propose CD-Guide, an electric taxicab C harging and

D ispatching approach, which utilizes customized selection and training of suitable

historical passenger demands, and reinforcement learning and multi-objective opti-

mization to Guide an electric taxicab. By saying suitable historical data, we mean the

data that are under the influence of random factors (e.g., weather, holiday) similar
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as current time.

The remainder of this chapter is organized as follows. Section 5.1 identifies the

background and challenges in the design of CD-Guide. Section 5.2 presents our

metropolitan dataset measurement results. We describe the main design of CD-Guide

in Section 5.3 and present our experiment evaluation in Section 5.4. Section 5.5 con-

cludes this chapter with remarks on our future work.

5.1 Background

Multiple urban passenger demand inference methods [29, 99, 126, 128] have been pro-

posed. Fan et al. [29] proposed to decompose passenger demand into several patterns

representing the influence of different random factors, and use the patterns to infer

the number of population at specific times in each region. Shimosaka et al. [99] pro-

posed to utilize a bilinear Poisson regression model, which considers random factors

including day of week, holidays, etc., to predict passenger demand in a metropolitan

scale. Zhang et al. [126] developed a customized online training model with both

historical and real-time GPS position data of taxicabs to infer taxicab passenger de-

mand. Zhang et al. [128] proposed a residual Convolutional Neural Network (CNN)

based model to learn the influence of several random factors (e.g., weather, period

and trend of passenger demand), and achieved a higher inference accuracy than pre-

vious methods. However, these methods have insufficient accuracy because they fail

to catch the influence of all random factors.

Following the effort of passenger demand inference works, multiple taxicab dis-

patching works [111, 122, 123, 125, 134] have been proposed. Yuan et al. [122]

introduced a method that schedules the pick-up locations with the shortest routes

for taxi drivers and the waiting locations for passengers to reduce the cruising time.

Zheng et al. [134] modeled the driving patterns (e.g., driving path, parking position
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and time) of vacant taxicabs with a non-homogeneous Poisson process to find the

optimal waiting positions for passengers. Zhang et al. [123] proposed a method to

estimate the revenue of each route, and guide the taxicab to the route with the max-

imum estimated revenue. Zhang et al. [125] proposed pCruise, in which each taxicab

collects the passenger requests from nearby taxicabs and accordingly cruises on the

routes with the maximum probability of finding a passenger. Xie et al. [111] further

proposed PrivateHunt, which utilizes a Markov Decision Process to model the ap-

pearance of passengers and dispatches taxicabs to the positions with the maximum

likelihood of potential passenger appearance. However, these methods push the taxi-

cabs to cruise among the locations where passengers are likely to appear, but are

not directly applicable for electric taxicabs because they cannot output the optimal

decision on where to go and whether to get charged, which minimizes the number of

missed passengers for the taxicabs.

To ensure efficient service of electric taxicabs, an electric taxicab dispatching and

charging approach that can minimize the taxicab’s number of missed potential pas-

sengers due to charging is expected. The approach provides guidance for a taxicab on

where to pick up a passenger or receive a recharge based on future passenger demand.

Therefore, how to infer future passenger demand with a high accuracy, and utilize

the inference result to optimize the charging of taxicabs become important. However,

how to generate a highly accurate inference result is challenging because it is difficult

to consider the influence of all the random factors. What’s more, how to utilize the

inference result to design a charging optimization strategy for an electric taxicab,

which minimizes the taxicab’s number of missed potential passengers during charg-

ing, maximizes the taxicab’s probability of picking up a passenger, and meanwhile

prevents the taxicab from SoC exhaustion, is also non-trivial.
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Figure 5.1: Gridded road map.

5.2 Dataset Analysis

5.2.1 Definitions

We represent the road network of Shenzhen with a directed graph, in which vertices

represent landmarks (i.e., intersections or turning points), and edges represent road

segments [124, 135]. For a road segment longer than 200 meters, which is the general

length of a metropolitan road segment [135], we broke it into several road segments

no longer than 200 meters, and set the breaking positions as new landmarks. Based

on the road network, we introduce the following definition:

Definition 6 Region. The road network is partitioned into a set of NG = 496 regions

G = {g0, g1, . . . , gNG−1} according to administrative region planning of Shenzhen city

government, which is shown in Figure 5.1.

We partition the timeline of a day into 48 30-minute-long time slots. Then, com-

bining the taxicabs’ movement records with the changes of their occupancy status, we

extracted pick-up position and time (i.e., where and when occupancy status changes

from “0” to “1”) of each passenger and mapped it to the road network, and calculated

the number of passenger pick-ups (i.e., passenger demand) in each region per time

slot.
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5.2.1.1 Suitability of Historical Data for Passenger Demand Inference

Although people’s life routines repeat in daily manner, taxicab passenger demand in

a time slot (e.g., 08:00-08:30) may vary in different days due to random factors (e.g.,

weather, ceremony). Considering this problem, previous passenger demand inference

methods [29, 99, 126, 128] additionally take into account specific random factors as

inputs in the passenger demand inference. However, the methods may not be able to

observe all random factors, so generate insufficient inference accuracy. We notice that

the influence of random factors has been reflected in historical passenger demands.

Therefore, we can utilize historical passenger demands to catch the influence of all

the random factors as training data. Suppose the time slot duration is 30 minutes,

at 13:00, we predict demand at 13:30. To generate training data for the prediction,

we select suitable historical passenger demand data at 13:30 in different days that is

under the influence of random factors similar as the current time. A challenge here is

how to find the historical data that is under the influence of random factors similar

as current time, which is used to infer the passenger demand of the next time. For

example, if we use a historical passenger demand of a normal working day to help

infer the passenger demand in the next time slot in a holiday, the inference accuracy

may not be high. Then one question is: given the actual passenger demand in current

time slot of a region, how to extract the most suitable historical data for inferring the

passenger demand of the region in the next time slot? Some previous studies [117,

123, 139] have shown that the spatial distribution of passenger appearance in a region

is closely related to the distribution of buildings, since each passenger comes from a

building with a high probability. Considering that the distribution of passengers can

be represented with the histogram of the buildings where the passengers come from

(called the passengers’ building tag), we believe that the histogram of passengers’

building tags can be an effective metric for extracting suitable historical data. Then,
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Figure 5.2: A region with 18 buildings.
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Figure 5.3: Comparison of histograms of
passengers’ building tags.

we can utilize the suitable historical data to train a passenger demand inference model

to infer future passenger demand. By suitable historical data, we mean the data at

the same current time (e.g., 13:00-13:30) in previous days that is under the influence

of random factors (e.g., weather, holiday) as in current time (e.g., 13:00-13:30) today.

To prove the conjecture that the histogram of passengers’ building tags is effective

for extracting suitable historical data, we randomly selected a region with 18 major

buildings, which is as shown in Figure 5.2, and conducted an experiment on inferring

the region’s passenger demand in different time slots of Mar 5, 2015. The general

procedure is: (1) at current time slot of today (e.g., 13:00-13:30 on Mar 5, 2015), we

select historical passenger demand data at the same time slot from previous 365 days

before Mar 5, 2015 that is under the influence of random factors similar as the current

time; (2) we utilize the selected historical passenger demand value in the next time

slot (i.e., 13:30-14:00) as the predicted demand in the next time slot of today; (3) we

repeat this prediction of passenger demand for each time slot throughout today (i.e.,

Mar 5, 2015).

For each passenger, we use the building nearest to (in Euclidean distance) his/her

pick-up position as his/her building tag. Then we decompose the passenger demand

in each time slot into a histogram of building tags, where each column represents

a building tag and the column’s height represents the number of passengers of the
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building tag. The “Actual” in Figure 5.3 illustrates an example histogram of region

gi’s actual passenger building tags in the time slot 13:00-13:30. We use a vector hci to

represent this histogram, and a vector hji to represent a histogram of gi’s passenger

building tags on jth day. For simplicity, we use hc and hj below for explanation,

and we do not show the subscript i unless needed in the following sections. Both hc

and hj are called a building tag histogram vector. We use the chi-square distance [22]

between hj and hc as their similarity. Specifically, given the building IDs in gi are

k = 1, 2, . . . , NB, where NB is the total number of buildings in gi. Thus, hj and hc

are two NB × 1 vectors. The chi-square distance between hj and hc is defined as

χ2
j =

1

2

NB∑
b=1

(hj[k]− hc[k])2

hj[k] + hc[k]
. (5.1)

where hj[k] represents the kth element in vector hj. The smaller χ2
j a previous demand

has, the more similar it is to current status. For example, suppose hc is composed

of 404 passengers from building1, 262 passengers from building2, and 89 passengers

from building3. Then hc has the following representation: {building1 (404), building2

(262), building3 (89)}. Suppose h1 has the following representation: {building1 (201),

building2 (500), building3 (90)}. The similarity between hc and h1 is χ2
1 = 1

2
×

( (404−201)2

404+201
+ (262−500)2

262+500
+ (89−90)2

89+90
) = 71.23. Suppose h2 has the following representation:

{building1 (401), building2 (300), building3 (100)}. The similarity between hc and

h2 is χ2
2 = 1

2
× ( (404−401)2

404+401
+ (262−300)2

262+300
+ (89−100)2

89+100
) = 1.61. Since χ2

2 < χ2
1, h2 is more

similar to hc.

Above, we have defined the similarity of histogram of passengers’ building tags

and how to utilize it for the selection of suitable historical data for training. We con-

ducted an experiment to show the effectiveness of the method on extracting suitable

historical demands. In the experiment, we use the historical data that has the most

similar histogram (denoted as “Histogram”) as the suitable historical data to predict

demand value. For example, the “Histogram” in Figure 5.3 illustrates the histogram
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of passenger building tags of a historical demand in the time slot 13:00-13:30 that

has the most similar histogram to “Actual”. Specifically, in the experiment, when

inferring each time slot’s passenger demand on Mar 5, 2015, we calculate and rank the

χ2
j of all the previous demand data to select the most suitable historical data that has

the minimum χ2
j . Then, based on the passenger demand of current time slot denoted

as the nth time slot (e.g., 13:00-13:30), we use the demand value of “Histogram” in the

next time slot denoted as the (n + 1)th time slot (e.g., 13:30-14:00) as the predicted

demand value in the (n + 1)th time slot. Using this way, we predict the passenger

demand of each time slot throughout the day. In addition, we also use a randomly se-

lected historical passenger demand in the (n+ 1)th time slot as the predicted demand

value (denoted by “Random”), which serves as the baseline. Figure 5.4 shows the

demand values of “Actual” and prediction results of “Histogram”. We can see that

compared with the predicted demand values of “Random”, the result of “Histogram”

matches the values of “Actual” much more closely. This observation confirms that

the histogram similarity of passengers’ building tags is effective for extracting suitable

historical data.

Some people may argue that we can simply compare the total number of pas-

sengers rather than the histogram of passengers’ building tags to select the suitable

historical demand. We also used the experiment to show that using the total number
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of passengers for comparison cannot guarantee that we can extract the most suit-

able historical data. Specifically, in the experiment, when inferring each time slot’s

passenger demand on Mar 5, 2015, we select the historical data, whose total number

of passengers in current time slot (e.g., 13:00-13:30) is the most approximate to to-

day’s demand value in the same time slot, and utilize the data’s demand value in the

next time slot (e.g., 13:30-14:00) as the predicted demand value in the next time slot

throughout the day (denoted as “Total”). The “Total” in Figure 5.3 illustrates the

histogram of passenger building tags of a historical demand in the time slot 13:00-

13:30 that has the most similar total number of passengers to “Actual”. Figure 5.4

shows the passenger demand in different time slots of “Actual”, and the predicted

demands of “Total”. We can see that the results of “Total” do not match the values

of “Actual” during most time slots. During some time slots, the results of “Total”

are even worse than those of “Random”. This confirms that the total number of

passengers does not qualify in extracting suitable historical data.

We further calculated the symmetric Mean Absolute Percentage Error of the in-

ference results (i.e., sMAPE = 1
Ns

∑ |inferred demand−actual demand|
inferred demand+actual demand+1

[105, 132], where

Ns is the number of time slots in a day, and 1 is to avoid division by zero as

in [105, 132]) over all time slots for each region. The results are illustrated in

Figure 5.5. We can see that the sMAPEs of the three methods generally follow:

“Histogram”<“Random”<“Total”. This result confirms that the histogram of pas-

sengers’ building tags is an effective metric for differentiating the suitability of his-

torical data. The experiment also confirms that the total number of passengers is not

a reliable metric for selecting the most suitable historical data for training the infer-

ence model. In Section 5.3.3, we will elaborate how CD-Guide utilizes this metric to

extract suitable historical training data and infer the passenger demand in the next

time slot.
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5.2.1.2 Variance of Taxicab Passenger Demand

Several previous works [101, 132] have confirmed that taxicab passenger demand in

a region has a certain degree of regularity (e.g., weekly patterns), but also a certain

degree of variance (i.e., fluctuation of demand values due to the influence of random

factors), which constrains the maximum predictability of passenger demand in the

region (i.e., the maximum accuracy that an inference algorithm can possibly achieve).

However, these methods do not explain how to consider this maximum predictability

of passenger demand inference and for taxicab charging optimization. Entropy of a

time series is effective in measuring the degree of variance (i.e., fluctuation of demand

values due to the influence of random factors) of the time series. Generally, the more

various a taxicab passenger demand time series is, the larger entropy it will result in,

and the less predictable it is. A region gi’s all historical taxicab passenger demands

(i.e., passenger demand in each time slot from day 1 to today) can be represented as

a time series: Dall = {D1, . . . , Da, . . . , DNA
}, where each element Da is an observed

historical passenger demand in a time slot, and NA is the total number of collected

demand values of gi since the beginning of observation. For example, suppose we have

been observing the passenger demand in gi for 30 days, each day is partitioned into

48 time slots, thus Dall has NA = 30×48 = 1440 passenger demand records. Suppose

the time series Dall = {1, 2, 2}, then its subsequences are: {1}, {2}, {2} {1,2}, {2,2}.

Its unique subsequences (sa) are: {1}, {2} {1,2}, {2,2}. Following the definition of

human mobility randomness in [101] and [132], the entropy of Dall is defined as:

E = −
∑

sa⊂Dall

Pr(sa) log2(Pr(sa)), (5.2)

where Pr(sa) is the probability that a unique subsequence (e.g., {1} is a unique

subsequence of {1, 2, 2}) sa appears in Dall. For example, the probabilities that each

unique subsequence of Dall = {1, 2, 2} appears in Dall are: Pr({1}) = 1
5
, Pr({2}) = 2

5
,
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Pr({1, 2}) = 1
5

and Pr({2, 2}) = 1
5
. The entropy of Dall is calculated as 1

5
log2 5 +

2
5

log2
5
2

+ 1
5

log2 5 + 1
5

log2 5 = 1.92. The fewer unique subsequences Dall has (i.e.,

lower similarity of historical passenger demand values), the smaller E will be.

We calculated the entropy of passenger demand time series (including all observed

passenger demand values from Jan 1 to Dec 31, 2015) for each region by Equation

(5.2). Figure 5.6 shows the CDF of the results. For comparison, we additionally

illustrate the entropies of Futian Central Business District (Futian CBD), which is a

business office region, and Happy valley, which is an entertainment region in Figure

5.6. The entropies of Futian CBD and Happy valley are 2.03 and 6.10, respectively.

The numbers of passengers in these two regions from Mar 1 to Mar 3, 2015 are

illustrated in Figure 5.7. We can see that the passenger demand in Futian CBD

(E = 2.03) has a higher degree of variance, while the passenger demand in Happy

valley (E = 6.10) has a lower degree of variance. This means for Shenzhen city, if a

region has a passenger demand entropy lower than 2.03, it means the region’s variance

of passenger demand is lower than Futian CBD. If a region has a passenger demand

entropy higher than 6.10, it means the region’s variance of passenger demand is higher

than Happy Valley. Back to Figure 5.6, we can see that 80% of the regions have a

passenger demand entropy higher than 2.03 (red dashed line), which means that the

passenger demand in these regions has a higher degree of variance than Futian CBD.
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Figure 5.8: Scatter plot of passenger demand entropies vs. sMAPE.

We need to use the entropy of passenger demand to measure the different degrees of

variance for the regions.

Recall that in Section 5.2.1.1, we have obtained the sMAPEs of the passenger

demand inference result of “Similar” throughout all time slots of Mar 5, 2015 for all

regions. To analyze the relation between the inference accuracy and the passenger

demand entropy of the regions, we further drew a density scatter heat plot between the

entropies of passenger demand and the sMAPEs of all regions, as shown in Figure 5.8.

Each point represents a region. The warmer color a point has, the more concentrated

it is with the other points, which have similar entropies of passenger demand and

sMAPEs. We also drew a line across the points. We can see that most points are

scattered around the line, which means that for the regions with a larger entropy, their

inference error will be higher (i.e., lower inference accuracy) and vice versa. This

result indicates that the maximum predicability of passenger demand in a region

is dependent on the randomness of the region’s historical passenger demand time

series. The maximum predicability constrains the maximum accuracy of the region’s

passenger demand inference result. In Section 5.3.3.3 and Section 5.3.4, we will

introduce how CD-Guide determines the maximum predictability of the inference

result and considers it in taxicab dispatching and charging optimization.
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5.2.1.3 Charging Time Must Be Considered in Taxicab Dispatching

In this section, we analyze the movement records of the 6,510 electric taxicabs in the

Shenzhen dataset to detect the charging events of all taxicabs, and investigate whether

the charging events affected the taxicabs’ service. From the Shenzhen Transport

Committee, we obtained the positions of all charging stations in Shenzhen. As in

previous works [104, 120, 135], if a taxicab’s movement record shows that it has

stayed at a charging station for a long period of time (e.g., 10 minutes), we consider

that it was charging at the station at that time. Therefore, we define the charging

time of a taxicab at a charging station as the time duration that the taxicab stayed

at the charging station.

We first measured the ratio of charging taxicabs over all the taxicabs in each time

slot per day throughout the 365 days, and calculated the average ratio of charging

taxicabs in each time slot over all the days. The measured results are illustrated in

Figure 5.9 along with the average number of taxicab passengers in each time slot

over all the days. We can see that the peak time of taxicabs’ charging events usually

happens at around 03:00-05:00, 09:00-13:00, 16:00-18:00 and 20:00-22:00. Obviously,

most taxicabs tried to avoid the peak time of passenger demand at around 07:00-

09:00 and 20:00-24:00 and arranged their charge time in late night (03:00-05:00) and
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afternoon (16:00-18:00), which results in the two highest peaks on the charging taxicab

ratio curve. This charging strategy can help them reduce the loss of missing passengers

during charging. However, due to several factors (e.g., limited battery capacity, too

much driving without a passenger on board), there are still some taxicabs that have

to charge at around 09:00-13:00 and 20:00-22:00, during which the taxicab passenger

demand is still high. Such charging time selection may cause the taxicabs to lose

potential passengers.

To confirm this conjecture, for each taxicab, we calculated its total duration of

charging events in each day throughout the 365 days. During the charging event

of each taxicab, we also measured the number of passengers that appeared within

500 meters around the taxicab. The reason we only count the passengers appeared

within a 500-meter-range is that they can be picked up by a taxicab within roughly

2 minutes if the taxicab was not charging. The results are illustrated in Figure 5.10.

We can see that about 50% of the taxicabs spent more than 0.83 hours on charging

per day in average, and about 50% of the taxicabs missed more than 50 passengers

per day in average. What’s worse, about 10% of the taxicabs missed more than 300

passengers per day in average. These observations indicate that the dispatching of

electric taxicabs must optimize the charging of electric taxicabs to help the taxicabs

avoid missing potential passengers. In Section 5.3.4, we will elaborate how CD-Guide

minimizes the taxicab’s number of missed potential passengers due to charging.

5.3 System Design of CD-Guide

5.3.1 Framework of CD-Guide

CD-Guide consists of the following three stages as shown in the three dashed boxes

in Figure 5.11:
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Figure 5.11: Framework of CD-Guide.

1. Map gridding & information derivation. First, the entire city area is parti-

tioned into a Gridded Roadmap as shown in Figure 5.1. Also, the taxicab dataset is

cleaned up (e.g., filtering out positions out of the actual range of Shenzhen, redun-

dant positions). Then, based on the cleaned data, we derive the Passenger Demand

Records of taxicabs in each region of the Gridded Roadmap as explained in Section

2.2.

2. Taxicab passenger demand inference (Section 5.3.3). Based on the output

Passenger Demand Records from the first stage, we extract Suitable Historical Data

that are under the influence of random factors similar as current time for each region.

Then, we apply Inference Model of Taxicab Passenger Demand to infer demand value

in the next time slot. Finally, we calculate the Maximum Predictability of Taxicab

Passenger Demand for more accurate inference of passenger demand value.

3. Optimization of taxicab dispatching and charging (Section 5.3.4). For each

taxicab, we first use its SoC and taxicab passenger demands in each region for the

Determination of Taxicab Service Ability for each region. A taxicab’s service ability

in a region is defined as the ratio of passenger trips in a region after it arrives at

the region until the end of the next time slot that its SoC can support. Then we
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develop two methods for taxicab dispatching and charging. In the first method, we

utilize a Multi-objective Combinatorial Optimization Problem Based Model to decide

which region the taxicab should drive to and whether to get charged in the region.

In the second method, through using a taxicab’s SoC and taxicab passenger demands

as state and uses the taxicab’s service ability to calculate the reward, we train and

utilize the Reinforcement Learning Model to decide which region the taxicab should

drive to and whether to get charged in the region.

5.3.2 Assumptions

Above all, we have the following assumptions for EVs:

1. Without losing generality and for the ease of calculating the number of missed

passenger due to charging, we assume that if a taxicab requires a recharge, it will

start charging as soon as it arrives at its dispatched region.

2. A taxicab will fully charge its battery in each recharge due to its limited charging

opportunity.

3. For a region gi, the passengers that appear before the arrival of the dispatched

target taxicab will be picked up by other taxicabs. The passengers that appear in gi

after the taxicab’s arrival time and before the end of the (n + 1)th time slot are the

pool of passengers that the taxicab can possibly pick up.

5.3.3 Taxicab Passenger Demand Inference

In the following, we firstly introduce how CD-Guide utilizes the distribution of pas-

sengers’ building tags to select the historical passenger demands that are suitable

for training the model for inferring the taxicab passenger demand in the next time

slot. Then, we design an linear regression based model to infer the taxicab passenger

demand in the next time slot. Finally, we elaborate how CD-Guide calculates the
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maximum predictability of passenger demand for more accurate inference of passenger

demand value.

5.3.3.1 Extracting Suitable Historical Data

The analysis result in Section 5.2.1.1 has demonstrated that the historical passenger

demand with a total number of passengers approximate to current passenger demand

is not guaranteed to be suitable for training the inference model. Instead, we need

to extract the historical passenger demands, of which histogram (distribution) of

building tags is similar to current passenger demand, to train the inference model.

Specifically, given the building tag histogram vector of region gi in current time

slot (i.e., nth time slot) of today (hc(n)), we first use Equation (5.1) to calculate its

similarity (i.e., chi-square distance) to the historical building tag histogram vector of

region gi in the same time slot (hj(n)) of each day in the previous ND days (e.g.,

365 days). Then, we rank the historical passenger demands in previous ND days by

increasing order of their chi-square distance to hc(n), and select the top ranked β

(e.g., 10%) days’ passenger demands as training data. Finally, we obtain a sequence

of Nd suitable previous passenger demands during nth time slot from the total ND

historical passenger demands: {Dj(n)|j = 1, 2, . . . , Nd}, where Dj(n) represents the

taxicab passenger demand in region gi during nth time slot on jth day, and Nd is the

number of days of the extracted suitable passenger demands. A larger ND and β will

increase the training computation overhead but may include the influence of more

random factors that are similar as current time in the extracted suitable historical

training data. To find the best values for them, we vary each variable within a certain

range (e.g., [30, 60] for ND and [5%, 15%] for β). We try different combinations of the

ND and β values, and choose the combination that achieves the minimum chi-square

distance to hc(n) as the final values of ND and β. In implementation, we determine

these parameters offline.
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5.3.3.2 Inference Model of Taxicab Passenger Demand

We want the inference model to utilize the extracted suitable historical data (i.e.,

{Dj(n)|j = 1, 2, . . . , Nd}) to infer passenger demand in the next time slot of today

(i.e., Dc(n+1)). The analysis results in Section 5.2.1.1 have demonstrated that for the

historical passenger demand with a building tag histogram similar to that of current

passenger demand, their trend of passenger demand in the next time slot will also be

similar. Thus, if the training output in current time slot is close to current passenger

demand (i.e., Dc(n)), we can use this model to estimate the demand value in the

next time slot (i.e., Dc(n+ 1)) with a high accuracy. Therefore, we propose a taxicab

passenger demand inference model based on the linear regression of the extracted

suitable historical passenger demands.

The general procedures of training the inference model consists of: (1) we first

input {Dj(n)|j = 1, 2, . . . , Nd} as the training data to the inference model, and learn

the parameters of the inference model to minimize the error between the training out-

put and current passenger demand Dc(n). Once the best parameters are determined,

the training of the inference model is complete. (2) Then we input the suitable his-

torical data in (n+ 1)th time slot (i.e., {Dj(n+ 1)|j = 1, 2, . . . , Nd}) to the inference

model to infer the passenger demand in (n+ 1)th time slot of today (i.e., Dc(n+ 1)).

Considering that Dj(n) is actually the sum of passenger demand contributed by

each building k ∈ gi, we use its corresponding building tag histogram vector hj(n) to

represent Dj(n). Let H(n) be a NB ×Nd matrix with each column representing the

building tag histogram vector of an extracted suitable historical passenger demand

in nth time slot. That is, H(n) = [h1(n),h2(n), . . . ,hN
d
(n)]. Note that NB is the

total number of buildings in gi. Let w be a Nd × 1 weight vector of the Nd days’

extracted suitable passenger demands. As a result, a NB × 1 vector H(n)w is the

model’s training output for hc(n), which is the building tag histogram vector on today
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in nth time slot (i.e., ground truth). Thus, the key objective for training the inference

model is to find an optimal w that minimizes the error between hc(n) and H(n)w as

follows:

w∗ = argmin
w

(hc(n)−H(n)w)′(hc(n)−H(n)w), (5.3)

where ()′ means matrix transpose, and w∗ is the optimal solution, which can be

obtained by least-square fitting [17]. Finally, the building tag histogram vector of gi

during the next time slot t+ 1 is

hc(n+ 1) = H(n+ 1)w∗. (5.4)

The inferred total taxicab passenger demand in gi during the next time slot of

today (i.e., Dc(n + 1)) is obtained by summing the elements in hc(n + 1). That is,

Dc(n+ 1) =
∑

NB hc(n+ 1).

5.3.3.3 Maximum Predictability of Taxicab Passenger Demand

The data analysis result in Section 5.2.1.2 have illustrated that the maximum pre-

dictability of a region’s future passenger demand value is dependent on the random-

ness (entropy) of the region’s historical passenger demand time series, and measures

how reliable the passenger demand inference result is. For example, if a region has

the maximum predictability of 0.7 (denoted by Pmax = 0.7), it means that the max-

imum probability we can correctly infer the passenger demand in the next time slot

is 0.7, for the other 30% of the cases, we cannot correctly infer the future demand

value due to random factors. That is, the inference result has the probability of 70%

to be reliable at maximum. Then, one question is: how to determine the maximum

predictability of the passenger demand for each region and consider it in the optimiza-

tion of electric taxicab dispatching and charging? In this section, we elaborate how
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CD-Guide determines the maximum predictability of the region’s passenger demand

value.

We first compute the entropy of historical passenger demand time series E by

Equation (5.2) for each region offline to save real-time computation overhead. Suppose

the number of unique taxicab passenger demand values in Dall is Nu. For example,

for Dall = {1, 2, 2}, Dall only has Nu = 2 unique demand values: 1 and 2. That is,

Nu is the number of possible values that a future taxicab passenger demand (e.g.,

Dc(n+1)) can have. Among the Nu demand values, only one value is correct. Suppose

the probability that we can accurately infer the demand value of Dc(n + 1) is Pmax

(i.e., the maximum predictability of a future passenger demand value in gi). Thus,

the probability that we will inaccurately infer the demand value is 1 − Pmax [101,

132]. According to [101, 132], we assume the probability of inferring the remaining

inaccurate Nu − 1 possible demand values follows a uniform distribution. That is,

the probability of inaccurately inferring any one of the other Nu − 1 possible values

is 1−Pmax

Nu−1
, then E can be also calculated as the entropy resulted from accurate case

and inaccurate case:

E = −Pmax log2(Pmax)−
∑
Nu−1

1− Pmax

Nu − 1
log2(

1− Pmax

Nu − 1
)

= −Pmax log2(Pmax)− (1− Pmax) log2(1− Pmax) + (1− Pmax) log2(Nu − 1).(5.5)

Since E is known, and Nu can be determined from Dall, thus Pmax can be obtained

by solving Equation (5.5). Finally, the maximum predictability of the passenger

demand value Dc(n + 1) is determined as 1 − Pmax. Since we expect to dispatch

the taxicab to the region with a relatively higher predictability of passenger demand

(i.e., higher inference accuracy, 1−Pmax
i should be as low as possible), we adjust the

passenger demand value Dc(n+ 1) to be D̃c(n+ 1) = Dc(n+1)
1−Pmax

i
in later optimization of
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taxicab dispatching and charging.

5.3.4 Optimization of Taxicab Dispatching and Charging

Based on the passenger demand inference result output from Section 5.3.3, we next

elaborate how CD-Guide determines the service ability of a taxicab in a region gi

based on its current SoC, and how CD-Guide decides which region the taxicab should

drive to and whether to get charged in the region. In the following sections, we use

subscript i to mark all the parameters related to gi.

5.3.4.1 Determination of Taxicab Service Ability

When dispatching a taxicab to pick up its next passenger, we expect that the taxicab

has enough SoC to support the trip of its next passenger. This is because that

the trip length of the passenger determines the energy consumption of the taxicab.

Intuitively, the trip lengths of civilians in a city are relatively stable during the same

time slot among different days due to life routines. For example, Jack usually goes

from home to working place at 08:00, and leaves from working place to home at

18:00. Therefore, from the suitable historical data of a region gi extracted from

Section 5.3.3.1 (i.e., {Dj
i (n)|j = 1, 2, . . . , Nd

i }), we collect the distribution of possible

passenger trip lengths at specific time (e.g., 13:10) in the next time slot in previous

days, and use it as an estimation of the distribution of passenger trip lengths in the

next time slot of today. We collect this distribution for each region gi, and calculate

the taxicab’s service ability in gi (i.e., ratio of future passenger trips that a taxicab’s

current SoC can support). Specifically, suppose current SoC of a taxicab is SoC, and

the lower bound of a taxicab’s SoC is SoCmin (e.g., 20%), which is set to ensure that

the taxicab will have enough remaining SoC to go to the nearest charging position

upon the exhaustion of its battery. The taxicab’s service ability during specific time
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duration within a time slot (e.g., [13:10, 13:20] within time slot 13:00-13:30) in gi is

calculated as:

Φi(SoC|[ts, te]) = Pr{SoC − ce(ldi + lpi ) > SoCmin|ts 6 tpi 6 te}, (5.6)

where ce is the energy consumption rate (i.e., the amount of SoC consumed by unit

length of driving) of the taxicab, ldi is the driving distance from the taxicab’s current

position to the nearest position in region gi, and lpi is the trip length of a passenger in

region gi. Therefore, SoC − ce(ldi + lpi ) is the remaining SoC after the taxicab arrives

at gi. t
p
i is the appearance time of a passenger in gi, ts is the start time of the time

duration, te is the end time of the time duration. Equation (5.6) can be equivalently

transformed into the following form:

Φi(SoC|[ts, te]) = Pr(lpi <
SoC − SoCmin − celdi

ce
|ts 6 tpi 6 te), (5.7)

which means that based on the current SoC of the taxicab SoC, the taxicab can sup-

port passenger trip lengths shorter than
SoC−SoCmin−celdi

ce
during specific time duration

[ts, te]. Recall that we assume the maximum pool of passengers that the taxicab can

possibly pick up in region gi consists of passengers that will appear in the region

within nth and (n + 1)th time slots. That is, the actual pool of passengers that the

taxicab can support with its current SoC during a specific time duration [ts, te] (e.g.,

the taxicab’s charging time duration) is Φi(SoC|[ts, te])(D̃c
i (n)+D̃c

i (n+1)). From the

estimated distribution of future passenger trip lengths, we can calculate Φi for each

region gi during specific time duration for a taxicab. Then we extract the regions

that have Φi > 0 and define them as the set of candidate regions for dispatching the

given taxicab:

G̃ = {gi ∈ G|Φi > 0}, (5.8)
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which means that the taxicab can afford the trip length of at least one passen-

ger in these regions. Recall that the taxicab’s total number of potential passen-

gers in each candidate region of G̃ is weighted by the taxicab’s service ability (i.e.,

Φi(SoC|[ts, te])(D̃c
i (n) + D̃c

i (n+ 1))).

5.3.4.2 Optimization Models

From the analysis result of Section 5.2.1.3, we know that if a taxicab simply waits

until complete exhaustion of battery to get fully charged, it will miss a lot of po-

tential passengers during its long charging time. It would be better if a taxicab

gets charged at the time slots with few passengers without waiting until complete

exhaustion of battery. Therefore, the problem is: how to determine the action of

the taxicab (i.e., which region to go and whether receive a recharge) to minimize the

taxicab’s number of missed potential passengers due to charging, maximize the taxi-

cab’s probability of picking up a passenger, and meanwhile prevents the taxicab from

SoC exhaustion? Below we introduce two solutions: the first method formulates and

solves a Multi-objective Combinatorial Optimization Problem for the optimization of

electric taxicab dispatching and charging; the second method utilizes Reinforcement

Learning to determine the optimal action of an electric taxicab.

Multi-objective Combinatorial Optimization Problem based Model: We

first formulate a multi-objective combinatorial optimization problem to achieve this

goal. The inputs include the taxicab’s candidate regions for dispatching (G̃), and

the inferred passenger demand that the taxicab can support with its current service

ability. The outputs generated in the nth time slot are: 1) which region the taxicab

should drive to (denoted by xi); 2) whether the taxicab should get charged in the

region (denoted by yi); and 3) what future time slots the taxicab will receive a recharge

(denoted by zk), which will indirectly influence yi.

If xi = 1, the taxicab is dispatched to gi; if xi = 0, the taxicab will not drive to
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gi. If yi = 1, the taxicab will receive a recharge in gi when it arrives at gi; if yi = 0,

the taxicab will not receive a recharge in gi. Since the taxicab can only drive to one

region, we have the first constraint:
∑

gi∈G̃ xi = 1. Similarly, the taxicab can only

charge in one region or not charge at all. Therefore, we have the second constraint:∑
gi∈G̃ yi ∈ {0, 1}. If zk = 1, the taxicab will need to charge in the kth time slot, or

otherwise if zk = 0. Since we aim to avoid the taxicab from exhausting its SoC in

each time slot, we have the third constraint: the taxicab’s SoC in the jth time slot

must be higher than 0. Also, since the feasible range of a taxicab’s SoC is within

[0, 1], we have the fourth constraint: the taxicab’s SoC after the jth time slot must

be no higher than 1. Whenever a vacant taxicab (i.e., a taxicab without a passenger

onboard) requires a dispatching guidance, the taxicab dispatching center executes

the optimization of taxicab dispatching and charging to update the taxicab’s driving

route. Below, we introduce the details of the optimization problem.

Objective: minimizing the number of missed potential passengers due

to charging. If the taxicab decides to receive a recharge during a certain time

duration in nth and (n + 1)th time slot, the recharge will cause the taxicab to miss

some passengers in the short term. In addition, charging or not in the short-term

decision will also indirectly influence the exhaustion of the taxicab’s SoC in the long-

term future. Therefore, we need to consider the number of missed potential passengers

due to both short-term (denoted by Dm
s ) and long-term (denoted by Dm

l ) dispatching

and charging decisions.

We first explain how CD-Guide calculates the number of missed potential pas-

sengers due to short-term charging decision. Suppose the taxicab’s charging time

duration is [t0 + τ di , t0 + τ di + τ ci ], where t0 is current time, τ di is the taxicab’s driving

time to gi, and τ ci is the taxicab’s full recharge time based on its current SoC in gi.

Based on Equation (5.7), its number of missed potential passengers due to charg-

ing is Φi(SoC|[t0 + τ di , t0 + τ di + τ ci ])(D̃c
i (n) + D̃c

i (n + 1)). This is because that the
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taxicab will miss the passengers that appear during the taxicab’s charging in gi (i.e.,

[t0 +τ di , t0 +τ di +τ ci ]). Then, we can calculate the taxicab’s number of missed potential

passengers due to charging in a candidate region of G̃ during nth or (n + 1)th time

slot (i.e., short-term dispatch decision) as:

Dm
s =

∑
gi∈G̃

Φi(SoC|[t0 + τ di , t0 + τ di + τ ci ])(D̃c
i (n) + D̃c

i (n+ 1))xiyi. (5.9)

Dm
s consists of the number of passengers that the taxicab may miss due to charging

in each of the candidate regions in G̃. Since the taxicab can only choose one region

(
∑

gi∈G̃ xi = 1) and choose whether to have a recharge in the region (
∑

gi∈G̃ yi ∈

{0, 1}), the sum Dm
s is the taxicab’s number of missed potential passengers due to

charging at some time within nth and (n+ 1)th time slots.

Next, we explain how CD-Guide calculates the number of missed potential pas-

sengers due to long-term charging decision. We use zk ∈ {0, 1} to denote whether the

taxicab will charge in the rest k time slots of the day (i.e., k = n+2, . . . , Ns−1, where

Ns is the total number of time slots in a day). It is impossible to know the taxicab’s

actual position in the future k time slots, we use the maximum observed passenger

demand among all the regions in each time slot Dmax
k , k = n+2, . . . , Ns−1 (which can

be obtained from historical passenger demands) to estimate the taxicab’s potential

number of missed passengers in the future. The reason we use the maximum value

is that we expect the estimation of the number of missed potential passengers in the

rest k time slots to be conservative. Recall that if zk = 1, it means that the taxicab

will need to charge in kth time slot, and this charge may cause the taxicab to miss

Dmax
k passengers. Thus, the estimation of the taxicab’s number of missed passengers

in the rest time slots of the day (i.e., long-term dispatch decision) can be calculated

by:
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Dm
l =

Ns−1∑
k=n+2

zkΦi(SoCk|[t0 + (k − 1)T, t0 + (k − 1)T + τc])D
max
k . (5.10)

where Φi(SoCk|[t0 + (k − 1)T, t0 + (k − 1)T + τc]) is the taxicab’s service ability in

the region with the passenger demand value Dmax
k during the kth time slot, which is

determined by its SoC in the kth time slot (i.e., SoCk). The detailed estimation of

SoCk will be explained in Equation (5.14).

Since charging or not in the short-term decision will directly affect the exhaustion

of the taxicab’s SoC in the long-term future, we use Dm
l to estimate the impact

of short-term dispatch decision (controlled by xi and yi) on the number of missed

potential passengers in the long-term. By this way, we can obtain the global optimal

short-term dispatch decision. In order to minimize the taxicab’s number of missed

passengers throughout a day, we need to minimize the sum of Dm
s and Dm

l .

Objective: maximizing the probability of picking up a passenger. We

also need to dispatch the taxicab to a region (say gi) with as many potential passengers

as possible to increase its probability of picking up a passenger. Thus, the number of

potential passenger that the taxicab can pick up can be calculated as:

Dp =
∑
gi∈G̃

(Φi(1|[t0+τ di +τ ci , t0+2T ])yi+Φi(SoC|[t0+τ di , t0+2T ])(1−yi))(D̃c
i (n)+D̃c

i (n+1))xi,

(5.11)

where Φi(1|[t0 + τ di + τ ci , t0 + 2T ]) is the probability that a passenger will appear

in gi after the taxicab reaches and finishes charging in gi (i.e., the taxicab’s service

ability in gi after charging). Note that if yi = 1, the taxicab will firstly fully recharge

its battery and then drive to pick up a passenger. Therefore, SoC = 1 in this case.

Φi(SoC|[t0 +τ di , t0 +2T ]) is the probability that a passenger will appear in gi after the

taxicab reaches gi but does not receive a recharge (i.e., the taxicab’s service ability
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in gi without charging). Both of these values are obtained from historical passenger

demands. Recall that D̃c
i (n)+D̃c

i (n+1) is the the taxicab’s total number of potential

passengers in gi adjusted with the maximum predictability of passenger demand in gi.

The dispatching and charging approach needs to maximize Dp as much as possible.

Constraints. To achieve the above two objectives, the dispatching and charging

approach needs to follow several constraints. First, recall that we can only choose

one region to dispatch the taxicab:

∑
gi∈G̃

xi = 1. (5.12)

Similarly, the dispatched taxicab can only charge in one region or not charge at

all:

∑
gi∈G̃

yi ∈ {0, 1}. (5.13)

Second, in the optimization of the taxicab’s charging, we aim to avoid the taxicab

from exhausting its SoC in the rest time slots of the day. That is, the taxicab’s SoC

in jth time slot (denoted by SoCj, j = n+ 2, . . . , Ns − 1) must be higher than 0:

SoCj = SoC +
∑
gi∈G̃

rτ ci xiyi +

j−1∑
k=n+2

rTzk −
j−1∑

k=n+2

c̃ekT (1− zk) > 0, (5.14)

recall that SoC is the taxicab’s current SoC. r is the charging rate (i.e., the amount

of SoC charged in unit time) of a charging infrastructure, τ ci is the taxicab’s charging

time in gi. Thus,
∑

gi∈G̃ rτ
c
i xiyi is the amount of charged SoC caused by the taxicab’s

short-term decision. T is the duration of a time slot, and c̃ek is the taxicab’s heuristic

SoC exhaustion rate (i.e., the amount of SoC consumed in unit time) in kth time slot,

which can be estimated as the average value of the taxicab’s historical SoC exhaustion

rates in kth time slot. Thus,
∑j−1

k=n+2 rTzk −
∑j−1

k=n+2 c̃
e
kT (1 − zk) is the amount of

133



charged and consumed SoC from (n+ 2)th time slot to jth time slot. Finally, SoCj is

the taxicab’s estimated SoC in jth time slot.

Third, since the feasible range of SoC is within [0, 1], we also need to consider

below constraint in the optimization:

SoCj + rTzj 6 1, (5.15)

where SoCj + rTzj represents the taxicab’s SoC after jth time slot, which must be

no larger than 1.

Problem statement. We combine Objectives (5.9), (5.10) and (5.11) together

to model the problem of charging optimization. Finally, the optimization problem

can be formulated as:

minimize Dm
s +Dm

l (5.16)

maximize Dp

subject to xi, yi, zk ∈ {0, 1}

Constraints(5.12), (5.13), (5.14) and (5.15)

Problem solution. The optimization problem is a Multi-Objective Combinato-

rial Optimization (MOCO) problem which may have multiple Pareto optimal solu-

tions (i.e., Pareto front) [103]. The outputs are: 1) which region the taxicab should

drive to (denoted by xi); 2) whether the taxicab should get charged in the region

(denoted by yi); and 3) what future time slots the taxicab will receive a recharge

(denoted by zk), which will indirectly influence yi. Since finding the Pareto front is

well-known to be very hard and traditional stochastic algorithms for approximating

the Pareto front (e.g., genetic evolution algorithms) is time-consuming, we utilize a

guided improvement algorithm [47], which can quickly converge to the Pareto front of
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Figure 5.12: Training of reinforcement learning model.

this problem, to enable a real-time scheduling. Generally, it firstly finds a potential

solution to meet all the constraints, and then continues to improve the solution by

repeatedly meeting the constraints with better objective metrics. Finally, the output

solution is guaranteed to be the Pareto front.

Reinforcement Learning Model: In the second taxicab dispatching and charg-

ing solution, we use the reinforcement learning (RL) model to generate the action.

Specifically, the RL mode produces policy π : sn 7→ an, that is, given state sn, it

outputs an as the optimal action that maximize the reward. We define reward as the

number of potential passengers that the taxicab can pick up. We utilize the taxicab’s

SoC and the predicted passenger demands of the candidate regions (G̃) in the nth and

(n+ 1)th time slots (i.e., {D̃c
i (n) + D̃c

i (n+ 1)|gi ∈ G̃}) to describe the state sn. That

is, sn = (SoC, {D̃c
i (n) + D̃c

i (n+ 1)|gi ∈ G̃}). As shown in Figure 5.12, the state is the

input to the reinforcement learning model. The output of the model is an action (an),

i.e., the decision for dispatching and charging in the nth time slot including: 1) which

region the taxicab should drive to (denoted by xi ∈ {0, 1}); 2) whether the taxicab

should get charged in the region (denoted by yi ∈ {0, 1}). That is, an = (xi, yi).

Specifically, if xi = 1, the taxicab is dispatched to gi; if xi = 0, the taxicab will not

drive to gi. If yi = 1, the taxicab will receive a recharge in gi when it arrives at gi; if

yi = 0, the taxicab will not receive a recharge in gi.
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We use the number of potential passengers that the taxicab can pick up by taking

an action as the reward for the Reinforcement Learning (RL) model. If xi = 1 and

yi = 1 (i.e., the taxicab will drive to gi and receive a recharge in gi), the taxicab will

spend τ di on driving to gi, and τ ci on receiving a full recharge in gi based on its current

SoC. Thus, starting from current time t0, the time duration that the taxicab can pick

up passengers in the nth and (n + 1)th time slots is [t0 + τ di + τ ci , t0 + 2T ], where T

is the duration of a time slot. [t0 + τ di + τ ci , t0 + 2T ] is defined as the time duration

from the taxicab’s completion of charging in region gi until the end of the nth and

(n + 1)th time slots. Similarly, if xi = 1 but yi = 0 (i.e., the taxicab will drive to

gi but will not receive a recharge in gi), the time duration that the taxicab can pick

up passengers in the nth and (n + 1)th time slots is [t0 + τ di , t0 + 2T ]. Note that the

taxicab’s service ability during a specific time duration can be calculated by Equation

(5.7), the taxicab’s reward function resulted by xi and yi can be represented as:

r(sn, an, sn+1) = (Φi(1|[t0+τ di +τ ci , t0+2T ])yi+Φi(SoC|[t0+τ di , t0+2T ])(1−yi))(D̃c
i (n)+D̃c

i (n+1))xi,

(5.17)

where Φi(1|[t0 + τ di + τ ci , t0 + 2T ]) is the taxicab’s service ability in gi after charging.

The reason SoC = 1 is that the taxicab will firstly fully recharge its battery and then

drive to pick up a passenger. Φi(SoC|[t0 + τ di , t0 + 2T ]) is the taxicab’s service ability

in gi without charging. Both Φi(1|[t0 +τ di +τ ci , t0 +2T ]) and Φi(SoC|[t0 +τ di , t0 +2T ])

are obtained from historical passenger demands.

We use the Deep Neural Network (DNN) to obtain the optimal policy as in [74].

The optimal policy π∗ is defined as one map π∗ : sn 7→ an that maximizes the

reward received by taking the correspoinding action an given state sn. It is the

training result of the reinforcement learning model. The trained RL mode outputs the

dispatching and charging action an when the input state is sn. To discover the optimal
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dispatching and charging action strategy that maximizes the reward (i.e., number of

potential passengers for the taxicab) under various states, we utilize the long-term

historical passenger demands (e.g., passenger demands in previous 365 days) for offline

training of the reinforcement learning model. Once the model training is complete,

the taxicab can utilize the model to generate the dispatching and charging action in

real time. During the training process, the inputs are the state, the different actions

the taxicab takes (i.e., driving to each region and choose to get recharged or not) and

the reward calculated by Equation (5.17), i.e., the number of potential passengers

that the taxicab can pick up by taking an action. Specifically, we suppose that the

taxicab’s initial state starts from a randomly selected region with SoC = 1. Then, we

simulate the movement of the taxicab from one region to another region. That is, the

taxicab transfers from one state to another state by taking different actions. Thus,

starting from the initial state, we can collect all possible series of successive actions.

Finally, we utilize the historical passenger demand value information at each time

when the taxicab takes an action in the simulation to calculate the reward. The RL

model calculates the Q value of a series of successive actions as the sum of the rewards

resulted from the actions. Reinforcement learning finds a policy that is optimal in

the sense that it maximizes the expected value of the total reward over all the series

of successive actions, starting from the initial state.

However, one major difficulty in finding the optimal dispatching and charging

policy is: the total number of all possible states is too large. For the state s =

(SoC, {D̃c
i (n) + D̃c

i (n+ 1)|gi ∈ G̃}), suppose that SoC changes between 0 and 1, and

there are 10 candidate regions in G̃, and each region’s D̃c
i (n) + D̃c

i (n + 1) changes

between 0 and 2000. If we set the change unit of SoC is 0.001, the change unit of

D̃c
i (n)+ D̃c

i (n+1) is 200, the total number of possible states reaches at the 1013 level,

which will result in the curse of dimensionality problem in practice [8]. Besides, these
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many state values can result in huge overload in computing Q-values. To solve this

difficulty, we apply DNN into the reinforcement learning model to approximate the

Q-values and help form the optimal policy π∗. More details of applying the DNN into

the RL model can be found in [74].

5.4 Performance Evaluation

5.4.1 Comparison Methods

To evaluate CD-Guide’s performance, we compare its taxicab passenger demand in-

ference performance with a representative method that utilizes Bilinear Poisson re-

gression model to consider the effects of random factors on passenger demand values

(BilinearPoisson in short) [99], and the method introduced in Section 5.2.1.1 (Sim-

ilar in short). Specifically, throughout all the time slots in a day, Similar utilizes

the historical demand value, of which histogram of passenger building tags has the

smallest χ2
j to that of current passenger demand value, as the predicted passenger

demand in the next time slot. BilinearPoisson develops a bilinear Poisson regression

model, which takes all the historical demands as input training data without selec-

tion. It uses random factors including day of week, holidays and weather as inputs

to the model and learn their effects on passenger demand based on the training data.

Finally, the model outputs the passenger demand of each region in the next time slot

considering the demand value and random factors in current time slot.

We divide CD-Guide into two forms: CD-Guide Opt represents the form that uses

optimization problem for taxicab dispatching; CD-Guide RL represents the form that

uses RL model for taxicab dispatching. We also compare the performance of CD-

Guide Opt and CD-Guide RL in increasing the number of served passenger pick-up

requests with a representative taxicab dispatching method (PrivateHunt in short)
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[111], and a baseline method that randomly dispatches the taxicab to a nearby region

(Baseline in short). In PrivateHunt, it utilizes the future passenger demand inferred

from historical passenger demands to determine the cruising policy for each taxicab,

in order to maximize the taxicab’s likelihood of picking up passengers. For fairness,

we use the passenger demand inference result output by CD-Guide. Then, it utilizes

a Markov Decision Process to model the appearance of passengers and calculate the

probability of picking up a passenger with the probability of passenger appearance in

each region. in each region. Finally, it recommends the region that has the maximum

probability of picking up a passenger to the taxicab. The distribution of chargers

follow the existing charging stations in Shenzhen. Since PrivateHunt and Baseline

do not have specific methods to optimize the charging of taxicabs, we set that the

taxicabs in these two methods will drive to the nearest charger for charging whenever

their SoC is below a threshold (20% in this experiment). The threshold is determined

so that an EV is able to reach the nearest charger with its residual SoC.

5.4.2 Experiment Settings

We suppose that every electric taxicab starts driving with full energy in battery at

the beginning of a day. The battery capacities of the taxicabs follow a uniform dis-

tribution from 65 kWh to 85 kWh, which is the common battery capacity of electric

taxicabs in Shenzhen [62]. With the most recent research implementations (e.g., Oak

Ridge National Laboratory [85]), it is expected that within a 10-year timeframe, it is

possible to reach a charging rate over 100kW for EV wireless charging. Therefore, we

use 150kW as the charging rate of a charging infrastructure. The energy consumption

rate of a taxicab is a 0.425 kWh/km [62, 117]. The SoC lower bound SoCmin is set to

20%. We use the historical data from July, 2014 to June, 2015 as the training data

for CD-Guide, Similar and BilinearPoisson. The random factors such as day of week
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and holidays are obtained from Shenzhen’s calendar of 2015, and the weather data

is obtained from the China Meteorological Data Service Center [21]. All 16 weather

types (e.g., Sunny, Rainy) are denoted with one hot coding (i.e., if a day is sunny,

its code is 1, or 0 otherwise). We aim to infer the passenger demand in each time

slot of July 15, 2015 to compare the accuracy of different passenger demand inference

methods. To validate our inference model in different situations, we also measured

the inference accuracy of the methods in 7 different days, which are January 12 (Mon-

day), March 10 (Tuesday), May 13 (Wednesday), July 16 (Thursday), September 18

(Friday), November 21 (Saturday) and December 13 (Sunday) in 2015. These days

are representative because they are unrelated to each other, belong to 4 different sea-

sons, and cover weekdays and weekends [121]. The values of parameters related to

training (i.e., ND, β) are ND = 365 and β = 10%. We also use the historical demand

data to train the reinforcement learning model that determines the dispatching and

charging policy with the maximum reward. Specifically, we utilize Flow [110], which

is a vehicle traffic simulation framework with the integration of deep reinforcement

learning, to implement the reinforcement learning based optimization of taxicab dis-

patching and charging. Flow utilizes SUMO [56] to simulate the states and actions

of taxicabs and utilizes DNN to train the optimal dispatching and charging policy

with the maximum reward. Based on the deployment of existing charging stations in

Shenzhen, we use SUMO [56] to simulate the operation of 1,000 EVs on Shenzhen’s

road network for 24 hours in 7 different days (i.e., January 12, March 10, May 13,

July 16, September 18, November 21 and December 13 in 2015). We converted Open-

StreetMap road network of Shenzhen to a SUMO road network file. In SUMO, we

let taxicabs drive by the dispatching strategy designed by each comparison methods.

The parameters are listed in Table 5.1.

We use the movement records of the taxicabs mentioned in Section 2.2 for perfor-

mance evaluation. Below, Figure 5.13 to Figure 5.17 demonstrate the metrics of the
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Table 5.1: Table of parameters.

Parameters Setting Source
Battery capacity of an EV 65kWh – 85kWh Li et al. [62]
Charging rate C 150 kW Chen et al. [20, 31, 113]
Energy consumption rate ce $500/m Li et al. [62]
SoC lower bound SoCmin 20% Author’s assumption

Total number of days of observed passenger demands ND 365 Author’s assumption
Ratio of extracted suitable historical passenger demands β 10% Author’s assumption

vehicles under different hours on July 15, 2015. Figure 5.18 to Figure 5.19 demon-

strate the metrics of the vehicles in multiple days, which are January 12 (Monday),

March 10 (Tuesday), May 13 (Wednesday), July 16 (Thursday), September 18 (Fri-

day), November 21 (Saturday) and December 13 (Sunday) in 2015. These days are

representative because they are unrelated to each other, belong to 4 different sea-

sons, and cover weekdays and weekends [121]. Specifically, we measured the following

metrics:

•Passenger demand inference sMAPE. For each region, we measure the sMAPE over

all time slots throughout a day for each region, and collect the CDF of the sMAPEs

of all the regions. We also collect the CDF of the Absolute Percentage Error (APE)

[105, 132] (i.e., APE = |inferred demand−actual demand|
inferred demand+actual demand+1

) of the inference result in each

time slot of all the regions. The purpose of this metric is to compare the inference

accuracy of different passenger demand inference methods.

•The number of served passengers. We measure the number of passengers served

by all taxicabs in all time slots throughout a day. We also measure the number of

passengers served by each taxicab, and collect the CDF of the served passengers of all

the taxicabs. The purpose of this metric is to compare the performance of different

taxicab dispatching methods in serving passengers.

•Taxicab SoC : For each taxicab, we measure its SoC in each time slot throughout

a day. Then, we measure the medium, 5th percentile and 95th percentile values of

all the taxicabs’ SoC in each time slot. The purpose of this metric is to compare

the performance of different taxicab dispatching methods in supporting the SoC of
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all inference results.

taxicabs.

5.4.3 Experimental Results

5.4.3.1 Passenger Demand Inference sMAPE

Figure 5.13 shows the distribution of the sMAPEs of taxicab passenger demand infer-

ence results in all regions. Figure 5.14 shows the distribution of the APEs of the infer-

ence results in each time slot of all regions. We can see that for most regions (>90%),

the sMAPEs follow: CD-Guide<BilinearPoisson<Similar. While for the other re-

gions (<10%), the sMAPEs follow: CD-Guide≈BilinearPoisson<Similar. The APEs

of the inference results generally follow CD-Guide6BilinearPoisson<Similar.

Similar results in the highest average sMAPE over all regions. This is because

that it uses only one suitable historical passenger demand value, of which histogram

of passenger building tags has the smallest χ2
j to that of current passenger demand

value, as the demand value in the next time slot. Although the historical data is a

good indicator of the changing trend of passenger demand in the next time slot, simply

using a historical passenger demand value as a future demand value will inevitably

cause a high inference error, because one suitable historical data sometimes cannot

catch the influence of all random factors.
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In comparison, BilinearPoisson has a much lower sMAPE in all regions. This

is because that BilinearPoisson regresses the change of passenger demand value by

time via the bilinear Poisson regression model. After training the time-variant Pois-

son parameter with large-scale historical data, it has taken into account the long-term

temporal change pattern of taxicab passengers. In addition, after adding the quanti-

fied effect of random factors to the bilinear Poisson regression model, BilinearPoisson

can better adjust its inference result against unexpected cases (e.g., day of the week,

weather) that are not reflected in historical data. However, its inference accuracy

is constrained by the maximum predictability of future passenger demand in some

regions. This is why the sMAPEs of BilinearPoisson in around 75% of the regions

are similar or lower than those in CD-Guide.

Compared with BilinearPoisson, CD-Guide achieves a lower sMAPE in around

75% of the regions, a similar sMAPE in around 20% of the regions, and a slightly

higher sMAPE in the rest 5% of the regions. This is because that in CD-Guide,

the suitable historical data extraction process has ensured that the training data for

inference have been limited to previous days that have similar histograms of passen-

ger tags, which means that they are under the influence of similar random factors.

For most regions (i.e., 95%) with a relatively higher passenger demand predictability,

the extracted suitable historical data has covered sufficient random factors that may

influence the region’s future passenger demand. What’s more, CD-Guide utilizes the

linear regression to learn the weights of the random factors in generating the infer-

ence result. As a result, the inference accuracies of passenger demands in the 95%

regions are sufficiently high. For the rest 5% regions, which have relatively lower

predictability, their future passenger demand does not have much commonness with

their historical demands (i.e., unpredictable), catching the overall random factors that

affect the historical demands does not help improve the predictability of (i.e., unpre-

dictable), catching the overall random factors that affect the historical demands does
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not help improve the predictability of passenger demand As a result, BilinearPoisson

achieves a lower sMAPE due to its learned influence of several random factors. This

experiment result demonstrates that CD-Guide’s passenger demand inference method

is effective in approximating the actual passenger demand with a higher accuracy, and

its effectiveness differs in the regions due to the different predictability of passenger

demand in the regions.

The distribution of the APEs of each inference result is consistent with the distri-

bution of passenger demand sMAPEs of all the regions. The APEs of about 90% of

the inference results in CD-Guide are lower or approximate to that of BilinearPois-

son. The APEs of almost all the inference results in Similar are higher than the other

two methods. This result further confirms CD-Guide’s high accuracy in passenger

demand inference for regions with various maximum predictability.

5.4.3.2 The Number of Served Passengers

Figure 5.15 shows the number of passengers served by all the taxicabs in each hour

of a day under different taxicab dispatching methods. For reference convenience, we

also drew the actual total number of passengers reflected by trace data in each hour

throughout the day (denoted by Total). Figure 5.16 shows the CDF of the numbers of

served passengers of all the taxicabs under different methods. We can see that in both
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figures, the results follow: Total>CD-Guide RL>CD-Guide Opt>PrivateHunt>Baseline.

In Figure 5.15, Baseline always achieves the minimum total number of served

passengers during all hours in a day. This is because that it simply dispatches the

taxicab to a nearby region without considering the passenger demand in the region.

So the taxicab cannot efficiently discover passengers when driving. From Figure 5.16,

we can see that almost all taxicabs cannot pick up more than 50 passengers in a day.

In comparison, the taxicabs of PrivateHunt picked up much more passengers than

those in Baseline. This is primarily because that PrivateHunt employs a Markov De-

cision Process to determine the probability of picking up a passenger and the possible

duration of cruising time without a passenger onboard for each nearby region. The

dispatched taxicab is able to quickly discover a passenger by following the recommend

driving route. However, we can also observe that there are several conspicuous drops

of the number of served passengers at around 03:00, 07:00, 11:00 and 15:00. This

generally matches the time of taxicabs’ charging events, which is analyzed in Section

5.2.1.3. The reason is the same: some of the taxicabs exhausted SoC and have to

recharge at around these time slots, so they missed many potential passengers during

these time slots. By comparing the result curve of PrivateHunt with Total, we can see

that the total number of passengers is actually increasing or remaining high at 03:00,

07:00 and 15:00. During their charging, they missed many passengers, which results

in the conspicuous drops of the number of served passengers. From Figure 5.16, we

can see that more than 50% of the taxicabs picked up more than 50 passengers in a

day, which is much higher than that in Random. In Section 5.4.3.3, we will illustrate

the change of the taxicabs’ SoC to further explain the effect of charging on degrading

the taxicabs’ service.

The taxicabs of CD-Guide RL and CD-Guide Opt achieve the highest and the sec-

ond highest total number of served passengers during all hours in a day, respectively.

We can see that the curves of CD-Guide RL and CD-Guide Opt generally change ac-
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cordingly with the change of the total number of passengers. This observation verifies

that the service of the taxicabs of CD-Guide RL and CD-Guide Opt was not greatly

effected by their charging time. This is because that the optimal taxicab dispatching

and charging policies of these two methods take into account the effect of charging

time on the number of potential passengers, and meanwhile ensure that the taxicab

has sufficient SoC throughout a day. We can also observe that CD-Guide RL’s curve

is a bit higher than that of CD-Guide Opt. This is because that CD-Guide RL’s taxi-

cab dispatching and charging model is trained after trying the optimal policy, which

has considered the state change under various passenger demands and avoids the

taxicab from charging at the state with many passengers appearance. In comparison,

although CD-Guide Opt tries to minimize the number of missed potential passen-

gers in both short-term and long-term, its estimation of long-term missed potential

passengers is inaccurate since it only uses the maximum observed passenger demand

among all the regions for the estimation. Therefore, the dispatching and charging

guidance provided by CD-Guide RL is more effective in increasing the number of

served passengers for the taxicabs. Since both CD-Guide RL and CD-Guide Opt try

to dispatch each taxicab to the nearby region with the maximum number of potential

passengers, all the taxicabs of CD-Guide and CD-Guide Opt can serve more than 60

passengers during a day as illustrated in Figure 5.16.

5.4.3.3 Taxicab SoC

Figure 5.17 shows the medium, 5th percentile and 95th percentile values of all the taxi-

cabs’ SoC after every two hours in a day under different taxicab dispatching methods.

We can see that the results of CD-Guide is much more stable than the other methods.

The medium values generally follow: CD-Guide Opt≈CD-Guide RL>PrivateHunt≈Baseline.

In PrivateHunt and Baseline, after driving for around 4 hours from 00:00 to 04:00,

the taxicabs began to run out of SoC (<20%) and drove to a charging infrastructure
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Figure 5.17: Taxicabs’ SoC.

for a full recharge, which makes their medium SoCs return to around 0.9 at 04:00.

But their recharge downtime caused them to miss a high volume of passengers that

happened during this time interval, which is reflected as the conspicuous drops of

the number of served passengers of PrivateHunt and Baseline in Figure 5.15. Similar

cases also happened at around 07:00 and 15:00, when the passenger demand in many

regions is still high, but many taxicabs drove to charging infrastructures to restore

SoC. The reason behind this is that both PrivateHunt and Baseline do not consider

the optimization of the taxicabs’ charging in dispatching, so the taxicabs occasionally

run out of SoC right during the time when passenger demand is still high.

In contrast, the medium taxicab SoCs of CD-Guide Opt and CD-Guide RL remain

relatively more stable throughout the day. We can see that the taxicabs’ medium SoC

keeps dropping between 00:00 and 05:00, this is because that the dispatching and

charging policies of CD-Guide RL and CD-Guide Opt take into account the change

of passenger demand and do not let the taxicabs spend a long time for a full recharge

between 00:00 and 05:00. Later, after the total number of passengers dropped to a

valley point at around 05:00, the taxicabs of CD-Guide RL and CD-Guide Opt began

to drive for a recharge and restored their medium SoC to around 0.85. Since for each

taxicab’s dispatching request, the dispatching and charging policies of CD-Guide RL

and CD-Guide Opt determine the best charging time and position that affect the
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Figure 5.18: Passenger demand inference
sMAPEs in different days.
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Figure 5.19: The number of served pas-
sengers in different days.

least on the taxicab’s service, the medium SoCs of the taxicabs of CD-Guide RL and

CD-Guide Opt remain above 0.8 with small fluctuations after 07:00.

5.4.3.4 Performance Evaluation on Multiple Days

To further validate the effectiveness of our passenger demand inference method and

taxicab dispatching method under different scenarios, we measured the passenger

demand inference sMAPE of all regions and the number of passengers served by all

the taxicabs on different days. Figure 5.18 shows the median, 5th and 95th percentiles

of the passenger demand inference sMAPE of all the regions on different days. Figure

5.19 shows the median, 5th and 95th percentiles of the number of passengers served

by all the taxicabs on different days.

From Figure 5.18, we can see that the median values of the demand inference

sMAPEs generally follow: CD-Guide≈BilinearPoisson<Similar on weekdays. How-

ever, the demand inference sMAPEs of BilinearPoisson and Similar significantly

increase on weekends, while the median value of the passenger demand inference

sMAPE of CD-Guide only slightly increases on weekends. This is primarily because

that the passenger appearance on weekends has much more randomness compared

with those on weekdays. Although BilinearPoisson takes into account the long-term

temporal change pattern of passenger appearance (e.g., day of the week, weather), its

148



inference accuracy in the regions with low predictability is further reduced due to the

higher random factors on weekends. While Similar uses only one suitable historical

passenger demand that has the most similar histogram of passenger building tags as

current passenger demand, the single data is not sufficient to capture the randomness

that affects the real-time passenger demand. By selecting multiple suitable historical

data, CD-Guide has maximally considered the random factors reflected in historical

data in generating the inference result. As a result, except for the regions with low

predictability (the 95th percentile of the passenger demand inference sMAPE on week-

ends is higher than that on weekdays), the median values of the passenger demand

inference sMAPE remains approximate to those on weekdays.

From Figure 5.19, we can see that the median values of the number of passengers

served by the taxicabs generally follow: CD-Guide RL>CD-Guide Opt>PrivateHunt>Baseline

on different days. On weekends, the taxicabs under all methods picked up more pas-

sengers than weekdays. However, the taxicabs in CD-Guide RL and CD-Guide Opt

picked up much more passengers than those in PrivateHunt and Baseline. This is pri-

marily because that there are much more passenger appearances on weekends. The op-

timal taxicab dispatching and charging policies of CD-Guide RL and CD-Guide Opt

take into account the effect of charging time on the number of potential passengers,

and meanwhile ensure that the taxicab has sufficient SoC throughout a day. More-

over, the RL based dispatching method of CD-Guide RL can more adaptively adjust

the driving route of taxicabs according to the real-time change of passenger demand,

which further increases the number of passengers picked up by taxicabs on weekends.

5.5 Summary

Accurate inference of future passenger demand and avoidance of missing too many

passengers caused by battery charging is essential for efficient dispatching of elec-
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tric taxicabs. Our proposed CD-Guide is the first electric taxicab C harging and

D ispatching approach that Guides electric taxicabs to minimize their number of

missed passengers due to charging. Our analytical results on a metropolitan-scale elec-

tric taxicab passenger demand dataset provide insights for the design of CD-Guide.

We utilize the histogram of passengers’ building tags to extract suitable historical

passenger demands for training a linear regression based passenger demand inference

model, and adjust the inference result considering the maximum predictability of

taxicab passenger demand in each region. We design a reinforcement learning based

model that guides a taxicab to receive charging with minimized number of missed

passengers, maximized probability of picking up a passenger and sufficient SoC dur-

ing the rest time slots of a day. We conducted trace-driven experiments on SUMO to

verify the performance of CD-Guide. Compared with previous methods, CD-Guide

increases the number of served passengers by 100% on average, and maintains the

average SoC of all taxicabs above 80% during all time slots.
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Chapter 6

Related Work

Over the past decades, with ever increasing concerns on wide adoption of EVs, wireless

power transfer for EVs have attracted more and more efforts to support EVs’ appli-

cations under various Intelligent Transportation Systems scenarios. In this chapter,

we discuss existing efforts in improving the performance of WPT charging systems

for EVs.

The remainder of this chapter is organized as follows. Section 6.1 introduces the

state-of-the-art in WPT techniques for EVs. Section 6.2 discusses the existing works

for optimizing the deployment of chargers for EVs. Section 6.4 presents the works

about the inference methods of taxicab passenger demand. Section 6.6 discusses the

efforts in utilizing the passenger demand inference results to guide the driving of

taxicabs.

6.1 Wireless Power Transfer for EVs

In 2006, Karalis et al. [53] from MIT introduced a resonant coupler that wirelessly

transmits a large amount of power to EVs at low frequencies. Jang et al. [48] formu-

lated an optimization problem, which considers battery capacity and charging lane
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length as constraints, to deploy wireless charging lanes to maintain the SoC of buses

on a single determined route with the minimum cost. Sarker et al. [94] developed a

wireless power transfer system for balancing the SoC of EVs in a charging lane in

the urban scenario. However, the problem of deploying wireless charging lanes in a

metropolitan road network considering different sources of traffic and many roads has

not been studied.

6.2 Deployment of Plug-in Chargers

Driven by the traffic flow and city-wide travel patterns of people reflected in the

ubiquitous taxicab movement data, several recent works studied the problem of min-

imizing average seeking time for the nearest charging station of EVs from the per-

spective of urban facility planning. Qin et al. [89] scheduled the plug-in charging

stations to minimize the time on seeking and waiting in charging stations based on

the estimated time and location that each EV needs to be charged. Zhang et al. [130]

further considered the uncertainty of the EVs’ arrival times at the charging stations

to shorten the time on seeking chargers and charging. Li et al. [62] determined the

locations for deploying plug-in charging stations that minimize the time on seeking

chargers. Bae et al. [5] proposed to deploy charging stations through analyzing the

spatial and temporal dynamics of charging demand profiles at potential positions us-

ing the fluid dynamic model. Zheng et al. [137] formulated an optimization problem

trying to maximize the number of EVs charged while minimizing the life cycle cost

of all the stations. Eisel et al. [26] aimed at dealing with drivers’ range anxiety (i.e.,

fear of being unable to reach destination due to insufficient charging opportunities)

by transforming the drivers’ preference in charging into planning of stations.

Further, several traffic flow based charging station deployment algorithms have

been proposed Lam et al. [58] formulated the station placement as a vertex cover
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problem, proved its NP-hardness and proposed four solutions. Wang et al. [108]

determined constraints (e.g., driving range, traffic volume) from EV traffic statis-

tics, and formulated and solved a multi-objective location optimization problem to

maximize the coverage of EV traffic. Sánchez-Mart́ın et al. [93] proposed to deploy

charging stations at the positions with many parking events and suitable parking time

length with the minimum deployment cost to offer EVs enough charging opportuni-

ties. Yao et al. [119] formulated a problem trying to minimize deployment cost to

maximize the covered EV traffic flow. Li et al. [62] proposed the first work (Optimal

Charging Station Deployment (OCSD)) for deploying plug-in charging stations that

minimize the time on seeking chargers through analyzing a large-scale electric taxi

trajectory data. Yang et al. [118] applied a large-scale GPS trajectory data collected

from the taxi fleet to allocate chargers for battery EV taxis, and investigated the

tradeoff between installing more chargers versus providing more waiting spaces. Cai

et al. [14] demonstrated the potential public charging stations by extracting public

parking “hotspots” from taxi trajectory data in Beijing, China. Shahraki et al. [97]

developed an optimization model to determine optimal charger allocation, with the

objective of maximizing electrified fleet vehicle miles traveled (VMT) of plug-in hy-

brid electric vehicles (PHEVs). Based on an event-based simulation, Sellmair et al.

[96] proposed an algorithm to optimize the number of charging stations per taxi stand

based on real world driving patterns of conventional taxis in Munich, Germany. The

objective was to maximize economic benefit of the entire system including BEV taxi

drivers and charging station investors. Jung et al. [52] proposed a bi-level simulation-

optimization model to allocate chargers for a fleet of 600 shared-taxis in Seoul, Korea,

with an objective of minimizing the queue delay. Ahn et al. [1] proposed an Estimat-

ing the Required Density of EV Charging (ERDEC) stations model to estimate the

optimal density of charging stations aiming at minimizing the range anxiety based
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on taxi trajectories in Daejeon City, Korea, which was a pioneering work considering

charging queuing. Although these works can support the continuous operability of

the taxicabs by adapting the deployment of chargers to cover the actual traffic, the

taxicabs still have to spend extra idle time on seeking chargers and charging upon

the exhaustion of the battery.

6.3 Optimal Deployment of Wireless Chargers for

EVs.

He et al. [39] proposed two pricing models and formulated a mathematical program

to optimize the deployment of wireless charging tolls. Ko et al. [54] designed a mathe-

matical optimization model to allocate the in-motion wireless chargers and determine

buses battery size given specific bus driving routes. Riemann et al. [91] proposed a

mixed-integer nonlinear program model to maximize the captured traffic flow of de-

ployed in-motion wireless chargers through applying the stochastic user equilibrium

to describe EVs’ route choice. Fuller et al. [31] considered various combinations of

charging power and EV driving range, and formulated and solved a flow-based set cov-

ering problem to determine the number of wireless charging infrastructures required

in California. Chen et al. [19] developed a user equilibrium model for describing the

equilibrium flow distribution across a road network, and formulated a mathemati-

cal program to optimize the charging lane deployment. Hwang et al. [45] proposed

a Particle Swarm Optimization (PSO) method to solve a mathematical model that

optimizes the economical allocation of charging lanes, given the battery size and

multi-route environment. Chen et al. [20] further studied the deployment problem of

both stationary and in-motion wireless chargers through considering different scenario

requirements. Liu et al. [66] proposed a deterministic model and a robust model to
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address the problem of optimizing the charging lane locations for a real-world bus

system that consists of 8 bus lines. Bi et al. [9] proposed a novel multi-objective

optimization model framework based on life cycle assessment (LCA) to solve the de-

ployment problem of in-motion wireless chargers in a multi-route electric bus system.

Manshadi et al. [73] proposed a decentralized optimization framework to address the

impact of wireless charging on electricity and transportation networks. Li et al. [59]

designed a bi-objective model considering both traffic delay and charger utilization

rate to optimize the deployment of wireless chargers on urban road networks with

traffic signals. However, these works are designed and evaluated for small-scale road

networks (mostly no more than 20 road segments) with synthetic traffic. Therefore,

they cannot solve the challenge of deploying wireless charging lanes in a metropolitan

road network with different sources of traffic, which however is much more formidable.

6.4 Taxicab Passenger Demand Inference

Multiple urban passenger demand inference methods have been proposed. Fan et

al. [29] proposed to decompose passenger demand into several patterns representing

the influence of different random factors, and use the patterns to infer the number of

population at specific times in each region. Shimosaka et al. [99] proposed to utilize

a bilinear Poisson regression model, which considers random factors including day

of week, holidays, etc., to predict passenger demand in a metropolitan scale. Zhang

et al. [126] developed a customized online training model with both historical and

real-time GPS position data of taxicabs to infer taxicab passenger demand. Zhang

et al. [128] proposed a residual Convolutional Neural Network (CNN) based model

to learn the influence of several random factors (e.g., weather, period and trend of

passenger demand), and achieved a higher inference accuracy than previous methods.
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However, these methods have insufficient accuracy because they fail to catch the

influence of all random factors.

6.5 Prediction of Traffic Demand

As an essential component for efficient traffic management, the short-term prediction

models of traffic demand have been extensively studied. Smith et al. [100] proposed to

use seasonal Autoregressive Integrated Moving Average (ARIMA) model to forecast

the traffic demand value in the near future. Stathopoulos et al. [102] developed a

multivariate time-series state space model to increase the prediction accuracy. Ghosh

et al. [32] further developed a multivariate structural time series model to consider

multiple factors that may affect real-time traffic demand, such as trend, seasonal,

cyclical, and calendar variations. Hinsbergen et al. [41] applied extended Kalman

filter techniques, which assume the traffic network has nonlinear state space, for

traffic demand prediction. Carrese et al. [16] utilized Local Ensemble Transformed

Kalman Filter (LETKF) to consider increasingly abundant heterogeneous traffic data

for online traffic demand prediction. In recent years, machine learning techniques

have been widely used for traffic demand prediction. Zhang et al. [131] proposed

a v-Support Vector Machine (v-SVM) model, which overcomes local minima and

overfitting in training process, for short-term traffic demand prediction. Wei et al.

[109] proposed an approach which combines Empirical Mode Decomposition (EMD)

and Back-Propagation Neural networks (BPN) to predict short-term traffic demand

in metro systems. Ma et al. [70] utilized Long Short-Term Neural Network (LSTM

NN) to capture nonlinear traffic dynamic of vehicle driving speed and the prediction

of traffic demand. Lin et al. [64] proposed to utilize Graph Convolutional Neural

Network with data-driven graph filter for the prediction of hourly traffic demand.

Lv et al. [69] proposed a deep-learning-based traffic flow prediction method, which
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considers the spatial and temporal correlations of traffic features (e.g., driving speed,

weather), for traffic demand prediction. These works are similar to taxicab passenger

demand inference methods (Section 6.4) since they all rely on historical demand

data for prediction and need to consider multiple random factors that may affect the

prediction result. However, these works cannot quantify the maximum predictability

of the traffic demand value (i.e., reliability of the prediction result) as in Section

5.3.3.3 and proper use of the predictability for improving the service efficiency of

taxicab dispatching as in Section 5.3.4.2.

6.6 Taxicab Dispatching

In recent years, thanks to the ubiquitous mobile sensing data harvested from GPS-

equipped taxicabs in metropolitan cities, many taxicab dispatching methods have

been proposed to guide taxicabs to efficiently pick up passengers with reduced cruis-

ing miles [122, 123, 125, 134]. Yuan et al. [122] introduced a method that schedules

the pick-up locations with the shortest routes for taxi drivers and the waiting locations

for passengers to reduce the cruising time. Zheng et al. [134] modeled the behavior of

vacant taxicabs with a non-homogeneous Poisson process to find the optimal waiting

positions for passengers. Zhang et al. [123] proposed a method to estimate the rev-

enue of each route, and guide the taxicab to the route with the maximum estimated

revenue. Zhang et al. [125] proposed pCruise, in which each taxicab collects the

passenger requests from nearby taxicabs and accordingly cruises on the routes with

the maximum probability of finding a passenger. Although these works aim to guide

taxicabs to pick up the expected passengers with the shortest route, the taxicabs still

need to spend much time on driving to the suggested locations without passengers on

board. Moreover, the time wasted on seeking chargers and charging is not considered

in these works.
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Chapter 7

Conclusions

7.1 Summary of Dissertation

To fulfill metropolitan transit demands, public transportation EVs are expected to

be continuously operable without recharging downtime. Although there have been

many previous mature works on plug-in cable charging systems, EVs must stop and

get plugged in the charging points of the charging stations to get recharged, which

wastes time and becomes an obstacle for the continuous operability of public trans-

portation EVs. Recently, WPT techniques for EV charging are emerging as a solution

to keeping the EVs continuously operable. The WPT techniques are expected to be

a complementary charging approach to the stationary wireless chargers; forming a

hybrid WPT charging system composed of stationary and dynamic wireless chargers.

In this dissertation, we mainly investigated the thesis statement:

• By exploiting our generic traffic model and methodologies based on spatial and

temporal analysis of passenger appearance, entropy-based categorization and

clustering of flow attributes, and customized selection and training of suitable

historical taxicab passenger demand data, we can develop a hybrid WPT charg-

ing system that can better serve public transportation EVs in terms of contin-
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uous operability, electricity utilization efficiency, and charging service efficiency

compared to the state of the art.

Based on the results presented in the preceding chapters, we believe the work in

this dissertation supports this thesis statement. We claim the following contributions

in this dissertation:

• In Chapter 3, we presented a stationary wireless charger deployment approach,

named PickaChu. PickaChu utilizes spatial and temporal analysis of passenger

appearance and a generic traffic model to both maximize the taxicabs’ opportu-

nity of picking up passengers at the chargers and support the taxicabs’ contin-

uous operability on roads with the minimal deployment cost We implemented

PickaChu on SUMO. Through large-scale trace-driven simulation based on the

metropolitan-scale mobility dataset of taxicabs, we showed that PickaChu has

superior performance over other representative methods in terms of reducing

idle time and supporting the operability of the taxicabs.

• In Chapter 4, we presented a dynamic wireless charger deployment approach,

named CatCharger. CatCharger utilizes categorization and clustering of traffic

flow attributes and a generic traffic model to support the continuous operability

of electric vehicles on roads with the minimal deployment cost. We implemented

CatCharger on SUMO and used the Shenzhen datasets to drive the experiment.

Through large-scale trace-driven simulation based on the metropolitan-scale

mobility dataset of buses, we showed that CatCharger has superior performance

over other representative methods in maintaining the SoC and operability of the

buses.

• In Chapter 5, we presented a taxicab dispatching and charging approach, named

CD-Guide. CD-Guide utilizes customized selection and training of suitable his-

159



torical passenger demand data and charging optimization to minimize the taxi-

cab’s number of missed potential passengers due to charging. We implemented

CD-Guide on SUMO. The evaluation results demonstrate that compared with

previous methods, CD-Guide increases the total number of served passengers

and the SoC of all taxicabs during all time slots.

7.2 Future Work

This dissertation represents some of the first steps to design a hybrid WPT charging

system composed of stationary and dynamic wireless chargers to support the charging

demands of a metropolitan-scale group of public transportation EVs. The work can

be improved, enhanced or extended in many ways. We anticipate that, in the near

future, more and more autonomous EVs will be put in use, and we will apply our pro-

posed algorithms to more other cities to verify their effectiveness and locate emerging

research problems. Future work might focus more on optimizing the EV traffic flow

using the shared mobility information of the autonomous EVs while protecting the

privacy of the EVs’ mobility information. Specifically, we list a number of potential

future work here.

• To maximize the service efficiency of deployed dynamic wireless chargers with-

out suffering from traffic congestion, we must properly manage the traffic of the

EVs and coordinate their arrivals at the charger lanes to avoid the generation

of traffic congestion at the charger lanes and on the road segments to them.

We will extend our traffic model in this dissertation to consider the real-time

change of EV traffic to maximally avoid the generation of congestion.

• With the rapid development of wireless charging, we anticipate that vehicle-to-

vehicle dynamic wireless charging will prevail to save the EVs’ cost on finding
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charging infrastructures. We will further identify the challenges for the routing

of vehicle-to-vehicle dynamic wireless chargers, and provide solutions to utilizing

the wireless chargers for maintaining the continuous operability of EVs.

• With more and more applications using vehicle mobility information for service,

we anticipate that the privacy of vehicle mobility information will be increas-

ingly more important. We plan to further explore context-aware protection of

vehicle mobility information.
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