
 
 

The Role of the Liver X Receptors in Reverse Cholesterol Transport 

and Atherosclerosis 

 

Sarah Rebecca Breevoort 

Acworth, Georgia 

 

MS, Biological and Physical Sciences, University of Virginia, 2010 

BS, Cellular Biology, University of Georgia, 2008 

BS, Biochemistry and Molecular Biology, University of Georgia, 2008 

 

 

A dissertation presented to the Graduate Faculty of the University of 

Virginia in Candidacy for the Degree of Doctor of Philosophy 

 

Department of Pharmacology 

 

 

University of Virginia 

August 2014 

 

 

Ira G. Schulman, Ph.D. 

Colleen McNamara M.D. 

Norbert Leitinger, Ph.D. 

Gary K. Owens, Ph.D. 

Eugene J. Barrett, M.D., Ph.D.



ii 
 

ABSTRACT 

 Liver X receptors (LXRα and LXRβ) are important regulators of cholesterol and 

lipid metabolism, and their activation has been shown to inhibit cardiovascular disease 

and reduce atherosclerosis in animal models. Believed to be integral to their anti-

atherogenic effects, LXRs regulate reverse cholesterol transport (RCT), the process by 

which high density lipoprotein (HDL) particles transport cholesterol from peripheral cells 

such as lipid-laden macrophages to the liver for catabolism and excretion. LXRs regulate 

RCT by controlling cholesterol efflux from macrophages to HDL and the excretion, 

catabolism and absorption of cholesterol in the liver and intestine. Deletion of LXR 

activity in macrophages increases atherosclerosis; a consequence thought to result from 

the loss of LXR stimulated RCT. Nevertheless, the relative contribution of LXR activity 

in the macrophage, liver and intestine to LXR stimulated RCT has not been determined. 

Utilizing tissue-specific LXR deletions we demonstrate that macrophage LXR activity is 

neither necessary nor sufficient for LXR agonists to promote RCT. Furthermore, our 

studies suggest that the ability of macrophages to efflux cholesterol to HDL in vivo is not 

regulated in a cell autonomous fashion but is primarily determined by the quantity and 

quality of the HDL particles.  

 While macrophage LXR is not necessary for LXR agonist stimulated RCT, liver 

LXRα is required for agonist stimulated fecal cholesterol excretion. Interestingly, when 

the liver specific LXRα deficient mice are challenged with dietary cholesterol the ability 

of LXR agonists to increase macrophage efflux in is lost. To investigate if the loss of 

LXR agonist stimulated RCT increases atherosclerosis, we crossed the liver-specific 

LXRα deficient mouse into a pro-atherogenic background.  Hyperlipidemic liver-specific 



iii 
 

LXRα knockout animals had a significant reduction in agonist-stimulated macrophage 

cholesterol efflux and fecal cholesterol excretion, highlighting an important role for 

hepatic LXRα in regulating RCT and cholesterol metabolism.  Deletion of liver LXRα 

also results in increased atherosclerosis, uncovering an important function for hepatic 

LXRα activity in limiting cardiovascular disease. Nevertheless, synthetic LXR agonists 

were still protective against atherosclerosis in the absence of hepatic LXRα. Together our 

data suggests that LXR agonist-stimulated RCT may not be necessary for the anti-

atherogenic activity of LXR agonists; however, LXR expression in the macrophage is 

required for their protective effects. In addition to promoting cholesterol efflux LXR 

agonists exert anti-inflammatory effects in macrophages, and this function may in fact 

underlie their athero-protective activities. Future studies from this work might elucidate 

the contribution of macrophage LXR anti-inflammatory activity to the cardio-protective 

effects of LXR agonists. Such findings could provide valuable insight for future 

therapeutic strategies for the treatment of cardiovascular disease.   
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CHAPTER 1: Introduction 

This introduction is a comprehensive overview of topics that I found to be 

relevant to my PhD studies and topics that repeatedly surfaced as I was trying to 

understand the various phenomena that I was uncovering in my work.  The task of writing 

an introduction for my thesis therefore became the opportune time for me to really 

explore and become more knowledgeable in the various topics that I found to be relevant 

and interesting.  My thesis work has focused on the role of the Liver X Receptors in 

regulating cholesterol metabolism and the reverse cholesterol transport pathway and the 

effect of perturbing this activity on the development of atherosclerosis.  Moreover, I 

discovered that LXRs can influence HDL levels and particle size as well as increase their 

functional activity, and importantly, that effect may be influenced by dietary cholesterol. 

Thus, in this introduction  I have attempted to provide a comprehensive overview of the 

following topics which I consider relevant to my studies: 1) cholesterol metabolism and 

the effects of diet on  blood cholesterol levels; 2) Historical perspective of atherosclerosis 

and the development of the various hypotheses of atherogenesis; 3 )the molecular basis 

of atherosclerosis; 4) the athero-protective effects of high density lipoprotein (HDL) and 

factors that lead to its dysfunction; and  5) Liver X Receptors and their potential anti-

atherogenic activities. For those looking for a condensed version the most relevant to this 

work would be best served to start at the HDL section (p.41). 

1.1 Cholesterol – an essential molecule  

 Cholesterol was first isolated from gallstones by physicians in 1789 during the 

French Revolution, and since that time its complex biosynthesis and metabolism has been 

extensively studied. Cholesterol is an organic sterol molecule that is an essential 

component of animal cellular membranes, where it typically accounts for 20-25% of 

membrane lipid molecules. Cholesterol helps to generate a semi-permeable barrier 

between cellular compartments and to regulate membrane fluidity. Within the cell 

membrane cholesterol functions in intracellular transport, cell signaling and nerve 

conduction and is essential for the structure and function of vesicular endocytosis. 
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Cholesterol also aids cell signaling by organizing lipid rafts in cellular membranes that 

function to bring surface receptors in closer proximity to secondary messengers. The 

metabolites of cholesterol – bile acids and steroids – have important biological roles as 

signal transducers and solubilizers of other lipids and lipid-soluble vitamins. Moreover, 

cholesterol is important in the pathogenesis of cardiac and brain vascular diseases and has 

also been implicated in dementias, diabetes and cancer, as well as several rare monogenic 

diseases, including familial hypercholesterolemia and lysosomal cholesterol-sphingolipid 

storage diseases
2, 3

. The biomedical importance of cholesterol in human physiology is 

undisputable as evident by the degree and variety of pathological states that are 

associated with either cholesterol deficiency or excess.  

Sources of cellular cholesterol  

The contribution of de novo cholesterol synthesis versus dietary cholesterol for 

total body cholesterol has been estimated to be 70% and 30%, respectively
4
. This ratio is 

likely highly variable among individuals, depending both on genetic factors 

(effectiveness of cholesterol production and absorption) and dietary supply. Since 

cholesterol is synthesized in the body dietary intake is not a requirement. Yet cellular 

cholesterol levels must be tightly controlled within a certain physiological range; 

therefore, under normal conditions there is a balance between de novo synthesis and 

absorption from dietary sources. When dietary cholesterol intake is very low (vegans) its 

synthesis and absorption is increased. Conversely, when dietary cholesterol is in excess 

(heavy meat consumption), de novo synthesis will be turned off and biliary and intestinal 

cholesterol excretion will increase. 
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De novo cholesterol synthesis All nucleated cells can synthesize cholesterol from acetyl-

CoA via the mevalonate pathway. Production rates vary by cell type and organ function. 

About 20-25% of total daily cholesterol production occurs in the liver; other sites of 

increased production include the intestine, adrenal glands and the reproductive organs.  

Cholesterol biosynthesis (Figure 1.1) consists of a series of elongation reactions of the 

acetyl-CoA molecule producing farnesyl pyrophosphate, which is then converted to 

squalene - the first four-ring sterol in the pathway. The pre-squalene steps of cholesterol 

biosynthesis produce isoprenoids, farnesyl pyrophosphate, and geranylgeranyl 

pyrophosphate, which are critical for membrane anchoring of signaling proteins. 

Squalene epoxidase and lanosterol synthase catalyze the conversion of squalene to a 

relatively inert sterol, lanosterol, which has been implicated in regulating cellular stress 

pathways
5
 and the subsequent steps also produce series of precursors possessing various 

biological activities. The final product of the pathway, cholesterol, can be incorporated 

into cellular membranes and/or subjected to oxidative modifications in the “tail” and “B” 

ring of the molecule to produce bile acids, steroid hormones, and vitamin D
6, 7

. Arresting 

cholesterol biosynthesis in the pre-squalene steps is universally lethal in all eukaryotes 

due to disruption of critical membrane-based signaling. In contrast, mutations distal of 

squalene are viable but produce several developmental defects
8
. Therapeutic trials of 

cholesterol supplementation in patients with inborn errors of cholesterol biosynthesis 

have only shown modest improvements
9, 10

, thus corroborating evidence that 

accumulating cholesterol precursors can exert unique biological activities. 

The rate-limiting step in cholesterol synthesis is the conversion of 3-hydroxy-3-

methylglutaryl CoA (HMG-CoA) to mevalonate by HMG-CoA reductase. HMG-CoA 
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reductase and several other enzymes integral to later steps of cholesterol synthesis are 

integral endoplasmic reticulum (ER) membrane proteins. The ER also contains enzymes 

for several key cholesterol processing steps, such as hydroxylation to generate oxysterols 

(with hydroxyl groups typically added to sterol side-chain carbons). Oxysterols are found 

in cells in minor amounts typically 1:1000 compared with cholesterol
3
. Hydroxyl groups 

render sterols more hydrophilic allowing oxysterols to move more freely than cholesterol 

in the aqueous cytoplasmic environment and function as potent signaling lipids.   

Regulation of Cholesterol Synthesis The mechanisms that maintain cholesterol 

homeostasis are quite sensitive to and directly regulated by the level of cholesterol 

present in the cell. Greater cholesterol intake results in reduced endogenous synthesis 

whereas lower dietary consumption of cholesterol increases endogenous production. The 

main regulatory mechanism is the sensing of intracellular cholesterol within the 

endoplasmic reticulum by sterol regulatory element-binding protein (SREBP) - 2. If 

intracellular cholesterol is low SREBP-2 is activated by a cleavage event that frees 

SREBP-2 from the ER membrane allowing it to migrate to the nucleus where it functions 

as a transcription factor inducing the expression of many genes involved in lipogenesis. 

Importantly, SREBP-2 increases the transcription levels of  low density lipoprotein 

(LDL) receptor and HMG-CoA reductase.  Thus, a drop in the intestinal supply of 

absorbed dietary and biliary cholesterol results in reduced hepatic cholesterol levels, 

which in turn increases LDL receptor synthesis and the upregulation of HMG-CoA 

reductase; the first to sequester more cholesterol from the circulation and second to 

increase endogenous synthesis. 
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Dietary Cholesterol and absorption The majority of cholesterol derived from the diet 

comes from animal fat as plants contain very little cholesterol. Consequently all foods 

containing animal fat contain some degree of cholesterol and the major dietary sources, 

which are prevalent in westernized societies, include cheese, egg yolk, beef, pork, 

poultry, fish and shrimp
11

. Absorption of cholesterol by the small intestine is critical for 

the body to maintain cholesterol homeostasis
12

. There are two primary routes for 

cholesterol to enter the digestive tract – dietary intake and biliary secretion into the 

duodenum.  In a typical Western diet daily cholesterol intake is approximately 300-450 

milligrams and complements the 800 -1400 milligrams of endogenous cholesterol from 

bile. In total, about 800-2000 milligrams of cholesterol is available for absorption from 

the intestinal lumen per day. Niemann-Pick C1-like 1 protein (NPC1L1) is a cholesterol 

transporter localized on the luminal side of enterocytes and regulates the majority of 

dietary sterols and cholesterol absorption
13

. It was recently discovered that ezetimibe, a 

widely prescribed drug for lowering blood cholesterol levels, inhibits NPC1L1 activity, 

reducing cholesterol absorption by approximately 70%
14

.  

Non-esterified cholesterol from bile and food intake is incorporated into miscelles 

allowing the diffusion of cholesterol via various membrane receptors into enterocytes
15

. 

Once in the enterocyte cholesterol is esterified and incorporated into chylomicrons along 

with dietary triacylglycerol (TAG), microsomal transfer protein and apoB48. 

Chylomicrons are responsible for the bulk transport of cholesterol from the intestine to 

the circulation via the lymphatic system. Chylomicrons are quickly metabolized in the 

bloodstream by Lipoprotein Lipase which releases TAGs for energy production.  The 
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cholesterol-enriched chylomicron remnants are then taken up by the liver for further 

processing.  

Is excessive cholesterol in the diet harmful? 

Numerous studies in humans have examined the effects of dietary cholesterol on 

total plasma and lipoprotein cholesterol concentrations. The majority of studies have 

reported a linear relationship between changes in cholesterol intake and serum cholesterol 

concentrations; yet many others, including a meta-analysis of 27 controlled metabolic 

feeding studies of added cholesterol, have indicated that there is little effect on serum 

cholesterol values when cholesterol consumption is within the normal range of 0-400 

mg/dL. In this meta-analysis, the incremental serum cholesterol response to a given 

amount of dietary cholesterol diminished as baseline serum cholesterol intake 

increased
16

. A number of studies have also reported that a rise in serum cholesterol levels 

due to increased cholesterol consumption is attenuated by diets low in saturated fat, high 

in polyunsaturated fat, or both
17-19

, although this effect has not been observed by others
20, 

21
. The response of serum cholesterol levels to dietary cholesterol is highly variable 

among individuals, which may explain the equivocal results from the various studies in 

humans
16

. Yet the relative responsiveness of serum cholesterol levels appears to be 

relatively stable within individuals 
22, 23

 and is associated particularly with saturated fatty 

acids 
24

. Furthermore, intrinsic differences in intestinal cholesterol absorption
25

, 

suppression of hepatic cholesterol synthesis by dietary cholesterol 
21, 26-28

 and LDL 

catabolism 
26, 29

 may all contribute to the observed variation in serum cholesterol 

response to diet. 
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Dietary response and genetics A growing number of genetic factors have been identified 

that may be responsible for a significant proportion of the inter-individual variation in 

response to dietary cholesterol. One informative case is that of the Tarahumara Indians of 

Mexico who are habituated to a very low cholesterol, low fat diet and have low plasma 

cholesterol levels. In response to high cholesterol feeding these individuals have 

decreased cholesterol biosynthesis as would be expected, however, their intestinal 

absorption of cholesterol remains unchanged and there is little to no change in their 

serum cholesterol values. Thus the Tarahumara are one example of a group of individuals 

who have a reduced ability to absorb dietary cholesterol and therefore may be protected 

against diet-induced changes in serum cholesterol levels
30

. 

Variations in several genes have been associated with altered responsiveness to 

dietary cholesterol. Individuals with the common E4 polymorphism of the apolioprotein 

(apo)E gene have increased absorption of dietary cholesterol
31

. The observation that 

cholesterol absorption and bile acid formation is perturbed in apoE
-/-

 mice
32

 supports the 

idea that the apoE gene plays an important role in modulating dietary cholesterol 

responsiveness in humans.  The A-IV-2 variant allele of the apolioprotein A-IV gene has 

also been found to attenuate the plasma cholesterol response to dietary cholesterol
33

.  

Finally, defects in the genes encoding ABCG5 and ABCG8, two heterodimeric 

cholesterol transporters found in the intestine, leads to the increased absorption of 

cholesterol and plant sterols
34

. This finding suggesting that more common variants of the 

ABCG5 and ABCG8 genes found in humans may also contribute to the variation in 

responsiveness to dietary cholesterol. 
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Dietary cholesterol and cardiovascular disease The connection between cholesterol 

intake and serum cholesterol levels has been of great interest since early animals studies 

demonstrated that  dietary cholesterol causes arterial lesions - an effect mediated largely 

through elevations in blood cholesterol levels
35-39

. These findings led to the “diet-heart” 

hypothesis that dietary saturated fat and cholesterol raises blood cholesterol levels 

therefore increasing the risk of cardiovascular disease (CVD). The diet-heart hypothesis 

was then quickly followed by several short-term feeding studies placing cohorts of 

participants on both low and high-fat diets and measuring the change in their serum 

cholesterol concentrations. Unfortunately, there were significant flaws in study design, 

data analysis and use of controls in most of these studies
40

. Nevertheless, the idea that 

saturated fat was the primary dietary influence on blood cholesterol was widely accepted, 

and Dr. Ancel Keys, a pioneer in cardiovascular disease research, proposed a formula to 

predict changes in blood cholesterol levels based on the amounts and types of dietary fats 

41
. In 1957, Dr. Keys implemented the landmark Seven Countries Study

42
, which was the 

first to systematically examine the relationship among, diet, lifestyle, risk factors and 

coronary heart disease and stroke in populations differing in diet, especially levels of 

dietary fat. Field surveys began in the US, Italy, Greece, Yugoslavia, the Netherlands, 

Finland and Japan with follow-ups for morbidity and mortality made every 5 to 10 years.  

The Seven Countries Study is said to have “proved” the diet-heart hypothesis, that 

elevated blood cholesterol levels and intake of saturated fatty acids is a major contributor 

to cardiovascular disease risk in populations. Subsequent researchers had criticized 

Dr.Keys’ conclusions and pointed out serious flaws and inconsistencies, however, they 

were largely ignored and the theory that saturated fats cause heart disease became widely 
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accepted. The seven countries in Dr.Keys’ study were said to have been chosen for their 

contrasting dietary patterns and the relative uniformity of their rural populations. 

However, Dr. Keys had chosen only those countries where both saturated fat 

consumption and heart disease were high. He ignored the other 16 countries with similar 

diets but low rates of CVD. Had the final analysis included this additional data the 

association between diet and CVD would have been much less clear and likely would 

have led to different dietary advice
43

.  

Is there an association between dietary exposures and CHD? The Bradford Hill criteria 

is a set of guidelines widely used by epidemiologists to systematically evaluate whether a 

causal link between an exposure of interest and health outcome exists
44

. In the first 

systematic review of the literature, Anand and colleagues
45

 used the Bradford criteria to 

investigate the causal link between dietary factors and coronary heart disease (CHD) by 

compiling the results from all eligible prospective cohort studies (147) and randomized 

controlled studies (43) published between 1950 and 2007. In applying the Bradford Hill 

criteria, they identified strong evidence of a causal relationship for protective factors, 

including vegetables, nuts, monounsaturated fatty acids and a Mediterranean diet, and 

harmful factors, including trans-fatty acids, foods with a high glycemic index or load, and 

a Western diet. Among these dietary exposures, however, only a Mediterranean diet has 

been studied in randomized control trials and is significantly associated with a decreased 

risk of CHD.  In addition, Anand et al. found modest evidence to support a causal 

relationship for the intake of fish, ω-3 fatty acids, folate, whole grains, dietary vitamins E 

and C, fruits, and fiber, and weak evidence of causation for intake of supplementary 

vitamin E and ascorbic acid, saturated and polyunsaturated fatty acids and total fat, α-
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linolenic acid, meat, eggs, and milk. The modest or weak evidence of these dietary 

exposures were mostly consistent with results of randomized control trials, although such 

trials have yet to be conducted for several of these factors. Taken together, these findings 

indicate that a causal relationship exists only between a few dietary exposures and CHD 

and the evidence for most individual nutrients or foods is too modest to be conclusive.  

The Dietary Guidelines for Americans were revised in 2005
46

 to reflect the 

general consensus that reducing saturated and trans-fatty acid consumption and 

increasing fruit, vegetable, polyunsaturated fatty acid and whole grain intake is beneficial 

for CHD
47, 48

. These assumptions were derived from the wealth of epidemiologic studies, 

however, little direct evidence from randomized controlled trials support these 

recommendations. Despite the lack of adequate data, evidence-based recommendations 

derived from cohort studies have been advocated
49

. Unfortunately, it is now becoming 

clear that the dietary advice to limit the intake of fat may have resulted in the increased 

consumption of carbohydrates, which can have adverse effects on CHD risk factors, 

including raising plasma triglycerides and lowering high-density lipoprotein (HDL) 

cholesterol levels
50

. Indeed, metabolic studies have shown that higher glycemic index 

scores are associated with coronary risk factors, including a rise in serum triglycerides 

and lower HDL-C levels. More recently, the lack of benefit of diets of reduced total fat 

has been established
51

, and the evidence supporting the adverse effect of trans-fatty acids 

on cholesterol levels
52

 and CHD
53-56

 has increased.   

 There is a very strong causal link between CHD and particular dietary patterns. 

Population-based cohort studies have demonstrated that a quality diet (high in whole 

grains, fruits and vegetables with modest lean meat consumption and limited saturated 
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fats) is protective against CHD and all-cause mortality
57-61

; these benefits are additive as 

well with other lifestyle modifications aimed at promoting well-being. Furthermore, the 

Lyon Diet Heart Study demonstrated that a Mediterranean diet reduces mortality in 

patients who already have CHD
62

. Studying dietary patterns has the advantage of 

accounting for the complex interactions and compounding effects of the multiple 

nutrients present in the diet and more accurately represents food and nutrient 

consumption
63

. It is now widely accepted that studies aimed at identifying the ideal 

“Heart-Diet” should test various dietary patterns as opposed to single macromolecules; as 

had been the precedence for much of the findings which led to the current dietary 

guidelines.  

1.2 Atherosclerosis 

More than 100 years ago, German pathologist Virchow observed that the arteries 

of patients dying from occlusive vascular disease were often thickened and irregular and 

contained a yellowish fatty substance later identified as cholesterol.  He called these 

plaques atheroma, derived from the Greek word for ‘porridge’ and postulated that this 

atheroma contributed to death from cardiovascular causes. Virchow was correct and it is 

now common knowledge that atherosclerosis is the key contributor to cardiovascular 

disease (CVD).  CVD is currently the leading cause of mortality in developed nations and 

is it projected that death from CVD will soon reach that status worldwide
64

.  

Atherosclerosis has been perceived as a disease of modern times because of its 

associations with the sedentary lifestyles and poor diets present in many of the societies 

of the current era. Yet, a recent multi-national study spearheaded by Thompson and 

colleagues tells a different story. Thompson et al. reportedly found evidence of 
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atherosclerosis in mummified remains representing four geographic areas and spanning 

more than 4,000 years: ancient Egyptians, ancient Peruvians, Ancestral Puebloans of 

southwest USA and the Unangan of the Aleutian Islands in present-day Alaska.  Overall, 

probable or definite atherosclerosis was found in one third of the mummies in all four 

populations. Those with atherosclerosis were about a decade older at the time of death 

(43 versus 32 years of age); yet, the reason(s) for the presence of atherosclerosis in all 

four of these populations remains unclear. All four groups were fairly active, none were 

vegetarian, and all shared common dietary elements. The authors concluded that the 

presence of atherosclerosis in these pre-modern humans indicate that atherosclerosis is an 

inherent component of human aging and influenced more so by genetic predispositions 

and/or other risk factors such as smoking than by any specific diet or lifestyle
65

.  

Historical perspective  

Atherosclerosis research began in earnest at the start of the 19
th

 century as 

physicians began to investigate the vascular changes that they observed in their patients. 

In 1829, French surgeon and pathologist Jean Lobstein first introduced the term 

“arteriosclerosis” to describe the calcified arterial lesions he found in diseased blood 

vessels. Further studies revealing inflammatory components within these lesions ignited a 

debate between medical researchers as to whether inflammation was a contributing factor 

or a secondary effect in atherogenesis
66

. That the immune system does in fact play a key 

role in atherosclerosis would not be widely supported by the medical community until the 

end of the 20
th

 century.  In 1910, improvements in microscopy allowed German chemist 

Windaus to describe the composition of the atherosclerotic plaque as consisting of 

calcified connective tissue and cholesterol
67

. Three years later, Anitschkow and Chaltow 



13 
 

showed that feeding rabbits cholesterol enriched diets produced atheromatous disease 

similar to what was found in humans
68

.  Together, the findings of Windaus and 

Anitschkow and Chaltow led to the formation of the “lipid hypothesis” postulating that 

increased serum cholesterol levels drive atherosclerosis.  This theory was widely 

accepted and heavily influenced many early studies aimed at understanding the effect of 

diet and serum cholesterol on atherosclerosis.   

By 1910, heart disease became the number one killer in America, and except for a 

brief period following the Great Influenza epidemic of 1918, it has remained the most 

common cause of death in the United States. During the first half of the 20
th

 century, the 

percentage of deaths due to cardiovascular disease increased substantially across all age 

groups, in both sexes, and in all races. Indeed, by the 1950s cardiovascular disease 

accounted for more than 50% of the nation’s mortality.  A rise in life expectancy due to 

better treatment of infectious diseases, the increased prevalence of smoking, more 

sedentary lifestyles, and changes in diet are all factors believed to have contributed to the 

increase in deaths from CVD over the first half of the century.  

The end of World War II brought more attention and financial support to 

domestic issues, including health, and the American government recognized the 

enormous toll of cardiovascular disease; thus, the National Heart Institute was created in 

1948. The post-war advances in mechanical engineering and electronics seemed well 

suited for studying the cardiovascular system, as cardiovascular disorders as 

characterized by pathologies of hemodynamics or electrical function. The initial efforts of 

the National Heart Institute were quite modest due to limited funding; however, among 

its most effective actions was the organization of the Framingham Heart Study in 1949, 
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one of the first and most well-known epidemiological studies of chronic disease. This 

study set precedence for cardiac epidemiology and findings from the Framingham Study 

have been responsible for much of the medical guidelines for assessing and addressing 

cardiovascular disease risk in the clinic
69

. 

In 1961 the first report from the Framingham Heart Study appeared
70

. This 6 year 

follow-up report established the concept of risk factors for cardiovascular disease, and 

hypertension and hypercholesterolemia were identified as major contributors. These 

findings prompted the National Heart Institute and American Heart Association to 

promptly establish guidelines and develop both professional and public educational 

campaigns in an effort to reduce these risk factors in the US.  The Framingham study 

revealed a negative association between cigarette smoke (the 3
rd

 most important risk 

factor) and cardiovascular disease, which led to the Surgeon General’s landmark 1964 

report that for the first time in the US publicly denounced the effects of cigarettes on 

health. It is difficult to determine the relative contributions that the advancements in 

prevention, diagnosis and treatment made in the fight against cardiovascular disease, 

however, the reward of the massive campaign efforts was a steady decline in the age-

adjusted mortality from heart disease from its peak in 1963
71

. The downward trend in 

CVD mortality rate parallels a similar decline in Americans with hypercholesterolemia 

(plasma cholesterol >240 mg/dL) from 34% to 19% between the years of 1962 and 

1994
72

; thus providing strong evidence that higher LDL-C levels contributes to heart 

disease morbidity and mortality. 

Discovery of statins Initial studies suggesting a link between serum cholesterol levels and 

atherosclerosis led to the hypothesis that reducing circulating cholesterol by blocking 
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endogenous production would reduce the risk of disease. However, early attempts to 

block cholesterol synthesis failed mainly because of negative side effects attributed to the 

accumulation of toxic substrates upstream of the inhibited enzyme
73

.  HMG-CoA 

reductase is the rate-limiting enzyme in the cholesterol biosynthetic pathway.  In contrast 

to desmonsterol and other late-stage intermediates, HMG-CoA is water soluble and can 

be metabolized through alternative pathways when HMG-CoA reductase is blocked; 

therefore, no potentially toxic precursors are generated.  The first HMG-CoA reductase 

inhibitor, ML236B (compactin), was discovered by Japanese microbiologist Akira Endo 

during a search for antimicrobial agents
74, 75

.  Compactin was quickly shown to lower 

plasma cholesterol levels in rabbit
76

, monkey
77

 and dog
78

.  Following the positive results 

in animal models, compactin was quickly developed for human use and shown to 

effectively reduce plasma total and LDL cholesterol in patients with heterozygous 

familial hypercholesterolemia
79, 80

.   

Prior to the introduction of the first HMG-CoA reductase inhibitor, Lovastatin, 

into the clinic in 1987 the lipid lowering therapies were limited essentially to dietary 

changes, bile acid sequestrants, nicotinic acid (niacin), fibrates and probucol.  All of these 

treatments however had limited efficacy or tolerability or both.  As described earlier, 

dietary changes tolerable to western societies produce little to no change in total and LDL 

cholesterol 
43, 45

.  The bile acid sequestrants (cholestyramine and colestipol), are resins 

that bind bile acids in the gastrointestinal tract and sequester them from circulation.  

These compounds are moderately effective at lowering LDL cholesterol; however, since 

they are not systemically absorbed they cause many gastrointestinal side effects that 

result in low medication adherence by patients
81

. The fibrates are well tolerated 
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peroxisome proliferator-activated receptor α (PPARα) agonists with multiple mechanistic 

functions that synergize to modulate lipoprotein concentrations. Fibrates are now used as 

combination therapy with statins as clinical trials do not support their use as monotherapy 

agents. Although less effective at lowering LDL cholesterol, by increasing HDL levels 

and substantially lowering triglycerides, fibrates appear to improve dyslipidemia in 

certain patient populations, particularly patients with metabolic syndrome
82

.  Probucol, 

originally developed as an antioxidant, was found to increase LDL catabolism effectively 

lowering serum lipid levels in patients with Familial Hypercholesterolemia
83, 84

. Yet in 

other patients the small reduction in LDL cholesterol was offset by a decrease in HDL 

levels
85, 86

.  Because of the strong inverse correlation between HDL cholesterol levels and 

CHD risk, clinical trials with Probucol were halted. 

When Lovastatin became available for prescription large reductions in serum 

cholesterol was finally achievable.  Lovastatin at a maximal dose of 80 milligrams daily 

produced a mean reduction in LDL cholesterol of 40%
87-90

, a reduction never before seen 

with previous therapies.   Other similar compounds quickly followed Lovastatin into the 

clinic and the class of HMG-CoA reductase inhibitors termed ‘statins’ was born.  All 

statins produce a qualitatively similar effect on the lipid profile.  The mean reduction in 

LDL cholesterol attainable with the maximal recommended dose of different statins 

ranges from 35 to 55%. Early studies using quantitative angiography
91-95

 or ultrasound
96, 

97
 showed that statins slowed the progression of atherosclerosis; however, the effects 

were quite small.  It would be another decade before statins were determined effective 

agents for reducing the risk of cardiovascular events in patients who already had CHD 
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(secondary prevention) 
98-100

 as well as in those who did not (primary prevention) 
99, 101, 

102
.  

Questioning the lipid hypothesis: why don’t statins cure cardiovascular disease? 

The medical community was optimistic following the introduction of statins as 

the standard of care for cardiovascular disease. Statins finally allowed patients to achieve 

desirable serum cholesterol levels, and physicians hoped that statin therapy coupled with 

aggressive risk management would drastically cut morbidity and mortality from 

cardiovascular disease. While risk factor reduction and statin therapy did ameliorated the 

risk of vascular complications, patients still remained at a high risk for future adverse 

cardiovascular events.  Data from a meta-analysis including 90,000+ patients in 14 

randomized trials showed that one in seven treated patients experienced events over five 

years
103, 104

 and further lowering of LDL cholesterol with maximal doses of statins did 

not eliminate this residual risk
105, 106

. These findings led researchers to focus their efforts 

on identifying other interventions that could reduce this residual risk among patients 

receiving optimal therapy. Moreover, the prevalence of residual risk in these individuals 

led investigators to question the inclusiveness of the lipid hypothesis. By the mid to late 

1990s it was widely accepted that treating heart disease was going to be more 

complicated than merely targeting serum lipid levels. This section will discuss a few of 

the key theories - the oxidative modification hypothesis, the infectious hypothesis and the 

atherogenic dyslipidemia hypothesis - that have evolved over the years to help explain 

atherogenesis and why it is not just about blood lipid levels.  

The “oxidative modification” hypothesis of atherosclerosis 
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The defining characteristic of early atherosclerotic lesions in both animals and 

humans is the lipid-loaded macrophage “foam cell”. These cells originate as circulating 

monocytes that have infiltrated the sub-endothelial space of the arterial wall where they 

engulf excessive cholesterol. Researchers postulated, therefore, that studying how arterial 

macrophages process cholesterol might uncover mechanisms that could be therapeutic 

targets for cardiovascular disease.  Beginning in 1979, Joseph Goldstein and Michael 

Brown, two University of Texas scientists, decided to study macrophage metabolism in 

vitro
107

. In an interesting first series of experiments they observed that macrophages from 

patients with homozygous Familial Hypercholesterolemia, who express essentially no 

functional LDL receptors, were equally effective at accumulating cholesterol as 

macrophages from patients with normal LDL receptors
107

.  Thus, Goldstein, Brown and 

collaborators speculated that the LDL was altered prior to engulfment and taken up by an 

alternative macrophage receptor. Indeed, they found that even at very high LDL 

concentrations, the ability of mouse peritoneal macrophages to take up native LDL was 

significantly reduced and foam cell formation attenuated
107

.  The group then tested a 

variety of LDL modifications for a mechanism that would turn native LDL into an 

atherogenic form capable of inducing foam cell formation in vitro.  Treatment of LDL 

with acetic anhydride yielded acetylated LDL which bound to macrophages with high 

affinity and led to increased accumulation of intracellular cholesterol
107

. The macrophage 

receptor responsible for recognizing and binding acetylated LDL was later cloned and 

characterized as Scavenger Receptor A (SRA)
108

.  The acetylation of LDL however does 

not occur in vivo; therefore the search continued for the biological ligand for SRA as well 

as the mechanism responsible for LDL modification in vivo. 
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 In 1981, Henriksen and colleagues
109

 discovered that co-culturing native LDL and 

endothelial cells induced changes in the LDL that allowed it to be recognized with high 

affinity by peritoneal macrophages. Later studies revealed that incubation with 

endothelial cells led to the oxidative modification of LDL that permitted its recognition 

and rapid uptake by macrophages thereby inducing foam cell formation
110, 111

.  Together, 

the findings of Goldstein, Brown and collaborators and Henriksen and colleagues led to 

the “oxidative modification hypothesis” of atherosclerosis, stating that production of 

modified, pathogenic LDL particles initiates and promotes atherosclerosis.  This theory 

expands upon the original lipid hypothesis by providing a mechanistic explanation for the 

relationship between atherosclerosis and increased serum LDL levels.   

Molecular basis of the oxidative modification hypothesis The Steinberg laboratory was 

one of the first groups to investigate the oxidative modification hypothesis in vivo. This 

group found that LDL extracted from human and rabbit atherosclerotic lesions resembled 

LDL that had been oxidized in vitro.  Importantly, Steinberg et al. also demonstrated that 

LDL from the lesion, but not from the vessel intima or plasma, was chemotactic for 

monocytes similar to LDL that had been oxidatively modified in vitro. Together, these 

findings supported the hypothesis that LDL in the lesion is oxidatively modified, which 

recruits monocytes into the vessel wall and promotes foam cell formation
112

.  

 Oxidized LDL (oxLDL) binds with high specificity and affinity to plasma 

membrane receptors, including SRA, SRB (CD36) and lectin-like oxLDL receptor
113

. In 

contrast to the LDL receptor that is down-regulated when intracellular cholesterol levels 

rise, the expression of the oxLDL receptor is not regulated by cholesterol content, 

allowing the progressive accumulation of cholesterol
113

. The biological properties of 
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oxLDL have been well characterized in vitro. Some of these properties include inducing 

the expression of monocyte chemotactic factors and vascular adhesion molecules; 

promoting apoptosis of macrophages and endothelial cells; increasing cytokine 

production by macrophages; and lastly, raising the levels of oxidation-specific antibodies 

in circulation
114

.  These effects of oxLDL, however, have been primarily studied in cell 

culture; the role of oxLDL in vivo, and especially in humans, is still not well understood.  

Vitamin E (an anti-oxidant) treatment in animal models of atherosclerosis 

attenuates disease development, thereby supporting the oxidative modification hypothesis 

of atherogenesis
115-118

.  Importantly, the protective effects of vitamin E treatment is lost 

in mice deficient for 12/15-lipoxygenase, an enzyme believed to play a major role in 

LDL modification within the arterial wall
119

. Likewise, atherosclerosis is accelerated 

upon the delivery in vivo of the 15-lipoxygenase gene
120

. Thus, the protective effects of 

vitamin E, at least in animals, reside in its ability to block LDL modification. 

Unfortunately, the results of vitamin E intervention in primary and secondary prevention 

trials in subjects with or without diagnosed cardiovascular disease have been equivocal
99, 

121-125
. The discrepancy among the clinical trials and the observational studies suggests 

that vitamin E supplementation is not effective in cases of pre-existing disease, may only 

be efficacious when vitamin E deficiency is present
126

, or may only be relevant in the 

setting of oxidative stress
126-128

. To note, the primary prevention studies
99, 121, 123

 were 

conducted in middle-aged individuals. Therefore, it is possible that starting vitamin E 

therapy at an earlier age could prevent or retard atherosclerosis. In fact, among the most 

effective approaches targeting cardiovascular disease in adulthood is the prevention or 

attenuation of atherogenesis in childhood or even earlier during fetal development
129-132

. 
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To date, no studies have been conducted to determine the effect of vitamin E 

supplementation on atherosclerosis if started at an early age. However, a very recent 

study has just shown that low-dose and long-term vitamin E treatment initiated at an early 

age in Ldlr
-/-

 mice effectively reduces atherosclerotic lesions and mortality
133

; thus, 

further studies in humans across the lifespan may be warranted.  

The “infectious” hypothesis of atherosclerosis  

The similarity between atherosclerosis and chronic inflammatory conditions was 

first described in the 1850s
134

, but only more recently has the cellular composition of 

lesions been characterized. Circulating monocytes and lymphocytes are recruited into the 

sub-endothelial space in response to chemotactic factors expressed by endothelial cells 

that are activated by oxLDL and possibly other species. The inflammatory response 

associated with atherosclerosis will be discussed in detail in a later section. 

Chronic bacterial infections, including Chlamydia pneumonia and Helicobacter 

pylori, have been associated with heart disease
135

. To note, there are many confounding 

variables (e.g. socio-economic status) when linking CVD to infections; however, in 

studies that took these factors into account patients seropositive for C.pneumoniae or 

H.pylori were reported to be more likely to suffer from heart disease than seronegative 

subjects
136

. In addition, C.pneumoniae has been detected in aortic
137, 138

 lesions in patients 

and is found more frequently in atherosclerotic plaques than in non-atherosclerotic 

tissues
139

. Many of the experimental models studying infectious atherosclerosis introduce 

C. pneumoniae into the respiratory system of animals. In many of these studies, C. 

pneumoniae infection accelerated lesion formation, although some studies reported 

conflicting results
140

. C. pneumoniae is an intracellular pathogen and is able to persist 
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within the vasculature and resist antibiotic therapy
141

. Such infection has been shown to 

not only promote inflammation and proliferation in host cells in vivo
141

, but also to 

reduce the anti-inflammatory properties of HDL
142

. To be atherogenic C. pneumoniae 

requires a robust immune system; knockout of toll-like receptors (TLR) 2 and 4 and 

myeloid differentiation primary response gene (MyD) 88 in apoE
-/-

 mice attenuate 

disease development
143, 144

, suggesting that the host inflammatory response is the key 

trigger for atherogenesis.  In addition, it has also been suggested that pathogens might 

promote atherogenesis through molecular mimicry between bacterial and self-antigens. 

For example, T cells reactive to both human and C. pneumonia heat shock protein (HSP) 

60 were isolated form human plaques, and autoantibodies against mouse HSP60 were 

identified following infection of mice with C. pneumoniae 
145, 146

.  

The gingival plaque associated with periodontal disease (PD) is colonized by a 

large number of gram-positive and gram-negative bacteria, including P. gingivalis, and 

Streptoccoccus mutans, among others. Oral infections are associated with several 

systemic diseases, such as infective endocarditis and diabetes. Thus, it is not surprising 

that periodontal disease has been implicated in CVD risk. Indeed, a meta-analysis of the 

major epidemiological studies has revealed that there is a moderate, positive association 

between periodontal disease and cardiovascular outcomes
147-149

. Several periodontal 

organisms have been identified in human atherosclerotic lesions
140

; however, it is unclear 

if periodontal organisms promote atherogenesis through direct or indirect mechanisms. 

Some data suggest that periodontal disease increases systemic cytokines and acute-phase 

proteins, and such an inflammatory state could augment inflammation in the vessel wall 

and indirectly influence atherosclerosis
150

. For instance, levels of C-reactive protein, a 
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biomarker of systemic inflammation and linked to CVD, is two times greater in patients 

with either periodontal disease or CVD than matched controls, and threefold higher in 

subjects with both periodontal disease and CVD
151

. Interestingly, standard treatment of 

periodontal disease for twelve months attenuated systemic inflammation and reversed 

dyslipidemia (i.e. lowered LDL-C and raised HDL-C) in patients with severe 

periodontitis
152

. The link between periodontal disease and dyslipidemia is unclear, but 

similar findings have been reported in mouse models. For example, elevated LDL-C and 

triglycerides and low HDL-C were found in mice with periodontitis, and HDL cholesterol 

decreased in apoE
-/+

 mice following infection with P.ginvivalis
153

.   

Other infectious agents, including mycoplasma pneumoniae, H.pylori, and 

Enterobacter hormaechei have been detected in human atherosclerotic lesions
140, 154

. The 

evidence that these agents play a direct role in atherogenesis is weak; however, they may 

contribute to the “pathogenic burden”.  It is now understood that infections by bacteria 

and/or viruses can contribute to atherosclerosis either directly through infection of 

vascular cells or indirectly by promoting cytokine production and the acute phase 

response from nonvascular sites
140

. It is likely that no single organism is responsible for 

the effects of infection on atherosclerosis, but that atherogenesis is influences by the 

aggregate effects of the pathogenic burden
155

. Indeed, one study found that 75% of 

patients with coronary artery disease were positive for three of five “atherogenic” 

pathogens tested
156

. Moreover, pathogen burden and cardiovascular disease risk were 

significantly associated, even after adjustment for traditional CV risk factors
156

. 

Antibiotic therapy and cardiovascular disease 
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The possible association between infection and CVD prompted clinical trials to 

assess the therapeutic effect of antibiotic therapy.  Four large clinical trials 
157-160

 focused 

on patients with stable coronary artery disease. None of these studies showed any long-

term benefit of antibiotic treatment in patients with established CVD. Both short-term (6 

week) and long-term (1 year) interventions failed to provide any beneficial effect in 

patients. Conversely, short term treatment with clarithromycin actually increased 

cardiovascular mortality
160

. Such negative results have led some researchers to argue 

against a pathogenic role for bacterial microbes and infections in atherosclerosis
161

 and 

CVD
162

.  Others, however, have disputed these conclusions
163

, citing the difficulty of 

treating chronic chlamydial infections and the ability of C. pneumoniae to develop 

antibiotic resistance in cell culture experiments
140, 164, 165

.  Importantly, these trials were 

conducted in patients with advanced disease; whether antibiotics exert protective 

activities in patients with early atherosclerosis is unknown. Furthermore, antibiotic 

treatment might be ineffective due to the complexity of the pathogenic burden thought to 

contribute to atherosclerosis; not all organisms will be susceptible to the antibiotics used, 

allowing these agents to further promote atherogenesis
162

. 

In conclusion, there is convincing data that supports a positive association for 

specific pathogens in atherosclerosis, particularly C. pneumoniae and periodontal 

organisms
166

. Overall the clinical and experimental data suggest that pathogens contribute 

to atherogenesis via direct (infection of host cells) and indirect (upregulation of cytokines 

and adhesion molecules) mechanisms. Hope that antibiotics might be an alternative 

and/or complementary treatment for CVD has greatly diminished following the recent 
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failures of several large clinical trials as well as the recognition that the pathogenic 

burden that may contribute to CVD is complex and thus likely difficult to target.   

Atherogenic dyslipidemia  

Prospective epidemiological studies have unequivocally demonstrated that LDL 

cholesterol levels are predictive for a patient’s risk of CVD events and that 

pharmacologically lowering LDL cholesterol reduces CVD risk in many patient 

populations
167

. These findings supported the use of risk prediction algorithms to identify 

individuals with elevated LDL cholesterol who were at an increased risk for CVD. These 

patients were then prescribed target LDL cholesterol goals believed to be attainable 

through lifestyle and pharmacological interventions
168

.  Until the recent change to the 

cholesterol recommendations that eliminated target LDL-C levels
169

, patients with CHD 

or CHD risk equivalents were challenged to lower their  LDL-C level to less than 100 

mg/dL. Many patients who achieve these target LDL-C levels, however, are still at risk 

for CVD events. Moreover, many individuals with normal LDL-C levels nevertheless 

develop CVD, especially within the older age groups
170

. Therefore, although widely used 

in clinic because of its utility, LDL-C concentrations is likely a poor representation of 

CVD risk.  

LDL is a heterogeneous group of particles ranging from small, dense, lipid-

depleted particles to large, buoyant cholesterol-enriched particles
171

. While there is much 

controversy surrounding the impact of LDL particle size on atherosclerosis, a number of 

studies have suggested that small LDL particles are more atherogenic
172-175

. Since small 

LDL contains less cholesterol per particle, a patient may have a normal LDL cholesterol 

level but a preponderance of small LDL; thus their increased CVD risk would be missed 
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if measuring only the concentration of serum LDL cholesterol. The term atherogenic 

dyslipidemia was first used by Austin and colleagues
176

 to describe the risk-conferring 

plasma lipid profile comprised of a higher proportion of small LDL particles, reduced 

HDL-C, and increased triglycerides. Atherogenic dyslipidemia is a signature 

characteristic of patients with obesity, type 2 diabetes mellitus, insulin resistance, and 

metabolic syndrome
177, 178

 and has become an important indicator of increased CVD risk 

in these populations. 

Besides the traditional blood lipid measurements of LDL-C, HDL-C and 

triglycerides, recent advancements have allowed for better assessment of lipoprotein 

subfractions. The best established is the measurement of blood apolioprotein (apo) B 

concentrations. Each non-HDL particle harbors one apoB molecule; therefore, the apoB 

concentration represents a count of non-HDL particles in circulation. More sophisticated 

techniques including analytical ultracentrifugation, gradient gel electrophoresis, and 

nuclear magnetic resonance (NMR) allow for the quantification of particles within each 

lipoprotein class and subclass; however, there are time and cost barriers that prevent the 

widespread use of these methods the clinic. 

A number of recent studies have now used these lipoprotein subfraction 

measurement techniques to assess whether any of the subfractions possess prognostic 

power for CVD or CVD intermediate endpoints such as carotid intima-thickness.  Many 

of these studies reveal that the concentration of small LDL particles is a better predictor 

of cardiovascular events than LDL-C levels 
175, 179-183

. The increased atherogenicity of 

small LDL particles is thought to be due to a combination of several biological properties 

that have been observed – small LDL particles are more susceptible to oxidation than 



27 
 

larger particles, therefore more likely to instigate vascular inflammation; they bind more 

tightly to arterial proteoglycans perhaps allowing them to enter the arterial wall more 

easily; and in contrast to mid-sized LDL particles, small LDL particles have relatively 

lower affinity for the LDL receptor, resulting in decreased cellular uptake and more time 

spent in the circulation where the particles would have prolonged influence on 

atherogenesis
173

.  

Studies which report the concentration of small LDL particles to be predictive of 

CVD endpoints also find that the total number of LDL particles is similarly predictive 
175, 

179-183
 likely because the amount of small LDL and total LDL particle number (LDL-P) is 

highly correlated. This correlation may be explained by the idea that among individuals 

with equal LDL-C levels, the same amount of cholesterol distributed among more 

particles implies that these particles must be smaller. If this is the case, then it is possible 

that all LDL particles are equally atherogenic; the association between  small LDL 

particles and CVD disease would, therefore, be explained by the increase in LDL-P, 

rather than the small LDL particles possessing unique atherogenic traits. Regardless of 

whether the small LDL particle number or LDL-P values are used, either provide 

prognostic information distinct from the standard LDL-C measurement.  Findings from 

the Framingham Offspring Study, a large, community-based study that stratified men and 

women by their LDL-C and LDL-P concentrations, reinforced the prognostic value of 

LDL-P values. Importantly, the authors report that stratification by LDL-P discriminated 

CVD event-free survival, whereas there was no difference with stratification by LDL-C. 

In addition, there was a high degree of variability among individuals in the cholesterol 

content of LDL particles leading to frequent discrepancies between LDL-C and LDL 
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particle number.
184

 This finding, in addition to other studies reporting LDL composition 

variability among individuals, has led investigators to search for heritable factors that 

may influence LDL composition. 

Genetics and dyslipidemia Complex segregation analyses indicate that atherogenic 

dyslipidemia has a strong genetic basis likely resulting from the contribution of multiple 

genes
176, 185, 186

. Genes with variants that have been reported to be associated with LDL 

size include: CETP encoding cholesterol ester transfer protein, which transfers 

cholesteryl esters from HDL to LDL particles; LDLR, encoding the LDL receptor, which 

regulates LDL uptake; LPL, encoding lipoprotein lipase, which is responsible for 

converting VLDL to LDL; MTP, encoding microsomal triglyceride transfer protein, 

which transfers triglycerides to nascent VLDL within hepatocytes; and the apolipoprotein 

genes APOA5, APOB, APOC3, and APOE, which are constituents of varied lipoprotein 

particles
185-193

. All of these genes play a role in regulating LDL particle size and 

composition (as well as other lipoprotein particles) and so may contribute directly to 

atherogenic dyslipidemia.  

Diet and atherogenic dyslipidemia As discussed earlier, the scientific literature is 

somewhat divided on the role of diet in altering plasma lipid levels. The current notion is 

that, contrary to what was proposed 30 years ago, dietary saturated fat probably has little 

to no effect on serum LDL-C. To address the effect of diet on atherogenic dyslipidemia 

(i.e. the distribution and composition of particles and not just particle cholesterol levels), 

a group of healthy middle-age men were placed on high-fat, low-carbohydrate and low-

fat, high-carbohydrate diets in a crossover study in which they consumed each diet for 6 

weeks. The proportions and types of fats (unsaturated vs. saturated, 1:1 ratio) and types 
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of carbohydrates (simple vs. complex, 1:1) remained fixed in these diets. Across all 

subjects, there were higher levels of triglycerides and small LDL particles while on the 

low-fat/high-carb diet compared to the high-fat/low-carb diet. Interestingly, one third of 

study participants who had normal LDL particles converted to small LDLs when 

switched from the high-fat/low-carb to low-fat/high-carb diet
194

. Thus, the authors 

concluded that reducing fat consumption while concurrently increasing carbohydrate 

intake promotes atherogenic dyslipidemia. This finding was also confirmed in pre-

menopausal women
195

. In these studies the changes in fat calories were balanced by 

reciprocal changes in carbohydrate calories, preventing investigators from determining 

whether dietary fat or carbohydrates were the major perpetrators of atherogenic 

dyslipidemia. In a study of 178 overweight men compared on a high-carbohydrate diet 

versus a low-carbohydrate diet, and the difference in calories being made up in protein 

and not fat, the subjects had a higher prevalence of small LDL in response to high-

carbohydrate feeding
196

. Additional analysis of this study also found that saturated fat 

content had little to no effect on components of the atherogenic lipoprotein phenotype, 

consistent with other studies
197, 198

.  

Follow-up analysis of the Framingham Heart Study also confirmed that fat 

content in the diet, after multivariable adjustment for carbohydrate intake and other 

potential confounders, did not significantly affect LDL size or triglyceride levels in either 

men or women
198

. Taken together, it appears that the type or amount of fat ingested 

contributes very little if anything to the development of atherogenic dyslipidemia. 

However, reducing carbohydrate consumption
199

 or losing weight
196

 has been shown to 

attenuates atherogenic dyslipidemia (although these effects do not seem to be additive).  
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Metabolic disorders and Atherosclerosis Until the 1970s, physicians considered 

atherosclerosis to be a natural pathology associated with aging, and while it’s true that 

CVD and life span expectancy have increased simultaneously over the past century, the 

more likely reason for the exponential rise in CVD during this time period is the increase 

in cardiovascular (CV) risk factors, including hypercholesterolemia, cigarette smoking 

and hypertension
66

. Indeed, in the US and Western Europe reductions in risk factors and 

improvements in the treatment of CVD have yielded a decrease in age-adjusted 

cardiovascular deaths, more so in men than in women
64

. Unfortunately, the ongoing 

obesity epidemic threatens to undermine these gains. Obesity has reached epidemic 

proportions worldwide
200

 and is associated with increased risk of premature death
201

. 

Central adiposity is associated with increased cardiovascular morbidity and mortality, 

and this is independent of the association between obesity and other cardiovascular risk 

factors
202, 203

. Interestingly, even within the normal body mass index range, weight gain 

during adult life
204

, or even childhood and adolescence
205

, increases the risk of diabetes 

and CVD.  The increasing rate of childhood obesity now threatens to lower the life 

expectancy in the United States for the first time in modern history
206

 and the American 

Heart Association has classified obesity as a ‘major, modifiable risk factor’ for CVD
207

.  

Obesity is characterized by the chronic overabundance of nutrients and an 

unbalanced energy expenditure leading to the accumulation of fatty acids in the liver, 

muscle and adipose tissue. Free fatty acids can either be oxidized or stored as 

triglycerides; however, in the setting of obesity these pathways are overwhelmed and 

fatty acid intermediates, such as diacylglycerol and ceramide accumulate
208, 209

. These 

free fatty acid metabolites can bind TLR4 present in adipocytes and macrophages, thus 
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triggering innate immunity and initiating potent downstream inflammatory responses 

through nuclear factor κB (NFκB) signaling pathways as well as others
210

. In addition, 

obese compared to lean adipose tissue shows increased expression of inflammatory 

molecules (e.g. TNFα, IL-6, IL-1β and MCP-1)
211, 212

. 

 Obesity and atherosclerosis share several characteristics; traits that are likely 

responses to the increased inflammation present in both states. Tissue infiltration by 

macrophages is a signature of both obese adipose tissue as well as atherosclerotic lesions.  

The recruitment of macrophages by adipose tissue in the obese state resembles the 

chemotaxis of these cells into blood vessel walls.  Although adipocytes themselves 

secrete a variety of bioactive molecules, the infiltrating adipose tissue macrophages are 

responsible for most of the inflammatory mediators 
213, 214

. Cell death is the second trait 

shared between obesity and atherosclerosis. Apoptosis of smooth muscle cells in 

atherosclerotic lesions causes fibrous cap thinning and contributes to plaque weakening 

and thrombosis
215, 216

. Similarly, the number of necrotic adipocytes in adipose tissue is 

much greater in obese individuals compared to lean controls
217

. In conclusion, obesity 

and atherosclerosis share similar characteristics associated with them both being disease 

of chronic inflammation. Inflammatory mediators and hormones secreted by adipose 

tissue and/or adipose associated macrophages may directly enhance the atherogenic 

process within the vessel wall.  Furthermore, there is increasing evidence that obesity 

may also directly promote HDL dysfunction, the mechanisms by which this may occur 

will be discussed in a following section.   

Molecular pathogenesis of atherosclerosis 
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There are four major steps that result in the clinical manifestation of 

atherosclerosis. These steps are 1) endothelial activation and inflammation; 2) entrapment 

and modification of lipoprotein particles and foam cell formation; 3) progression of 

atherosclerotic plaques by fibrosis, thrombosis, and remodeling; and 4) precipitation of 

acute events. Acute clinical events, such as myocardial infarction (“heart attack”), 

unstable angina (chest pain due to heart muscle ischemia), sudden cardiac death, and 

stroke are generally due to plaque destabilization and thrombosis
218

. Major risk factors 

for cardiovascular disease can act at more than one step of atherogenesis. For example, 

hyperlipidemia can contribute to endothelial activation
219

; impair nitric oxide (NO) 

synthesis
220

; promote foam cell formation (following modification)
221

; activate platelets 

and increase thrombotic potential (e.g. hyperlipidemia is associated with increased 

oxidized phospholipids that interact with scavenger receptor CD36 on platelets)
222

; and 

lead to reversible plaque destabilization (likely due to inflammation associated with 

hyperlipidemia)
223

. The progression of the atherosclerotic plaque is illustrated in Figure 

1.2. 

Lesion initiation The first step in atherosclerosis is the expansion of the arterial intima, a 

normally small space between the endothelium and the underlying vascular smooth 

muscle cells. The intima fills with lipids, cells, and extracellular matrix in a process that 

occurs over decades and typically begins in early adolescence.  While this process itself 

is relatively benign thanks to the preservation of the arterial lumen (only if the lumen is 

occluded by 80% do serious symptoms occur), advanced lesions have the propensity to 

undergo necrosis which leads to acute, occlusive thrombosis.  Atherogenesis is a focal 

disease process occurring primarily at sites of disturbed laminar blood flow, notably 
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arterial branch points and bifurcations.  Studies of the earliest stages of atherogenesis in 

humans and animal models indicate that the key initiating step is the accumulation of 

ApoB-containing lipoproteins (ApoB-LPs) in the subendothelial space of the blood vessel 

wall
224

.  ApoB-LPs consist of a core of neutral lipids, primarily cholesteryl fatty acyl 

esters and triglycerides, surrounded by a monolayer of phospholipids and proteins. 

Hepatocytes secrete ApoB-LPs as very low-density lipoprotein (VLDL) particles which 

are rapidly converted in circulation to atherogenic LDL particles. LDL particles are the 

predominant atherogenic ApoB-LP in circulation; however, chylomicrons containing 

dietary lipids can also be converted by lipolysis to atherogenic remnant particles in 

circulation and may contribute to the mass of atherogenic ApoB-LPs in circulation
225

.  

Studies in humans and animals show that the movement of LDL particles from 

the circulation into the vessel wall is determined by both ApoB-LP concentrations and 

arterial wall permeability.  Any change in circulating ApoB-LP levels will quickly affect 

how much ApoB-LP is delivered into the vessel wall. Vascular permeability is highly 

variable among individuals, perhaps contributing to genetic susceptibility to CVD. Even 

in healthy arteries, the permeability of the endothelial layer is variable among individuals 

by up to 10 fold
226

; so some individuals with low serum LDL-C may experience a 

relatively high flux of LDL into the arterial wall. 

Entrapment of ApoB-LPs in the vessel wall activates overlying endothelial cells 

to recruit circulating monocytes to the site of retained particles
227, 228

.   Activated 

endothelial cells secrete chemokines that bind the receptors on monocytes and direct their 

migration.  This is an important step in atherogenesis;  preventing monocyte entry by 

blocking chemokine signaling has been shown to prevent or slow down the progress of 
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atherosclerosis in mouse models
228

.  Monocyte derived macrophages in the lesion also 

secrete ApoB lipoprotein binding proteoglycans
224

. This mechanism likely plays an 

important role in LP retention in established lesions versus new lesion formation; this  

effect may also explain why the inflammatory response is persistent in atherosclerosis
229

.   

Following chemokinesis, monocytes become tethered to and roll along on 

endothelial cells overlying trapped ApoB-LPs.  Firm adherence of monocytes to lesional 

endothelial cells is directed by interactions between monocyte integrins and endothelial 

cell ligands. Atherogenesis occurs at sites of blood flow disturbances and platelet 

aggregation above the lesion may also promote monocyte-endothelial interactions by 

activating NFκB signaling and expression of adhesion molecules and through the 

deposition of platelet-derived chemokines on activated endothelium
228, 230

. Firm adhesion 

of monocytes to the endothelium is followed by their entry into the sub-endothelial 

space
230

. The majority of monocytes that enter the lesion site differentiate into 

macrophages while a smaller subset become dendritic cells
231

.  This process is driven 

primarily by macrophage colony stimulating factor (M-CSF) as well as other 

differentiation factors.  

Atherosclerosis progresses as macrophages engulf oxidized LPs, primarily 

oxLDL, via scavenger receptor SRA and CD36. SRA and CD36 are the primary 

receptors directing LP engulfment, however, gene targeting studies in ApoE
-/-

 mice 

indicate that additional mechanisms are also involved in foam cell formation(cite). Once 

ingested, the cholesteryl esters of the LPs are hydrolyzed to free cholesterol and fatty 

acids.  The free cholesterol then undergoes re-esterification to cholesteryl fatty acid esters 



35 
 

which is the “foam” of the foam cells.  This step is important as accumulation of free 

cholesterol is toxic to cells and may lead to macrophage cell death in advanced lesions.  

Lesion growth Upon engulfment of modified LPs, lesional macrophages secrete a variety 

of cytokines and growth factors, which synergize to recruit monocytes and vascular 

smooth muscle cells to the site. In particular, interukin (IL)-1β and tumor necrosis factor 

(TNF) α secreted by lesional macrophages stimulate the local production of platelet-

derived growth factor (PDGF) and fibroblast growth factor (FGF), which play a key role 

in plaque formation. PDGF is secreted by the activated endothelial cells and stimulates 

smooth muscle cell (SMC) migration into the intima. An important step for SMC 

migration and proliferation is the secretion of matrix metalloproteinases (MMP) which 

are responsible for degrading the internal elastic lamina
232

. Lipoprotein lipase, secreted 

by activated endothelium, also plays a role in promoting SMC proliferation through a 

complex process
233, 234

. Together, these factors lead to the formation of a dense, fibrous 

extracellular matrix that comprises the fibrous cap of the atherosclerotic plaque. The 

principle proteinaceous constituents of the fibrous cap – elastin and collagens – are 

responsible for the strength of the cap.  

Biomechanical analysis demonstrate that a significant amount of circumferential 

stress is focused on the fibrous cap, which must resist these high stresses to avoid 

rupture
235, 236

.  The stability of the lesion depends on a balance between inflammatory and 

reparative processes directed by immune cells (predominantly macrophages and T cells) 

in the lesion. Plaque stability is conferred by the thick, fibrous cap that is able to reduce 

the circumferential tensile stress and prevent the lipid-rich necrotic core from coming in 

contact with the blood. While a thick cap confers stability, rupture-prone plaques tend to 



36 
 

have thin, friable fibrous caps
236, 237

. Foam cells produce increased amounts of tissue 

factor, a powerful pro-coagulant, thereby making the core highly thrombogenic
238

. The 

lesion is highly dynamic and changes in plaque constituents may predispose some parts 

of the plaque to rupture as well. For example, regions of high macrophage density are 

more prone to rupture than those with fewer macrophages present
239

. Moreover, 

phenotypic changes occurs in plaque vascular SMCs over time so that they are no longer 

reparative, thereby increasing the likelihood of plaque rupture
240, 241

. 

Plaque rupture Inflammatory cells erode the fibrous cap through various mechanisms, 

but the activation of MMPs have been identified as the most significant. Within 

atherosclerotic lesions, activated macrophages and endothelial cells secrete MMPs, which 

will weaken the fibrous cap by degrading the matrix proteins, collagen, and other 

peptides that comprise it. Various hormones, cytokines, steroids and growth factors 

regulate the expression of MMPs. In addition, activated lesional macrophages secrete 

cytokines, such as CD40 ligand, which enhance protease production. These proteases can 

degrade collagen and weaken the fibrous cap as well
242, 243

. CD40 ligand also blocks the 

ability of SMCs to proliferate
244

 and to produce collagen
245

 as does other inflammatory 

cytokines, including  IL-1β, TNFα and interferon (INF) γ, which are commonly found in 

advanced lesions. Together, these effects results in fibrous cap weakening.    

Inflammation and atherosclerosis 

It is now widely recognized among the scientific and medical communities that 

atherosclerosis is a chronic inflammatory disease. A significant body of work over the 

past 20 years has focused on understanding how both the innate and adaptive immune 

systems contribute to lesion development, progression and thrombotic events
246

.  
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Importantly, inflammation plays a decisive role in the likelihood that the plaque ruptures 

as well as in the activation of pro-coagulants within the lesion responsible for initiating 

the coagulation cascade
167

. The outcome of these events is an occlusive thrombus that 

manifests clinically as an acute coronary syndrome (“heart attack”) or ischemic stroke
247, 

248
.  Evidence that the immune system influences atherosclerosis is the finding that C-

reactive protein (CRP), an acute-phase reactant released during inflammatory processes, 

adds to the predictive power of traditional CVD risk factors
249

. Furthermore, HMG-CoA 

reductase inhibitors, the most effective therapy for CVD to date, also have anti-

inflammatory activity as they have been shown to reduce leukocyte adhesion, 

accumulation of macrophages, protease production, pro-coagulant and pro-inflammatory 

mediator expression, antigen presentation, and T-cell activation
250

. Support for the 

immunomodulatory effect of HMG-CoA reductase inhibitors comes from recent clinical 

studies. For example, the CARE (Cholesterol And Recurrent Events) trial first 

demonstrated that statin treatment reduces serum levels of CRP in addition to LDL-C; 

moreover, the magnitude of risk reduction associated with statins exceeds that expected 

for lowering LDL-C alone
251

. Findings from retrospective studies also supported the 

usefulness of targeting CRP with statins in normocholesterolemic patients in both 

primary
252

 and secondary prevention
253

 of adverse cardiac events. Prospective findings 

from the JUPITER trial (Justification for the Use of Statins in Primary Prevention: an 

Intervention Trial Evaluating Rosuvastatin) showed that statins prevented adverse cardiac 

events in patients with optimal LDL-C but elevated CRP levels
254

. 

Innate immunity and the macrophage in atherosclerosis 
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Monocytes and macrophages are the most numerous leukocytes throughout 

atherogenesis and they play a critical role in both the initiation and progression of 

atherosclerotic lesions. Innate immunity is responsible for the recognition of signature 

molecules, either pathogen-associated molecular patterns (PAMPs) of microbial origin or 

danger-associated molecular patterns (DAMPs) which are “self” molecules that have 

become accessible to immune cells following cell injury or death. Important to 

atherosclerosis, DAMPs can also be “altered self” molecules – originally benign “self” 

molecules that have undergone modification.  Innate immune cells use pattern 

recognition receptors (PRRs) to recognize DAMPs and PAMPs, directing responses that 

are normally protective, such as eliminating microbes or removing damaged tissue.  

Importantly, these early innate immune responses are followed by secretion of 

chemokines and cytokines that recruit and activate lymphocytes.  

Early research in understanding the inflammatory process in atherosclerosis 

focused on identifying the  antigen(s) responsible for the initial inflammatory response. 

As discussed previously, the possibility that infectious organisms activate this initial 

response has been considered, however, little evidence supports a primary role
140, 166

. 

Furthermore, clinical trials have not provided adequate support for the therapeutic use of 

antibiotics as a primary or secondary prevention for CVD
255

. Similarly, the generation of 

DAMPs requires a pre-existing injury as they are generally produced during tissue 

damage. Therefore, while they may contribute to the chronic inflammation of 

atherosclerosis, DAMPs are unlikely to play a major role in directing the primary 

inflammatory response of atherogenesis.  Laboratory and clinical data indicate that 

antigens responsible for the initiation of atherosclerosis consist of new epitopes that are 
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formed as a result of oxidative reactions, such as when oxLDL is formed or cells undergo 

apoptosis 
246, 256-258

. The innate immune system has evolved to remove these oxidized 

molecules and cells, since they would otherwise be pro-inflammatory and 

immunogenic
257, 259

. 

 Immune cells normally have limited ability to bind to the endothelium; however, 

pro-inflammatory stimuli including hypercholesterolemia, hyperglycemia, hypertension, 

and smoking trigger the endothelial expression of vascular cell adhesion molecule-1 

(VCAM-1) and P-selectin and promote the attachment of circulating monocytes and 

leukocytes
260-263

. The presence of oxLDL in the vessel wall also increases the expression 

and secretion of chemoattractant factors from endothelial cells, including MCP-1, which 

direct the migration and entry of monocytes. Indeed, genetic deletion of MCP-1 in Ldlr
-/-

 

mice reduces monocyte recruitment and decreases atherosclerosis
264

; similar results are 

true for the genetic deletion of the MCP-1 receptor in apoE
-/-

 mice
265

. Experimental 

studies and human observations also support the involvement of other chemokines in 

monocyte recruitment into the arterial wall
266-269

. Taken together, these findings support 

the requirement for innate immune response directing monocyte recruitment, a critical 

step in atherogenesis.  

The inflamed vascular wall overexpresses M-CSF which drives monocyte 

differentiation into macrophages within the intima
270, 271

. In addition, M-CSF stimulates 

increased expression of macrophage scavenger receptors responsible for engulfment of 

ox-LDL by receptor-mediated endocytosis
243

. Lesion monocytes/macrophages also have 

increased expression of TLRs which activate inflammatory signaling pathways in 

response to a large number of stimuli, including oxLDL
272, 273

 and heat shock proteins 
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(released from apoptotic cells in the lesion)
274

. Consistent with the role of TLRs and their 

downstream effectors in promoting atherosclerosis by sustaining inflammation, genetic 

abrogation of the pathway reduces disease
275, 276

. In addition, atherogenesis is also 

associated with the selective recruitment of a pro-inflammatory subset of monocytes, Ly-

6C
hi

, which preferentially bind activated endothelium and infiltrate into lesions; serum 

levels of Ly-6C
hi

 are increased in hypercholesterolemic ApoE
-/-

 mice 
277

. Upon lesion 

formation, resident macrophages proliferate and amplify the inflammatory response by 

secreting growth factors and cytokines, including TNFα and IL-1β. These two cytokines 

are important immune modulators responsible for the induction of a broad spectrum of 

adhesion molecules, chemokines, and growth factors, thereby sustaining the chronic 

inflammatory state within the lesion
243

.  

 Advanced lesions are characterized by a necrotic core of lipid-filled cells covered 

by a fibrous cap. The amount and type of interstitial collagen fibers comprising the 

fibrous cap determined its strength. Inflammation can weaken the fibrous cap by limiting 

the synthesis of new collagen fibers by SMCs and stimulating the degradation of existing 

collagen
245

. This response is mediated in large part by the secretion of IL-1β and CD40L 

by T-cells which induces macrophages to release collagenases that are responsible for the 

initial degradation of plaque collagen
278-280

. Collagenase expression and activity is 

increased in regions of the plaque vulnerable to rupture (e.g. core and shoulder)
279, 281

 

suggesting their role in promoting plaque destabilization and thrombotic events. Indeed, 

plaque collagen content increases in collagenase-resistant apoE
-/-

 mice
282

. Inflammation 

also stimulates macrophage foam cells to release proteases that degrade elastin and 

collagen contributing to plaque evolution and destabilization 
283, 284

. The combined effect 
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of the various proteases released by macrophage foam cells favors fibrous cap 

remodeling that may lead to plaque rupture
167

. 

Other innate immune cells involved in atherosclerosis 

Neutrophils Despite being important phagocytic cells of the innate immune system and 

the most abundant type of white blood cell in humans, neutrophils comprise only a 

minority of the inflammatory cell composition of atherosclerotic lesions
246

. Whether 

neutrophils directly contribute to atherogenesis is controversial and uncertain. There is 

some evidence, however, that they may play a role in the initial recruitment of immune 

cells to the lesion site
285

. Additionally, the degranulation of neutrophils results in the 

release of a variety of proteins including collagenase, elastase, and proteases which may 

contribute to plaque destabilization. Indeed, atherosclerotic lesions demonstrate increased 

markers of neutrophil degranulation and the presence of neutrophil-specific proteases 

suggesting that neutrophils are playing an active role in the progression of 

atherosclerosis
286

. It has also been reported that neutrophils co-localize with 

myeloperoxidase in lesions
287

. Myeloperoxidase generates the reactive oxygen species 

hypochlorous acid, which contributes to the apoptosis of endothelial cells as well as 

promoting lesion growth
288

. Myeloperoxidase activity also leads to LDL nitration and 

lipid peroxidation, increasing the uptake of modified LDL by macrophages
289

. 

Interestingly, high circulating levels of neutrophils predict myocardial infarction better 

than any other leukocyte subset, including total white blood cell, lymphocyte, or 

monocyte count
290

.   

Dendritic cells Dendritic cells (DCs) are the professional antigen-presenting cells of 

innate immunity responsible for inducing T-cell responses. As key modulators of the 
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immune system, DCs likely play a critical role in directing the innate or adaptive immune 

responses against the altered self-antigens found in atherosclerosis.  Indeed, the number 

of DCs increase in parallel to lesion complexity
291

 as does the expression of CD83
292

, a 

marker of DC activation, thus supporting the potential contribution of DCs to 

atherosclerosis. The influence of DCs in the atherogenic process likely hinges upon their 

primary function as antigen-presenting cells. Contrary to macrophages that lose their 

ability to present antigens in the face of cholesterol induced cytotoxicity
293

, dendritic 

cells retain antigen presenting function under conditions typical of atherosclerotic 

lesions
294

. This ability is probably due to the increased resistance to oxidative stress and 

cholesterol-induced cytotoxicity characteristic of DCs
294, 295

. Importantly, antigen 

presentation by DCs primes T-cells and enables T-cell antigen-specific differentiation 

into effector cells. Efficient T-cell priming requires co-stimulatory signaling from DCs 

and when this is blocked in athero-prone mice the development of atherosclerosis is 

attenuated
296

.   

Adaptive Immunity in Atherosclerosis  The second arm of the immunity is the adaptive 

immune response that is activated in response to antigen recognition by B-cells and T-

cells.  Antigen recognition drives lymphocyte proliferation and differentiation into 

effector cells with pro-inflammatory properties meant to be protective against infection.  

The adaptive immune response, however, also leads to tissue damage, especially when 

exposure to the antigen is persistent (i.e. atherosclerosis). Indeed, T-cells constitute 

approximately 10% to 20% of immune cells in advanced human plaques
297

 and 

congregate at rupture-prone sites
298

. Together, these findings suggest that T-cell plays a 

role in mediating the tissue damage present in late-stage disease.  
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T-cells enter the vessel wall in response to several different chemokines that all 

bind the CXCR3 receptor highly expressed on the surface of lesional T-cells
299

. Most of 

the T-cells in atherosclerotic lesions are of the Th1 subset
300

 and recognize antigens 

presented by macrophages and DCs, including antigens derived from oxLDL
301

. Antigen 

recognition leads to the clonal expansion of antigen-specific T-cell effector cells
302

. 

Lesional T-cells secrete INF-γ, IL-2, and TNFα which activate macrophage and vascular 

endothelial cells and promote inflammation
300

. In addition, compared with non-diseased 

arterial tissue, there is increased expression of IL-12 and IL-18, Th1 stimulatory 

molecules, by lesional cells
303

. In addition to Th1 cells, atherosclerotic plaques also 

contain some cytotoxic Th2 cells and occasional B cells
298

. Although the number of B-

cells in plaques is few, their function in antibody secretion may play an important role in 

atherosclerosis. Indeed, analysis in human subjects reveals both increased plasma titers of 

anti-oxLDL antibodies and immune complexes containing oxLDL in human lesions
304

. 

Further evidence for the role of B-cells in atherosclerosis comes from the discovery that 

antibody titers to heat shock protein 60 (HSP60), which is released from damaged tissue, 

correlates with cardiovascular disease
305

.   

The degree to which adaptive immune responses influence the atherogenic 

process is still under investigation. Studies of atherosclerosis in hypercholesterolemic 

ApoE
-/-

 or Ldlr
-/-

 mice in which adaptive immunity has been deleted (Rag
-/-

 or SCID 

background) show that adaptive immunity is not required for atherogenesis, however, its 

presence affects lesion formation and is largely pro-atherogenic, probably more so at 

earlier stages
306-310

.  Indeed, reconstitution of SCID/ apoE
-/-

 mice with Th1 cells from 

immunocompetent apoE
-/-

 mice results in lesion growth similar to immunocompotent 
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apoE
-/-

 mice
308

, suggesting that Th1 cells are the primary adaptive immune cells with 

proatherogenic activity. Additionally, the disproportionately elevated cardiovascular risk 

for patients with systemic autoimmune diseases
311-313

 also supports the role for adaptive 

immune responses in promoting atherosclerosis. 

1.3 High Density Lipoprotein  

Early findings that high-density lipoprotein (HDL) cholesterol levels were 

inversely associated with cardiovascular risk led to massive efforts to define the potential 

anti-atherogenic activity of this particle. Over a half century of research has focused on 

defining high-density lipoprotein (HDL) particles by their ability to accept cholesterol 

from peripheral cells, importantly arterial macrophages, and transport it to the liver for 

metabolism and excretion. While HDL and HDL-cholesterol (HDL-C) levels have 

historically been considered one and the same, recent evidence has begun to shine light 

on the dynamic and variable natures of HDL particles. Human HDL, in fact, is actually a 

heterogeneous collection of lipoprotein particles with a density of ranging from 1.063 to 

1.21 g/ml.  Size exclusion column or nondenaturing gradient gel analysis reveals that 

human HDL has several discrete particle sizes.  Ultracentrifugation can separate 2 major 

density subfractions, HDL2 (density between 1.063 and 1.125 g/mL) and HDL3 (density 

between 1.125 and 1.21 g/ml). Proteomics of HDL is complex
314

 but the majority of HDL 

contains apoA1, which is the most abundant lipoprotein in normal human plasma and 

comprises approximately 70% of the total HDL protein content. Many HDL particles also 

contain ApoAII, the second most abundant lipoprotein in HDL.  Many of the less 

abundant proteins associated with HDL are found only in a subfraction of HDL 

particles
314

, thus increasing HDL diversity.  
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HDL biogenesis  

The biogenesis of HDL is a complex and dynamic process involving the 

formation of nascent particles that undergo lipidation and extensive remodeling in the 

circulation (Figure 1.3). The generation of mature HDL begins with the synthesis of 

apoA1 in the liver and intestine.  Maturation of nascent HDL particles require interaction 

with the cholesterol/phospholipid transport ABCA1 for lipidation.  Mouse models of 

tissue specific ABCA1 deficiency demonstrate that hepatic ABCA1 is responsible for the 

majority of nascent HDL synthesis, while intestinal ABCA1 plays a significant role in 

HDL maturation
315

.  Following ABCA1-mediated lipidation, HDL is enriched in 

phospholipids and free cholesterol and this particle is the substrate for lethicin-cholesterol 

acyltransferase (LCAT) which esterifies free cholesterol to cholesteryl ester building up 

the hydrophobic core and in the process generates larger and less dense HDL particles
316

.  

LCAT activity is critical for normal HDL metabolism.  In humans, the rare genetic 

disorder of LCAT deficiency is associated with extremely low HDL-C (<10 mg/dL) and 

apoA1 levels
317

. Loss of LCAT-mediated cholesterol esterification in plasma results in 

the inability to form mature HDL particles with a cholesteryl ester core and rapid 

catabolism of circulating apoA1 and apoAII
317

. Interestingly, premature CVD is not 

evident in LCAT-deficient patients despite the extremely low HDL-C and apoA1 

levels
318, 319

.   

Cholesteryl ester transfer protein (CETP) is another important enzyme that plays a 

critical role in HDL remodeling.  CETP is synthesized in liver and adipose tissue and 

circulates in plasma bound to lipoproteins. The function of CETP in the plasma is to 

redistribute hydrophobic lipids packaged within the lipoprotein core (triglycerides and 
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cholesteryl esters) between HDL and triglyceride-rich apoB-containing particles (VLDL, 

LDL, IDL, chylomicron remnants)
320

.  The net effect of CETP activity on HDL is 

cholesteryl ester depletion and triglyceride enrichment, with an overall reduction in HDL-

C and generation of smaller HDL particles. CETP activity is increased in 

hypertriglyceridemia
321

 and in the post-prandial state
322

, perhaps explaining why low 

HDL-C often appears together with high LDL-C. Despite decreasing HDL-C levels, 

CETP appears to promote the uptake of HDL-CEs in the liver, arguing that this enzyme 

might also have anti-atherogenic activity
323

.  That CETP plays a critical role in HDL 

metabolism was conclusively demonstrated by the discovery of a small cohort of CETP 

deficient patients in Japan who have elevated HDL-C and reduced ApoA1 turnover. 

Despite a rise in HDL-C levels, however, coronary heart disease was increased among 

study participants with CETP deficiency
324

. To note, there is discrepancies among the 

various studies, and in certain cases CETP deficiency is athero-protective, and this effect 

is seen in parallel with significant increases in HDL-C
325

. CETP is not found in rodents 

and when it is transgenically expressed HDL-C levels are dose-dependently reduced, and 

as a consequence, atherosclerosis increases
326

. In contrast, CETP expression is anti-

atherogenic in other mouse models more relevant to human pathophysiology (i.e. 

hypertriglyceridemia)
327

. The protective effects of CETP despite opposite effects on 

HDL-C suggest that the dynamics of HDL metabolism may be more important than HDL 

levels in determining the effect on atherosclerosis. 

Phospholipid transfer protein (PLTP) is an additional enzyme responsible for the 

remodeling of HDL in circulation.  PLTP circulates bound to HDL and mediates the 

transfer of phospholipids from triglyceride-rich lipoprotein to HDL and also the exchange 
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of phospholipids between lipoproteins. The net transfer of phospholipids into HDL 

results in the formation of larger, less dense particles. Besides phospholipids, PLTP can 

also mediate the transfer of lipid species, including diacylglycerol, ceramide and 

lipopolysaccharides
328

. PLTP deficiency has not been found in human, but PLTP 

knockout mice have a marked reduction in HDL phospholipids, free cholesterol and 

apoA1
329

 due to increased clearance of phospholipid-depleted HDL
330

. Overexpression of 

human PLTP in mice also results in a 30% to 40% reduction in plasma HDL cholesterol 

levels
331, 332

. This reduction in HDL-C is accompanied by an increase in preβ-HDL 

particles
331

, which are more rapidly degraded
333

, thereby likely contributing to the 

decrease in HDL levels. Overall, PLTP deficiency as well as PLTP overexpression causes 

a significant reduction of HDL levels in circulation.  

In addition to the actions of LCAT, CETP, and PLTP, a number of lipases present 

in both the circulation and tissues also contribute to the composition of HDL particles. 

Three members of the triglyceride lipase gene family of proteins are primarily active in 

HDL remodeling: lipoprotein lipase, hepatic lipase and endothelial lipase. 

Lipoprotein lipase (LPL) is a multifunctional protein that is produced by many 

tissues including muscle, adipose and macrophages
334

. LPL plays a major role in the 

hydrolysis of triglycerides from the core of triglyceride-rich lipoproteins, primarily 

chylomicrons and VLDL
335

. LPL has also been show to promote the exchange of lipids 

between lipoproteins
336

. It also mediates the uptake and degradation of cholesterol-rich 

lipoproteins
337-339

, and this effect is independent of the lipolytic activity of LPL
339

. 

Indeed, in cultured human hepatocytes LPL was shown to significantly increase the 

selective uptake of HDL-CE
340

 and this effect is independent of SR-B1
341

. More than 100 
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mutations have been identified in the human LPL gene. A recent meta-analysis has 

determined that LPL variants that result in reduced LPL activity are associated with 

adverse lipid profiles – elevated TGs and lower HDL-C
342

.   

Hepatic lipase (HL) is lipolytic enzyme that is synthesized in hepatocytes and is 

secreted and bound to the surface of hepatocytes and hepatic endothelial cells. 

Lipoprotein components hydrolyzed by hepatic lipase include triglycerides, cholesterol 

esters, and phospholipids
343

. In contrast to lipoprotein lipase, heaptic lipase does not 

require interactions with apolipoprotein to be enzymatically active
344

 HL hydrolyzes 

HDL phospholipids and triglycerides
343

, and in the presence of CETP converts 

phospholipid-rich HDL to smaller HDL remnants and lipid-poor or lipid-free apoA1
345

. It 

has also been shown to enhance HDL-cholesterol ester uptake by hepatocytes, perhaps 

because of its remodeling effects
323, 344

. In addition, human HDL turnover studies
346, 347

 

have also suggested that hepatic lipase plays an important role in determining HDL 

protein fractional catabolic rates, further confirming the role of hepatic lipase in HDL 

metabolism and HDL-CE uptake. Patients with genetic disruption of HL
348, 349

 have 

moderately elevated HDL-C and knockout
350

 and overexpression
351, 352

 studies in animals 

have also demonstrated that HL activity is inversely associated with HDL-C levels.  

Endothelial lipase is synthesized and secreted by endothelial cells and has been 

detected in a variety of tissues, as well as in human atherosclerotic foam cells
353

. 

Endothelial lipase primarily functions as a phospholipase and exhibits preference for 

HDL over other lipoproteins
353

. In sum, EL is a negative regulator of plasma HDL-C 

levels. Overexpression
354-356

 and knock out studies
357

 in rodents demonstrate that EL 

activity reduces HDL-C and apoA1 levels due to an increase in the catabolic rate of HDL 
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apolipoproteins and HDL-CE. It has been posited, therefore, that the hydrolysis of HDL 

phospholipids by EL destabilizes the particle, resulting in shedding of apoA1 molecules 

that are rapidly cleared by the kidneys
356

. Consequently, the remaining CE within the EL-

modulated HDL particle is more susceptible to SR-B1 mediated uptake
355, 356

. The 

evidence that EL negatively controls HDL levels in humans comes from several recent 

GWAS studies
358-360

 that identified EL variants associated with HDL-C levels. Further 

confirming the effects of EL, a meta-analysis across five cohorts demonstrated that loss 

of function mutations in EL increases HDL-C levels
360

.   

HDL - the “good” cholesterol  

Physicians have long advocated to the public that LDL-C is “bad” whereas HDL-

C is “good” based on the early epidemiological findings that high LDL-C increases CVD 

risk while HDL-C reduces it.  The effects of LDL-C and HDL-C on CVD risk are not 

necessarily related. Indeed, findings in the 1970s and 1980s from follow-up analysis of 

Framingham Heart Study showed that HDL-C was protective in patients across the strata 

of LDL-C levels
361, 362

.  Further evidence that HDL-C was an important predictor of CVD 

risk, the incidence of low HDL-C (<35 mg/dL) was approximately three fold greater 

among men (<60 years old) with premature coronary heart disease than age-matched 

controls
363

.  Genetic disorders characterized by low HDL-C levels are rare and include 

mutations in or the hypercatabolism of ApoA1, as well as defects in cholesterol 

transporters such as ABCA1. On the other hand, lifestyle factors such as obesity, physical 

inactivity, diet, smoking, and the presence of other inflammatory disorders – account for 

the majority of low HDL-C levels. 

Despite the striking epidemiological evidence that HDL-C levels confer 

protection from CVD, recent human studies have cast serious doubt on the therapeutic 
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benefit of raising HDL-C levels
364, 365

. Voight and colleagues recently completed a 

Mendalian randomization study and found that a combined score for the 14 common 

genetic variants that are associated with HDL-C levels and no other lipoprotein traits was 

not associated with CVD endpoints
366

. Furthermore, recent drug trials to increase HDL-

C, either with CETP inhibitors
364, 367

 or extended release Niacin
368

, did not show 

significant beneficial effects on CV outcomes despite raising HDL-C. Interestingly, a 

mouse model of SR-B1 deficiency on the hyperlipidemic ApoE
-/-

 background, in which 

plasma HDL-C accumulate due to the block in hepatic uptake actually developed more 

severe atherosclerosis than controls
369

. The accumulating evidence from human and 

animal studies provides compelling support for the notion that HDL-C in and of itself is 

not athero-protective.  Yet, there is substantial data in mouse models that increased HDL 

is associated with decreased atherogenesis and increased regression of existing lesions 

(These studies will be discussed in a following section).  Furthermore, human data 

indicates that HDL particle number is a better indicator of cardiovascular disease risk 

than HDL-C levels
370

. While this effect may be due merely to raising the amount of HDL 

particles available to remove excess cholesterol, increasing HDL particle numbers might 

also impact other functional activities of HDL. It is important to note, however, that the 

capacity of HDL to accept macrophage-derived cholesterol has recently been shown to be 

a better marker for CVD risk than HDL-C
371

. Researchers are only now beginning to 

understand the full spectrum of HDL’s function and cargo; thus, more emphasis should 

be placed on elucidating the other aspects of HDL besides its role in cholesterol transport, 

as these may be potential therapeutic targets.  Nevertheless, it is becoming clear that HDL 

particle number and function are likely better predictors of CVD risk than HDL-C. While 
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it may not be feasible to measure such parameters in every patient, new methods that 

allow such quantification of HDL particle number and function on a large-scale will 

greatly enhance CV risk reduction.  

HDL atheroprotective functions 

HDL has been ascribed many atheroprotective activities, including mediating 

anti-oxidant and anti-inflammatory pathways as well as promoting endothelial cell 

function and regulating whole body cholesterol transport
372

.  Since the accumulation of 

cholesterol esters by macrophages in the vessel wall is the hallmark of atherogenesis
224

 

many have ascribed HDL mediated reverse cholesterol transport (RCT) as the major anti-

atherogenic function
373-375

. Indeed, as noted above, many recent human studies are 

indicating that HDL efflux capacity is a reliable indicator of CVD risk
371

. Consistent with 

atherosclerosis being a dynamic and multi-factorial disease, HDL’s other roles likely 

contribute to its atheroprotective properties, and to what degree these properties play a 

role in suppressing atherogenesis is currently being investigated. 

HDL and reverse cholesterol transport The RCT hypothesis first put forth by Glomset
316

 

proposes that HDL accepts cholesterol from peripheral cells such as lesion macrophages, 

and delivers it to the liver where it can be directly excreted into the bile or metabolized 

into bile salts before excretion. ApoAI, other exchangeable apolipoproteins, and mimetic 

peptides with the amphipathic helical structure of ApoAI can all accept cellular free 

cholesterol and phospholipids from ABCA1.  In the first step of RCT, macrophage 

ABCA1 transfers cholesterol and phospholipids to lipid-poor ApoA1 forming nascent 

HDL (Figure 1.4). LCAT associates with HDL in circulation and promotes its maturation 

by converting free cholesterol into cholesteryl esters which are immediately sequestered 
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in the hydrophobic core of HDL
316

(Figure 1.4). The importance of ABCA1 mediated 

cholesterol efflux is appreciated in patients with Tangier’s disease. These patients have a 

loss of function mutation in ABCA1 and as a result have reduced HDL-C levels and tissue 

accumulation of cholesterol esters
376, 377

. Not unexpectedly, these patients are at increased 

risk for developing CVD
378

. Animal studies have further clarified the physiological role 

of ABCA1. Abca1
-/-

 mice have very low HDL-C levels similar to patients with Tangier’s 

disease
379

. Macrophage specific knockout of ABCA1 had no significant effect on HDL-C 

levels but resulted in increased atherosclerosis, presumably due to a block in macrophage 

RCT
380

. Thus, macrophage ABCA1 contributes little to the bulk lipidation of ApoA1 and 

HDL however it is important for atheroprotection. Conversely, hepatic ABCA1 is critical 

for the initial lipidation of nascent lipid-poor apoA1 particles protecting them from rapid 

degradation in the plasma as liver specific deletion of ABCA1 reduces plasma HDL-C by 

approximately 80%
315

. 

Mature HDL mobilizes additional cholesterol from macrophages and other lipid-

laden cells through interaction with ABCG1, SR-B1, or other receptor-independent 

pathways
381

.  SR-B1 binds larger spherical HDL and forms a complex, probably 

containing a hydrophobic channel, which allows cholesterol transfer to HDL
382

. SR-B1 

mediates bi-directional cholesterol flux and allows HDL-cholesterol to enter cells. In 

circulating monocytes SR-B1 levels are undetectable, but increase upon differentiation 

into macrophages
383

 indicating the importance of this protein for the first step of RCT. 

ABCG1 is an intracellular transporter which reorganizes the pool of plasma membrane 

cholesterol thereby facilitating its absorption via passive diffusion by cholesterol 

acceptors
384, 385

. Nascent and mature HDL particles are equally effective acceptors for 
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ABCG1-mediated cholesterol efflux
374

. Depending on the cholesterol gradient between 

the cell membrane and the acceptor, passive diffusion can also promote macrophage 

cholesterol efflux
386

.  

Importantly, cholesterol efflux to HDL does not occur in the circulation but 

within the arterial wall and HDL must cross the endothelial barrier twice to access lipid-

laden arterial macrophages and to re-enter the circulation. Indeed, two recent studies have 

provided in vivo evidence that the trans-endothelial transport of HDL into the lymphatic 

vasculature is a rate-limiting step in reverse cholesterol transport
387, 388

. Endothelial cells 

can bind, internalize and transport mature HDL via distinct mechanisms regulated by SR-

B1, ABCG1 and endothelial lipase
389, 390

. Once in circulation HDL travels to the liver 

where it deposits its lipid cargo to hepatic SR-B1 (Figure 1.4). In the liver, HDL-derived 

cholesterol is then secreted into bile by ABCG5/G8, an obligate dimer pair of cholesterol 

transport proteins, and subsequently excreted via bile into the feces. Alternately, 

cholesterol can be excreted through a non-biliary pathway termed “trans-intestinal 

cholesterol export” (TICE) which relies on VLDL targeted to the LDL receptor or 

another lipoprotein receptor in the small intestine. Intestinal cholesterol is then excreted 

into the intestinal lumen by ABCG5/G8
391, 392

. 

Studying the RCT pathway in vitro and in vivo Cholesterol efflux assays are useful for 

studying the first step of the RCT pathway (macrophage to HDL cholesterol transfer), 

however, proving the RCT hypothesis in vivo has been challenging.  Rader and 

colleagues developed an in vivo RCT assay system in mice using macrophages that have 

been labeled with radioactive cholesterol ex vivo. These tracer cells are then injected into 

the peritoneal cavity of mice and the amount of radioactive tracer tracked as it moves into 
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various compartments, notably the plasma, liver, and feces. As a proof of concept 

experiment Rader and colleagues demonstrated that RCT can be increased by apoA1 

overexpression
393

.  The utility of this assay is that it can be modified by using different 

types of donor cells and/or pharmacologically or genetic manipulating the system.  

Indeed, the numerous studies in mice using this in vivo RCT assay has yielded a wealth 

of information on RCT in rodents that can be extrapolated to humans. Although 

numerous HDL turnover studies have been performed in humans
394

, the ability to 

quantify the movement of cholesterol from macrophage to feces has not been worked out. 

Recently, a study using continuous 
13

C infusion in humans demonstrated the ability to 

quantify cholesterol movement in vivo
395

.  This method, however, does not specifically 

address the contribution of cholesterol efflux from foam cells, therefore whether this 

method would be meaningful in the setting of atherosclerosis remains to be seen. 

Anti-oxidative properties of HDL HDL function can be measured in several in vitro 

assays.  Cell-based and cell-free assays to measure the anti-inflammatory and anti-

oxidant activities were first pioneered by Fogelman and colleagues
396, 397

. In a culture 

system containing endothelial and smooth muscle cells, LDL will undergo oxidation and 

induce the expression of monocyte chemotactic factors leading to increased monocyte 

transmigration
397

. The addition of HDL to this culture system can block this response, 

demonstrating HDL’s anti-oxidant and anti-inflammatory activities. The anti-oxidant 

activity of HDL requires several HDL-associated enzymes, including paraoxonase 1 

(PON1), lipoprotein-associated phospholipase A2 (LpPLA2) and LCAT. These enzymes 

have all been reported to hydrolyze oxidized phospholipids, thereby reducing the 

oxidative state of lipoproteins particles
372, 398-402

. Additionally, sulfur-containing 
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methionine residues of apoAI, either singularly or in complex with HDL, have 

detoxifying activity against phospholipid hydroperoxides rendering them redox-

inactive
403

. 

HDL and endothelial protection. In vitro studies have shown that HDL can attenuate the 

inflammatory response in endothelial cells and induce endothelial repair by promoting 

endothelial nitric oxide (NO) production. Several different mechanisms have been 

proposed to account for HDL stimulated endothelial NO synthase (eNOS) increases. 

Several reports have demonstrated that HDL blocks the detrimental effects of oxLDL on 

endothelial NO synthase activity
404, 405

, and subsequent studies have shown that HDL 

binding to SR-B1 on endothelial cells directly stimulates NO production
406, 407

. Others 

have suggested that the HDL binding to endothelial SR-B1 facilitates interaction between 

HDL-associated lysophospholipids (i.e. sphingosine-1-phosphate) and the S1P3 receptor 

resulting in increased NO production and vasodilation
408

. Moreover, in an ABCG1-

dependent manner, HDL treatment of human aortic endothelial cells prevents oxysterol-

induced production of reactive oxygen species, thereby maintaining eNOS activity
409

.  

HDL and anti-inflammatory activity Fogelman et al.
399, 410

 provided some of the early 

evidence that HDL possessed anti-inflammatory activity in vitro. The in vivo significance 

of HDL’s role in mediating inflammation was demonstrated by the findings that HDL 

potently blocks cytokine release in a murine model of endotoxinemia
411

. In this model, 

HDL was found to bind LPS thereby attenuating immune activation.  The anti-

inflammatory activity of HDL on vascular endothelial cells is mediated through the HDL-

dependent induction of eNOS production as described above.  At the cellular level, HDL 

has been shown to affect such inflammatory processes through the inhibition of cytokine 
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production, upregulation of critical adhesion molecules, and interference with pro-

inflammatory transcription factors such as NFκB
412

. The mechanism by which HDL 

exerts these effects, however, is poorly understood. NFκB is a major pro-inflammatory 

transcription factor in myeloid cells responsible for the production of IL-1b, iNOS, and 

other cytokines implicated in atherosclerosis. It is believed that HDL inhibits NFκB 

activation by blocking a sphingosine kinase signaling pathway upstream of NF-κB
413, 414

. 

Monocytes from patients with liver cirrhosis are inherently pro-inflammatory; however, 

recombinant HDL was shown to block NF-κB activation in these cells and prevent their 

pro-inflammatory phenotype. The authors of this study suggest that the ability of HDL to 

neutralize LPS attenuates NF-κB activation
415

. ApoA1 plays a central role in HDL-

dependent LPS neutralization as distinct amino acid substitutions in ApoA1 attenuates 

the LPS-neutralizing capacity of HDL
416

. 

 In addition to neutralizing endotoxin, HDL also has direct and indirect anti-

inflammatory activity through its major role as an acceptor of macrophage cholesterol. 

Indirectly, HDL-mediated cholesterol efflux prevents inflammatory cytotoxicity in 

macrophages. Indeed, macrophage-specific deletion of ABCA1, which results in the 

accumulation of free cholesterol, increases cytokines production in response to LPS 

stimulation
417

. Moreover, the HDL-dependent efflux of oxidized lipids – many of which 

promote vascular inflammation
418

 – is consistent with the observation that the ability of 

HDL to inhibit monocyte chemotaxis correlates strongly with the HDL efflux capacity
397

. 

A direct effect of HDL on inflammatory signaling has also been proposed: The 

transduction of inflammatory signals across the cellular membrane requires the formation 

of lipid rafts containing high concentrations of cholesterol and sphingolipids. Cholesterol 
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depletion from these microdomains affects subsequent signaling processes
419

, and apoA1 

has been shown to disrupt lipid rafts by efficiently depletes cholesterol from macrophage 

membranes
420

. Thus, the direct effect of HDL and ApoA1 on lipid rafts may explain 

some of HDL’s reported anti-inflammatory activity in immune cells.  

One of the initiating steps in atherogenesis is the activation of the vascular 

endothelium resulting in an increase in the expression of adhesion molecules (e.g. E-

selectin, VCAM-1, ICAM-1) and secretion of chemotactic factors. HDL can inhibit 

cytokine-induced expression of adhesion molecules on human endothelial cells and 

thereby reduce the adhesion and migration of monocytes
421, 422

. Consistent with these in 

vitro findings, administration of recombinant HDL or apoA1 reduces adhesion molecule 

expression and monocyte infiltration in mice
423

. 

In sum, HDL exerts multiple effects that may lower the activation threshold of 

immune cells within arterial lesions (i.e. decreasing the intracellular levels of pro-

inflammatory oxidized lipids, attenuation of NF-κb signaling, etc.) thereby reducing the 

ability of these cells to responds to inflammatory cytokines and microbial stimuli (LPS). 

This multi-factorial function of HDL is important during times of acute infection, such as 

in bacteremia, as well as under conditions of chronic inflammation.  The inflammatory 

state, however, can also exert powerful effects on HDL composition and function; these 

effects will be discussed in a following section. For now, the therapeutic benefits of 

targeting HDL levels for atherosclerosis will be explored. 

Is raising HDL beneficial?  

Transgenic and adenoviral methods have been employed to increase HDL 

production in mouse models of cardiovascular disease
424-426

. These studies all resulted in 
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decreased cellular cholesterol and atherosclerotic plaque cellularity and afforded 

atheroprotection under both chow and western diet conditions
427

. Yet, as described above, 

the human trials that have raised plasma HDL-C have consistently failed to show clinical 

benefit for CVD
364, 365, 428

.  A major difficulty in interpreting the result of the available 

clinical studies, however, is that none of them were able to establish whether the 

functional activity of HDL was similarly increased. Major efforts, therefore, are currently 

underway to find markers of HDL function that can be used clinically to measure the 

benefits of various HDL-altering strategies. A marker of HDL function is highly 

desirable since most patients only present to the clinic once there is already significant 

disease burden.  There is now strong supporting data that increasing the number 

of functional HDL particles induces plaque remodeling
429-431

, particularly in the content 

and inflammatory phenotype of lesion macrophages.  Thus, strategies that raise the 

amount of functional HDL may not only protect against the progression of 

atherosclerosis, but also promote its regression – an important point considering the state 

in which most patients first present to the clinic.   

HDL raising strategies  

Niacin Niacin, the first anti-dyslipidemia agent identified
432

, remains the most potent 

drug for increasing HDL-C levels (by 15% to 30%), however it has limited use due to its 

side-effect profile
432

. Niacin appears to increase HDL levels by decreasing the hepatic 

uptake of apoA1, thereby attenuating the catabolism of HDL
433

.  The AIM-HIGH trial 

was the first large-scale outcomes-based study to evaluate the impact of adding extended 

release niacin to statin therapy in patients with existing coronary artery disease
368

. The 

study was designed to test whether increasing HDL-C in patients with controlled LDL-C 
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levels would reduce the risk of recurrent cardiovascular events. The trial was halted 

prematurely because interim analyses showed no clinical benefit for patients receiving 

Niacin. The “nail in the coffin” for niacin might have come from the recent release of the 

findings from the HPS-2-Thrive study. This secondary prevention study using extended-

release niacin with statin alone or in combination with Ezetimibe also failed to show 

clinical benefit for niacin
365

.  

CETP inhibitors Cholesterol ester transfer protein (CETP) mediates the bidirectional 

transfer of lipids between triglyceride rich lipoproteins and HDL. Rodents do not express 

CETP and are relatively resistance to high-fat diet induced atherosclerosis. Transgenic 

exogenous CETP expression in athero-susceptible mice (ApoE
-/-

 or Ldlr
-/-

), however, 

results in increased atherosclerosis
434

. Plasma CETP mass and activity are elevated in 

CVD patients and those at increased risk, resulting in decreased HDL and increased 

triglycerides. Preliminary studies have also revealed a positive correlation between the 

carotid intima media thickness (early quantification of athero burden) and CETP 

concentration
435, 436

. Three single nucleotide polymorphisms in the CETP gene are 

associated with decreased CETP activity and elevated HDL-C levels in carriers and 

inversely related to CVD risk
325, 437

. Together, the correlation between CETP and CVD in 

humans led to the idea that CETP inhibition would be a reasonable HDL-C based 

therapeutic target. In rabbit models, CETP inhibitors decreased CETP activity by more 

than 70%, resulting in a 35% increase in HDL-C and reduction in atherosclerosis
438

. 

Statins HMG-CoA reductase inhibitors (statins) have pleiotrophic effects and in addition 

to lowering LDL-C they have been shown to modestly raise HDL-C level as well. The 

HDL-C raising effects have been attributed in part to inhibition of rho-signaling pathways 
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and concurrent activation of PPARα
439

. Moreover, statins also reduce plasma CETP 

activity, which could also contribute to increased HDL-C levels. Interestingly, statin 

treatment has been shown to confer the strongest cardioprotective effects on patients with 

lower baseline HDL-C
101

. Thus, although their HDL-raising effects are modest, statins 

reduce CV risk in patients with low HDL-C.  

Fibrates Fibrates are ligands for PPARα and in addition to lowering LDL-C and 

triglycerides they have been shown to increase the expression of ApoAI
440

 and modestly 

raise HDL-C levels
441, 442

.  Treatment with fibrates significantly reduces coronary events 

in patients and similar to statins, the cardioprotective effects are stronger in individuals 

with lower baseline HDL-C levels
441

. In all five clinical trials to date, fibrates appear to 

have the greatest benefit for patients with atherogenic dyslipidemia (low HDL-C, high 

triglycerides, and prevalence of small LDL). Indeed, a recent meta-analysis of 

dyslipidemic subgroups from the fibrate trials showed a 35% relative risk reduction in 

cardiovascular events compared to a non-significant 6% reduction in those without 

dyslipidemia
443

. Whether fibrates confer cardioprotection by raising HDL mass or by 

altering other parameters of atherogenic dyslipidemia remains to be determined.  The 

severe side effects associated with fibrates, especially in combination with statins (e.g. 

rhabdomyolysis), however, will likely limit their clinical use for the treatment of CVD. 

Strategies to directly increase ApoA1 levels Human ApoA1 transgenic mice have 

elevated levels of HDL and are protected against atherosclerosis
444

; providing evidence 

that ApoA1 overexpression can increase HDL-C and protect against atherosclerosis.  A 

major question, however, is whether the rate of ApoA1 production is a major determinant 

of HDL quantity and quality in humans.  The ApoA1 gene is regulated primarily by cis- 
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acting elements and partially at the post-translational level by factors that increase mRNA 

stability
445, 446

.  Dietary fat, alcohol, estrogen, androgens, thyroid hormones, retinoids, 

glucocorticoids, fibrates, niacin, and HMG-CoA reductase inhibitors are some of the 

many nutritional, hormonal and pharmacological factors known to influence induction of 

the ApoA1 gene
446

.  Changes in diet have been shown to affect HDL levels
52, 447, 448

. Such 

interventions, such as a switch from high-carbohydrate to a high-fat diet appear to exert 

their major effect on by altering the production rates of apoA1
449

. In addition to 

uncovering factors that increase the biosynthesis of ApoA1, measures that decrease its 

catabolism are also being explored. In fact, in vivo studies of HDL metabolism indicate 

that over a wide range of body weights and plasma TG levels the rate of ApoA1 

clearance rather than its rate of production is the most important determinant of HDL-C 

and ApoA1 variability in humans. Within phenotypically similar groups (narrow range of 

body weights, triglyceride levels, etc.), however, the production rate of apoA1 is an 

important determinant of the variability of plasma HDL levels
450-452

.  

Augmentation of lipid-poor ApoA1 represents the most validated HDL-related 

therapeutic approach to raise HDL levels and/or function. Infusions of lipid-poor apoA1-

phospholipid complexes, often referred to as recombinant HDL (rHDL), have been 

extensively studied in animals and in pre-clinical studies in humans. These preliminary 

studies have demonstrated that the administration of apoA1 is athero-protective and 

promotes regression of disease
453-455

. Consistent with these findings, apoA1 has been 

shown to not only promote reverse cholesterol transport
393

, but also to inhibit vascular 

inflammation
456

, the expression of endothelial adhesion molecules
457

, and phospholipid 

oxidation
458

.  All of these effects could contribute to the anti-atherogenic potential of 
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rHDL administration, and early clinical studies in humans have shown that rHDL 

infusion is well tolerated and decreases coronary atherosclerosis to the similar extent as 

long-term statin use
459

.   An alternative strategy to augment HDL levels involves 

upregulation of endogenous apoA1 synthesis. Recently a small molecular compound 

(RVX-208) developed by Resverlogix Corporation was shown to selectively upregulate 

apoA1 synthesis in hepatocytes
460

. The recent release of their phase II clinical trials data 

demonstrates that treatment with RVX-208 leads to a significant reduction in major 

adverse cardiac events. Furthermore, the clinical benefit of RVX-208 was greater in 

patients with high levels of inflammation (CRP > 2.0mg/dL)
461

.   

Conclusion The recent failures of the niacin and CETP inhibitor trials have raised serious 

doubts about the relevance of raising HDL-C as an atherosclerotic therapy. While niacin 

and CETP inhibitors raise HDL-C, they do not increase the number of HDL particles. 

Recent findings indicate that HDL particle number is a better indicator of HDL function 

than HDL-C values
412

; thus, this may be part of the explanation for why niacin and CETP 

inhibitors have not shown clinical benefit.   Additionally, it is quite possible that therapies 

aimed at raising HDL levels fail because they do not mitigate the effects of inflammation 

(PL depletion, TG enrichment, and increases in pro-inflammatory proteins) on HDL 

particle function.  HDL-raising therapies either increase HDL production or reduce HDL 

catabolism. Increasing HDL in the presence of chronic inflammation such as seen in 

atherosclerosis may have the paradoxical effect of merely generating more dysfunctional 

or even pro-inflammatory forms of HDL. Presumably, decreased catabolism of 

dysfunction HDL also is unlikely to be beneficial for CVD treatment. Being able to 
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measure HDL function, therefore, will be an invaluable tool as the field explores the 

therapeutic potential of HDL-targeted therapies. 

 Effects of inflammation on HDL function 

  

The risk of atherosclerosis is increased in many chronic inflammatory disorders including 

infection with Helicobacter pylori, chronic bronchitis, chronic kidney disease, 

rheumatoid arthritis and systemic lupus erythematous (SLE)
462-464

. The first observation 

that inflammation alters HDL form and function arose from studies investigating HDL 

composition during the acute phase response or influenza A infection
410, 465

. These studies 

demonstrated that Inflammation promotes the incorporation of inflammatory cargo, such 

as acute phase proteins, into the HDL particle. Importantly, these “pro-inflammatory” 

HDL particles are less able to promote macrophage cholesterol efflux
24

, protect LDL 

against oxidation, or to inhibit the increased expression of adhesion molecules associated 

with inflammation
410

. The hypothesis that certain diseases renders HDL dysfunctional 

was further supported by the observation that despite high HDL-cholesterol levels, HDL 

from patients with CVD had less anti-oxidative activity
466

. This finding led to a series of 

studies which found that cohorts of patients with systemic lupus erythematosus (SLE), 

end-stage renal disease (ESRD) and metabolic syndrome had HDL with decreased anti-

oxidant activity as well
467

. These results intrigued researchers and have led to a massive 

effort to characterize dysfunction HDL and determine precisely how inflammation alters 

HDL composition and function. 

Inflammation alters HDL proteins  Recent proteomic studies have analyzed HDL from 

patients with high cardiovascular risk. Interestingly, there are multiple changes in the 
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protein composition of HDL particles isolated from patients with coronary artery 

disease
468, 469

, chronic kidney disease
470, 471

, rheumatoid arthritis
472

, and psoriasis
473

. The 

presence of any one of these inflammatory diseases is associated with HDL enriched in 

the acute phase protein serum amyloid A (SAA) and complement component 3 (C3). C3 

is a modulator of the innate immune system
474

 and has been implicated in contributing to 

vascular disease
475

. HDL isolated from these patients also displayed decreased apoA1 

levels, consistent with the finding that SAA can replace apoA1 from HDL under 

inflammatory conditions
476, 477

.  Weichhart et al. recently demonstrated that HDL from 

patients with chronic kidney disease stimulates cytokine production and adhesion 

molecule expression on monocytes and dendritic cells. Using shotgun proteomics they 

identified a uremic HDL protein signature, and of all the associated proteins only SAA 

was found to be responsible for the pro-inflammatory effects
471

.  These findings are 

consistent with recent evidence that SAA stimulates innate immune responses
478

 and that 

SAA is enriched in patients with acute coronary syndrome
469

.  

Other proteins found to be increased on inflammatory HDL particles include 

ApoCII, ApoCIII and ApoAIV
470

. Previous studies have shown that ApoCIII is inhibitory 

against lipoprotein lipase and hepatic lipase
479

. As described above, alterations in the 

activity of these lipases can impact HDL levels and composition. ApoCIII is also pro-

inflammatory mediator and can directly activate monocytes through TLR2 and NFκB 

signaling
480

. This effect of ApoCIII promotes atherosclerosis
480

, suggesting a novel 

mechanism by which inflammatory HDL particles may contribute to atherogenesis.  

Interestingly, even conditions characterized by low-grade inflammation such as 

psoriasis have been associated with changes in HDL composition and function.  HDL 
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isolated from psoriatic patients with relatively modest inflammation (median CRP of 2.7 

mg/dL, within the accepted levels of 1-3 mg/dL) had decreased ApoA1levels and 

increased acute phase proteins, including SAA and prothrombin
473

.  

The proteomic analysis of HDL is still in its infancy; yet, the data so far suggests 

that diseases with increased CVD risk, such as rheumatoid arthritis, end-stage kidney 

disease, and diabetes have a characteristic HDL proteome harboring various pro-

inflammatory proteins.  These initial studies, however, need further validation before the 

HDL proteome can be used as a biomarker for disease.  Moreover, how these changes in 

HDL composition affect HDL function(s) and the progression of atherosclerosis is still 

not well understood.  

Inflammation alters HDL lipids In contrast to HDL proteomics, less is understood about 

the lipid composition of HDL and how the HDL lipidome changes in association with 

various inflammatory diseases. Compared to apoB-containing lipoprotein particles, HDL 

is enriched in phophatidylcholine, lysophosphatidylcholine, and 

phosphatidylethanolamine. Consistently associated with CVD and other inflammatory 

disorders is the significant reduction in HDL phospholipids and total cholesterol 

content
470, 473, 481, 482

.  Interestingly, studies using mice and rats expressing human APOA1 

indicate that the prime component of HDL that modulates cholesterol efflux is HDL 

phospholipid
483, 484

. Furthermore, the correlation between macrophage cholesterol efflux 

and HDL phospholipid in human sera is stronger than with any other measured 

lipoprotein parameter, including HDL cholesterol, APOA1 and triglycerides
485

.  

Consistent with the changes in HDL phospholipids observed in inflammatory diseases, 

HDL isolated from patients with chronic kidney disease, rheumatoid arthritis and 
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psoriasis were shown to be less effective at promoting macrophage efflux
470, 473, 486

. 

Together these findings suggest that the lipid composition of HDL might play an 

important role in influencing HDL function.   

Obesity and HDL dysfunction  

The incidence of obesity has doubled in the United States since 1960, with more 

than one third of the adult population currently obese
487

. The incidence of obesity among 

children has also risen from 6% to 19% over the past 25 years
488

. Obesity has been 

associated with several conditions including type 2 diabetes, hypertension, 

hypercholesterolemia, hypertriglyceridemia and nonalcoholic fatty liver disease. As a 

result, a conservative estimate puts the medical costs related to obesity at approximately 

$150 billion per year in the US
489

.  

One of the first studies to demonstrate an association between obesity and CVD 

risk was the large, cross-sectional multinational Lipid Research Clinics Program 

Prevalence Study, which found a significant inverse correlation between the Quetelet 

index of body mass (measured as height divided by weight squared) and total HDL-C in 

both men and women
490

. The association remained significant when the authors 

controlled for confounding variables that affect HDL-C levels. In another large-scale 

study, plasma HDL-C and ApoA1 levels both significantly declined in a linear fashion 

with increasing BMI
491

. An increase in BMI was also more strongly related to reduced 

HDL levels than other CV risk factors including LDL-C levels
491

.  The Quetelet index 

and BMI are indirect indices of obesity and more direct measurements of adiposity have 

uncovered a strong correlation specifically between intra-abdominal fat and CV risk 

including low HDL-C levels
492, 493

. Although there is strong correlation between obesity 
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and CVD
203

, no epidemiologic or clinical study have yet established a causal link 

between the low plasma HDL-C concentrations observed in the obese state and an 

increased risk for CVD. Other lipoprotein abnormalities and metabolic changes also 

occur in the obese state and likely contribute to the increased CVD risk associated with 

obesity. These changes, however, are less consistent than the observed effect of obesity 

on HDL-C levels. 

HDL lowering in obesity In addition to lower HDL levels, obesity has also been shown 

to adversely affect the distribution of HDL subfractions and to alter the composition of 

HDL particles. Several studies have shown that HDL from obese subjects has reduced 

cholesterol and protein contents; moreover, the concentration of atheroprotective HDL2 

(“small” HDL; density between 1.063 and 1.125 g/mL) particles specifically is 

decreased
493-495

. Both direct and indirect mechanisms have been proposed to account for 

the reduced HDL2 cholesterol levels observed in the obese state. First, other metabolic 

abnormalities that are known to influence plasma lipid levels are linked to obesity. 

Hypertriglyceridemia, in particular, is frequently associated with lower HDL levels and 

increased HDL catabolism in obese subjects
496

. In hypertriglyceridemia CETP mediates a 

greater net transfer of triglycerides from apoB-containing lipoproteins to HDL than 

normal resulting in TG-rich, cholesterol-depleted HDL2 particles
497

.  Triglyceride-rich, 

large HDL2 are the preferred substrate for hepatic lipase, which hydrolyzes HDL and 

promotes its uptake by the liver
498, 499

. Since obese individuals have been found to have 

increased CETP mass and activity
500

, triglyceride enrichment of HDL2 by CETP may 

explain, at least in part, why HDL2 levels are reduced in hypertriglyceridemic obese 

subjects. PLTP also plays a dominant role in HDL remodeling and have been shown in 
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vitro to catabolize HDL2 to small pre-β HDL, activity which is enhanced by enrichment 

of HDL with triglycerides
501

.  Evidence that PLTP may also influence the changes in 

HDL levels observed in obesity is provided by studies indicating that PLTP activity is 

increased in obesity and is positively related to BMI
502

 and that weight loss results in a 

significant decrease in PLTP activity and concomitantly, an increase in HDL2 particle 

size
503

.  

 There is evidence as well that obesity can directly reduce HDL levels. Clinical 

studies indicate that weight loss, and specifically loss of adipose tissue, induces a rise in 

HDL-C in obese patients
504, 505

. These clinical studies are consistent with in vitro data that 

adipose can specifically bind and mediate the uptake of HDL
506, 507

. Moreover, the uptake 

of HDL2 by adipose appears to be tissue specific with abdominal adipocytes mediating a 

greater uptake
506, 507

. In addition, HDL2 uptake by adipocytes is dependent on fat cell 

size, with larger cells taking up more HDL2 particles
507

. These findings are consistent 

with reports that abdominal adiposity is associated with CV risk
492

. Analogous to HDL2 

levels, apoA1 levels are also low in obese patients
508

. To study the factors responsible for 

reduced ApoA1 in the obese state several studies used radioisotopes to trace apoA1 in 

normolipidemic, non-smoking individuals
450, 509

. Compared to controls, obese subjects 

had a 30% reduction in the residence time of apoA1 in circulation
509

. Conversely, the rate 

of apoA1 appearance into the plasma was no different between obese and control 

subjects, indicating that obesity directly enhances the clearance of apoA1 (i.e. HDL) in 

plasma
450

. These findings were later confirmed by a studying in which the level of intra-

abdominal fat strongly correlated with the clearance rate of apoA1
510

.  

1.4 Liver X Receptors  
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The liver X receptors (LXRs) are nuclear hormone receptors that play a central 

role in cholesterol homeostasis and lipid metabolism. LXRα (NR1H3) and LXRβ 

(NR1H2) were cloned twenty years ago based on sequence homology with other 

receptors and were so named because of their isolation from a human liver cDNA library. 

LXRs were originally assigned to the orphan family of nuclear receptors because their 

natural ligands were unknown 
511, 512

. Proteins in this group are defined by the presence 

of a ~70 amino acid stretch encoding a highly conserved DNA-binding domain that 

targets the receptors to specific DNA binding elements in the promoter region of target 

genes. The c-terminus of the receptor contains a larger, less-conserved ligand-binding 

domain responsible for hormone binding, dimerization, and ligand-dependent receptor 

activation
513

. Upon ligand-binding, nuclear receptors undergo a conformational change, 

thereby releasing associated corepressor proteins in exchange for coactivators that 

promote gene transcription
514, 515

.   

The DNA and ligand binding domains of LXRα and LXRβ are highly 

homologous (>75%); yet, they are encoded by two distinct genes (LXRα on chromosome 

11p11.2 and LXRβ on chromosome 19q13.3) and display differences in expression 

patterns.  LXRβ is ubiquitously expressed while LXRα is highly expressed in the liver 

and at lower levels in the intestine, adipose, adrenal, macrophage, kidney, and lung 
511, 512, 

516
 The LXRs form permissive, obligate heterodimers with the retinoid X receptor (RXR), 

a nuclear receptor bound and activated by 9-cis retinoic acid.  The RXR/LXR 

heterodimer can be activated by either receptor’s ligands
517

, but the activity of the 

complex depends solely on LXR to elicit the transcriptional response
518

. The RXR/LXR 

heterodimer binds preferentially to DNA sequences consisting of two conserved 
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hexanucleotides separated by 4 bases (a DR-4 motif referred to as an LXRE)
512, 519

. Such 

a motif was then quickly identified within the promoter of the rat Cyp7a1 gene, which 

encodes for the rate-liming enzyme, CYP7A, in the bile-acid synthesis pathway.  

Activation of a Cyp7a1 reporter construction in vitro was determined to be RXR/LXR-

dependent 
520

.  

Discovery of LXR ligands Cell based assay using a Cyp7a1-reporter construct was then 

used to screen tissue extracts for LXR ligands and it was found that oxysterols could 

activate the RXR/LXR heterodimer. Oxysterols are cholesterol metabolites derived from 

enzymatic and non-enzymatic oxidation. Oxidation makes these molecules more hydrophilic and 

reduces their half-life. With few exceptions (e.g. atheromas), oxysterols are present in trace 

amounts and are important intermediates in the elimination of cholesterol from liver and 

extrahepatic tissues.  Subsequent screenings revealed that the most potent LXR ligands are 

22(R)-hydroxycholesterol (22-HC), 24(S)-hydroxycholesterol (24-HC), and 24(2),25-

epoxycholesterol (24,25-EC)
517, 520, 521

. These ligands bind LXRα and LXRβ similarly 

and within the range of physiological concentrations 
512, 520

. Desmosterol, an intermediate 

in the cholesterol biosynthesis pathway, is also an effective LXR activator
522

 Although 

the binding affinity of desmosterol for LXRs is about one fifth that of the most potent 

oxysterol ligand, 24,25-EC
522

, desmosterol is enriched ~20 fold in foam cells and is the 

dominant LXR ligand in these cells in vivo
523

.  Two non-steroidal synthetic LXR 

agonists, T0901317 and GW3965 are commonly used in experimental studies. T0901317 

activates LXRα and LXRβ with an EC50 of 20nM
524

 and in contrast to GW3965 has 

sustained activity in the liver (Breevoort, unpublished data). T0901317 also activates the 

farnesoid X receptor (FXR) 
525

 and the pregnane X receptor (PXR)
526

.  These two 

receptors influence lipid and glucose metabolism and hepatic lipid accumulation, 
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respectively. Treatment with T0901317 induces a dramatic increase in hepatic 

lipogenesis
527, 528

. Some have speculated that T0901317 activation of FXR and PXR in 

the liver may contribute to this difference, however, in the absence of liver LXRα 

expression, T0901317 does not increase plasma TGs or hepatic cholesterol 

accumulation
529

; therefore, these effects of T0901317 are dependent on LXRα activity in 

the liver.  

Alternative regulation of LXR expression and activity Apart from activation by ligands, 

LXRs can also be regulated by other mechanism. For instance, the Lxrα gene is auto-

regulated in human macrophages 
530

 and its expression can be additionally modified by 

other factors including thyroid hormone and other cytokines
531-533

.  The activity of LXRs 

can also be modulated through post-translational modifications including 

phosphorylation, acetylation, SUMOylation, and O-GlcNACylation
1, 534-540

. The 

phosphorylation of LXRs appears to drive gene- and cell-type specific regulation of 

LXR-agonist mediated gene expression
534-538

. SIRT1 promotes LXR dependent gene 

expression by relieving the repressive acetylation of the receptor
539

; SUMOylation of 

LXRs plays a key role in transrepression
1
 and O-GlcNACylation has been reported as a 

mechanism through which LXRs can act as glucose sensors
540

. 

Identifying the role for LXRs in cholesterol homeostasis. The tissue expression patterns 

of LXRs, the identification of oxysterol ligands, and the characterization of the LXRE in 

the Cyp7a1 promoter suggested that LXRs influence bile acid synthesis. Wildtype mice 

challenged with a 2% cholesterol diet have an increase in CYP7A1 mRNA levels and 

consequently bile acid pool size and fecal bile acid excretion increases
541

. These effects, 

however, were absent in the Lxrα knockout mice and as a consequence these animals 
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accumulate increased hepatic cholesterol
541

. Although Lxrβ is also expressed in the liver, 

it does not seem to compensate for the loss of Lxα; Indeed, the LXRβ knockout mouse 

does not exhibit cholesterol-induced changes in bile acid metabolism
516

.  

Dietary cholesterol-induced up-regulation of CYP7A1 expression varies widely 

among species. Rat and mouse show pronounced up-regulation, however, humans show 

minimal change
542

. There are two sequence differences in the LXRE of the human 

Cyp7a1 promoter that significantly decreases the DNA binding of LXR in vitro
543

.  

Further analysis of gene expression in Lxrα
-/-

Lxrβ
-/-

 cells uncovered diminished 

levels of SREBP-1 and stearoyl-CoA desaturase mRNA
541

 indicating that LXRs play a 

significant role in regulating fatty acid metabolism. Together, these early studies 

implicated a clear role of LXRs in whole body cholesterol homeostasis and through 

additional studies it has become clear that LXR exerts this role through its ability to 

regulate reverse cholesterol transport, inhibit intestinal cholesterol absorption, and 

promote hepatic lipogenesis.  In addition, LXRs indirectly modulate the expression of 

certain genes by either enhancing or repressing the actions of other transcription 

factors
544-547

. Such indirect regulation of additional pathways may also contribute to the 

physiological responses to LXR agonists observed in animal studies.  

LXRs and atherosclerosis 

LXR agonists are atheroprotective LXRs are involved in many steps of the atherogenic 

pathway and by regulating important genes involved in lipid homeostasis and 

inflammation, LXRs have many reported anti-atherogenic properties. LXR agonists have 

unequivocally now been shown to be anti-atherogenic in various animal models of 

atherosclerosis.  Initial studies demonstrated that the synthetic LXR agonist, GW3965 
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inhibited lesion development in both apoE
-/-

 and Ldlr
-/-

 mice
548

.  Additional studies have 

confirmed these initial observations using various LXR agonists and different mouse 

models
529, 549-555

.  Importantly, the beneficial effects of LXR activation is not sex 

specific
548, 554, 555

.  In some studies, the reduction in atherosclerosis following LXR 

agonist treatment was associated with reduced total cholesterol and/or elevated HDL 

cholesterol
548, 549, 552, 554

, each associated with reduced cardiovascular risk in humans
362

.  

Yet, raising HDL-C and/or lowering LDL-C is not required for the athero-protective 

effects of LXR agonists; we and others have observed a reduction of atherosclerosis 

without a change in plasma lipids
529

 In addition, several studies have shown reductions in 

atherosclerosis in the absence of effects on SREBP1c and hepatic lipogenesis whereas 

others report a reduction in atherosclerosis despite increased TG levels
549, 553, 554

. 

Together, these observations suggest that the beneficial effects of LXR agonists are 

independent of systemic lipid metabolism and perhaps act more directly in the vessel 

wall. Indeed, the athero-protective properties of LXR agonists are lost in the absence of 

hematopoietic LXR expression
549

 yet maintained in liver specific Lxrα
-/-

 /Ldlr
-/-

 mice
529

. 

It is important to note as well that  not only have these studies demonstrated that LXR 

agonists attenuate lesion development, but also that LXR agonists can promote the 

modulation of the plaque itself
529, 549

 and stimulate plaque regression
555, 556

.  This is 

relevant to therapeutic development of LXR agonists since patients usually already have 

established lesions before presenting for treatment for cardiovascular disease. 

Which LXR subtype is responsible for the anti-atherogenic effects? Researchers have 

used gene deletion studies in attempts to define the anti-atherogenic activities of the LXR 

subtypes. Deletion of Lxrα or Lxrβ alone has no apparent phenotype in animals on chow 
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diet; however, deletion of both subtypes together lowers serum triglycerides and high-

density lipoprotein cholesterol and increases LDL cholesterol
557

.  In the absence of any 

atherogenic signal, Lxrα
-/-

 β
-/-

 mice have increased aortic foam cell accumulation after 18 

months of normal-chow diet feeding
557

.  The increase in atherosclerosis in the Lxrα
-/-

 β
-/-

 

mice is predominately mediated by LXRα, as the Lxrα
-/- 

apoE
-/- 

mouse accumulated 

increased cholesterol in the liver and had increased atherosclerosis
558

. These findings are 

consistent with earlier reports and add that in the setting of hypercholesterolemia, LXRβ 

is not compensatory
558

.  Yet LXR agonist treatment reduces cholesterol accumulation and 

atherosclerosis in LXRα
-/-

/ apoE and there is no increase in plasma triglycerides 

associated with LXR activation
558

 indicating that LXRα mediates this effect.  Indeed, 

Similar studies in Ldlr
-/-

 mice showed that deletion of LXRα but not LXRβ is associated 

with increased  atherosclerosis
559

, supporting the dominant role for LXRα in providing 

athero-protection. Experiments that selectively rescued LXRα function in bone marrow 

cells or extra-hematopoietic cells suggested that LXRα activity is required in both the 

macrophages as well as another non-hematopoietic site to limit diet-induced CVD
559

.  

Moreover, overexpression of LXRα in Ldlr
-/-

 mice reduces atherosclerosis
560

. Together 

these findings point to LXRα as the subtype responsible for the majority of the LXR 

dependent anti-atherogenic activity.  The potential anti-atherogenic activities of LXR 

agonists and the role of LXRs in atherosclerosis can be found in Tables 1.1 and 1.2, 

respectively.   

LXR and reverse cholesterol transport  

Uptake of oxLDL by macrophages in the vessel wall is a critical initiating step in 

atherosclerosis.  RCT, as described previously, is the primary mechanism by which 
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cholesterol is removed from peripheral cells including lipid loaded foam cells. 

Importantly, Naik et al. pioneered a model to measure RCT in vivo and then 

demonstrated that LXR agonist treatment could increase RCT
561

.  We now know that 

most, if not all, steps of the RCT pathway are governed by LXR (Figure 1.2). First, in 

response to ligand or increasing intracellular cholesterol levels, LXR promotes the 

expression of ABCA1 and ABCG1in macrophages allowing for increased cholesterol 

efflux to acceptor particles
562

(Figure 1.2).  In addition, activators of peroxisome 

proliferator-activated receptor (PPAR)-α and –γ, erythropoietin, and atorvastatin are 

known to stimulate macrophage cholesterol efflux in a LXR-dependent manner
563-566

. In 

addition to influencing cholesterol efflux, LXRs also play a role in inhibiting macrophage 

cholesterol uptake
567, 568

. This effect is mediated by LXR dependent reductions in 

macrophage pinocytotic vesicles
567

 and increases in Idol expression, resulting in 

ubiquitination of LDLR and its subsequent degradation
568

. As described above, important 

roles for macrophage LXRs have been uncovered;   Transplantation of LXRα and LXRβ 

deficient bone marrow into apoE
-/-

 and Ldlr
-/- 

recipient mice strongly increased lesion 

development 
569

.  Moreover, isolated macrophages from Lxra
-/-

 Lxrb
-/-

 mice accumulate 

increased cholesterol in vitro
569

.  Furthermore, overexpression of LXRα in macrophages 

specifically reduces atherosclerosis without altering plasma lipid levels in 

hypercholesterolemic Ldlr
-/- 

mice
560

.  Together, these findings indicate that LXR, and 

particularly LXRα, activity in the macrophage is critical for limiting atherosclerosis.  

Also, LXR agonists are ineffective against lesion development in Ldlr
-/-

 mice with LXR 

deficient bone marrow, suggesting that most if not all of the anti-atherogenic effect are 

derived from activating LXRs in hematopoietic cells
549

.  In addition to mediating 
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cholesterol uptake and efflux, macrophage LXR also represses inflammation
570

, directs 

cell egress
556

, and limits endoplasmic reticulum (ER) stress
571

, activities which may all 

contribute to varying degrees to the anti-atherogenic properties of macrophage LXR.  

LXR regulates cholesterol excretion and absorption The increased cholesterol effluxed 

from macrophages is transported by HDL to the liver where LXR directs its metabolism 

and excretion (Figure 1.2). The importance of LXRα activity in the liver is evident as 

mice lacking liver LXRα expression accumulate hepatic cholesterol when fed a high 

cholesterol diet
529, 572

. In mice, this defective cholesterol clearance has been shown to be 

related to the reduced expression of Cyp7a1
541

. As Cyp7a1 is only minimally regulated 

by LXR in humans
542

, the contribution of this pathway in humans is probably not 

significant.  Perhaps more important in humans is the regulation by LXR of the two half 

transporters ABCG5 and ABCG8 that act as a dimer to facilitate cholesterol transport
573-

575
 (Figure 1.2). ABCG5/G8 are primarily expressed in the liver and in the intestine 

where they promote cholesterol excretion (liver) directly into the bile and limit 

cholesterol absorption (intestine).  In contrast to wild-type animals, LXR agonists fail to 

stimulate biliary cholesterol excretion and reduce cholesterol absorption in ABCG5/G8 

double knockout animals
573

, indicating that these transporters play an important role in 

LXR mediated cholesterol homeostasis. In addition, LXR agonists decrease the 

expression of NPC1L1, a protein critical for intestinal cholesterol absorption, in the 

apical membrane of enterocytes in humans and mice
576

, which is another mechanism 

leading to LXR dependent reductions in cholesterol absorption. 

However, an increase in fecal cholesterol excretion following LXR agonist 

treatment is not entirely dependent on biliary cholesterol excretion. GW3965 treatment, 
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although not increasing biliary cholesterol content raises fecal cholesterol levels in Mdr2
-

/-
 mice, which are unable to secrete cholesterol into bile

577
.  These findings suggest that 

LXR activity in the intestine may provide an alternative pathway for cholesterol 

excretion. This pathway, termed Trans-intestinal cholesterol excretion (TICE), proposes 

that HDL directly transfers cholesterol from peripheral cells to the intestine, where it is 

removed to the gut lumen and excreted into the feces.  

LXR increases HDL-C levels The liver and the intestines are the two major sites of HDL 

biosynthesis. The liver generates lipid-poor ApoA1 and nascent HDL while the intestine 

plays a key role in HDL maturation through ABCA1-dependent lipidation of nascent 

particles
372

.  LXR agonists increase ABCA1 expression in human enterocytes in vitro 

resulting in an increase in apoA-1 mediated cholesterol efflux
578

.  Brunham et al. 

preformed studies with tissue-specific ABCA1 deletions and found that Intestine-specific 

deletion of ABCA1 reduces serum HDL-C by 30% and that LXR agonists raise HDL 

levels in wild-type mice as well as in hepatic-specific ABCA1 deficient animals, but fail 

to do so in intestine-specific ABCA1 knockouts
579, 580

.  In addition, the effect of 

T0901317 on plasma HDL levels is lost in Npc1l1
-/-

 mice that are deficient for intestinal 

cholesterol absorption, indicating that gut cholesterol levels are important for HDL 

formation in response to LXR agonists
581

. Ezetimibe is a potent inhibitor of intestine 

NPC1L1 effectively lowering plasma LDL-C
582

; yet, targeting intestinal cholesterol 

absorption may also have the dual effect of raising HDL levels through an LXR mediated 

pathway. 

LXRs regulate lipid metabolism  
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Schultz et al.
524

 and Repa et al.
583

 simultaneously showed that LXR agonists raise 

hepatic and plasma triglyceride levels in mice and hamsters. While the effect on plasma 

triglycerides was transient, hepatic triglyceride levels persisted and led to liver steatosis 

and dysfunction. In addition, Schultz et al. found that plasma triglycerides were about 4-

fold lower in Lxrα
-/-

 Lxrβ
-/-

 mice compared to wild-type controls.  The LXR agonist 

dependent increase in hepatic and plasma triglycerides observed by Schultz et al. is a 

result of LXR-stimulated lipogenesis in hepatocytes. This effect is mediated by increased 

expression of SREBP-1c, a transcription factor that acts a master regulator of fatty acid 

synthesis. SREBP-1c binds to sterol response elements (SRE) within the promoter region 

of target genes encoding lipogenic enzymes 
583

. There are two LXREs within the SREBP-

1c gene promoter, and LXR as well as RXR agonists increase its transcriptional activity 

584
. In addition, LXR directly regulates the expression of several lipogenic enzymes 

including acetyl-CoA carboxylase (ACC)
585

, fatty acid synthase (FAS)
586

, and stearoyl-

CoA desaturase-1 (SCD-1)
587

. LXR agonists increase SREBP-1c, ACC, FAS, and SCD-1 

gene expression in the liver of wild-type and LXRβ
-/-

 mice, but not in Lxrα
-/- 

animals 
524

.  

In addition, basal levels of these lipogenic genes are reduced in Lxrα
-/- 

mice. Together, 

these findings indicate that LXRα is the major isoform responsible for the lipogenic 

effect of LXR agonists.  Apart from the direct (SREBP-1c independent) and indirect 

(SREBP-1c dependent) effects of LXR agonists on lipogenic genes, other mechanisms 

for LXR-stimulated lipogenesis have been described. For instance, LXREs have been 

found in the promoter region of the carbohydrate response element binding protein 

(ChREBP) gene
588

. ChREBP is a glucose-sensitive transcription factor and upon sensing 

increased glucoses levels it will stimulate the expression of lipogenic genes. LXR 
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agonists stimulate the expression of ChREBP in the liver in both in vitro and in vivo 

models, and the agonist-dependent upregulation of FAS, ACC, and SCD-1 are blocked in 

ChREBP deficient mice
588

. 

The physiological result of increased hepatic LXRα activity is the production of 

triglyceride-rich, large VLDL particles 
527

. Although the number of VLDL particles does 

not change, their diameter increases due to the greater number of triglyceride molecules 

per particle
589

. LXR agonist treated animals show only a transient rise in plasma 

triglycerides because VLDL metabolism is also increased, presumably through 

upregulation of lipoprotein lipase, which is a direct LXR target gene
590

. 

LXRs and lipoprotein particles 

LXR regulates apolipoproteins Apoliprotein E (apoE) is an alternative extracellular 

cholesterol acceptor found in many classes of lipoproteins and is involved in LXR-

mediated cholesterol efflux. ApoE was the found to be under the regulation of LXR both 

in vitro and in vivo
591

. In addition to apoE, LXR agonists also stimulate the expression of 

other apolipoproteins in the same gene cluster as apoE including apoC-I, apoC-II, and 

apoC-IV. The functions of these proteins are still being worked out, however, they are 

known to influence lipoprotein metabolism
463

 and can act as cholesterol acceptors
592

. 

In humans, ApoA-IV is synthesized exclusively in the intestine; whereas in 

rodents ApoA-IV is generated in the intestines and, to a lesser extent, in the liver
593

. 

ApoA-IV is found mainly associated with chylomicrons, in lower amount in HDL, and as 

a free plasma protein. In HDL, ApoA-IV stimulates LCAT, thereby facilitating HDL 

remodeling. Free plasma ApoA-IV facilitates cholesterol efflux from cells and has anti-

oxidant properties. Transgenic overexpression of apoA-IV reduces atherosclerosis in 
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mice, and plasma apoA-IV levels are inversely correlated with atherosclerosis in humans. 

The ApoA-IV gene contains LXREs; however, LXR agonists stimulate its expression 

only in hepatocytes and not in the intestine. In vivo, T0901317 increases HDL-associated 

apoA-IV, presumably of hepatic origin since T0901317 has no effect on intestine-derived 

chylomicron apoA-IV
594

.  

LXRs regulate plasma lipoprotein remodeling enzymes LXR agonists stimulate the 

expression of CETP and PLTP, and both enzymes play important roles in lipoprotein 

remodeling and metabolism. CETP is synthesized in the liver and circulates in plasma as 

a HDL-associated protein. CETP exchanges cholesterol esters from HDL to apoB-

containing lipoproteins in exchange for triglycerides. As discussed in the previous 

section, CETP remodeling may facilitate cholesterol uptake by the liver.  LXR agonists 

increase CETP mRNA levels in the liver as well as plasma protein concentration
595

. The 

lipid transfer activity of CETP and the fact that it is under LXR regulation is a likely 

explanation for why LXR agonists dramatically increase plasma HDL-C in animals 

lacking CETP (e.g. mice) but have little to no effect on HDL in CETP expressing species 

(e.g. humans)
596

. In fact, LXR agonists have actually been shown to raise LDL-C levels 

in two CETP positive Syrian hamsters and cynomolgus monkeys
597

 as well as in 

transgenic mice expressing human CETP
598

.  

PLTP mediates the transport of phospholipids from apoB-containing lipoproteins 

to HDL or lipid-poor apoA-1 as well as the transfer of phospholipids between HDL 

subfractions. The net effect of PLTP on HDL is the generation of lipid-poor small HDL; 

whether this is beneficial for cholesterol transport and atherosclerosis is debatable
599

. 

Nevertheless, T0901317 treatment increases PLTP mRNA in liver, adipose and intestine 
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resulting in greater plasma PLTP activity which is accompanied by increased HDL 

phospholipid content
600

. PLTP also contributes to VLDL assembly in hepatocytes
601

, 

therefore, the stimulation of PLTP by LXR may contribute to LXR agonist dependent 

increases in VLDL secretion. 

LXRs and Inflammation 

In addition to their key role in lipid metabolism, LXRs also influence the 

inflammatory response.  Indeed, the engulfment of pathogens or phagocytized cells 

increases intracellular cholesterol levels, and given the precedence of LXRs for 

maintaining cholesterol balance, it’s not surprising that LXRs limit inflammation. 

Furthermore, there’s increasing evidence that infections block LXR signaling pathways. 

Work by Castrillo et al
602

. demonstrated that activation of toll-like receptor (TLR)-3 and -

4 by microbial ligands block the induction of LXR target genes including ABCA1 in 

cultured macrophages and in aortic tissue in vivo, thereby repressing cholesterol efflux. 

Crosstalk between LXR and TLR signaling is mediated by IRF3, a specific effector of 

TLR3/4 that inhibits the transcriptional activity of LXR. The association of bacterial 

infections and atherosclerosis, while controversial have long been recognized 
140

, The 

findings by Castrillo et al. reveal a mechanism whereby pathogens may modulate 

macrophage cholesterol metabolism and atherosclerosis.  Indeed, C. pneumoniae-induced 

atherosclerosis, which can be reduced by TLR2,TLR4, or MyD88 deficiency, is 

accelerated in apoE
-/-

 /Lxrα
-/-

 mice
143

 indicating that LXRs play an important role in 

limiting the manipulations of macrophage cholesterol balance by infectious agents. 

LXR agonists were first shown to attenuate inflammation in macrophages stimulated with 

LPS or bacteria by blocking the increased expression of iNOS, COX2 and iL-6.  These 
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results were also observed in the in the aortas of apoE
-/-

 mice
603

. Since then, LXR 

activation has been found to reduce inflammatory gene expression and the inflammatory 

response in many cell types, including macrophages, lymphocytes, microglia, astrocytes 

and dendritic cells; as well as in mouse models of inflammatory diseases such as contact 

dermatitis, Alzheimer’s, lupus, Mycobacteria tuberculosis infection, and autoimmune 

encephalomyelitis
604-609

.  Several mechanisms have been proposed to account for the anti-

inflammatory activity associated with LXR activation.  The anti-inflammatory activity of 

LXRs may be through direct activation of anti-inflammatory target genes possessing 

LXREs (i.e. arginase II
610

) and/or indirect repression of other transcription factors that 

promote inflammation (i.e NFκB). The ability of LXR to limit the activity of other 

transcription factors is termed transrepression and this property is shared among several 

transcription factors, including PPARγ; where it has been perhaps more widely studied
544-

546
. LXR transrepression was a model proposed a few years ago to account for the 

majority of the anti-inflammatory activity of LXR agonists. However, the mechanism(s) 

by which LXRs exert their anti-inflammatory effect is controversial. Recent data 

published by the same lab, as well as experiments preformed in our lab contradict the 

transrepression mechanism for LXR agonist-dependent transrepression. Both models are 

presented below.   

 Transrepression by LXRs has been most widely studied in mouse macrophages
1, 

611, 612
 where LXR agonists have been shown to block inflammatory pathways activated 

by lipopolysaccharide (LPS), interleukin (IL)-1b, tumor necrosis factor (TNF)α or 

interferon (INF)-γ.  Ligand-dependent conjugation of SUMO2/3 to LXR, which is 

dependent on histone deacetylase 4 (HDAC4) SUMO E3 ubiquitin ligase activity, targets 
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the receptor to the promoters of a subset of LPS-inducible genes (Figure 1.3). Docking of 

SUMOylated LXR inhibits the release of the nuclear receptor corepressor (NCoR) 

complex upon LPS stimulation (i.e. derepression), thereby maintaining gene repression. 

Venteclef et al
613

 have further investigated the mechanisms underlying the anti-

inflammatory properties of LXRs in the hepatic acute phase response (APR). LXR 

agonists were found to trigger SUMOylation-dependent recruitment of the nuclear 

receptor to hepatic APR promoters, including C-reactive protein, and prevent the 

clearance of the NCoR corepressor complex upon cytokine stimulation (IL-1β and IL-6).  

The use of fetal liver-derived macrophages from genetic knockout mice showed 

the NCoR and another corepressor complex, silencing mediator of retinoic acid and 

thyroid hormone receptor (SMRT), are required for nearly all the transrepression function 

of LXRs
612

. Moreover, the TLR4-induced turnover of NCoR requires the coronin 2A 

(CORO2A) component of the corepressor complex, which interacts with oligomeric 

nuclear actin
611

. SUMOylated LXRs bind to a conserved SUMO2/3-interaction motif in 

CORO2A and prevents actin recruitment
611

. Pro-inflammatory stimuli that induce 

CAMKIIy-mediated phosphorylation of LXRs inactivate this transrepression pathway by 

promoting the de-SUMOylation of LXRs, thereby releasing LXRs from CORO2A
611

.  

Noting the requirement for NCoR in mediating the trans-repressing activity of LXRs, 

presumably the deletion of NCoR from the macrophage should increase inflammation.  

Instead, Glass and colleagues
614

 found that there was a paradoxical anti-inflammatory 

phenotype in the macrophage-specific NCoR deficient mouse. This effect was attributed 

to the derepession of LXRs that results in the absence of NCoR. The release of basal 

LXR repressing activity increases the expression of genes that direct the biosynthesis of 
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palmitoleic acid and ω3-fatty acids. Increased ω3 fatty acid levels primarily inhibit NFκB 

dependent inflammatory responses by uncoupling NFκB binding and enhancer/promoter 

histone acetylation (Figure 1.5). While it is well known that LXR agonists have strong 

anti-inflammatory effects both in vitro and in vivo the mechanism(s) responsible for these 

effects are still uncertain. Whether LXRs exert anti-inflammatory effects via SUMO-

dependent transrepression, through the increased biosynthesis of fatty acids, or by 

another yet to be identified mechanism remains to be determined.  
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Athero-protective effects of LXR agonists References 

Blocks the development of atherosclerosis in animal models of 

cardiovascular disease 

529, 548-555, 615-

617
 

Promote regression of existing atherosclerotic plaques 
555, 556

 

Promote reverse cholesterol transport in vivo 
561

 

Reduce inflammation in vivo 
603, 604, 606, 608, 

618, 619
 

Inhibit SMC proliferation in vitro and in vivo 
620, 621

 

Stimulate cholesterol efflux in macrophages and SMC 
621, 622

 

Inhibit platelet aggregation in vitro and reduce thrombi stability in 

vivo 

552
 

Promote LDL receptor degradation through induction of IDOL 
568, 623

 

Block expression of cytokines induced by pro-inflammatory 

mediators in macrophages, endothelial cells, and SMCs 

603, 620, 621, 624
 

Inhibit LPS-stimulated surface expression of ICAM-1, VCAM-1, 

and E-Selectin on endothelial cell 

1, 604, 625
 

Inhibit LPS-induced expression of iNOS, COX-2, osteopontin and 

MCP-1 in macrophages 

1, 603, 625
 

 

Table 1.1 Atheroprotective activities of LXR agonists. 
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treatment Animal model Effect on 

lesion area 

Effect on lesion 

composition 

Effect on 

plasma lipids 

T0901317
549, 

552, 626
 

Ldlr
-/- 

WD ↓ lesion;  

↑ regression 

↓macrophages. 

↑ABCA1 mRNA,  

↑collagen 

↑ TG, VLDL-C 

↑ HDL-C 

T0901317
627

 apoE
-/-

 HFHC ↓ lesion 

↑ regression 

↑ABCA1, NPC1 

mRNA 

↑ TG, VLDL-C 

↑ HDL-C 

T0901317
555

 apoE*3Leiden, WD ↓ lesion ↓ E-selectin, 

ICAM-1, CD44 

 

T0901317
555

 apoE*3Leiden, RD ↑ regression ↑ABCA1, caspase-

3, BAX, CCR7, 

ABCG1 

 

T0901317
628

 Lxrα
-/-

 /Ldlr
-/ -

,
 
WD No effect   

T0901317
628

 Lxrβ
-/-

 /Ldlr
-/ -

,
 
WD ↓ lesion   

GW3965
548

 Ldlr
-/- 

WD ↓ lesion  ↓ TC 

GW3965
548

 apoE
-/-

 chow ↓ lesion ↑ ABCA1 ↑ TG, ↓ VLDL-

C 

GW3965
558

 Lxrα
-/-

 /apoE
-/-

, WD ↓ lesion  No change in 

plasma TGs 

 Lxrα
-/-

 /Ldlr
-/ -

,
 
WD

628
 ↑ lesion   

 Lxrβ
-/-

 /Ldlr
-/ -

,
 
WD

628
 No effect   

Lxrα
-/-

 /Ldlr
-/ -

 

BMT
628

 

Ldlr
-/- 

WD ↑ lesion   

Lxrα
+/+

 /Ldlr
-/- 

BMT
628

 

Lxrα
-/-

 /Ldlr
-/- 

WD ↓ lesion   

Lxrα
-/-

 β
-/- 

BMT
569

 

Ldlr
-/- 

 or apoE
-/-

 ↑ lesion  ↑ cholesterol 

accumulation in 

macrophages 

No change  

Lxrα
-/-

 β
-/- 

BMT; 

T0901317
549

 

Ldlr
-/- 

WD ↑ lesion 

(vehicle) 

No effect of 

T0901317  

  

Macrophage 

LXRα Tg
560

 

Ldlr
-/- 

, SSD ↓ lesion ↑ efflux and ↓iNOS 

production in 

macrophages 

No change 

 

Table 1.2 LXR activity and atherosclerosis in mouse models BMT, bone marrow 

transfer; WD, western diet; RD, regressive cholesterol-depleted diet; SSD, semi-synthetic 

diet, 0.02% cholesterol; TC, total cholesterol; TG, triglyceride; Tg, transgenic; HFHC, 

high fat, high cholesterol 
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Figure 1.1 cholesterol biosynthesis pathway. See text for details 
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Figure 1.2 Progression of Atherosclerosis 

© Elsevier. Kumar et al: Robbins Basic Pathology 8e 
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Figure 1.2 Progression of Atherosclerosis Chronic endothelial cell injury leads to 

increased permeability of the endothelium and leukocyte adhesion and entry. Oxidation 

of lipoproteins accumulated in the arterial intima also promotes leukocyte adhesion and 

entry. Migration of monocytes into the arterial intima is followed by differentiation into 

macrophages which then engulf ox-LDL and ultimately progress into foam cells as the 

engulfment of lipids becomes excessive. Necrosis of foam cells results in release of 

extracellular lipids. Factors released from platelets, macrophages and endothelial cells in 

the forming lesion induce SMC recruitment from the media. Migrating SMCs proliferate 

and there is an increased production of ECM and collagen in an attempt to stabilize the 

atherosclerotic lesion. The plaque can then calcify, occlude, break off or hemorrhage.  

LDL, low-density lipoprotein; SMC, smooth muscle cell; ECM, extracellular matrix; IL-

1, interleukin-1; MCP-1, monocyte chemoattractant protein-1; HDL, high-density 

lipoprotein 
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Figure 1.3 HDL formation and degradation 

Adapted from treatments for dyslipidemia http://what-when-how.com 
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Figure 1.3 HDL formation and degradation. HDL begins as an ApoA1 phospholipid 

complex secreted by the liver and intestine. Unesterified cholesterol and phospholipids 

are added to nascent HDL via ABCA1 and PLTP to begin the formation of the smaller 

HDL3 particle. LCAT transfers a free fatty acid from HDL-associated phospholipids to 

unesterified cholesterol forming cholesteryl esters, which migrate to the HDL core. This 

process results in larger, more buoyant HDL3 particles and then progress to even larger 

HDL2 particles. CETP transfers cholesteryl esters from HDL to ApoB-containing 

lipoproteins in exchange for triglycerides, resulting in smaller HDL particles. Hepatic 

lipase hydrolyzes the phospholipid  and triglyceride in the HDL2 particle, promoting the 

decrease in size and density. Recycling of apoA1 causes the process to repeat itself. The 

role of ApoAII in this process in humans is not clear. ABCA1-ATP-binding cassette 

transporter A1; CETP – cholesteryl ester transfer protein; LCAT – lecithin-cholesterol 

acyltransferase; LPL – lipoprotein lipase; PL – phospholipid; PLTP – phospholipid 

transfer protein; SR-B1 – scavenger receptor B1; UC-unesterified cholesterol 
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Figure 1.4 HDL metabolism and reverse cholesterol transport 

© The McGraw-Hill Companies, Inc. Harrison’s Principles of Internal Medicine, 17e 
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Figure 1.4 HDL metabolism and reverse cholesterol transport. The liver and intestine 

produce nascent HDLs. Free cholesterol is acquired from macrophages and other 

peripheral cells and esterified by LCAT, forming mature HDLs. HDL cholesterol can be 

selectively taken up by the liver by SR-B1. Alternatively, HDL cholesteryl ester can be 

transferred to apoB-containing lipoprotein particles (VLDL, LDL and chylomicrons) in 

exchange for triglycerides. ApoB-containing lipoproteins can be taken up by the liver via 

LDLR and other lipoprotein receptors.  LCAT, lecithin-cholesterol acyltransferase; 

CETP, cholesteryl ester transfer protein; VLDL, very-low density lipoprotein; IDL, 

intermediate-density lipoprotein; LDL, low-density lipoprotein; HDL, high-density 

lipoprotein; LDLR, low-density lipoprotein receptor; TG, triglyceride  
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Figure 1.5 LXR regulated reverse cholesterol transport. See text for details. 
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Figure 1.3 SUMO-dependent transrepression by LXR agonists. LXR agonist binding 

induces a conformational change in LXR that alters the specific configurations of the 

lysine residues that serve as SUMO acceptor sites. Upon conjugation with SUMO2/3 by 

HDAC4, LXRs dock with the NCoR complex positioned on LPS-responsive genes.  

Signal-dependent (LPS, TNFα, IL-1b, etc) clearance of NCoR from target promoters 

involves the activation of the ubiquitin E3 ligase activities of the Tbl1 and TblR1 proteins 

that are core components of the NcoR complex, leading to the recruitment of the 

Ubc5/19S proteasome and the subsequent ubiquitylation and dismissal of the NCoR 

complex. SUMOylated LXR prevents NCoR dismissal following a pro-inflammatory 

stimulus.  
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Graphical abstract from Li et al.
614

 

 

  

Figure 1.5  NCoR Repression of LXRs Restricts Macrophage Biosynthesis of Insulin-Sensitizing 

Omega 3 Fatty Acids 
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Chapter 2: Macrophage Independent Regulation of Reverse Cholesterol Transport 

by Liver X Receptors 

 

 

The work presented in this chapter is my manuscript that was originally submitted 

for review to the Journal of Arteriosclerosis, Thrombosis and Vascular Biology in 

February, 2014. We have addressed the reviewers’ comments and a revised version, 

which is presented herein, was re-submitted for review in April 2014. This work was 

greatly assisted by Jerry Angdisen, who provided valuable help with the in vivo RCT 

experiments. Additional data that was not submitted with the revised manuscript has been 

included in this version. In addition, discussion of certain results that were not included 

in the re-submitted document is emphasized in italics.  

 

2.1 ABSTRACT AND SIGNIFICANCE 

ABSTRACT 

Objective – The ability of high density lipoprotein (HDL) particles to accept cholesterol 

from peripheral cells such as lipid-laden macrophages and to transport cholesterol to the 

liver for catabolism and excretion in a process termed reverse cholesterol transport (RCT) 

is believed to underlie the beneficial cardiovascular effects of elevated HDL. The liver X 

receptors (LXRα and LXRβ) regulate RCT by controlling the efflux of cholesterol from 

macrophages to HDL and the excretion, catabolism and absorption of cholesterol in the 

liver and intestine. Importantly, treatment with LXR agonists increases RCT and 

decreases atherosclerosis in animal models. Nevertheless, LXRs are expressed in multiple 

tissues involved in RCT (macrophage, liver, and intestine) and their tissue specific 

contributions to RCT are still not well defined. 
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Approach and Results – Utilizing tissue-specific LXR deletions together with in vitro 

and in vivo assays of cholesterol efflux we demonstrate that macrophage LXR activity is 

neither necessary nor sufficient for LXR agonist stimulated RCT. In contrast the ability 

of LXR agonists to increase HDL mass and HDL function primarily acting in the 

intestine appears to underlie the ability of LXR agonists to stimulate RCT in vivo.   

Conclusions – We demonstrate that activation of LXR in macrophages makes little or no 

contribution to LXR agonist-stimulated RCT. Unexpectedly our studies suggest that the 

ability of macrophages to efflux cholesterol to HDL in vivo is not regulated by 

macrophage activity but is primarily determined by the quantity and functional activity of 

HDL.   

SIGNIFICANCE 

The liver X receptors, LXRα and LXR, are important regulators of cholesterol 

transport. Treatment with LXR agonists promotes the efflux of cholesterol from 

macrophages and the excretion of cholesterol from the liver resulting in a net movement 

of cholesterol from the periphery out of the body. Utilizing tissue-specific LXR deletions 

we demonstrate that macrophage LXR activity is neither necessary nor sufficient for 

LXR agonist stimulated RCT. In contrast the ability of LXR agonists to increase HDL 

mass and HDL function primarily acting in the intestine appears to underlie the ability of 

LXR agonists to stimulate RCT in vivo.  Our studies suggest that the ability of 

macrophages to efflux cholesterol to HDL in vivo is not regulated in a cell autonomous 

fashion but is primarily determined by the quantity and functional activity of HDL.  
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2.2 INTRODUCTION 

Cardiovascular disease (CVD) is a leading cause of death globally and it is well 

established that elevated levels of cholesterol in the blood is a major contributor to 

disease development
629

. Excess plasma cholesterol accumulates in macrophages lodged 

in blood vessel walls which along with an associated inflammatory response initiate the 

formation of atherosclerotic lesions
257

.  Statin therapy is highly effective for lowering 

disease-causing low-density lipoprotein (LDL) cholesterol thereby reducing morbidity 

and mortality associated with CVD
630

.  Nevertheless, the residual risk for major cardiac 

events remains high for patients receiving LDL lowering therapies prompting the search 

for complementary therapeutic approaches
631

.  Epidemiological studies have 

demonstrated that levels of high density lipoprotein particle (HDL) cholesterol are 

inversely associated with CVD suggesting the potential therapeutic benefit of raising 

HDL
632

.  Recent clinical trials with cholesteryl ester transfer protein (CETP) inhibitors 

and niacin, however, have failed to demonstrate clinical benefits of increasing HDL 

cholesterol
428, 633

. The clinical trial results have led to the suggestion that HDL 

functionality, rather than the absolute mass of HDL cholesterol may be a more accurate 

indicator for CVD risk
366, 412

. The ability of HDL to promote cholesterol efflux from 

macrophage foam cells within atherosclerotic lesions was one of its earliest recognized 

functions
373, 634

.  Importantly, cholesterol efflux from foam cells has been shown to 

increase macrophage egression and to reduce lesion burden in animal models of 

cardiovascular disease
380, 635, 636

.  Measuring the dynamic rate of macrophage cholesterol 

efflux, therefore, may be a better predictor of the anti-atherogenic effects of novel HDL-

targeted therapies
371

. 
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The movement of cholesterol from peripheral cells such as macrophages to HDL 

constitutes the first step in a process termed reverse cholesterol transport (RCT).  HDL-

derived cholesterol is then trafficked to the liver where it is catabolized or excreted to the 

bile
375, 637

. Recent studies have also described hepatic-independent pathways for 

cholesterol excretion
391

.  Studies in animal models indicate that measurements of RCT 

can strongly predict the effect of genetic and pharmacological manipulations on 

atherosclerosis
638

. Similarly, in humans an inverse relationship has been uncovered 

between the ability of patient sera to accept cholesterol from macrophages in vitro and 

measurements of carotid intima media thickness with cholesterol acceptor capacity being 

a strong predictor of coronary disease status
371

.  The utility of in vitro measurements of 

plasma cholesterol acceptor activity for predicting CVD as well as the proteins/particles 

in human sera responsible for accepting cholesterol, however, remain controversial
381, 639

.   

Integral to the regulation of RCT are the liver X receptors, LXRα (NR1H3) and 

LXRβ (NR1H2), which are members of the nuclear hormone receptor superfamily of 

ligand-activated transcription factors. Studies using genetic knockouts and synthetic 

agonists have defined important roles for LXRs in the control of cholesterol homeostasis 

and fatty acid metabolism
524, 583, 640

.  Treatment of animals with LXR agonists results in 

changes in gene expression promoting the efflux of cholesterol from peripheral cells such 

as macrophages, the excretion of cholesterol from the liver, and the inhibition of 

cholesterol absorption in the intestine
640

.  Importantly, the endogenous ligands for LXRs 

are oxidized forms of cholesterol (oxysterols) that increase coordinately with intracellular 

cholesterol levels, thus allowing these receptors to act as sensors to maintain appropriate 

cholesterol levels throughout the body
517, 641

. At the molecular level, LXRs control 
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macrophage cholesterol efflux by regulating expression of genes encoding the ATP-

binding cassette (ABC) transporters ABCA1 and ABCG1 as well the gene encoding 

apolipoprotein E (APOE)
640

.  Up-regulation of ABCA1 and ABCG1 results in increased 

transfer of intracellular cholesterol to HDL particles, and genome-wide association 

studies have linked both transporters to HDL cholesterol levels in humans
642, 643

.  

Mutations in the human ABCA1 gene results in a genetic syndrome referred to as Tangier 

disease. Tangier disease patients characteristically present with little or no HDL, massive 

accumulation of cholesterol in lymph tissues and are at increased risk for 

atherosclerosis
638, 644, 645

. LXR also regulates expression of ABCG5 and ABCG8, two 

half-transporters that dimerize to form an additional cholesterol transporter
575, 646

.  

Expression of ABCG5/ABCG8 is largely restricted to the liver and intestine, where these 

proteins function to promote the excretion of cholesterol (liver) and limit cholesterol 

absorption (intestine)
34

. Genetic deletion of ABCG5/G8 or deletion of LXR in the liver 

largely blocks the ability of LXR agonists to stimulate fecal excretion of cholesterol
529, 

573
.  Thus activation of LXRs promotes a net movement of cholesterol from the periphery 

out of the body. Not surprisingly, LXR agonists decrease atherosclerosis in animal 

models of CVD
529, 548, 549, 628

. 

Treatment with LXR agonists also increases plasma HDL cholesterol
529, 647

 

suggesting LXRs can regulate RCT in both a cell autonomous fashion, by controlling the 

transporters required to mobilize intracellular cholesterol, as well as in a non-autonomous 

fashion by regulating amount of cholesterol acceptor in plasma. Interestingly, the ability 

of LXR agonists to increase HDL cholesterol levels is largely mediated by the induction 

of ABCA1 expression in the intestine
529, 579

 . Not unexpected then is the observation that 
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an intestinal-specific LXR agonist increases RCT
648

.  Although LXR agonists appear to 

act in macrophages, the liver and the intestines to stimulate RCT, studies utilizing genetic 

knockouts indicate that macrophages are the major site of LXR agonist-dependent anti-

atherogenic activity
549, 560, 569

.  The atherosclerosis studies therefore led us to question the 

tissue-specific contributions of LXRs to the regulation of RCT. Combining in vivo 

measurements with tissue-selective knockouts we show that the ability of LXRs to 

regulate HDL quantity and activity is a major driver of RCT. In contrast, macrophage 

LXR activity is neither necessary nor sufficient. Furthermore, our studies suggest that the 

ability of macrophages to efflux cholesterol to HDL in vivo is primarily determined by 

the quantity and functional activity of HDL in the surrounding environment.   
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2.3 RESULTS 

Macrophage LXR is not necessary for LXR agonist-dependent RCT. 

LXR activity in the liver and the macrophage is thought to contribute to RCT
649

 

but the relative contribution of LXR at these sites has not been well defined. To 

determine the contribution  of macrophage LXR to RCT, we injected bone marrow 

derived macrophages (BMM) that had been loaded with 
3
H-cholesterol in vitro into the 

peritoneal space of mice and followed the movement of macrophage-derived cholesterol 

to the plasma and ultimately to the feces as described by Naik et al.
561

. For these studies 

we used C57BL/6J (LXR
+
) and Lxrα

-/-
/Lxrβ

-/- 
(DKO) mice in the C57BL/6J background 

to generate three groups of animals: LXR
+
 macrophage introduced into LXR

+
 mice 

(referred to as Mac
LXR+

 /LXR+), LXR
+
 macrophage introduced into DKO

 
 mice (referred 

to as Mac
LXR+ 

/DKO) and  DKO
 
 macrophages into LXR

+
 mice (referred to as Mac

DKO
 

/LXR+). For the RCT experiments age-matched male mice were treated with vehicle or 

the LXR agonist T0901317 (10mpk) daily by oral gavage for 3 days prior to injection. 

Following injection of radiolabeled macrophage, mice continued to be treated with 

vehicle or agonist for the duration of the experiment (for a total of 5 doses) and the 

appearance of 
3
H sterol was quantitated in the plasma at 6, 24 and 48 hours after 

injection. At completion of the experiment (48 hours) the amount of 
3
H-sterol in the feces 

and liver was determined. In preliminary experiments we determined that LXR activation 

(e.g. rise in plasma triglycerides) can be observed following 3 doses of T0901317 at 

10mpk and that the plasma concentrations of T0901317 are similar between C57BL/6J 

and DKO mice and at least 10 times above the reported EC50 (data not shown).    
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As expected, agonist treatment of Mac
LXR+

 /LXR+ mice stimulates the appearance 

of macrophage-derived cholesterol in plasma over the time course and in the feces at 48 

hours (Figure 2.1A-B). When LXR is present only in macrophages (Mac
LXR+ 

/DKO), 

however, the amount of macrophage derived cholesterol in the plasma and feces is 

significantly decreased (Figure 2.1A-B). Similarly, the ability of T0901317 to increase 

macrophage cholesterol efflux in Mac
LXR+ 

/DKO mice is decreased by 70% (Figure 2.1A) 

and agonist stimulated fecal excretion is completely blocked  in these animals(Figure 

2.1B).  Quantification of ABCA1 mRNA levels in macrophage re-extracted from the 

peritoneal space at completion of the experiment demonstrates that placing LXR
+
 

macrophages into DKO
 
mice does not impair macrophage LXR transcriptional activity 

(Figure 2.1C). In contrast to the decreased RCT observed in the Mac
LXR+ 

/DKO mice, 

selective deletion of LXR in macrophages (Mac
DKO

 /LXR+) has little or no effect on 

either the accumulation of 
3
H-cholesterol in the plasma  or the feces (Figure 2.1A-B). 

Little or no differences among the groups are seen when hepatic levels of 
3
H-sterols were 

examined (Figure 2.2). To further address the contribution of macrophage LXR activity 

to the ability of LXR agonists to increase the accumulation of macrophage-derived 

cholesterol in the plasma we examined 
3
H-cholesterol levels in vehicle and T0901317 

treated Mac
LXR+

 /LXR+ and Mac
DKO

 /LXR+ mice at 30, 60 and 90 minutes after 

introducing radiolabeled macrophage into the peritoneal space. As shown in Figure 2.1D, 

pretreatment of mice with T0901317 significantly increases 
3
H-cholesterol in the plasma 

by 60 minutes. Even at these short time points, however, the LXR genotype has no effect 

on the response to agonist treatment. The observation that LXR macrophage activity does 

not appear to play a role in the accumulation of 
3
H-cholesterol in the plasma in vivo is 
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consistent with studies in vitro demonstrating that ABCA1 expression and cholesterol 

efflux is actually slightly increased in DKO
 
macrophages (Figure 2.3A and B). In the 

absence of agonists LXRs repress transcription by interacting with corepressors and this 

activity is lost upon genetic deletion
650

. A similar up-regulation of ABCA1 expression is 

observed in DKO macrophages recovered from the peritoneal space of LXR+ mice after 

in vivo RCT experiments (Figure 2.1C). 

HDL levels and adipose activity drive LXR-agonist-dependent RCT. 

LXR agonists are known to increase HDL cholesterol predominately by 

increasing expression of ABCA1 in the intestine
579

. Consistent with an LXR agonist-

dependent increase in HDL cholesterol (Table 2.1), plasma from T0901317 treated 

C57BL/6J (LXR+) mice has increased cholesterol acceptor activity in vitro when 
3
H-

cholesterol loaded RAW264.7 cells are used as donor macrophages. The effect of 

agonist, however, is lost when plasma from DKO animals is used (Figure 2.4A). To 

further address the contribution of HDL to macrophage efflux, a similar series of in vitro 

efflux experiments were carried out using FPLC purified HDL particles (Figure 2.4B).  

For experiments with FPLC purified HDL, peak HDL fractions were pooled (Figure 2.5) 

and normalized by the amount of apolipoprotein AI (APOAI) as determined by Western 

blot analysis (Figure 2.6). Western blot analysis of FPLC purified HDL was consistent 

with APOA1 levels quantified in pooled plasma samples as well (data not shown). Using 

APOA1 as a relative measure for particle number, HDL from agonist treated C57BL/6J 

accept greater amounts of macrophage cholesterol compared to DKO mice (Figure 2.4B). 

Together these experiments show that LXR agonist treatment increases both HDL mass 

and HDL function.  
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Over the course of in vivo RCT experiments it is likely that macrophage-derived 

3
H-cholsterol incorporates into cells and tissues throughout the body. Thus along with 

increasing the cholesterol acceptor activity of HDL, LXR agonists may also increase the 

amount of cholesterol in plasma by promoting efflux from other tissues via 

transcriptional up-regulation of ABCA1, ABCG1 and APOE. To address the possible 

contributions of different tissues to LXR agonist-stimulated RCT, radiolabeled LXR+ 

macrophages were introduced into vehicle and T0901317 treated LXR+ mice (Mac
LXR+

 

/LXR+) and multiple tissues were harvested at 48 hours post injection to determine if 

agonist treatment produces a net loss in tissue-associated 
3
H-sterols. As shown in Figure 

2.4C, a significant agonist-dependent decrease is observed in white adipose suggesting 

that fat tissue may make an important contribution to LXR-stimulated accumulation of 

cholesterol in the plasma and feces. T0901317-dependent changes in 
3
H-sterol levels 

were not observed in other tissues (Figure 2.4C). Importantly, the decrease in adipose 
3
H-

sterol levels could result from increased LXR transcriptional activity in fat cells, the 

improved acceptor activity of HDL or both.   An additional question that has arisen from 

this particular in vivo RCT assay is how much 3H-labeled cholesterol leaves the injected 

macrophages and how is the radiolabeled cholesterol distributed throughout the body. 

Our studies indicate that in fact at 48 hours the majority of the 
3
H cholesterol leaves the 

injected macrophages and is redistributed among various cholesterol stores in the body. 

The amount of radioactivity remaining in re-extracted macrophages was ~4% of CPM 

injected (data not shown) and extrapolating by the % tissue mass/body mass 

approximately 30% of the radiolabeled 3H was recovered in the tissues that were 
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sampled (muscle (8%,), liver (6%), adipose (~6%), testes (~1%) and feces (7%)) (Figure 

2.4C). 

Diet-dependent regulation of Liver LXR activity and RCT. 

We have previously determined under severe hyperlipidemic conditions (Ldlr
-/-

 

mice on Western diet) that liver-specific deletion of LXR impairs the accumulation of 

macrophage-derived cholesterol in both the plasma and in the feces
529

.  To further 

investigate the contribution of liver LXR activity to RCT, liver-specific knockout LXR 

(LivKO) mice
529

 and floxed littermate controls (carrying the floxed allele without 

albumin CRE) were placed on a standard chow diet with or without 0.2% cholesterol. 

LXR is the major LXR subtype expressed in the liver
541

 and the ability of T0901317 to 

increase plasma triglycerides and to induce expression of hepatic ABCG5, ABCG8 and 

ABCA1 is significantly impaired in LivKO mice
529

 (Table 2.1 and Figure 2.7).  After 4 

weeks on diet, plasma total cholesterol increases 30-50% in both LivKO and littermate 

control groups fed the 0.2% cholesterol diet (Table 2.1). Consistent with published data, 

the 0.2% cholesterol diet also significantly increases hepatic cholesterol in LivKO mice 

due to impaired fecal excretion and decreased bile acid synthesis
529, 541

 (Figure 2.8A). 

Hepatic triglycerides, however, are not increased (Figure 2.8B).  The increase in hepatic 

cholesterol measured in LivKO mice, however, does not result in a significant increase in 

liver damage (Figure 2.8 C-D and Figure 2.9), markers of inflammation or markers of 

endoplasmic reticulum stress (Figures 2.10 and 2.11). For the final week of the diet 

treatment (week 4) mice were treated with vehicle or T0901317 and RCT was measured 

in vivo as in previous experiments by introducing radiolabeled LXR+ macrophages.  On a 

standard chow diet the appearance of 
3
H-cholesterol in the plasma of T0901317 treated 
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LivKO and littermate controls is significantly increased at 24 and 48 hours (Figure 

2.12A) indicating that liver LXR activity is not required for agonists to increase 

accumulation of 
3
H-cholesterol in the plasma. On the other hand, the ability of LXR 

agonists to increase fecal sterol excretion is completely lost in LivKO mice (Figure 

2.11B) a result consistent with decreased agonist-dependent regulation of ABCG5 and 

ABCG8 in the livers of these animals (Figure 2.7).  Interestingly, exposure to the 0.2% 

cholesterol diet impairs both LXR agonist-dependent plasma and fecal cholesterol 

accumulation in LivKO mice relative to controls (Figure 2.12C-D). Thus dietary 

cholesterol uncovers a critical role for hepatic LXR activity in controlling the 

accumulation of macrophage-derived cholesterol in plasma. The ability of LXR agonists 

to increase HDL cholesterol levels in LivKO mice is also sensitive to dietary cholesterol 

(Figure 2.13A and Table 2.1) despite similar increases in the intestinal mRNA levels of 

ABCA1 (Figure 2.14). Furthermore a dietary cholesterol-dependent decrease in 

cholesterol acceptor activity is also observed when FPLC purified HDL particles isolated 

from T0901317 treated LivKO mice are compared to HDL particles from littermate 

controls in vitro (Figure 2.13B and Figure 2.5). The reason(s) why the cholesterol 

enriched diet impairs the ability of LXR agonist treatment to increase HDL mass and 

function remains to be determined. Nevertheless, the failure of T0901317 to modulate 

HDL levels and functional activity in cholesterol fed LivKO mice supports the hypothesis 

that ability of LXR agonists to promote macrophage-derived cholesterol accumulation in 

vivo is largely derived from systemic effects on HDL and independent of macrophage 

LXR activity. 
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Although agonist-dependent fecal excretion is blocked in standard chow diet fed 

LivKO mice, surprisingly a corresponding accumulation of 
3
H-cholesterol in the livers of 

agonist treated LivKO animals is not detected under these conditions (data not shown). 

The reason for this finding is not apparent. One possibility is that the livers of T0901317 

treated LivKO animals take up less cholesterol compared to floxed controls.  Gene 

expression analysis, however, did not reveal any significant differences in the expression 

of lipoprotein receptors in the livers of T0901317 treated LivKO and floxed animals 

(Figure 2.15). We note that others have shown that changes in biliary cholesterol 

secretion do not always directly reflect changes in hepatic cholesterol levels. For 

instance, adenoviral over expression of ABCG5 and ABCG8 in the liver increases fecal 

sterol excretion without changing hepatic cholesterol
651

. Future studies should be 

considered to investigate the effect of Liver LXRα deletion on hepatic uptake of HDL-

cholesterol and HDL turnover. Such studies could provide insight into the paradoxical 

observation that LXR agonists increase plasma 
3
H accumulation without raising liver 

3
H 

levels LivKO mice.  

Our results indicate that LXR activation can improve the cholesterol acceptor 

activity of HDL and this effect is influenced by liver LXR activity in a diet-dependent 

fashion. As an initial characterization of HDL particle composition we measured 

phospholipid levels in the FPLC purified HDL fractions. Phospholipids are the major 

components by mass of HDL and a number of studies suggest that HDL phospholipid 

levels are a better predictor of cholesterol efflux than other HDL parameters
485, 652

. As 

shown in Figure 2.13C and 2.13D, T0901317 treatment increases the amount of total 

phospholipids associated with purified HDL particles (normalized by APOA1 levels) 
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from standard chow fed floxed and LivKO mice (Figure 2.13C). The increase in HDL-

phospholipid levels is consistent with studies demonstrating that LXR agonist treatment 

increased HDL particle size
529, 653

.The effect of agonist treatment on HDL-phospholipid 

levels, however, is lost in 0.2% cholesterol diet challenged LivKO animals (Figure 

2.13D).  

Phospholipid transfer protein (PLTP) is a HDL-bound protein that plays a major 

role in regulating HDL size and phospholipid composition through its phospholipid 

transfer activity
654

. PLTP mRNA levels have been shown to be regulated by LXR
600

 

however we did not detect significant differences in plasma PLTP activity between 

floxed and LivKO mice on either dietary condition (Table 2.2). We did, however, detect a 

loss of LXR agonist stimulated PLTP mRNA expression in the intestine in 0.2% 

cholesterol diet fed LivKO mice. Two forms of PLTP have been shown to exist in 

plasma
655, 656

. The “active” form has the ability to transfer phosphatidylcholine from 

phospholipid vesicles to HDL and is detected by the activity assay used in this study. The 

second inactive form constitutes approximately 70% of the PLTP protein mass in human 

plasma
656

. The two PLTP pools are associated with different types of lipoprotein 

particles, suggesting that PLTP activity in circulation is modulated by the composition of 

lipoproteins. While we did not observe a difference in plasma PLTP activity among the 

groups, whether this loss of agonist stimulated PLTP expression in the intestine of 

cholesterol fed LivKO mice plays a role in HDL metabolism, perhaps by increasing the 

amount of the non-enzymatically active PLTP should be addressed in future studies.   

FPLC-purified HDL from chow and 0.2% cholesterol diet fed LivKO mice and 

floxed controls were analyzed for phospholipid composition by mass spectrometry.  As 
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shown in figure 2.16, in the floxed controls on either chow or 0.2% cholesterol diet, LXR 

agonist treatments increases the amount of all phospholipid species present in HDL 

particles. In the chow fed LivKO mice, however, LXR agonist increases the appearance 

of short chain fatty acid containing phospholipid species and there is no agonist-

stimulated increase in long chain, unsaturated fatty acid containing species. This is 

consistent with the role of LXR in regulating the expression of genes encoding for fatty 

acid elongases and desaturases
524

. Conversely, the ability of LXR agonists to increase the 

appearance of all phospholipid species is lost in 0.2% cholesterol diet fed mice. 

CETP decreases macrophage-derived cholesterol in plasma 

To test the hypothesis that LXR-dependent regulation of HDL levels and activity 

plays a major role in driving macrophage cholesterol efflux, we took advantage of the 

observation that LXR agonist-dependent increases in HDL cholesterol are lost in CETP 

transgenic mice
657

.  CETP facilitates the transfer of cholesterol esters from HDL to 

apolipoprotein B (APOB) containing particles and decreases HDL cholesterol levels
596

. 

Importantly, the transgene is under control of the human CETP promoter which has been 

shown to be directly regulated by LXR in human cells and in transgenic mice
595, 598

 

(Figure 2.17A and B).  Indeed, treatment of CETP transgenic mice with T0901317 

decreases HDL cholesterol by approximately 25% and raises the amount of cholesterol 

associated with APOB containing lipoprotein particles (Figure 2.18A and B and Table 

2.1). To determine the effect of CETP expression on RCT in vivo, CETP transgenic mice 

and littermate controls were treated with vehicle or T0901317 and injected with 
3
H-

cholesterol loaded C57BL/6J (LXR
+
) BMM as described in previous experiments. 

Consistent with a critical role for HDL in promoting macrophage cholesterol efflux, the 
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amount of 
3
H-cholesterol in the plasma at 24 and 48 hours is significantly reduced in 

CETP transgenic mice and the ability of T0901317 to increase plasma cholesterol 

accumulation is lost (Figure 2.18C). Similarly, unfractionated plasma and HDL particles 

purified by FPLC from T0901317 treated CETP transgenic mice do not exhibit increased 

efflux activity as is observed in with non-transgenic controls (Figure 2.18D-E). The 

ability of LXR agonists to increase HDL phospholipids, however, is not impaired in 

CETP transgenics (Figure 2.17C). Taken together, the RCT and in vitro efflux 

experiments indicate that LXR-dependent up-regulation of CETP expression counters the 

ability of agonists to enhance cholesterol efflux. In contrast to the inhibitory effect of 

CETP expression on the accumulation of macrophage-derived cholesterol is plasma, 

LXR agonist treatment increases fecal 
3
H-sterol levels in both CETP transgenic and 

littermate controls (Figure 2.18F). Interestingly, CETP expression also results in a 

significant increase in fecal bile acids in vehicle treated cells (Figure 2.17D). Increased 

bile acid synthesis has previously been reported in CETP transgenic mice
658, 659

. Little or 

no difference was observed in hepatic 
3
H-cholesterol levels among the groups (data not 

shown). Thus as observed with the LXR liver-specific knockout mice (LivKO), it is 

possible to functionally sever the transfer of macrophage-derived cholesterol to HDL 

from subsequent fecal excretion.  
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2.4 DISCUSSION 

The discovery that LXR agonists can promote macrophage cholesterol efflux in 

vitro via direct regulation of the genes encoding ABCA1, ABCG1 and APOE
570, 640

 

suggested a simple hypothesis for the cardio-protective effect of LXR activation based on 

promoting cholesterol transfer from macrophage foam cells to HDL; the first step in the 

RCT pathway. This hypothesis is supported by the finding that macrophage LXR activity 

is required for the anti-atherogenic activity of LXR agonists
549

. Combining in vitro 

cholesterol efflux measurements, in vivo RCT assays and tissue-specific LXR knockouts 

we now demonstrate that the ability of LXR agonists to stimulate RCT in vivo defined as 

the transfer of macrophage-derived cholesterol to the feces is largely independent of 

macrophage LXR activity (Figure 2.19). Thus macrophage LXRs are neither necessary 

nor sufficient for LXR agonists to increase RCT at least when measured in an acute assay 

over a 48 hour time course. Additionally our studies suggest that it is the ability of LXR 

agonists to increase HDL biogenesis and to improve HDL functional activity that is 

largely responsible for stimulating the appearance of macrophage-derived cholesterol in 

plasma (Figure 2.19). The LXR agonist used in these studies, T0901317, has been 

reported to modulate other nuclear receptors, at least in vitro
525, 526, 660

. Therefore the 

possibility that another nuclear receptor such as the pregnane X receptor contributes to 

the activity of this molecule in vivo cannot be ruled out. All the activities of T0901317 

measured in this work, however, are lost in cells and animals that deficient in LXRs. 

Taken together these studies have important implications for understanding the potential 

therapeutic benefits of LXR agonists.  
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On a standard mouse chow diet the ability of LXR agonists to stimulate the 

accumulation of macrophage-derived cholesterol in plasma is independent of LXR 

activity in both macrophages and the liver. Previous studies have determined that LXR 

agonists increase HDL cholesterol by inducing ABCA1 expression in the intestine
529, 579, 

661
. Consistent with an important role for intestinal LXR activity in regulating RCT is the 

finding that selective activation of LXRs in the intestine using either a poorly absorbed 

“intestine-specific” LXR agonist
648

 or intestinal-specific transgenic over expression of a 

hyperactive LXR (VP16-LXR)
662

 increases RCT when measured using assays similar to 

those described in this work. Furthermore, our studies indicate that intestinal LXR 

activation can increase the cholesterol acceptor activity of HDL particles (Figure 2.19) 

most likely by increasing the production of immature nascent particles that have been 

shown to be preferred cholesterol acceptors
663-665

. This work describes a potential role for 

LXR activity in white adipose in regulating cholesterol trafficking.    

To test the hypothesis that agonist dependent increases in HDL mass and function 

drive the accumulation of macrophage-derived cholesterol in plasma during RCT assays 

we took advantage of the observation that the ability of LXR agonists to raise HDL 

cholesterol is lost in CETP transgenic mice
598, 657

.  CETP, an enzyme that transfers 

cholesterol esters from HDL to APOB containing lipoprotein particles in exchange for 

triglycerides, is not expressed in rodents but the human gene used in this study is 

regulated by LXRs
595, 598, 666

. Importantly CETP activity in the plasma is increased 

following LXR agonist treatment, HDL levels are lower and plasma cholesterol 

accumulation measured during RCT assays in vivo is decreased. The cholesterol acceptor 

activity of unfractionated plasma and FPLC purified HDL from T0901317 treated CETP 
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transgenic mice is also reduced relative to non-transgenic controls. Finally, the 

conclusion that increasing CETP activity impairs HDL particle function is consistent with 

reports that inhibition of CETP activity improves the cholesterol acceptor activity of 

human HDL particles
667

.  Taken together the data supports the hypothesis that the ability 

of LXR agonists to increase the accumulation of macrophage-derived cholesterol in 

plasma is primarily determined by the quantity and quality of the HDL. Nevertheless, in 

CETP transgenic LXR agonist treatment still increases fecal excretion of macrophage-

derived cholesterol mice. Therefore we cannot rule out the possibility that CETP 

expression decreases the levels of macrophage-derived cholesterol in plasma by 

increasing hepatic clearance via receptors for APOB containing particles. Similar to 

CETP expression, Bi et al. found that liver-specific deletion of ABCA1 reduces plasma 

HDL levels and decreases plasma accumulation of 
3
H-cholesterol in RCT assays without 

altering fecal sterol excretion
661

. Bi et al. suggest the small plasma HDL pool that 

remains in the liver ABCA1 knockout may be quantitatively sufficient to mediate the 

transport macrophage-derived cholesterol to the liver for excretion
661

. Our study with 

CETP transgenic mice together with the work of Bi et al. raise the possibility, at least 

under these experimental conditions, that the appearance of macrophage-derived in the 

plasma  is a not a rate limiting step for fecal cholesterol excretion.  

In contrast to CETP transgenic expression, liver-specific deletion of LXR 

(LivKO) has little or no effect on the accumulation of macrophage-derived cholesterol in 

plasma (on a standard chow diet) but strongly inhibits LXR agonist-stimulated fecal 

cholesterol excretion (Figure 2.6). Thus our analysis of CETP transgenic and LXR 

LivKO mice indicate that it is possible to functionally separate plasma cholesterol 
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accumulation from fecal excretion. Plasma cholesterol accumulation is primarily 

controlled by the ability of LXRs to regulate the quantity and quality of HDL while fecal 

excretion is controlled by LXR-dependent regulation of hepatic ABCG5 and ABCG8 

levels allowing a single transcription factor pair (LXR and LXRβ) to coordinate 

cholesterol movement throughout the body. These results raise the question regarding the 

potential therapeutic benefit of regulating either macrophage cholesterol efflux or fecal 

excretion independently. Current therapeutic approaches for atherosclerotic 

cardiovascular disease all involve reducing low density lipoprotein (LDL) cholesterol in 

the blood. Therefore if increasing fecal cholesterol excretion ultimately reduces plasma 

LDL levels one might predict a therapeutic benefit. On the other hand, APOA Milano and 

other APOA1-derived peptides have been shown to increase macrophage cholesterol 

efflux and to improve cardiovascular endpoints although it not clear that the beneficial 

effects of these agents are dependent on promoting cholesterol efflux
668, 669

. Future 

studies that for instance combine macrophage selective over expression of ABCA1 with 

LXR liver-specific knockouts may be a way to address the therapeutic benefits of 

increased macrophage efflux in the absence of fecal cholesterol excretion. 

Interestingly, the contribution of liver LXR activity to RCT can be influenced by 

the cholesterol content of the diet. As described above, on a standard mouse chow diet 

knocking out LXR in the liver has little or no effect on the accumulation of 

macrophage-derived cholesterol in plasma while completely eliminating agonist-

stimulated fecal excretion (Figure 2.18). When cholesterol (0.2%) is added to the diet, 

however, LXR agonist-dependent plasma cholesterol accumulation is significantly 

decreased in LivKO mice. The absence of agonist-dependent accumulation of 
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macrophage-derived cholesterol in plasma when cholesterol is included in the diet 

correlates with the inability of agonist treatment to increase HDL cholesterol and to 

improve the acceptor capacity of purified HDL in LivKO mice under these conditions. 

LXR agonist treatment still increases ABCA1 expression in the intestines of LivKO on 

the 0.2% cholesterol diet and the reason(s) why HDL cholesterol levels are not increased 

in these mice remains to be determined. Compared to littermate floxed controls on the 

0.2% cholesterol diet, LivKO mice have increased hepatic cholesterol levels although we 

did not detect any evidence for increased hepatic inflammation, endoplasmic reticulum 

stress or liver damage in these mice. We and others have shown that the ability of LXR 

agonists to increase HDL levels in LXR positive animals is lost under severe 

hyperlipidemic conditions such as Ldlr
-/-

 or Apoe
-/-

 mice on Western diets
529, 548, 552, 628, 

647
. Thus the ability of LXR agonists to regulate HDL metabolism can be influenced by 

dietary cholesterol levels. Interestingly, Kalaany et al. demonstrated that Lxr-/-
/Lxr-/-

 

are resistant to high fat diet-induced obesity, however, this resistance is only observed 

when the high fat diet also contains cholesterol
572

. These observations raise the 

possibility that hepatic cholesterol accumulation leads to the generation of a paracrine 

signal that can influence lipid metabolism in other tissues.  

Bone marrow transplantation experiments and over expression studies indicate 

that macrophages are the site of LXR agonist-dependent anti-atherogenic activity
549, 560, 

569
. The studies described in this work, however, indicate that macrophage LXR activity 

does not make a significant contribution to RCT. Similarly using LivKO mice in a severe 

hyperlipidemic environment (Ldlr
-/-

 + Western diet) we demonstrated that LXR agonists 

can reduce atherosclerosis without increasing RCT
529

. Kappus et al. also reached a 
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similar conclusion in a recent study using mice with myeloid-specific double knockout of 

Abca1
 
and Abcg1

670
. Together, these observations suggests that while hematopoietic LXR 

expression is required for the beneficial effects of LXR agonists an increase in RCT or 

macrophage efflux is not. LXR activation inhibits NFκβ signaling suggesting decreased 

inflammation as an obvious mechanism for LXR-dependent anti-atherogenic activity
603, 

671
. A dominant role for anti-inflammatory activity as the beneficial effect of LXR 

activation on atherosclerosis has important implications for the potential therapeutic use 

of LXR agonists. In particular, in vitro experiments have suggested that LXR agonists 

can have pro-inflammatory actiities in human macrophages
672

 in contrast to the anti-

inflammatory effects measured in rodents. Additionally, as described above, pre-clinical 

studies examining the anti-atherogenic activity of LXR ligands generally have been 

carried out under severe hyperlipidemic conditions where the ability of LXR agonists to 

increase HDL mass is lost
529, 548, 673

. Since human cardiovascular disease patients do not 

usually present with the supra-physiological plasma cholesterol levels observed in genetic 

mouse models, the ability of LXR agonists to stimulate RCT may be maintained in 

humans and could be therapeutic. As we observe in CETP transgenic mice, however, the 

ability of LXR agonists to increase HDL cholesterol appears to be lost in non-human 

primates that express CETP
553, 597

.    

Recent clinical trials with niacin
633

 and CETP inhibitors
428

 have called into 

question the hypothesis that raising HDL cholesterol has beneficial effects on human 

cardiovascular disease. The clinical trials together with experiments suggesting that the 

cholesterol acceptor activity of HDL isolated from patients can be a more accurate 

measurement of cardiovascular disease risk has led to the proposal that assessing HDL 
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function may be more relevant than measurements of HDL cholesterol mass
371, 381, 412

. 

Along with increasing the levels of HDL cholesterol, LXR agonist treatment also 

increases the cholesterol acceptor activity of HDL particles that were normalized by the 

quantity of APOA1. HDL particles are heterogeneous in size and composition making it 

difficult to discern the LXR-dependent modifications that improve cholesterol acceptor 

activity. Nevertheless, our initial analysis of HDL particle composition found increased 

levels of phospholipids (normalized to APOA1) in the HDL particles purified from 

agonist treated animals. The phospholipid:APOA1 ratio in HDL has been shown to be an 

important determining factor in predicting macrophage efflux.  Studies using mice and 

rats expressing human APOA1 indicate that the prime component of HDL that modulates 

cholesterol efflux is HDL phospholipid
483, 484

. Furthermore, the correlation between 

macrophage cholesterol efflux and HDL phospholipid in human sera is stronger than with 

any other measured lipoprotein parameter, including HDL cholesterol, APOA1 and 

triglycerides
485

. CETP expression, however, appears to impact HDL function without 

modulating phospholipid levels suggesting that multiple components of HDL can 

influence particle function. LXRs likely regulate multiple pathways that modulate HDL 

activity and future studies employing detailed lipidomic and proteomic approaches can be 

used to further define the LXR-dependent changes in HDL composition that regulate 

HDL particle function. These studies that define particle function may open the door to 

new therapeutic approaches for targeting HDL. 
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Diet
 

Strain 

Drug 

treatment 

Total 

Cholesterol  

(mg/dL) 

HDL-

Cholesterol 

(mg/dL) 

Triglycerides 

(mg/dL) 

Chow C57bl6/J Vehicle 122.2 ± 5.4 65.9 ± 1.2 55.3 ± 3.6 

  T0901317 155.4± 3.9* 100.0 ± 4.8* 90.5 ± 7.2* 

Chow Lxrα
-/-

 Lxrβ 
-/-

 Vehicle 113.6 ± 3.9 46.1 ± 1.7** 40.2 ± 2.7 

  T0901317 112.5 ± 3.6 54.5 ± 1.8** 55.5 ± 5.2 

Chow Floxed Vehicle 109.0 ± 8.1 65.3 ± 3.6 64.2 ± 7.8 

  T0901317 163.1 ± 8.3* 121.5 ± 10.9* 113.4 ± 10.5* 

Chow LivKO Vehicle 115.2 ± 9.4 44.9 ± 5.2 45.1 ± 3.9 

  T0901317 166.4 ± 9.9* 86.4 ± 6.7* 47.9 ± 3.1 

0.2% 

cholesterol Floxed Vehicle 159.6 ± 12.5
†
 58.0 ± 3.3 59.9 ± 3.4 

  T0901317 216.9 ± 16.0*
†
 94.9 ± 12.0*

†
 197.2 ± 17.6*

†
 

0.2% 

cholesterol LivKO Vehicle 166.7 ± 11.0
†
 50.3 ± 9.9 47.7 ± 7.2 

  T0901317 167.9 ± 6.2 59.9 ± 3.8 35.4 ± 3.2 

Chow CETP- Vehicle 116.9 ± 2.6 68.2 ± 3.3 52.6 ± 3.4 

  T0901317 193.6 ± 6.8* 92.4 ± 1.7* 85.2 ± 7.5 * 

Chow CETP+ Vehicle 105.3 ± 4.6 52.4 ± .9 57.0 ± 6.2 

  T0901317 78.4 ± 4.6* 38.0 ± 1.9* 92.2 ± 9.2* 

 

Table 2.1. Plasma Lipid Levels.*Statistically significant difference between 

vehicle and T0901317-treated animals of the same genotype (n = 6, p ≤ 0.05%). 

†
Statistically significant difference between chow and 0.2% cholesterol diet fed mice 

of the same genotype and treatment (n = 6, p ≤ 0.05%). ** Statistically significant 

difference between C57bl6/J and Lxrα
-/-

 Lxrβ 
-/- 

with the same treatment. Data are 

mean ± SEM.   
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Diet strain Treatment Intestine  

PLTP 

mRNA 

Liver  PLTP 

mRNA 

PLTP activity 

(nmol 

transferred/min) 

Chow Floxed Vehicle 0.99 ± 0.09 0.49 ± 0.05 3.6 ± 0.1 

  T0901317 1.48 ± 0.08*
 

1.6 ± 0.18*
 

 4.3 ± 0.3* 

Chow LivKO Vehicle 0.93 ± 0.06 0.43 ± 0.11 3.5 ± 0.2 

  T0901317 1.57 ± 0.16* 0.37 ± 0.08 4.0 ± 0.2 

      

0.2% 

cholesterol 

Floxed Vehicle 0.43 ± 0.06
#
 0.20 ± 0.02

#
 2.0 ± 0.3 

  T0901317 0.97 ± 0.18* 0.55 ±0.11*
# 

 3.3 ± 0.2* 

0.2% 

cholesterol 

LivKO Vehicle 0.46 ± 0.05
#
 0.15 ± 0.01

#
 2.5 ± 0.3 

  T0901317 0.44 ± 0.08
#
 0.15 ± 0.03  3.2 ± 0.3* 

 

Table 2.2 LivKO PLTP mRNA and plasma activity. *Statistically significant 

difference between vehicle and T0901317-treated animals of the same genotype (n = 4-6, 

p ≤ 0.05%). 
#
Statistically significant difference between chow and 0.2% cholesterol diet 

fed mice of the same genotype and treatment. (n = 4-6, p ≤ 0.05%).Data are mean ± 

SEM.   
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Figure 2.1 Macrophage LXRs are not required for RCT.   
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Figure 2.1 Macrophage LXRs are not required for RCT.  
3
H-cholesterol and acetylated 

LDL-loaded C57BL6/J or LXRα
-/- 

/LXRβ
 -/-

 (DKO) BMMs were injected into C57BL6/J 

or DKO mice to generate Mac
LXR+

/LXR+, Mac
LXR+

/DKO, and Mac
DKO

/LXR+ mice (see 

text). Animals were treated for 3 days with or without 10 mg/kg T0901317 (n=6/group), 

and the amount of 
3
H sterol in plasma (A and D) and feces (B) were determined as 

described in the Materials and Methods. Mice continued to receive vehicle or T0901317 

treatment for the duration of the experiment. C) Total RNA was isolated from BMM that 

were recovered from the peritoneal space and the mRNA levels of Abca1 were measured 

by quantitative real-time PCR. Data are mean ± SEM. *Statistically significant difference 

between vehicle and T0901317-treated animals of the same genotype (p ≤ 0.05%). 

†
Statistically significant difference between Mac

LXR+
/LXR+, Mac

LXR+
/DKO or between 

Mac
LXR+

/LXR+ and  Mac
DKO

/LXR+ mice with the same treatment (p ≤ 0.05%). 
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Figure 2.2 Liver 
3

H sterol levels. 
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Figure 2.2 Liver 
3

H sterol levels. The amount of 
3
H-sterol in the livers of animals at the 

conclusion of the RCT experiment were determined as described in Material and 

Methods. Data are mean ± SEM.  
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Figure 2.3 In vitro cholesterol efflux in Lxrα
-/-

 /Lxrβ
-/-

 macrophages. 
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Figure 2.3 In vitro cholesterol efflux in Lxrα
-/-

 /Lxrβ
-/-

 macrophages. A)Total RNA was 

isolated from LXR+ and DKO BMM treated with 1uM T0901317 in culture for 24 hours 

and mRNA levels of Abca1 were measured by quantitative real-time PCR. B) In vitro 

macrophage cholesterol efflux was measured as described in Materials and Methods 

using 
3
H-cholesterol labeled LXR+ or DKO incubated with 10ug/ml HDL or 10ug/ml 

ApoA1. Data are mean ± SEM. *Statistically significant difference between vehicle and 

T0901317-treated animals of the same genotype (p ≤ 0.05%). 
†
Statistically significant 

difference between LXR+ and DKO with the same treatment (p ≤ 0.05%).  
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Figure 2.4 HDL function and adipose tissue drives LXR-dependent RCT. 
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Figure 2.4 HDL function and adipose tissue drives LXR-dependent RCT. C57BL6/J and 

LXRα
-/-

/LXRβ
-/- 

(DKO) mice (n = 5-6/group) were treated for 5 days with vehicle or 10 

mg/kgT0901317 and In vitro macrophage cholesterol efflux was measured as described 

in Materials and Methods using 
3
H-cholesterol labeled Raw264.7 cells that were 

incubated with 0.03% pooled plasma (A) or FPLC purified HDL (B) Efflux data are 

representative of 3 independent experiments. C) 
3
H-cholesterol and acetylated LDL-

loaded C57BL6/J BMM were injected into C57bl6/J mice treated for 3 days with or 

without 10 mg/kg T0901317 (n=6/group), and the amount of 
3
H sterol in tissues were 

determined as described in the Materials and Methods. Mice continued to receive vehicle 

or T0901317 treatment for the duration of the experiment.  All data are expressed as 

mean ± SEM. *Statistically significant difference between vehicle and T0901317-treated 

animals of the same genotype (p ≤ 0.05%). 
†
 Statistically significant difference between 

C57BL6/J and DKO with the same treatment (p ≤ 0.05%). 
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Figure 2.5 FPLC profiles. 
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Figure 2.5 FPLC profiles. A) C57bl6/J; B) LXRα
-/- 

LXRβ
-/- 

(DKO); C) LXRα
fl/fl 

albumin-CRE
-
 (Floxed) on chow diet; D) LXRα

fl/fl 
albumin-CRE+ (LivKO) on chow diet; 

E) Floxed on 0.2% cholesterol diet for 4 weeks; and F) LivKO on 0.2% cholesterol diet 

for 4 weeks were treated with vehicle or T0901317 (10 mpk) for 5 days, plasma was 

pooled, subjected to FPLC and the cholesterol content of each fraction was measured as 

described in Materials and Methods. (n=5-6/group) The three fractions containing the 

greatest amounts of cholesterol were pooled (green circles) and used in additional 

experiments.  
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Figure 2.6 APOA1 protein levels in FPLC-purified HDL. 
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Figure 2.6 APOA1 protein levels in FPLC-purified HDL. Pooled plasma from vehicle 

or T0901317-treated C57BL6/J, Lxr
-/- 

Lxrβ
-/-  

(Lxr
-/-

β
-/-

), Floxed and LivKO animals 

were subjected to FPLC for lipoprotein analysis. A-D) Peak HDL fractions were pooled 

and APOA1 protein levels were measured by Western blot (n = 4-6/group). 

Quantification of APOA1 levels was carried out as described in Materials and Methods. 

Vehicle treated C57BL6/J, Floxed and CETP
-
 was set as 100%. 
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Figure 2.7 Hepatic ABC transporter expression in LivKO mice.   
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Figure 2.7 Hepatic ABC transporter expression in LivKO mice.  Total RNA was 

extracted from liver tissue at the completion of the in vivo RCT experiment and mRNA 

levels of ABCG5 (A), ABCG8 (B) and ABCA1 (C) were measured by quantitative real-

time PCR.  Data are mean ± SEM. *Statistically significant difference between vehicle 

and T0901317-treated animals of the same genotype (p ≤ 0.05%). 
†
Statistically 

significant difference between Floxed and LivKO with the same treatment (p ≤ 0.05%).  
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  Figure 2.8 Effect of 0.2% cholesterol diet on hepatic lipids and liver enzymes. 
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 Figure 2.8 Effect of 0.2% cholesterol diet on hepatic lipids and liver enzymes. At the 

completion of the in vivo RCT study hepatic cholesterol, hepatic triglycerides, AST 

activity and ALT activity were determined as described in Materials and Methods. Data 

are mean ± SEM, (n=5-6/group). *Statistically significant difference between vehicle and 

T0901317-treated animals of the same genotype (p ≤ 0.05%). 
†
Statistically significant 

difference between Floxed and LivKO with the same treatment (p ≤ 0.05%).  
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Figure 2.9 Liver histology in 0.2% cholesterol diet fed LivKO mice. 
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Figure 2.9 Liver histology in 0.2% cholesterol diet fed LivKO mice. Following 4 weeks 

of 0.2% cholesterol diet feeding, LivKO and Floxed controls were treated with vehicle or 

10 mg/kg T0901317 for 5 days. Whole livers were isolated and snap frozen in liquid 

nitrogen. Frozen livers were then sectioned and H and E stained by University of Virginia 

Tissue Histology core facility.  
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Figure 2.10 Inflammatory gene expression in 0.2% cholesterol diet fed LivKO mice. 
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Figure 2.10 Inflammatory gene expression in 0.2% cholesterol diet fed LivKO mice. 

Total RNA was isolated from livers at the completion of in vivo RCT studies and mRNA 

levels were measured by quantitative real-time PCR as described in Materials and 

Methods. Data is mean ± SEM, (n=5-6/group). 
†
Statistically significant difference 

between Floxed and LivKO with the same treatment (p ≤ 0.05%).  
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Supplemental Figure 2.11 Gene expression of endoplasmic reticulum stress in 0.2% 

cholesterol diet fed LivKO mice. 
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Figure 2.11 Gene expression of endoplasmic reticulum stress in 0.2% cholesterol diet 

fed LivKO mice. Total RNA was isolated from livers at the completion of in vivo RCT 

studies and mRNA levels were measured by quantitative real-time PCR as described in 

Materials and Methods. Data is mean ± SEM, (n=5-6/group). 
†
Statistically significant 

difference between Floxed and LivKO with the same treatment (p ≤ 0.05%).  
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Figure 2.12 In vivo RCT in chow and 0.2% cholesterol diet fed LivKO mice. 



146 
 

Figure 2.12 In vivo RCT in chow and 0.2% cholesterol diet fed LivKO mice. 
3
H-

cholesterol and acetylated LDL-loaded C57BL6/J BMMs were injected into Floxed or 

LivKO mice fed standard chow (A and B) or 0.2% cholesterol supplemented diet (C and 

D). Animals were treated for 3 days with or without 10 mg/kg T0901317 (n=6/group) 

prior to BMM injection, and the amount of 
3
H sterol in plasma (A and C) and feces (B 

and D) was determined as described in the Materials and Methods. For the 0.2% diet 

experiment animals were switched from chow to 0.2% diet at 8 weeks of age and were on 

diet for 4 weeks prior to the start of the experiment. Mice continued to receive vehicle or 

T0901317 treatment for the duration of the experiment. Data are mean ± SEM. 

*Statistically significant difference between vehicle and T0901317-treated animals of the 

same genotype (p ≤ 0.05%). 
†
Statistically significant difference between Floxed and 

LivKO mice with the same treatment (p ≤ 0.05%). 
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Figure 2.13 LXR agonist dependent changes in HDL mass and function in LivKO mice.  
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Figure 2.13 LXR agonist dependent changes in HDL mass and function in LivKO 

mice.  

A) Plasma HDL cholesterol levels in chow and 0.2% cholesterol diet fed  Floxed and 

LivKO mice (n = 6/group) treated for 5 days with vehicle or 10 mg/kg T0901317. B) In 

vitro macrophage cholesterol efflux was measured as described in Materials and Methods 

using 
3
H-cholesterol labeled Raw264.7 cells that were incubated with FPLC purified 

HDL from animals treated with vehicle or T0901317 (10 mpk) for 5 days (n=5-6/group). 

Efflux data are representative of 3 independent experiments. Total phospholipids in FPLC 

purified HDL from Floxed and LivKO mice fed a standard chow diet (C) or 0.2% 

cholesterol diet (D) and treated for 5 days with vehicle or T0901317 (10 mpk). HDL 

phospholipid levels were normalized by HDL APOA1 protein levels as determined by 

Elisa. Data are mean ± SEM. *Statistically significant difference between vehicle and 

T0901317-treated animals of the same genotype (p ≤ 0.05%). 
†
Statistically significant 

difference between Floxed and LivKO mice with the same treatment and diet (p ≤ 

0.05%).  
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Figure 2.14 Intestine ABCA1 levels in chow and 0.2% cholesterol diet fed LivKO mice. 
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Figure 2.14 Intestine ABCA1 levels in chow and 0.2% cholesterol diet fed LivKO 

mice. Total RNA was isolated from intestines at the completion of in vivo RCT studies 

and ABCA1 mRNA levels were measured by quantitative real-time PCR as described in 

Materials and Methods. Data is mean ± SEM, (n=5-6/group). *Statistically significant 

difference between vehicle and T0901317-treated animals of the same genotype and diet 

conditions (p ≤ 0.05%). 
†
Statistically significant difference between Floxed and LivKO 

with the same treatment (p ≤ 0.05%). 
#
Statistically significant difference between chow 

and 0.2% cholesterol diet fed mice of the same genotype and treatment (p ≤ 0.05%).  
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Figure 2.15 Gene expression analysis of lipoprotein receptors in LivKO mice. 



152 
 

Figure 2.15 Gene expression analysis of lipoprotein receptors in LivKO mice. Total 

RNA was isolated from livers at the completion of in vivo RCT studies and mRNA levels 

were measured by quantitative real-time PCR as described in Materials and Methods. 

Data is mean ± SEM, (n=5-6/group). *Statistically significant difference between vehicle 

and T0901317-treated animals of the same genotype (p ≤ 0.05%). 
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A 
chow 

0.2% cholesterol 

B 

Figure 2.16 phospholipid composition of HDL particles from LivKO mice. 
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Figure 2.16 phospholipid analysis of HDL particles from LivKO mice. Animals on 

chow or 4 weeks of 0.2% cholesterol diet were treated with vehicle or 10 mg/kg 

T0901317 for 5 days and pooled plasma was fractionated by FPLC.  Phospholipid species 

were identified from FPLC-purified HDL by mass spectrometry as described in Materials 

and Methods and normalized by ApoA1 levels as determined by Western blot.  
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Figure 2.17 LXR agonists increase CETP activity, HDL-phospholipids and fecal 

 
3
H-sterols in CETP transgenic mice. 
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Figure 2.17 LXR agonists increase CETP activity, HDL-phospholipids and fecal 
3
H-

sterols in CETP transgenic mice. CETP
- 
and CETP

+
 mice were treated vehicle or 10 

mg/kg T0901317 for 5 days (n=5/group). A) Total RNA was isolated from liver tissue 

and the mRNA levels of CETP was measured by quantitative real-time PCR as described 

in Materials and Methods. B) CETP activity in plasma was determined by fluorometric 

assay as described in Materials and Methods. C)Total phospholipids in FPLC purified 

HDL from CETP
- 
and CETP

+
 mice treated for 5 days with vehicle or T0901317 (10 

mpk). HDL phospholipid levels were normalized by HDL APOA1 protein levels as 

determined by Elisa. D) At completion of the in vivo RCT experiment fecal sterols were 

extracted and the amount of 
3
H-cholesterol and 

3
H-bile acids were determined as 

described in Materials and Methods.  Data are mean ± SEM. *Statistically significant 

difference between vehicle and T0901317-treated animals of the same genotype(p ≤ 

0.05%). 
†
Statistically significant difference between CETP

- 
and CETP

+
 with the same 

treatment (p ≤ 0.05%). ND = not detected. 
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Figure 2.18 CETP inhibits LXR agonist-dependent RCT. 
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Figure 2.18 CETP inhibits LXR agonist-dependent RCT. CETP
- 
(A) and CETP

+
 (B) 

mice (n=6/group) were treated with vehicle or T0901317 (10 mpk), plasma was pooled, 

subjected to FPLC and the cholesterol content of each fraction was measured as 

described in Materials and Methods. 
3
H-cholesterol and acetylated LDL-loaded C67BL/6 

BMDMs were injected into CETP
-
 and CETP

+
 mice (n=6/group) treated with vehicle or 

T0901317 and the amount of 
3
H sterol in plasma (C) and feces (F) were determined as 

described in Materials and Methods. D) Raw 264.7 cells were incubated with 0.03% 

pooled plasma (D) or FPLC purified HDL (E) from vehicle or T0901317 treated CETP
-
 

and CETP
+
 mice (n=5/group) and cholesterol efflux was measured as described in 

Materials and Methods. Efflux data is representative of 3 independent experiments. Data 

are mean ± SEM. *Statistically significant difference between vehicle and T0901317-

treated animals of the same genotype (p ≤ 0.05%). 
†
Statistically significant difference 

between CETP
-
 and CETP

+
 with the same treatment (p ≤ 0.05%).  
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Figure 2.19 Model for LXR-regulated RCT. 
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Zhang and colleagues in the Mangelsdorf Laboratory at the University of Texas 

Southwestern Medical Center generated the first conditional LXR knockout animal by 

selectively eliminating LXRα from hepatocytes and this group was responsible for the 

initial characterization of these albumin-CRE
+
 LXRα

fl/fl 
mice. Interested in the role of 

liver LXRα in atherosclerosis and the protective effects of LXR agonists, Dr.Schulman 

received the LivKO mice from the Mangelsdorf group and with Jerry Angidsen’s 

assistance crossed them into the Ldlr
-/- 

background prior to the start of my graduate 

studies. The first atherosclerosis study with the Ldlr
-/-

 /LivKO was undertaken by Dr. 

Schulman with Jerry’s technical assistance.  The finding that the Ldlr
-/-

/LivKO animals 

had increased atherosclerosis, led me to investigate the role for liver LXRa in 

atherosclerosis and reverse cholesterol transport. The outcome of this work, which was 

undertaken during my first two years in the laboratory, resulted in a co-first authorship 

on the manuscript which appeared in the Journal of Clinical Investigations in April 2012.    
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3.1 ABSTRACT  

Liver X receptors (LXR and LXRβ) are important regulators of cholesterol and 

lipid metabolism and their activation has been shown to inhibit cardiovascular disease 

and reduce atherosclerosis in animal models. These previous studies have stimulated 

interest in the therapeutic potential of small molecules targeting LXRs; however, the 

finding that agonists also promote hepatic lipogenesis has led to the idea that hepatic 

LXR activity is undesirable from a therapeutic perspective. In this report we utilized gene 

targeting to create the first conditional LXR knockout by selectively deleting LXR in 

hepatocytes. Liver-specific deletion of LXR substantially decreased reverse cholesterol 

transport, cholesterol catabolism and excretion, revealing the essential importance of 

hepatic LXR for whole body cholesterol homeostasis. Additionally, in a pro-

atherogenic background liver-specific deletion of LXR significantly increased 

atherosclerosis, uncovering an important function for hepatic LXR activity in limiting 

cardiovascular disease. Nevertheless, LXR agonists still elicited anti-atherogenic activity 

in the absence of hepatic LXR indicating that the ability of agonists to reduce 

cardiovascular disease does not require an increase in cholesterol excretion. Furthermore 

these observations suggest that therapeutic strategies which bypass the liver or limit the 

activation of hepatic LXRs should still be beneficial for the treatment of cardiovascular 

disease. 
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3.2 INTRODUCTION 

The precise regulation of cholesterol metabolism is essential and it is well known 

that elevated levels of cholesterol in the blood are a major cause of cardiovascular disease 

674
. Studies using global genetic knockouts and synthetic agonists have defined important 

roles for the liver X receptors, LXR (NR1H3) and LXRβ (NR1H2), in the control of 

cholesterol metabolism 
640

. LXRs are members of the nuclear hormone receptor 

superfamily of ligand activated transcription factors and treatment of animals with LXR 

agonists results in changes in gene expression promoting the efflux of cholesterol from 

peripheral cells such as macrophages, the excretion of cholesterol from the liver and the 

inhibition of cholesterol absorption in the intestine 
640

. Importantly, the endogenous 

ligands for LXRs are oxidized forms of cholesterol (oxysterols) 
641, 675

 that increase 

coordinately with intracellular cholesterol levels thus allowing these receptors to function 

as sensors to maintain cholesterol at appropriate levels throughout the body.  

 At the molecular level, LXRs control cholesterol efflux by regulating expression 

of the genes encoding the ATP binding cassette (ABC) transporters ABCA1 and ABCG1 

640
. Up-regulation of ABCA1 and ABCG1 results in increased transfer of intracellular 

cholesterol to high density lipoprotein particles (HDL) and genome wide association 

studies have linked both transporters to HDL cholesterol levels in humans 
642, 643

. 

Mutations in the human ABCA1 gene result in Tangier disease and Tangier patients 

characteristically present with little or no HDL, massive accumulation of cholesterol in 

macrophages found lodged in lymph tissue and they exhibit an increased risk for 

atherosclerosis 
638, 644, 645

. The accumulation of oxidized and other modified forms of 

cholesterol by macrophages present in blood vessel walls is a critical event in the 

pathogenesis of atherosclerosis 
676

 and the ability of LXR agonists to enhance 
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macrophage cholesterol efflux has stimulated great interest in the therapeutic potential of 

these compounds 
677

. Activation of LXRs also regulate expression of ABCG5 and 

ABCG8, two half transporters that dimerize to create an additional cholesterol transporter 

573, 646
. Expression of ABCG5/ABCG8 is largely restricted to the liver and intestine 

34
 

where these proteins function to promote the excretion of cholesterol (liver) and limit 

cholesterol absorption (intestine). Thus by mobilizing cholesterol from the periphery, 

promoting hepatic excretion and limiting absorption, activation of LXRs results in a net 

loss of cholesterol. This process of trafficking cholesterol to HDL and ultimately out of 

the body has been termed reverse cholesterol transport (RCT) 
638, 645

. Importantly LXR 

agonists decrease atherosclerosis in animal models and it has been suggested that 

enhanced RCT plays an important role in this activity 
548, 549, 552, 628

. 

 In spite of many potential benefits on cholesterol metabolism, enthusiasm for the 

therapeutic value of LXR agonists has been tempered by the observation that LXR 

activation stimulates hepatic lipogenesis by increasing expression of sterol regulatory 

element binding protein-1c (SREPB-1c), a master transcriptional regulator of fatty acid 

and triglyceride synthesis 
524, 583

. Along with Srebp1c, LXRs regulate either directly or 

indirectly the genes encoding a number of other proteins involved in fatty acid synthesis 

586, 678
 and treatment with LXR agonists can result in dramatic increases in hepatic and 

plasma triglycerides 
524, 583

. Additionally, at least one class of synthetic LXR ligands has 

been shown to elevate plasma low density lipoprotein (LDL) cholesterol levels in non-

human primates 
597

. Genetic studies have defined the LXR subtype as the major 

regulator of hepatic lipogenesis in response to LXR agonists 
628, 679

. The simple idea of 

creating LXRβ-specific ligands to bypass the undesirable effects on lipogenesis, however, 



164 
 

has been challenging because the ligand binding pockets of the two LXR subtypes differ 

by only a single amino acid 
680, 681

. Studies in LDL receptor and apolipoprotein E (Apoe) 

knockout mice have also demonstrated that it is the LXR subtype which plays the 

dominant role in limiting diet-induced cardiovascular disease 
558, 628

. These observations 

have led to the suggestion that LXR agonists that bypass the liver, or even function as 

antagonists in the liver, would have ideal therapeutic profiles 
677, 682, 683

. To address the 

therapeutic potential of liver LXR activity we have used gene targeting technology to 

create the first conditional LXR knockout mouse line by selectively deleting LXR in 

hepatocytes. Characterization of these animals demonstrates the essential, physiologic 

importance of hepatic LXR to whole body cholesterol homeostasis while at the same 

time revealing the pharmacologic utility of bypassing hepatic LXR activity as a 

therapeutic strategy for treating cardiovascular disease. 
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3.3 RESULTS 

Summary of initial characterization of Liver LXRα deficient animals.  

Below is a summary of the work carried out in the Mangelsdorf Lab prior to our 

acquisition of the liver-specific LXRα knockout mice. 

Generation of liver-specific LXRα knockout mice LXRα floxed mice were crossed with 

albumin-Cre mice to generate hepatocyte-specific knockout of LXRα (Lxrα
fl/fl 

albumin-

CRE
+
, referred to as LivKO) and their floxed littermate controls (Lxrα

fl/fl 
albumin-CRE

-
, 

referred to as Floxed). LXRα mRNA was reduced by more than 95% in livers of LivKO 

mice while the expression of LXRβ did not change. There was no change in LXRα or 

LXRβ expression in any other tissue. Feeding LivKO animals a diet containing 2% 

cholesterol for 30 days resulted in significant hepatic cholesterol accumulation and an 

increased liver to body weight ratio, demonstrating that liver LXRα activity is responsible 

for this phenotype that is observed in the global LXRα knockout under the same 

condition
678

.  

Hepatic LXRα regulates lipid metabolism. Treatment with LXR agonists has been 

shown to increase triglyceride levels, promote cholesterol excretion, and elevate plasma 

HDL
640

. Following 2 days of agonist treatment, an increase in plasma triglycerides was 

observed in control mice that was attenuated in the LivKO animals. Analysis of hepatic 

gene expression indicated that agonist-dependent increase in Srebp1, as well as fatty acid 

synthase (Fas) and stearoyl CoA desaturase 1 (Scd1), was reduced in LivKO. Previous 

studies with global knockouts demonstrated that LXRα is a major regulator of hepatic 

SREBP-1c expression and triglyceride levels
559, 679

. Taken together, the lipid 

measurements and gene expression analysis of LivKO mice support this conclusion and 
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further indicate that hepatic LXRα activity is responsible for most of the lipogenic 

activity of LXR agonists. 

 Regulation of Abcg5 and Abcg8 in the liver and intestine has been proposed to 

account for the ability of LXR agonists to stimulate the biliary secretion of cholesterol 

and decrease intestinal absorption, resulting in increased neutral sterol loss in the feces
575, 

646, 684
. Recent studies, however, have described a biliary-independent trans-intestinal 

pathway for cholesterol excretion that can be stimulated by LXR activity
577, 685, 686

. In the 

absence of liver LXRα activity, the ability of LXR agonists to increase biliary cholesterol 

was abolished and fecal cholesterol excretion was decreased. The loss of agonist-

stimulated effects in LivKO mice coincided with a failure to increase Abcg5 and Abcg8 in 

the liver, while Abcg5 and Abcg8 expression in the intestine was unaffected. Therefore, 

hepatic LXRα activity is required for the majority of the LXR agonist-dependent increase 

in cholesterol excretion. Moreover, these results support the notion that hepatic, and not 

intestinal, ABCG5/G8 is required for LXR-dependent effects on cholesterol excretion. 

 The regulation of bile acid synthesis by LXR has also been suggested to 

contribute to the ability of LXR agonists to dispose of cholesterol
520, 678

. As expected, the 

ability of LXR agonists to increase the expression of Cyp7a1, which encoded the rate-

limiting enzyme in the conversion of cholesterol to bile acids, was absent in LivKO mice. 

Nevertheless, there was no effect of LXR agonist treatment on fecal or biliary bile acids 

or on the bile acid pool size between LivKO and floxed animals. These results support 

previous studies showing that LXR agonists have no effect on fecal bile salt excretion 

despite the increase in Cyp7a1 expression, which has been suggested to be due to the fast 

reabsorption and recycling of bile acids. Along with regulation of Cyp7a1, treatment of 
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control animals with an LXR agonist resulted in decreased expression of Cyp8b1, the 

gene encoding sterol 12α-hydroxylase, and this effect was lost in the LivKO mice. Sterol 

12α-hydroxylase sits at a branch point in the bile acid synthetic pathway, and its 

enzymatic activity is required for the synthesis of cholic acid (CA). The parallel arm in 

the pathway leads to synthesis of muricholic acid (MCA) in mice
687

. Consistent with the 

gene expression data, treatment with T0901317 decreased the ratio of CA to MCA in 

control mice but not in LivKO. Importantly, individual bile acids differ in their ability to 

promote intestinal cholesterol absorption, and MCA, among all bile acids tested, 

promotes the lowest amount of cholesterol absorption, while CA promotes the greatest 

amount
688

. Thus, the agonist-dependent change in bile acid composition should contribute 

to the ability of LXR ligands to reduce cholesterol absorption. Consistent with this 

hypothesis, the ability of T0901317 to decrease fractional cholesterol absorption was also 

significantly attenuated in LivKO mice.  

Hepatic LXRα is not required for the agonist-dependent HDL cholesterol regulation. 

The liver is considered the major site of HDL production
580, 689

, and treatment of chow-

fed mice with LXR agonists is known to increase HDL cholesterol levels
524, 583

. After 

treatment with T0901317 for 8 days, a significant increase in plasma cholesterol as 

observed in both LivKO mice and control mice, although the levels in T0901317-treated 

LivKO mice were approximately 15% lower than in control animals. Fractionation of 

lipoprotein particles by fast protein liquid chromatography (FPLC) indicated that the 

increase primarily resided in the HDL fraction. Thus, LXRα activity in the liver is not 

required for LXR agonist stimulated increases in HDL cholesterol levels in the plasma. 

LXR agonists have been shown to increase the presence of large HDL particles
573, 577, 589

, 
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an effect that was attenuated in T0901317-treated LivKO mice, suggesting that hepatic 

LXRα can play a role in modulating HDL size. Consistent with these results the 

expression of several apolipoproteins was altered in LivKO mice. ABCA1 is required for 

the biogenesis of HDL, and studies with ABCA1-knockout mice indicate that both the 

liver and intestine contribute to HDL production
580, 689

. Induction of Abca1 mRNA by 

T0901317 was lost in the livers of LivKO animals, while the intestinal Abca1 levels were 

not different from those in control mice. The strong LXR agonist-dependent induction of 

Abca1 in the intestine suggests that this organ serves as a major site for LXR-dependent 

HDL cholesterol increases, a conclusion supported by earlier studies using tissue-specific 

knockouts of Abca1 and intestine-specific overexpression of LXRα
579, 662

. 

Deletion of hepatic LXR increases atherosclerosis. LXR agonists decrease 

atherosclerosis in animal models of cardiovascular disease 
548, 549, 552, 628

 and global 

deletion of LXR increases atherosclerosis in either LDL receptor (Ldlr) knockout or 

ApoE knockout genetic backgrounds 
558, 628

. Using a series of bone marrow 

transplantations we have previously demonstrated that cells derived from the 

hematopoietic system comprise an important site of LXR-dependent anti-atherogenic 

activity 
549, 628

. These studies, however, also indicated important anti-atherogenic 

functions for LXR in a site(s) that is not derived from bone marrow cells 
628

. To 

determine the impact of liver LXR activity on atherosclerosis, the liver specific 

knockout was introduced into the Ldlr
–/–

 background. The resulting double knockouts 

(Ldlr
–/–

/Lxrfl/fl
 albumin-CRE

+
; i.e. Ldlr

–/–
/LivKO) and littermate controls (Ldlr

–/–

/Lxrfl/fl
 albumin-CRE

-
; i.e. Ldlr

–/–
/floxed) were placed on a high fat/high cholesterol 

Western diet for 20 weeks in the absence or presence of the LXR agonist T0901317. By 4 
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weeks on diet Ldlr
–/–

/LivKO animals had reduced plasma triglycerides and cholesterol 

compared to controls and the effect of T0901317 on plasma lipid levels was lost in the 

Ldlr
–/–

/LivKO mice (Figure 3.1A-D). Consistent with other studies in hyperlipidemic 

mouse models 
548, 549, 552, 558, 628

, treatment with LXR agonist had little or no effect on 

HDL cholesterol levels in either Ldlr
–/–

/floxed or Ldlr
–/–

/LivKO animals (Figure 3.1E-F). 

As expected, hepatic cholesterol was substantially increased in Ldlr
–/–

/LivKO animals at 

the conclusion of the experiment (Figure 3.2B).  

When atherosclerosis was quantitated by en face analysis of dissected aortas or by 

serial sections of the aortic root, a significant increase in lesion area was detected in 

Ldlr
-/-

/LivKO mice compared to controls (Figure 3.3 and Figure 3.4). Immunostaining 

with the macrophage-specific antibody MOMA-2 indicated increased macrophage 

content in Ldlr
-/-

/LivKO root sections. Collagen staining, a measure of plaque stability, 

was roughly similar (Figure 3.5). A similar increase in atherosclerosis was also observed 

in Ldlr
-/-

/LivKO mice after 10 weeks on Western diet (Figure 3.6). Thus, LXR activity 

in the liver plays an essential role in limiting cardiovascular disease in the background of 

the Ldlr-null animal. Importantly, T0901317 was still able to significantly reduce 

atherosclerosis in Ldlr
-/-

/LivKO mice (Figure 3.3, Figures 3.4 and 3.6), indicating that 

liver LXR activity is not required for the pharmacological anti-atherogenic activity of 

LXR agonists. The magnitude of the agonist-dependent decrease in Ldlr
-/-

/LivKO mice 

was similar to observed in  Ldlr
–/–

/floxed controls (30-40%) suggesting that the full 

therapeutic effect of LXR agonists can be manifested in the absence of liver LXR. 

Lipoprotein particle number, size and function in LivKO mice. We noted that 

Ldlr
-/-

/LivKO mice have relatively high plasma cholesterol levels while their plasma 
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triglyceride levels are approximately 5 times less than Ldlr
–/–

/floxed controls (Figure 

3.1A-D). This large difference in plasma triglycerides suggested the possibility that the 

number and/or size of the lipoprotein particles produced in Ldlr
-/-

/LivKO mice may be 

altered in a way that influences atherogenesis. To address this possibility we used nuclear 

magnetic resonance (NMR) spectroscopy to examine lipoprotein particle number and size 

690
. The high triglyceride levels in T0901317 treated Ldlr

–/–
/floxed mice precluded 

analysis of the effect of agonist treatment on particle number and size by NMR so we 

restricted this analysis to vehicle treated animals that had been on Western diet for 10 

weeks. As expected, the number of VLDL particles is decreased in Ldlr
-/-

/LivKO mice 

(Table 3.1) consistent with an important role for hepatic LXR in triglyceride synthesis. 

In contrast, while both Ldlr
–/–

/floxed and Ldlr
-/-

/LivKO animals have similar numbers of 

LDL particles there is a dramatic change in particle size with almost 50% of the 

Ldlr
-/-

/LivKO particles having diameters less than 21 nM (Table 3.1, small LDL). We 

note that the high percentage of relatively large LDL particles (diameter ≥ 23 nM) 

measured in Ldlr
–/–

/floxed mice is consistent with previous studies in hyperlipidemic 

mice 
691

. Although there is a clear difference in size between LDL particles of the two 

strains we did not detect a difference in cholesterol accumulation when bone marrow 

derived macrophages were cultured in vitro in the presence of plasma or FPLC purified 

apolipoprotein B containing lipoproteins from Ldlr
–/–

/floxed or Ldlr
–/–

/LivKO animals 

(data not shown).  

Both FPLC (Figure 3.1E-F) and NMR (Table 3.1) indicate that there is no 

difference in HDL cholesterol levels between the Ldlr
–/–

/floxed and Ldlr
-/-

/LivKO 

animals. The Ldlr
-/-

/LivKO mice, however, do have a 30% decrease in total HDL particle 
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number that is largely the result of a decrease in small HDL (particles with diameters less 

than 8.2 nm; Table 1). Interestingly, hepatic expression of the gene encoding 

phospholipid transfer protein (PLTP), a known LXR target gene 
600

, is significantly 

reduced in Ldlr
-/-

/LivKO mice (Figure 3.7). PLTP has been shown to remodel HDL 

resulting in the production of small particles 
692

. To examine if the change in particle 

number and size influences HDL function, we performed in vitro cholesterol efflux 

assays using 
3
H-cholesterol loaded RAW 264.7 cells. Cholesterol efflux was significantly 

reduced when Ldlr
-/-

/LivKO (Figure 3.8A) or FPLC-purified HDL (Figure 3.8B) was 

used as the source of cholesterol acceptors. We could not examine the efflux potential of 

plasma from T0901317 treated mice because the high concentrations of agonist in these 

plasma samples significantly increased the expression of genes that promote RCT in the 

cholesterol loaded RAW 264.7 cells. We did not, however, consistently detect differences 

in macrophage cholesterol efflux when FPLC purified HDL particles from vehicle and 

T0901317 treated mice were used as cholesterol acceptors (data not shown). The analysis 

of lipoprotein number, size and function identifies hepatic LXR as an important 

regulator of lipoprotein metabolism and suggests that alterations in LDL and/or HDL 

function may contribute to the increased atherosclerosis observed in Ldlr
-/-

/LivKO mice. 

RCT is impaired in LivKO mice. The ability to excrete cholesterol from the liver into the 

bile is a critical step in the RCT pathway. Our studies in normal lipidemic mice indicate 

that the ability of LXR agonists to stimulate cholesterol excretion is lost in the absence of 

hepatic LXR activity (data not shown); nevertheless T0901317 still retains anti-

atherogenic activity (Figures 3.3 and 3.6). To examine RCT under hyperlipidemic 

conditions, mouse J774 cells loaded with 
3
H-cholesterol and acetylated LDL in vitro 
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were injected into the peritoneal cavity of Ldlr
–/–

/floxed and Ldlr
-/-

/LivKO mice that been 

on Western diet for 9 weeks in the absence or presence of T0901317. The amount of 
3
H 

in the plasma, liver and feces was determined 48 hours later (Figures 3.9 and 3.10). The 

ability of T0901317 to increase the fecal excretion of macrophage derived sterols was 

largely impaired in Ldlr
-/-

/LivKO mice (Figure 3.8A, and 3.10A-C). Concurrently there is 

an increase in 
3
H-sterol in the livers of Ldlr

-/-
/LivKO mice (Figure 3.9B) indicating that 

hepatic LXR is needed for agonist-dependent fecal excretion of macrophage-derived 

cholesterol. The ability of LXR agonists to increase the appearance of macrophage-

derived 
3
H-cholesterol in the plasma is thought to result from agonists acting on 

macrophage LXRs to enhance ABCA1 and ABCG1 dependent cholesterol efflux 
561, 693

. 

Consistent with other studies 
561, 693, 694

, treatment of Ldlr
–/–

/floxed mice with T0901317 

produced a time-dependent increase in the level of 
3
H-cholesterol in the plasma (Figure 

3.9C).  Interestingly, the level of 
3
H-cholesterol in the plasma of Ldlr

-/-
/LivKO mice was 

decreased relative to vehicle treated Ldlr
–/–

/floxed controls and treatment with T0901317 

had no effect (Figure 3.9C). For all 4 groups FPLC analysis indicated that the distribution 

of 
3
H-tracer in the plasma exactly coincided with the distribution of bulk, unlabeled 

cholesterol (Figure 3.11). To determine if the decrease in plasma 
3
H-cholesterol levels 

observed in Ldlr
-/-

/LivKO animals resulted from impaired LXR transcriptional activity in 

macrophages, we recovered the J774 cells from the peritoneal cavity 48 hours after 

injection and quantitated ABCA1 mRNA levels in RNA isolated from these cells. As 

shown in Figure 3.9D, agonist treatment produced a similar increase in ABCA1 mRNA 

in cells recovered from either Ldlr
–/–

/floxed or Ldlr
-/-

/LivKO animals. Additionally, a 

similar induction of ABCA1 mRNA was observed in RNA isolated from whole blood 
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taken from animals on Western diet in the absence or presence of T0901317 for 10 weeks 

(Figure 3.10D). The gene expression analysis suggests that the inability of LXR agonist 

to increase the appearance of macrophage-derived cholesterol in the plasma of 

Ldlr
-/-

/LivKO mice does not arise from a defect in macrophage LXR activity.    
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3.4 Discussion 

LXRs function throughout the body to control cholesterol transport, catabolism 

and excretion 
677

. This report describes the first conditional LXR knockout mouse 

constructed by selectively eliminating the LXR subtype in hepatocytes (LivKO mice). 

When challenged with a 2% cholesterol diet, LivKO mice accumulated increased 

amounts of cholesterol in liver resulting from failure to induce hepatic cholesterol 

excretion and catabolism, highlighting the importance of liver LXR activity to whole 

body cholesterol homeostasis. Similarly, the ability of synthetic LXR agonists to 

stimulate biliary cholesterol excretion, inhibit fractional cholesterol absorption and 

increase the output of neutral sterols in the feces was largely compromised in LivKO 

mice. Several recent studies have described a trans-intestinal pathway for cholesterol 

excretion that bypasses biliary excretion but nevertheless can be stimulated by LXR 

activation 
577, 685, 686

. Our studies suggest that such a biliary-independent pathway makes 

only a minor contribution to LXR agonist-dependent cholesterol excretion. 

Early studies with synthetic LXR agonists described increases in plasma 

triglycerides and plasma HDL cholesterol as two pharmacological responses to LXR 

activation 
524, 583

. Analysis of LivKO mice indicates that these responses originate from 

unique sites. The LXR agonist-dependent increases in triglycerides were of hepatic origin 

and resulted from regulation of the genes encoding SREBP-1c and other enzymes 

involved in fatty acid and triglyceride synthesis. In contrast, hepatic deletion of LXR 

had little effect on the ability of LXR agonists to elevate HDL cholesterol. Both the liver 

and intestine have been shown to contribute to the production of HDL 
315, 579, 580, 689

 and 

while the LXR agonist-dependent induction of Abca1, a protein required for HDL 
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biogenesis, was impaired in liver, induction of Abca1 in the intestine was unchanged. The 

tissue-specific expression of Abca1 observed in LivKO mice suggests that LXR 

activation in the intestine is sufficient to regulate HDL cholesterol levels. Consistent with 

our conclusion that an intestinal LXR activity is primarily responsible for elevating HDL 

cholesterol, previous studies indicate that expression of ABCA1 in the intestine is 

required for LXR agonist-dependent cholesterol increases 
579

 and that transgenic over-

expression of a constitutively active LXR (VP16-LXR) in the intestine increases HDL 

662
. HDL cholesterol levels inversely correlate with cardiovascular disease risk and the 

ability of LXR agonists to increase HDL cholesterol initially stimulated great interest in 

the therapeutic potential of such compounds 
677

. The concurrent increase in lipogenesis, 

however, has dampened the enthusiasm for LXR agonists and slowed the progression of 

molecules into the clinic. Analysis of LivKO mice demonstrates that the lipogenic and 

HDL pathways are tissue specific and suggests that LXR ligands that specifically target 

the intestine, for instance by limiting systemic absorption or by rapid first-pass clearance, 

could have therapeutic value. 

In mouse models of cardiovascular disease, treatment with LXR agonists 

decreases atherosclerosis. However, in these hyperlipidemic models LXR agonists have 

little or no effect on HDL cholesterol levels and this has led to the conclusion that the 

anti-atherogenic activity originates from increased macrophage cholesterol efflux and/or 

limiting inflammation in immune cells in atherosclerotic plaque 
548, 549, 552, 628

. Indeed, 

selective deletion of LXR in hematopoietic cells increased atherosclerosis in the Ldlr
–/–

 

background although the increase was not as great as that measured in Ldlr
–/–

/Lxra
–/–

 

global knockout mice 
549, 569, 628

. We now demonstrate that atherosclerosis was 
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substantially increased when LXR was selectively eliminated in hepatocytes, 

identifying the liver as a critical site of LXR-dependent anti-atherogenic activity. Our 

studies suggest that hepatic LXR modulates lipoprotein particle number, size, and 

function in a manner that influences atherogenicity. In particular the ability of HDL to 

accept cholesterol from macrophages is defective in Ldlr
-/-

/LivKO mice. These 

observations suggest that pharmacological strategies utilizing small molecules that inhibit 

hepatic LXR activity to reduce lipogenesis may actually increase cardiovascular disease 

and should be explored with caution. Future studies that explore the effect of hepatic 

LXR activity on lipoprotein function in the presence of the cholesterol ester transfer 

protein (CETP), a lipoprotein particle remodeling enzyme expressed in humans but not 

mice 
666

, will be useful in this regard. 

 Despite the increased atherosclerosis observed in Ldlr
–/–

/LivKO mice, treatment 

with T0901317 was still an effective preventive therapy indicating that extra-hepatic 

LXR activity can also be anti-atherogenic. Our in vivo RCT analysis further suggests that 

the ability of LXR agonists to stimulate the RCT pathway is significantly compromised 

in the absence of hepatic LXR and is thus not necessary for the athero-preventive 

activity of LXR agonists. The efficacy of agonist treatment in LivKO mice therefore 

raises questions regarding the potential mechanisms and sites of action for the 

pharmacological activity of LXR agonists. In contrast to the liver, using bone marrow 

transplantations we have previously shown that LXR activity in hematopoietic cells is 

necessary for the anti-atherogenic activity of T0901317 
549

. A number of additional 

functions for LXRs in immune cells including the control of inflammation 
640

, 

endoplasmic reticulum stress 
695

, macrophage egress 
696

 and monocyte proliferation 
697, 698
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could underlie the anti-atherogenic activity of LXR ligands. Finally, recent studies 

indicate that intestinal specific activation of LXRs using pharmacological or transgenic 

approaches can increase RCT and may beneficially impact atherosclerosis
648, 662

.  The 

failure of LXR agonist treatment to increase the appearance of macrophage-derived 

cholesterol in the plasma of Ldlr
–/–

/LivKO mice during the in vivo RCT assay further 

raises the possibility that impaired LXR activity in the liver can negatively affect 

macrophage cholesterol efflux in the periphery. The appearance of macrophage-derived 

3
H-cholesterol in the plasma during the in vivo RCT assay, however, may not simply 

reflect the rate the macrophage cholesterol efflux. The re-entry of 
3
H-cholesterol into the 

plasma compartment after up-take by the liver and/or intestine may also contribute to this 

measurement. Therefore we cannot rule out the possibility that LXR agonists do in fact 

promote macrophage cholesterol efflux in Ldlr
–/–

/LivKO mice and that this activity is 

anti-atherogenic even when hepatic cholesterol excretion to the bile is inhibited. In 

summary, our characterization of LivKO mice demonstrates that while endogenous 

hepatic LXRα activity is essential for maintaining normal lipid and sterol homeostasis, 

pharmacologic strategies that bypass LXR activation in liver may still be of therapeutic 

benefit.   

  



178 
 

 

Table 3.1. Lipoprotein Particle Size and Number. 

` Ldlr
-/-

/Floxed Ldlr
-/-

/LivKO 

VLDL particles, total nmol/L 727 ± 128 341 ± 130* 

Large VLDL (> 60 nm), nmol/L 15.7 ± 4.5 4.4 ± 1.3* 

Medium VLDL (35-60 nm), nmol/L 179 ± 103 117 ± 81 

Small VLDL (27-35 nm), nmol/L 533 ± 67 220 ± 98* 

   

LDL particles, total nmol/L 1238 ± 257 1440 ± 463 

IDL (23-27 nm), nmol/L 1181 ± 246 685 ± 212* 

Large LDL (21.2-23 nm), nmol/L 0 0 

Small LDL (18-21.2 nm), nmol/L 0 742 ± 364* 

   

HDL particles, total μmol/L 34.6 ± 9.6 24 ± 2.7* 

Large HDL (8.8-13 nm), μmol/L  14.2 ± 6.4 16.7 ± 4.6 

Medium HDL (8.2-8.2 nm), μmol/L  0 0 

Small HDL (7.3-8.2 nm), μmol/L 18 ± 3.2 7.3 ± 4.7* 

HDL Cholesterol mg/dL 50.6 ± 25.8 60.3 ± 17.2 

*Statistically significant difference between floxed and LivKO mice (n = 6/group; p ≤ 

0.05). 
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Figure 3.1 Plasma lipid levels in Ldlr
-/-

/LivKO mice.  

 



180 
 

Figure 3.1 Plasma lipid levels in Ldlr
-/-

/LivKO mice. Ldlr
-/-

/floxed and Ldlr
-/-

/LivKO 

mice were fed a Western diet with or without 0.01% T0901317 for 20 weeks and (A,B) 

plasma triglycerides and (C,D) plasma total cholesterol levels were determined at 2 week 

intervals (n=5/group). Data are the mean ± SEM. d  b, statistically significant difference 

between Flox and LivKO mice with the same treatment (p ≤ 0.05%). Ldlr
-/-

/floxed (E) 

and Ldlr
-/-

/LivKO (F) mice were fed a Western diet with or without 0.01% T0901317 for 

10 weeks and FPLC analysis was carried out using pooled plasma (n=6/group) obtained 

from mice that had been fasted overnight. Elevated plasma triglycerides in samples from 

Ldlr
-/-

/floxed mice treated with T0901317 resulted in a significant amount of non-HDL 

aggregating when samples were centrifuged to pellet particulate matter prior to loading 

the FPLC column; therefore, the non-HDL cholesterol levels measured by FPLC for Ldlr
-

/-
/floxed mice treated with T0901317 is likely an underestimate. 
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Figure 3.2 Hepatic lipid levels in Ldlr
-/-

/LivKO mice.  
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Figure 3.2 Hepatic lipid levels in Ldlr
-/-

/LivKO mice. Ldlr
-/-

/floxed and Ldlr
-/-

/LivKO 

mice were fed a Western diet with or without 0.01% T0901317 for 20 weeks and hepatic 

(A) triglycerides and (B) cholesterol levels were determined at completion of the study 

(n=5/group; 3 male, 2 female).  Data are the mean ± SEM. b, statistically significant 

difference between Flox and LivKO mice with the same treatment (p ≤ 0.05%).  
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Figure 3.3 Atherosclerosis in Ldlr
–/–

/LivKO mice.  
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Figure 3.3 Atherosclerosis in Ldlr
–/–

/LivKO mice. Mice were fed a Western diet with or 

without 0.01% T0901317 for 20 weeks, and atherosclerosis was quantitated. (A) En face 

analysis of the aorta was carried out as described in Methods. Ldlr
–/–

/floxed (vehicle: n = 

11, 6 male, 5 female; T0901317: n = 9, 5 male, 4 female). Ldlr
–/–

/LivKO (vehicle: n = 16, 

8 male, 8 female; T0901317: n = 15, 8 male, 7 female). (B) Lesion area was measured in 

serial sections of the aortic root (n = 7/group; 4 male, 3 female). Each data point 

represents an individual animal. The horizontal lines denote the mean of each group. 

There were no significant differences between sexes within any of the groups.  
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Figure 3.4 Representative en face and root section images.  
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Figure 3.4 Representative en face and root section images. Representative Sudan IV 

stained aortas (A) and oil red O stained aortic root sections (B). 
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Figure 3.5 Macrophage and collagen staining.  

 



188 
 

Figure 3.5 Macrophage and collagen staining. Aortic root sections from Ldlr
-/-

/floxed 

and Ldlr
-/-

/LivKO mice fed a Western diet with or without 0.01% T0901317 for 20 weeks 

were stained with antibodies to MOMA-2 to detect macrophages (A,B) or with trichrome 

to detect collagen (C,D). Quantification was carried out as described in the Methods. 

Data are the mean ± SEM. a, statistically significant difference between vehicle and 

T0901317 treated animals of the same genotype (p ≤ 0.05%).   b, statistically significant 

difference between Flox and LivKO mice with the same treatment (p ≤ 0.05%).  
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Figure 3.6 Atherosclerosis in Ldlr
-/-

/LivKO mice on 10 weeks of Western diet.  
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Figure 3.6 Atherosclerosis in Ldlr
-/-

/LivKO mice on 10 weeks of Western diet. Mice 

were fed a Western diet with or without 0.01% T0901317 for 10 weeks and 

atherosclerosis was quantitated by en face analysis as described in the Methods. Ldlr
-/-

/floxed (vehicle n=11; T0901317 n=12). Ldlr
-/-

/LivKO (vehicle n=12; T0901317 n=12). 
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Figure 3.7 Pltp expression in Ldlr
-/-

 /LivKO mice. 
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Figure 3.7 Pltp expression in Ldlr
-/-

 /LivKO mice.Total RNA was isolated from livers at 

the completion of in vivo RCT study and mRNA levels were measured by quantitative 

real-time PCR as described in Materials and Methods. Data is mean ± SEM, (n=5-

6/group). *Statistically significant difference between vehicle and T0901317-treated 

animals of the same genotype (p ≤ 0.05%). 
†
Statistically significant difference between 

Floxed and LivKO with the same treatment (p ≤ 0.05%).  
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Figure 3.8 Cholesterol efflux in RAW264.7 cells.  
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Figure 3.8 Cholesterol efflux in RAW264.7 cells. 
3
H-Cholesterol–loaded RAW264.7 

cells were cultured with (A) 0.03% plasma or (B) FPLC-purified HDL isolated from mice 

fed a Western diet with or without 0.01% T0901317 for 9 weeks, and cholesterol efflux 

was determined as described in Methods. Efflux to plasma or HDL isolated from Ldlr
–/–

/floxed mice fed a Western diet without T0901317 was set as 100%. Data are the average 

of 2 independent experiments and expressed as mean ± SEM. Data from the experiments 

with FPLC-purified HDL were normalized to the amount of apoAI added. *P ≤ 0.05 

between vehicle- and T0901317-treated animals of the same genotype; 
†
P ≤ 0.05 between 

floxed and LivKO mice. 
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Figure 3.9 In vivo RCT in Ldlr

-/-
 /LivKO. 
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Figure 3.9 In vivo RCT in Ldlr
-/-

 /LivKO. 
3
H-cholesterol and acetylated LDL–loaded 

J774 macrophages were injected into mice fed a Western diet with or without 0.01% 

T0901317 for 10 weeks (n = 6/group), and the amount of 
3
H tracer in feces (A), liver (B), 

and plasma (C) was determined as described in Methods. (D) Total RNA was isolated 

from recovered J774 macrophages, and the mRNA levels of Abca1 were measured by 

quantitative real-time PCR. Data are mean ± SEM. *P ≤ 0.05 between vehicle- and 

T0901317-treated animals of the same genotype; 
†
P ≤ 0.05 between floxed and LivKO 

mice with the same treatment.  
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 Figure 3.10 In vivo RCT, total fecal sterols and whole blood gene expression.  
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Figure 3.10 In vivo RCT, total fecal sterols and whole blood gene expression. Mice 

were fed a Western diet with or without 0.01% T0901317 for 9 weeks. (A,B) In vivo 

RCT analysis was carried out as described in the Methods (n=6/group) and the levels of 

3
H-cholesterol (A) and 

3
H-bile acids (B) was determined. (C) Total fecal sterols were 

determined as described in the Methods from feces collected just prior to initiating the in 

vivo RCT experiment. (D) Total RNA was isolated from whole blood as described in the 

Methods and the mRNA levels of ABCA1 were measured by quantitative real-time PCR. 

Data are the mean ± SEM. a, statistically significant difference between vehicle and 

T0901317 treated animals of the same genotype (p ≤ 0.05%).   b, statistically significant 

difference between Flox and LivKO mice with the same treatment (p ≤ 0.05%).  
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 Figure 3.11 Radiolabeled cholesterol is redistributed among lipoprotein particles 
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Figure 3.11 Radiolabeled cholesterol is redistributed among lipoprotein particles. At 

completion of the in vivo RCT study, pooled plasma samples were subjected to FPLC and 

the 
3
H content (A and B) was determined (n=6/group). Following 10 weeks of Western 

diet with or without T0901317 (0.01%) plasma was pooled and subjected to FPLC and 

the cholesterol content of each fraction was measured as described in the Materials and 

Methods (C and D).  
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Chapter 4: Materials and Methods 

4.1 Materials and Methods for Chapter 2  

Reagents. LXR agonist T0901317 was purchased from Cayman Chemical.  
3
H-

cholesterol was purchased from Perkin Elmer. 
14C

Cholic acid was purchased from 

American Radiolabeled Chemicals Inc. 

Animal experiments.  All animal experiments were approved by the Institutional Animal 

Care and Research Advisory Committee of the University of Virginia. Lxrα
-/-

/Lxrβ
-/-

 and 

Lxrα
fl/fl

/albumin-Cre mice have been described previously
529, 628

. Male CETP transgenic 

mice (The Jackson Laboratory) were bred with female C57Bl6/J (The Jackson 

Laboratory) to generate CETP transgenic (CETP
+
) and CETP

-
 littermate controls.  All 

animals were housed in a temperature-controlled environment with 12-hour light/12-hour 

dark cycles.  Age-matched mice had free access to water and were fed standard rodent 

chow (TD 7001, Harlan Teklad) or a 0.2% cholesterol diet (TD 07798, Harlan Teklad).  

For 0.2% cholesterol diet experiments, animals were switched from standard chow to 

cholesterol diet at 8 weeks of age and experiments carried out following 4 weeks of diet. 

Animals were treated with vehicle (80% polyethylene glycol, 20% Tween-80) or LXR 

agonist T0901317 (10 mg per kg of body weight) by oral gavage once per day in the 

morning.  Samples were drawn or experiments were initiated 3 hours after the 3
rd

 dose (in 

vivo RCT studies) or 5
th

 dose (plasma analysis and FPLC studies).   

Plasma Analyses. Blood was collected into EDTA-coated tubes (Starstedt).  Plasma was 

separated by centrifugation and assayed for total cholesterol (Thermo Scientific), 

triglycerides (Pointe Scientific), HDL-cholesterol (Thermo Scientific), CETP activity 

(Sigma Aldrich), PLTP activity (Roar Biomedical Inc.), aspartate aminotransferase 
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(AST) activity (Pointe Scientific) activity, alanine aminotransferase (ALT) activity 

(Thermo Scientific) and APOA1 levels (Novatein Biosciences). Plasma lipoprotein levels 

in pooled plasma samples (n=4-6/group) were analyzed by FPLC using a Superose G6 

10/300 GL column (GE Healthcare), and assayed for total cholesterol per fraction by 

enzymatic analysis (Thermo Scientific). FPLC purified fractions containing peak HDL-

cholesterol (n=3 fractions) were pooled for in vitro experiments. FPLC purified HDL was 

assayed for total phospholipid by calorimetric kit (Wako).   

Western blotting. FPLC purified HDL samples (12.5 μl) in triplicate were resolved on 

12% SDS-polyacrylamide gels and transferred to PVDF membranes (Millipore). 

Membranes were then hybridized with goat anti–mouse APOA1 antibody (Abcam 7614) 

at a 1:1000 dilution, followed by secondary antibody incubation at a 1:5,000 dilution. 

APOA1 protein was detected by chemiluminescence and quantitated with ImageQuant 

software. 

Liver cholesterol and triglycerides. Liver samples (0.1 g) were homogenized in 2 ml 

Folch (chloroform/methanol, 2:1, v/v) with a polytron homogenizer. The organic phase 

was separated and then dried under nitrogen.  Samples were reconstituted in 

isopropranol:Triton-X100 (9:1 v/v) and aliquots subjected to colorimetric enzymatic 

assays for total cholesterol (Thermo Scientific) or triglycerides (Pointe Scientific).  

Quantitative real-time PCR analysis.  Total RNA was extracted from ~100 mg pieces 

of tissue (liver and small intestine) using a microbead tissue homogenizer and PureZOL 

(Bio-Rad)/chloroform extraction. Total RNA was isolated from aqueous phase using an 

RNeasy kit (QIAGEN).  RNA was treated with DNase I and reverse transcribed into 

cDNA with random hexamers using a High-Capacity cDNA Reverse Transcription kit 
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(Life Technologies). RT-qPCR reactions contained 25 ng of cDNA, 385 nM of each 

primer, and 6.25 μl of SYBR Green Supermix (Bio-Rad) and were carried out in 

triplicate using a Bio-Rad MyiQ instrument.  Relative mRNA levels were calculated 

using the comparative Ct method and normalized to cyclophilin.  

Cholesterol efflux experiments. RAW264.7 cells were plated in 96-well plates (2 x 10
5
 

cells/well) and 24 hours later labeled with 1 µCi/ml 
3
H-cholesterol (PerkinElmer) in 

DMEM plus 1% FBS media for 18-24 hours.  Radiolabeled cells were washed with pre-

warmed PBS and incubated for 18-24 hours with serum-free media containing 0.03% 

pooled plasma (n=5-7 animals/group) or with 25% FPLC-purified HDL normalized to 

APOA1 levels as determined by  Western blotting as cholesterol acceptors. For each 

individual efflux experiment using FPLC purified HDL, triplicate samples of all the HDL 

samples being compared were quantitated on the same western blot. Following 

incubation with acceptors, media was collected and radioactivity was measured by liquid 

scintillation counting.  Cells were washed with PBS and lysed in 100 µl of 0.2 N NaOH, 

and radioactivity in cell lysates was quantitated by liquid scintillation counting.  

Cholesterol efflux was expressed as percentage of cpm in the medium divided by the total 

counts (cpmmedia/[cpmmedia + cpmcell]).  Acceptor-dependent efflux was determined by 

subtracting the efflux of vehicle cells cultured without acceptor. APOA1 (10 µg/ml) or 

HDL (15 µg/ml) was included as positive control.  

In vivo RCT. In vivo RCT experiments were carried out as described by Naik et al
561

.  

Animals were on either chow or 0.2% cholesterol diet as indicated. Three days prior to 

and for the duration of the experiment mice were gavaged with vehicle or T0901317 (10 

mpk).  Bone marrow derived macrophages were loaded with 25 µg/ml acetylated LDL 
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and 5 µCi/ml 
3
H-cholesterol for 48 hours in vitro.  Cholesterol-loaded cells were injected 

into the peritoneal cavity of mice (~4.5 x 10
6
 cells/mouse, 3 x 10

6
 cpm, n=6/group), 

which were housed individually for the duration of the experiment.  Blood was collected 

at 6, 24, and 48 hours after injection, and the 
3
H-cholesterol in triplicate plasma samples 

(10 ul aliquots) was determined by scintillation counting.  Frozen livers, gonadal fat pads, 

testes, and quadriceps skeletal mucsle were ground with mortar and pestle and lipids 

extracted from duplicate 100 mg samples by standard Folch extraction. Lipids were 

resuspended in 1ml of liquid scintillation fluid and the 
3
H-cholesterol levels in triplicate 

200 ul aliquots was determined by scintillation counting. Feces was collected at 48 hours, 

homogenized in 50% EtOH by polytron homogenizer and 
3
H-sterol levels determined by 

scintillation counting in 200 ul aliquots in triplicate. To measure 
3
H-cholesterol and 

3
H-

bile acid in feces, 2 mL of homogenized samples was combined with 2 mL ethanol, 

0.03µCi of 
14

C-cholic acid as an internal standard, and 400 μL NaOH. The samples were 

saponified at 95°C for 2 hours, cooled to room temperature and cholesterol separated 

from bile acids by extracting 2 times with 6 mL hexane. The extracts were pooled, 

evaporated, resuspended in toluene and 
3
H-cholesterol levels were determined by 

scintillation counting. To extract bile acids, the remaining aqueous fraction after the 

hexane extractions was acidified with concentrated HCl and then extracted 2 times with 6 

mL ethyl acetate. The extracts were pooled together, evaporated, resuspended in ethyl 

acetate, and and 
3
H-bile acids levels were determined by scintillation counting and 

normalized to the recovery of 
14

C-cholic acid. 

  To measure gene expression in recovered BMMs, 48 hours after 
3
H-macrophage 

injection the peritoneal cavity of the mouse was flushed with PBS and cells were 
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collected. Recovered cells were lysed with PureZOL (Bio-Rad), extracted with 

chloroform, and total RNA was isolated from the aqueous layer using an RNeasy kit 

(QIAGEN).  Quantitative RT-PCR was carried out as described above. 

 

Statistics. Results were analyzed by 1-way ANOVA with Tukey’s post-test using 

GraphPad Prism (GraphPad Software); p values of 0.05 or less were considered 

significant. 

4.2 Material and Methods for Chapter 3 

Reagents. LXR agonist T0901317 was purchased from Cayman Chemical (Ann Arbor, 

Michigan). 

Animal experiments. All animal experiments were approved by the Institutional Animal 

Care and Research Advisory Committee at the University of Virginia. Floxed LXRα mice 

were bred with C57BL/6J Albumin-Cre transgenic mice (Jackson Laboratories) to 

generate liver-specific knock out animals (LivKO). The littermates carrying flox/flox 

allele were used as their control (Flox).  

Ldlr
–/–

/Lxrα
fl/fl

/Albumin-CRE
-
 and Ldlr

–/–
/Lxrα

fl/fl
/Albumin-CRE

+
 mice were 

created by mating Lxrα
fl/fl

/Albumin-CRE
+
 mice with Ldlr

–/–
 mice (male B6.129S7-

Ldlr
tm1Her

/J) purchased from Jackson Laboratories. Mice were fed standard chow ad 

libitum until put on study. To examine atherosclerosis in Ldlr
–/–

/Lxrα
fl/fl

/Albumin-CRE
-
 

and Ldlr
–/–

/Lxrα
fl/fl

/Albumin-CRE
+
 mice, 8-9 week old animals were placed on a Western 

diet (21% fat wt/wt, 0.15% cholesterol wt/wt; Test Diet 57BD) with or with 0.01% 

T0901317 added to the diet for 10 or 20 weeks. 
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Plasma analyses. Blood was collected into EDTA-coated tubes (Starstedt). Plasma was 

separated by centrifugation and assayed for total cholesterol (Thermo Scientific), 

triglycerides (Thermo Scientific). Plasma lipoprotein levels were analyzed by fast protein 

liquid chromatography using Superose HR6 columns followed by enzymatic assays for 

total cholesterol and triglycerides. 

Liver cholesterol and triglycerides. Liver lipids were extracted in Folch (chloroform: 

methanol, 2:1, v/v) 
572

. Liver samples (0.1 g) were homogenized in 4 ml of Folch. 

Extracts were then washed once with 1 ml of 50 mM NaCl and twice with 1 ml of 0.36M 

CaCl2/methanol. The organic phase was separated and brought up to 5 ml with 

chloroform. Fifty microliters of each sample and ten microliters of standards were mixed 

with 10 mL of 50% Triton X-114 in chloroform (v/v). Samples were air dried and then 

subjected to colorimetric enzymatic assays for total cholesterol (Thermo Scientific) or 

triglycerides (Thermo Scientific).  

Quantitative real-time PCR analysis. Total RNA was extracted from liver and small 

intestine using
 
RNA STAT-60 (Tel-Test, Inc.). RNA was treated with DNase I and then 

reverse transcribed
 
into cDNA with random hexamers using the SuperScript II First-

Strand
 
Synthesis System (Invitrogen). Primers for each

 
gene were designed using Primer 

Express Software (Applied Biosystems) and were validated as previously described
 699

. 

RT-qPCR
 
reactions contained 25 ng of cDNA, 150 nM of each primer, and

 
5 ml of SYBR 

GreenER PCR Master Mix (Invitrogen) and were
 
carried out in triplicate using an 

Applied Biosystems Prism
 
7900HT instrument. Relative mRNA levels were calculated 

using the comparative CT method normalized
 
to cyclophilin. 
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Quantitation of Atherosclerosis. Atherosclerosis, macrophage levels and collagen 

staining in root sections and en face preparations were quantitated as previously 

described 
549, 569, 700

. 

NMR lipoprotein measurements. Ldlr
-/-

/Lxrfl/fl
/Albumin-CRE

-
 and Ldlr

-/-

/Lxrfl/fl
/Albumin-CRE

+
 mice were fed a Western diet with or without 0.01% T0901317 

as described above (n=6/group). After 10 weeks, mice were euthanized, blood was 

collected into EDTA coated tubes and centrifuged at 3000 rpm for 15 minutes at 4°C to 

prepare plasma. Lipoprotein particle concentrations and size in plasma samples were 

analyzed by nuclear magnetic resonance (NMR) spectroscopy by LipoScience Inc. 

(Raleigh, NC) 
690

.   

Cholesterol efflux experiments. RAW264.7 cells were plated in 96 well plates (2x10
5
 

cells/well) and 24 hours later were labeled with 1µCi/ml 
3
H-Cholesterol (Perkin Elmer) 

in DMEM + 1% FBS media for 18-24 hours. Radiolabeled cells were washed with pre-

warmed PBS and incubated for 6 hours with serum-free media containing 0.03% pooled 

plasma (n=6 animals/group) as cholesterol acceptors.  Following incubation with 

acceptors, media was collected and radioactivity was measured by liquid scintillation 

counting.  Cells were washed with PBS, lysed in 100 ul of 0.2 N NaOH and radioactivity 

in cell lysates was quantitated by liquid scintillation counting. Cholesterol efflux was 

expressed as percentage of counts/minute (CPM) in the medium divided by the total 

counts (CPMmedia
 
/ (CPMmedia + CPMcell).  Acceptor dependent efflux was determined by 

subtracting the efflux of vehicle cells cultured without acceptor. Apolipoprotein AI (10 

μg/ml) or HDL (15μg/ml) was included as positive controls. Data is expressed as mean ± 

SEM of at least 8 wells/treatment.  
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Macrophage RCT experiments.  In vivo RCT experiments were carried out as described 

by Naik et al.
561

 in Ldlr
-/-

/Lxrfl/fl
/Albumin-CRE

-
 and Ldlr

-/-
/Lxrfl/fl

/Albumin-CRE
+
 mice 

fed a Western diet with or without 0.01% T0901317 for 9 weeks. Briefly, J774.A1 cells 

were loaded with 25 μg/ml acetylated low-density lipoprotein and 5 µCi/ mL 
3
H-

cholesterol for 48 hours in vitro. Cholesterol loaded cells were injected into the peritoneal 

cavity of mice (4.5 x 10
6
 cells/mouse, 3 x 10

6
 CPM, n = 6/group) which were housed 

individually for the duration of the experiment. Blood was collected at 6, 24, and 48 

hours after injection and the 
3
H-choelsterol in triplicate plasma samples was determined 

by scintillation counting. Levels of 
3
H tracer in the liver, 

3
H-total fecal sterols, fecal 

3
H-

choelsterol and fecal 
3
H-bile acids was measured as described by Naik et al. 

561
.   

 To measure gene expression in J774.A1 cells recovered from the peritoneal cavity 

of mice, cells were collected from the peritoneal cavity 48 hours after injection, lysed 

with Purzol (Biorad), extracted with chloroform and total RNA was isolated from the 

aqueous layer using an RNeasy kit (Qiagen). RNA was treated with DNase I and then 

reverse transcribed into cDNA with random hexamers using a High Capacity cDNA 

Reverse Transcription kit (Applied Biosystems). RT-qPCR
 
reactions contained 20 ng of 

cDNA, 385 nM of each primer, and
 
8 μl of iQ SYBR Green Supermix (Biorad) and were

 

carried out in triplicate using a Biorad MyiQ instrument. Relative mRNA levels were 

calculated using the comparative CT method normalized
 
to cyclophilin.  

Gene expression in whole blood and liver. Fresh whole blood (approximately 350 μl) 

was collected in heparinized capillary tubes, transferred to ependorf tubes and cells were 

lysed with 0.7 ml Purazol (Biorad). Following lysis, 150 ul of chloroform was added and 

total RNA was isolated from the aqueous layer using an RNeasy kit (Qiagen). ABCA1 
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mRNA levels were measured and normalized to cyclophilin as described above. Liver 

samples were lysed in Purazol (Biorad), extracted with chloroform and total RNA was 

isolated from the aqueous layer using an RNeasy kit (Qiagen). PLTP mRNA were 

measured and normalized to cyclophilin as described above. 

Statistical analyses. Results were analyzed by one-way analysis of variance (ANOVA) or 

Student’s unpaired t-test, using GraphPad Prism (GraphPad Software, Inc.). 
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Table 4.1 Oligonucleotides for real-time PCR. 

 

Mouse cyclophilin 5’ CGATGACGAGCCCTTGG 3’ 

5’ TCTGCTGTCTTTGGAACTTTGTC 3’ 

Mouse ABCA1 5’ GCTCTCAGGTGGGATGCAG 3’ 

5’ GGCTCGTCCAGAATGACAAC  3’ 

Mouse ABCG1 5’ ATCTGAGGGATCTGGGTCTGA 3’ 

5’ CCTGATGCCACTTCCATGA 3’ 

Human CETP 5’ GGCCAATCAAGTATGGGTTG 3’ 

5’ ACAGACACGTTCTGAATGGAGA 3’ 

Mouse ABCG8 5’ TGCCCACCTTCCACATGTC 3’ 

5’ ATGAAGCCGGCAGTAAGGTAGA 3’ 

Mouse ABCG5 5’ ATGAAGCCGGCAGTAAGGTAGA 3’ 

5’ GGCAGGTTTTCTCGATGAACTG  3’ 

Mouse ATF4 5’ GCAGTGTTGCTGTAACGGACA 3’ 

5’ CGCTGTTCAGGAAGCTCATCT 3’ 

mXBP1 (s) 5’ GAGTCCGCAGCAGGTG 3’ 

5’ GTGTCAGAGTCCATGGGA 3’ 

Mouse CHOP 5’ CCACCACACCTGAAAGCAGAA 3’ 

5’ AGGTGAAAGGCAGGGACTCA 3’ 

Mouse BIP 5’ TTCAGCCAATTATCAGCAAACTCT 3’ 

5’ TTTTCTGATGTATCCTCTTCACCAGT 3’ 

Mouse TNFα 5’ CTGAGGTCAATCTGCCCAAGTAC 3’ 

5’ CTTCACAGAGCAATGACTCCAAAG 3’ 

Mouse IL-1β 5’ GGAGAACCAAGCAACGACAAAATA 3’ 

5’ TGGGGAACTCTGCAGACTCAAAC 3’ 

Mouse CD36 5’ ATGGGCTGTGATCGGAACTG 3’ 

5’ TTTGCCACGTCATCTGGGTTT 3’ 

Mouse LSR 5’ CTACAACCCCTATGTGGAGTGC 3’ 

5’ CTGCCCTGGTAGTAGTCTCCC 3’ 

Mouse LRP1 5’ CCACTATGGATGCCCCTAAAAC 3’ 

5’ GCAATCTCTTTCACCGTCACA 3’ 

Mouse SRB1 5’ TTTGGAGTGGTAGTAAAAAGGGC 3’ 

5’ TGACATCAGGGACTCAGAGTAG 3’ 

Mouse LDLR 5’ TCAGACGAACAAGGCTGTCC 3’ 

5’ CCATCTAGGCAATCTCGGTCTC 3’ 

Mouse PLTP 5’ TGGGACGGTGTTGCTCAA 3’ 

5’ TCGATGCCCACGAGATCA 3’ 
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Chapter 5: CONCLUSION AND FUTURE DIRECTIONS 

Cardiovascular disease is a leading cause of death worldwide and the morbidity and 

mortality from this disease is only likely to increase as rest of the world westernizes.  Statins, 

likely the most widely prescribed drug ever developed, are the current standard of care for the 

treatment of cardiovascular disease.  While statins are quite effective for reducing plasma LDL-C 

levels and subsequently lowering cardiovascular risk many patients with cardiovascular disease 

who are on statin therapy still go on to develop major adverse cardiac events (stroke, myocardial 

infarction, etc.).  This high residual risk among patients signifies the importance of uncovering 

other complementary or alternative approaches for the treatment of cardiovascular disease.  

The liver X receptors (LXRs), are key modulators of cholesterol homeostasis throughout 

the body and pharmacological activation of LXRs has been shown to reduce atherosclerosis in 

several animal models. Much effort has been undertaken to uncover the potential anti-atherogenic 

function of LXRs in hopes of developing novel therapeutic targets for CVD that could either 

complement or supplant statins. The discovery that LXRs control macrophage cholesterol efflux 

via direct regulation of ABCA1, ABCG1, and APOE
570, 640

 suggested a simple hypothesis for the 

cardio-protective effect of LXR activation based on promoting cholesterol efflux from 

macrophage foam cells to HDL; the first step of the RCT pathway. This hypothesis is supported 

by the finding that macrophage LXR activity is required for the anti-atherogenic activity of LXR 

agonists
549

.  However, LXRs also modulate other key steps in the RCT pathway, namely 

increasing HDL-C (intestine), promoting cholesterol secretion (liver), and blocking cholesterol 

absorption (intestine).  

 The propensity of LXR agonists to increase plasma triglyceride levels through activation 

of LXRα in the liver presented a major challenge however for researchers interested in 

developing LXR-targeted therapeutics. There has been great interest, therefore, in uncovering 

subtype or tissue specific synthetic LXR agonists that could mitigate the negative effect of liver 

LXRα activation. A significant body of work has now identified the LXR subtype and tissue 
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specific contributions to the anti-atherogenic activity of LXR agonists (see tables 1.1 and 1.2). 

Yet, LXR activation has pleiotropic effects and can either repress or activate various gene 

networks. The contribution of these various LXR-dependent pathways to atherosclerosis and the 

anti-atherogenic effects of agonist treatment are currently under investigation. Since early 

discoveries identifying a major role for LXRs in regulating macrophage cholesterol efflux and 

RCT the field has widely believed that these effects underlie much of the athero-protective effects 

of LXR agonists. 

In Chapter Two I investigated the tissue specific contribution of LXR to agonist-

stimulated RCT. I chose this project primarily for two reasons – first, despite intriguing findings 

in the literature
561, 648, 662, 701

, I felt that the contribution of LXR in the macrophage, liver and 

intestine to agonist-stimulated RCT had not yet been systematically addressed. Second, my 

studies from the JCI manuscript revealed surprisingly that agonist-stimulated macrophage efflux 

was impaired in Ldlr
-/- 

/LivKO animals.  This unexpected finding led me to question the 

contribution of LXRs in sites other than the macrophage that may influence agonist-stimulated 

efflux. My goal for the project was not only to uncover the role of LXRs at various sites on 

mediating RCT, but also to further the understanding of the potential anti-atherogenic effects of 

LXR agonists in macrophages. For instance, the atheroprotective activity of LXR agonists 

requires macrophage LXR expression
549

; however, the contribution(s) of LXR-stimulated 

cholesterol efflux and LXR-dependent anti-inflammatory activity to this effect is unknown. If my 

studies revealed that macrophage efflux occurred independently of macrophage LXR expression 

that would provide evidence that the athero-protective function of LXR in these cells was perhaps 

due to its anti-inflammatory effects. In the studies reported in Chapter Two, I combined in vitro 

and in vivo measurements of cholesterol efflux and RCT with different LXR genetic models to 

address the role of LXR in the macrophage, liver, and intestine.   
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Role of Macrophage LXR in agonist-stimulated RCT 

The first data I gathered implicated that macrophage LXR activity was neither necessary 

nor sufficient for LXR agonists to increase either macrophage cholesterol efflux or fecal 

excretion in vivo. In this study I showed that when macrophages from Lxrα
-/- 

/Lxrβ
-/-

 (DKO) mice 

were introduced into C57bl6/J animals there was no impairment in agonist-stimulated RCT, at 

least as measured in an acute assay over a 48 hour time course.  This was a somewhat surprising 

finding as it has been assumed that LXR agonists must act directly on the macrophage to increase 

macrophage cholesterol efflux. Moreover, there was no agonist-stimulated RCT when C57bl6/J 

macrophages were introduced into DKO mice.  To convince myself that the increase in 

macrophage cholesterol efflux was a cell autonomous effect, I analyzed gene expression in cells 

re-extracted from the peritoneal cavity.  These studies revealed that indeed the injected 

macrophages were behaving as expected – C57bl6/J macrophages responded to T0901317 

treatment, increasing ABCA1 transcript levels while DKO macrophages did not. To further 

address the contribution of macrophage LXR to agonist-stimulated macrophage efflux I repeated 

the in vivo RCT study with vehicle and T0901317 treated C57bl/J mice injected with 
3
H-labeled 

DKO or LXR+ BMM. I then quantified 
3
H-cholesterol accumulation in the plasma at time points 

up to 90 minutes so I could more specifically capture the contribution of the macrophage 

genotype to agonist-stimulated efflux. Pretreatment with T0901317 significantly increased 
3
H-

cholesterol in the plasma by 60 minutes and macrophage genotype had no effect on the response 

to agonist. Taken together, these studies show that LXR agonists increase macrophage cholesterol 

efflux and RCT independently of macrophage LXR activity.   

Future Directions: LXR activation in hematopoietic cells is required for the anti-atherogenic 

activity of LXR agonists
549

; however, data from my studies suggest that this athero-protective 

function does not arise from macrophage LXR stimulated cholesterol efflux. In addition to 

increasing expression the of genes involved in cholesterol transport and metabolism, LXRs 
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agonists are known to have anti-inflammatory activities, primarily by suppressing NFkB-

dependent signaling.  Inflammation is now widely recognized to be a major contributor to 

atherogenesis, thus the athero-protective effects of hematopoietic LXRs may reside in their ability 

to suppress inflammation in macrophages located in atherosclerotic lesions. A model has been 

proposed suggesting that LXRs repress inflammation through a SUMOylation dependent 

mechanism that does not require the activation of LXR target genes.  Therefore, it may be 

possible to separate the anti-inflammatory properties of LXR agonists from their cholesterol 

efflux activities.  Genetic and/or pharmacological approaches to address the pathway selective 

(anti-inflammatory vs. cholesterol efflux) contribution of macrophage LXR to the athero-

protective activity of LXR agonists will not only further the understanding of the role of LXRs in 

atherosclerosis but may lead to the development of novel LXR targeted therapeutics for the 

treatment of cardiovascular disease.  A future study to address how pathway specific LXR 

activity limits atherosclerosis was the subject of my F30 and AHA fellowship application, which 

I have included as appendix 1. 

Role of intestinal LXR in agonist-stimulated RCT 

The finding that LXR agonists increase macrophage efflux independently of macrophage 

LXR activity led me to question the effect of agonists on the cholesterol acceptor activity of 

plasma. Previous studies have determined that LXR agonists increase HDL cholesterol by 

inducing ABCA1 expression in the intestine
529, 579, 661

. Consistent with a potential role for 

intestinal LXR in regulating  agonist-stimulated RCT, pharmacological
648

 or genetic 

approaches
662

 selectively activating LXRs in the intestine increases RCT when measured using 

similar assays to what I used in these studies. HDL-C levels increased in T0901317 treated LXR+ 

mice and consequently plasma from these animals had increased cholesterol acceptor activity in 

vitro. The effect of agonist was lost however when plasma from DKO animals was used. To 

further address the contribution of LXR agonist to HDL functional activity, I repeated the in vitro 

efflux experiments using FPLC-purified HDL particles. Using APOA1 as a relative measure of 
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particle number, I discovered that LXR agonists increase the cholesterol acceptor activity of HDL 

from LXR+ mice. There was no effect of agonist treatment on the acceptor activity of HDL 

isolated from DKO animals. Together, these studies demonstrate that LXR agonist treatment not 

only increases HDL levels, which has been known, but can also promote HDL function, which is 

a novel finding. One possible explanation is that intestinal LXR activation specifically increases 

the production of immature nascent particles that are thought to be preferred cholesterol 

acceptors
663-665

. 

Over the course of the in vivo RCT experiment it is likely that macrophage-derived 
3
H-

cholesterol incorporates into cells and tissues throughout the body. Indeed, approximately 20% or 

less of injected 
3
H tracer is recovered in the plasma, liver, feces and re-extracted cells combined 

at the conclusion of the RCT studies.  To address this, as well as the possibility that LXR agonists 

may increase the amount of cholesterol in plasma by promoting efflux from other sites, I 

quantified 
3
H-sterol levels in additional tissues of vehicle or T0901317 pre-treated LXR+ mice 

injected with 
3
H-labeled LXR+ macrophages. By mass the majority of 

3
H labeled was 

incorporated into skeletal muscle. Interestingly, I observed a significant agonist-dependent 

decrease in 
3
H-sterol accumulation in white adipose tissue suggesting that fat may also make an 

important contribution to LXR-stimulated accumulation of cholesterol in plasma and feces. 

Importantly, the decrease in adipose 
3
H-sterol levels could result from increased LXR 

transcriptional activity in fat cells, the improved activity of HDL or both.  

Future Direction: Identify the contribution of LXR activity in the adipocyte  to LXR 

agonist-dependent RCT and increases in HDL function. 

Adipose tissue is the largest free cholesterol reservoir in the body
702

 and abundantly 

expresses ABCA1
703

. Moreover, there is accumulating evidence that an imbalance in cholesterol 

levels in adipose tissue results in adipocyte dysfunction and obesity-mediated metabolic 

complications, including low levels of HDL cholesterol and insulin resistance
704

.  Deletion of 
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ABCA1 specifically in adipocytes reduces apoA1-stimulated cholesterol efflux from fat and 

decreases nascent HDL particle formation
705

. Furthermore, there is a strong positive correlation 

between adipocyte cholesterol content and ABCA1 expression
705

 suggesting that LXR may play 

an important role in mediating ABCA1-dependent efflux and HDL metabolism in fat. It is 

possible, therefore, that an additional site of LXR dependent increases in HDL mass and function 

arises from activation in adipocytes; a possibility that was not explored in my studies. Moreover, 

the observation that LXR agonist treatment prevents high fat diet-induced obesity and insulin 

resistance in C57bl6/J
706

 mice supports the potential importance of adipocyte LXRs. The Collins 

laboratory published studies of an adipose LXRα knockout in which they found that these mice 

gained more weight and fat mass on a high-fat diet indicating that LXRα plays an important role 

in adipocyte lipolysis and fatty acid oxidation
707

.  While the adipose-specific LXRα knockout and 

global Lxrα
-/-

 animals are obesity prone
708

, LXRα
-/-

 /LXRβ
-/-

 animals have been shown to be 

obesity resistant
572, 709

, suggesting that LXRβ may mediate lipolysis and energy balance in 

adipose as well. Thus, a complete adipose double Lxrα
-/-

 /Lxrβ
-/-

 knockout should be generated in 

order to address the contribution of LXRs in the adipose to RCT and HDL metabolism. The 

adipose-specific LXRα animals could be crossed into the global LXRβ
-/-

 knockout to generate 

adipose-specific Lxrα
-/- 

Lxrβ
-/-

 animals. An alternative approach, although less favorable, would 

be to use the adipocyte-specific Abca1
-/-

 knockout mouse as LXR regulated cholesterol efflux and 

effects on HDL synthesis would likely be greatly diminished in these animals as well. Measuring 

LXR agonist-stimulated cholesterol efflux in vivo and in vitro in an adipocyte-specific LXRα
-/-

 

/LXRβ
-/-

 knockout animal or alternatively the adipose-specific Abca1
-/- 

would address the 

contribution of LXR activity in the fat to RCT and HDL.   

CETP inhibits LXR agonist-stimulated macrophage efflux 

To test the hypothesis that agonist-dependent increases in HDL levels are responsible for 

stimulating macrophage efflux in T0901317 treated animals, I took advantage of the CETP 

transgenic model in which LXR agonists lose the ability to raise HDL-cholesterol
598, 657

. In my 



217 
 

studies LXR agonist treatment increased CETP expression and plasma activity and consequently 

lowered HDL levels in these animals. Both in vivo agonist-dependent macrophage cholesterol 

efflux as well as the acceptor activity of FPLC-purified HDL was decreased in CETP transgenic 

mice. These findings supported the hypothesis that the macrophage cholesterol efflux measured 

in the in vivo RCT assay is primarily determined by the amount and functional activity of HDL. 

The finding that increasing CETP activity impairs HDL function is consistent with reports that 

inhibition of CETP activity improves the cholesterol acceptor activity of human HDL particles
667

.  

Despite a loss of agonist-stimulated macrophage cholesterol efflux in vivo, I found that 

LXR agonist treatment still increased the fecal excretion of macrophage-derived cholesterol in the 

CETP transgenic mice. Using adeno-viral over expression Tanigawa et al.
710

 also observed a 

similar ability of CETP expression to increase fecal cholesterol excretion without impacting 

macrophage efflux. Taken together, I believe that these results suggest, at least under these 

conditions, that macrophage cholesterol efflux is not a rate-limiting step for RCT. Combined with 

the finding that fecal cholesterol excretion is controlled by liver LXRα activity, these studies 

indicate that it is possible to functionally segregate macrophage cholesterol efflux from fecal 

excretion. Macrophage efflux is primarily controlled by the ability of LXRs to increase the 

quantity and quality of HDL while fecal excretion is controlled by LXR-dependent regulation of 

hepatic ABCG5 and ABCG8 levels allowing LXRs to coordinate cholesterol movement 

throughout the body.  

The effect of diet on Liver LXRα activity 

 In the absence of liver LXRα expression T0901317 fails to increase the hepatic 

expression of genes involved in cholesterol excretion (ABCG5 and ABCG8) and bile acid 

synthesis (CYP7a) and consequently agonist-stimulated fecal cholesterol excretion is lost. On 

standard chow diet deletion of LXRα in the liver has no effect on the ability of LXR agonists to 

increase intestinal ABCA1 expression, raise HDL-C levels and HDL acceptor function or to 

promote macrophage efflux.  However, when challenged with a 0.2% cholesterol diet LXR 
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agonist-dependent macrophage cholesterol efflux is significantly impaired.  Consistent with the 

loss of agonist-stimulated macrophage efflux, the ability of agonists to increase HDL levels and 

function is also significantly attenuated 0.2% cholesterol diet fed LivKO animals.  From my 

studies I was unable to determine the reason(s) for the loss of the positive effect of agonists on 

HDL in LivKO mice under dietary cholesterol challenge.  LXR agonist treatment still increased 

ABCA1 expression in the intestine of 0.2% cholesterol diet fed LivKO animals so presumably 

HDL levels should have similarly increased.  Compared to littermate controls on the 0.2% 

cholesterol diet, LivKO mice had increased hepatic cholesterol levels although I did not detect 

any evidence for increased hepatic inflammation, endoplasmic reticulum stress or liver damage 

that might influence HDL formation. We and others have shown, however, that the ability of 

LXR agonists to increase HDL levels is lost under severe hyperlipidemic conditions such as Ldlr
-

/-
 or Apoe

-/- 
mice on Western diets

529, 548, 552, 628, 647
. Thus, the ability of LXR agonists to regulate 

HDL levels may in fact be influenced by the amount of dietary cholesterol present.  Interestingly, 

Lxr-/-
/Lxr-/-

 are resistant to high fat diet-induced obesity, however, this resistance is only 

observed when the high fat diet also contains cholesterol
572

.  

Future Directions – Identification of cholesterol sensitive signaling molecules in LivKOs 

Hepatic cholesterol increases in LivKO animals fed cholesterol enriched diet compared to 

littermate controls. This accumulation of hepatic cholesterol may lead to the generation of a 

paracrine or endocrine signal that could alter lipid metabolism in other tissues thereby influencing 

LXR-dependent HDL metabolism. In support of the potential role of liver LXRα in regulating 

hepatic endocrine signaling, bile acids, in addition to their well-established roles in cholesterol 

homeostasis, also have systemic endocrine functions
711

. Bile acids have been shown to activate 

mitogen-activated protein kinase (MAPK) pathways
712

, G protein coupled receptors
713

, and the 

farnesoid X receptor (FXR)α
714

. Through activation of these signaling pathways, bile acids can 

regulate triglyceride, cholesterol, and energy and glucose homeostasis. Thus, bile acids may be an 
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important modulator of lipoprotein metabolism.  Bile acids are the endogenous ligands for FXRα 

and as such FXRα is abundantly expressed in both the liver and intestine
715

. Importantly, several 

genes with a role in HDL metabolism are FXRα targets. For instance, FXRα induces human and 

rodent ApoC-II expression
716

. ApoC-II is a coactivator of lipoprotein lipase and its induction 

lowers serum triglycerides. Activation of FXRα in mouse models has been shown to reduce 

ApoA1 expression and lowers HDL-C levels
717

 whereas FXR-deficient mice are 

hypercholesterolemic because of an increase in HDL-C
718

.  Polyunsaturated fatty acids (PUFA) 

like arachidonic and linolenic acid
719

 as well as intermediates of the bile acid synthesis pathway
720

 

have been shown to be FXR ligands and modulators in vitro Bile acid intermediates have been 

proposed to be important FXR ligands during cholestasis or metabolic disorders when the 

compounds could potentially be in abundance.   

In the absence of liver LXRα activity bile acid synthesis is greatly reduced
529

 largely due 

to the loss of LXR-dependent increases in CYP7a expression. CYP7a is the rate-limiting step of 

the bile acid biosynthetic pathway. In the absence of CYP7a activity, it is possible that additional 

enzymes compensate and result in an accumulation of bile acid intermediates. Thus, in the setting 

of increased hepatic cholesterol such as occurs in 0.2% cholesterol diet fed LivKO mice, there is 

could be an accumulation of bile acid intermediates that activate FXR. In addition, liver LXRα 

deletion could increase PUFA synthesis similar to what has been reported in NCOR deficient 

macrophages due to the loss of LXR repressing activity
614

. Taken together, the potential increase 

in PUFAs and bile acid intermediates that occurs in 0.2% cholesterol diet fed LivKO mice that 

could activate FXRs and subsequently lower HDL levels and function.  This possibility could be 

explored in future studies, perhaps by using adeno-viral delivery of siRNAs targeted to FXR 

and/or pharmacologically inhibiting FXR activity in 0.2% cholesterol diet fed LivKO mice.  The 

expectation would be that inhibiting FXR would restore LXR agonist-stimulated increases in 

HDL mass and function in cholesterol diet fed LivKO mice. 
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LXR agonists enhance HDL cholesterol acceptor function 

 Recent clinical trials with niacin
633

 and CETP
428

 inhibitors have raised serious doubts 

about the cardio-protective effects of raising HDL cholesterol. The clinical trials together with 

experiments suggesting that the cholesterol acceptor activity of HDL isolated from patients can 

be a more accurate measurement of cardiovascular disease risk suggests that assessing HDL 

function may be more relevant than measurements of HDL cholesterol
371, 381, 412

. In addition to 

increasing HDL cholesterol levels, my studies presented in chapters two and three provide 

evidence, for the first time, that LXR agonist treatment also increases the cholesterol acceptor 

activity of HDL particles. HDL particles are heterogeneous in size and composition making it 

difficult to discern the LXR-dependent modifications that improve cholesterol acceptor activity. 

Yet, upon initial analysis I found that LXR agonist treatment increased the HDL phospholipid 

levels (normalized to ApoA1). The phospholipid:ApoA1 ratio in HDL is an important 

determining factor in predicting macrophage efflux
483, 484

 and studies with human sera show that a 

the correlation between macrophage efflux and HDL phospholipid levels is stronger than with 

any other measured lipoprotein parameter, including HDL cholesterol, APOA1 and 

triglycerides
485

. 

 The ability of LXR agonists to increase the acceptor capacity of HDL particles is lost in 

both 0.2% cholesterol-diet challenged LivKO and hyperlipidemic Ldlr
-/-

 /LivKO animals as well 

as in the presence of CETP expression.  In the cholesterol-fed LivKO animals the loss of agonist-

stimulated HDL function also correlates with an inability of LXR agonist treatment to increase 

HDL-phospholipid levels (HDL-phospholipids weren’t measured in Ldlr
-/-

 /LivKO animals). Why 

agonist treatment fails to promote HDL-phospholipids in cholesterol-diet fed LivKO animals may 

be, a suggested above, due to FXR activation by bile acid intermediates or PUFA. CETP 

expression, however, impacts HDL function without modulating phospholipid levels suggesting 

that multiple components of HDL can influence particle function. Furthermore, additional studies 

in our lab identified changes in HDL associated peptides (data not shown) in hyperlipidemic Ldlr
-
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/-
 /LivKO compared to floxed controls further providing evidence that LXRs can regulate HDL 

lipids and proteins.  

Future Directions: High resolution proteomic and lipidomic analysis of lipoprotein particles 

from LivKO mice. 

   LXRs likely regulate multiple pathways that modulate HDL activity and future studies 

using detailed proteomic and lipidomic approaches could be used to further define the LXR-

dependent changes in HDL composition that regulate HDL particle function. Such studies that 

define the LXR-agonist dependent changes in particle composition that are associated with 

increased particle function (cholesterol acceptor activity) would be insightful for future HDL-

targeted therapeutic strategies.  Proteomic and lipidomic analysis of lipoprotein particles is still in 

its infancy and results differ greatly depending on particle isolation procedures. The majority of 

studies have used ultracentrifugation to isolate HDL prior to proteomic analysis, however this 

method does not provide complete separation from either plasma proteins or LDL
721, 722

. 

Importantly, populations of small LDL particles in particular have been shown to co-precipitate 

with HDL2 particles upon ultracentrifugation
722

.  My studies described in chapter three identified 

a preponderance of small LDL in plasma from hyperlipidemic Ldlr
-/-

 /LivKO mice; therefore, any 

future studies examining LXR-dependent changes in HDL composition and function should 

employ high resolution FPLC and not ultracentrifugation.   

Contribution of Liver LXRα to HDL function and Atherosclerosis 

 Studies presented in Chapter Three characterize the liver-specific LXRα knockout mouse, 

the first conditional LXR-deficient animal, which was generated by the Mangelsdorf laboratory at 

UT-Southwestern. Members of the Mangelsdorf lab provided the early work that demonstrated 

the critical role for liver LXRα in regulating hepatic cholesterol excretion and catabolism. Several 

studies have described a trans-intestinal pathway for cholesterol excretion independent of the 

biliary system that can be stimulated by LXR activation
577, 685, 686

. The work from Mangelsdorf’s 
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group, however, suggests that the trans-intestinal pathway makes only a minor contribution to 

LXR agonist-dependent cholesterol excretion.  

 Synthetic LXR agonists increase plasma triglycerides and plasma HDL cholesterol, 

however, which sites contributed to these pharmacological responses to LXR activation were 

unknown
524, 583

. Analysis of the LivKO knockout mice demonstrated that these responses occur at 

unique sites. LXR activation in the liver is responsible for agonist-dependent increases in plasma 

triglycerides while LXR activation in the intestine drives the agonist-stimulated rise in HDL 

cholesterol. Indeed, consistent with the idea that intestinal LXR activity is primarily responsible 

for elevating HDL cholesterol, Brunham et al
579

 showed that expression of ABCA1 in the 

intestine is required for LXR agonist-dependent HDL cholesterol increases, while Lo Sasso et al. 

demonstrated that transgenic overexpression of a constitutively active LXRα in the intestine 

increases HDL
662

. 

 Treatment with LXR agonists is athero-protective in mouse models, however, in these 

hyperlipidemic settings LXR agonists have little or no effect on HDL cholesterol levels, and this 

has led to the conclusion that the anti-atherogenic activity originates from increased macrophage 

cholesterol efflux and/or other LXR regulated pathways in immune cells in atherosclerotic 

plaques
548, 549, 628

. Yet, the anti-atherogenic activity of LXRs is not solely derived from activation 

in immune cells. While selective deletion of LXRα in hematopoietic cells increased 

atherosclerosis (Ldlr
-/-

 background), the effect was not as great as measured in the Ldlr
-/-

 /Lxrα
-/-

 

global knockout mice
549, 569, 628

.  Therefore, following the initial characterization of the LivKO 

animals performed by Mangelsdorf’s group, we generated Ldlr
-/- 

/LivKO animals in order to 

address to the role of liver LXR in atherosclerosis. Deletion of LXRα in hepatocytes increases 

Western diet induced atherosclerosis, indicating that the liver is a critical site of LXRα-dependent 

athero-protective activity. 

Noting striking differences in the plasma lipid levels between Ldlr
-/- 

/LivKO mice and 

Ldlr
-/- 

/floxed controls, I analyzed the lipoprotein profiles of these mice looking for any change in 
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particle number or composition that might influence the increased atherogenicity of the Ldlr
-/- 

/LivKO mice. My analysis suggested that hepatic LXRα modulates lipoprotein particle number, 

size, and function in a manner that influences atherosclerosis. As I describe in the studies 

presented in Chapter Three, there is impairment in HDL cholesterol acceptor function in 

hyperlipidemic Ldlr
-/-

/LivKO mice. Impaired HDL function in these animals correlated with a 

decrease in total HDL particle number that was largely the result of a decrease in small HDL 

(diameter  <8.2 nm).  Furthermore, while Ldlr
–/–

/floxed and Ldlr
–/–

/LivKO animals had similar 

numbers of LDL particles, there was a dramatic shift in particle size with almost 50% of the Ldlr
–

/–
/LivKO particles being small LDL (diameter  < 21 nm). As discussed in Chapter One, small 

LDL particles are believed to have increased atherogenic properties and promote macrophage 

foam cell formation. Yet I did not detect a difference in cholesterol accumulation when bone 

marrow-derived macrophages were cultured in vitro in the presence of plasma or FPLC-purified 

apoB-containing lipoproteins from Ldlr
-/-

/floxed or Ldlr
-/-

/LivKO animals. Furthermore, I did not 

detect any differences in either the oxidative properties or inflammatory state of plasma or FPLC-

purified apoB-containing lipoproteins from Ldlr
-/-

/floxed or Ldlr
-/-

/LivKO animals. Thus, 

preliminary analysis of apoB-containing lipoproteins from Ldlr
-/-

/LivKO animals suggests that 

despite the change in size there is no increase in atherogenicity of these particles. More detailed 

studies, however, including lipidomic and proteomic analysis of Ldlr
-/-

/LivKO LDL and HDL 

particles, similar to the proposal outlined above, would provide valuable insight and address such 

questions as the contribution of different pathways to atherogenesis (i.e. HDL function vs. LDL 

atherogenicity) as well as the role of  hepatic LXRα in atherosclerosis.   

Despite the increase in atherosclerosis in Ldlr
-/-

/LivKO animals, agonist treatment still 

effectively reduces disease, indicating that the anti-atherogenic activity of LXR agonists is extra-

hepatic. My in vivo RCT analysis in Ldlr
-/-

/LivKO mice indicates that fecal cholesterol excretion 

is not required for the protective action of agonists. Intriguingly, I discovered that agonist-

stimulated macrophage efflux also appeared to be blocked in Ldlr
-/-

/LivKO thereby suggesting 
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that macrophage efflux was also was not required for the cardio-protective effects of LXR 

agonsits.  This observation led to the studies presented in Chapter two as well as the hypothesis 

that an additional LXR regulate pathway in immune cells is responsible for the anti-atherogenic 

activity of agonists. A number of additional functions for LXRs in immune cells have been 

identified, including the ability to control inflammation
640

, endoplasmic reticulum stress
695

, 

macrophage egress
556

, and monocyte proliferation
697, 698

. Any one or a combination of these 

activities could be responsible for providing athero-protection in response to macrophage LXR 

activation by agonists. I believe a major path forward from my body of work would be the 

identification of such a pathway(s) in macrophages that are responsible for the athero-protective 

activity of LXR agonists. This future direction is described in detail in the following chapter.  

In conclusion, the novel findings from this body of work include: 

1. Macrophage LXR activity is neither necessary nor sufficient to promote agonist 

stimulated RCT. 

2. Liver LXRα regulates LXR-dependent lipogenesis, biliary cholesterol excretion and 

fecal cholesterol loss.  

3. LXR-dependent increases in HDL-cholesterol originate from LXR regulation of 

ABCA1 in the intestine. 

4. Agonist-dependent increases in HDL levels and cholesterol acceptor activity drives 

agonist-stimulated macrophage cholesterol efflux in vitro and in vivo. 

5. In the presence of CETP, the ability of LXR agonists to increase HDL quantity and 

quality is lost and consequently agonist-stimulated macrophage efflux is impaired.  

6. On a chow diet, there is no effect of liver LXRα deletion on HDL function and 

macrophage cholesterol efflux in vivo; however, the presence of dietary cholesterol 

impairs agonist-stimulated increases in HDL quality and quantity and macrophage 

efflux in liver-specific LXRα deficient mice.  
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7. There is a change in lipoprotein particle number and size in Ldlr
-/-

/LivKO animals 

reflecting a preponderance of small LDL and reduction in small HDL.  

8. Loss of hepatic LXRα activity increases atherosclerosis. 

9. The atheroprotective function of LXR agonists is independent of hepatic LXRα 

activity and does not require an increase in fecal cholesterol excretion; furthermore, 

the protective function of LXR agonist may even be independent of increased 

macrophage cholesterol efflux.   
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 APPENDIX 1: Pathway specific LXR activity limits atherosclerosis 

What lies herein is a version of a grant application submitted in late 2012 for 

consideration for a F30 fellowship from the NIHLBI. This proposal received an impact 

score of 20 however was unfunded. I believe that this proposal presents a relevant path 

forward in continuation of the novel findings that have arisen from my body of work.  In 

the time since this proposal was submitted, however, an alternative mechanism for LXR 

anti-inflammatory activities has been published which complicates my proposed project 

below.  I have address this new data and presented an additional method to study the 

contribution of macrophage LXR anti-inflammatory activity to the athero-protective 

function of LXR agonists at the conclusion of this chapter.  

 
1. SPECIFIC AIMS 

Atherosclerosis, one of the greatest health concerns of the western world, is a disease marked 

by chronic inflammation and disordered lipid metabolism. The Liver X Receptors, LXRα 

(NR1H3) and LXRβ (NR1H2) are ligand activated transcription factors that control cholesterol 

homeostasis and suppress inflammation throughout the body. Treatment with LXR agonists has 

been shown to reduce atherosclerosis in animal models, an effect dependent on macrophage LXR 

expression. A major limitation to the development of LXR ligands for the treatment of 

cardiovascular disease, however, is their propensity to increase plasma triglycerides by inducing 

sterol regulatory element binding protein 1c (SREBP1c) mediated hepatic lipogenesis. 

LXR activation increases the expression of genes regulating reverse cholesterol transport 

(RCT), the movement of cholesterol from the periphery through the liver ultimately promoting 

increased fecal cholesterol excretion. LXR regulates RCT through transactivation (Figure 5.1A), 

or the agonist dependent recruitment of co-activator proteins to the promoter of target genes. 

Recent studies also have identified an important role for LXR in suppressing inflammatory genes 

such as interleukin β (IL-1β), Inducible Nitric Oxide Synthase (iNOS), and Monocyte 

chemoattractant protein 1 (MCP-1), which all contribute to atherogenesis (Figure 6.1B). Agonist 

binding promotes a conformational change in LXR allowing receptor SUMOylation. 

SUMOylated LXR is recognized and bound by corepressor complexes at the promoter region of 

NFκB pro-inflammatory genes. Upon inflammatory stimulus – e.g. LPS or oxidized LDL – 

SUMOylated LXR prevents corepresssor dissociation thereby maintaining active gene repression. 

LXR agonists that have demonstrated the atheroprotective activity of LXRs are not pathway 

selective, therefore, it is unclear whether LXR transactivation of metabolic/RCT genes (Figure 

5.1) or LXR transrepression (Figure 1B) of inflammatory signaling, or a combination of both is 

responsible for the beneficial effects of synthetic agonists. 

We have recently shown that the athero-protective activity of LXR agonists is independent of 

promoting RCT and, furthermore, increased macrophage cholesterol efflux may not even be 

required. However, LXR expression is necessary in the hematopoietic compartment for the 

beneficial effect of agonists. Therefore, we hypothesize that transrepression by LXR of 

inflammatory signaling in the macrophage is responsible for the anti-atherogenic effect of 

synthetic LXR agonists. First generation LXR agonists have failed in the clinic because of their 

propensity to increase plasma triglycerides due to LXR transactivation in the liver. However, if 

transrepression is responsible for the beneficial activity of LXRs, a 2
nd

 generation of pathway 

selective LXR agonists could be developed that would circumvent the negative side effects 

associated with 1
st
 generation agents. The main goal of this proposal is to determine the 

contribution of anti-inflammatory LXR activity to the athero-protective effect of LXR 

agonists.  
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SPECIFIC AIM 1: Identify and characterize LXR mutants that dissociate LXR 

transactivation and transrepression pathways.  It has recently been suggested that the 

transrepression of inflammatory signals by LXR agonists is SUMOylation dependent, and LXR 

SUMOylation defective mutants inhibit LXR transrepression, however, have little to no effect on 

transactivation.  In Aim 1 we will use site directed mutagenesis to identify LXR mutants that 

dissociate LXR transactivation from LXR transrepression, and these mutants will be 

characterized in mouse primary macrophages. 

SPECIFIC AIM 2: Determine the contribution of anti-inflammatory LXR activity to the 

athero-protective effect of LXR agonists.  LXR agonists are athero-protective in the absence of 

RCT, thereby suggesting that the beneficial effect of agonists may be due to the anti-

inflammatory properties of LXR in macrophages.   LDLR
-/-

mice will be irradiated and 

reconstituted with bone marrow from transgenic mice that express pathway selective LXR 

mutants – i.e. promote macrophage cholesterol efflux or prevent inflammatory signaling. 

Recipient Ldlr
-/-

 mice will be fed a western diet in the absence or presence of LXR ligand and at 

the end of the study the extent of atherosclerosis will be quantified. This study will provide 

fundamental knowledge concerning the pathogenesis of atherosclerosis (e.g. inflammation vs. 

cholesterol accumulation) thereby identifying the important mechanism to target for the treatment 

of cardiovascular disease. 
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2. BACKGROUND AND SIGNIFICANCE 

Atherosclerosis 

 Critical to the development of atherosclerosis is the unregulated accumulation of oxidized 

cholesterol by macrophages in the blood vessel wall and the associated inflammatory response 

that leads to foam cell formation
723

. The role for increased plasma lipids and inflammation in the 

initiation and progression of atherosclerosis is now well appreciated
723-725

. Despite the efficacy of 

current therapy for lowering plasma lipids, the residual risk for developing complications from 

cardiovascular disease remains at ~75% in these patients
726

; thus alternative therapies, such as 

promoting the removal of cholesterol from the macrophage or limiting the inflammatory response 

are being explored
727

. 

LXRs and Macrophage Reverse Cholesterol Transport 

 The LXR sub-group of the nuclear hormone receptor superfamily is comprised of two 

subtypes, LXRα and LXRβ
512

. The two subtypes have considerable sequence homology; 

however, they differ in tissue expression. LXRα is more highly expressed in the liver, kidney, 

intestine and macrophages. In contrast, LXRβ is more ubiquitously expressed
516

. Both LXRs bind 

to DNA and regulate transcription as heterodimers with retinoid X receptors (RXRs)
518

. The link 

between LXRs and lipid metabolism came from the identification of cholesterol derivatives 

including 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 24(S),25-hydroxycholesterol 

as agonists that directly bind to both LXRs and increase their transcriptional activity by 

promoting the release of trans-acting corepressor and interactions with trans-acting 

coactivators
520, 548, 728-730

. 

 Gene expression analysis of mice treated with synthetic LXR agonists identified the ATP 

binding cassette transporter ABCA1 as a direct LXR target gene
731, 732

. ABCA1 is required for the 

process of reverse cholesterol transport (RCT), the mechanism by which peripheral cells efflux 

internal cholesterol to HDL particles
380, 733

. Loss of functional ABCA1 results in Tangier disease, 

a condition in which patients have low levels of circulating HDL and an increased risk for 

developing atherosclerosis. Fibroblasts from patients with Tangier disease are unable to efflux 

cholesterol, suggesting that low HDL levels and increased risk of atherosclerosis results from loss 

of reverse cholesterol transport
376-378

. As described above, accumulation of oxidized cholesterol 

by macrophages in the arterial wall is an initiating step in the development of atherosclerotic 

lesions. Not surprisingly, transfer of ABCA1 deficient macrophages into hyperlipidemic mice 

results in increased levels of atherosclerosis
734

.  

 Treatment of primary macrophages with LXR agonists results in induction of the ABCA1 

gene, increased ABCA1 protein and an increase in cholesterol efflux
732

. Importantly, binding sites 

for LXR-RXR heterodimers have been identified in the promoter of the ABCA1
732

 gene and in 

the control regions of other genes encoding additional proteins involved in reverse cholesterol 

transport, such as ABCG1
735

; thus, activation of LXR promotes a mobilization of cellular 

cholesterol from peripheral macrophages and other cells to HDL
562

. 

Regulation of Hepatic Lipid Metabolism by LXR 

 LXRα single knockout mice accumulate large amounts of cholesterol in the liver when 

challenged with a high cholesterol diet. Molecular analysis uncovered aberrant regulation of 

CYP7a, which encodes cholesterol 7α hydroxylase, the rate-limiting enzyme in the conversion of 

cholesterol to bile acids
520, 541

. Additionally, the ATP binding cassette transporters ABCG5 and 

ABCG8 which excrete cholesterol out of the liver into the intestine were identified as LXR target 

genes
646

. Therefore in the liver LXRs control the catabolism of cholesterol to bile acids and the 

excretion of cholesterol into the intestine. Combined with the effects on reverse cholesterol 

transport in peripheral cells, activation of LXR results in the mobilization of cholesterol from the 

periphery and elimination from the body via catabolism and excretion. LXRs, therefore, monitor 

overall cholesterol balance by controlling the initial steps of RCT (transfer to HDL) in peripheral 

cells and the final steps of RCT (catabolism and excretion) in the liver
541, 561

. 
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Along with effects on cholesterol homeostasis, LXRs regulate expression of genes 

involved in fatty acid metabolism including the master transcriptional regulator of fatty acid 

synthesis SREBP1c
583, 584

, fatty acid synthase (FAS)
524

, and stearoyl CoA desaturase (SCD-1)
524

. 

The up-regulation of fatty acid synthesis is suggested to provide lipids for the storage of 

cholesterol as cholesterol esters. Indeed, treatment of mice with synthetic LXR ligands results in 

an increase in plasma triglycerides
529, 552, 736

. 

Anti-Inflammatory Activity of LXR  

 In addition to stimulating reverse cholesterol transport, studies in macrophages indicate 

that LXRs can inhibit the expression of several pro-inflammatory genes including iNOS, COX-2, 

and MMP-9
603

. Additionally, LXR agonists are effective in a mouse model of contact 

dermatitis
671

. Molecular analysis indicates that activation of LXR decreases the transcriptional 

activity of NFκB
737

. Since inflammation plays an important role in the pathogenesis of 

atherosclerosis the questions remains whether LXR mediates its anti-atherogenic activity via 

control of reverse cholesterol transport, by limiting the inflammatory response, or both. A 

pathway involving agonist-dependent SUMOylation of LXR appears necessary for the repression 

of inflammatory gene expression
1, 613

. Importantly, transcriptional repression by LXRs is 

mechanistically distinct from the positive activation of genes involved in RCT; thus suggesting 

that these two LXR activities can be dissociated. Indeed, GW9772, a synthetic LXR ligand, has 

been reported to dissociate LXR activity in vitro; however, the poor bioavailability of GW9772 

has prevented it from being tested in vivo
628

. 
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3. PRELIMINARY DATA 

RCT is inhibited in the absence of liver LXRα activity. 

To examine the contribution of hepatic LXR activity to the RCT pathway we crossed 

liver-specific LXRα knockout (LXRα
floxed/floxed 

+ albumin-CRE
+
) into the Ldlr

-/-
 background to 

create Ldlr
-/-

 /Lxrα
-/-

 double knockout mice (referred to as Ldlr
-/- 

/LivKO). Importantly LXRα is 

the major LXR subtype expressed in the liver
512

. RCT was measured in vivo using the assay 

developed by Rader and colleagues
561

. Briefly, mouse J774 macrophages were loaded with 
3
H-

cholesterol and acetylated LDL in vitro and then injected into the peritoneal cavity of Ldlr
-/- 

/LivKO and albumin-CRE negative littermate controls (referred to as Ldlr
-/- 

/Floxed) that had 

been on western diet for 9 weeks in the absence or presence of the LXR agonist T0901317. The 

amount of 
3
H tracer appearing in the plasma, liver and feces was determined 48 hours later. As 

expected, agonist-stimulated fecal cholesterol excretion was lost in the absence of liver LXRα
529

. 

Somewhat more surprising, however, was the finding that the appearance of 
3
H tracer in the 

plasma was significantly reduced and unresponsive to LXR agonists (Figure 3.8). The ability of 

LXR agonists to increase the appearance of macrophage-derived 
3
H-cholesterol in the plasma is 

thought to result from agonists acting on macrophage LXRs to enhance ABCA1 dependent 

cholesterol efflux
562

. To determine if the decrease in plasma 
3
H-cholesterol levels observed in  

Ldlr
-/- 

/LivKO animals resulted from impaired LXR transcriptional activity in macrophages, we 

recovered the J774 cells from the peritoneal cavity 48 hours following injection and quantitated 

ABCA1 mRNA levels. Agonist treatment produced a similar increase in ABCA1 mRNA in cells 

recovered from either Ldlr
-/- 

/Floxed or Ldlr
-/- 

/LivKO animals
529

. The gene expression analysis 

suggests that the failure of LXR agonist to increase the appearance of macrophage-derived 
3
H-

cholesterol in the plasma of Ldlr
-/- 

/LivKO mice does not arise from a defect in macrophage LXR 

activity. Additional studies suggest that the production of defective HDL particles in the LivKO 

may account for this defect in macrophage cholesterol efflux
529

. 

 

LXR agonist maintains anti-atherogenic activity independent of Liver LXR expression 

          Liver-specific knockout of LXRα in the Ldlr
-/- 

background significantly increases 

atherosclerosis (Figure 3.6), however, treatment with T0901317 is still able to significantly 

reduce atherosclerosis in the Ldlr
-/-

 /LivKO animals (Figure 3.6). Importantly, the magnitude of 

agonist-dependent reduction of atherosclerosis lesion size was similar to that observed in the 

control mice (Figure 3.6). These findings suggest that LXR agonists can reduce atherosclerosis 

independent of promoting RCT. Since previous studies from our lab suggest that hematopoietic 

LXRα activity is required for the anti-atherogenic activity of LXR agonists
549

 (note that LXRα is 

restricted to the myeloid lineage in hematopoietic cells
512

), we hypothesize that an alternative 

LXR regulated pathway is responsible for mediating the beneficial effects of LXR agonists in 

macrophages. One alternative pathway that may contribute significantly to the anti-atherogenic 

activity of LXR agonists is the inhibition of inflammatory signaling. As mentioned previously, 

the anti-inflammatory activity of LXRs is mediated by a process quite distinct from LXR 

regulated cholesterol efflux (Figure 1); however, current LXR agonists with therapeutic efficacy 

are not pathway-selective. Therefore, I proposed using LXR pathway selective mutants to 

determine the relative contribution of LXR stimulated RCT and the LXR dependent inhibition of 

inflammatory activity to the beneficial activity of agonists in macrophages. 
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4. RESEARCH DESIGN AND METHODS 

AIM 1: Dissociate LXR activity 

1.1 Identification of pathway selective LXR mutants  

RATIONALE:  Preliminary work in our lab suggests that synthetic LXR agonists can maintain 

anti-atherogenic activity without promoting RCT
529

 and that macrophages are a critical site for 

LXR athero-protective activity
549

.  In the macrophage, LXR promotes cholesterol efflux and 

inhibits inflammation through two independent, ligand-dependent mechanisms (Figure 1).  

However, the relative contribution of LXR pathway specific activity (i.e. activation vs. 

repression) has yet to be determined.  Towards this goal, we will identify and characterize 

pathway selective LXR mutants in macrophages. 

EXPERIMENTAL DESIGN:  
Ligand binding to LXRs initiates a conformational change in the receptor which 

promotes the exchange of trans-acting co-repressors for co-activators and the subsequent increase 

in transcriptional activity.  This process is termed transactivation and, importantly, is also 

dependent on LXR-DNA interactions (Figure 6.1A).  Conversely, ligand binding also promotes 

conjugation of LXR with SUMO2/3 by the SUMO-conjugating enzyme (UBC9) in a Histone 

Deactelyase 4 (HDAC4) dependent manner. SUMOylated LXRs recognize trans-repressing 

complexes at the promoter region of inflammatory genes and inhibits the release of the complexes 

that usually occur upon NFƙB binding (Figure 6.1B).  This process by which LXR actively 

represses inflammation in the presence of inflammatory signaling is called transrepression. Using 

site directed mutagenesis, we will make the mutations listed in Table 6.1 in order to dissociate 

LXR activity.  Lysine to arginine mutations at LXRβ at residues 410 and 448, and in human 

LXRα at residues 328 and 434 abolish receptor sumoylation and accordingly block LXR agonist 

dependent transrepression without having an effect on LXR transactivation
1
.  These findings were 

recently validated for LXRβ 410/448 in human and mouse hepatocytes
613

.  Interaction between 

sumoylated LXR and Coronin2A, a subunit of the co-repressor complex, is required for agonist 

dependent transrepression in macrophages
611

; thus, we will also generate a LXRβ S427D mutant 

that has been shown to be unable to interact with Coronin2A and promote transrepression
611

.   

 The interaction between LXR and coactivator proteins that mediate transactivation has 

been well characterized
545, 738

.  The conformational change that occurs following ligand binding 

stabilizes helix 12, which is a highly dynamic aliphatic alpha helix located in the C-terminal 

domain of LXR. A hypdrophobic cleft is created upon stabilization of helix 12 that allows 

coactivator proteins to bind, thereby promoting the induction of LXR target genes
680

.  LXRs 

contain N-terminal zinc fingers regions that mediate receptor binding to LXR response elements 

(LXREs)
739

.  Binding of receptor to LXREs upstream of target genes is required for 

transactivation but not for transrepression
1, 613, 730

.  Helix 12 and zinc finger mutants are described 

in Table 1.   Based on the crystal structures of the LXR receptors, these transactivation defective 

mutants (Table 1) should disrupt interaction with coactivator proteins or DNA but should not 

influence ligand binding or overall protein structure
512, 680

. 
  
Indeed, we have preliminary data that 

the LXRα helix 12 and DBD mutants are transactivation defective (Figure 2B and data not 

shown). The LXRβ mutants are currently being examined.  

To measure agonist-dependent transrepression, the mutants described above will be co-

transfected into Hela cells with a luciferase reporter gene containing 3 upstream copies of the 

NFƙB-binding sites from the human IL-8 promoter.  Transfected cells will be cultured in the 

absence or presence of LXR ligand overnight and the following day TNFα or vehicle will be 

added in the continued presence of LXR ligand to induce NFƙB signaling.  Six hours after the 

addition of TNFα, cells will be lysed and luciferase activity quantified.  Vehicle treated cells 

transfected with NFƙB-reporter alone and ligand-treated cells transfected with WT LXR will 

serve as negative and positive control respectively (Figure 6.2A).  
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 To measure agonist-dependent transactivation the mutants described above will be co-

transfected into Hela cells with a luciferase reporter gene containing 3 upstream LXREs.  

Transfected cells will be cultured in the absence or presence of LXR ligand for 24 hrs, cells lysed, 

and luciferase activity measured (Figure 2).  Vehicle treated cells transfected with LXRE reporter 

alone and ligand treated cells transfected with WT LXR will serve as negative and positive 

controls, respectively.  Data for both assays (transrepression and transactivation) will be analyzed 

by 1-way ANOVA followed by Dunnett’s post-test to determine statistically significant 

differences among groups.   

Mutants that fail to inhibit LPS induced activity but maintain levels of agonist-stimulated 

gene expression comparable to WT LXR will be considered to be transactivation selective.  

Similarly, mutants that fail to activate gene transcription but inhibit LPS induced activity 

comparable to WT LXR following ligand treatment will be considered to be transrepression 

selective.   

EXPECTED RESULT: We expect that mutating the sumoylated lysine residues in the ligand-

binding domain of the LXRs will disrupt agonist dependent transrepression without impacting 

transactivation.  Furthermore, we anticipate that our helix 12 and zinc finger mutants dissociate 

either coactivator or DNA binding without effecting sumoylation thereby generating 

transrepression selective mutants.  A single representative of each class of mutant (transactivation 

defective mutant and transrepression defective mutant), regardless of subtype, that demonstrates 

pathway selectivity will be used in the studies proposed in experiment 1.2. 

POTENTIAL PROBLEMS AND ALTERNATIVE APPROACHES: Three other additional 

sites of sumoylation have recently been reported for LXRβ – K30, K395 and K433.  If the SUMO 

mutants described above fail to behave as expected we will examine the activity of these 

additional SUMO mutants.  Since sumo modification is required for LXR transrepression
1, 613

, we 

believe that one or a combination of these additional sumoylation mutations will disrupt LXR 

transrepression. 

Preliminary data in our lab indicate that LXR Helix 12 and zinc finger mutants fail to 

activate gene transcription upon LXR ligand treatment (see Figure 2 and data not shown).  As 

described above, we do not expect these mutations to disrupt ligand binding or overall protein 

structure.  LXR sumoylation and consequent ligand dependent transrepression, therefore, should 

be maintained. It is possible, however, that mutations to helix 12 or the zinc fingers could 

influence LXR sumoylation, thereby also disrupting LXR transrepression.  Based on the finding 

that the activities of the glucocorticoid receptor could be dissociated by single point mutations
740

, 

we believe that we can dissociate LXR transactivation and transrepression.  If our mutants do not 

behave as expected we will carry out random mutagenesis of the LXR receptors and use our in 

vitro assays which can be run in high throughput form to identify mutants that dissociate the two 

activities. 

1.2 Characterization of pathway selective LXR mutants in LXRα
-/-

β
-/- 

macrophages 

EXPERIMENTAL DESIGN:  

Viral Production:  Pathway selective LXR mutants identified in AIM 1 will be cloned into 

lentiviral vectors that co-express GFP.  Expression of the mutant LXRs will be under the control 

of the EF1alpha promoter which expresses well in hematopoietic cells.  Empty vector and a 

vector expressing WT LXR will serve as negative and positive controls, respectively.   

BMDM Infection:  Bone marrow will be isolated from the femurs of LXRα
-/-

β
-/- 

(DKO) mice and 

differentiated into macrophages in tissue culture using Monocyte Colony Stimulating Factor 

conditioned media (M-CSF).  Differentiated macrophages will be infected with lentiviral 

constructs harboring LXR mutants and proper functional analysis will be undertaken.  Namely, 

mRNA and protein levels of LXR mutants will be measured to insure that infected cells have 

similar expression levels.  Additionally, infected macrophages will be examined for their ability 
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to activate LXR target genes expression in response to ligand treatment and for their ability to 

repress inflammatory signaling in response to LXR agonist treatment and LPS stimulation.  DKO 

BMDM infected with empty vector alone and WT LXR will serve as negative and positive 

controls, respectively.  All data will be analyzed by 1-way ANOVA followed by Dunnett’s post-

test.  

EXPECTED RESULT: We anticipate that the transactivation and transrepression activity of 

LXR mutants observed in vitro will be recapitulated in primary DKO macrophages infected with 

lentiviral vectors; thereby identifying LXR mutants that have pathway selective activity in vivo. 

POTENTIAL PROBLEMS, ALTERNATIVE APPROACHES AND FUTURE 

DIRECTION:   

An alternative approach that we will pursue in parallel is to generate LXR pathway 

selective transgenic mice in the DKO background.  In brief, we will provide the University of 

Virginia Gene Targeting and Transgenic Facility (GTTF) with DNA constructs containing either 

LXR mutant or WT LXR (positive control).  Following generation of the transgenic lines proper 

functional analysis will be undertaken as outlined above.  The GTTF has prior success generating 

transgenics in knockout mice on the same background as our DKO mice (C57bl6/J); therefore, 

we believe this is a reasonable approach.  

 

AIM 2: Determine the relative contribution of LXR regulated pathways to atherosclerosis 

RATIONALE: Our data suggests that synthetic LXR agonists do not require RCT
529

; however, 

LXR expression in immune cells is necessary for their anti-atherogenic activity
549

.  Therefore, we 

hypothesize that the anti-inflammatory properties of LXRs in macrophages are responsible for the 

anti-atherogenic activity of LXR agonists. To test this hypothesis, we will infect DKO 

hematopoietic stem cells with pathway selective LXR mutants and then transplant infected cells 

into irradiated Ldlr
-/-

 recipient mice in an atherosclerosis study.  

EXPERIMENTAL DESIGN: 

Hematopoietic stem cell (HSC) isolation and viral infection: Bone marrow cells from DKO
 
mice 

enriched in hematopoietic reconstitution activity based on their capacity to exclude the vital dye 

Hoechst (termed side population, or “SP” cells) will be isolated using fluorescence-activated cell 

sorting after Hoechst staining
741

.  DKO SP cells will be incubated with lentivirus containing LXR 

mutants in serum-free media containing polybrene and minimal cytokine stimulation (Stem Cell 

Factor, SCF, and Thrombopoietin, TPO) for 24 hrs. Infected cells will be isolated by FACS 

sorting for GFP expression.   

Bone marrow transplantation and atherosclerosis study:  Infected DKO SP cells expressing 

LXR mutants will be used to reconstitute irradiated Ldlr
-/-

 mice in an atherosclerosis study 

following our published procedures
529, 549

.  Our proposed atherosclerosis study will require a total 

of 90 Ldlr
-/-

 recipient mice and 30 DKO mice to serve as bone marrow donors.  There will be 15 

animals per group as outlined in Table 2.  DKO SP cells will be isolated and infected with 

lentiviral vectors containing mutant LXRs as described above.  Four hours after lethal irradiation 

Ldlr
-/-

 recipient mice will be injected via tail vein with ~500 transduced SP cells.  This number of 

SP cells can efficiently reconstitute the hematopoietic system with ~90% of cells expressing the 

transgene and the transgene expression was shown to last for at least 8 months
742

. Following a 

recovery period of 4 weeks, Ldlr
-/- 

recipients will be bled and LXR mRNA levels will be 

quantified by RT-PCR of RNA isolated from whole blood.  Following confirmation of LXR 

expression, animals will be switched from standard chow diet to a western diet (21% fat, 0.15% 

cholesterol) containing vehicle or 0.01% T0901317 and fed ad libitum.  Mice will be maintained 

on this diet for 10 weeks, and every 2 weeks animals will be bled to measure plasma lipid levels 

and mRNA levels of LXR target genes in RNA isolated from whole blood.  Inflammation will be 
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measured using Elisa assays to quantify the amount of TNFα and IL-1β in the plasma.  At the 

conclusion of the study atherosclerosis will be quantitated using our published procedures
529, 549

.  

Agonist treated mice reconstituted with pathway selective LXRs will be compared to agonist 

treated mice reconstituted with WT LXR to determine the contribution of LXR transactivation 

and LXR transrepression to the anti-atherogenic activity of agonist.  All data will be analyzed by 

one way ANOVA followed by Dunett’s post-test. 

EXPECTED RESULT: We expect LXR agonist treatment will reduce atherosclerosis in Ldlr
-/-

 

mice receiving wildtype LXR bone marrow, as we have previously shown
549

.  Because our recent 

data
529

 indicates that LXR agonist reduces atherosclerosis in the absence of increased RCT, we 

anticipate that treatment with LXR agonist will reduce atherosclerosis in Ldlr
-/-

 animals 

reconstituted with LXR transrepression selective marrow.  On the other hand we expect agonist 

will have little to no effect in Ldlr
-/-

 animals reconstituted with LXR transactivation selective 

marrow.   

POTENTIAL PROBLEMS, ALTERNATIVE APPROACHES AND FUTURE 

DIRECTIONS  

  If we cannot achieve sufficient levels of hematopoietic reconstitution using lentiviral infection 

of DKO we will proceed with the atherosclerosis study once the transgenic animals are in hand.  

It is possible that transactivation by LXR is in fact required for the anti-atherogenic activity of 

LXR agonists.  LXR transactivates several other pathways that have been proposed to have anti-

atherogenic activity in the macrophage, such as macrophage egression
556

 and the repression of 

endoplasmic reticulum stress
695

.  Furthermore, as discussed in the preliminary data section, the 

failure to observe agonist-dependent increases in 
3
H cholesterol in the plasma of LivKO mice 

during the in vivo RCT experiment (Figure 3.8A) could result from impairments to the RCT 

pathway that occur after macrophage efflux. Thus, if our study demonstrates that LXR 

transactivation and not transrepression is required for the anti-atherogenic activity of agonist we 

will begin to probe these additional LXR regulated pathways. Nevertheless, having the LXR 

pathway selective transgenic animals will allow us and other to probe the tissue-specific 

contribution of LXR selective pathways to atherosclerosis as well as other inflammatory and 

metabolic disorders.  

ADDENDUM  

In the time since this project proposal was written the Glass lab
614

 in collaboration 

with Olefsky et al. put forth an alternative mechanism to describe the LXR agonist 

dependent repression of NFκB pro-inflammatory gene expression.  Glass and 

collaborators report in this study that the macrophage-specific deletion of NCoR 

paradoxically results in an anti-inflammatory phenotype in obese mice. This effect was 

attributed to the derepression of LXRs resulting in increased expression of genes 

directing the biosynthesis of ω3 fatty acids. The increased ω3 fatty acid levels were found 

to inhibit NFκB dependent inflammatory signaling by uncoupling NFκB binding and the 

enhancer/promoter histone acetylation required for gene activation (Figure 1.6, adopted 

from Li et al.
614

) 

It is possible that LXR agonist-dependent transrepression represents an acute 

mechanism by which LXRs repress NFκB pro-inflammatory networks, whereas NFκB 

repression by LXR stimulated increases in ω3 fatty acid levels is more of a delayed long-

acting response. Both LXR mediated pathways could contribute to the anti-inflammatory 

activity of LXR agonists in macrophages. In light of these recent findings, there is a 

possibility that the LXR transrepression defective mutants described above still maintain 

LXR-agonist dependent anti-inflammatory activity through this novel ω3 mediated NFκB 
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repression pathway.  To address this possibility I present the following alternative 

approach: 

Chip-Seq analysis of NCoR deficient macrophages revealed significantly lower 

levels of TLR4 dependent H3K4me2 deposition at hyporesponsive genes, a pattern that 

was observed for all NFkB regulated genes reduced in response to LXR-stimulated ω3 

levels. H3K4me2 is a histone post-translational modification enriched in cis-regulatory 

regions, particularly promoters, of transcriptionally active genes
743

 . Post-translational 

modifications of histone tails, especially acetylation and methylation on lysine residues, 

play a pivotal role in regulating gene expression by controlling the accessibility of 

chromatin to key regulatory factors. Methylation of H3K4 is associate with open 

chromatin and transcriptional activation
744

. For lysine residues that are subject to both 

acetylation and methylation, acetylation can block subsequent methylation, and vice 

versa, as a result of mutual exclusivity. Recent evidence, moreover, suggests a link 

between H3 hyperacetylation and increased H3K4 methylation. Indeed, treatment in vitro 

and in vivo with various inhibitors of histone deacetylase (HDAC) has been reported to 

increase levels of H3K4me2. Histone methylation is a reversible process that is regulated 

by a dynamic balance between histone methyltransferase and histone demethylase 

activities
745

 and HDAC inhibitors increase H3K4me2 levels by repressing demethylase 

activity.  Thus, another way to address the role of LXR anti-inflammatory activity could 

be through the use of HDAC inhibitors. If any LXR transrepression defective mutants are 

found to maintain anti-inflammatory effects in the proposed athero study, it will be 

presumably through the ability of these mutants to still increase ω3 fatty acid synthesis. 

The concurrent administration of HDAC inhibitors then could increase H3K4me2 levels 

thereby eliminating the protective effects of LXR-stimulated ω3 levels. Additionally, 

inhibitors of fatty acid synthesis could similarly be employed to eliminate LXR-

stimulated ω3 levels. Thus, if Ldlr
-/-

 mice transplanted with LXR transrepression 

defective bone marrow are found to maintain LXR agonist dependent anti-inflammatory 

activity an additional arm of the study would be to treat a cohort of these animals (and 

controls) with either an HDAC inhibitor or an inhibitor of fatty acid synthesis.  HDAC 

inhibition may have many effects on LXR regulated gene expression; thus if HDAC 

inhibition is found to reduce LXR agonist-stimulated transactivation, fatty acid synthesis 

inhibition may be the more appropriate approach.  
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LXR 

subtype 

Mutant Expectation Trans-

Repress 

Trans-

activate 

β K410R, K448R Disrupt sumoylation - + 

α K328R, K434R Disrupt sumoylation - + 

β S427D Disrupt interaction with 

transrepression complex 

- + 

β L452A Destabilize helix 12; disrupt 

interaction with co-activator 

+ - 

α L438A Destabilize helix 12; disrupt 

interaction with co-activator 

+ - 

β C104A, C107A Disrupt DNA binding + - 

α C115A, C118A Disrupt DNA binding + - 

 

Table 1 LXR Mutants 
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Group Marrow Drug Tx 

1 TA+ Vehicle 

2 TA+ T0901317 

3 TR+ Vehicle 

4 TR+ T0901317 

5 Wildtype Vehicle 

6 Wildtype T0901317 

Table 2 Atherosclerosis study with pathway specific LXR bone marrow. Ldlr
-/-

 

recipient mice (N=15/group) will be reconstituted with LXR transactivation selective 

(TA+), LXR transrepression selective (TR+) or WT LXR marrow.  
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Figure 1 LXR activity Ligand-dependent transactivation (A) and transrepression (B). 

See text for details.  
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Figure 2 In vitro LXR activity.  
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Figure 6.2 In vitro LXR activity. A) LXR and a luciferase reporter gene containing 3- 

NFƙB binding sites from the human Il-8 promoter were co-transfected into Hela cells 

with a B-galactosidase plasmid.  Following 24 hr incubation in the absence or presence of 

1uM T0901317, cells were stimulated with TNFα (1ng/ml) for 6 hrs.  Cells were lysed 

and luciferase activity normalized to B-gal.  B) LXR and a luciferase reporter gene 

containing 3 upstream LXREs were co-transfected into HEK293T cells with a B-

galactosidase plasmid and cultured in the absence or presence of 1uM T0901317 for 24 

hrs.  Cells were lysed and luciferase activity normalized to B-gal.  Luciferase activity was 

normalized to B-Gal.  * ≤ 0.05% compared to vehicle treated.  Data was analyzed by 1-

way ANOVA followed by Dunnett’s post-test. 
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