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I Abstract

Biodiversity has been correlated with ecosystem stability and function. Invasive

species can decrease biodiversity and cause ecological and economical damage. These species

are especially prevalent in abandoned agricultural fields, and can disrupt secondary succes-

sional dynamics. Although field surveys are used to assess the impacts of these species,

remote sensing can be more efficient, especially at large spatial extents. I examined the

ability to use ground-level hyperspectral remote sensing to study invasive species and their

effects on community properties at the Blandy Experimental Farm (BEF) in north-central

Virginia. Their effects on ecosystem properties could not be assessed using ground-level

remote sensing in this system; thus, I used leaf and soil measurements to assess their effects

on secondary succession.

I found that remote sensing can be used to differentiate among plant communities.

The most influential species to community discriminability are considered invasive, suggest-

ing that these species can strongly influence species compositions and other community

properties. The most influential wavelengths for discrimination were distributed throughout

the spectral profile and corresponded with plant physiological and structural elements.

Thus, spectral differences across species were large enough to be used in aggregate

to differentiate plant communities. Additionally, these differences were large enough to dif-

ferentiate individual species, but discriminability varied by species. The two thistle species

that are similar phylogenetically and structurally were readily distinguished amongst each

other. However, the shrubby buckthorn was difficult to distinguish from the oriental bitter-

sweet vine despite phylogenetic distance and differences in structure. This was likely due

to physical overlap in the field and thus the difficulty in obtaining pure signatures for dis-

crimination. Discriminability also differed by the spectral region examined. Buckthorn and

oriental bittersweet were least discriminable in the 550-599 nm and 650-699 nm regions, due
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to greater intraspecific variability of spectral data in these regions.

Additionally, remote sensing can be used to estimate higher order community prop-

erties like species diversity, and thus assess the effects of invasive species on plant diversity.

However, correlations between species diversity and spectral diversity varied by the spectral

transformation technique used and the spectral region examined. There was a strong posi-

tive correlation between the two in the visible region when band depth was used and in the

near-infrared region when first derivatives were used. There were no strong correlations in

the red edge, due to high intraspecific variability in chlorophyll content.

Lastly, I assessed the effects of these exotic invasive species on ecosystem properties,

specifically secondary succession, using leaf and soil data. Differences in soil characteristics

were larger across fields and stages than across species. However, there were species-level

differences in leaf characteristics, suggesting that these species may influence succession over

time. Satellite advances may help further explore the role of invasive species over large

regions. This would help assess whether the relationships found at the ground-level are

similar to ones found at the satellite level. Ecosystem studies such as effects over succession

would also be possible with satellite imagery in a way not possible using ground-level remote

sensing.
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1 Chapter 1: Introduction

1.1 Research Background

1.1.1 Invasive species and biodiversity

Biodiversity influences ecosystem productivity (Cardinale et al., 2007; Gustafsson and

Bostrom, 2011; Symstad and Jonas, 2011; Wilsey and Potvin, 2000) and community stability

(Gustafsson and Bostrom, 2011; Symstad and Jonas, 2011; Yachi and Loreau, 1999). It can

also deter invasion by non-native plants by affecting resource-use and competition (Cardi-

nale et al., 2007; Gustafsson and Bostrom, 2011; Hooper and Vitousek, 1998; Scherber et al.,

2010). Once established, however, exotic invasive plant species can decrease biodiversity

(Bradley and Mustard, 2006), and thus monitoring their spread and studying their effects

should aid conservation efforts. Exotic invasive species can affect community properties

such as native species diversity and composition, and community structure and ecosystem

properties such as productivity, nutrient cycling, disturbance regimes, and other functions

(Bradley and Mustard, 2006; Kuhman et al., 2011; Mascaro and Schnitzer, 2007; Vitousek,

1990; Yoshida and Oka, 2004; Yurkonis et al., 2005). Plants have been purposefully intro-

duced as ornamentals, windbreaks, and for erosion control, and unintentionally introduced

alongside seed grains, in packaging material or bilge/ ballast water, and transported on vehi-

cles and shoes (Bickmore, 2003). Although not all exotic species become invasive, those that

do can drastically affect the local environment. Additionally, climate change may further

facilitate invasion (Boyd et al., 2013), since canopy cover, temperature, and precipitation

regimes influence invasibility (Butler et al., 2014). The increase in globalization may also

facilitate invasion with the increase in trade and travel (Boyd et al., 2013). Thus, mon-

itoring the spread and effects of exotic invasive species may be increasingly important in

conservation efforts to preserve community and ecosystem properties.
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1.1.1.1 Community properties

Exotic species can suppress establishment of other plant species thus altering plant

communities (DeMeester and deB. Richter, 2010; Yurkonis et al., 2005), and reducing native

species richness and cover (Yoshida and Oka, 2004). At small spatial and large temporal

extents, invasive species can reduce biodiversity (Gaertner et al., 2009) by decreasing species

richness as well as evenness (Gaertner et al., 2009; Hejda et al., 2009; Yurkonis et al., 2005).

It is necessary to consider longer time periods, because local extinction of species may take

long periods of time, and even if local extinction does not result, there can be a drastic decline

in genetic diversity with the reduction of population size (Gaertner et al., 2009). Positive

correlations between non-native invasive species diversity and native species diversity over

large areas may be due to a lack of accounting for local processes (Gaertner et al., 2009).

1.1.1.2 Ecosystem properties

Alterations in plant community composition by invasive species in turn can affect

nutrient cycling, because species differ in nutrient uptake efficiencies, and can also alter soil

fauna and herbivore community composition (DeMeester and deB. Richter, 2010). They

can also affect disturbance frequency and community interactions (Chapin III et al., 1997;

Kuhman et al., 2011). An increase in resource availability through faster nutrient cycling

may also lead to an increase in the density and diversity of introduced species, leading to a

potential positive feedback loop (Ehrenfeld et al., 2001; Kuhman et al., 2011).

Exotic invasive species themselves can alter a variety of ecosystem properties and

processes, especially when they are dominant or when they differ from native species in terms

of resource acquisition and resource use efficiency. For example, Ailanthus altissima (tree

of heaven) can affect ecosystem properties and processes even at low densities by increasing

nutrient cycling rates, increasing local nutrient pools, and changing the community species

15



composition to favor species that thrive in high-nutrient environments like itself (Gomez-

Aparicio and Canham, 2008). Celastrus orbiculatus (oriental bittersweet) can decrease the

growth of native species by girdling trees and increasing their susceptibility to ice damage,

and by shading out their saplings (Leicht-Young et al., 2007). Rhamnus frangula (glossy

buckthorn) cover is negatively correlated with woody seedling density, herbaceous species

cover, and species richness (Frappier et al., 2003). Rhamnus cathartica (common buckthorn)

alters forest structure by increasing woody stem density, shade, decomposition, and nitrogen

turnover (Mascaro and Schnitzer, 2007). Additionally, native species restoration may be

difficult even with the removal of exotic invasive species because of lingering ecosystem

effects (Heneghan et al., 2006; MacDougall and Turkington, 2005; Sullivan et al., 2007).

Disturbances, such as in agricultural fields, urban areas, roads, and fragmented habi-

tats, can facilitate invasion by promoting the growth of invasive species (Aragon and Morales,

2003; Butler et al., 2014; Gaertner et al., 2009; Kota et al., 2007; Kuhman et al., 2011; Mosher

et al., 2009; Yoshida and Oka, 2004). Additionally, invasion can affect succession after dis-

turbance (Kuhman et al., 2011; Yoshida and Oka, 2004), potentially altering the trajectory,

rate, species composition, species richness, future disturbance regimes, and nutrient cycling

during succession (Grau et al., 1997; Leicht-Young et al., 2009; Simberloff, 2010; Sullivan

et al., 2007; Yoshida and Oka, 2004). As an example, the growth of Celastrus orbiculatus

(oriental bittersweet) can impede succession by inhibiting the re-establishment of secondary

forest species (Fike and Niering, 1999; Ladwig and Meiners, 2010; Pavlovic and Leicht-Young,

2011; Riedel and Epstein, 2005).

Introduced invasive species can cause substantive economic and ecological damage

(Bickmore, 2003); considering the combination of productivity loss, eradication efforts, and

restoration efforts in the U.S., plant and animal invasive species can cost $100-$137 billion,

and 700,000 hectares of native vegetation annually (Miao et al., 2006; Wilfong et al., 2009).

In the U.S. alone, 5000 exotic species have been established (Wilfong et al., 2009). Carduus
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acanthoides (spiny plumeless thistle) and Carduus nutans (nodding thistle) are two of the

most notorious weeds in the continental U.S. and southern Canada (Allen and Shea, 2006;

Tiley, 2010). For example, Cirsium arvense (Canada thistle) drastically reduces crop yield

(Grekul and Bork, 2004); a population with the density of 20 plants per square meter can

reduce the yield of barley by 34%, corn by 57%, canola by 26%, wheat by 51%, and soybean

by 91% (Armel et al., 2005; Grekul and Bork, 2004). Even at low densities, Cirsium arvense

can reduce yield; a density of 6 Cirsium arvense shoots/m2 led to a reduction of wheat yield

by 18% (Hunter, 1996).

1.1.2 Remote sensing of vegetation

Due to limited resources, conservation strategies must focus on the invasive species

that have the most detrimental impacts on ecosystems; however, the impacts of exotic species

depend on the species, and the community that is being invaded (Frappier et al., 2003).

Ground-based methods of monitoring invasive species and their effects are costly and can

limit research and management; remote sensing can supplement field data to monitor spatial

and temporal distribution of invasive species more efficiently (Bradley and Mustard, 2006;

Schmidt and Skidmore, 2001; Wilfong et al., 2009; Zhang et al., 2006).

1.1.2.1 Estimating vegetation characteristics

Remote sensing has been used to assess vegetation distribution, characteristics, and

diversity. Different regions of the spectral profile can be used to estimate various ecological

properties and processes. Visible (VIS) reflectance at the leaf level is mostly a function of

pigment content, near-infrared (NIR) reflectance is influenced by leaf structure and surface

characteristics, and short-wave infrared (SWIR) reflectance is influenced by water content,

structural compound content, and atmospheric water absorption bands (Mahlein, 2011; Xiao,

Y. et al., 2014). More specifically, Thenkabail et al. (2014) find that the ultraviolet region
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(375 nm) can be used to estimate leaf water and fPAR; the blue region (405 and 490 nm)

can be used to estimate nitrogen and carotenoid content, senescence, light-use efficiency, and

vegetation stress; the green region (515, 531, 550, 570 nm) can be used to estimate nitrogen

and pigment content, plant vigor, light-use efficiency, vegetation stress, and disease/ pests;

the red region (682 nm) can be used to estimate LAI, biomass, height, and yield; the red

edge region (705, 720, 700-740 nm) can be used to estimate plant stress, senescence, and

chlorophyll content; the near-infrared region (855, 910, 970 nm) can be used to estimate

LAI, biomass, yield, moisture, protein content, and chlorophyll content; the far near-infrared

region (1075, 1180, 1245 nm) can be used to estimate LAI, biomass, height, yield, pigment

content, and leaf water; the low short-wave infrared region (1450, 1518, 1650, 1725 nm) can

be used to estimate biomass, moisture, heavy metal stress, lignin and starch content, and

to classify vegetation; and the far short-wave infrared region (1950, 2025, 2133, 2205, 2260,

2295, 2359 nm) can be used to estimate water absorption, content of lignin, cellulose, sugar,

starch content, protein, nitrogen and leaf moisture, heavy metal stress, and biomass.

Multispectral and hyperspectral data have been used to observe these vegetation char-

acteristics; however, hyperspectral data may lead to more accurate estimates of properties,

because they include reflectance measurements at more numerous and narrower wavebands.

As one example, Smith and Blackshaw (2003) compared discriminability of 2 crop and 5

weed species with hyperspectral (90% accuracy) and multispectral (89% accuracy) data.

Although accuracy rates were similar, hyperspectral misclassification was less severe (grass

as another grass and broadleaf as another broadleaf) than multispectral (grass as broadleaf

and broadleaf as grass). There are major challenges, however, in using hyperspectral remote

sensing, and remote sensing in general, including the large amounts of data, spectral mixing,

sensor noise, and atmospheric effects (Bioucas-Dias et al., 2013).
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1.1.2.2 Discriminating species spectrally

If interspecific differences in spectral characteristics are greater than intraspecific

and intra-individual differences, spectral data can be used to discriminate species (Zhang

et al., 2006). Species differences have been detected remotely (Burkholder, 2010; Daughtry

and Walthall, 1998; Narumalani et al., 2009; Pinard and Bannari, 2003; Rud et al., 2006;

Schmidt and Skidmore, 2001; Yingying et al., 2011) by looking at vegetation characteristics

such as total chlorophyll (chl), chl a, and chl b, carotenoids, soluble C, lignin, foliar N

and phosphorus (P), leaf water content, compactness of the mesophyll layer, specific leaf

area (SLA), and leaf mass per area (LMA), which can differ by species and have been

estimated using remote sensing (Asner and Martin, 2011, 2009; Carlson et al., 2007; Castro-

Esau et al., 2004). Species discrimination has been successfully accomplished using several

different methods (Everitt et al., 2008; Narumalani et al., 2009; Somers and Asner, 2012; van

Aardt and Wynne, 2001) and various wavelengths (Gao and Zhang, 2006; Jiao et al., 2014;

Lewis, 2002; Pinard and Bannari, 2003; Ribeiro da Luz and Crowley, 2010; Sanchez-Azofeifa

et al., 2009; Schmidt and Skidmore, 2003, 2001; Smith and Blackshaw, 2003; Somers and

Asner, 2012).

1.1.2.3 Estimating ecosystem characteristics spectrally

Remote sensing can also be used to estimate vegetation cover, photosynthetic activity,

biomass/ yield, phenological stages, pigment content, changes in pigment ratios, and leaf area

index with various methods including specific bands, vegetation indices, spectral features

such as the green peak and the red edge, spectral angle mapper, and radiative transfer

models (Bottcher et al., 2014; Cho and Skidmore, 2009; Delegido et al., 2010; Gamon and

Berry, 2012; Gitelson et al., 2003; Laidler et al., 2008; Lemaire et al., 2008; Rahimzadeh-

Bajgiran et al., 2012; Sims and Gamon, 2002; Walker et al., 2003; Xiao, Y. et al., 2014; Yang

et al., 2008, 2010).
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1.1.3 Sources of variability in remote sensing

1.1.3.1 Variability in ecological characteristics

When extracting ecological information from spectral data, there are many sources of

spectral variability, due to variability in ecological characteristics, including leaf properties

such as surface characteristics, internal structure, water content, nutrient content, stress,

disease, and phenology/ senescence (Cochrane, 2000; Mahlein, 2011; Merzlyak et al., 2003)

as well as crown properties such as foliar reflectance, foliar transmittance, crown architecture,

leaf area index, stand age, and forest health (Castro-Esau et al., 2006; Papes et al., 2010;

Roberts et al., 2004; Zhang et al., 2006). Leaf chlorophyll a: chlorophyll b ratios, thickness,

and pigment concentrations can also differ with levels of illumination (Buschmann et al.,

1990; Gamon and Berry, 2012). Additionally, absorption bands can be affected by more

than one chemical constituent, and one chemical constituent can influence a broad spectral

region (Kokaly and Clark, 1999).

Species biochemical and structural similarities in some traits, and differences in il-

lumination within canopies, make species discrimination challenging (Ribeiro da Luz and

Crowley, 2010; Rud et al., 2006). However, Asner (1998) suggests that vegetation types

should be distinguishable remotely due to differences in biochemical and structural prop-

erties. Additionally, Asner et al. (2007) suggest that hyperspectral data can be used to

estimate canopy water content, pigment and nitrogen concentrations, and structural ele-

ments such as cellulose and lignin, and thus discriminate among tree species. Differences

in pigments, water, structural elements, cell size, intercellular space, and cell wall thickness

assist in differentiating species at the leaf level (Roberts et al., 2004).
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1.1.3.2 Spectral noise

The signal variability must also be teased apart from variability due to noise. Vari-

ation in leaf-level vegetation spectra may be due to variation in leaf orientation, diurnal

changes in leaf angle, and canopy position (Castro-Esau et al., 2004; Cochrane, 2000; Mu-

tanga et al., 2004; Xiao, Y. et al., 2014; Zhang et al., 2006). At the canopy level, differences in

atmospheric conditions, illumination, viewing geometry, leaf angle distribution, crown shape,

shading and signatures from wood, soil, epiphytes, and lianas can be sources of noise (As-

ner, 1998; Castro-Esau et al., 2006; Mutanga et al., 2004; Roberts et al., 1998, 2004; Zhang

et al., 2006). Differences in LAI and leaf angle distribution can also affect the relationship

between leaf and canopy spectra (Asner, 1998). At regional extents, spectral mixing within

pixels can be a large source of noise (Xiao, Y. et al., 2014). Topography, micro-climate, and

soil composition and characteristics can also be sources of variation among sites (Cochrane,

2000; Laidler et al., 2008; Zhang et al., 2006).

Variability may also depend on the spectral region examined. The VIS and NIR

portions of the spectral profile have fewer atmospheric absorption features and a higher

signal: noise ratio than some other regions (Sanches et al., 2014). Furthermore within this

VNIR (VIS + NIR) region, Zhao et al. (2007) limited their analysis to 400-1000 nm due to

variation caused by differences in leaf water content at wavelengths greater than 1000 nm

(Broge and Leblanc, 2001). Additionally, the NIR region has greater variability in reflectance

than does the VIS region, maybe due to the variability in leaf water content and leaf thickness

that influences NIR reflectance (Asner et al., 2009; Schmidt and Skidmore, 2001).

1.1.4 Noise correction practices

Atmospheric and soil noise must be corrected to better study vegetation spectrally.

Continuum removal (CR), continuum-removed derivative reflectance (CRDR), band depth
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(BD), band depth ratio (BDR), and normalized band depth index (NBDI) can be used to

reduce noise from leaf water, soil background, the sensor, bandwidth, and the atmosphere

(Mitchell et al., 2012; Mutanga et al., 2004; Sanches et al., 2014).

Continuum removal uses a continuum that is a convex hull made up of straight-line

segments that connect local maxima (Schmidt and Skidmore, 2003). As it is most commonly

used, continuum removal increases discriminability in the VIS region, but decreases it in the

NIR and SWIR regions (Schmidt and Skidmore, 2003). Schmidt and Skidmore (2001) found

more statistically significant differences between species using continuum removal compared

to other techniques. Additionally, Sanches et al. (2014) found that the Plant Stress Detec-

tion Index using continuum removal was more accurate in estimating plant stress than were

chlorophyll feature depth, width, and area, and the narrow-band normalized difference veg-

etation index. Band depth, which is calculated using continuum removed spectral profiles,

minimizes noise from leaf water content, soil signature, and atmosphere better than first

and second derivatives; band depth is less successful at minimizing soil moisture effects than

other noise factors (Kokaly and Clark, 1999).

Derivatives of original spectral profiles can minimize noise from differences in illumi-

nation due to cloud cover and topography (Zhang et al., 2006). Second derivatives are also

not sensitive to background reflectance (Broge and Leblanc, 2001). In contrast, derivatives

are sensitive to the noise in the original spectra, which can only partially be removed with

smoothing; noise from environmental variation is enhanced by derivative analysis, increasing

intraspecific variability and impeding discrimination of species (Bajwa et al., 2004; Zhang

et al., 2006).

1.1.5 Dimension reduction practices

After noise corrections have been done, there are still choices to be made on extracting

information from remote sensing data, including the use of broadband versus narrowband
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indices and the use of hyperspectral data versus multispectral data. Multispectral broadband

remote sensing has a limited capacity to detect biochemical and structural properties of

vegetation (Asner et al., 2007; Cho et al., 2012). Discriminability can be improved by the

higher spectral resolution of hyperspectral imagery (Jafari and Lewis, 2012). As an example,

Thenkabail et al. (2013) found that when discriminating eight crops, the use of 6 non-thermal

Landsat ETM+ broadbands led to an accuracy of 67%, the use of 9 EO-1 ALI broadbands

to an accuracy of 71%, and the use of 20 hyperspectral narrowbands to an accuracy of 95%.

Consolidating data across the spectral profile may give more accurate predictions

than using only a few bands in the form of vegetation indices (Mirik et al., 2006). Data

along the profile can also be consolidated using maximum likelihood classification, discrim-

inant analysis, principal components analysis, regression analysis, wavelet analysis, various

decision tree analyses, support vector machine analysis, and artificial neural network analy-

ses (Agarwal et al., 2013; Bai et al., 2012; Bajwa et al., 2004; Banskota et al., 2011; Cheng

et al., 2014; Cho et al., 2012; Eddy et al., 2014; Farrell and Mersereau, 2005; Goel et al.,

2003; Koger et al., 2003; Lewis, 2002; Mirik et al., 2006; Naidoo et al., 2012; Nooni et al.,

2014; Ranganathan and Borges, 2010; Shafri et al., 2007; Sun et al., 2014; Villa et al., 2011;

Xu and Gong, 2007; Yu et al., 2014; Zhang et al., 2006).

1.2 Research Objectives

Given that invasive species can alter community and ecosystem characteristics and

that successional fields are often dominated by invasive species, in this dissertation, I assess

the ability to use remote sensing to study the role of invasive species in successional plant

communities, thus more efficiently informing conservation efforts.

Specifically, I address the following objectives:

1. Can plant communities be distinguished in successional fields inhabited by invasive

23



plant species using hyperspectral remote sensing?

2. Can particular invasive plant species be distinguished using hyperspectral remote sens-

ing?

3. Is plant species diversity correlated with spectral diversity in successional fields inhab-

ited by invasive plant species?

4. What species effects exist on ecosystem properties and processes throughout succes-

sion?

1.3 Research Approach

Although the distribution and effects of invasive species have been observed using

field measurements, these methods may be limited in scope due to limitations in resources

such as time and funding. Additionally, some field measurements may require destructive

sampling of vegetation. Remote sensing can allow for faster and non-destructive means of

vegetation sampling; additionally, remote sensing from airborne or satellite borne platforms

may allow for the study of larger spatial extents than possible with field measurements.

However, to be observed from airborne and satellite borne platforms, these characteristics

much be spectrally detectable. In this study, I examined the ability to discriminate among

plant communities and plant species using ground-level hyperspectral remote sensing, the

ability to estimate species diversity with spectral diversity using remote sensing, and the

ability to detect species effects on ecosystem properties and processes throughout secondary

succession using field measurements.

To address these objectives, I collected field measurements and ground-level spectral

data from the Blandy Experimental Farm (BEF) in the Shenandoah Valley in Clarke County

VA (39◦09N, 78◦06W) (Bowers, 1997; Wang et al., 2007). The BEF is a 300 ha biological

field station bequeathed to UVa in 1926; it includes the 60 ha Virginia State Arboretum,
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80 ha successional fields, 120 ha pastures and croplands, and 40 ha woodlots and forests

(Bowers, 1997). The BEF elevation is 190 m, average annual temperature and precipitation

are 12 ◦C and 94 cm respectively, and average growing season is 157 days. Average annual

primary productivity in the successional fields is 1.0 kg/m2 (Bowers, 1997). The soils are

deep colluvial and alluvial sediment from karst limestone, shale, and siltstone; they are

well-drained silt loams with slopes of less than 10% (Bowers, 1997). Measurements were

collected along the successional field chronosequences and two additional sites that contained

an invasive species not found within the chronosequences: Lake Arnold and a strip of land

at the border of the northeast chronosequence, here referred to as the Northeast Boundary.

To assess discriminability of plant communities, I established community-level plots

consisting of multiple species in the early successional stages of the chronosequences, along

with Lake Arnold and the Northeast Boundary. Vegetation surveys were conducted and

community-level spectra collected at these plots. To assess species discriminability, I estab-

lished population-level plots consisting of only one invasive species at each of the early stages,

and Lake Arnold and the Northeast Boundary. Population-level and leaf-level spectra were

collected from these plots. Also for species identification, plant-level and leaf-level spectra

were also collected from transects that I established across the chronosequences and within

Lake Arnold and the Northeast Boundary. Community plots were also used to assess the

correlation between species diversity and spectral diversity. Along with spectra data, I col-

lected field measurements of soil and leaf characteristics along the transects and within the

community- and population-level plots. I used these field measurements to assess differences

in soil and leaf characteristics across time, field, successional stage, and species to determine

species-level effects on ecosystem properties throughout succession.
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1.4 Thesis Structure

The thesis is structured into four research chapters along with an introduction and conclusion

chapter:

1. Differentiation among plant communities using field-level remote sensing

2. Differentiation among target exotic invasive species using field-level remote sensing

3. Estimation of species diversity using spectral diversity using field-level remote sensing

4. Assessment of species effects on ecosystem processes using field measurements
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2 Chapter 2: Distinguishing Early Successional Plant

Communities Using Ground-Level Hyperspectral Data

2.1 Abstract

Abandoned agricultural fields have recently become more abundant in the U.S. and

remain susceptible to species invasions after cultivation disturbance. As invasive species

become more widespread with increases in anthropogenic activities, we need more effective

ways to use limited resources for conservation of native ecosystems. Remote sensing can help

us monitor the spread and effects of invasive species, and thus determine the species and

locations to target for conservation. To examine this potential, I studied plant communities

dominated by exotic invasive plant species in secondary successional fields in north-central

Virginia using ground-level hyperspectral data. Within these communities, ordination analy-

ses of vegetation surveys revealed differences in species compositions among plots and fields.

These differences among communities were also observed in the spectral data. Stepwise

multiple linear regression analyses to determine which species influenced the ordination axes

revealed that many of the influential species are considered invasive, again underscoring the

influence of invasive species on community properties. Stepwise regression analyses also re-

vealed that the most influential wavelengths for discrimination were distributed along the

spectral profile from the visible to the near-infrared regions. A discriminant analysis using

wavelengths selected with a principal components analysis demonstrated that different plant

communities were separable using spectral data. These spectrally observable differences sug-

gest that I can use hyperspectral data to distinguish among invasive-dominated successional

plant communities in this region.
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2.2 Introduction

Abandoned agricultural fields are becoming more prevalent in the U.S., especially in

the northeast and midwest (Wang et al., 2010), and are easily occupied by exotic invasive

plant species (Mosher et al., 2009). These invasive species can alter community composition

and ecosystem properties, such as resource availability and use, disturbance frequency, plant

community interactions, and the community compositions of herbivores, soil microbes, and

birds (Chapin III et al., 1997; DeMeester and deB. Richter, 2010; Kuhman et al., 2011;

Sullivan et al., 2007). These species can also alter community and ecosystem dynamics

during secondary succession (Kuhman et al., 2011; Yoshida and Oka, 2004). The invasive

species may take advantage of open niches during early succession (Feldpausch et al., 2004),

thus affecting the degree, duration, and direction of ecosystem change. They can have no

effect (Kassi N’Dja and Decocq, 2008), or their effects can be limited to earlier stages of

succession with eventual reclamation by natives (Cunard and Lee, 2009; Otto et al., 2006).

Alternatively, they can completely change the trajectory, rate, species composition, species

richness, disturbance regimes, and nutrient cycling during succession (Grau et al., 1997;

Leicht-Young et al., 2009; Simberloff, 2010; Sullivan et al., 2007; Yoshida and Oka, 2004).

In order to monitor invasive species, we need to develop better methodologies for mapping

them at fine space-time resolutions.

The control of these invasive species is resource intensive and due to the limited

availability of such resources as time and funding, conservation strategies must be targeted.

To do this, we must determine which species are most detrimental to the environment and can

most easily be controlled. Ground-based methods for monitoring invasive species are costly

and thus can limit research and management; alternatively, remote sensing can supplement

field data to monitor spatial and temporal distributions of invasive species (Bradley and

Mustard, 2006; Schmidt and Skidmore, 2001; Wilfong et al., 2009; Zhang et al., 2006).

Multispectral data have been used to observe vegetation characteristics and discrim-
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inate among species; as an example, Smith and Blackshaw (2003) were able to discriminate

among two crop species and five weed species with 89% accuracy using multispectral data

with some misclassification of grasses as broad-leaf plants and vice versa. However, hy-

perspectral data may provide better estimates of such vegetation characteristics and more

accurately discriminate species due to more numerous and narrower wavebands (Jafari and

Lewis, 2012; Smith and Blackshaw, 2003). In addition to their multispectral analysis, Smith

and Blackshaw (2003) observed 90% accuracy in discriminating the crop and weed species

using hyperspectral data; however, the misclassifications were now within grasses and broad-

leaf plants rather than across. Hyperspectral data have recently been used more frequently

to distinguish among individual plant species (Burkholder, 2010; Narumalani et al., 2009;

Pinard and Bannari, 2003; Rud et al., 2006; Schmidt and Skidmore, 2001; Yingying et al.,

2011), and we may be able to examine community properties and processes spectrally where

certain individual species dominate.

When examining plant species and communities with remote sensing, we need to con-

sider several sources of variation in spectral data. Variation of visible (VIS) reflectance is

mostly due to leaf pigment and nutrient content, while variation in the near-infrared (NIR)

region is due to leaf structure and surface characteristics; variation in the shortwave infrared

(SWIR) region is due to plant water content (Mahlein, 2011; Xiao, Y. et al., 2014). At the

leaf level, reflectance is further influenced by biochemical processes, stress, and phenological

processes (e.g. senescence) (Mahlein, 2011; Merzlyak et al., 2003). Spectral signatures also

differ between sun and shade leaves, as sun leaves have lower reflectance values along the

entire spectral profile than do shade leaves due to greater leaf thickness and pigment concen-

trations (Buschmann et al., 1990). At the canopy level, vegetation spectra are influenced by

foliar reflectance, foliar transmittance, and crown architecture (Papes et al., 2010). Certain

biological traits that influence spectra also vary in response to changes in the environment;

for example, chlorophyll a: chlorophyll b ratios change with illumination (Gamon and Berry,

2012). Additionally, absorption bands can be affected by more than one chemical constituent
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of a leaf, and one chemical constituent can influence a broad spectral region (Kokaly and

Clark, 1999).

Such spectral variability in these characteristics may weaken direct correlations be-

tween biological properties or processes and spectral data. However, these data can be used

to discriminate species and communities if interspecific differences in such characteristics

are greater than intraspecific and intra-individual differences (Zhang et al., 2006). Spectral

differences due to diversity in pigment content, water content, structural elements, cell size,

intercellular space, and cell wall thickness can assist in differentiating among plant species

and communities (Roberts et al., 2004). In this paper, I ask: 1) Can plant communities

in successional fields in a ridge-and-valley system in north-central Virginia be distinguished

using ground-level hyperspectral remote sensing? 2) Which species are most influential in

affecting discriminability? 3) Which spectral variables explain the greatest variance in com-

munity composition?

2.3 Methods

2.3.1 Study Site

The Blandy Experimental Farm (BEF) (Figure 17), located in the Shenandoah Valley

in Clarke County Virginia at 39◦09’N, 78◦06’W (Wang et al., 2007), is a 300 ha biological field

station owned by the University of Virginia since 1926 and operated by the Department of

Environmental Sciences since 1983 (Bowers, 1997). The BEF contains 120 ha of pasture and

cropland, 40 ha of woodland, the 60 ha Virginia State Arboretum, and 80 ha of old fields in

early, middle, and late succession (Bowers, 1997). Each of two successional series (southwest

and northeast) contains an early, mid, and late successional field. The successional fields are

former agricultural fields, abandoned in 2001 (Early 1), 2003 (Early 2), 1986 (Mid 1), 1987

(Mid 2), before 1910 (Late 1) and before 1920 (Late 2) (Wang et al., 2010). Two additional
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field sites were considered alongside the successional field chronosequences: near Lake Arnold

and a site at a field boundary near the northeast successional series. Soils are deep colluvial

and alluvial sediment from karst limestone, shale, and siltstone; study sites have well-drained

silt loam soil, of the soil Order Ultisol, with slopes less than 10% (Bowers, 1997). With an

elevation of 190 m, the BEF has a mean annual temperature and precipitation of 11.8 ◦C and

940 mm respectively, an average growing season of 157 days, and average annual primary

productivity of 1.0 kg m-2 in the successional fields (Bowers, 1997; Wang et al., 2010). The

exotic invasive species that occupy these fields at BEF have several traits that assist their

establishment and spread, and thus affect community composition (see Appendix 1).

Figure 1: Blandy Experimental Farm, Boyce VA with study site labels including two sec-
ondary successional fields.
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Figure 2: Examples of early-stage community plots from a) Lake Arnold, b) the northeast
boundary, c) the Northeast chronosequence, and d) the Southwest chronosequence.

2.3.2 Field Methods

To discriminate plant communities using hyperspectral remote sensing, three 5 m * 5

m community-level plots were established in the summer of 2014 in each of four sites at the

BEF: Lake Arnold (LA), the northeast boundary (NEB), and the early successional stage in

both the northeast (NEE) and southwest (SWE) successional chronosequences for a total of

24 plots. Only early stages from the successional series were used for ground-level spectral

analyses (Figure 2) because of vegetation height in later successional stages. From these plots,

using a PANalytical Analytical Spectral Devices (ASD) Inc. FieldSpec R© 3 with a 25◦ field

of view (FOV), I collected community-level spectra in the summer of 2014. Hyperspectral

reflectance measurements from 350 nm to 1025 nm were collected from approximately 2.5 m

in height for a measurement footprint of approximately 1.15 m in diameter. I accomplished
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this by standing on a stool and using a custom-made PVC-pipe extension holding the pistol

grip to avoid any spectral signature from the stool or observer. I collected spectra in a

way that maximized coverage without trampling vegetation, taking measurements in each

corner of the plot, in the center, and the middle of each edge for a total of 12 spectral

footprints per plot with each footprint capturing a subsample of the community (Figure 11).

Approximately three spectral samples were collected for each spectral footprint for a total of

around 36 spectra per plot (Table 1), and spectral measurements were averaged by footprint.

I measured the location of the center of each footprint using a plumb-line for several plots

and calculated the average location for each footprint in the grid. Spectra were taken during

cloud-free days between 10 AM and 2 PM during peak growing season (July) to minimize

diurnal and seasonal variability and minimize soil signatures; the spectroradiometer was

calibrated at approximately 10 minute intervals using a Spectralon white reference panel

and dark current measurements. I also conducted vegetation surveys on the 5 m * 5 m grids

at 0.5 m intervals, recording species at the ground level, sub-canopy, and canopy to assess

species composition of the spectral footprints. Grids were established using PVC pipes to

mark the periphery of the 5 * 5 m plots. Pipes had holes drilled at 0.5 m intervals; a string

with hooks on either end was then moved along the pipes, using holes as anchors. The string

had knots at 0.5 m intervals, and plants were surveyed at the knots. Therefore, I was able

to map the gridpoints that fell within each footprint, using the footprint centers measured

with the plumb-line, and know which species were encompassed within each footprint.
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Figure 3: Layout of 5 m * 5 m community-plots. Circles represent spectral footprints taken
from outside the plots so as not to trample vegetation. Vegetation surveys were conducted
at each 0.5 m interval within a plot for a total of 121 points at the ground, understory, and
canopy level.
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Table 1: Number and date of community spectra collected; no species-level spectra were used
for this study. Signatures were collected in a two-day period during peak growing season
to minimize seasonal variability and soil signature while providing a fair comparison across
plant communities.

Plot Number of Spectra Date of Collection

lacp1 37 7/5/2014

lacp2 36 7/5/2014

lacp3 36 7/5/2014

nebcp1 36 7/4/2014

nebcp2 36 7/4/2014

nebcp3 36 7/4/2014

neecp1 37 7/4/2014

neecp2 37 7/4/2014

neecp3 36 7/4/2014

swecp1 35 7/5/2014

swecp2 36 7/5/2014

swecp3 38 7/5/2014

2.3.3 Statistical Methods

To minimize any atmospheric and soil noise in the spectral data, I calculated band

depth from original reflectance profiles, and this band depth profile was used for subsequent

analysis. To obtain band depth, a continuum hull was matched to the original spectral

profile, and this continuum was removed from the original spectral profile to get normal-

ized reflectance; I then subtracted these continuum-removed reflectance values from one to

get the band depth profile. An example of this calculation is illustrated using an average

buckthorn spectral profile (Figure 12). The continuum hull is comprised of several lines

connecting local maxima and has been used by many researchers to minimize noise, increase
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discriminability, and increase accuracy in estimating physiological characteristics (Mitchell

et al., 2012; Sanches et al., 2014; Schmidt and Skidmore, 2001). For more information on

continuum removal, refer to Schmidt and Skidmore (2003) and Clark and Roush (1984).

Figure 4: Calculating band depth (normalized absorption) from original reflectance using
continuum removal.

Vegetation survey data were matched to footprints used for spectral data collection

using the grid points that fell within the footprints. To determine discriminability among

communities using community-plot spectra and vegetation surveys, I used PC-ORD (Version

6, MjM Software, Gleneden Beach, Oregan) to conduct multivariate non-metric multidimen-

sional scaling (NMS) ordination analyses. This analysis orients samples in an ordination

space based on the similarities between samples (Schmidtlein et al., 2007). I used this tech-

nique, along with Bray-Curtis distance, to determine clustering of footprints within plots, by

species compositions. Subsequently, I ran a stepwise regression in SAS (Statistical Analysis
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Software, Version 9.4, SAS Institute Inc., Cary, North Carolina) to examine which species

most influenced the ordination axes and thus plot footprint clustering, considering species

with a significance level of p<0.0001.

I ran a similar ordination analysis using footprint-level spectral data to assess spectral

clustering of plot footprints, followed by a multiple regression to examine which wavelengths

most influenced clustering. To reduce correlation among wavelengths prior to running the

regression analysis, I performed a principal components analysis (PCA) in SAS to select

uncorrelated wavelengths that explained most of the variability in the dataset; this was

done by selecting wavelengths with the greatest absolute value of factor loadings. The

regression then used these wavelengths to assess which most influenced the ordination axes.

I also assessed the relationships between species ordination axis loadings and band depth

axis loadings to determine whether certain species may be associated with certain spectral

characteristics.

To determine whether I could use spectral data to differentiate among plots and

whether the use of multiple narrow bands would increase discriminability, I ran two discrim-

inant analyses (DA). One used seven simulated broad bands corresponding with those of

WorldView2, and another used wavelengths selected from the PCA. The WorldView2 bands

were simulated using the reflectance spectra, averaging 400-449 nm, 450-509 nm, 510-580

nm, 585-625 nm, 630-690 nm, 705-745 nm, and 770-895 nm. The eighth WorldView2 band

of 860-1040 nm extends past the wavelengths measured using the FieldSpec3, and thus was

not simulated. User’s, producer’s, and overall accuracies were calculated, along with the

Matthew’s Correlation Coefficient (MCC, Equation 1, where TP=True Positive, TN=True

Negative, FP=False Positive, and FN=False Negative) to test for reliability. MCC values

range from 1 to -1, where 1 represents perfect predictability, 0 represents predictability as

good as random, and -1 represents predictability exactly opposite of expected.
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MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(1)

2.4 Results and Discussion

In this study, I asked whether plant communities could be distinguished spectrally,

and which species and spectral attributes were most useful for discrimination. Species com-

position differed by field, as found through vegetation surveys and species ordination results,

and these differences were observed spectrally using ordinations of band depth data. Using

the bands selected by the PCA in a discriminant analysis, plots within fields were not as

readily distinguished as plots across fields, because of greater similarities in species compo-

sitions within fields than between fields. Nevertheless, plots were able to be separated more

successfully using narrow bands derived from hyperspectral data than by using simulated

WorldView2 broad bands.

2.4.1 Species ordinations

Species compositions differed by fields and by plots within fields (Figure 5). Lake

Arnold (LA) plots predominantly consisted of Galium verum (yellow bedstraw), Poa trivialis

(rough bluegrass), and Bromus japonicus (Japanese brome). In the northeast boundary

(NEB), plots were dominated by grass species including Poa trivialis, Festuca rubra (red

fescue), and Festuca octoflora (sixweek fescue). The northeast early (NEE) successional

plots consisted mostly of Galium verum, Poa trivialis, and Rhamnus davurica (Dahurian

buckthorn). The southwest early (SWE) plots mostly contained Rhamnus davurica, Solidago

altissima (tall goldenrod), and Celastrus orbiculatus (oriental bittersweet) (Figure 5).
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Figure 5: Species composition from vegetation surveys of community plots (CP) at Blandy
Experimental Farm in north-central Virginia at Lake Arnold (LA), the boundary near the
northwest successional field (NEB), the northeast early successional seres (NEE), and the
southwest early successional seres (SWE), where the y-axis represents the number of inter-
sects (out of the total 121 intersects surveyed in each plot) at which certain species were
found.

These differences in species compositions were demonstrated in the ordination results

as footprints clustered by plot and by field in ordination space (Figure 6). Hence, species

compositions were similar within plots and within fields. The species that most influenced

axis 1 of the composition ordination were Solidago altissima (tall goldenrod) and Bromus

japonicus (Japanese brome), while axis 2 was most influenced by Festuca rubra (red fescue),

Galium verum (yellow bedstraw), Muhlenbergia schreberi (nimblewill), Achillea millefolium
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(yarrow), and Bromus commutatus (meadow brome). Axis 3 was most influenced by Galium

verum (yellow bedstraw), Solidago gigantea (giant goldenrod), Dactylis glomerata (orchard

grass), Bromus japonicus (Japanese brome), Ambrosia artemisiifolia (common ragweed),

and Lonicera japonica (Japanese honeysuckle) (Table 2).

(a) A (b) B

(c) C

Figure 6: Non-metric multidimensional scaling (NMS) ordination results using species com-
position from Lake Arnold (LA), northeast boundary (NEB), northeast early (NEE), and
southwest early (SWE) fields at the Blandy Experimental Farm in north-central Virginia for
a) axes 1 and 2, b) axes 1 and 3, and c) axes 2 and 3.

40



Table 2: Stepwise regression results on which species most influence non-metric multidimen-
sional scaling (NMS) ordination axes. Enough species were retained to have a cumulative
R2 of 0.80. All species indicated here are significant to p<0.0001.

Axis Species Partial R-square

Axis 1 Solidago altissima 0.6962

Axis 1 Bromus japonicus 0.1117

Axis 2 Festuca rubra 0.5538

Axis 2 Galium verum 0.1251

Axis 2 Muhlenbergia schreberi 0.0737

Axis 2 Achillea millefolium 0.0433

Axis 2 Bromus commutatus 0.0363

Axis 3 Galium verum 0.3817

Axis 3 Solidago gigantea 0.2266

Axis 3 Dactylis glomerata 0.0813

Axis 3 Bromus japonicus 0.0573

Axis 3 Ambrosia artemisiifolia 0.0476

Axis 3 Lonicera japonica 0.0336

Many of the species that most influenced the ordination axes were also dominant in the

community plots, especially in a particular field, making them important for discriminating

across fields. As examples, S. altissima was dominant in the SWE plots, F. rubra was

dominant in the NEB plots, and G. verum was dominant in the LA and NEE plots. These

three species were influential to axes 1, 2, and 3 respectively in the species ordinations.

As I had surmised, many of the most influential species are also considered inva-

sive, including Festuca rubra, Galium verum, Muhlenbergia schreberi, Achillea millefolium,

Dactylis glomerata, Ambrosia artemisiifolia, and Lonicera japonica (EDDMapS, 2014; USDA

Plants Database, 2015). This supports the idea that these invasive species affect commu-
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nity composition, and likely community properties as well. Additionally, subordinate species

may be important determinants of ecosystem function because they can influence which

species become dominant and may themselves become dominant if current dominants are

suppressed (Grime, 1998). Thus, invasive species might have effects on ecosystem function

and community composition even at low densities.

2.4.2 Spectral ordinations

Footprint similarities were also assessed using spectral data; I again found clustering

of footprints by plot and by field (Figure 7). Before running a regression analysis to determine

which bands most influenced NMS ordination axis values, a segmented principal components

analysis (PCA) was conducted; the wavelengths selected, based on the greatest absolute value

of factor loadings, were 435 nm, 525 nm, 575 nm, 635 nm, 680 nm, 710 nm, 750 nm, 835

nm, and 970 nm. Band depths at these wavelengths were entered into a regression analysis

to determine which wavelengths most explained the ordination axes; these wavelengths were

435 nm, 635 nm, 680 nm, 710 nm, 750 nm, and 970 nm for axis 1; 435 nm, 525 nm, 575 nm,

635 nm, 750 nm, 970 nm for axis 2; and 525 nm, 575 nm, 635 nm, 710 nm, 750 nm, and 835

nm for axis 3 (Table 3).
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(a) A (b) B

(c) C

Figure 7: Non-metric multidimensional scaling (NMS) ordination results using band depth
values from Lake Arnold (LA), northeast boundary (NEB), northeast early (NEE), and
southwest early (SWE) fields at the Blandy Experimental Farm in north-central Virginia for
a) axes 1 and 2, b) axes 1 and 3, and c) axes 2 and 3.
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Table 3: Multiple regression coefficients, assessing which wavelengths most influence non-
metric multidimensional scaling (NMS) ordination axes.

Axis 435 525 575 635 680 710 750 835 970

Axis 1 3.60 . . 7.40 −7.66 −4.78 1.78 . 8.48

Axis 2 6.31 −1.65 3.44 7.28 . . 2.86 . 2.22

Axis 3 . −4.11 6.96 −6.41 . 3.79 5.31 5.59 .

The wavelengths selected through the principal components analysis (PCA) as most

encompassing variability across plots were 435, 525, 575, 635, 680, 710, 750, 835, and 970 nm.

The entire spectral profile was represented, because I used a segmented PCA rather than

using the entire spectral profile. This is important because of the differences in magnitudes of

reflectance values along the spectral profile; the greater the reflectance value at a particular

wavelength, the more likely that wavelength may be to influence a principal component.

Using the segmented PCA allows for the representation of biologically meaningful features

across the entire spectral profile. As examples, the reflectance values at 435 nm and 575

nm are influenced by carotenoids and chlorophyll more so than by anthocyanins (Blackburn,

2006; Koning, 1994). At 525 nm, there is more influence by anthocyanins than carotenoids

and chlorophylls (Blackburn, 2006; Koning, 1994). Chlorophylls a and b have peaks near

680 and 635 nm respectively (Blackburn, 2006; Koning, 1994). Wavelengths in the red edge

such as 710 nm and 750 nm can be used to estimate chlorophyll content because they are

less affected by leaf structure and canopy structure (Sims and Gamon, 2002). The near-

infrared bands, such as 835 nm, have been used to assess leaf structure (Gamon et al., 1993).

The water absorption feature near 970 nm is often used to estimate leaf water content

(Wang et al., 2009). Using these wavelengths, a discriminant analysis was successfully used

to distinguish among communities. The DA revealed that there was high discriminability

across fields, but less discriminability within fields; this is consistent with greater species

composition similarity across than within fields.
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Within the band depth ordination results, axis 1 was positively influenced by band

depth at 435, 635, 750, and 970 nm and negatively influenced by band depth at 680 and

710 nm. Spectra with high axis 1 values are characterized by 1) having high absorption

associated with carotenoids and chlorophyll (chl), especially chl b over chl a, 2) having a

less steep red edge, and 3) having a large water absorption feature at 970 nm. Axis 2 was

positively influenced by 435, 575, 635, 750, and 970 nm and negatively influenced by 525 nm.

Thus spectra with high axis 2 values are characterized by high absorption associated with

carotenoids and chlorophylls, especially chl b, and not by anthocyanins; they also have high

absorption at the red-edge shoulder and a large water absorption feature at 970 nm. Axis 3

was positively associated with 575, 710, 750, and 835 nm and negatively associated with 525

and 635 nm. Spectra with high axis 3 values are characterized by high absorption associated

with carotenoids and chl a, but not by chl b or anthocyanins; they have high absorptions in

the near-infrared plateau.

To determine whether these spectral characteristics may be correlated with certain

species, the species ordination axis loadings were assessed for correlations with band depth

loadings. There were positive correlations between species axis 1 and band depth axis 1

(r=0.513, p¡0.0001) and between species axis 1 and band depth axis 2 (r=0.718, p¡0.0001).

There was a negative correlation between species axis 2 and band depth axis 3 (r=-0.450,

p¡0.0001). The species that were most strongly correlated with axis 1 in the species ordi-

nations were S. altissima and B. japonicus. These species may be characterized by higher

absorption by carotenoids and chl b than by anthocyanins and chl a; they also may have

high absorption in the red-edge shoulder region and the water absorption feature at 970

nm. The species associated with axis 2 may be characterized by greater absorption due to

anthocyanins and chl b, and higher reflectance in the red edge and near-infrared regions.

However, caution must be used in analyzing these composite spectra, since features from

multiple species are being expressed within one spectral profile.
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2.4.3 Discriminant Analyses

There was high separability among fields, but low separability among plots using

simulated WorldView2 broad bands (Table 4). As an example, 32 out of 36 NEB spectra

were correctly identified as NEB, but only 16 out of those 32 were identified as the correct

plot within NEB. Similarly, 32 out of 36 SWE spectra were correctly identified as SWE, but

only 22 out of those 32 were identified as the correct SWE plot.

Table 4: Confusion matrix for summer 2014 discriminant analysis to test discriminabilty of
plots using 7 simulated WorldView2 bands: 400-449, 450-509, 510-580, 585-625, 630-690,
705-745, and 770-895 nm.

Number of Observations Classified into Plot

lacp1 lacp2 lacp3 nebcp1 nebcp2 nebcp3 neecp1 neecp2 neecp3 swecp1 swecp2 swecp3 Total

Producer’s

Accu-

racy

lacp1 12 0 0 0 0 0 0 0 0 0 0 0 12 85.7%

lacp2 0 12 0 0 0 0 0 0 0 0 0 0 12 100%

lacp3 2 0 8 0 0 1 0 0 0 1 0 0 12 88.9%

nebcp1 0 0 0 4 5 2 0 1 0 0 0 0 12 44.4%

nebcp2 0 0 0 4 6 2 0 0 0 0 0 0 12 46.2%

nebcp3 0 0 0 1 2 6 0 0 2 1 0 0 12 54.5%

neecp1 0 0 0 0 0 0 4 3 2 2 1 0 12 44.4%

neecp2 0 0 1 0 0 0 3 6 1 0 0 1 12 40.0%

neecp3 0 0 0 0 0 0 2 3 7 0 0 0 12 50.0%

swecp1 0 0 0 0 0 0 0 1 1 5 1 4 12 45.5%

swecp2 0 0 0 0 0 0 0 0 0 2 8 2 12 72.7%

swecp3 0 0 0 0 0 0 0 1 1 0 1 9 12 56.3%

Total 14 12 9 9 13 11 9 15 14 11 11 16 144

User’s

Accu-

racy

100% 100% 66.7% 33.3% 50.0% 50.0% 33.3% 50.0% 58.3% 41.7% 66.7% 75.0%

Overall

Accu-

racy

60.4%
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Table 5: Confusion matrix for summer 2014 discriminant analysis to test discriminabilty of
plots using wavelengths selected using principal components analysis: 435, 525, 575, 635,
680, 710, 750, 835, 970 nm.

Number of Observations Classified into Plot

lacp1 lacp2 lacp3 nebcp1 nebcp2 nebcp3 neecp1 neecp2 neecp3 swecp1 swecp2 swecp3 Total

Producer’s

Accu-

racy

lacp1 11 1 0 0 0 0 0 0 0 0 0 0 12 78.6%

lacp2 1 10 1 0 0 0 0 0 0 0 0 0 12 83.3%

lacp3 2 1 7 0 0 2 0 0 0 0 0 0 12 77.8%

nebcp1 0 0 0 8 3 0 0 0 1 0 0 0 12 88.9%

nebcp2 0 0 0 1 10 1 0 0 0 0 0 0 12 71.4%

nebcp3 0 0 1 0 1 9 0 0 1 0 0 0 12 75.0%

neecp1 0 0 0 0 0 0 8 0 1 2 0 1 12 80.0%

neecp2 0 0 0 0 0 0 1 7 0 0 0 4 12 77.8%

neecp3 0 0 0 0 0 0 1 1 10 0 0 0 12 77.0%

swecp1 0 0 0 0 0 0 0 0 0 11 1 0 12 73.3%

swecp2 0 0 0 0 0 0 0 0 0 2 9 1 12 90.0%

swecp3 0 0 0 0 0 0 0 1 0 0 0 11 12 64.7%

Total 14 12 9 9 14 12 10 9 13 15 10 17 144

User’s

Accu-

racy

91.7% 83.3% 58.3% 66.7% 83.3% 75% 66.7% 58.3% 83.3% 91.7% 75.0% 91.7%

Overall

Accu-

racy

77.1%

In contrast, using multiple narrowband wavelengths selected by the PCA in a discrim-

inant analysis, I found greater spectral separability of plots (Table 5). As an example, 33 out

of 36 NEB spectra were correctly identified as NEB, and 27 out of those 33 were identified

as the correct NEB plot. Similarly, 35 out of 36 SWE spectra were correctly identified as

SWE, and 31 out of those 35 were identified as the correct SWE plot. User’s, producer’s,

and overall accuracies and the MCC values were greater using narrow bands than using

simulated broad bands (Table 6).
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Table 6: A comparison of discrimination accuracies and reliability using simulated World-
View2 broad bands, and narrow bands from hyperspectral field-measurements.

Simulated Broad Bands Narrow Bands

Matthew’s Correlation Coefficient 0.548 0.745

Overall Accuracy 60.4% 77.1%

Average Producer’s Accuracy 60.7% 78.1%

Average User’s Accuracy 60.4% 77.1%

Therefore, plant communities may be more successfully discriminated spectrally using

narrow bands than broad bands. Additionally, the narrow band values entered into the

discriminant analysis were band depth rather than reflectance values, which may also have

contributed to the increase in discriminability.

2.4.4 Other considerations

The spectral differences between fields may also have been due to differences in soil

characteristics among fields. If soil signatures were a large part of the spectral footprints

(i.e. for small-leaved species), these differences in soil signatures in the plots and fields

may contribute to the spectral differences in plots and fields. Depending on vegetation

cover, differences in soil moisture and soil texture can influence spectral data (Cochrane,

2000; Laidler et al., 2008; Zhang et al., 2006). Differences in soil characteristics such as

soil nutrients, soil biota, and soil pH could also directly and indirectly influence differences

observed among communities (Baron et al., 2014). Land use can influence soil characteristics

(Castro et al., 2010) and species composition (Aragon and Morales, 2003; Grau et al., 1997;

Riedel and Epstein, 2005). The four fields studied at the Blandy Experimental Farm differ in

land use history (Wang et al., 2010) and in soil characteristics. Therefore, it is important to

take land use history into account when studying invaded systems (Rooney and Rogers, 2011;

Seabloom et al., 2013) and secondary successional systems (Arroyo-Mora et al., 2005; Riedel
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and Epstein, 2005). Additionally, species composition can influence soil characteristics by

mechanically changing the soil, affecting nutrient cycling, altering soil biota, and by changing

herbivore community compositions (DeMeester and deB. Richter, 2010; Weidenhamer and

Callaway, 2010).

As another consideration, band depth may not always be the best way to normalize

data and correct for noise although it is quite commonly used (Crowley et al., 1989; Kokaly

and Clark, 1999; Rice et al., 2013; Wang et al., 2009). Additional techniques for extracting

spectral information include the use of first and second derivatives (Carlson et al., 2007;

Castro-Esau et al., 2004), and band ratios (Broge and Leblanc, 2001; Clevers and Kooistra,

2012). Band depth, however, is widely used to estimate vegetation water, nitrogen, lignin,

and cellulose content (Kokaly and Clark, 1999; Wang et al., 2009) and to discriminate among

minerals (Crowley et al., 1989; Rice et al., 2013), because it reduces the effects of sensor noise,

atmospheric effects, background soil signatures, and variations in topography and albedo

(Crowley et al., 1989; Kokaly and Clark, 1999). However, the output of this procedure varies

depending on the range over which the continuum is established. Band depth might also

not be the most useful technique for all parts of the spectral profile. Therefore, another

noise minimization technique may be better able to preserve information from the original

reflectance spectral profile, for example in the near-infrared region where differences are often

dampened by band depth calculations.

Additionally, only early-stage spectral signatures were analyzed in this study due

to the height of the vegetation. Therefore, the separability of plant communities in the

early stages could not be compared with separability of plant communities at mid and late

stages. Future research with satellite or airborne imagery could help rectify this short-

coming; however, the differences in remote-sensing platforms, such as spatial and spectral

resolutions, would need to be taken into account. Further research could also be done to

assess discriminability across plant communities early and late in the growing season, but

49



at these times the soil signature may inhibit discrimination; senescence during late stages of

the growing season could also inhibit discriminability.

2.4.5 Context of key findings

Overall, I were able to visualize and analyze differences in communities by species

composition using ordination analyses. Schmidtlein et al. (2007) used NMS ordinations to

study undefined vegetation assemblages and used partial least squares regression analysis to

assess which bands were most influential to the assemblages. Similarly, I used regressions

to determine the most influential species to clustering: Solidago altissima (tall goldenrod),

Bromus japonicus (Japanese brome), Festuca rubra (red fescue), Galium verum (yellow bed-

straw), Muhlenbergia schreberi (nimblewill), Achillea millefolium (yarrow), Bromus commu-

tatus (meadow brome), Solidago gigantea (giant goldenrod), Dactylis glomerata (orchard

grass), Ambrosia artemisiifolia (common ragweed), and Lonicera japonica (Japanese honey-

suckle). Several of these species are considered invasive in Virginia (F. rubra, G. verum, M.

schreberi, A. millefolium, D. glomerata, A. artemisiifolia, and L. japonica), illustrating how

invasive species can influence community composition (EDDMapS, 2014).

I was also able to spectrally separate communities using ordinations. Gao and Zhang

(2006) also examined such differences in vegetation, using ground-level spectral data to

discriminate salt marsh communities. These spectral differences by communities may be

due to differences in species-level characteristics since the reflectance in the visible region is

influenced by pigment concentration and reflectance in the near-infrared region is influenced

by leaf structure (Xiao, Y. et al., 2014), and these characteristics can differ by species. This

idea was supported when I used regressions to determine the most influential wavelengths

for clustering of communities: 435, 525, 575, 635, 680, 710, 750, 835, and 970 nm. These

wavelengths are representative of absorption by pigments, leaf structure, and leaf water

content; such features differ by species and by communities that differ in species composition.
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Similar spectral features have been used to discriminate among species (Burkholder,

2010; Narumalani et al., 2009; Pinard and Bannari, 2003; Rud et al., 2006; Schmidt and

Skidmore, 2001; Yingying et al., 2011). If such features are able to be detected at the satellite

level, discriminability may also be possible using satellite imagery. Since the most readily

available satellite data are multispectral with medium or coarse spatial resolution, this may

be challenging considering the lower discriminability I observed using simulated broad bands.

However, discriminability may become easier with the advances in hyperspectral satellite

technology such as the existing Hyperion and future EnMAP and HyspIRI satellites. The

German EnMAP (Environmental Mapping and Analysis Program) satellite mission aims to

use a pushbroom sensor to collect visible, near infrared, and shortwave infrared (420 nm -2450

nm) reflectances with 244 bands, high radiometric resolution of 14 bits, a spatial resolution of

30 m, and a 30◦ off-nadir pointing feature and sun-synchronous orbit that will allow a 4-day

temporal resolution; it is scheduled to launch around 2018 (EnMAP, 2015). Additionally, the

HyspIRI (Hyperspectral Infrared Imager) mission, scheduled to launch by 2022, will have two

instruments on a satellite in Low Earth Orbit that will collect reflectance measurements from

380 nm to 2500 nm and 3 µm to 12 µm with a spatial resolution of 60 m and revisit times

of 19 days for visible to shortwave regions and 5 days for thermal infrared (Hook, 2015).

Advances in high spatial resolution satellites, such as the WorldView2 and WorldView3

satellites with resolutions of 1.84 m and 1.24 m respectively for multispectral bands, would

also increase species discriminability with the reduction of spectral mixing; WorldView3 also

has decent spectral resolution, with 16 bands from the visible to shortwave-infrared regions.

Using hyperspectral and high-spatial resolution data to monitor plant communities and how

they may be affected by invasion at large spatial extents can aid conservation efforts and

help us preserve the biodiversity that is associated with ecosystem function.
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2.5 Conclusion

I was able to distinguish among plant communities that differed in species compo-

sitions using ground-level hyperspectral remote sensing data. Seven of the eleven most

influential species in defining these plant communities are considered invasive in Virginia,

demonstrating the impact of invasive species on community composition. Plant communities

were more accurately discriminated amongst using narrow bands than by using simulated

broad bands, with a 77% overall accuracy versus 60% percent. Thus, narrow bands provide

improved accuracies relative to broad bands in the study of plant communities, because nar-

row bands provide useful details that may be averaged out by broad bands. In this study,

I demonstrated that I could discriminate among early successional plant communities using

remote sensing data collected at the ground-level. Further work could be done using air-

borne or satellite imagery in mid and late successional stages to observe plant community

discriminability at larger spatial extents. However, challenges to this include spatial and

spectral resolutions most commonly available in airborne and satellite imagery. Such re-

search will become more feasible with advances in satellite technology, such as the upcoming

hyperspectral EnMAP and the available hyperspatial WorldView3 satellites.
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2.6 Appendix 1: Persistence of Invasive Plant Species

The non-native invasive plant species in this paper have several traits that allow them

to persist in and take over a region. As examples, Carduus acanthoides (spiny plumeless

thistle) has numerous, though not persistent, seeds (Feldman, 1997), is tolerant to repeated

disturbances (Zhang et al., 2011), and is opportunistic in colonizing gaps (Allen and Shea,

2006). Rhamnus cathartica (Common buckthorn) has high shade tolerance, high growth

and photosynthesis rates, wide range of tolerance of moisture and drought, unique leaf phe-

nology, high fecundity, bird-dispersal of fruit, high germination rate, high seedling success

in disturbed sites, and secondary metabolites, especially emodin, which may protect the

plant from herbivores, pathogens, and high light levels; emodin may have allelopathic ef-

fects on natives nearby, and affect soil microbes and unripe fruit consumption/ digestion

by birds (Knight et al., 2007). Celastrus orbiculatus (Oriental bittersweet) sprawls over or

twines around and into the canopy of surrounding vegetation and has low palatability (Fryer,

2011). It does not have a host preference (Ladwig and Meiners, 2010). It can also persist at

low photosynthetic rates in the shade and respond quickly to increases in light penetration

to outgrow competition even in mature forests (Fryer, 2011), able to spread substantially

within the canopy and decrease tree growth after gap-formation (Pavlovic and Leicht-Young,

2011). Oriental bittersweet can outcompete American bittersweet due to greater tolerance to

various environmental conditions (e.g. shade), faster growth and reproduction rates, ability

to increase photosynthetic rates with increases in light, the ability to perceive and grow to-

ward nearby vegetation that it could then climb (Fryer, 2011), a shorter juvenile period, and

greater seed viability (Pooler et al., 2002). In addition to changing species composition of

plants, these invasive species can also be host to other types of organisms that could in turn

affect other plants; buckthorn is the primary overwintering host for soybean aphids, Aphis

gossypii and A. glycines (Heimpel et al., 2010; Kim et al., 2010), and oriental bittersweet is

host for the bacterim Xylella fastidiosa, which in turn infects crop plants (Fryer, 2011).
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3 Chapter 3: Identifying plant species using hyper-

spectral remote sensing in successional systems of

north central Virginia

3.1 Abstract

Since biodiversity can affect several aspects of ecosystems including productivity and

stability, it is important to study factors that may threaten biodiversity, such as invasive

plant species. Remote sensing can be more efficient in the study of the prevalence and effects

of invasive species over large regions than are field surveys alone. I collected ground-level

hyperspectral data of six exotic invasive plant species in abandoned agricultural fields at the

Blandy Experimental Farm in north-central Virginia to determine discriminability of these

species using visible and near-infrared wavelengths. The entire spectral profile from 350

nm to 1025 nm was used in Support Vector Machine analysis to determine separability of

species. I used sensitivity analyses to determine which spectral regions were most influential

to discriminability by removing 50 nm regions and comparing discriminability to that using

the entire spectral profile. Ailanthus altissima, Carduus acanthoides, and Cirsium arvense

had high discriminability (75%, 87.5%, and 75% respectively). Galium verum had low

discriminability (44.4%), due to high spectral contamination from soil. Celastrus orbiculatus

and Rhamnus davurica had low discriminability (27.3% and 30.8% respectively), however

they were often misclassified as each other; this may be due to their physical overlap in the

field. The sensitivity analysis revealed that the 350-399, 500-549, 700-749, and 900-949 nm

regions were most useful for species discrimination, while 550-599 and 650-699 nm regions

were detrimental to discrimination, due to greater intraspecific variability than interspecific

variability in these regions. These most influential regions for discrimination were similar to

those found in other studies.
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3.2 Introduction

3.2.1 Biodiversity and invasion

Biodiversity can affect ecosystem productivity (Cardinale et al., 2007; Gustafsson

and Bostrom, 2011; Symstad and Jonas, 2011; Wilsey and Potvin, 2000), resource-use and

resource-use efficiency (Cardinale et al., 2007; Gustafsson and Bostrom, 2011; Hooper and

Vitousek, 1998), community stability (Gustafsson and Bostrom, 2011; Symstad and Jonas,

2011; Yachi and Loreau, 1999), infection resistance (Haas et al., 2011), and structural and

functional diversity at higher trophic levels (Gustafsson and Bostrom, 2011). To conserve

biodiversity and its resultant ecosystem properties, we need to study factors that influence

diversity, such as the prevalence of exotic invasive species. These species can affect com-

munity properties, such as plant and microbial community composition and structure, and

ecosystem properties, such as productivity, nutrient cycling, water cycling, soil pH, distur-

bance regimes, and successional trajectory (Bongard et al., 2013; Bradley and Mustard, 2006;

DeMeester and deB. Richter, 2010; Denslow and Hughes, 2004; Gomez-Aparicio and Can-

ham, 2008; Kuhman et al., 2011; Mascaro and Schnitzer, 2007; Vicente et al., 2013; Vitousek,

1990; Yoshida and Oka, 2004; Yurkonis et al., 2005).

Additionally, these invasive species have caused losses of $100-$137 billion and 700,000

hectares of native vegetation in the U.S. annually (Miao et al., 2006; Wilfong et al., 2009).

As examples, Carduus acanthoides (spiny plumeless thistle) and Carduus nutans (nodding

thistle) are two of the most notorious weeds in the continental U.S. and southern Canada

due to their damaging effects on crop yield; higher cost of handling and processing product;

lower seed, grain, and crop residue quality; and lower grazing quality (Allen and Shea, 2006;

Tiley, 2010). Cirsium arvense (Canada thistle) drastically reduces crop yield; a population

with the density of 20 plants/m 2 has been shown to reduce the yield of canola by 26%, barley

by 34%, wheat by 51%, corn by 57%, and soybean by 91% (Armel et al., 2005; Grekul and
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Bork, 2004). Even at low densities, C. arvense can reduce yield; a density of 6 C. arvense

shoots/m2 led to a reduction of wheat yield by 18% (Hunter, 1996). Such species have been

found to alter community and ecosystem properties to promote their own growth over that

of other species (Rooney and Rogers, 2011).

3.2.2 Ecosystem and community properties

Numerous invasive plant species occupy large fractions of the ridge-and-valley system

of the mid-Atlantic and affect the properties of these ecosystems. As examples, Ailanthus

altissima (tree of heaven) and Rhamnus cathartica (common buckthorn) increase nutrient cy-

cling rates (Gomez-Aparicio and Canham, 2008; Mascaro and Schnitzer, 2007). R. cathartica

and Celastrus orbiculatus (oriental bittersweet) are associated with greater litter decompo-

sition rates (Heneghan et al., 2006; Knight et al., 2007; Leicht-Young et al., 2007; Mascaro

and Schnitzer, 2007). R. cathartica, A. altissima, and C. orbiculatus can increase soil carbon

as well as nutrients such as nitrogen, calcium, potassium, and magnesium (Gomez-Aparicio

and Canham, 2008; Heneghan et al., 2006; Knight et al., 2007; Leicht-Young et al., 2007),

and affect soil pH (Gomez-Aparicio and Canham, 2008; Heneghan et al., 2006; Knight et al.,

2007; Leicht-Young et al., 2007). R. cathartica is also associated with greater soil moisture

(Heneghan et al., 2006).

As they change their environment, these species can also alter species composition.

A. altissima can promote the establishment of species that thrive in high-nutrient environ-

ments, such as itself, by increasing soil nutrient pools and cycling rates (Gomez-Aparicio

and Canham, 2008). C. orbiculatus has been correlated with an increase in liana richness

(Leicht-Young et al., 2007). Cirsium arvense (Canada thistle), Rhamnus davurica (Dahurian

buckthorn), C. orbiculatus and A. altissima have allelopathic compounds that chemically

deter the growth of other species (Burda and Oleszek, 2004; Grekul and Bork, 2004; Knight

et al., 2007; Landenberger et al., 2007; Mastelic and Jerkovic, 2002; Pisula and Meiners,
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2010; Tsahar et al., 2002).

These species can also physically inhibit the growth of others. C. orbiculatus can

decrease the growth of native tree species by girdling them and increasing their susceptibility

to ice damage, and by shading out their saplings (Leicht-Young et al., 2007). It can also arrest

the reestablishment of forests after a disturbance by suppressing shrub growth and reducing

tree reproduction, (Fike and Niering, 1999; Ladwig and Meiners, 2010; Pavlovic and Leicht-

Young, 2011; Riedel and Epstein, 2005). Various Rhamnus species can alter forest structure

by affecting woody seedling or stem density, herbaceous species cover, and canopy openness

by inhibiting germination and growth of native saplings (Frappier et al., 2003; Mascaro and

Schnitzer, 2007). Rhamnus species can also have effects outside of the plant community by

affecting earthworms, insects, and soil microbes through changing litter decomposition rates

and soil properties, and by affecting birds due to changes in the availability and nutritional

quality of their food (Heimpel et al., 2010; Heneghan et al., 2006; Knight et al., 2007).

3.2.3 Remote sensing of plant species

Thus, invasive species can affect biodiversity and the conservation of ecosystems by

promoting changes in ecosystem and community properties. As funding for conservation

efforts becomes limited with more landscapes needing protection or restoration, it becomes

increasingly important to incorporate remote sensing data alongside field data to more effi-

ciently determine the geographical regions and the exotic invasive species on which to focus.

Remote sensing can be used to supplement field data and monitor spatial and temporal

distribution of invasive species more efficiently than field work alone (Bradley and Mustard,

2006; Schmidt and Skidmore, 2001; Wilfong et al., 2009; Zhang et al., 2006).

If interspecific differences in vegetation characteristics are greater than intraspecific

and intra-individual differences, remote sensing data can be used to discriminate species

(Zhang et al., 2006). Differences in pigments, water content, cell size, intercellular space,
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cell wall thickness, and other structural elements assist in differentiating species at the leaf

level (Roberts et al., 2004). Visible reflectance (VIS) at the leaf level is mostly a function of

pigment content, near-infrared reflectance (NIR) is influenced by leaf structure, and short-

wave infrared reflectance (SWIR) is influenced by water content and structural compound

content (Mahlein, 2011; Xiao, Y. et al., 2014). Variation in dry matter content and leaf

nitrogen (N) can also account for substantive variability across the VIS, NIR, and SWIR

regions (Xiao, Y. et al., 2014). In terms of leaf structure, leaf hairs increase reflectance in

the VIS region and have variable effects in the NIR region; leaf surface wax increases VIS

and NIR reflectance (Sims and Gamon, 2002).

Although such biophysical differences occur at the species level, certain elements

also contribute to intraspecific variability. Spectral variability within species can differ by

wavelength (Asner and Martin, 2011) and by spectrum level (leaf vs. branch vs. canopy)

(Roberts et al., 2004; Ustin and Gamon, 2010). Certain biological traits also change with

changes in the environment; for example, chlorophyll a: chlorophyll b ratios change with

illumination (Gamon and Berry, 2012). Sun leaves also have lower reflectance values along

the entire spectral profile than do shade leaves because of greater thickness and pigment

concentrations (Buschmann et al., 1990). Reflectance can also be a function of stress, as

well as phenology (e.g. senescence) (Mahlein, 2011; Merzlyak et al., 2003). Additionally,

absorption bands can be affected by more than one chemical constituent and one chemical

constituent can influence a broad spectral region (Kokaly and Clark, 1999).

Despite high intraspecific variability due to environmental factors and sometimes low

interspecific variability across species for some traits (Ribeiro da Luz and Crowley, 2010; Rud

et al., 2006), Asner (1998) suggests that plant species should be distinguishable remotely

due to differences in biochemical and structural properties. Species differences have been

detected remotely (Burkholder, 2010; Narumalani et al., 2009; Pinard and Bannari, 2003;

Rud et al., 2006; Schmidt and Skidmore, 2001; Yingying et al., 2011) by examining such

58



vegetation characteristics as total chlorophyll (chl), chl a, and chl b, carotenoids, soluble

carbon (C), lignin, foliar N and phosphorus (P), leaf water content, compactness of the

mesophyll layer, specific leaf area (SLA), and leaf mass per area (LMA) (Asner and Martin,

2011, 2009; Carlson et al., 2007; Castro-Esau et al., 2004). Hyperspectral data can be used

to estimate these properties to discriminate among species (Asner et al., 2007).

3.2.4 Research Objectives

To discriminate species, they must be spectrally distinct from each other and these

species-level differences must be able to be detected by instrumentation at either the ground

level or, for studies at broader spatial extents, at the satellite level. I asked whether spectral

characteristics of Ailanthus altissima (tree of heaven), Carduus acanthoides (spiny plume-

less thistle), Celastrus orbiculatus (oriental bittersweet), Cirsium arvense (Canada thistle),

Galium verum (yellow bedstraw), and Rhamnus davurica (Dahurian buckthorn) can be used

to differentiate these species at the ground level at the Blandy Experimental Farm (BEF) in

north-central Virginia. Galium verum has been discriminated successfully using first deriva-

tives and Normalized Difference Vegetation Index (NDVI) band ratios from spectral data

at the time of inflorescence (Yingying et al., 2011). Ailanthus altissima was discriminated

using laboratory spectra during July using data from the red edge, near-infrared region, and

especially the shortwave-infrared region (SWIR) (Burkholder, 2010). I hypothesized that

Carduus acanthoides and Cirsium arvense may be difficult to differentiate because of their

phylogenetic closeness (see Appendix 1). Similarly, I hypothesized that Rhamnus davurica

and Celastrus orbiculatus may be difficult to differentiate, because Celastrus orbiculatus

grows on top of Rhamnus davurica in several fields at the BEF. Phenological information

can also be used to discriminate species. For example, Rhamnus davurica may be able to be

discriminated late in the growing season, because Rhamnus species have a longer leaf reten-

tion time than surrounding species (Knight et al., 2007). However, in this study, I wanted to

see whether these species could be differentiated during peak growing season, as high spatial
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resolution satellite imagery can be expensive and species may need to be differentiated using

one image.

3.3 Methods

3.3.1 Study Site

Measurements were taken from two series of successional fields and two additional

field sites at the BEF located in the Shenandoah River Valley, Virginia (Figure 17). This

300 ha biological field station has been owned by the University of Virginia (UVA) since 1926

and operated by the Department of Environmental Sciences since 1983 (Bowers, 1997). The

site is also a satellite monitoring location for the National Ecological Observatory Network

(NEON, 2015). The BEF includes 120 ha of pasture and cropland, 40 ha of woodland, the

60 ha Virginia State Arboretum, and 80 ha of successional fields in early, middle, and late

succession (Bowers, 1997). Each of two successional series contains an early, mid, and late

successional field. The successional fields are former agricultural fields, abandoned in 2001

(Early 1), 2003 (Early 2), 1986 (Mid 1), 1987 (Mid 2), before 1910 (Late 1) and before 1920

(Late 2) (Wang et al., 2010). All sites have silt loam soil, of the soil type Ultisol, with

slopes less than 10%. Mean annual temperature and precipitation for the BEF are 11.8

◦C and 940 mm respectively (Wang et al., 2010). I studied six exotic invasive species that

are prevalent at the BEF: Ailanthus altissima (tree of heaven), Carduus acanthoides (spiny

plumeless thistle), Celastrus orbiculatus (oriental bittersweet), Cirsium arvense (Canada

thistle), Galium verum (yellow bedstraw), and Rhamnus davurica (Dahurian buckthorn)

(see Appendix 2 for species details). These species have several characteristics that have

assisted their establishment and spread at the BEF (see Appendix 3).
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Figure 8: Blandy Experimental Farm, Boyce VA with study site labels including two sec-
ondary successional field chronosequences

3.3.2 Field methods

During the summer of 2012, I established two 1 m * 1 m population-level plots per

target non-native invasive species where present in the early stages of each of the succes-

sional series and at Lake Arnold and the northeast boundary field sites. A total of four

Ailanthus altissima plots, eight Carduus acanthoides plots, four Celastrus orbiculatus plots,

four Cirsium arvense plots, four Galium verum plots, and four Rhamnus davurica plots

were established. Spectra were collected multiple times for each plot from June to August

using a PANalytic Analytical Spectral Devices (ASD) Inc. Field Spec R© 3 between 10:00 AM
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and 2:00 PM on days with clear skies and in the absence of windy conditions. I collected

population-level spectra with a 25◦ field of view (FOV) from a height of approximately 2.5

m for a footprint of 1.15 m in diameter. I also collected leaf-level spectra with a 1◦ FOV

from detached leaves that were wrapped in wet paper-towels, put into zippered plastic bags,

and stored on ice until measurements were taken within 20 minutes of detachment.

3.3.3 Statistical analysis

I used band depth instead of original reflectance profiles to minimize any atmospheric

and soil noise in the spectral data. To obtain band depth, a continuum hull was matched

to the original spectral profile, and this continuum was removed from the original spectral

profile to get normalized reflectance; these continuum-removed reflectance values were then

subtracted from one to get the band depth profile (Figure 12).
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Figure 9: Calculating band depth (normalized absorption) from original reflectance using
continuum removal.

Subsequently, I ran these band depth profiles for both leaf-level and population-level

data, through a support vector machine (SVM) analysis in R (Version 2, Free Software

Foundation Inc., Boston, Massachusetts) using the e1071 package. This machine learning

analysis allowed us to use the entire spectral profile for differentiating species. Since there

were six species classes and SVM is a binary classifier, I used a one-against-all technique

(Nooni et al., 2014). I chose a linear kernal because the number of independent variables

is greater than the number of samples. Six samples of each target species were randomly

selected from the dataset for training, and the rest of the samples were used to test the

model. The model was tuned with different estimations of cost (penalty for misidentification)

to assess which level of cost best helped predictability and the ability to extrapolate results.

Cost was set at 1000, based on the tuning of the model.
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I assessed the accuracy of the model using the confusion matrix and by calculating the

Matthew’s correlation coefficient (MCC) for each species. The classification accuracies were

then averaged across species to represent the model accuracy. The MCC varies between

+1 and -1, with +1 representing a perfect match between prediction and observation, -1

representing a perfect mismatch between prediction and observation, and 0 representing a

match that is no better than random.

Following support vector machine analysis using the entire spectral profile, I con-

ducted a sensitivity analysis by removing 50 nm regions one at a time from the spectral

profile; I ran this new profile through the SVM and compared the output with that from

the entire spectral profile using the Matthew’s correlation coefficient (Equation 1, where

TP=True Positive, TN=True Negative, FP=False Positive, and FN=False Negative). To

assess whether the importance of regions for discrimination may be influenced by amounts

of interspecific and intraspecific variability, averages of reflectance and band depths by region

were calculated and evaluated with an ANOVA to compare among and within mean squares

in SAS (Statistical analysis software, Version 9.4, SAS Institute Inc., Cary, North Carolina).

3.4 Results

Using the support vector machine analysis with the training set, I was able to create

a model that was predictive for the test set (Table 7) with 33 support vectors. Ailanthus

altissima (tree of heaven), Carduus acanthoides (spiny plumeless thistle), and Cirsium ar-

vense (Canada thistle) were able to be distinguished much of the time from the other target

exotic invasive species (75%, 87.5%, and 75% respectively). Rhamnus davurica (Dahurian

buckthorn) and Celastrus orbiculatus (oriental bittersweet) were often misidentified as each

other (accuracies of 30.8% and 27.3% respectively). Galium verum (yellow bedstraw) (accu-

racy of 44.4%) was often misidentified as Carduus acanthoides, Cirsium arvense, or Celastrus

orbiculatus.
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Table 7: Summer 2012 Support Vector Machine Analysis using the entire spectral profile
transformed into band depth for all target exotic invasive species; spectra collected from
population plots.

Predicted

True AIAL CAAC CEOR CIAR GAVE RHDA Total

AIAL 6 1 0 1 0 0 8

CAAC 0 7 0 1 0 0 8

CEOR 2 1 3 0 1 4 11

CIAR 0 0 0 6 2 0 8

GAVE 0 3 2 4 8 1 18

RHDA 1 0 8 0 0 4 13

Total 9 12 13 12 11 9 66

The Matthew’s correlation coefficients using the entire spectral profile reveal a high

predictability for Ailanthus altissima, Carduus acanthoides, and Cirsium arvense with MCCs

of 0.63, 0.63, and 0.50 respectively (Table 7). There was moderate predictability for Galium

verum with an MCC of 0.39. Celastrus orbiculatus and Rhamnus davurica had low pre-

dictability with MCCs of 0.03 and 0.19, because they were frequently misclassified as each

other. Using the entire spectral profile, three out of 11 spectra were correctly classified as

Celastrus orbiculatus, and four out of 11 were misclassified as Rhamnus davurica. Addition-

ally, four out of 13 spectra were correctly classified as Rhamnus davurica, and eight out of

13 spectra were misclassified as Celastrus orbiculatus.
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Table 8: Matthew’s Correlation coefficients from support vector machine outputs with cer-
tain 50 nm regions omitted for sensitivity analysis.

Species AIAL CAAC CEOR CIAR GAVE RHDA Average

none 0.63 0.63 0.03 0.50 0.39 0.19 0.39

350-399 0.68 0.55 0.04 0.17 0.38 0.32 0.36

400-449 0.62 0.59 0.10 0.43 0.29 0.27 0.38

450-499 0.68 0.59 0.12 0.49 0.29 0.19 0.39

500-549 0.48 0.62 -0.08 0.49 0.39 0.29 0.37

550-599 0.63 0.63 0.11 0.50 0.40 0.23 0.42

600-649 0.58 0.63 0.03 0.47 0.39 0.27 0.39

650-699 0.58 0.63 0.11 0.47 0.40 0.33 0.42

700-749 0.53 0.53 0.06 0.46 0.29 0.29 0.36

750-799 0.63 0.63 0.03 0.47 0.39 0.23 0.39

800-849 0.63 0.63 0.03 0.50 0.39 0.19 0.39

850-899 0.63 0.63 0.03 0.50 0.39 0.19 0.39

900-949 0.57 0.67 0.02 0.43 0.39 0.14 0.37

950-999 0.57 0.77 0.00 0.41 0.39 0.14 0.38

1000-1025 0.63 0.63 0.03 0.50 0.39 0.19 0.39

When 350 nm to 399 nm wavelengths were omitted, the average MCC across species

was 0.36 as opposed to 0.39 with the use of the entire spectral profile; thus, this region may

be useful for species discrimination (Table 8). Similarly, the omission of 500-549 nm, 700-749

nm, and 900-949 nm led to lower average MCCs of 0.37, 0.36, and 0.37 respectively. The

omission of 550-599 nm and 650-699 nm wavelengths led to greater average MCCs of 0.42

for both wavelength ranges.

When comparing interspecific and intraspecific variability within spectral regions,

results differed between reflectance and band depth. For reflectance, many regions had
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greater within mean squares than among mean squares (Table 9). In contrast, all regions

from the band depth values had greater among mean squares (Table 10). Comparing band

depth variability by region, there was no relationship between the F value and the usefulness

of particular regions for species discrimination; regions that were helpful and detrimental for

discrimination had both low and high F values (Table 10). However, comparing reflectance

variability by region, the two regions detrimental to discrimination were among the top three

highest F values scores, meaning the regions with the greatest interspecific variability (Table

9).

Table 9: ANOVA results comparing among and within variance of reflectance values by
region. No p<0.001

Reflectance Region Among Mean Square Within Mean Square F value

350-399 1.38E-04 1.94E-04 0.7098

400-449 4.30E-05 2.09E-04 0.2079

450-499 2.40E-05 2.41E-04 0.0987

500-549 2.97E-04 5.62E-04 0.5290

550-599 7.83E-04 8.02E-04 0.9766

600-649 4.65E-04 3.94E-04 1.1813

650-699 2.57E-04 3.09E-04 0.8335

700-749 0.0015 0.0059 0.2481

750-799 0.0076 0.0131 0.5821

800-849 0.0071 0.0132 0.5379

850-899 0.0065 0.0130 0.4974

900-949 0.0055 0.0127 0.4372

950-999 0.0050 0.0117 0.4257

1000-1025 0.0047 0.0118 0.4015
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Table 10: ANOVA results comparing among and within variance of band depth values by
region. * represents p<0.001

Band Depth Region Among Mean Square Within Mean Square F value

350-399 0.0263 0.009097 2.8866

400-449 0.0232 0.005643 4.1034

450-499 0.0201 0.003612 5.5747*

500-549 0.0213 0.004782 4.4600

550-599 0.0300 0.00554 5.4185*

600-649 0.0134 0.00333 4.0216

650-699 0.0081 0.00232 3.4747

700-749 0.0165 0.003145 5.2591*

750-799 5.47E-05 5.39E-06 10.155*

800-849 4.89E-06 4.17E-06 1.1734

850-899 1.22E-05 4.35E-06 2.8076

900-949 8.24E-05 5.48E-05 1.5031

950-999 0.0017 3.81E-04 4.5902*

1000-1025 1.68E-04 7.10E-05 2.3689

3.5 Discussion

3.5.1 Species discrimination

I was able to discriminate among six exotic invasive species using ground-level remote

sensing data and support vector machine analysis. I chose to use SVMs for several reasons

including their computational efficiency over similarly accurate classification and regression

tree analyses (Agarwal et al., 2013), their non-parametric nature, so parametric assumptions

did not need to be met (Cho et al., 2012; Feret and Asner, 2013), and their capacity to
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work with complex, noisy, and/ or small datasets (Bai et al., 2012; Villa et al., 2011). SVMs

have also been used by other researchers to distinguish species (Colgan et al., 2012; Nooni

et al., 2014). This technique enables the use of the entire spectral profile, which is important

because spectral variability within and across species depends on wavelength (Asner and

Martin, 2011). Using the entire spectral profile rather than selected narrow bands has

also been better for detecting chemical components (Asner et al., 2012) and photosynthetic

apparatuses (Rascher et al., 2007).

In this study, discriminability varied by species (Table 7). This is expected because

spectral discriminability depends on spectral differences within individuals, within species,

and across species (Zhang et al., 2006). Classification errors also increase with the inclusion of

more species (Asner and Martin, 2011). Additionally, closely related species are often difficult

to distinguish from each other because they may have similar spectral features (Feret and

Asner, 2011). Species with similar canopy structures can also be easily misclassified (Jiao

et al., 2014). Despite their phylogenetic closeness (see Appendix 1) and structural similarity,

Carduus acanthoides and Cirsium arvense were able to be separated spectrally using SVMs;

none of the C. arvense spectra were misidentified as C. acanthoides, and only one of eight

C. acanthoides spectra was misclassified as C. arvense.

In contrast, Celastrus orbiculatus and Rhamnus davurica were often misclassified as

each other. This might be because C. orbiculatus commonly grows on top of R. davurica

in these field sites. Therefore, the C. orbiculatus signatures collected may have been con-

taminated by spectral information from R. davurica, making the model difficult to train

regarding the classification of these two species. Celastrus orbiculatus is shade-tolerant and

can survive in the understory until a disturbance allows it to climb into the canopy (Pavlovic

and Leicht-Young, 2011). Changes in canopy composition through disturbance, such as with

the invasion of Rhamnus davurica, can facilitate the spread of exotic invasive shade-tolerant

species such as Celastrus orbiculatus over shade-tolerant natives that were established be-
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fore the disturbance (Kuhman et al., 2011). Additionally, C. orbiculatus does not undergo

self-thinning when growing at high densities (Leicht-Young et al., 2011). These lianas then

compete with trees for aboveground and belowground resources (Ladwig and Meiners, 2010).

Castro-Esau et al. (2004) also stated that it may be difficult to differentiate lianas from the

trees they grow on if there is little spectral difference between the two. Lianas generally have

different chlorophyll content, higher visible reflectance, and lower near-infrared reflectance

than trees (Castro-Esau et al., 2004); however, sufficient differences for separation were not

detected in this study.

Galium verum was also frequently misclassified as the other forbs or the liana. This

might be due to the growth structure of G. verum, which has very small and narrow leaves

(approximately 2 mm by 10 mm) arranged in whorls around a stem. Spectral signatures

from these plants often have large amounts of noise from the soil background. This may

have created substantial variability in the signal, thus decreasing discriminability. Jiao et al.

(2014) had similar difficulty differentiating wheat from oat due to similarities in canopy

structure and large amounts of soil noise.

Overall, support vector machines were able to classify species. However, there are

some disadvantages of using SVMs including computational demand, especially with large

training datasets (Villa et al., 2011), and lack of interpretability. It is difficult to determine

the importance of specific independent variables to classification within this ”black-box”

technique.

3.5.2 Wavelengths that improve discriminability

To interpret this ”black-box” technique, I conducted a sensitivity analysis to assess

which wavelength regions might be most important for classification (Table 8). The spectral

regions 350-399 nm, 500-549 nm, 700-749 nm, and 900-949 nm seem important for classifica-

tion due to the decrease in predictability with the omission of these regions. The importance
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of 350-399 nm for classification supports the findings of Schmidt and Skidmore (2003) who

found the blue absorption maximum at 404 nm to be useful for species discrimination in

coastal saltmarshes in the Netherlands. The 375 nm region is used to estimate the frac-

tion of photosynthetically active radiation (fPAR) and leaf water content (Thenkabail et al.,

2014).

The importance of 500-549 nm supports Sanchez-Azofeifa et al. (2009), who found

that the 500 nm region was useful for discriminating species in tropical dry forest species in

Panama. Schmidt and Skidmore (2003) also found that 501 nm, at the blue edge, was useful

for discriminating coastal saltmarsh species. The 515 nm region is also useful for estimating

pigment concentrations (Thenkabail et al., 2014). The 531 nm region can be used to estimate

light use efficiency, xanthophyll cycle, and vegetation stress (Thenkabail et al., 2014).

Similarly, the importance of 700-749 nm in this study supports several other studies.

Lewis (2002) found that bands above 720 nm were useful for discriminating southeast Aus-

tralian arid region species. Schmidt and Skidmore (2001) state that the red edge slope may

be used to discriminate species, because reflectance in this region is influenced by nitrogen,

phosphorous, and potassium concentrations (Mutanga et al., 2004). Smith and Blackshaw

(2003) also found that 720-730 nm were useful for discrimination. Sanchez-Azofeifa et al.

(2009) found the 720 nm region useful for discriminating lianas from trees in dry forests.

The 705 nm region and 720 nm region can be used to estimate stress and chlorophyll con-

centrations (Thenkabail et al., 2014). More broadly, the 700-740 nm region can be used to

estimate chlorophyll concentrations and observe the effects of senescence and stresses, such

as drought (Thenkabail et al., 2014).

Finally, I found the 900-949 nm region useful for discriminating species in this tem-

perate abandoned agricultural system. The 910 nm region is useful for estimating moisture,

biomass, and protein content (Thenkabail et al., 2014). However, Schmidt and Skidmore

(2003) found the 986 nm region more useful for discrimination, because in their study sys-
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tem of tropical dry forest, moisture content differs drastically by species, and the 970 nm

region is a good indicator of plant moisture (Thenkabail et al., 2013).

Additional wavelengths in the visible and near-infrared regions were also found to be

important in other studies, including the chlorophyll b absorption feature at 466 nm (Naidoo

et al., 2012), the red absorption maximum region at 628 nm (Schmidt and Skidmore, 2003),

and the red edge shoulder region at 770 nm (Schmidt and Skidmore, 2003). Although these

regions have been shown to influence discriminability, they were not the most influential

regions in our study. Whereas this study focused on visible and near-infrared spectral regions

from 350 nm to 1025 nm, others have also found regions beyond 1025 nm to be useful for

discriminating species, as shortwave infrared regions (Pinard and Bannari, 2003) and thermal

infrared regions (Ribeiro da Luz and Crowley, 2010) can have greater interspecific variability

than the visible region.

3.5.3 Wavelengths that hinder discriminability

On the other hand, omissions of 550-599 nm and 650-699 nm seem to increase predic-

tion capacity of the model. Upon closer examination of the MCCs for each species with these

wavelength region omissions, I observed that only the discriminabilities of C. orbiculatus and

R. davurica are increased (Table 8). This may be due to greater intraspecific variability in

these regions (Table 9) and thus greater difficulty with classification; minimizing the in-

traspecific variability in reflectance using band depth, as was observed in comparing among

and within mean squares for reflectance versus band depth, illustrates how well band depth

methods eliminate noise from spectral data. However, despite this correction, the greater

intraspecific variability compared with interspecific variability in the reflectance values at

550-599 nm and 650-699 nm hindered species discrimination.

In this study, the 550-599 nm region was found detrimental to discriminability of

C. orbiculatus and R. davurica. In contrast, Schmidt and Skidmore (2003) found that the
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579 nm region, the green absorption minimum, was useful for species discrimination in a

tropical dry forest. The 550 nm and 570 nm regions are useful for estimating chlorophyll,

anthocyanin, and nitrogen concentrations (Thenkabail et al., 2014).

I also found that 650-699 nm wavelengths were detrimental to discrimination of C.

orbiculatus and R. davurica. In contrast, Sanchez-Azofeifa et al. (2009) found the 675 nm

region useful for discriminating tropical dry forest species, and Lewis (2002) found the 680

nm region useful for discriminating southeast Australian arid region species. The 680 nm

region is associated with the photosystem II reaction center (Sanches et al., 2014). The

double-peak features of chlorophyll fluorescence emissions are located at the 690 to 710 nm

wavelength region. The 682 nm region has also been used to estimate biophysical quantities

and yields (Thenkabail et al., 2014).

3.5.4 Species differences

The differences in important regions among studies may be due to differences in

ecosystems and thus species compositions. For example, MCCs by species examined in this

study indicate that regions of hindrance and assistance to discrimination differ greatly by

species (Table 8). For A. altissima, the omission of spectral regions 500-549 nm and 700-749

nm were most detrimental to discrimination and omissions of 350-399 nm and 450-499 nm

slightly improved discriminability. For C. acanthoides, the omission of 700-749 nm was most

detrimental, and the omission of 950-999 nm was quite beneficial to discriminability. For C.

orbiculatus, the omission of 500-549 nm was most detrimental, while the omissions of 400-449

nm, 450-499 nm, 550-599 nm, and 650-699 nm were slightly beneficial. For C. arvense, the

omission of 350-399 nm was most detrimental, while no omissions were beneficial. For G.

verum, the omissions of 400-449 nm, 450-499 nm, and 700-749 nm were most detrimental,

while no omissions were beneficial to discriminability. Lastly, for R. davurica, omissions

of 900-949 nm and 950-999 nm were most detrimental, while omissions of 350-399 nm and
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650-699 nm were most beneficial to discrimination.

These differences by species may be due to differences in species’ spectral features

and variability in such features as pigment absorptions, structural elements, and leaf water

content. As an example, C. acanthoides may have high intraspecific variability in leaf water

content, which makes the 950-999 nm region detrimental to discriminability. Omissions of

550-599 nm and 650-699 nm were beneficial to discriminability of C. orbiculatus and R.

davurica, the two species that were most often misidentified as each other. Perhaps these

two regions are where the two species are most alike, due to similarities in pigment content.

Regions that are most important for discriminability do somewhat overlap across

studies, but differences may be due to differences in ecosystems and species compositions,

especially in arid vs non-arid systems. This supports findings by Sanchez-Azofeifa et al.

(2009), who found that results of discriminability of lianas from trees differed between tropi-

cal dry forests and tropical rain forests. Further studies using similar spectral analyses across

various ecosystems and species compositions would help answer such a question. Other

studies have also examined the importance of the near-infrared beyond 1025 nm and the

shortwave-infrared region, which are useful for estimation of structural elements and thus

discrimination.

3.6 Conclusion

I was able to discriminate exotic invasive species using ground-level hyperspectral

remote sensing data in the visible and near-infrared regions, although Galium verum was

not easily discriminable due to large amounts of soil noise, a function of the species’ canopy

structure. Additionally, Celastrus orbiculatus and Rhamnus davurica were often misclassi-

fied as each other due to their physical overlap in the field. Although I attempted to collect

spectra with minimal influence from other species, such contamination by the other species

hindered discriminability between these two species. Across species, the regions most influ-
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ential to discrimination were 350-399, 500-549, 700-749, and 900-949 nm; those detrimental

to discrimination were 550-599 and 650-699 nm, due to greater intraspecific than interspe-

cific variability of reflectance values in these regions. However, the regions that helped and

hindered discriminability differed by species. Some of the regions most important to dis-

criminating the species in this study were different from those found to be most important

in other studies; this may be due to differences in ecosystems and thus species compositions.

Further study of multiple ecosystems and species compositions using the same spectral anal-

yses could help determine whether this is so.
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3.7 Appendix 1: Species Phylogenies

Species differences among many of these features depend on phylogenetic differences.

To study the phylogenetic relationships among these species, I refer to phylogenies con-

structed by the Tree of Life Web Project (2002), which has compiled results from multiple

phylogenetic analyses conducted by 540 scientists into the most plausible tree. The exotic

invasive species in this study are all Core Eudicots, and separate into Rosids and Asterids.

Rosids in turn split into Fabidae and Malvidae. Within Fabidae, Rhamnus davurica is cat-

egorized in the Rosales and Celastrus orbiculatus is in the Celastrales. Ailanthus altissima

is in the Sapindales within Malvidae. Galium verum, Carduus acanthoides, and Cirsium ar-

vense are in the Euasterids within the Asterids, which in turn are separated into Euasterids

I (lamiids) and Euasterids II (campanulids). Galium verum is in the Gentianales within

Euasterids I. The rest are in Euasterids II, and Carduus acanthoides and Cirsium arvense

in the Asterales. Carduus acanthoides and Cirsium arvense are very closely related, branch-

ing together within the Asterales all the way out to Carduinae, where they finally separate

out to Carduus and Cirsium. Their relationship to each other within the Carduinae is not

wholly understood.
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3.8 Appendix 2: Species Descriptions

3.8.1 Rhamnus davurica

Rhamnus davurica (Dahurian buckthorn) is an open dioecious shrub-tree with an

average height of 2.5 m, but able to grow up to 9 m; leaves are 7 to 10 cm long and 2-3 cm

wide (Zouhar, 2011). Rhamnus flowers are unisexual and are 6 to 10 mm long and 5 to 10

mm in diameter. They grow in axillary clusters and grow on short pedicels (Zouhar, 2011).

Fruits are drupes, 5 to 8 mm in diameter; seeds are 5 to 6 mm long and 3.6 to 3.7 mm

wide (Zouhar, 2011). Seeds are dispersed by birds aided by the laxative effect of the fruits

(Zouhar, 2011). In the Northern Great Plains, they flower in June and fruit in September

(Zouhar, 2011), which correspond to dates in the Blandy Experimental Farm (BEF) from

personal observation. The plant also has the ability to sprout from cut or damaged stems

(Zouhar, 2011).

3.8.2 Ailanthus altissima

In China, Ailanthus altissima (tree of heaven) is positively correlated with agricultural

use, and in the U.S. is associated with medium forest cover and precipitation (Albright et al.,

2010). Its ecological niche in the U.S. may be expanding due to reduced competition and

increased strength of allelopathic compounds and new genotypes (Albright et al., 2010). This

species reproduces via root sprouts or numerous wind-dispersed seeds. A. altissima grows

in the mountains, piedmont, and coastal regions, in full and partial sun, and in mesic soil

(DCR, 2014).
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3.8.3 Cirsium arvense

The niche of Cirsium arvense (Canada thistle) is restricted by low winter and high

summer temperatures and the necessity for a long flowering day of 14 to 16 hours (Tiley,

2010). It is an herbaceous perennial (Tiley, 2010) that invades new areas via seeds estab-

lished on bare or disturbed ground (Tiley, 2010) and has an extensive, widely-dispersing,

and deep root system (Tiley, 2010). It invades areas where forest over-story is removed and

soil is disturbed, including clear-cut areas, forest openings, and wet and wet-mesic grass-

lands (Zouhar, 2001). Adventitious buds develop into roots along the horizontal roots, the

development triggered by damage or decay of shoots above (Tiley, 2010). The root system is

deep, down to 2 to 6.75 m, and widespread, with a slim taproot (Zouhar, 2001). New plants

are able to grow from root fragments as small as 6 mm (Zouhar, 2001). The species is im-

perfectly dioecious, in that male plants are self-fertile hermaphrodites or subhermaphrodites

(Zouhar, 2001). The combination of sexual and vegetative reproduction contributes to its

success by maintaining genetic diversity (Tiley, 2010). Much energy is allocated to vegetative

reproduction, with which it forms dense patches (Zouhar, 2001). Shoots are slim and can be

0.3 to 2 m tall (Zouhar, 2001). Leaves are 3 to 18 cm long, and 0.5 to 6 cm wide (Zouhar,

2001). Flowers are 1 to 2 cm in diameter and grow in clusters. Seeds are 2.4 to 5 mm long

and 1 mm wide, water- or wind-dispersed over long distances with the aid of the pappus

(Zouhar, 2001). C. arvense begins to grow in spring (Tiley, 2010). Emergence in late March

to early April is followed by rosette expansion, which is followed in May and June by rapid

shoot growth with the increase in day length (Tiley, 2010; Zouhar, 2001). This shoot growth

rate is optimized during the last two weeks of June. Inflorescences are seen in June and

July, with pappus emergence in late July to August. Senescence and withering of the stem

begins in late September (Tiley, 2010). C. arvense is insect pollinated, mostly by honeybees

(Zouhar, 2001), but seed production and germination are highly variable (Zouhar, 2001).

Seed-release follows 2 to 3 weeks after pollination, and germination can take place days after
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flower-opening, or more commonly the following spring (Zouhar, 2001). Germination is best

at warm soil temperatures, although there is a wide range of tolerance for soil moisture

(Zouhar, 2001). C. arvense is found in mountain, piedmont, and coastal regions, in full sun

and mesic soil (DCR, 2014). It thrives in environments with temperature between 0 and 32

◦C, 15 hour days, 400 to 750 mm of annual precipitation, and a shallow slope of 9 to 30%

(Zouhar, 2001).

3.8.4 Carduus acanthoides

Carduus acanthoides (spiny plumeless thistle) is a winter annual or biennial (Kok,

2001) that is most commonly found in pastures and disturbed sites (Skarpaas and Shea,

2007). It reproduces once, and colonizes by seed (Skarpaas and Shea, 2007). Achene de-

velopment takes place from late spring to the end of summer (Feldman, 1997), and most

of this wind-dispersal takes place July to August with approximately 2 meter average dis-

persal (Skarpaas and Shea, 2007). The seeds remain dormant in the seed bank until high

summer soil temperatures are followed by low winter temperatures, and then germination

begins (Kruk and Benech-Arnold, 2000). The majority of seedlings emerge within one year

of sowing, so that the population must be maintained by continuously producing propagules

(Feldman, 1997).

3.8.5 Galium verum

Galium verum (yellow bedstraw) is a dominating, densely growing C3 forb originating

in Europe, but now naturalized in the U.S. and Canada (Heckman, 2005). It grows in dry or

well-drained places such as grasslands or dunes, but seed germination is limited in dry soil

(Evans and Etherington, 1990). It is known to tolerate low pH and high calcium levels in

limestone soils (Steele, 1955) and low nitrogen conditions (Heckman, 2005). It was observed

at the BEF in the 1920s, and is now found throughout the Shenandoah Valley (Heckman,
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2005). When exposed to nitrogen loading, G. verum decreased in biomass because of light

competition with other graminoids, suggesting that it is a poor competitor for light (van den

Berg et al., 2005).

3.8.6 Celastrus orbiculatus

Celastrus orbiculatus (oriental bittersweet) can easily hybridize Celastrus scandens

(American bittersweet) in the lab and in the field, and hybrids are very difficult to identify as

such (Fryer, 2011). It can grow in mesic, mixed-hardwood or coniferous forests, woodlands

and shrublands, old fields, and coastal systems (Fryer, 2011). In the southeast, it has been

found in old-field successional sites such as the edges of late-successional stages of oak-hickory

forests, and mixed-hardwood forests (Fryer, 2011). At the Boston Harbor Islands National

Park in Massachusetts, C. orbiculatus was abundant on the nonnative shrub thickets consist-

ing of Berberis thunbergii (Japanese barberry), Rosa multiflora (multiflora rose), Lonicera

morrowii (Morrows honeysuckle), and Frangula alnus (glossy buckthorn) (Fryer, 2011); sim-

ilar nonnative shrubs exist at the BEF also covered by C. orbiculatus. Certain tree species

like yellow poplar may be preferred over oak because germination is best with moist soil and

thin litter depth (Fryer, 2011). C. orbiculatus can have stems 2.4 to 10.5 mm in diameter

and deep spreading roots up to 2 cm in diameter (Fryer, 2011). It spreads by sprawling in

open areas and climbing by twining around trees and lianas in closed areas (Fryer, 2011). In

the southeast U.S., plants flower mostly in May and go through September, and seeds are

dispersed in November through January. One plant can produce 370 fruits/year with each

capsule having 3 valves, each with one or two seeds dispersed by small mammals and birds;

vegetative reproduction is also possible via sprouting from roots (Fryer, 2011). Seeds can

survive in various light intensities; they can also tolerate various soil textures but preferring

loamy, sandy, or silty soils (Fryer, 2011). C. orbiculatus is most commonly found on soils

with high levels of calcium, potassium, and magnesium (Fryer, 2011).
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3.9 Appendix 3: Persistence of Invasive Plant Species

The exotic invasive plant species in this paper have several traits that allow them to

persist in and take over a region. As examples, Carduus acanthoides (spiny plumeless thistle)

has numerous, though not persistent, seeds (Feldman, 1997), is tolerant to repeated distur-

bances (Zhang et al., 2011), and is opportunistic in colonizing gaps (Allen and Shea, 2006).

Rhamnus cathartica (Common buckthorn) has high shade tolerance, high growth and photo-

synthesis rates, wide range of tolerance of moisture and drought, unique leaf phenology, high

fecundity, bird-dispersal of fruit, high germination rate, high seedling success in disturbed

sites, and secondary metabolites, especially emodin, which may protect the plant from her-

bivores, pathogens, and high light levels; emodin may have allelopathic effects on natives

nearby, and affect soil microbes and unripe fruit consumption/ digestion by birds (Knight

et al., 2007). Celastrus orbiculatus (Oriental bittersweet) sprawls over or twines around and

into the canopy of surrounding vegetation and has low palatability (Fryer, 2011). It does not

have a host preference (Ladwig and Meiners, 2010). It can also persist at low photosynthetic

rates in the shade and respond quickly to increases in light penetration to outgrow competi-

tion even in mature forests (Fryer, 2011), able to spread substantially within the canopy and

decrease tree growth after gap-formation (Pavlovic and Leicht-Young, 2011). C. orbiculatus

can outcompete C. scandens due to greater tolerance to various environmental conditions

(e.g. shade), faster growth and reproduction rates, ability to increase photosynthetic rates

with increases in light, the ability to perceive and grow toward nearby vegetation that it

could then climb (Fryer, 2011), a shorter juvenile period, and greater seed viability (Pooler

et al., 2002). In addition to changing species composition of plants, these invasive species can

also be host to other types of organisms that could in turn affect other plants; Rhamnus is

the primary overwintering host for soybean aphids, Aphis gossypii and A. glycines (Heimpel

et al., 2010; Kim et al., 2010), and C. orbiculatus is host for the bacterim Xylella fastidiosa,

which in turn infects crop plants (Fryer, 2011).

81



4 Chapter 4: Correlating species and spectral diversi-

ties using hyperspectral remote sensing in early suc-

cessional fields

4.1 Abstract

Conserving biodiversity can help preserve ecosystem properties and functions, and ad-

vances in remote sensing technology can help estimate biodiversity at large spatial extents.

To assess whether I could use remote sensing to estimate species diversity, I examined the

correlations between species diversity and spectral diversity in early successional fields in Vir-

ginia, and evaluated whether these correlations differed among spectral regions throughout

the visible and near-infrared wavelength regions and across spectral noise correction tech-

niques. I established plant community plots in secondary successional fields at the Blandy

Experimental Farm in north-central Virginia and collected vegetation surveys and ground-

level hyperspectral data from 350 to 1025 nm wavelengths. I found positive correlations

in the visible region using band depth, positive correlations in the near-infrared region us-

ing first derivatives, and weak to no correlations in the red edge region using either noise

correction technique. To investigate the role of pigment variability in these correlations, I

estimated chlorophyll, carotenoid, and anthocyanin concentrations of five dominant species

in the plots using vegetation indices. Although interspecific variability in pigment levels ex-

ceeded intraspecific variability, chlorophyll was more varied within species than carotenoids

and anthocyanins, contributing to the lack of correlation between species diversity and spec-

tral diversity in the red edge region. Interspecific differences in pigment levels, however,

make it possible to differentiate these species remotely, contributing to the species-spectral

diversity correlations. Thus, remote sensing can be used to estimate species diversity, but

the correlation depends on the spectral region examined and the noise correction technique
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used.

4.2 Introduction

4.2.1 Biodiversity and Ecosystem Processes

Biodiversity can have numerous positive effects on the function of ecosystems. For

example, it can affect ecosystem productivity by influencing resource-use and promoting

resource-use efficiency (Cardinale et al., 2007; Gustafsson and Bostrom, 2011; Hooper and

Vitousek, 1998; Symstad and Jonas, 2011; Wilsey and Potvin, 2000). It can also positively

influence community stability by reducing fluctuations in production via compensatory ef-

fects (Gustafsson and Bostrom, 2011; Isbell et al., 2009; Symstad and Jonas, 2011; Yachi and

Loreau, 1999). In addition, biodiversity can affect infection resistance through increases in

heterogeneity and thus dilution of hosts (Haas et al., 2011), and invasion resistance by again

affecting resource-use as well as by competitive effects (Cardinale et al., 2007; Gustafsson

and Bostrom, 2011; Hooper and Vitousek, 1998; Scherber et al., 2010). Thus, it is potentially

important to conserve biodiversity as a means for conserving ecosystem function.

We can use field methods to estimate biodiversity in great detail at small spatial

extents (Lengyel et al., 2008). However, these methods can be costly and time-intensive,

and difficult to scale up to larger spatial extents. Remote sensing can be used to collect

information at vastly larger spatial extents more quickly and more cheaply per unit area

than field samples (Lengyel et al., 2008). Remote sensing can also be combined with field

data to more efficiently assess spatial and temporal distributions of biodiversity (Bradley

and Mustard, 2006; Lengyel et al., 2008; Schmidt and Skidmore, 2001; Wilfong et al., 2009;

Zhang et al., 2006) and to incorporate information at different spatial scales (Lengyel et al.,

2008). Remote sensing has already been used to measure various surrogates to estimate

species diversity, such as the normalized difference vegetation index, biomass, land cover,
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and heterogeneity in biomass and land cover (Foody and Cutler, 2003; Turner et al., 2003).

Moreover, the direct measurement of species diversity through species-level characteristics is

becoming possible with advances in satellite technology, specifically the increases in spatial

and spectral resolutions (Turner et al., 2003). Assessing biodiversity using remote sensing

affords us the opportunity to potentially estimate biodiversity at coarser spatial scales and

larger spatial extents.

4.2.2 Remote Sensing of Diversity

Spectral reflectance of vegetation canopies in the visible range is predominantly in-

fluenced by pigment content, reflectance in the near-infrared region is mostly influenced

by leaf structure and leaf surface characteristics, and that in the shortwave-infrared region

is mainly influenced by structural compounds and water content (Mahlein, 2011; Xiao, Y.

et al., 2014). Since these characteristics differ by species, we may likely be able to distinguish

species spectrally; Asner (1998) suggests that species should be distinguishable remotely due

to differences in biochemical and structural properties, and species differences have in fact

been detected remotely (Burkholder, 2010; Narumalani et al., 2009; Pinard and Bannari,

2003; Rud et al., 2006; Schmidt and Skidmore, 2001; Yingying et al., 2011).

It is also possible that species diversity can be estimated using remotely sensed data,

by using the ranges, standard deviations, or coefficients of variation of reflectance values,

spectrum derivative values, or band ratios, along with regression models (Asner and Martin,

2008; Rocchini et al., 2010). Several researchers have been able to estimate species diversity

and chemical diversity using remotely sensed data (Asner and Martin, 2011, 2008; Asner

et al., 2012; Rocchini et al., 2010). Carlson et al. (2007) found a correlation between bio-

chemical diversity and spectral diversity at 530, 720, 1201, and 1523 nm wavelengths in

lowland tropical forest ecosystems in Hawaii. Asner et al. (2009) found a positive relation-

ship between chemical diversity (estimated spectrally) and taxonomic diversity in Australian
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tropical forest ecosystems. Feret and Asner (2014) estimated species alpha and beta diversity

using spectral diversity in lowland tropical forest ecosystems in the Amazon. Rocchini et al.

(2010) suggest that taking into account landscape heterogeneity while measuring spectral

heterogeneity leads to more accurate remotely sensed estimations of species diversity. In

tropical forests, species diversity was also correlated with canopy nutrient content variabil-

ity (estimated spectrally) and thus potentially diversity in ecosystem function (Asner and

Martin, 2009).

4.2.3 Variability in Pigment Content

Differences in hyperspectral reflectances in the visible region are influenced by species

differences in pigment content. There are three main groups of pigments: chlorophylls

(eg. chl a and chl b), carotenoids (carotenes: a and b, xanthophylls: lutein, zeazanthin,

violoxanthin, antherazanthin, and neoxanthin), and phycobilins (Delvin and Barker, 1971;

Gitelson et al., 2002), and these pigments have different structures and characteristics as

well as functions (Pavia et al., 1999). Even though chlorophylls a and b are similar in

structure, they have different physical and chemical properties related to photosynthesis

(Delvin and Barker, 1971). Carotenoids funnel light energy to the chlorophyll a reaction

center and guard against photoinhibition (Delvin and Barker, 1971; Liu et al., 2009; Rosevear

et al., 2001), and are structurally important in pigment-binding proteins and membranes

(Rosevear et al., 2001). Anthocyanins, a subgroup within a fourth category of pigments

called flavonoids, are also photoprotective (Sims and Gamon, 2002), and additionally can

alleviate stress from freezing, drought, leaf damage, and fungal pathogens (Blackburn, 2006;

Sims and Gamon, 2002). Flavonoids and luteins also help with energy dissipation (Merzlyak

et al., 2003; Rascher et al., 2007). In this study, I estimated the concentrations of carotenoids,

anthocyanins, and chlorophylls, because they encompass the major groups of pigments in

terrestrial plants, and the equations for estimating these three pigments are relatively well-

defined in the remote sensing literature (Gitelson et al., 2006; Merzlyak et al., 2003; Yu et al.,
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2014).

Plant age affects pigment concentrations. Anthocyanin concentrations are greatest

in very young and very old leaves (Sims and Gamon, 2002). Chlorophyll concentrations are

greatest in middle-aged leaves (Liu et al., 2009). These changes in pigment absorptions with

age can be observed spectrally, with a disappearance of the green peak, a decrease in absorp-

tion in the red trough, and a decrease in reflectance in the near-infrared plateau, as plants

get older (Philpot, 2011). Environmental conditions and stresses can also influence pigment

concentrations. Plant growth conditions, such as light regimes, can greatly affect pigment

levels (Rosevear et al., 2001); for example, changes in illumination can affect chl a: b ratios

(Gamon and Berry, 2012). Higher light conditions are associated with greater chlorophyll,

carotenoid, and xanthophyll content (Rosevear et al., 2001). Drought stress can lead to

greater xanthophyll activity, increases in carotenoid concentrations, and decreases in chloro-

phyll concentrations (Genc et al., 2013; Naumann et al., 2010; Rascher et al., 2007; Yang

et al., 2010). Pigment concentrations may also differ by successional stage; Alvarez-Anorve

et al. (2012) suggest that early stages of succession have lower photochemical reflectance

index (PRI) values, because early successional plants invest more in photoprotective xan-

thophylls and carotenes than in chlorophyll.

4.2.4 Remote Sensing of Pigments

Although pigment concentrations have traditionally been estimated using wet lab

techniques, these procedures are labor- and time-intensive, cannot be used for temporal

analyses due to their destructive nature, and need large numbers of samples for accurate

representation of spatial variability (Blackburn, 2006). In addition, these techniques are

susceptible to inaccurate measurements due to incomplete extractions, light-absorbing im-

purities, and the instability of the pigments (Merzlyak et al., 2003). In contrast, remote

sensing, especially hyperspectral remote sensing, can be used to detect pigments quickly and

86



non-destructively (Asner et al., 2007; Blackburn, 2006; Gamon and Berry, 2012; Gitelson

et al., 2006; Merzlyak et al., 2003). When using spectral reflectances to estimate pigment

levels, we need to use multiple wavelengths (Blackburn, 2006), because absorption bands

can be affected by more than one chemical constituent, and one chemical constituent can

influence a broad spectral region (Kokaly and Clark, 1999). Many vegetation indices using

multiple bands are available to estimate pigment levels (see Yu et al. (2014) for examples).

It is important to understand which absorption features are being examined in certain bands

when choosing an appropriate index.

When estimating chlorophyll content, bands near 550 nm or 705 nm can be used, as

both have strong chlorophyll absorptions and are sensitive to chlorophyll levels. However,

if leaves have anthocyanins, the region near 705 nm is better. Subtracting the inverse of

the reflectance at 705 nm from that at 770 nm makes the index directly proportional to

chlorophyll content. Reflectance at 770 nm is also used to calibrate the chlorophyll index,

since it is not a function of chlorophyll absorption. Therefore, these three regions were used

to calculate chlorophyll content.

For carotenoid content, it is important to select wavelengths that do not have inter-

ference from chlorophyll absorptions, anthocyanin absorptions, and carotenoid saturation.

The region around 515 nm is most sensitive to carotenoid absorption, but is also affected by

chlorophyll absorption. To remove the effects of chlorophyll absorption, the region around

565 nm can be used. Reflectance around 770 nm helps calibrate with a region that does not

have absorption from carotenoids or chlorophylls.

The band region around 550 nm has strong anthocyanin absorption features. How-

ever, there are also chlorophyll absorption features; the effects of chlorophyll can be removed

using reflectance around 700 nm. Again, reflectance around 770 nm can be used for calibra-

tion, since it is not affected by anthocyanin or chlorophyll absorption.
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4.2.5 Research Objectives

To better inform biodiversity conservation efforts, ecological processes need to be

studied at large spatial extents as well as small spatial extents. Remote sensing has the

potential to monitor such processes at larger spatial extents more efficiently than field surveys

alone. Certain spectral features might be more instrumental in estimating biodiversity than

others. The study of interspecific and intraspecific variability in these features may help

elucidate the spectral regions most correlated with biodiversity. Although the need for using

satellite imagery to directly monitor diversity is realized, there are few in-depth studies on

factors that influence the ability to use remote sensing to estimate biodiversity. Moreover,

few such studies have been conducted in early successional communities, where biodiversity

and species composition may be important for determining successional trajectory.

I wish to study correlations between species diversity and spectral diversity in a

temperate ridge and valley ecosystem in north-central Virginia. The Blandy Experimental

Farm, our study site in Boyce, Virginia, is inhabited by several invasive species that affect

ecosystem diversity. These species can alter their surroundings, inhibiting the growth of

other species and promoting the growth of their own both mechanically and chemically. In

this study, I asked 1) whether species diversity was correlated with spectral diversity in

secondary successional ecosystems in this region, 2) how these correlations differ by spectral

region, and 3) whether intraspecific and interspecific variabilities in pigments influence these

correlations.
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4.3 Methods

4.3.1 Study Site

I collected data at the Blandy Experimental Farm (BEF) (Figure 10), which is located

in the Shenandoah Valley in Clarke County Virginia at 39◦09’N, 78◦06’W (Wang et al., 2007).

This 300 ha biological field station has been owned by the University of Virginia (UVA) since

1926 and operated by the Department of Environmental Sciences at UVA since 1983 (Bowers,

1997). The field station includes 120 ha of pasture and cropland, 40 ha of woodland, the 60

ha Virginia State Arboretum, and 80 ha of old fields in early, middle, and late succession

(Bowers, 1997). Each of two successional series (southwest and northeast) is a set of former

agricultural fields and contains an early, mid, and late successional field, abandoned in 2001

(Early 1), 2003 (Early 2), 1986 (Mid 1), 1987 (Mid 2), before 1910 (Late 1) and before 1920

(Late 2) (Wang et al., 2010). Spectral and species compositional data were collected from

the two early successional fields and two additional field sites: Lake Arnold and a site at

a field boundary near the northeast succesional series referred to hereafter as the northeast

boundary. Soils are deep colluvial and alluvial sediment from karst limestone, shale, and

siltstone; study sites have well-drained silt loam soil, of the soil Order Ultisol (Bowers,

1997). The average elevation of the BEF is 190 m, and slopes are less than 10% (Bowers,

1997). Mean annual temperature and precipitation are 11.8 ◦C and 940 mm respectively;

the average growing season is 157 days with average annual primary productivity of 1.0 kg

m-2 in the successional fields including all stages (Bowers, 1997; Wang et al., 2010).
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Figure 10: Blandy Experimental Farm with study sites Southwest Early (SWE), Northeast
Early (NEE), Northeast boundary (NEB), and Lake Arnold (LA).

4.3.2 Field methods

In the summer of 2014, I established three randomly placed 5 m * 5 m community-

level plots at each early successional site, Lake Arnold, and the northeast boundary (Figure

10). From early June to late July, I collected community-level spectral data from 350 to

1025 nm using a PANalytical ASD Inc. FieldSpec R© 3 with a 25◦ field of view. Spectra were

collected from approximately 2.5 m height so that the footprint was approximately 1.15 m

in diameter. I collected spectra on cloud-free days between 10am and 2pm in a systematic

manner to maximize coverage without trampling vegetation, and capture vegetation in each

corner of the plot, in the center, and the middle of each edge for a total of 12 spectral foot-

prints per plot (Figure 11). Approximately three spectral measurements were collected at

each footprint (with each measurement being the average calculated by the spectroradiome-
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ter of ten spectra) and averaged for smoothing of the spectral profile. Thus, I collected

approximately 36 spectral measurements (12*3) per plot. Additionally, I conducted vege-

tation surveys on the 5 m * 5 m grid at 0.5 m intervals, recording species at the ground

level, sub-canopy, and canopy to assess the species diversity and species composition of the

spectral footprints.

Figure 11: Layout of 5 m * 5 m community plots. Circles represent spectral footprints taken
from outside the plots so as not to trample vegetation. Vegetation surveys were conducted
at each 0.5 m interval within a plot for a total of 121 points at the ground, understory, and
canopy level.

In the summer of 2015, I collected leaf-level spectra for pigment analysis from five

of the dominant species in the community plots: Achillea millefolium (common yarrow),

Dactylis glomerata (orchard grass), Festuca rubra (red fescue), Solidago altissima (tall gold-

enrod), and Symphoricarpos orbiculatus (coralberry). All of these species have the potential

to become invasive, especially in disturbed areas. Ten individual plants of each species were

examined, except for F. rubra, of which five individual plants were sampled due to time
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and weather constraints. Three leaf samples were collected from each individual. I obtained

leaf-level spectra from detached leaves, which I wrapped in wet paper towels, put into zip-

pered plastic bags, and stored on ice until measurements were taken within 20 minutes of

detachment.

4.3.3 Species descriptions

Achillea millefolium is a perennial herb with one to ten stems 20-100 cm tall, coming

from a fibrous rhizome (Cummins, 2014; Hurteau, 2001). Its leaves are lanceolate, bipin-

nately dissected, 0.5-3 cm wide, 3-15 cm long, and can be pubescent (Hurteau, 2001). The

inflorescence is a corymb with 10-20 whitish to yellowish-white ray flowers (Hurteau, 2001).

It can grow in disturbed, well-drained soils in grasslands and open forests, and is drought

tolerent; it persists from May to June (Hurteau, 2001). A. millefolium is not tolerant of

dense shade, and has a palatability of fair to poor (Aleksoff, 1999).

Dactylis glomerata is a cool season perennial C3 bunchgrass, and is one of the earliest

grasses to emerge in spring; it can grow 50-120 cm tall (Barbehenn and Bernays, 1992; Bush

et al., 2012). Its leaves are 2-8 mm wide and 20-30 cm long, and its panicles are 5-20 cm long

with laterally compressed spikelets of 2-5 flowers in dense one-sided clusters (Bush et al.,

2012). D. glomerata does not reproduce vegetatively, but still has the potential to become

invasive (Bush et al., 2012). It grows well in moderate to well-drained slightly basic to acidic

soils (pH 5.8-7.5), that can vary in texture from clay to gravelly loam, and in depth from

shallow to deep; however, it cannot tolerate salinity or high soil moisture (Bush et al., 2012).

D. glomerata can tolerate cold winters when snow is present for insulation, high summer

temperatures and humidity, as well as shade. It has a high palatability (Sullivan, 1992).

Festuca rubra is a C3 perennial cool season grass that also starts growing early in

the spring with a high growth rate in late summer (Barbehenn and Bernays, 1992; St. John

et al., 2012). Its leaves are mostly basal, 5-15 cm long and 1-2 mm wide; the inflorescence is
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a narrow panicle 3-20 cm long with 3-10-flowered spikelets (St. John et al., 2012). F. rubra

grows rhizomatously, and can become invasive especially in disturbed areas (St. John et al.,

2012). It is shade and salt tolerant, and grows in soils of varying texture from sandy to

gravelly, from moist meadows to disturbed areas; it can grow in soils that have low fertility

and varying pH, from acidic to slightly alkaline (pH 4.5-7.5) (St. John et al., 2012). F. rubra

has fair palatability (St. John et al., 2012).

Solidago altissima is a perennial forb, 1-2 m tall (United, 2010). Its leaves are 15 cm

long, 2 cm wide, linear-lanceolate in shape, pubescent on the underside, and scabrous on

the upper surface of the leaf; its inflorescence is a terminal pyramidal panicle, 15 cm broad

and 20 cm tall with yellow flowers, blooming from August to November (Tenaglia, 2007).

S. altissima inhabits dry open spaces, fallow fields, prairies, rocky outcrops, open woods,

thickets, wastelands, roadsides, and railroad corridors (Tenaglia, 2007; United, 2010). Within

the fields at the BEF, this species forms extensive monocultural stands.

Symphoricarpos orbiculatus is a branching shrub, 0.66 to 1.33 m tall (Hilty, 2015).

Its leaves are 5 cm long, 3 cm wide, oval-ovate in shape with an upper surface that is

glabrous to slightly pubescent (Hilty, 2015). Flowers are greenish yellow and approximately

0.64 cm long; berries are reddish purple and approximately 0.64 cm long (Hilty, 2015). S.

orbiculatus grows in partial sun, moist to dry soil, loamy to rocky in texture; it inhabits thin

rocky woodlands, woodland openings and borders, disturbed areas, thickets, and limestone

glades (Hilty, 2015). It is very palatable to deer (Hilty, 2015).

4.3.4 Statistical analysis

I used band depth instead of original reflectance values to reduce noise from the sen-

sor, atmosphere, soil background, topographic variation, and differences in albedo (Crowley

et al., 1989; Kokaly and Clark, 1999). To obtain band depth, a continuum hull was matched

to the original spectral profile, and this continuum was removed to get normalized reflectance
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using ENVI (Versions 5.0 and Classic, Exelis Visual Information Solutions, Boulder, Col-

orado). I anchored the continuum hull to the near-infrared shoulder because preliminary

data had suggested that much of the variability in that region was due to changes in atmo-

spheric conditions and incoming radiation than to differences in vegetation characteristics.

Therefore, anchoring the continuum hull at the shoulder minimized this variability and em-

phasized variability due to differences in vegetation characteristics. I then subtracted these

continuum-removed reflectance values from one to get the band depth profile (Figure 12).

I also assessed spectral diversity using first derivatives of the original reflectance profile to

examine whether the correlation between species and spectral diversities depends on the

noise correction technique used.

Figure 12: An illustration, using an average spectral profile from Dahurian buckthorn spec-
tra, of calculating band depth (normalized absorption) from original reflectance using con-
tinuum removal.
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Figure 13: To quantify spectral diversity, band depth was divided into regions and areas
under the curve calculated, and then standard deviations of the areas under the curve for
respective plots were calculated.

To quantify spectral diversity, I used standard deviations of areas under the band

depth profile curve and the first derivative profile curve for the following regions correspond-

ing with key spectral features: 350-499 nm, 500-589 nm, 590-674 nm, 675-754 nm, 755-924

nm, and 925-1025 nm (Figure 13). I calculated species diversity using the Shannon Diver-

sity Index (Equation 2). To make a more direct comparison with spectral diversity, only the

sampling points that were within the spectral footprints were included in calculating species

diversity. I conducted Pearson correlation analyses in SAS (Statistical analysis software,

Version 9.4, SAS Institute Inc., Cary, North Carolina) to assess the relationship between

species and spectral diversity using spectra and vegetation surveys from the summer of 2014

for the early successional fields, Lake Arnold, and the northeast boundary.

H ′ =
n∑

i=1

pi ∗ ln(pi) (2)

To assess whether the relationships between spectral diversity and species diversity

may be influenced by the interspecific and intraspecific diversity of certain vegetation char-

acteristics, I used the leaf-level spectra of five dominant species in the community plots to

estimate pigment concentrations and assess interspecific and intraspecific diversity of chloro-

phyll (Equation 3), carotenoid (Equation 4), and anthocyanin (Equation 5) levels using
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equations by Gitelson et al. (2003), Gitelson et al. (2006), and Gitelson et al. (2001) re-

spectively. Chlorophyll, carotenoid, and anthocyanin levels were assessed using an analysis

of variance (ANOVA) in SAS to compare intraspecific and interspecific pigment variabil-

ity among Achillea millefolium, Dactylis glomerata, Festuca rubra, Solidago altissima, and

Symphoricarpos orbiculatus, using among and within mean square and the F value. Since

parametric assumptions were not met, I used the non-parametric pairwise comparison Dwass,

Steel, Critchlow-Fligner (DSCF) method to assess whether species were significantly different

in terms of pigment estimates (SAS support, 2012).

Chlorophyll = R770

(
(R705)−1 − (R770)−1

)
(3)

Carotenoids = R770

(
(R515)−1 − (R565)−1

)
(4)

Anthocyanin = R770

(
(R550)−1 − (R700)−1

)
(5)

4.4 Results and Discussion

In this paper, I wished to examine the ability to use remote sensing to estimate

species diversity; specifically, I asked whether species diversity and spectral diversity were

correlated in secondary successional fields in north-central Virginia in a ridge-and-valley

ecosystem. There was a strong positive relationship between species diversity and spectral

diversity using band depth in the summer of 2014 for the 350 nm to 499 nm wavelength

region (R2= 0.41, p= 0.03), the 500 nm to 589 nm wavelength region (R2= 0.35, p= 0.04),

and the 590 nm to 674 nm wavelength region (R2= 0.44, p= 0.02), and a marginally positive

relationship in the 675 nm to 754 nm wavelength region (R2= 0.26, p= 0.09) (Figure 14).
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However, relationships between species diversity and spectral diversity were not strongly

positive in the 755 nm to 924 nm wavelength region (R2= 0.01, p= 0.74) or in the 925 nm

to 1025 nm wavelength region (R2= 0.17, p= 0.19). Using first derivatives instead of band

depth, there was a strong positive correlation between spectral diversity and species diversity

in the 350 nm to 499 nm wavelength region (R2= 0.41, p= 0.02) (Figure 15). There were no

correlations in the 500 nm to 589 nm wavelength region (R2= 0.04, p= 0.54), the 590 nm

to 674 nm wavelength region (R2= 0.0009, p= 0.92), and the 675 nm to 754 nm wavelength

region (R2= 0.15, p= 0.21). There was a weak positive correlation in the 755 nm to 924 nm

wavelength region (R2= 0.30, p= 0.06) and a strong positive correlation in the 925 nm to

1025 nm wavelength region (R2= 0.44, p= 0.02). Therefore, the method of noise correction

and the spectral regions considered will influence the ability to estimate species diversity

using spectral diversity.
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Figure 14: Correlations between species diversity and spectral diversity for six spectral
regions using the area under the band depth profile.
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Figure 15: Correlations between species diversity and spectral diversity for six spectral
regions using the area under the first derivative profile.

4.5 Visible Region

The 350 nm to 499 nm region had a strong positive correlation using band depth and

first derivatives, suggesting that this region has large interspecific variability. Using band

depth, there were also strong positive correlations in the rest of the visible region. However,

there was no correlation when using first derivatives. This may be because first derivatives

have been found to exaggerate noise due to environmental variation and increase intraspecific

spectral variability (Zhang et al., 2006).
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4.6 Near-Infrared Region

The lack of correlation in the near-infrared region when using band depth may be

due to the fact that band depth drastically reduces variability in the near-infrared plateau to

reduce noise in these data; however, this reduction may mask variability in the near-infrared

plateau that may be caused by interspecific differences. Therefore, it may be better to use

derivatives to compare the correlations between species diversity and spectral diversity in

this region. Indeed, when using first derivatives, there was a strong positive correlation

between spectral diversity and species diversity in the 755-924 nm wavelength region (R2=

0.30, p=0.06) and the 925-1025 nm wavelength region (R2= 0.44, p=0.02) (Figure 15).

4.7 Red Trough and Red Edge Regions

The most interesting result is a weak correlation using band depth and the lack of

correlation in the red edge region using first derivatives, likely due to greater intraspecific

variability versus interspecific variability in this region. Variability in the red edge region may

be due to differences in the red trough or differences in the near-infrared plateau; however,

since differences in the near-infrared plateau are minimized while using band depth, the

differences are likely in the red trough. To determine how there might be greater interspecific

variability in most of the visible region yet greater intraspecific variability in the red edge

region, especially the red trough, the absorption peaks of different pigments were considered.

Chlorophyll a and b peaks are in the visible and red trough regions, and anthocyanin and

carotenoid peaks occur in the visible region (For more detailed absorption peak locations,

see Jensen (2007)). The intraspecific variability in the red edge region (675 nm to 754 nm )

may be due to intraspecific variability in chlorophyll content, which may be more plastic and

more sensitive to environmental factors than other pigments. In contrast, carotenoid and

anthocyanin content may have greater interspecific variability than intraspecific variability.
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This may be because anthocyanin content and carotenoid content are highly influenced by

genetics (Ficco et al., 2014; Fournier-Level et al., 2009; Guzman et al., 2010; Nicolle et al.,

2004) while chlorophyll content is influenced by both genetics and environmental conditions

and stressors (Cao, 2000; Malyshev et al., 2016).

4.8 Species Pigment Comparisons

To assess intraspecific and interspecific differences in pigment estimations, I used

spectra of five dominant species in the community plots to calculate indices estimating the

amounts of chlorophyll (Equation 3), carotenoids (Equation 4), and anthocyanins (Equation

5) in the leaves. The analysis of variance for pigment estimates revealed that there was

greater interspecific variability than intraspecific variability in terms of all three pigment

types; however, within-species variability was proportionally greater in chlorophyll than in

carotenoid and anthocyanin estimates (Table 11). This is concluded based on the F value,

which is the ratio of variance among species (among mean square) to variance within species

(within mean square); the smaller the F value, the greater the within-species variance pro-

portional to total variance. This greater intraspecific variability may account for some of

the lack of correlation between spectral diversity and species diversity in the red trough

region. Although there is greater intraspecific variability in chlorophyll than the other pig-

ments, interspecific variability is still greater, leading to significant differences by species

for all three pigments (Figure 16). In terms of anthocyanins and carotenoids, all species

were significantly different (p<0.0001) except for A. millefolium vs. S. orbiculatus and D.

glomerata vs. F. rubra. In terms of chlorophyll, all species were significantly different except

for D. glomerata vs. F. rubra and S. altissima vs. S. orbiculatus. Thus, species were still

significantly different in terms of all spectral pigment estimates (Figure 16).
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Table 11: ANOVA results comparing among and within variance in pigment estimates by
species.

Pigment Among Mean Square Within Mean Square F value

Anthocyanins 5.8774 0.0467 125.87

Carotenoids 260.21 0.8093 321.52

Chlorophylls 12.454 0.1059 117.59
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Figure 16: Estimates of a) anthocyanins, b) carotenoids, and c) chlorophylls for Achillea
millefolium (acmi), Dactylis glomerata (dagl), Festuca rubra (feru), Solidago altissima (soal),
and Symphoricarpos orbiculatus (syor) using ground-level hyperspectral data.
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A. millefolium had greater chlorophyll content than did S. orbiculatus and S. al-

tissima, which had greater chlorophyll content than did D. glomerata and F. rubra. A.

millefolium and S. orbiculatus had greater anthocyanin content than S. altissima, which

had greater anthocyanin content than D. glomerata and F. rubra. In contrast, Veres et al.

(2006) found that Festuca pseudovina had higher xanthophyll content than A. millefolium.

In this study, A. millefolium and S. orbiculatus had greater carotenoid content than S. al-

tissima, which had greater carotenoid content than D. glomerata and F. rubra. Similarly,

Veres et al. (2006) found that out of the monocots they tested, Festuca pseudovina had

the lowest carotenoid content, and of the dicots tested, A. millefolium had the greatest

carotenoid content. Carotenoid content and composition can vary by environment and have

high interspecific variation (Veres et al., 2006).

There may be several reasons why Festuca rubra and Dactylis glomerata had low

levels of photoprotective pigments. Grass leaves have high Si content, which might help

them reflect UV-B radiation and thus not need as much photoprotection from pigments

(Deckmyn and Impens, 1999). Out of Festuca arundinacea, Festuca rubra, Lolium perenne,

and Poa pratensis, Zhang and Ervin (2009) found that F. rubra had the greatest tolerance to

UV-B. This higher tolerance may be due to narrower leaves and thick waxy cuticles (Zhang

and Ervin, 2009). Narrow leaves can lead to a reduction in boundary layer growth, thus

reducing leaf temperature in high light conditions (Letts et al., 2009). When treating F.

rubra and D. glomerata with increasing levels of UV-B, Deckmyn and Impens (1999) found

that there was an increase in protective pigments in D. glomerata, but not in F. rubra.

This implies that F. rubra may have a different way of dissipating excess energy such as

antioxidant activity and activation of hormones that cue defense mechanisms (Zhang and

Ervin, 2009).

Another reason these species were significantly different from each other in terms

of pigment levels may be that they are from different plant functional types (two grasses,
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two forbs, and one shrub). Forbs have lower foliar support costs than shrubs, which need

to invest more in woody biomass growth; therefore, forbs may have greater leaf dry mass

per unit area than do woody species (Niinemets, 2010). This greater ability to invest in

leaves may explain the high chlorophyll levels of A. millefolium compared with those of S.

orbiculatus, although those of S. altissima were just as low.

These plants also differ in shade tolerance: S. altissima is less shade tolerant than

S. orbiculatus and A. millefolium, which are less shade tolerant than D. glomerata and F.

rubra. Shade-tolerant species usually have lower leaf dry mass per unit area and greater

specific leaf area to intercept more light in the shade (Niinemets, 2010). These leaves with

high specific leaf area have greater longevity but lower net photosynthesis levels and lower

photosynthetic nitrogen-use efficiency, because of greater allocation to non-photosynthesizing

cell wall material and large vein networks over photosynthetic machinery (Johnson and

Tieszen, 1976; Niinemets, 2010). In this study, the two most shade tolerant species also had

the lowest concentrations of pigments.

For these pigment analyses, leaf-level spectra were used to examine only photosyn-

thetic tissue and thus get a more accurate representation of photosynthetic machinery. How-

ever, diversity correlations were made using spectra that included both photosynthetic and

structural elements. Structural signatures are more prevalent in the shortwave-infrared re-

gion than the visible and near-infrared regions (Mahlein, 2011), but a component of structure

is leaf angle distribution, which in turn affect signatures in the visible and near-infrared re-

gions. Thus, some of the variability in the correlation analyses may be due to the structural

component of species diversity.

Overall, band depths of visible range values within the 350 nm to 674 nm region can

be used to estimate species diversity. This finding of a correlation between spectral diversity

and species diversity supports prior research (Asner and Martin, 2011; Asner et al., 2009,

2007, 2012; Carlson et al., 2007; Feret and Asner, 2014; Rocchini et al., 2010). However,
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other methods of noise minimization must be implemented to use the near-infrared region

for estimating species diversity. Additionally, variability in the red edge region may be

due to intraspecific variability in chlorophyll a and b content rather than differences in

species composition. Species plasticity in pigment levels also needs to be considered when

analyzing species discriminability; however, this difference in pigment levels across species

supports the possibility of discriminating species spectrally. Thus, remote sensing can be

used to estimate diversity and aid conservation efforts at large spatial extents; additionally, if

invasive species decrease diversity, spectral diversity may be used to assess the invadedness of

an area. However, methods used to estimate species diversity must be chosen and interpreted

carefully. Continuum removal is more appropriate for correcting for sources of noise in the

near-infrared region and emphasizing features in the visible region while minimizing the

effects of noise. First derivatives are more appropriate for emphasizing spectral features in

the visible region only when there is little noise in that region. They are more useful for

preserving variability in the near-infrared region while minimizing effects of noise in that

region.

4.9 Conclusion

The correlation between species diversity and spectral diversity depends on the spec-

tral region examined and the spectral noise correction technique used. Using band depth,

Pearson correlation analyses revealed positive correlations between spectral diversity and

species diversity in the visible ranges of 350-499 nm (R2= 0.41, p= 0.03), 500-589 nm (R2=

0.35, p= 0.04), and 590-674 nm (R2= 0.44, p= 0.02), slight positive correlation in the red

edge range of 675-754 nm (R2= 0.26, p= 0.09), and no correlation in the near-infrared ranges

of 755-924 nm (R2= 0.01, p= 0.74) and 925-1025 nm (R2= 0.17, p= 0.19). Using first deriva-

tives, I found a strong positive correlation in the visible range of 350 to 499 nm (R2= 0.41,

p= 0.02), but no correlations in the visible ranges of 500 to 589 nm (R2= 0.04, p= 0.54) and
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590 to 674 nm (R2= 0.0009, p= 0.92); I found no correlation in the red edge region (R2=

0.15, p= 0.21) and positive correlations in the near-infrared ranges of 755 to 924 nm (R2=

0.30, p= 0.06) and 925 to 1025 nm (R2= 0.44, p= 0.02). The lack of correlation in the visible

region using first derivatives may be because first derivatives exaggerate spectral noise in

the visible region. The lack of correlation in the near-infrared region using band depth may

be because band depth minimizes variability in the near-infrared region, thus dampening

interspecific differences. The lack of correlation in the red edge may be partially due to the

greater intraspecific variability of chlorophyll content over content of other pigments. This

variability can be expressed in the red trough region, at the base of the red edge, damp-

ening interspecific differences and thus lessening the correlation between species diversity

and spectral diversity. Thus, remote sensing can be used to estimate species diversity, but

methods to do so must be chosen carefully.
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5 Chapter 5: Species effects on ecosystem properties

and processes throughout succession

5.1 Abstract

As abandoned agricultural fields become more prevalent and remain susceptible to

invasive plant species, we must examine the effects of these invasive species on commu-

nity and ecosystem properties. I examined leaf and soil properties in successional fields in

north-central Virginia containing six key exotic invasive species, to assess changes in soil

characteristics throughout the summer and differences in leaf and soil characteristics across

fields, successional stages, and species. Specifically, I examined soil temperature, soil mois-

ture, soil pH, soil C and N, and leaf C and N. Soil temperature increased and soil moisture

decreased as the summer progressed. Fields differed in all characteristics, as did successional

stages within fields. Temperature and moisture differences across stages often followed pre-

dictions based on secondary succession, with earlier stages being warmer and less moist, and

soil pH was inversely correlated with soil moisture as expected. Soil C and N increased with

succession. However, leaf C and N were similar across successional stages. Species were often

similar in terms of soil characteristics, suggesting that either they did not affect successional

ecosystem dynamics or that different species affected them in similar ways. However, there

were species differences in terms of leaf characteristics, suggesting that species effects may

translate to soil effects over time.
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5.2 Introduction

Secondary succession

Abandoned agricultural fields have become more prevalent in the U.S., especially in

the Northeast and Midwest (Wang et al., 2010), and are easily invaded by exotic invasive

plant species as they undergo secondary succession (Mosher et al., 2009). As these species

can alter their surrounding environment, it is important to study their effects on successional

dynamics.

Secondary succession following disturbance exhibits certain patterns of temporal

change, which may be explained by several hypotheses. The colonization-nutrient com-

petition hypothesis, which states that there is a trade-off between allocation to seeds and

allocation to roots and thus between colonization and resource acquisition ability, may best

explain very early succession; the nutrient: light ratio hypothesis, which states that there

is a trade-off between allocation to roots for nutrient acquisition and allocation to leaves

for light acquisition, may best explain later stages of succession to woody species (Tilman,

1990). During succession, facilitation (organisms benefiting from each others’ presence), in-

hibition (organisms restraining the growth of others), and tolerance (organisms being able

to endure the potentially detrimental presence of others) can occur simultaneously; times at

which one of these processes is dominant over others may be influenced by species density,

successional stage, type of succession, resource availability, and disturbance regime (Walker

and Chapin, 1987).

Disturbances, such as in agricultural fields, urban areas, roads, and fragmented habi-

tats, can facilitate species invasion during succession by promoting the growth of invasive

propagules, increasing light availability, increasing exposure to invasive species populations,

removing litter, disturbing soil surfaces, and changing canopy species composition (Aragon

and Morales, 2003; Butler et al., 2014; Gaertner et al., 2009; Kota et al., 2007; Kuhman
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et al., 2011; Mosher et al., 2009; Yoshida and Oka, 2004). Newly abandoned fields and

early successional stages have low vegetation biomass, low photochemical reflectance index

values, because of greater investment in photo-protection (Alvarez-Anorve et al., 2012), and

generally more annuals than perennials (Battaglia et al., 1995).

With succession, there is a decrease in N acquisition efficiency (Paschke et al., 2000),

nitrification rates (Gorham et al., 1979), net photosynthetic capacity (Ellsworth and Reich,

1996), and photosynthetic rates (Ellsworth and Reich, 1996). With lower litter quality

(Castro et al., 2010), decomposition rates decrease (Castro et al., 2010), and there is an

increase in soil carbon and nitrogen with the accumulation of soil organic matter. There is

likely an increase in soil moisture with the increase in canopy shading (Wang et al., 2010)

and a decrease in soil pH (Dolle and Schmidt, 2009). Unlike the changes in soil carbon

and nitrogen throughout succession, the changes in leaf carbon throughout succession are

very small. Depending on the species, leaf nitrogen may also not greatly differ or may

decrease throughout succession (Ellsworth and Reich, 1996). Whole-plant nitrogen decreases

throughout succession due to increases in woody and other structural tissue.

Invasive species and ecosystem properties

Species can differ in resource acquisition and resource use efficiency, transpiration,

LAI, photosynthetic biomass, root depth, phenology, growth rate, quantity and quality of

litter production, microbial community associations, and spatial distributions (DeMeester

and deB. Richter, 2010; Vicente et al., 2013; Vitousek, 1990). Changes in plant species

composition, such as those associated with invasive species, can lead to changes in soil

fauna through changes in nutrient inputs and soil characteristics (Maharning et al., 2009),

and changes in herbivore community compositions (DeMeester and deB. Richter, 2010).

With these changes in community composition, exotic invasive species can alter ecosystem

properties and processes such as productivity, nutrient cycling, water cycling, soil microbial
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activity, and disturbance regimes, especially when they are dominant (Denslow and Hughes,

2004). Invasive species can affect soil properties and processes via root exudation, altering

carbon and nutrient cycles and pools, and affecting soil pH (Gomez-Aparicio and Canham,

2008; Weidenhamer and Callaway, 2010). If they have greater specific leaf area, growth

rates, foliar nutrient concentrations, and/ or nitrogen-fixing symbioses, invasive species can

increase decomposition and nutrient cycling rates (Weidenhamer and Callaway, 2010).

An increase in resource availability with faster decomposition and nutrient cycling

may also lead to an increase in the density and diversity of introduced species, into a po-

tential positive feedback loop (Ehrenfeld et al., 2001; Kuhman et al., 2011). Even invasions

with low invasive cover can alter microbial communities and thus ecosystem processes such

as decomposition (Mayer et al., 2005). For example, Ailanthus altissima can affect ecosystem

properties and processes even at low densities by increasing nutrient cycling rates, increas-

ing local nutrient pools, and changing the community species composition to favor species

that thrive in high-nutrient environments (Gomez-Aparicio and Canham, 2008). Celastrus

orbiculatus can decrease the growth of native species by girdling trees and increasing their

susceptibility to ice damage, and by shading out their saplings (Leicht-Young et al., 2007).

Rhamnus frangula cover is negatively correlated with woody seedling density, herbaceous

species cover, and species richness (Frappier et al., 2003). Rhamnus cathartica alters forest

structure by increasing woody stem density but not total basal area, increasing shade and

thus excluding other woody and herbaceous species, increasing decomposition, and increasing

nitrogen turnover (Mascaro and Schnitzer, 2007). Invasive species can also affect ecosystems

by affecting community members other than plants, including birds (Rodewald et al., 2010;

Schmidt and Whelan, 1999; Sullivan et al., 2007), earthworms (Heimpel et al., 2010), and

insects (Heimpel et al., 2010). Additionally, native species restoration may be difficult even

with the removal of exotic invasive species because of lingering ecosystem effects (Heneghan

et al., 2006; MacDougall and Turkington, 2005; Milchunas and Lauenroth, 1995; Sullivan

et al., 2007).
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Invasion and secondary succession

Invasion can also affect the trajectory of succession (Kuhman et al., 2011; Yoshida and

Oka, 2004), although the degree of influence might depend on environmental factors such as

moisture regimes (Otto et al., 2006). Allelopathic species can affect succession by affecting

the rate and direction of species composition change and altering biochemical processes such

as nitrogen fixation. Tilman (1985) describes succession as a change from high light, low

soil nutrient conditions to low light, high nutrient conditions. The open niches during early

succession may make the area susceptible to invasion by species that require fewer nutrients

(Feldpausch et al., 2004), and this invasion can then affect the degree, duration, and direction

of ecosystem change during succession. Invasive species may have no effect (Kassi N’Dja and

Decocq, 2008), or their effects may be limited to earlier stages of succession with eventual

reclamation by natives (Cunard and Lee, 2009; Otto et al., 2006).

Alternatively, they can completely change the trajectory, rate, species composition,

species richness, disturbance regimes, and nutrient cycling during succession (Grau et al.,

1997; Leicht-Young et al., 2009; Simberloff, 2010; Sullivan et al., 2007; Yoshida and Oka,

2004). For example, the growth of Celastrus orbiculatus can impede succession by inhibiting

the re-establishment of secondary forest species (Fike and Niering, 1999; Ladwig and Meiners,

2010; Pavlovic and Leicht-Young, 2011; Riedel and Epstein, 2005) and the invasion by koa

haole may alter secondary succession by establishing dense thickets and reducing the growth

of native species (Yoshida and Oka, 2004).

Research Objectives

I examined the effects of specific non-native invasive species on secondary succession at

the Blandy Experimental Farm (BEF) in north-central Virginia. The Blandy Experimental

Farm has two successional field chronosequences of abandoned agricultural fields that contain
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several non-native invasive plant species including Rhamnus davurica (Dahurian buckthorn),

Celastrus orbiculatus (oriental bittersweet), Galium verum (yellow bedstraw), Ailanthus al-

tissima (tree of heaven), Cirsium arvense (Canada thistle), and Carduus acanthoides (spiny

plumeless thistle). These species may affect ecosystem properties and processes by altering

resource availability and species composition both of native plant species and of organisms

that utilize this vegetation. I examined changes in leaf and soil characteristics throughout

secondary succession and evaluated species-level differences in these changes.

5.3 Methods

5.3.1 Study Site

Measurements were taken from two series of successional fields and two additional

field sites at the Blandy Experimental Farm (BEF) located in the Shenandoah River Valley

in Clarke County Virginia at 39◦09N, 78◦06W (Wang et al., 2007) (Figure 17). This 300 ha

biological field station has been owned by the University of Virginia (UVA) since 1926 and

operated by the Department of Environmental Sciences since 1983 (Bowers, 1997). It is also

a satellite monitoring location for the National Ecological Observatory Network (NEON)

(NEON, 2015). The BEF includes 120 ha of pasture and cropland, 40 ha of woodland,

the 60 ha Virginia State Arboretum, and 80 ha of old fields in early, middle, and late

succession (Bowers, 1997). Each of two successional series contains an early, mid, and late

successional field (southwest, SW, and northeast, NE). The successional fields are former

agricultural fields, abandoned in 2001 (Early 1), 2003 (Early 2), 1986 (Mid 1), 1987 (Mid

2), before 1910 (Late 1) and before 1920 (Late 2) (Wang et al., 2010). To observe Cirsium

arvense (Canada thistle) which is not present in the successional series, a site at Lake

Arnold (LA) and a site at a field boundary near the northeast successional series (northeast

boundary, NEB) was also studied. All sites have silt loam soil, of the soil type Ultisol, with

slopes less than 10%. At an elevation of 190 m, mean annual temperature and precipitation
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for the Blandy Experimental Farm are 11.8 ◦C and 940 mm respectively (Bowers, 1997;

Wang et al., 2010). The BEF also has an average growing season of 157 days, and average

annual primary productivity of 1.0 kg/ m2 in the successional fields (Bowers, 1997; Wang

et al., 2010). The BEF has several exotic invasive species present in the field sites observed

in this study including Ailanthus altissima (tree of heaven), Carduus acanthoides (spiny

plumeless thistle), Celastrus orbiculatus (oriental bittersweet), Cirsium arvense (Canada

thistle), Galium verum (yellow bedstraw), and Rhamnus davurica (Dahurian buckthorn).

Figure 17: Blandy Experimental Farm, Boyce VA with study site labels including two sec-
ondary successional fields
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5.3.2 Field methods

In the summer of 2011, I established transects through both successional series, as

well as through Lake Arnold and the northeast boundary field sites, to locate non-native

invasive species in different successional stages; individuals of Rhamnus davurica, Ailanthus

altissima, Carduus acanthoides, Celastrus orbiculatus, Cirsium arvense, and Galium verum

were tagged. In this study, Lake Arnold and the northeast boundary sites are considered

early stages due to recency of disturbance. Within each successional series, the transects

extended through early, mid, and late successional stages: 300 m long in the northeast

successional fields and 550 m long in the southwest successional fields. The transect in

the northeast boundary was approximately 200 m, and the one at Lake Arnold was 20

m. Where present, at least five individuals of each species at each successional stage were

tagged for a total of ten C. arvense individuals (Lake Arnold and northeast boundary), ten

G. verum individuals (northeast successional field early and mid- successional stages), 17 C.

acanthoides individuals (early and mid- successional stages of both successional series), 15

A. altissima individuals (mid successional stage of both successional series and late stage of

northeast successional series), and 36 R. davurica individuals (all successional stages of both

successional series).

Soils data were also collected from the transects in the summer of 2011. Soil tempera-

ture at 5 cm and soil moisture at 0 to 12 cm were collected along the transects directly under

each tagged individual weekly from June to August using a Horizen Hydroponics digital soil

thermometer and a HydroSense soil water measurement system respectively. Soil moisture

readings are integrated over the length of the 12 cm rods and the volume surrounding the

rods to a radius of 3 cm for a total volume of 650 cm3 (Campbell Scientific, 2010). Two soil

cores per individual were also collected in August to 20 cm depth with 2.54 cm diameter.

These soil samples were used to determine soil pH and soil C and N content. Soils were

kept refrigerated until soil pH could be estimated, at most three days after collection. Soil
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pH was obtained after making a soil slurry of 20 g soil and 20 mL distilled water. This

mixture was stirred by hand for 30 seconds and allowed to equilibrate for approximately five

minutes. The FieldScout SoilStik was used to obtain two measurements per slurry, in the

aqueous layer. Samples were dried at 105 ◦C for 24 hours, and dry weight was obtained for

bulk density. Soil ground using a pica soil mill was used for measuring carbon and nitrogen

with a Carlo Erba elemental analyzer, model NA2500.

Also during the summer of 2011, leaf C and N were analyzed to examine differences

in species foliar properties. Leaf N can also potentially be estimated from chlorophyll indices

based on spectral data. To determine these leaf characteristics, at least five middle-aged,

non-senescing leaves were obtained from all targeted individuals in early July 2011. For tree

of heaven, leaflets of a single middle-aged leaf were collected. For yellow bedstraw, multiple

whorls of leaves were collected due to their small size. Leaves were dried at 60 ◦C for 60

hours. Dried and ground leaves were used to obtain carbon and nitrogen with the elemental

analyzer.

In the summer of 2012, two one meter by one meter population-level plots per target

exotic invasive species were established in the early stages of each of the successional series

and at Lake Arnold and the northeast boundary field sites. Three randomly placed 5 m * 5 m

community-level plots consisting of several species were established at each successional seres

site, Lake Arnold, and the northeast boundary. Soil temperature was measured every hour

from June to September using Thermachron iButtons placed in the center of each half of each

community plot and the center of each population plot. I collected leaf and soil samples from

these plots for C and N analysis. Soil samples were taken using a soil core sampler of 5.08 cm

diameter and 15.24 cm depth in each half of each community-plot and each population-plot,

keeping away from the iButtons. Soil samples were used to obtain pH, bulk density, soil

organic matter, gravimetric soil moisture content, and soil C and N content with the same

methods as above except for pH. Soil slurries were made using a different procedure than the
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previous summer, resulting in more consistent pH measurements. This new method called

for 1:2 slurry of soil to water with five 30 second stir/ 3 minute wait cycles.

5.3.3 Statistical analysis

Ecosystem property differences in soil and vegetation characteristics among species,

fields, and successional stages were assessed using analysis of variance (ANOVA) except for

soil temperature measurements in the summers of 2011 and 2012 and soil moisture mea-

surements in the summer of 2011, which were analyzed with repeated-measures ANOVA

using SAS (Statistical Analysis Software, Version 9.4, SAS Institute Inc., Cary, North Car-

olina). Summer 2012 temperature measurements were averaged by day before using repeated-

measures ANOVA. If parametric assumptions were met, Tukey pairwise comparisons were

made at the confidence level of 0.05. Otherwise, I used the Dwass, Steel, Critchlow-Fligner

method for non-parametric comparisons of more than two groups (SAS support, 2012).

Due to the unbalanced design of species distributions by field and stage, when assess-

ing differences across fields, LA was compared with NEB, and NE was compared with SW.

For the summer 2011 data, I removed G. verum from the NE to SW comparison, since it was

not found in the SW fields. Since LA and NEB only consisted of one successional stage, only

NE and SW were used to assess stage effects. For these stage comparisons using the summer

2011 data, the NEE and NEM were compared including species data of C. acanthoides, G.

verum, and R. davurica, since these three species were found in both NEE and NEM. NEM

and NEL were compared including R. davurica and A. altissima. SWE and SWM were

compared including C. acanthoides and R. davurica. Furthermore, stages were compared

within the NE and SW separately using only R. davurica data, since R. davurica was found

in all three stages in both fields. Species effects were assessed across fields for LA and NEB

and across fields and stages for NE and SW. For the summer 2012 data, population plot

and community plot data were combined since the two were not found to be significantly
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different from each other. The combination was used to assess field differences of LA vs.

NEB and SW vs. NE, stage effects in NE and SW, and species effects in LA, NEB, SWE

and NEE, since population plots were only located in the early stages. Summer 2011 and

2012 data could not be combined, because they were found to be significantly different.

5.4 Results

5.4.1 Soil Temperature

Soil temperatures differed across fields for both 2011 and 2012, but differences varied

by year. Although successional stages within SW and NE were mostly similar to each other

in terms of soil temperature in 2011 and 2012, SWE was greater than SWM in 2011 and

NEE was greater than NEM in 2012 (Figure 18). When stages were compared only using R.

davurica samples from 2011, SWE was greater than SWM. Temperatures were mostly similar

across species, but C. acanthoides had greater soil temperatures than A. altissima and R.

davurica in 2011 within SWM. Similarly, C. acanthoides also had greater soil temperatures

than A. altissima in 2011 within NEB. G. verum had greater soil temperatures than C.

orbiculatus and R. davurica in 2012 within NEE.

5.4.2 Soil Moisture

Soil moisture differed by field, with differences varying by year. LA had greater soil

moisture than NEB for both years, and NE had greater moisture than SW for 2012. Although

stages within NE and SW were often similar, NEM had greater soil moisture than NEE, and

SWM had greater soil moisture than SWE in 2011. NEL had greater moisture than NEE

and SWM had greater moisture than SWE in 2012 (Figure 19). When considering only R.

davurica samples in 2011, NEM and NEL had greater moisture than NEE. Although species

were almost always similar in terms of soil moisture, A. altissima had greater levels than R.
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Figure 18: Average soil temperatures (◦C) at the depth of 5 cm for the summer of 2012
by stage (early (E), middle (M), and late (S)) for the northeast (NE) and southwest (SW),
and for the fields Lake Arnold (LA) and the northeast boundary (NEB) at the Blandy
Experimental Farm in north-central Virginia. Asterisks represent significant differences at
p<0.05.
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Figure 19: Average soil moisture (% by volume) at 0 to 12 cm for the summer of 2012 by stage
(early (E), middle (M), and late (S)) for the northeast (NE) and southwest (SW), and for
the fields Lake Arnold (LA) and the northeast boundary (NEB) at the Blandy Experimental
Farm in north-central Virginia. Asterisks represent significant differences at p<0.05.

davurica in 2011.

5.4.3 Soil pH

LA had greater soil pH than NEB in both years, and SW was similar to NE in both

years. Even though the two fields were similar, stages within SW and NE differed. NEM

had greater pH than NEL, and SWE had greater pH than SWM in 2011, while NEE had

greater pH than NEL in 2012. When comparing only R. davurica in 2011, NEE had greater

pH than NEL, and SWE had greater pH than SWM. However, SWL had greater pH than

SWE and SWM, due to species effects. Soil pH levels were mostly similar across species,

but C. acanthoides had greater pH than G. verum, and A. altissima had greater pH than

R. davurica in 2011. Species differed by pH in LA during 2012, with G. verum having lower

pH than C. acanthoides, which had greater pH than C. arvense.
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5.4.4 Soil Carbon and Nitrogen

Soil C and N were similar between LA and NEB for both 2011 and 2012, but NE

had greater soil C and N than SW in both years. In 2011, NEE and NEL had greater soil C

and N than NEM. In 2012, NEL had greater soil C and N than NEE and NEM. SWL had

greater soil C than SWE, but similar soil N. Within R. davurica in 2011, NEL had greater

soil C and N than NEM, and SWL had greater soil C and N than SWM. Species were mostly

similar in terms of soil C and N (Figures 20 and 21), but R. davurica had greater soil C and

N than C. acanthoides in 2011, and in 2012, G. verum had greater soil C than C. arvense,

but similar soil N.
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(a) (b)

(c) (d)

Figure 20: Average soil carbon (% by mass) for the summer of 2012 by species (Ailanthus
altissima (AIAL), Carduus acanthoides (CAAC), Celastrus orbiculatus (CEOR), Cirsium
arvense (CIAR), Galium verum (GAVE), and Rhamnus davurica (RHDA)) for the fields a)
Lake Arnold (LA), b) the northeast boundary (NEB), c) the northeast field chronosequence
(NE), and d) the southwest field chronosequence at the Blandy Experimental Farm in north-
central Virginia. Asterisks represent significant differences at p<0.05.
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(a) (b)

(c) (d)

Figure 21: Average soil nitrogen (% by mass) for the summer of 2012 by species (Ailanthus
altissima (AIAL), Carduus acanthoides (CAAC), Celastrus orbiculatus (CEOR), Cirsium
arvense (CIAR), Galium verum (GAVE), and Rhamnus davurica (RHDA)) for the fields a)
Lake Arnold (LA), b) the northeast boundary (NEB), c) the northeast field chronosequence
(NE), and d) the southwest field chronosequence at the Blandy Experimental Farm in north-
central Virginia. No comparisons led to significant differences at p<0.05.
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5.4.5 Leaf Carbon and Nitrogen

Leaf C and N field comparisons varied by year. In 2011, NEB had greater leaf N

than LA, but similar leaf C, while in 2012, NEB had greater leaf C and leaf N than LA. SW

had greater leaf N than NE, but similar leaf C in both years. Leaf C and N were similar

across stages in NE and SW except that NEL had greater leaf N than NEE when only R.

davurica samples were considered in 2011. There were many similarities in leaf C and N

levels across species, with several exceptions (Figures 22 and 23). R. davurica had greater

leaf C and lower leaf N than C. acanthoides in SWE during 2011. Within SWM, A. altissima

also had greater leaf C than C. acanthoides, but similar leaf N. Within NEE, C. acanthoides

had greater leaf N than G. verum and R. davurica but similar leaf C. Within NEL, A.

altissima had greater leaf N than R. davurica but similar leaf C. There were several species-

level differences in 2012. G. verum had greater leaf C and lower leaf N than C. acanthoides

and C. arvense in Lake Arnold. A. altissima had greater leaf C than C. acanthoides and

C. arvense but similar N in the northeast boundary. R. davurica had greater leaf C and

lower leaf N than C. acanthoides in the northeast field chronosequence. G. verum and R.

davurica had greater leaf C than C. orbiculatus, and G. verum had greater leaf N than

C. orbiculatus also in the northeast field. In the same field, G. verum had greater leaf C

than R. davurica but similar leaf N. A. altissima had greater leaf C than C. acanthoides, C.

orbiculatus, and R. davurica and greater leaf N than C. orbiculatus and R. davurica in the

southwest field chronosequence. Also in the southwest field, C. orbiculatus had greater leaf

C than C. acanthoides but similar leaf N.
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(a) (b)

(c) (d)

Figure 22: Average leaf carbon (% by mass) for the summer of 2012 by species (Ailanthus
altissima (AIAL), Carduus acanthoides (CAAC), Celastrus orbiculatus (CEOR), Cirsium
arvense (CIAR), Galium verum (GAVE), and Rhamnus davurica (RHDA)) for the fields a)
Lake Arnold (LA), b) the northeast boundary (NEB), c) the northeast field chronosequence
(NE), and d) the southwest field chronosequence at the Blandy Experimental Farm in north-
central Virginia. Asterisks represent significant differences at p<0.05.

124



(a) (b)

(c) (d)

Figure 23: Average leaf nitrogen (% by mass) for the summer of 2012 by species (Ailanthus
altissima (AIAL), Carduus acanthoides (CAAC), Celastrus orbiculatus (CEOR), Cirsium
arvense (CIAR), Galium verum (GAVE), and Rhamnus davurica (RHDA)) for the fields a)
Lake Arnold (LA), b) the northeast boundary (NEB), c) the northeast field chronosequence
(NE), and d) the southwest field chronosequence at the Blandy Experimental Farm in north-
central Virginia. Asterisks represent significant differences at p<0.05.
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5.5 Discussion

Overall, there were differences between fields and stages in terms of soil and leaf

characteristics, but these differences varied by year. This may be due to differences in plot

locations (transects vs community and population plots), differences in weather, and limited

sample sizes. Many of the stage effects observed follow predictions of succession. There were

fewer differences among species than across fields and stages for both years.

5.5.1 Soil temperature, moisture, and pH

LA and NEB were not significantly different in terms of temperature in 2011, but

were different in terms of moisture. The difference in moisture may be due to differences in

topography, as Lake Arnold is a depression collecting water and the NEB is essentially flat.

It is interesting that in 2012, LA had greater soil moisture and soil temperature, as I thought

higher soil temperatures would be correlated with lower soil moisture levels. Indeed, this

was observed in soil temperature and soil moisture measurements throughout the summer of

2011, where temperatures increased throughout the summer and moisture decreased. This

discrepancy across fields may be because the soil temperature is more influenced by lack of

shading at LA, as opposed to large amounts of shading in NEB, than by soil moisture.

It was expected that early stages of succession would have higher soil temperatures

and lower soil moisture levels than later stages; this was to some extent supported. For

example, SWE had higher soil temperatures than SWM, and NEM had greater soil moisture

levels than NEE in 2011. In 2012, NEL had greater soil moisture than NEE, and SWM

had greater soil moisture than SWE. This was also observed in the SW looking at only

R. davurica across successional stages, as SWE had higher soil temperatures than SWM in

2011.

It is also interesting that LA had a higher soil pH and higher soil moisture levels than
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NEB. I thought that these would also be negatively correlated, as soils with high moisture

tend to have greater production of carbonic acid from mixing of CO2 and H2O. Along the

same line, it was also unexpected that NE and SW differed in soil moisture but not in pH.

The lack of a negative correlation between soil moisture and soil pH at the field

level may be due to other factors that influence soil pH than soil moisture. Fields may

have differed in terms of land use history and management practices. Soil fertilization has

been found to decrease soil pH (Sainju et al., 2015; Tian and Niu, 2015). However, this

decrease depends on ecosystem type, amount of organic matter, temperature, precipitation,

nitrogen addition rates, the forms of nitrogen added, and the duration of the management

regime (Tian and Niu, 2015). Sites with high organic matter may have less soil acidification

because of the higher cation exchange capacity (Tian and Niu, 2015). The addition of urea

and NH4NO3 can lead to greater soil acidification than the addition of NH4
+ (Tian and Niu,

2015). Effects of fertilization on soil pH have lasted for up to 20 years (Tian and Niu, 2015).

The expected inverse correlation between soil moisture and soil pH was supported

across successional stages. NEL had greater soil moisture and lower pH than NEE in 2012.

A similar relationship was found between SWE and SWM. This was also supported in the

NE field with 2011 comparisons of R. davurica across successional stages, as NEL had greater

moisture levels and lower pH than NEE.

5.5.2 Soil C and N, Leaf C and N

Soil C and N values differed across fields; the NE had greater soil C and N than SW

in both years and NEB had greater levels of both than LA in 2012. This might be due to

differences in management histories. With agricultural land use, there is a depletion of soil

C and N as decomposition rates are accelerated through tillage and aboveground growth is

harvested. Thus, as succession proceeds with a decrease in soil disturbance and an increase

in plant litter input, there should be an increase in soil C and N. This was observed in this
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study, as NEL had greater amounts of both than NEM in 2011, and in 2012 NEL had greater

amounts of both than NEE. This was also observed when assessing R. davurica across stages,

as NEL had greater soil C and N than NEM, and SWL greater than SWM.

Also as succession proceeds, there is an increase in N-use efficiency in plants. However,

there were no stage-level differences in leaf C and N levels. This might be because the

increase in resource use efficiency is more apparent in other parts of the plant than leaves,

such as the wood which has high C:N ratios. The long time over which soil changes take

place over succession might also explain why I did not observe differences in leaf nutrients

with succession. As an example, Compton et al. (1998) found that C:N ratios only weakly

increased over time since abandonment.

Similarly, there may have been a lack of species effects because successional changes

are stronger than species level changes at Blandy. This supports Tscherko et al. (2005), who

found no species-level influences on soil characteristics and soil communities during the first

43 years of succession. Yelenik and Levine (2011) also found that aboveground competition

was more important in influencing the trajectory of changes in species composition in na-

tive species recovery than were plant-soil feedbacks under exotic species. Compton et al.

(1998) also found that land use history had a strong influence on field characteristics after

abandonment, but after 50 years since abandonment, species effects became more influential.

Another reason for the lack of differences in soil characteristics across species may be that

soil C and N content was measured, not the rates of change in soil C and N. Rates may be

more influenced by invasive species than content.

When comparing successional stages, there are several factors that may need to be

considered. For example, variation in vegetation structure, species composition, plant com-

munity properties, productivity, and other ecosystem properties at similar stages of succes-

sion can be due to differences in environmental variables, precipitation regimes, soil nutrients,

rates of herbivory, land-use history, seed availability, seed dispersal mode, and soil treatment
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at abandonment (Aragon and Morales, 2003; Arroyo-Mora et al., 2005; Grau et al., 1997; Otto

et al., 2006; Riedel and Epstein, 2005; Tilman, 1987). Additionally, successional trajectory

and outcome are influenced by life history traits, interspecific interactions, type of substrate,

starting vegetation composition, and precipitation regime (Otto et al., 2006; Rebele, 1992;

Walker and Chapin, 1987). Rates of herbivory can also influence rate of succession (Fraser

and Grime, 1999). Thus, several factors need to be considered when observing changes

through succession, and these observations must be extended to long periods of time after

abandonment.

Conclusion

I examined changes in soil and vegetation characteristics in secondary successional

field chronosequences, assessing differences over time, field, stage, and species. I found that

temperature increased and soil moisture decreased as the summer progressed. There were

field-level differences in all soil and vegetation characteristics. Soil temperature and soil

moisture differed by stage, with earlier stages often being warmer and drier. Soil pH was

inversely correlated with soil moisture within stages, as expected. Soil C and N increased with

succession as expected; however, leaf C and N were similar across successional stages, maybe

because the increase in resource use efficiency is more apparent in other parts of the plant,

such as the wood. Species also did not differ often by soil and vegetation characteristics.

This may be because the effects of succession or land use history are stronger than species-

level effects during the time since abandonment studied here. Hence, it may be interesting

to continue studying these characteristics for longer periods of time since abandonment to

detect species effects.
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Table 12: Differences in soil temperature across fields, stages, and species

Level Year Comparison P-value

Field 2011 LA=NEB 0.20
Field 2011 NE>SW 0.01
Field 2012 LA>NEB 0.03
Field 2012 SW=NE 0.60
Stage 2011 NEE=NEM 0.21
Stage 2011 NEM=NEL 0.11
Stage 2011 SWE>SWM 2.E-04
Stage 2012 NEE>NEM 0.02
Stage 2012 NEE=NEL 0.11
Stage 2012 NEM=NEL 0.76
Stage 2012 SWE=SWM 0.06
Stage 2012 SWE=SWL 0.28
Stage 2012 SWM=SWL 0.64
R. davurica 2011 NEE=NEM 0.96
R. davurica 2011 NEE=NEL 0.26
R. davurica 2011 NEM=NEL 0.44
R. davurica 2011 SWE>SWM 1.E-04
R. davurica 2011 SWE-SWL .
R. davurica 2011 SWM-SWL .
Species 2011 NEE CAAC=GAVE 0.18
Species 2011 NEE CAAC=RHDA 0.08
Species 2011 NEE GAVE=RHDA 0.97
Species 2011 NEM AIAL=CAAC 0.29
Species 2011 NEM AIAL=GAVE 0.45
Species 2011 NEM AIAL=RHDA 0.46
Species 2011 NEM CAAC=GAVE 0.90
Species 2011 NEM CAAC=RHDA 0.85
Species 2011 NEM GAVE=RHDA 1.00
Species 2011 NEL AIAL-RHDA .
Species 2011 SWE CAAC=RHDA 0.42
Species 2011 SWM CAAC>AIAL 0.01
Species 2011 SWM AIAL=RHDA 0.56
Species 2011 SWM CAAC>RHDA 3.E-03
Species 2012 LA CAAC=GAVE 0.86
Species 2012 NEB CAAC>AIAL 0.04
Species 2012 NEE GAVE>CEOR 0.04
Species 2012 NEE CEOR=RHDA 0.85
Species 2012 NEE GAVE>RHDA 0.04
Species 2012 SWE CAAC=CEOR 0.98
Species 2012 SWE CAAC=RHDA 1.00
Species 2012 SWE CEOR=RHDA 0.99
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Table 13: Differences in soil moisture across fields, stages, and species

Level Year Comparison P-value

Field 2011 LA>NEB <1.E-04
Field 2011 NE=SW 0.37
Field 2012 LA>NEB 0.04
Field 2012 NE>SW 4.E-03
Stage 2011 NEM>NEE 0.02
Stage 2011 NEM=NEL 0.17
Stage 2011 SWM>SWE 0.05
Stage 2012 NEE=NEM 0.34
Stage 2012 NEL>NEE 0.03
Stage 2012 NEM=NEL 0.06
Stage 2012 SWM>SWE 0.01
Stage 2012 SWE=SWL 0.79
Stage 2012 SWM=SWL 0.63
R. davurica 2011 NEM>NEE 0.04
R. davurica 2011 NEL>NEE 0.03
R. davurica 2011 NEM=NEL 0.96
R. davurica 2011 SWE=SWM 0.44
R. davurica 2011 SWE-SWL .
R. davurica 2011 SWM-SWL .
Species 2011 NEE CAAC=GAVE 0.67
Species 2011 NEE CAAC=RHDA 0.55
Species 2011 NEE GAVE=RHDA 0.17
Species 2011 NEM AIAL-CAAC .
Species 2011 NEM AIAL-GAVE .
Species 2011 NEM AIAL-RHDA .
Species 2011 NEM CAAC=GAVE 0.50
Species 2011 NEM CAAC=RHDA 0.99
Species 2011 NEM GAVE=RHDA 0.45
Species 2011 NEL AIAL>RHDA 0.03
Species 2011 SWE CAAC=RHDA 0.22
Species 2011 SWM AIAL=CAAC 0.74
Species 2011 SWM AIAL=RHDA 0.61
Species 2011 SWM CAAC=RHDA 0.40
Species 2012 LA CAAC=CIAR 0.41
Species 2012 LA CAAC=GAVE 0.41
Species 2012 LA CIAR=GAVE 0.87
Species 2012 NEB AIAL=CAAC 0.87
Species 2012 NEB AIAL=CIAR 0.87
Species 2012 NEB CAAC=CIAR 1.00
Species 2012 NEE CAAC=CEOR >0.05
Species 2012 NEE CAAC=GAVE >0.05
Species 2012 NEE CAAC=RHDA >0.05
Species 2012 NEE CEOR=GAVE >0.05
Species 2012 NEE CEOR=RHDA >0.05
Species 2012 NEE GAVE=RHDA >0.05
Species 2012 SWE AIAL=CAAC 0.53
Species 2012 SWE AIAL=CEOR 0.53
Species 2012 SWE AIAL=RHDA 0.53
Species 2012 SWE CAAC=CEOR 0.94
Species 2012 SWE CAAC=RHDA 1.00
Species 2012 SWE CEOR=RHDA 0.94
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Table 14: Differences in soil pH across fields, stages, and species

Level Year Comparison P-value

Field 2011 LA>NEB <1.E-04
Field 2011 SW=NE 0.25
Field 2012 LA>NEB <0.05
Field 2012 SW=NE >0.05
Stage 2011 NEE=NEM 0.14
Stage 2011 NEM>NEL 0.02
Stage 2011 SWE>SWM <1.E-04
Stage 2012 NEE=NEM 0.99
Stage 2012 NEE>NEL 0.01
Stage 2012 NEM=NEL 0.15
Stage 2012 SWE=SWM 0.89
Stage 2012 SWE=SWL 0.39
Stage 2012 SWM=SWL 0.48
R. davurica 2011 NEE=NEM >0.05
R. davurica 2011 NEE>NEL <0.05
R. davurica 2011 NEM=NEL >0.05
R. davurica 2011 SWE>SWM 1.E-03
R. davurica 2011 SWL>SWE 8.E-03
R. davurica 2011 SWL>SWM <1.E-04
Species 2011 NEE CAAC>GAVE 7.E-03
Species 2011 NEE CAAC=RHDA 0.21
Species 2011 NEE GAVE=RHDA 0.55
Species 2011 NEM AIAL=CAAC 0.34
Species 2011 NEM AIAL=GAVE 0.27
Species 2011 NEM AIAL=RHDA 0.20
Species 2011 NEM CAAC=GAVE 0.08
Species 2011 NEM CAAC=RHDA 0.98
Species 2011 NEM GAVE=RHDA 0.26
Species 2011 NEL AIAL=RHDA 0.09
Species 2011 SWE CAAC=RHDA 0.39
Species 2011 SWM AIAL=CAAC 0.72
Species 2011 SWM AIAL>RHDA 8.E-03
Species 2011 SWM CAAC=RHDA 0.66
Species 2012 LA CAAC >CIAR <0.05
Species 2012 LA GAVE>CAAC <0.05
Species 2012 LA GAVE>CIAR <0.05
Species 2012 NEB AIAL=CAAC 1.00
Species 2012 NEB AIAL=CIAR 0.23
Species 2012 NEB CAAC=CIAR 0.09
Species 2012 NEE CAAC=CEOR 0.14
Species 2012 NEE CAAC=GAVE 0.05
Species 2012 NEE CAAC=RHDA 1.00
Species 2012 NEE CEOR=GAVE 0.91
Species 2012 NEE CEOR=RHDA 0.14
Species 2012 NEE GAVE=RHDA 0.05
Species 2012 SWE AIAL=CAAC 0.41
Species 2012 SWE AIAL=CEOR 1.00
Species 2012 SWE AIAL=RHDA 0.14
Species 2012 SWE CAAC=CEOR 0.78
Species 2012 SWE CAAC=RHDA 1.00
Species 2012 SWE CEOR=RHDA 0.14
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Table 15: Differences in soil carbon (C) across fields, stages, and species

Level Year Comparison P-value

Field 2011 LA=NEB >0.05
Field 2011 NE>SW <0.05
Field 2012 LA=NEB 0.15
Field 2012 NE>SW 0.02
Stage 2011 NEE>NEM <1.E-04
Stage 2011 NEL>NEM 5.E-04
Stage 2011 SWE=SWM 0.39
Stage 2012 NEE=NEM 0.63
Stage 2012 NEL>NEE 8.E-03
Stage 2012 NEL>NEM 6.E-04
Stage 2012 SWE=SWM 0.54
Stage 2012 SWL>SWE 1.E-03
Stage 2012 SWM=SWL 0.09
R. davurica 2011 NEE=NEM 0.36
R. davurica 2011 NEE=NEL 1.00
R. davurica 2011 NEL>NEM 0.02
R. davurica 2011 SWE=SWM 0.90
R. davurica 2011 SWE=SWL 0.11
R. davurica 2011 SWL>SWM 0.04
Species 2011 NEE CAAC=GAVE 0.25
Species 2011 NEE CAAC=RHDA 1.00
Species 2011 NEE GAVE=RHDA 1.00
Species 2011 NEM AIAL=CAAC 0.41
Species 2011 NEM AIAL=GAVE 0.31
Species 2011 NEM AIAL=RHDA 0.16
Species 2011 NEM CAAC=GAVE 0.31
Species 2011 NEM CAAC=RHDA 0.16
Species 2011 NEM GAVE=RHDA 0.07
Species 2011 SWE RHDA>CAAC 4.E-03
Species 2011 SWM AIAL=RHDA 0.08
Species 2012 LA CAAC=CIAR >0.05
Species 2012 LA CAAC=GAVE >0.05
Species 2012 LA GAVE>CIAR <0.05
Species 2012 NEB AIAL=CAAC 0.10
Species 2012 NEB AIAL=CIAR 0.10
Species 2012 NEB CAAC=CIAR 1.00
Species 2012 NEE CAAC=CEOR 0.62
Species 2012 NEE CAAC=GAVE 0.93
Species 2012 NEE CAAC=RHDA 0.21
Species 2012 NEE CEOR=GAVE 0.96
Species 2012 NEE CEOR=RHDA 0.14
Species 2012 NEE GAVE=RHDA 0.05
Species 2012 SWE AIAL=CAAC 1.00
Species 2012 SWE AIAL=CEOR 0.14
Species 2012 SWE AIAL=RHDA 0.14
Species 2012 SWE CAAC=CEOR 0.60
Species 2012 SWE CAAC=RHDA 1.00
Species 2012 SWE CEOR=RHDA 0.41
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Table 16: Differences in soil nitrogen (N) across fields, stages, and species

Level Year Comparison P-value

Field 2011 LA=NEB >0.05
Field 2011 NE>SW <0.05
Field 2012 LA=NEB 0.57
Field 2012 NE>SW <1.E-04
Stage 2011 NEE>NEM <1.E-04
Stage 2011 NEL>NEM 4.E-03
Stage 2011 SWE=SWM 0.76
Stage 2012 NEE=NEM 0.64
Stage 2012 NEL>NEE 4.E-03
Stage 2012 NEL>NEM 2.E-03
Stage 2012 SWE=SWM 0.22
Stage 2012 SWE=SWL 0.32
Stage 2012 SWM=SWL 0.70
R. davurica 2011 NEE=NEM 0.36
R. davurica 2011 NEE=NEL 1.00
R. davurica 2011 NEL>NEM 0.04
R. davurica 2011 SWE=SWM >0.05
R. davurica 2011 SWE=SWL >0.05
R. davurica 2011 SWL>SWM <0.05
Species 2011 NEE CAAC=GAVE 0.07
Species 2011 NEE CAAC=RHDA 0.99
Species 2011 NEE GAVE=RHDA 0.97
Species 2011 NEM AIAL=CAAC 0.27
Species 2011 NEM AIAL=RHDA 0.09
Species 2011 NEM CAAC=RHDA 0.55
Species 2011 SWE RHDA>CAAC 5.E-03
Species 2011 SWM AIAL=RHDA 0.15
Species 2012 LA CAAC=CIAR >0.05
Species 2012 LA CAAC=GAVE >0.05
Species 2012 LA CIAR=GAVE >0.05
Species 2012 NEB AIAL=CAAC 0.10
Species 2012 NEB AIAL=CIAR 0.10
Species 2012 NEB CAAC=CIAR 0.82
Species 2012 NEE CAAC=CEOR 0.21
Species 2012 NEE CAAC=GAVE 0.93
Species 2012 NEE CAAC=RHDA 0.21
Species 2012 NEE CEOR=GAVE 1.00
Species 2012 NEE CEOR=RHDA 0.14
Species 2012 NEE GAVE=RHDA 0.05
Species 2012 SWE AIAL=CAAC 1.00
Species 2012 SWE AIAL=CEOR 0.14
Species 2012 SWE AIAL=RHDA 0.14
Species 2012 SWE CAAC=CEOR 0.41
Species 2012 SWE CAAC=RHDA 0.78
Species 2012 SWE CEOR=RHDA 0.91
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Table 17: Differences in leaf carbon (C) across fields, stages, and species

Level Year Comparison P-value

Field 2011 LA=NEB 0.17
Field 2011 NE=SW 0.79
Field 2012 NEB>LA <0.05
Field 2012 SW=NE >0.05
Stage 2011 NEE=NEM 0.90
Stage 2011 NEM=NEL 0.41
Stage 2011 SWE=SWM 0.16
R. davurica 2011 NEE=NEM 0.47
R. davurica 2011 NEE=NEL 0.85
R. davurica 2011 NEM=NEL 0.38
R. davurica 2011 SWE=SWM 0.08
R. davurica 2011 SWE=SWL 0.39
R. davurica 2011 SWM=SWL 0.28
Species 2011 NEE CAAC=GAVE >0.05
Species 2011 NEE CAAC=RHDA >0.05
Species 2011 NEE GAVE=RHDA >0.05
Species 2011 NEM AIAL=CAAC 1.00
Species 2011 NEM AIAL=GAVE 0.66
Species 2011 NEM AIAL=RHDA 1.00
Species 2011 NEM CAAC=GAVE 0.89
Species 2011 NEM CAAC=RHDA 0.67
Species 2011 NEM GAVE=RHDA 0.53
Species 2011 NEL AIAL=RHDA 0.95
Species 2011 SWE RHDA>CAAC 9.E-03
Species 2011 SWM AIAL>CAAC 0.04
Species 2011 SWM AIAL=RHDA 0.71
Species 2011 SWM CAAC=RHDA 0.06
Species 2012 LA CIAR=CAAC 0.38
Species 2012 LA GAVE>CAAC <1.E-04
Species 2012 LA GAVE>CIAR <1.E-04
Species 2012 NEB AIAL>CAAC <0.05
Species 2012 NEB AIAL>CIAR <0.05
Species 2012 NEB CAAC=CIAR >0.05
Species 2012 NEE CAAC=CEOR >0.05
Species 2012 NEE GAVE>CAAC <0.05
Species 2012 NEE RHDA>CAAC <0.05
Species 2012 NEE GAVE>CEOR <0.05
Species 2012 NEE RHDA>CEOR <0.05
Species 2012 NEE GAVE>RHDA <0.05
Species 2012 SWE AIAL>CAAC 5.E-03
Species 2012 SWE AIAL>CEOR 6.E-04
Species 2012 SWE AIAL>RHDA 3.E-04
Species 2012 SWE CEOR>CAAC 0.02
Species 2012 SWE RHDA>CAAC 4.E-03
Species 2012 SWE RHDA=CEOR 0.51
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Table 18: Differences in leaf nitrogen (N) across fields, stages, and species

Level Year Comparison P-value

Field 2011 NEB>LA 5.E-03
Field 2011 SW>NE 2.E-03
Field 2012 NEB>LA <1.E-04
Field 2012 SW>NE 0.03
Stage 2011 NEE=NEM 0.84
Stage 2011 NEM=NEL 0.05
Stage 2011 SWE=SWM 0.16
R. davurica 2011 NEE=NEM >0.05
R. davurica 2011 NEL>NEE <0.05
R. davurica 2011 NEM=NEL >0.05
R. davurica 2011 SWE=SWM 0.44
R. davurica 2011 SWE=SWL 0.46
R. davurica 2011 SWM=SWL 0.82
Species 2011 NEE CAAC>GAVE 8.E-03
Species 2011 NEE CAAC>RHDA 2.E-03
Species 2011 NEE GAVE=RHDA 0.96
Species 2011 NEM AIAL=CAAC 0.79
Species 2011 NEM AIAL=GAVE 0.31
Species 2011 NEM AIAL=RHDA 1.00
Species 2011 NEM CAAC=GAVE 0.15
Species 2011 NEM CAAC=RHDA 0.67
Species 2011 NEM GAVE=RHDA 0.33
Species 2011 NEL AIAL>RHDA 0.04
Species 2011 SWE CAAC>RHDA 0.04
Species 2011 SWM AIAL=CAAC 0.38
Species 2011 SWM AIAL=RHDA 0.14
Species 2011 SWM CAAC=RHDA 0.31
Species 2012 LA CAAC=CIAR 0.15
Species 2012 LA CAAC>GAVE 5.E-04
Species 2012 LA CIAR>GAVE 2.E-04
Species 2012 NEB AIAL=CAAC >0.05
Species 2012 NEB AIAL=CIAR >0.05
Species 2012 NEB CIAR=CAAC >0.05
Species 2012 NEE CAAC>CEOR 0.05
Species 2012 NEE CAAC>GAVE 0.03
Species 2012 NEE CAAC>RHDA 0.05
Species 2012 NEE GAVE>CEOR 2.E-03
Species 2012 NEE RHDA=CEOR 0.31
Species 2012 NEE GAVE=RHDA 0.73
Species 2012 SWE AIAL=CAAC 0.15
Species 2012 SWE AIAL>CEOR 5.E-03
Species 2012 SWE AIAL>RHDA 3.E-04
Species 2012 SWE CAAC=CEOR 0.43
Species 2012 SWE CAAC>RHDA 4.E-03
Species 2012 SWE CEOR=RHDA 0.43
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6 Chapter 6: Conclusion

6.1 Biodiversity and invasion

Biodiversity affects ecosystem productivity and community stability (Gustafsson and

Bostrom, 2011). Invasive species can negatively impact biodiversity by altering community

and ecosystem characteristics (Kuhman et al., 2011; Mascaro and Schnitzer, 2007). Dis-

turbances can facilitate invasion (Kuhman et al., 2011), and as agricultural fields become

more prevalent in the U.S. (Wang et al., 2010), we need more efficient ways to monitor the

effects of invasive species at large spatial extents. Although field measurements have been

used to monitor the growth and spread of invasive species, these measurements can be costly

and time-consuming. Using a combination of remote sensing and field measurements can

facilitate conservation efforts (Wilfong et al., 2009). In this dissertation, I assessed the role

of these species in successional plant communities using ground-level hyperspectral remote

sensing.

6.2 Distinguishing among plant communities

In the first chapter, I found that remote sensing can be used to differentiate among

plant communities. The most influential species to community discriminability are con-

sidered invasive, suggesting that these species can strongly influence species compositions

and other community properties. The most influential wavelengths for discrimination are

distributed throughout the spectral profile and correspond with plant physiological and struc-

tural elements. Species discrimination is better achieved using multiple narrowbands rather

than using simulated broadbands.
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6.3 Distinguishing among plant species

After discriminability of plant communities was established, I assessed whether six

exotic invasive plant species could be differentiated. I found that these species were discrim-

inable, but their discriminability varied by species. Interestingly, the two thistle species that

are similar phylogenetically and in structure were readily distinguished among each other.

However, the shrubby Rhamnus davurica was difficult to distinguish from the liana Celastrus

orbiculatus despite phylogenetic distance and differences in structure, due to physical overlap

in the field and thus the difficulty in obtaining pure signatures for discrimination. Discrim-

inability also differed by the spectral region examined. For example, Rhamnus davurica and

Celastrus orbiculatus were least discriminable in the 550-599 nm and 650-699 nm regions,

due to greater intraspecific variability of spectral data in these regions. The most important

spectral regions for differentiation vary by species, based on their physiological and structural

characteristics.

6.4 Correlating species diversity and spectral diversity

Since plant species were able to be discriminated among one another using hyperspec-

tral remote sensing, I asked whether their effects on community properties could be assessed

using remote sensing. Specifically, I examined whether spectral diversity could be used to

estimate species diversity. Species diversity and spectral diversity were positively correlated,

but again the strength of the correlation varied by spectral region examined and the type

of noise correction technique used to transform the reflectance profiles. For example, there

was a strong positive correlation between the two in the visible region when band depth was

used, but not when first derivatives were used, because first derivatives exaggerate spectral

noise in the visible region. The two diversities were positively correlated in the near-infrared

region when first derivatives were used, but not when band depth was used, because when
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the continuum hull is anchored to the near-infrared shoulder, variability in the near-infrared

plateau is removed. There were no strong correlations in the red edge regardless of the noise

correction technique used. This might be due to high intraspecific variability in the red

trough region.

6.5 Assessing species effects in successional communities

I also examined the role that species, such as these six exotic invasive species, can

play in secondary successional plant communities by measuring leaf and soil characteristics. I

found differences across fields, and within fields by sucessional stage, but not many differences

by species. This may be because all six species affected succession in the same way. More

plausibly, secondary successional dynamics may be more predominant than species effects

on succession, at least during the first several decades since disturbance.

6.6 Limitations

6.6.1 Vegetation discrimination

To discriminate among species, I used support vector machines (SVM) so that in-

formation from the whole spectral profile from 350 to 1025 nm was considered. The SVM

is especially useful for complex, noisy, and/ or small datasets (Bai et al., 2012) but also

can be computationally intensive (Naidoo et al., 2012). Another draw-back to such machine

learning analyses is that they can be difficult to interpret. I used Matthew’s correlation

coefficient and sensitivity analysis, but there are many other ways to interpret these results,

including examining weighting coefficients. There are also methods other than SVMs with

which information from the entire spectral profile can be consolidated into fewer compo-

nents using principal components analysis (PCA), segmented PCA, discriminant analysis

(DA), linear DA, segmented LDA, penalized DA, canonical analysis (CA), k-nearest neigh-
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bor analysis (KNN), random forest (RF), artificial neural network (ANN), support vector

machine (SVM), spectral angle mapper (SAM), classification and regression trees (CART),

and Bayesian additive regression trees (BART), Maximum likelihood classification (MLC),

wavelet analysis, constrained energy minimization (CEM) and linear regression (Agarwal

et al., 2013; Bai et al., 2012; Bajwa et al., 2004; Banskota et al., 2011; Cheng et al., 2014;

Cho et al., 2012; Eddy et al., 2014; Farrell and Mersereau, 2005; Goel et al., 2003; Koger

et al., 2003; Lewis, 2002; Mirik et al., 2006; Naidoo et al., 2012; Nooni et al., 2014; Ran-

ganathan and Borges, 2010; Shafri et al., 2007; Sun et al., 2014; Villa et al., 2011; Xu and

Gong, 2007; Yu et al., 2014; Zhang et al., 2006). Different methods may be best suited for

different purposes (Bajwa et al., 2004).

When discriminating among species, intraspecific variability needs to be taken into

account. I discussed intraspecific variability in pigments, but various types of stress can also

cause intraspecific variability. Remote sensing data, such as the plant stress detection index

(PSDI) can also be used to detect vegetation stress (Sanches et al., 2014). However, stress

detection can be complicated if different forms of stress affect spectra similarly (Sanches

et al., 2014), if some forms of stress are more spectrally distinct than other forms of stress

(El-Shikha et al., 2007), and if stressors are interactive (El-Shikha et al., 2007). Water stress

can lead to an increase in reflectance in the red region and a decrease in reflectance in the

NIR region (Genc et al., 2013); it can cause decreases in chlorophyll content, chlorophyll

activity, nutrient absorption, and nutrient transportation (Genc et al., 2013). This water

stress can be detected using the water deficit index (El-Shikha et al., 2007), using vegetation

indices (Normalized Difference Vegetation Index, green NDVI, simple ratio, blue:NIR, green:

NIR, and (R+G)/NIR), and classification trees (Genc et al., 2013). Nitrogen stress can be

detected using the canopy chlorophyll concentration index (CCCI) (El-Shikha et al., 2007);

nutrient stress can cause a decrease in the red edge slope and a red edge shift to shorter

wavelengths (Yang et al., 2010).

140



During high-light stress, there is an increase in Chl fluorescence with the decrease

in photosynthetic activity because fluorescence is a mode of photoprotection (Buschmann

et al., 1990). Trichome presence can also aid in photoprotection and lessen the need for

xanthophyll-related photoprotection (Naumann et al., 2010); therefore leaf structure needs

to be taken into account when evaluating light stress responses. Disease and infestation

stress can also be observed spectrally. For example, Calderon et al. (2013) found that

infection by Verticillium spp. wilt increased crown temperature, decreased leaf stomatal

conductance, increased PRI, and decreased chlorophyll fluorescence. There was a decrease

in the chlorophyll red edge index, but no difference in greenness, red index, and blue/green

ratio.

Data fusion may facilitate species identification, with combinations of spatial and

spectral information (Feret and Asner, 2013; Gould, 2000; Lu et al., 2007), with combinations

of spectral and structural data (Cho et al., 2012; Colgan et al., 2012; Hill and Thomson,

2005; Ko et al., 2013; Magney et al., 2014; Naidoo et al., 2012), and with the combination of

multiple sensors (Alemie, 2005; Biradar et al., 2007; Gevaert and Garcia-Haro, 2015; Mezned

et al., 2009; Papes et al., 2010; Thiessen, 2007). Similarly, the use of multiple images over

time can also increase species discriminability (Bradley and Mustard, 2006; Dymond et al.,

2002; Gao and Zhang, 2006; Gevaert and Garcia-Haro, 2015; Liang et al., 2011; Somers and

Asner, 2012; Wilfong et al., 2009); however differences in image quality and in plant growing

stages need to be accounted for (Zhong et al., 2014).

6.6.2 Estimating community and ecosystem properties

I estimated pigments using spectral data in this dissertation, which is supported

by literature; it may also have been beneficial to verify results with pigment extractions.

Additionally, it is beneficial to take leaf water content into account when estimating leaf

pigment because leaves with higher water content have lower chlorophyll index values, maybe
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due to the greater thickness of the leaves inhibiting the detection of chlorophyll in the lower

layer of the leaf (Sims and Gamon, 2002).

As mentioned earlier, there are many noise correction techniques available including

continuum removal, band depth, and derivatives (Broge and Leblanc, 2001; Mitchell et al.,

2012; Mutanga et al., 2004; Zhang et al., 2006), all with unique assumptions, advantages,

and disadvantages. The technique used does influence results, so the choice needs to be

made carefully.

I estimated species diversity in community plots using spectral diversity. However,

the spectral diversity may also have been influenced by plant structural diversity within the

plots. Future research may explore how to tease apart the influences of species diversity and

structural diversity on spectral diversity. Additionally, examining the correlations between

species diversity and spectral diversity at different spatial scales may lead to the conclusion

that the correlation is dependent on spatial scales (Gaertner et al., 2009) as well as on the

spectral region examined and the noise correction technique used.

Although spectral data can successfully be used to estimate ecological properties and

processes, the combination of spectral data with structural, spatial, and temporal data can

lead to more accurate estimations. The use of multiple sensors has also been useful for the

accurate estimation of ecological properties and processes (Liang et al., 2011). Incorporating

phenological information into methods decisions can also increase ability to monitor ecolog-

ical properties and processes. For example, since it is difficult to study understory invasive

species because of obstruction by canopy vegetation, understory invasive species may be

monitored when native species do not have leaves, if invasive species differ from natives phe-

nologically (Wilfong et al., 2009). Incorporating phenological variables into classifiers can

also help increase robustness to low-quality images and image gaps (Zhong et al., 2014).
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6.7 Future directions

I have been able to use ground-level remote sensing data to distinguish among plant

communities and plant species, and assess the role of invasive species in plant communities

through estimating diversity. However, this study is limited in only using ground-level data,

in that I could not assess their role at the ecosystem level using remote sensing without

employing airborne or satellite imagery.

In addition to assessing the role of invasive species at the ecosystem level remotely,

such airborne or satellite imagery may also allow the upscaling of ground-level measurements

to a broader spatial extent. For example, the discriminability of plant communities and

plant species was possible at the ground level with its fine spatial resolution. However,

this is more challenging with airborne and satellite data with coarser spatial resolutions.

Different techniques would need to be explored to unmix spectral signatures at these coarser

resolutions.

When attempting to discriminate different classes spectrally from mixed pixels, there

are various ways to select endmembers to define each class using spectral, spatial, or a combi-

nation of spectral and spatial information (Bai et al., 2012; Shi and Wang, 2014; Somers et al.,

2011, 2012). Due to high spectral variability within classes, the use of multiple endmembers

for each class may result in greater accuracy (Cho et al., 2010). For species discriminability,

there are also several ways to measure the distance between endmembers, including spec-

tral angle mapper (SAM), Euclidean minimum distance (EMD), Bhattacharyya distance,

and Jeffries-Matusita distance (Keshava, 2004; Schmidt and Skidmore, 2003). These dis-

tance methods can also be used to select bands to maximize class discriminability, including

the band add-on (BAO) method, parametric Bhattacharya and Jeffries-Matusita distances,

and non-parametric Kruskal-Wallis, since spectral variability in tree canopy spectra is not

normally distributed (Keshava, 2004; Sanchez-Azofeifa et al., 2009; Zhang et al., 2006).
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Using multiple endmembers is especially important at large spatial extents and coarse

spatial resolutions, where pixels are often composed of more than one class (Xiao, Y. et al.,

2014). Mixture analyses can be used to distinguish endmembers and define spectral classes

and estimate class abundances in these mixed pixels (Shi and Wang, 2014). Roberts et al.

(1998) found that the use of 2 or 3 endmembers in land cover classification using multiple

endmember spectral mixture analysis (MESMA) was most accurate for differentiating soil,

non-photosynthetic vegetation, and green vegetation; too few endmembers would result in

misclassification within fractions and high RMS; too many would lead to high sensitivity to

noise from the sensor, atmosphere, and spectral variability within an endmember. Another

way to deal with mixed pixels is to use object-based classification instead of pixel-based

calculation; object-based classification uses information from surrounding pixels to classify

one pixel; it starts with one pixel and begins merging adjacent pixels and groups of pixels

by similarity in terms of shape, extent, and color (Pringle et al., 2009) and is often found to

be more accurate than pixel-based classification (Jiao et al., 2014; Pringle et al., 2009).

Advances in satellite remote sensing technology, such as greater spatial, temporal,

and spectral resolutions, will make vegetation discrimination, and community and ecosys-

tem property estimation, more efficient at larger spatial extents, which should help inform

conservation efforts within invaded landscapes.
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