Educational Framework Design

Technical Report
Presented to the Faculty of the
School of Engineering and Applied Science
University of Virginia

By
Makonnen Makonnen

May 08, 2020

On my honor as a University student, | have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Signed: Makonnen Makonnen

Educational Web Framework Design

Makonnen Makonnen
University of Virginia
School of Engineering and Applied Sciences
Computer Science Department
mm3xy@virginia.edu

Abstract

Currently the Engineering School at the University of Vir-
ginia has two courses that focus on developing web applica-
tions and one course that utilizes web development: 1) CS
3240, Advanced Software Development, is a course in which
students analyze modern software engineering practices for
multi-person projects. Although the course does not specifi-
cally focus on web application development, the lab section
requires a semester long Django web application project.
2) CS 4260 (formerly CS 4501), in which students learn to
build large scale web applications and gain exposure to many
topics related to scalability such as load balancing, database
management, API design, etc. 3) The third course is Program-
ming Languages for the Web (commonly abbreviated as Web
PL), CS 4640. Which teaches Web App fundamentals such as
HTML, CSS, and JS as well as Asynchronous programming
topics and using PHP. The project that is being proposed
aims to supplement the materials in WebPL and introduce
students to web framework design.

Keywords

Computer Science Education, Web Framework, PHP, Abstrac-
tion, Application Programming Interface, Design, Database,
MVC

1 INTRODUCTION

Using frameworks in software development has been shown
to improve code readability, reusability, maintainability, as
well as shorten software development process. One of the
most commonly used frameworks is Model-View-Controller
(MVC) [4]. This project uses MVC as an underlying mecha-
nism to help students learn and practice web development.
Detailed information on MVC is presented in Section 2.

For this proposed project, students will be designing their
own MVC architecture based web framework utilizing PHP
and SQL. Frameworks are key tools in software development
and at a higher level, computer programming. In context of
this project, a web framework is one that specifically aims
to support developers in creating web applications.

Students will follow an MVC architectural structure to
create a web framework, consisting of the ability to: present
an HTML page to a user, accept and handle requests, and
being able to add and retrieve items from a database.

To integrate the proposed project into a web development
course, students will be given the general directory set up
of the code with the class definitions. Instructions will be
provided on what functions students have to implement for a
specified class. After the completion of a student’s framework
they can swap with other students in the course and create
a simple web app using their classmate’s implementations.
This allows students to experience software reuse and refac-
tor in practice. Students can then evaluate their classmate’s
framework designs based on criteria such as functionality
and code/documentation readability. Projects should also
be assessed on the fact that their framework utilizes MVC
Architecture definitions mentioned in Section 2.

Integrating a web framework as part of the development
process allows students to not just attempt in making some
piece of code run, but to approach problems as engineers
that are creating software with the intent of end-users.

2 BACKGROUND
Model-View-Controller (MVC)

A web framework is an organizational structure and means
for providing various layers of abstraction to interact with
databases, present information to a user, and handle logic.
In addition, a framework can provide other features such
as: session management, security, etc. One of the most com-
monly used framework patterns is the Model-view-controller
(MVC) architectural pattern and that is what this project will
based on [4].

The model in an MVC framework is the abstraction layer
to the data management and structures. It is fully indepen-
dent from the user interface (UI) and has a set of logic to
interact with data persistence or a database such as adding
and retrieving content from it.

The view, controls the interface or appearance the user
can see. This logical separation makes it easy for mainte-
nance, organization, and allows for res-usability of view
logic. Decoupling it from the models and controllers also
gives the advantage of changing the views without concern
of modifying other components.

The controller defines a set of actions that utilize busi-
ness decisions from the model and returns some piece of
data or a view. It is essentially the middle man; utilizing the

model APIs for a specified action to return a specified view.

MVC Interaction
CONTROLLER

USER %

Figure 1: MVC Model [7]

Figure 1 shows a general representation of an MVC archi-
tecture illustrating how each component interacts. The user
interacts with to the software through a view which presents
a pre-defined interface with associated data to the user. Re-
quests are then sent from the view to the controller. The
controller handles the requests and responses, and subse-
quently may update the model and the view. The controller
itself will be utilizing the model APIs to manipulate the data
in the database and to get information from it, if it exists.

In general, a user can have multiple views, controllers, and
models. Additionally, to make all these connections possible
an external component is required. When a request is made
from a user’s browser, the framework responds to the request
by using a router, which examines the Uniform Resource
Locator (URL) of the request and determines what and how
the controller should handle that request.

3 SOLUTION AND IMPLEMENTATION

This section discusses how the MVC architecture was imple-
mented for this project. In this project, there are three main
components: MVC, database, and routing. Each component
consists of class and function definitions.The project source
code is available in the repository for this project and is pre-
sented in Section 5.

Models

Figure 2 shows a parent Model class. This class will be re-
ferred to as a parent Model. There is one parent Model class

Makonnen Makonnen

public class Model{
public $table_name;
public $db_cols=array();
public $sql_params=array();
function init($table_name){
// Initializes the databases
3
function char_field($name, $length){
// Intiailizes a char field with a specified
name and length
}
function int_field($name){
// Initializes an integer field with a
specified name
3
function create_table(){
// Creates the table utilizing PHP PDO to
execute the query
3
function add($vals){
// Adds to the table utilizing PHP PDO to
execute the query
}
function delete($cols, $vals){
// Deletes from the table utilizing PHP PDO to
execute the query
}
function retrieve($cols, $vals){
// Gets data from the table utilizing PHP PDO
to execute the query

Figure 2: Parent Model Class

as shown in 2. This parent class uses the database connection
to create tables with CHAR or INT fields. Functions to add or
retrieve content from the database are included. The creation
of the database is done outside of the parent Model in the
database set up of the framework which will be discussed
later.

This Model class should be the only thing with direct ac-
cess to the database. Executing SQL queries for the database
should not be available in the views or controller. All queries
should be executed through utilizing the APIs the models
exposes to create, add, delete, and retrieve from the database.
This is due to the goal of having a loosely coupled system.
Each component is reserved for one task, which in this case
is handling the data. Overall, this allows developers to easily
test the code, swap functions out without breaking the whole
framework (e.g. swapping database drivers for this project),
and adding more features to the system, which is referred to
as scalability.

Educational Web Framework Design

public class View{
$twig_fs = new
\Twig_Loader_Filesystem(dirname(__DIR__) .
'/myapp/views/"');
$twig_load = new \Twig_Environment($twig_fs);

echo $twig_load->render($view, $params);
return;

Figure 3: Parent View Class

abstract class Controller{
public function __call($name, $args){
if(method_exists($this, $name)){
call_user_func_array($this, $method, $args);

3
else{
throw new \Exception("This method --> $name
<-- was not found in "
get_class($this));
3
}
Figure 4: Parent Controller Class
Views

The View class as presented in Figure 3, has one func-
tionality to render the specified interface. It is implemented
using the twig engine rather than PHP templating due to
PHP templating being quite verbose and a lot of functionality
like iterating over arrays is not supported by default.

Controller

The main controller class as shown in Figure 4, is essen-
tially used for invoking user defined controller functions in
the context of an application. If the specified method exists,
it will be called. Otherwise, an exception is triggered, stating
that the controller method does not exist.

Database

The database logic is set in db.php. This is where the stu-
dents will specify the database hostname, database name, and
the IP:port of the database as well as the proper credentials
(username and password) to access the database.

This project uses PHP Data Object (PDO) [1]. PDO is a
database abstraction layer for interacting with various data-
base engines. It can be used to establish database connections
and run database specific commands [1]. For example, stu-
dents may use PDO to connect to a MySQL [8] database and
runs SQL queries. If students choose to use other databases

class Router{
public function create($route,$controller, $view){
//Add specified route to map of routes with
values being the controller and specified
view
}
public function execute($url){
//If the route exists , find the specified
controller and call the view.
//If it is a post request with data being
passed, past that as well

Figure 5: Router Class

such as MySQLi [1], they can simply specify the driver sup-
porting MySQLi instead of MySQL. Moreover, PDO can be
used to create a database and sets the PDO object to use that
specific database for all future queries.

Routing

The router as presented in Figure 5, has two functions. The
create function creates a specific route which takes some
URL path, a controller, and a view (which is a function in the
specified controller). The execute function calls (and thus
executes) a route that was created using the Router execute
function. From here the controller the route was pointing to
will execute what it was specified to do, such as returning a
View or using the Models API to retrieve data.

4 CONCLUSION
Solution Usage

This project was intended to help students learn and prac-
tice web development using an MVC architecture. The pro-
posed prototype, although has not been empirically validated,
can potentially be used as a skeleton to help students get
started with their web software development. The skeleton
presented in this paper is a set of files containing class and
function definitions, allowing students to fill code specifically
to their project.

To use the proposed prototype, the skeleton should include
the directory structure, twig, and an initial router. This basic
information, serving as a template, will provide students an
indication of where they need to write their code.

Limitations & Refactoring

Since this project is in an early stage, an empirical evaluation
is needed to analyze how it may help students understanding
the concepts of web development. Aspects such as students’

learning styles may be taken into account for future improve-
ment. Additional features such as programming hints and
automated testing functionalities may be incorporated to
promote self-paced learning. Security should be included
to expose students to a real-world web software scenario,
in which security aspect is crucial. Features that support
multiple users and form handling should also be added to
the prototype. Since web applications normally support mul-
tiple users and utilize forms, having these features as part
of the prototype allows students to simulate real-world web
software specification and development.

5 CODE

The project source code is available at https://github.com/
mmako1l/mvc-capstone-s20. Access will be given upon re-
quest.

Makonnen Makonnen

References

[1] PHP Documentation https://www.php.net/docs.php Accessed Apr 29
2020.

[2] UVA WebP1 http://www.cs.virginia.edu/ up3f/cs4640/ Accessed Apr 29
2020.

[3] Django Documentation https://docs.djangoproject.com Accessed Apr 30
2020.

[4] Glenn E. Karsner, Stephen T. Pope A Cookbook For Using the Model-
View-Controller User Interface Paradigm Accessed Apr 29 2020.

[5] Scikit Documentation https:/scikit-learn.org/stable/ Accessed May 01
2020.

[6] Laplante, Phillip What Every Engineer Should Know About Software
Engineering Accessed Apr 30 2020.

[7] Rashidah Olanrewaju, Thouhedul Islam, Norashikin Ali An Empirical
Study of the Evolution of PHP MVC Framework Accessed May 02 2020.

[8] MySQL Documentation https://www.mysql.com/ Accessed May 03 2020

https://github.com/mmako1/mvc-capstone-s20
https://github.com/mmako1/mvc-capstone-s20

