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Correcting Multiple Bursts of Exactly t Deletions

Zhuoer Shen

(ABSTRACT)

Stored or transmitted data is often subject to errors arising from noise, interference,

or physical defects. Error-correcting codes play a crucial role in detecting and recov-

ering from such errors to ensure reliable communication and data storage. In this

thesis, we focus on burst deletion errors, where multiple consecutive symbols may

be removed from a sequence. We propose novel code constructions that efficiently

correct multiple bursts of exactly t deletions. Our primary contribution is a generaliz-

able framework that extends existing deletion-correcting methods to handle multiple

bursts in both binary and q-ary sequences.

Specifically, we construct a code capable of correcting two bursts of exactly t dele-

tions in binary sequences with redundancy at most 6.4 logn+10 log logn+O(1). We

further extend our construction to q-ary sequences, achieving redundancy 7.4 logn+

10 log logn + 3 log q + O(1). Additionally, we introduce a code for three bursts of

exactly t deletions with redundancy at most 15 logn+ o(logn), and an encoding and

decoding complexity of O(n7).

Our approach combines deletion-correcting codes, such as Guruswami and Håstad’s

explicit two-deletion code, with efficient erasure-correcting codes, including Dumer’s

linear codes with designed distance 5. For a code correcting three bursts of exactly

t deletions, we employ syndrome compression to identify error locations and leverage
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structured redundancy to improve efficiency. We analyze the time complexity of our

encoding and decoding process and show that our three bursts of t deletion correct-

ing code has an encoding and decoding complexity of O(n7), which is asymptotically

more efficient than a direct application of syndrome compression for large t.

This work contributes to the broader study of deletion-correcting codes by providing

explicit constructions that balance redundancy, efficiency, and scalability. The pro-

posed techniques offer promising directions for improving deletion error resilience in

DNA storage, document synchronization protocols, and digital communications. We

conclude with potential extensions, including the correction of multiple bursts of 2

erasures and further optimization of redundancy in multi-burst scenarios.
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Chapter 1

Introduction

1.1 Motivation and Background

In modern communication systems, error correction is a cornerstone for ensuring

reliable data transmission in the presence of noise and interference. Among the var-

ious types of errors, deletion errors, particularly burst deletions, pose a significant

challenge. Burst deletions occur when consecutive symbols are removed from a se-

quence, creating a loss of information that is harder to correct due to the clustered

nature of the error. As data storage and communication technologies evolve, han-

dling burst deletions has become increasingly critical, with applications in areas such

as DNA data storage (Schoeny, Sala, and Dolecek 2017), synchronizing documents

(Venkataramanan, Zhang, and Ramchandran 2010), and error recovery in flash mem-

ories (Gregori et al. 2003).

1.1.1 Motivation

Error correction is fundamental to modern communication systems and data storage

technologies, ensuring the reliable transmission and retrieval of information in the

presence of noise and interference. Among the various types of errors encountered

in these systems, burst deletions represent a particularly challenging class. A burst
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deletion occurs when a contiguous sequence of symbols is removed. As an example,

suppose the bit sequence x = 1010010001 is transmitted and y = 1010001 is received.

Here, the error is a burst of 3 deletions, i.e., y = 1010��HH010001 = 1010001. This

type of error results in a significant loss of information and creates difficulties for

error correction, especially because of the loss of synchronization. That is, the error

changes the positions of the bits and so the decoder cannot be sure about any of the

received bits. These challenges become even more pronounced when multiple bursts

of deletions occur, as their clustered nature can severely distort the underlying data.

The motivation to address burst deletions arises from their prevalence in a wide range

of applications. In DNA-based data storage, where sequences of nucleotides are used

to encode digital data, burst deletions frequently occur due to sequencing errors. For

instance, when sequencing reads are misaligned or certain regions of DNA are skipped,

the resulting data loss can manifest as burst deletions (Field et al. 2019). Similarly,

communication systems, particularly those reliant on synchronization protocols, often

encounter burst deletions when a noisy channel causes the loss of multiple consecutive

bits in transmitted packets (Mercier, Bhargava, and Tarokh 2010). Such errors can

disrupt the synchronization of transmitted data streams, making recovery an arduous

task. On the other hand, in non-volatile memory systems such as flash storage,

errors often take the form of erasures, where physical wear and degradation of storage

cells lead to localized block failures, resulting in the complete loss of data in specific

locations.

Despite their importance, burst deletions have received comparatively less attention

in the literature than other types of synchronization errors. Existing solutions tend

to focus on single bursts of deletions or isolated deletions, leaving the problem of

correcting multiple bursts underexplored. The challenges of burst deletion correction
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are not purely theoretical but are deeply rooted in practical considerations. These

include the need to balance three often competing objectives: redundancy, computa-

tional efficiency, and scalability. Achieving low redundancy is crucial for maximizing

the storage or transmission efficiency of encoded data. At the same time, the compu-

tational complexity of encoding and decoding must remain manageable, particularly

in systems where large-scale data is processed. Finally, scalability is essential to

ensure that code constructions can handle diverse application requirements, such as

sequences over larger alphabets or varying numbers of bursts.

This thesis is motivated by the need to address these challenges through extensible

and modular code constructions. By designing codes that efficiently correct multiple

bursts of deletions while maintaining low redundancy and manageable complexity, we

aim to contribute to both the theoretical understanding and practical implementation

of burst-deletion correction.

1.1.2 Background

The study of error correction plays a vital role in ensuring the reliability of modern

communication systems and data storage technologies. Errors can occur during the

transmission or storage of information due to noise, hardware failures, or environ-

mental disturbances, leading to incorrect or incomplete data. Error-correcting codes

are mathematical tools designed to detect and correct such errors, ensuring that the

original information can be recovered even in the presence of disruptions.

Types of Errors

Errors in information systems can generally be categorized into three main types:
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1. Substitution Errors

A substitution error occurs when one symbol in a sequence is replaced by an-

other. For example, in the binary sequence x = (1, 0, 1, 0), if the third symbol

is changed, the received sequence might become y = (1, 0, 0, 0). Substitution

errors are common in noisy communication channels and often require codes

that can compare received symbols against expected patterns.

2. Insertion Errors

An insertion error occurs when an extra, unintended symbol is added to a

sequence. For instance, if x = (1, 0, 1, 0), an insertion may produce y =

(1, 0, 1, 1, 0). Insertions disrupt the alignment of the sequence, making it diffi-

cult to match the received sequence to the original.

3. Deletion Errors

A deletion error occurs when a symbol is removed from a sequence. For example,

from x = (1, 0, 1, 0), deleting the second symbol could produce y = (1, 1, 0).

Deletion errors are particularly challenging because they result in a loss of

positional information, complicating recovery.

4. Erasure Errors

An erasure error occurs when a symbol is removed from a sequence but its

position in the sequence is known. For example, from x = (1, 0, 1, 0), if the

second symbol is erased, the received sequence might be represented as y =

(1, ?, 1, 0). Because the location of the error is known, erasure correction is

often simpler than correcting deletions or substitutions.
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Error-Correcting Codes

An error-correcting code (ECC) is a systematic way to encode data so that errors

introduced during transmission or storage can be detected and corrected. The idea is

to add redundancy to the original message, which allows the receiver to reconstruct

the original information even if parts of it are lost or corrupted.

Formally, an error-correcting code maps a set of original messages (called information

sequences) to a set of encoded messages. Each encoded message is called a codeword

and the set of codewords is called a code. The codewords are longer than the in-

formation sequences. The difference between the length of the codewords and the

information sequences is called redundancy. Redundancy ensures that small differ-

ences between received sequences and valid codewords, which represent errors, can

be corrected. For example, a simple code might append a parity bit (an extra “0”

or “1” to indicate whether the number of 1s in the sequence is even or odd) to help

correct a single erasure. To illustrate, suppose we would like to transmit three bits,

i.e., the set of information sequences is

{000, 001, 010, 011, 100, 101, 110, 111}

We use even parity by appending a parity bit such that the total number of 1s in the

codeword is even. The encoding function is given in the table below:



6

Information Sequence Codeword

000 0000

001 0011

010 0101

011 0110

100 1001

101 1010

110 1100

111 1111

So the possible codewords are:

C = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} (1.1)

Suppose the received sequence is 01?1, where ? represents an erasure. Since the parity

bit ensures an even number of 1s, and we observe two 1s in the received sequence,

the missing bit must be 0 to maintain even parity. Thus, we correctly reconstruct the

original codeword 0101, and hence the data 010.

In this example, the length of our information sequences, usually denoted k, is equal

to 3. The length of our codewords, or codelength denoted by n, is 4. Hence, our

redundancy here is 1 bit.

The redundancy of a code can be determined from only the code, without knowing

the encoding function. Observe that the number of codewords is |C| = 2k. Hence,

the redundancy is n − log2 |C| bits. If the alphabet is non-binary, and of size q, the

redundancy n− logq |C| symbols, which is equivalent to n log2 q − log2 |C| bits.

Definition 1.1. The redundancy of a code C of length n over an alphabet of size q
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is

r(C) = log2

qn

|C|

bits.

Henceforth, we assume that all logarithms are to the base 2, unless otherwise stated.

We also define the error-correction capability of a code:

Definition 1.2. For a code C suppose x is transmitted and y is received, where y

may have suffered a given form of errors (e.g., a given number of erasures). Then we

say that C can correct this form of error if x can be recovered uniquely given y.

For instance, the code in (1.1) can correct up to 1 erasure. That is if any x ∈ C is

transmitted and y is received, possibly suffering an erasure, we can determine x from

y.

Challenges in Error Correction

While error correction is a powerful tool, it comes with challenges:

1. Minimizing Redundancy for a Given Error-Correction Capability:

Correcting errors with a large amount of redundancy is usually an easy task.

But doing so will lead to high transmission or storage cost. Determining the

optimal amount of redundancy and designing codes that can achieve it is often

a challenging task.

2. Types of Errors:

Sometimes errors are not of a single type, e.g., insertion, deletion, or substi-

tution. In some applications multiple types of errors occur at the same time.
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These are called edit errors. These and other types of generalized errors greatly

increase the difficulty of constructing the code, but are common in practice.

3. Burst Errors:

Errors that occur in clusters, such as burst deletions, introduce additional com-

plexity. Achieving optimal redundancy for such errors requires more sophisti-

cated codes capable of addressing structured errors.

1.2 Problem Statement

The central problem addressed in this thesis is the correction of multiple bursts of

exactly t deletions in sequences. A burst deletion is a type of error where a contiguous

block of symbols is removed, and in the case of multiple bursts, multiple such blocks

are deleted from the sequence at distinct positions. As a small example, consider

three bursts of four deletions occurring in a sequence x, resulting in y:

x = 11 0 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 (transmitted sequence) (1.2)

y = 11����XXXX0 1 0 1 0 1 1 1 0����XXXX0 1 1 0 1 0 1 1����XXXX1 0 1 0 (y with errors marked) (1.3)

y = 11 0 1 1 1 0 1 0 1 1 (y as received by decoder) (1.4)

Our goal is to find codes such that when x belongs to these codes, we can recover

it from y. These errors pose significant challenges for error correction due to the

structured and clustered nature of the deletions, which disrupt the alignment and

recovery of the original data.

The goal of this research is to design efficient error-correcting codes that:
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• Correct two or more bursts, each consisting of exactly t deletions, in both binary

and q-ary sequences.

• Minimize the redundancy required to protect the original data.

• Ensure scalability to larger alphabets, a larger number of bursts, and longer

bursts, while maintaining manageable computational complexity.

By tackling these problems, this work aims to advance the understanding and prac-

tical application of error correction in scenarios involving burst deletions.

1.3 Research Contributions

While existing codes, such as the Varshamov-Tenengolts (VT) code and its extensions,

effectively address single deletions and some random deletions, their applicability to

burst deletions—especially multiple bursts—remains limited. Recent works, such

as Ye et al.’s construction (Ye, Yu, and Elishco 2024), have focused on two bursts

of deletions with minimal redundancy, but they rely on specially tailored erasure-

correcting codes that lack extensibility to larger numbers of bursts. In contrast, the

constructions presented in this thesis not only achieve competitive redundancy but

also provide extensive and modular frameworks that enable extensibility to more

complex error scenarios, such as correcting three or more bursts of deletions.

This thesis presents novel code constructions for correcting multiple bursts of exactly

t deletions in sequences, with significant improvements in redundancy and computa-

tional efficiency compared to existing methods. The key contributions of this research

are as follows:
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1. Code for Correcting Two Bursts of t Deletions in Binary Sequences:

– This work constructs a code capable of correcting two bursts of t deletions

in binary sequences.

– The proposed code achieves a redundancy of 6.4 logn+10 log logn+O(1)

demonstrating an efficient balance between error-correction capability and

storage overhead.

2. Code for Correcting Two Bursts of t Deletions in q-ary Sequences:

– The binary construction is extended to q-ary sequences, resulting in a

code that corrects two bursts of t deletions with redundancy of 7.4 logn+

10 log logn+ 3 log q +O(1).

– This generalization provides scalability to sequences over larger alphabets,

making the code applicable to a wider range of practical scenarios, such

as DNA data storage.

– Compared to existing approaches, this code has versatile generalizability,

which allows it to be easily extended to more bursts of exactly t deletions.

3. Code for Correcting Three Bursts of t Deletions:

– We proposed a novel code construction for correcting three bursts of t

deletions.

– The code achieves a redundancy of at most 15 logn + o(logn) with an

encoding and decoding complexity of O(n7).

– While the redundancy is higher than directly using syndrome compression,

the proposed construction offers a significantly lower decoding complexity

O(n7) vs. O(n7qt), making it computationally feasible for large t.
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Overall, the contributions of this thesis advance the field of error-correcting codes by

addressing the challenges of burst deletions in both theory and application. These

results lay a foundation for further improvements in correcting clustered errors in

communication systems, data storage, and related fields.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we provide a brief introduction to

error correcting codes and some relevant prior work. In Chapter 3, we present three

codes that can correct i) two bursts of t deletions in binary, ii) two bursts of t deletions

in q-ary, and iii) three bursts of exactly t deletions in q-ary sequences. For each code,

we provide the code construction and find the redundancy and time complexity. In

Chapter 4, we discuss the pros and cons of our codes compared to prior work, and

provide practical applications and future directions for our research. In Chapter 5, we

summarize the main achievements of our research. Lastly, in Chapter 6, we provide

a summary of the entire thesis.
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Chapter 2

Review of Literature

This chapter provides an overview of the foundational work and recent advancements

in error-correcting codes relevant to burst deletion errors. We begin by introducing

key definitions and concepts in Section 2.1, followed by a discussion of notable prior

work on correcting single, double, and burst deletion errors in Section 2.2. Finally,

we highlight the limitations and challenges of these existing methods in Section 2.3,

underscoring the gaps that this thesis seeks to address.

2.1 Preliminaries

In this section, we introduce key definitions, notation, and representations that form

the foundation for the constructions proposed in this thesis. These concepts will

be used throughout the subsequent chapters to describe, analyze, and evaluate the

proposed error-correcting codes for burst deletions.

A sequence is an ordered list of symbols, typically binary (0s and 1s) or from a larger

q-ary alphabet. Errors such as deletions, insertions, and substitutions disrupt these

sequences, potentially resulting in data loss or corruption.

Let Fn
2 denote all binary sequences of length n. A run of length P of a sequence x is

a substring of x such that xi = xi+1 = · · · = xi+P−1, in which xi−1 ̸= xi if i > 1 and
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xi+P−1 ̸= xi+P if i+ P − 1 < n. We use µ(x) to denote the length of the longest run

in x.

A burst of length b is defined as the deletion or insertion of t consecutive symbols

from a sequence. Formally, if x = (x1, x2, . . . , xn) is a sequence, a burst of deletions

of length b results in the subsequence (x1, . . . , xi−1, xi+b, . . . , xn) for some 1 ≤ i ≤

n− b+ 1.

We refer to a two-burst-t-deletion error when exactly two bursts of consecutive dele-

tions of length t have occurred, i.e., from x, we obtain a subsequence

(x1, ..., xa, xa+t+1, ..., xb, xb+t+1, ..., xn) ∈ Fn−2t
2

The two-burst-t-deletion ball of a sequence x ∈ Fn
2 , is denoted by D2

t (x), and is

defined to be the set of subsequences of x of length n − 2t obtained by the deletion

of two bursts of size t.

A two-burst-t-deletion-correcting code C is a set of sequences, each called a codeword,

in Fn
2 such that there are no two codewords in C where two deletion bursts of size t

result in the same word of length n−2t. That is, for every x, y ∈ C,D2
t (x)∩D2

t (y) = ∅.

In this paper, we let t be a fixed integer that divides n. We denote sequences with

lower-case letters and the corresponding t × n
t

matrices with upper-case letters. For

a vector x = (x1, x2, ..., xn), we define the following t× n
t

matrix:
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X =



x1 xt+1 · · · xn−t+1

x2 xt+2 · · · xn−t+2

... ... . . . ...

xt x2t · · · xn


and for 1 ≤ i ≤ n, we denote X(i) as the i-th row of the matrix X, and Xj as the j-th

column of X. This representation allows errors to manifest as disruptions in specific

rows or columns, simplifying the correction process.

We provide the following example to demonstrate the above definitions.

Example 2.1. Let x = 0100100011011101. There are 10 runs in x, and the longest

run is of length 3. The matrix X, for t = 4, is formed as follows:

X =



0 1 1 1

1 0 1 1

0 0 0 0

0 0 1 1


Let 1001 and 0110 be the two substrings that are removed from x. Let y = 00011101

be the received string, obtained from x by two bursts of t deletions. Then Y is formed

as follows:

Y =



0 1

0 1

0 0

1 1
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This representation helps isolate the affected areas and enables targeted error correc-

tion.

We will use a small example to show why matrix formation is useful in burst deletions.

Example 2.2. Consider a burst of 4 deletions occurs in the sequence x, resulting in

y:

x = 11 0 1 0 1 0 1 1 1 0 0 1 1 0 1 (transmitted sequence) (2.1)

y = 11 0 1 0����XXXX1 0 1 1 1 0 0 1 1 0 1 (y with errors marked) (2.2)

y = 11 0 1 0 1 0 0 1 1 0 1 (y as received by decoder) (2.3)

If we write this in matrix form, then we have:

X =



1 0 1 1

1 1 1 1

0 0 0 0

1 1 0 1


⇒ Y =



1 0 1

1 1 1

0 0 0

1 0 1



Notice that exactly one bit is removed from each row of the matrix. Specifically, in

the first row, the third bit 1 is deleted; in the second row, the second bit 1 is deleted;

in the third row, the second bit 0 is deleted; and in the last row, the second bit 1 is

deleted. By treating each row as an independent sequence, the problem of a single

burst of four deletions is effectively reduced to four separate single-deletion problems.

This key idea will serve as a foundational approach throughout the paper.
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2.2 Relevant Prior Work

This section provides an overview of prior work related to error-correcting codes for

deletions and burst deletions. We begin with foundational codes like the Varshamov-

Tenengolts (VT) code for single deletions, then discuss progress in correcting two

deletions, and conclude with burst-deletion correcting codes. These works form the

basis for the constructions proposed in this thesis.

The Varshamov-Tenengolts (VT) code was initially designed to correct asymmetric

errors (Varshamov and Tenengolts 1965), such as substitution errors that occur more

frequently in one direction (e.g., flipping 0 to 1 but not the reverse). Later, Leven-

shtein demonstrated that the VT code could also correct a single insertion or deletion

error, making it one of the first error-correcting codes capable of addressing this type

of error. This versatility arises from the arithmetic property (known as the VT syn-

drome), which allows the code to efficiently identify and correct such errors. The VT

code is defined as follows:

Definition 2.3 (Varshamov and Tenengolts 1965). The Varshamov-Tenengolts (VT)

code of length n, denoted as V Ta(n), where a is a fixed integer, is defined as the set of

binary codewords x = (x1, x2, . . . , xn) ∈ {0, 1}n that satisfy the following congruence

condition:
n∑

i=1

i · xi ≡ a (mod (n+ 1))

In other words, the VT code consists of all binary sequences of length n for which the

weighted sum of the bits (where the weight of the bit in position i is i) is congruent

to a modulo n+ 1. We call a the VT syndrome.

Correcting two deletion errors is significantly more challenging than correcting a
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single deletion because the relationship between the remaining symbols becomes more

ambiguous. While the VT code efficiently corrects a single insertion or deletion, it

took nearly 60 years for a code capable of correcting two deletions with redundancy

close to the existential bound to be proposed. For 2-deletion codes, the existential

bound ensures the existence of codes with redundancy 4 logn+o(logn), derived from

combinatorial arguments. This bound was matched by the syndrome compression

codes and Guruswami and Håstad’s explicit construction in 2021 (Guruswami and

Håstad 2021).

Based on Guruswami and Håstad’s work, Liu, Tjuawinata, and Xing (2024) proposed

an efficient q-ary two-deletion correcting code that is defined as follows:

Theorem 2.4. Let C0 ⊆ Σn
2 be the binary two-deletion correcting code constructed by

Guruswami and Håstad (2021). Then for any positive integer q > 2, there exists an

explicit and efficiently encodable 2 deletion correcting code C1 ⊆ Σn
q with redundancy

5 logn+ 10 log logn+ 3 log q +O(1).

Burst errors, where multiple consecutive symbols are inserted or deleted, are common

in storage systems and DNA sequence analysis. Schoeny et al. (C. Schoeny, Wachter-

Zeh, et al. 2017) (C. Schoeny, F. Sala, and L. Dolecek 2017) developed a code that can

efficiently correct a single burst of deletions with redundancy proportional to logn,

making it suitable for long sequences.

In this work, we also use a extensive k-deletion correcting code using syndrome com-

pression in the case where the original sequence x contains more than 2 bursts of

deletions. This k-deletion correcting code using syndrome compression is defined as

follows:

Lemma 2.5 (Syndrome Compression for k Deletions (Sima, Gabrys, and Bruck
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2020a)). Let n ≥ 3 and k ≥ 1 be integers. There exists a function

Sk : {0, 1}n −→ {0, 1} 4k logn + o(logn),

computable in O(n) time, with the following property: for any string x ∈ {0, 1}n and

any string y obtained from x by up to k deletions, one can uniquely and efficiently

recover x given y and Sk(x).

The paper by Dumer Dumer 1995 provides infinite families of linear codes of designed

distance δ = 4, 5, and 6. Specifically, let I4, I5, I6 be the set of code zeros used to

define the cyclic code, Pm−1 be the projective space of dimension, and X5, X6 be the

cubic variety in the affine space Fm−1 for δ = 5, 6, the following results are presented:

Lemma 2.6 (Corollary 5 from Dumer 1995). For m = 2, 4, . . . , there exists a code

V m
q (I4, P

m−1) with the following parameters:

n =
qm − 1

q − 1
, r(q, n, 4) =

3m

2
, δ = 4,

where r(q, n, 4) denotes the redundancy of the code.

Lemma 2.7 (Corollary 6 from Dumer 1995). For m = 3, 5, . . . , there exists a code

V m
q (I5, X5) with the following parameters:

n = q⌊5(m−1)/6⌋, r(q, n, 5) ≤ 2m, δ = 5,

where r(q, n, 5) denotes the redundancy of the code.

Lemma 2.8 (Corollary 6 from Dumer 1995). For m = 4, 6, . . . , there exists a code
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V m
q (I6, X6) with the following parameters:

n = q⌊5(m−1)/6⌋, r(q, n, 6) ≤ 2.5m, δ = 6,

where r(q, n, 6) denotes the redundancy of the code.

Correcting two bursts of deletions is a challenging problem because the deletions

create ambiguities in the sequence that are difficult to resolve. The results presented

by Ye, Yu, and Elishco (2024) address this by designing explicit constructions that

encode additional information about the sequence in a structured manner, enabling

efficient recovery.

In Ye et al’s paper (Ye, Yu, and Elishco 2024), the authors introduce a construction

for non-binary codes with improved redundancy, enabling the correction of up to two

disjoint bursts of t deletions with redundancy 5 logn+O(log logn). The construction

is as follows:

Theorem 2.9 (Correcting Two Bursts of Exactly t Deletions (Ye, Yu, and Elishco

2024)). Suppose q > 2. Let N1, N2, Q, f0(x), f1(x), h
(0)(x) and h(1)(x) be defined as

in [Ye, Yu, and Elishco 2024]. For all 0 ≤ a < 24 logn+10 log logn+O(1), 0 ≤ b0 < 2N1,

0 ≤ b1 < Q, and 0 ≤ c0, c1 < N2, define the code C2 as

C2 ≜


x ∈ Σn

q :

x is d-regular,

η(u(x)) = a,

fs(x) = bs for s ∈ {0, 1},

h(0)(x) = c0, h
(1)(x) = c1


.

Then C2 is a code correcting two bursts of exactly b deletions.
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Ye, Yu, and Elishco (2024) also provide an efficient code correcting two bursts of two

erasures. Let N ≥ 2 be an integer. Suppose x ∈ [0, N − 1]n, where n > 4. Let ?

denote an unknown symbol. If y ∈ ([0, N − 1] ∪ {?})n is such that yi = yi+1 =?,

yj = yj+1 =?, and yk = xk for all k /∈ {i, i + 1, j, j + 1}, we say that y is obtained

from x by two bursts of erasures (of length two). As a small example, consider two

bursts of two erasures occurring in a sequence x, resulting in y:

x = 11 0 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 (transmitted sequence) (2.4)

y = 11 0 1��HH0 1 0 1 1 1 0 0��HH1 1 0 1 0 1 1 1 0 1 0 (y with errors marked) (2.5)

y = 11 0 1 ? ? 0 1 1 1 0 0 ? ? 0 1 0 1 1 1 0 1 0 (y as received by decoder) (2.6)

Assume j ≥ i + 2, for a sequence x over the alphabet [0, N − 1], denote A(x) =

A(x, |x|, 2) and Syn(x) ≜
∑n

i=1 ixi.

Lemma 2.10 (Lemma II.7). For any 0 ≤ a1, a2 < 2N and 0 ≤ b < nN 2, define C

to be the set of all sequences x ∈ [0, N − 1]n that satisfy:

(C1)
∑⌈n/2⌉

j=1 A(x)1,j ≡ a1 (mod 2N),
∑⌈n/2⌉

j=1 A(x)2,j ≡ a2 (mod 2N);

(C2) W (x) ≡ b (mod nN2), where W (x) = Syn(A(x)1) + (2N − 1) · Syn(A(x)2).

In particular, there’s a function ρ : [0, N − 1]n → Σlogn+4 logN+2
2 , efficiently com-

putable, such that for any x ∈ [0, N − 1]n, given ρ(x), we can efficiently and uniquely

recover x from y, where y is any sequence obtained from x by two bursts of two

erasures.
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2.3 Limitations of Prior Work

Despite significant advancements in error-correcting codes, the problem of correcting

multiple bursts of deletions has remained underexplored. Most prior work has focused

on single or double deletion errors, leaving the challenges of burst deletion correction

largely unaddressed. Among the limited research, the work by Ye, Yu, and Elishco

(2024) provides an explicit construction for codes capable of correcting two bursts of

exactly t deletions. However, even this approach faces certain limitations.

1. Limited Applicability to Multi-Burst Errors: While Ye, Yu, and Elishco (2024)

achieve efficient redundancy of 5 logn+O(log logn) for two bursts of exactly t

deletions, their construction is not extensive. This lack of extensibility makes it

challenging to extend their method to scenarios involving more than two bursts

of deletions. For applications requiring robustness against multiple bursts, this

is a significant limitation.

2. Redundancy vs. Extensibility Trade-Off: Comparing the code correcting two

bursts of exactly t deletions presented in this thesis with the construction in

Ye, Yu, and Elishco 2024, it is true that the redundancy of our code is higher.

However, the modularity of our approach allows for straightforward extensions

to handle additional bursts, making it a more flexible solution for cases with

higher deletion complexity.

Symdrome Compression also has limitation for large t. Syndrome compression (Sima,

Gabrys, and Bruck 2020a) is an alternative technique that can address three bursts

of exactly t deletions with lower redundancy than our code. However, this method

comes at the cost of significantly higher decoding complexity, particularly when t
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is large. In contrast, our construction achieves a more efficient decoding process,

making it better suited for applications requiring low time complexity.

In summary, while prior work has made strides in addressing specific cases of burst

deletions, significant gaps remain:

• Extending solutions to multiple bursts in a extensive and modular fashion re-

mains challenging.

• Balancing redundancy and computational efficiency, especially for larger t, is

still an open problem.

• Existing methods often trade extensibility or efficiency for optimal redundancy,

limiting their practical applicability in broader contexts.

The limitations of existing approaches highlight the need for codes that strike a bal-

ance between redundancy, extensibility, and computational efficiency. These chal-

lenges motivate the constructions presented in this thesis, which aim to address the

gaps in the literature while offering a extensive and flexible framework for correcting

multiple bursts of deletions.
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Chapter 3

Code Construction

This chapter presents the construction of three codes designed to correct bursts

of deletions in binary and q-ary sequences. Each construction builds upon foun-

dational techniques, such as Guruswami and Håstad’s two-deletion correcting code

(Guruswami and Håstad 2021) and syndrome compression (Sima, Gabrys, and Bruck

2020a), and adapts them to address the unique challenges posed by burst deletions.

By leveraging matrix representations and efficient error localization and correction

techniques, we achieve extensive and scalable solutions.

The chapter is divided into three sections:

• Code for Two Bursts of Exactly t Deletions in Binary Sequences: This section

introduces a binary code that combines Guruswami and Håstad’s code for error

localization with a distance 5 code for error correction.

• Code for Two Bursts of Exactly t Deletions in q-ary Sequences: Building on the

binary construction, this section extends the methodology to q-ary sequences

using Liu et al.’s (Liu, Tjuawinata, and Xing 2024)two-deletion correcting code.

• Code for Three Bursts of Exactly t Deletions: The final section presents a novel

approach to handle three bursts of t deletions, utilizing syndrome compression

and adaptations of Dumer’s code to balance redundancy and computational

efficiency.
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Through detailed mathematical constructions and proofs, this chapter establishes the

correctness, redundancy, and computational feasibility of the proposed codes.

3.1 Code Correcting Two Bursts of Exactly t Dele-

tions in Binary Sequences

This section presents the construction of a code that can correct two bursts of t

deletions in binary sequences. The construction combines Guruswami and Håstad’s

two-deletion correcting code (Guruswami and Håstad 2021) with a distance-5 code

(Dumer 1995) to address errors localized in specific rows of a matrix representation.

3.1.1 Overview

Given a binary sequence x of length n, the goal is to correct two bursts of t deletions.

We achieve this by:

• Error Localization: Use the first row of a matrix representation of x to identify

approximate positions of the deletions.

• Error Correction: Correct errors in the remaining rows using an efficient erasure-

correcting code.

This approach ensures low redundancy while maintaining computational efficiency.
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3.1.2 Definitions and Lemmas Used

In this subsection, we describe all definitions and lemmas that we will use in our

construction.

Definition 3.1 (regularityGuruswami and Håstad 2021). A sequence x ∈ Σn
2 is a

regular sequence of length n if any substring of x of length at least d logn contains

both 00 and 11.

Here d is an absolute fixed constant, so we use d = 7 in the rest of the paper.

Lemma 3.2 (Guruswami and Håstad’s Two Deletion Correcting Code (Guruswami

and Håstad 2021)). Suppose d ≥ 7, there exists a function

GH : Σn
2 → Σ

4 logn+10 log logn+O(1)
2

computable in linear time, such that for any regular sequence x ∈ Σn
2 , given GH(x)

and any y obtained by deleting two bits from x, one can uniquely and efficiently recover

x.

If the first row X(1) is regular, we can use the above code to correct the error in

X(1). This will tell us the approximate positions of the two deletions in X(1). Let

P = 7 logn, then the longest run in X(1) has length at most P since it is 7-regular.

For each of the remaining rows from X(2) to X(t), we divide every row into n
Pt

blocks,

where each block is of length P . The number of error runs in X(1) is either 1 or 2,

and one run in X(1) can affect at most 2 blocks in the remaining rows. Since we do

not know whether the left block or the right block contains the error, this problem

turns into a 4-erasure problem.
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To correct these erasures, we use a code with designed distance 5, which can correct up

to 4 erasures. Specifically, we use the redundancy function associated with the code

in Lemma 2.7. Define the syndrome function D5(x) to be the function that maps

the information part of a sequence to its redundancy symbols in the code V m
q (I5, X5)

from Lemma 2.7. These redundancy symbols serve as compressed information that

allows us to recover erased values.

Lemma 3.3 (Sima, Raviv, and Bruck 2019). For any integer n ≥ 3, there exists a

function S : Σn
2 → Σ

7 logn+O(1)
2 , computable in linear time, such that for any x ∈ Σn

2 ,

given S(x) and any y ∈ B2
1(x), one can uniquely and efficiently recover x.

Since every block may contain 0, 1, or 2 deletions, we apply the above code to correct

each block. Here we do not use Guruswami and Håstad’s two-deletion correcting

code because we do not want to restrict every block to be regular. Now we can give

a formal construction of our code that corrects two bursts of t deletions.

3.1.3 Construction

In this subsection, we will provide a detailed set of steps to construct our code, a

mathematical construction, and a proof of the code’s correctness and redundancy.

To construct our code that corrects two bursts of t deletions, we will follow the

following steps:

1. Matrix Representation: The binary sequence x of length n is represented as a

t× n
t

matrix X, where each row corresponds to a subsequence of x. Each row

X(i) is further divided into blocks of length P = 7 logn.

2. Regularity Condition: To enable effective correction in the first row, we require
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it to be ”regular,” meaning that any sufficiently long substring contains both

”00” and ”11” patterns. This ensures the error localization process is robust.

3. Error Localization in the First Row: We apply Guruswami and Håstad’s Code,

which corrects two deletions in a regular sequence, to the first row X(1). This

identifies approximate positions of the two deletions.

4. Error Correction in Remaining Rows: Using the approximate deletion positions

in X(1), we identify at most 4 affected blocks across the remaining rows. These

blocks are treated as containing erasures. Each block is corrected using a code

with distance 5 (Dumer’s Code), which efficiently handles up to 4 erasures.

The overall code is defined as follows:

Construction 3.4. To correctly recover the erased blocks, we need a code with

designed distance 5, which can correct up to 4 erasures. We use the redundancy

function associated with the code in Lemma 2.7.

Encoding Process Denote Xi,j as the j-th block of row i. Define

S(Xc) = S(X2,c)S(X3,c) . . . S(Xt,c)

as the concatenation of the syndromes of each block in column c that are generated

using the above code. Note that as the length of each Xi,c is O(logn) bits, by

Lemma 3.3, the length of S(Xi,c) is O(log logn) bits. We encode each S(Xc) as a

symbol in the codeword of Dumer’s code with designed distance 5 and alphabet size

qD5 = 2O(t log logn). To correct erasures, define:

f(x) = D5(S(X1), S(X2), . . . , S(X n
Pt
)).
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Choice of Parameters We select P = 7 logn to ensure that the longest run in

X(1) has length at most P , since X(1) is 7-regular. The matrix representation has n
Pt

blocks in each row.

To apply Dumer’s code, we determine appropriate values of q and m. The alphabet

size of Dumer’s code is qD5 = 2O(t log logn). The parameter m is selected as the smallest

odd number satisfying:

q⌊5(m−1)/6⌋ − 2.5m ≥ n

Pt
.

which leads to m ≃ 6
5

logq
n
Pt

.

If the smallest m satisfying this condition yields a longer code than needed, we ap-

ply shortening by fixing Z positions to predetermined values before computing the

syndrome.

Definition of the Code Suppose n ≥ 2t and t ≥ 1. For 0 ≤ a ≤ 24 logn+10 log logn+O(1)

and 0 ≤ b ≤ 27 logn/3, define the two-burst-t-deletion correcting code C1 as:

C1
△
=


x ∈ Σn

2 :

X(1) is regular,

GH(X(1)) = a,

f(x) = b


.

The total redundancy of this code is computed as follows:

• Redundancy for Error Localization: Using Guruswami and Håstad’s Code adds

a redundancy of 4 logn+ 10 log logn+O(1).

• Redundancy for Erasure Correction: According to Lemma 2.7, the total redun-
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dancy for correcting the remaining rows is at most 2m ∼ 2× 6
5

logn = 2.4 logn.

Summing these, the overall redundancy of the code is at most 6.4 logn+10 log logn+

O(1). This redundancy is higher than that of the existing code in Ye, Yu, and Elishco

(2024), but our approach has the advantage of being extendable to cases with more

than two bursts.

Below we have a lemma and its proof for the correctness and redundancy of our code.

Lemma 3.5. The code C1 as defined above has redundancy at most 6.4 logn +

10 log logn+O(1) and can correct up to two deletions in binary sequences.

Proof. The first part of our code is to locate the approximate locations of the two

missing bits in the first row of the matrix. This is achieved by applying Guruswami

and Håstad’s code as it can help us to correct two deletions in a binary sequence.

This adds 4 logn+ 10 log logn+O(1) to our redundancy.

All that remains is to calculate the redundancy needed to correct the remaining rows

of the matrix. As a recap, in this part we treat the 4 potential error columns as a

four erasure problem and use Dumer’s code with designed distance 5 to correct the

erasures. The size of the syndrome in each block is O(log logn) bits, and each concate-

nation of syndromes contains t− 1 values, so the total size of a single concatenation

is O((t − 1) log logn) = O(log logn) bits. This is also the size of q in Dumer’s code

with designed distance 5. According to Lemma 2.7, the redundancy of the remaining

rows is 2m ∼ 2.4 logq
n
Pt

symbols ≤ 2.4 logn bits.

Summing them up, the total redundancy of our code that corrects two-burst-t-deletion

is at most 4 logn+ 10 log logn+Od(1) + 2.4 logn = 6.4 logn+ 10 log logn+O(1).

The error-correction capability follows from our discussion preceding the code con-
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struction.

3.2 Code Correcting Two Bursts of Exactly t Dele-

tions in q-ary Sequences

Recall that in the previous subsection we break the problem of correcting 2 bursts

of t deletions into two parts. We first use Lemma 3.2, Guruswami and Håstad’s

two deletion correcting code, to find the approximate positions of the two missing

bits, then use an erasure correcting code, Dumer’s code with designed distance 5,

to correctly recover the message. Note that extending this to q-ary sequences only

requires us to find a extensive q-ary two deletion correcting code to find the error

positions. Once we find the approximate positions of the deletions, we can still use

Dumer’s code to recover the original message.

3.2.1 Overview

Given a q-ary sequence x of length n, the goal is to correct two bursts of t deletions.

We achieve this by:

• Error Localization: Use the first row of a matrix representation of x to identify

approximate positions of the deletions.

• Error Correction: Correct errors in the remaining rows using an efficient erasure-

correcting code.

This approach ensures low redundancy while maintaining computational efficiency.
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3.2.2 Construction

Let P = logn and restrict the longest run in X(1) to have length at most P . Let L(x)

be the code defined in Theorem 2.3. Since L(x) is capable of correcting two deletions

in a q-ary sequence, we can use this code to correct the errors in X(1). This will tell

us the approximate positions of the two deletions in X(1). Similar to Section 3.1,

since there are only two deletions in X(1), we will find at most 2 runs that contain

deletions.

We can again divide every other row into n
Pt

blocks, where each block is of length P .

Similar to the previous section, to correctly recover the information in these rows,

we can view this problem as a 4-erasure problem. We can apply L(x) again to every

block to generate syndromes of each block, and again concatenate all syndromes of

the blocks from the same column together. Below is the formal construction of our

code that corrects 2 bursts of t deletions in a q-ary sequence.

To construct our code that corrects two bursts of t deletions, we will follow the

following steps:

1. Matrix Representation: The q-ary sequence x of length n is represented as a

t× n
t

matrix X, where each row corresponds to a subsequence of x. Each row

X(i) is further divided into blocks of length P = logn.

2. Restriction in Run Length: To enable effective correction using Dumer’s Code,

we restrict the run length limit in the first row X(1), specifically the length of

the longest run in the first row X(1) is at most logn.

3. Error Localization in the First Row: We apply Liu et al.’s Code, which cor-

rects two deletions in a q-ary sequence, to the first row X(1). This identifies
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approximate positions of the two deletions.

4. Error Correction in Remaining Rows: Using the approximate deletion positions

in X(1), we identify at most 4 affected blocks across the remaining rows. These

blocks are treated as containing erasures. Each block is corrected using a code

with distance 5 (Dumer’s Code), which efficiently handles up to 4 erasures.

The overall code is defined as follows:

Construction 3.6. Denote by Xi,j the j-th block of row i. Define

L(Xc) = L(X2,c)L(X3,c) . . . L(Xt,c)

as the concatenation of the syndromes of each block in column c that are generated

using the code in Theorem 2.3. These syndromes serve as compressed information

that allows us to correct potential erasures in each block.

Encoding Process To recover the erased values, we use a code with designed

distance 5, which can correct up to 4 erasures. We encode each L(Xc) as a symbol

in the codeword of Dumer’s code with designed distance 5 and alphabet size qD5 =

2O(t log logn). To correct erasures, define:

fq(x) = D5(L(X1), L(X2), . . . , L(X n
Pt
)).

Erasure Correction with Dumer’s Code As in the binary case, we use the

redundancy function associated with the code in Lemma 2.7.

To apply Dumer’s code, we determine appropriate values of q and m similarly to the
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binary case, ensuring that:

q⌊5(m−1)/6⌋ − 2.5m ≥ n

Pt
.

which leads to m ≃ 6
5

logq
n
Pt

.

Similarly, if the smallest odd m satisfying this condition yields a longer code than

needed, we apply shortening by fixing Z positions to predetermined values before

computing the syndrome.

Definition of the Code Suppose q ≥ 2, n ≥ 2t, and t ≥ 1. For 0 ≤ a ≤

25 logn+10 log logn+3 log q+O(1) and 0 ≤ b ≤ 27 logn/3, define the code C2 that corrects two

bursts of exactly t deletions in q-ary sequences as:

C2
△
=


x ∈ Σn

q :

µ(X(1)) ≤ logn,

L(X(1)) = a,

fq(x) = b


where µ(X(1)) is the length of the longest run in the first row.

The total redundancy of this code is computed as follows:

• Redundancy for Error Localization: Using Liu et al.’s Code adds a redundancy

of 5 logn+ 10 log logn+ 3 log q +O(1).

• Redundancy for Erasure Correction: According to Lemma 2.7, the total redun-

dancy for correcting the remaining rows is at most 2.4 logn.
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Summing these, the overall redundancy of the code is at most 7.4 logn+10 log logn+

3 log q + O(1). This redundancy is higher than that of the existing code in Ye, Yu,

and Elishco 2024, but our approach has the advantage of being extendable to cases

with more than two bursts.

Below we have a lemma and its proof for the correctness and redundancy of our code.

Lemma 3.7. The code C2 as defined above has redundancy at most 7.4 logn +

10 log logn + 3 log q + O(1) and can correct up to two bursts of t deletions in q-ary

sequences.

Proof. Similar to our proof in Lemma 3.5, we first use the code in Theorem 2.3

and this adds 5 logn + 10 log logn + 3 log q + O(1) to our redundancy. In the re-

maining rows, Dumer’s code with designed distance 5 adds at most 2.4 logn to our

redundancy according to Lemma 2.7. The total redundancy of C2 that corrects two-

burst-t-deletion is at most 7.4 logn+10 log logn+3 log q+O(1). The error-correction

capability follows from our discussion preceding the code construction.

3.3 Code Correcting Three Bursts of Exactly t Dele-

tions

In this section, we extend the idea from the previous section to construct a code

correcting three bursts of t deletions with redundancy at most 15 logn+ o(logn). We

prove that although this redundancy is slightly higher than directly using syndrome

compression to correct 3 bursts of t deletions, the computational complexity of our

code is much lower when t is large. Our approach is to first use syndrome compression



35

in the first row X(1) to find the approximate positions of the missing bits, then correct

these intervals to recover the original sequence.

3.3.1 Overview

Given a q-ary sequence x of length n, the goal is to correct three bursts of t deletions.

We achieve this by:

• Error Localization: Use the first row of a matrix representation of x to identify

approximate positions of the deletions.

• Error Correction: Correct errors in the remaining rows using an efficient erasure-

correcting code.

This approach ensures low redundancy while maintaining computational efficiency.

3.3.2 Extending From Two Bursts to Three Bursts

Recall that in the previous section we first locate positions of deletions in short

intervals, then correct errors in these intervals. We will use a similar approach here.

Now in X(1) there are three deletions, so we will use the extensive k deletion correcting

code in Lemma 2.4 to locate those deletions. In this case, k = 3, so this code needs

a redundancy of 12 logn+ o(logn) to correct three deletions.

Let P = logn. We restrict X(1) to be P -run length limited. We divide each following

row into blocks of length P . Since there are 3 deletions in X(1), we will either have

1) three deletions in three distinct runs, 2) two deletions in one run and one deletion

in another run, or 3) three deletions in the same run. Since each run can affect at
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most two blocks in the following rows, at most 6 blocks can be affected in each of the

rows. This turns the problem into a 6 erasure problem.

Using a Reed-Solomon code to correct these 6 erasures results in a relatively high

redundancy, and in [Dumer 1995] Dumer only provides codes with design distances 4,

5, and 6 which cannot correct 6 erasures. To correct 6 erasures, we need a code with

minimum distance 7. Inspired by Ye, Yu, and Elishco 2024, we prove that Dumer’s

code can be used in this scenario because instead of a normal 6 erasure problem, our

problem is more similar to three bursts (of length two) of erasures. Each burst of

length two of erasures is generated by the approximate position of the missing bit in

X(1).

Lemma 3.8. Let a ∈ Σn
q be a sequence over a q-ary alphabet, and let b ∈ Σn−6

q be

obtained from a by three bursts of 2 erasures. Define A as a 2× n
2

matrix representation

of a, where:

• The first row A(1) contains all odd-indexed bits of a, and

• The second row A(2) contains all even-indexed bits of a.

Let B be the corresponding matrix representation of b, such that:

• The first row B(1) corresponds to the sequence obtained from A(1) after erasing

bits affected by the three bursts of erasures in a, and

• The second row B(2) corresponds to the sequence obtained from A(2) after erasing

bits affected by the three bursts of erasures in a.

Then B(1) is obtained by having exactly three erasures from A(1), and B(2) is obtained

by having exactly three erasures from A(2).
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Proof. Since the erasures occur as three bursts of length 2 in a, each burst affects two

consecutive positions in a.

Each position in a corresponds to either A(1) or A(2) based on its index. Specifically:

• Odd-indexed bits in a (affected by erasures) contribute to A(1),

• Even-indexed bits in a (affected by erasures) contribute to A(2).

Since each burst of length 2 in a affects exactly one odd-indexed bit and one even-

indexed bit, the total of three bursts results in exactly three erasures in A(1) and three

erasures in A(2). Therefore, the resulting matrix B satisfies the property that B(1)

and B(2) have three erasures each, corresponding to their respective rows in A.

With the above lemma, we conclude that if we have an efficient three erasure cor-

recting code, we can apply this code twice to correct the 6 erasures from X(2) to

X(t). As given in Lemma 2.5, Dumer provides a code with designed distance 4 with

redundancy 1.5 logq n, where q = 2O(log logn) is the alphabet size.

Let S3(x) be the function defined in Lemma 2.4 where k = 3. We can apply S3(x) to

each block from X(2) to X(t) to get syndromes that store the necessary information

in each block that helps to correct three deletions. Denote by Xi,j the j-th block of

row i and denote these syndromes as S3(X2,c1), S3(X2,c2), . . . , S3(Xt,c n
Pt
). We then

concatenate all syndromes of the blocks from the same block column together and

denote them as S3(Xc), i.e. S3(X1) = (S3(X2,c1)S3(X3,c1) . . . S3(Xt,c1)).

We first consider the syndrome concatenations from odd-indexed columns and en-

code each concatenation as a symbol in Dumer’s code of designed distance 4 with

alphabet size qD4 = 2O(t log logn). To generate these syndromes, we use the redundancy

function associated with the code in Lemma 2.6. Define the syndrome function
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D4(x) to be the function that maps a sequence to its redundancy symbols in the

code V m
q (I4, P

m−1) from Lemma 2.6. These redundancy symbols serve as compressed

information that allows us to recover erased values.

Encoding Process To recover erased values, we use a code with designed distance

4, which can correct up to 3 erasures, define:

g1(x) = D4(S3(X1), S3(X3), . . . , S3(X n
Pt

−1)),

g2(x) = D4(S3(X2), S3(X4), . . . , S3(X n
Pt
)).

By ensuring an appropriate choice of q and m and applying shortening where nec-

essary, we integrate Dumer’s code efficiently into our construction, providing a sys-

tematic and scalable approach to correcting three bursts of exactly t deletions.

Erasure Correction with Dumer’s Code As in previous constructions, we must

determine suitable values of q and m such that:

qm − 1

q − 1
− 3m

2
≥ n

Pt
.

which leads to m ≃ logq
n
Pt

.

Since increasing m leads to an exponential increase in code length, we choose the

smallest even m that meets this condition. If the resulting code length exceeds n
Pt

,

we apply shortening by fixing S positions to predetermined values before computing

the syndrome, ensuring the final code length matches our target.

Now we can give the final construction of our code C3 that corrects three bursts of
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exactly t deletions.

3.3.3 Construction

To construct our code that corrects three bursts of t deletions, we will follow the

following steps:

1. Matrix Representation: The q-ary sequence x of length n is represented as a

t× n
t

matrix X, where each row corresponds to a subsequence of x. Each row

X(i) is further divided into blocks of length P = logn.

2. Restriction in Run Length: To enable effective correction using Dumer’s Code,

we restrict the run length limit the first row X(1) to be µ(X(1)) ≤ logn, which

means the length of the longest run in the first row X(1) is at most logn.

3. Error Localization in the First Row: We apply syndrome compression, which

can correct 3 deletions in a q-ary sequence, to the first row X(1). This identifies

approximate positions of the three deletions.

4. Error Correction in Remaining Rows: Using the approximate deletion positions

in X(1), we identify at most 6 affected blocks across the remaining rows. These

blocks are treated as containing erasures. Instead of considering it as a 6 erasure

problem, we treat it as a three bursts of 2 erasures. This allows us to use a

code with distance 4 (Dumer’s Code) twice, which efficiently handles up to 3

erasures. This eventually solves the 6 erasure problem.

The overall code is defined as follows:

Construction 3.9. Suppose q ≥ 2, n ≥ 3t and t ≥ 1. Let g1(x), and g2(x) be

defined as above. Let N1 = 212 logn+o(logn) and N2 = 21.5 logn, for 0 ≤ a ≤ N1 and
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0 ≤ b1, b2 ≤ N2, define the code C3 as:

C3
△
=


X ∈ Σn

q :

µ(X(1)) ≤ logn

S3(X(1)) = a,

g1(x) = b1, g2(x) = b2


Then C3 is a code correcting three bursts of exactly t deletions, computable in linear

time, with redundancy at most 15 logn+ o(logn).

The total redundancy of this code is computed as follows:

• Redundancy for Error Localization: Using syndrome compression (Sima, Gabrys,

and Bruck 2020b) adds a redundancy of 12 logn+ o(logn).

• Redundancy for Erasure Correction: According to Lemma 2.6, the total redun-

dancy for correcting three erasures is at most 3
2
m ∼ 1.5 logn. Thus the total

redundancy of correcting the remaining rows is 2× 1.5 logn = 3 logn.

Summing these, the overall redundancy of the code is at most 15 logn+o(logn). This

redundancy is higher than directly using syndrome compression (Sima, Gabrys, and

Bruck 2020a), but our approach has the advantage of lower encoding and decoding

time complexity when t is large.

To calculate the encoding and decoding time complexity of C3, we need to calculate

them step by step. Below we have two lemmas for the complexity and we prove their

correctness.

Lemma 3.10. The encoding time complexity of C3 is O(n7).
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Proof. The encoding time complexity of syndrome compression is O(n2b+1) when b

is the number of deletions (Sima, Gabrys, and Bruck 2020a). Here we use syndrome

compression in the first row X(1) and the number of deletions is 3, so our encoding time

complexity of using syndrome compression in X(1) is O(n7). For the remaining rows,

we first need the complexity of calculating syndromes in each block. Since every block

is of length O(logn), the encoding complexity is (logn)7. Finally, we need to calculate

the encoding complexity of Dumer’s code. In Dumer 1995 it is stated that this is a

linear code, and so the encoding complexity is O(n). Combining these together, the

overall encoding time complexity of C3 is O(n7) +O(n) + (logn)7 = O(n7).

Lemma 3.11. The decoding time complexity of C3 is O(n7).

Proof. The decoding time complexity of syndrome compression is O(n2b+1) when b

is the number of deletions (Sima, Gabrys, and Bruck 2020a). Here we use syndrome

compression in the first row X1 and the number of deletions is 3, and so our decoding

time complexity of using syndrome compression in X1 is O(n7). For the remaining

rows, we first need the decoding complexity of each block. Since every block is of

length O(logn), the decoding complexity is (logn). Finally, we need to calculate the

decoding complexity of Dumer’s code. In Dumer 1995 it is stated that the decoding

complexity is O(rn) where r is the redundancy of the code and n is the length of the

code. In C3, the redundancy of using Dumer’s code with designed distance 4 twice is

2× 1.5 logn, and the code length is n
Pt

. So the complexity is O(n logn). Combining

these together, the overall time complexity of C3 is O(n7) + (logn) + O(n logn) =

O(n7).

Note that the time complexity of the encoder and decoder of C3 is dominated by

the time complexity of syndrome compression in the first row, which is O(n7). If
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we directly use syndrome compression to construct codes correcting three bursts of

deletions of length t, the time complexity is Ω(n7qt) where q is the alphabet size.

Therefore, C3 has lower time complexity than using syndrome compression directly

when t is large.
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Chapter 4

Discussion

This chapter reflects on the proposed codes, analyzing their advantages and limita-

tions compared to prior work. We discuss the practical applications of these codes

in data storage, communication, and bioinformatics, and highlight potential future

directions for extending and improving the constructions.

4.1 Extensibility of the Proposed Codes

The constructions presented in this thesis focus on correcting two or three bursts of

exactly t deletions. However, the methodology extends naturally to larger values of k,

allowing for the correction of any number of bursts. This extensibility stems from the

modular structure of the proposed codes, where the first row is responsible for error

localization and the remaining rows are handled as an erasure correction problem. In

this section, we discuss how the framework scales when the number of bursts k or the

burst length t increases.
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4.1.1 Extending to Larger k: Correcting More Bursts of Ex-

actly t Deletions

The primary challenge in extending the proposed construction to more than three

bursts lies in efficiently locating the deletions in the first row of the matrix repre-

sentation. For two or three bursts, we employed specialized deletion-correcting codes

(such as Guruswami and Håstad’s code or syndrome compression) to determine the

approximate locations of the missing symbols. When k grows, the first row must be

corrected using a k-deletion correcting code.

Syndrome Compression for Large k

A natural choice for handling a larger number of bursts is syndrome compression,

which provides an efficient way to encode and recover sequences that have undergone

multiple deletions. This ensures that the complexity of the first-row recovery remains

manageable even for large k, preventing an exponential blow-up in computation.

Erasure Correction for the Remaining Rows

Once the approximate deletion locations are identified, the remaining rows of the

matrix must be corrected using an erasure-correcting code. Although our previous

constructions relied on Dumer’s code with distance 4 or 5, extending to higher k

requires a more flexible approach:

• Reed-Solomon Code can be directly applied to handle the erasures in the

remaining rows. While Reed-Solomon codes may not be the most efficient choice

due to their general nature, they provide a robust, well-established method for
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handling a large number of erasures.

• Repeated Application of Dumer’s Code: An alternative approach is to

use Dumer’s codes, which are available for designed distances 4, 5, 6 etc. For

example, if we need to correct 50 erasures (arising from 25 bursts of deletions),

we can repeatedly apply a Dumer’s code with designed distance 6, correcting 5

erasures at a time.

However, repeatedly applying Dumer’s code in this way starts to resemble treat-

ing each block independently rather than leveraging global structure across the

matrix. This reduces efficiency and may lead to higher redundancy compared to

more structured approaches. Thus, while Dumer’s codes are useful for moder-

ate values of k, a hybrid approach that strategically combines them with global

erasure-correcting techniques may be more optimal for large k.

• Specialized burst erasure codes: Since we are not dealing with arbitrary

2k erasures but rather k bursts of exactly two erasures each, there is potential

for designing more specialized codes that better exploit this structure.

Thus, the proposed approach naturally scales to an arbitrary number of bursts by

modifying the first-row deletion correction mechanism and appropriately choosing an

erasure-correcting code for the remaining rows.

4.1.2 Impact of Large t on Complexity and Redundancy

Unlike increasing k, which requires adjustments to the first-row correction and era-

sure correction strategy, increasing t has a minimal effect on the redundancy and

computational complexity of the proposed codes.
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• Fixed Redundancy and Complexity: Since our approach fundamentally

transforms the problem of correcting bursts of deletions into a combination of

deletion and erasure correction, the redundancy remains dependent on n and k,

but not directly on t. The same erasure-correcting methods remain applicable

regardless of t, making the approach scalable.

• Computational Complexity of Syndrome Compression: The main con-

cern with large t arises in the complexity of syndrome compression, which is

O(n7qt). This dependence on qt becomes prohibitive when t grows large. How-

ever, the structured nature of the deletions suggests that alternative approaches,

such as applying additional structure to the syndrome compression technique,

may yield more computationally efficient solutions.

• Advantage Over Direct Syndrome Compression for Large t: Since our

method applies syndrome compression only to the first row and not the entire

sequence, the complexity does not increase as drastically as it would if syndrome

compression were used directly for correcting all deletions in the sequence. This

makes our approach more practical for large t compared to direct syndrome

compression.

Summary of Extensibility

The modular design of our codes allows them to be extended naturally to handle

larger numbers of bursts. By replacing the first-row deletion correction with a more

general k-deletion correcting code (such as syndrome compression) and adapting the

erasure correction step, our approach can be scaled to arbitrary k without increas-

ing redundancy beyond O(k logn). Additionally, the method remains effective for
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large t, with the primary limitation being the computational complexity of syndrome

compression, which could be further optimized in future research.

4.2 Comparing with Ye et al.’s Work

The construction of the code C2 for correcting two bursts of exactly t deletions in q-ary

sequences is a key contribution of this thesis. While our approach demonstrates clear

strengths in extensibility, it also comes with trade-offs when compared to prior work,

particularly the code proposed by Ye, Yu, and Elishco (2024). Below, we discuss the

advantages and limitations of C2 in detail.

4.2.1 Advantages of C2: Extensibility

• Extensive Design:

The code C2 integrates existing efficient error-correcting tools such as Liu et al.’s

q-ary two-deletion correcting code (Liu, Tjuawinata, and Xing 2024) for error

localization and Dumer’s distance-5 code (Dumer 1995) for erasure correction.

This modularity ensures that the code is easy to understand, analyze, and

extend.

In contrast, Ye et al.’s code relies on a specially designed erasure-correcting

code tailored for their specific construction. While this design achieves lower

redundancy, it is inherently less general and more difficult to adapt to scenarios

involving more bursts of deletions.

• Extensibility to More Bursts:

C2 is extensively structured in a way that can be extended to cases involving
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more than two bursts of deletions. This extensibility is due to the use of modular

components like matrix representation, regularity conditions, and block-based

error correction.

Ye et al.’s construction, while efficient for two bursts, does not generalize nat-

urally to three or more bursts due to the limitations of their erasure-correcting

strategy.

• Efficient Error Localization:

The use of q-ary deletion-correcting codes in the first row of the matrix rep-

resentation enables efficient identification of approximate deletion positions.

This localization process is robust across different lengths of t and provides a

foundation for correcting more bursts in future extensions.

4.2.2 Limitations of C2: Redundancy

• The redundancy of C2 is 7.4 logn+10 log logn+3 log q+O(1), which is higher

than the redundancy of 5 logn+O(log logn) achieved by Ye et al.’s code.

• In C2, the use of syndromes for each block introduces additional redundancy,

particularly when the number of blocks increases as t becomes smaller or n be-

comes larger. While this is mitigated by the logarithmic nature of the overhead,

it still contributes to the overall redundancy gap compared to Ye et al.’s (Ye,

Yu, and Elishco 2024) approach.
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4.2.3 Balancing Redundancy and Practicality

Although Ye et al.’s code achieves lower redundancy, its lack of extensibility limits

its application to scenarios involving more bursts or larger values of t. In contrast,

C2 offers a practical framework that is both modular and adaptable. This trade-off

suggests that C2 is better suited for applications where extensibility and generality

are prioritized over achieving the absolute minimum redundancy.

4.3 Comparing with Syndrome Compression

The construction of C3, a code that corrects three bursts of exactly t deletions, rep-

resents a significant step toward addressing more complex error patterns. In this

section, we evaluate the advantages and disadvantages of C3, particularly when com-

pared to syndrome compression-based approaches (Sima, Gabrys, and Bruck 2020a),

which, while not specifically tailored to burst deletions, are general enough to handle

any set of deletions..

4.3.1 Advantages of C3: Lower Complexity and Structured

Design

• Lower Decoding Complexity for Large t:

One of the most significant advantages of C3 is its lower time complexity when

t is large. This code has an encoding and decoding time complexity of O(n7).

Syndrome compression, while achieving lower redundancy, has a time complex-

ity of O(n7qt), which grows rapidly with t, making it practically infeasible for

large values of t.
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In contrast, C3 leverages modular error correction steps that decouple the error

localization and correction processes, resulting in significantly lower computa-

tional overhead during decoding.

• Efficient Handling of Bursts as Erasures:

C3 treats the affected blocks in the matrix as a sequence of erasures, reducing

the problem to a combination of multiple erasure corrections. By encoding each

block’s syndrome and using Dumer’s distance-4 code twice, C3 efficiently man-

ages the three bursts of deletions as six erasures without requiring specialized

erasure-correcting designs.

• Extensibility and Modularity:

Similar to C2, the design of C3 is extensive and modular. This makes it easy

to analyze, implement, and potentially extend to handle even more bursts of

deletions in the future.

The code also uses a general-purpose matrix representation and block-based

error correction strategy, avoiding the reliance on highly specific error-correcting

mechanisms.

4.3.2 Limitations of C3: Higher Redundancy

• Higher Redundancy:

The redundancy of C3 is at most 15 logn+ o(logn), , which is higher than the

redundancy of approximately 12 logn + o(logn) achieved by direct syndrome

compression. This difference primarily arises from the use of modular com-

ponents and the additional overhead introduced by treating the problem as a

series of erasure corrections.
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• Additional Syndromes for Block-Level Correction:

C3 relies on the computation and storage of block-level syndromes for all affected

rows in the matrix representation. While this approach simplifies the correction

process, it adds a layer of redundancy that does not exist in direct syndrome

compression methods.

4.3.3 Balancing Complexity and Redundancy

The key trade-off between C3 and syndrome compression lies in balancing computa-

tional complexity and redundancy. Syndrome compression is the best we know for

three bursts of t deletions but suffers from high decoding complexity, particularly

for large t. C3, while incurring higher redundancy, provides a practical alternative

with significantly reduced computational requirements, making it better suited for

scenarios where decoding efficiency is critical.

4.4 Practical applicability and use cases

This thesis focuses on the theoretical construction and analysis of burst deletion cor-

recting codes, but the potential applications of these codes in real-world scenarios

highlight their practical importance. Burst deletion correcting codes are especially

relevant in domains where clustered errors are common, such as data storage sys-

tems, communication networks, and bioinformatics. Below, we outline several key

applications.
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4.4.1 Data Storage Systems

Modern storage devices, such as hard drives and optical media, often encounter burst

errors due to physical defects, wear, or operational failures (Bang et al. 2023). Burst

deletions can occur when a sequence of consecutive bits or symbols is erased during

read/write processes, making burst deletion correcting codes like C2 and C3 valu-

able for ensuring reliable data recovery. These codes are particularly useful in high-

reliability applications, such as enterprise data centers or archival storage, where both

redundancy and efficient decoding are critical.

For solid-state drives (SSDs), errors are more commonly in the form of erasures, where

a cell becomes unreadable but its location remains identifiable (Kishani, Ahmadian,

and Asadi 2020). While burst deletion correcting codes may not directly address such

scenarios, the adaptability of these methods could inspire hybrid techniques to handle

mixed error models that combine deletions and erasures.

Additionally, DNA data storage—a promising technology for high-density and long-

term data storage—presents unique challenges, including burst errors caused by syn-

thesis or sequencing processes. The adaptability of the proposed codes to q-ary al-

phabets makes them suitable for improving error correction in DNA data storage

systems, thereby enhancing data integrity.

4.4.2 Communication Systems

Burst deletion errors frequently occur in wireless communication due to interference,

packet loss, or synchronization issues (Yi et al. 2023). They are also common in wired

systems experiencing localized noise or physical damage.
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The modular and computationally efficient design of the proposed codes makes them

suitable for real-time error correction in systems like satellite communications, mobile

networks, and underwater communication. Since the codes are adaptable to q-ary

sequences, they are also applicable to advanced communication schemes such as high-

order modulation formats used in 5G and beyond.

4.4.3 Relevance to Broader Applications

Although this thesis is grounded in theoretical computer science, the potential use

cases of the proposed codes demonstrate their broader relevance. These codes offer

a flexible and efficient approach to addressing burst deletion errors in a variety of

domains. By bridging theoretical constructs with practical needs, this work lays the

foundation for further exploration and development in both research and applied

settings.

4.5 Future Directions

While this thesis presents progress in the design of burst deletion correcting codes,

there remain several opportunities for future research to extend and refine the ideas

introduced here. Two promising directions are discussed below.

4.5.1 Codes for Multiple Bursts of 2 Erasures

In the current work, correcting bursts of length t deletions in a sequence often involves

handling 2t erasures in the intermediate stages of decoding. However, these erasures

are not independent but are instead clustered into t bursts of length 2. By leveraging
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the structured nature of these erasure patterns, future research could aim to construct

specialized codes that handle such scenarios more efficiently.

Key aspects for exploration include:

• Exploiting Structure:

Developing codes that specifically target clustered patterns of erasures rather

than treating them as independent errors. This would likely lead to reduced

redundancy.

• Extending Existing Techniques:

Adapting or extending methods such as Dumer’s code or syndrome compression

to directly address the bursty nature of erasures.

• Applications:

These new codes could have significant utility in communications, data storage,

and other domains where burst errors are prevalent.

By constructing efficient codes tailored to this specific case, it may be possible to

achieve significant reductions in both redundancy and decoding complexity.

4.5.2 Codes for Three or More Bursts of Exactly t Deletions

This thesis provides a code that can correct three bursts of t deletions, with a re-

dundancy of at most 15 logn + o(logn), and demonstrates its efficiency in terms of

decoding complexity. However, there is room for improvement in both redundancy

and complexity, particularly for sequences with more than three bursts.

Future research could focus on:
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• Lower Redundancy:

Investigating new approaches that reduce redundancy while maintaining effi-

cient decoding.

• Scalability to More Bursts:

Extending the current framework to correct four or more bursts of exactly t

deletions with competitive redundancy and time complexity.

These efforts could further push the boundaries of burst deletion correcting codes and

provide a foundation for addressing increasingly complex error patterns in practical

systems.
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Chapter 5

Conclusion

This thesis addresses the challenge of correcting burst deletions in binary and q-

ary sequences, an important problem in error-correcting codes with applications in

data storage and communication. Specifically, we focused on constructing codes that

correct two or three bursts of exactly t deletions while balancing redundancy and

decoding complexity.

We presented four key contributions:

• Code C1: A Code for Two Bursts of t Deletions in Binary Sequences.

This code achieves a redundancy of 6.4 logn+ 10 log logn+O(1) and offers an

efficient approach for correcting burst errors in binary sequences. It serves as a

foundation for the more general constructions presented in this thesis.

• Code C2: A Code for Two Bursts of t Deletions in q-ary Sequences.

This code achieves redundancy of 7.4 logn + 10 log logn + 3 log q + O(1) and

demonstrates extensibility and modularity, making it extensible to scenarios

involving more bursts of deletions.

• Code C3: A Code for Three Bursts of t Deletions.

This construction achieves a redundancy of 15 logn+o(logn) and provides a sig-

nificant reduction in decoding complexity compared to syndrome compression

codes, especially for large t.
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• Theoretical Insights and Practical Implications.

We analyzed the redundancy and complexity trade-offs of our constructions,

showing that while C2 and C3 have higher redundancy than some prior work,

their extensive design and lower complexity make them valuable for practical

applications.

The implications of this research extend beyond theoretical advancements. Burst

deletion correcting codes have potential use cases in domains such as data storage,

communication systems, and genome sequencing for DNA data storage, where clus-

tered errors frequently occur. Our work provides a foundation for exploring efficient,

scalable, and adaptable solutions to handle such errors.

Despite these achievements, certain limitations remain. For instance, C2 has a higher

redundancy than Ye et al.’s code, and C3 could benefit from further optimization to

reduce its redundancy or extend its applicability to more bursts of deletions. Ad-

dressing these challenges represents exciting directions for future research.

In conclusion, this thesis contributes significantly to the study of burst deletion cor-

recting codes, offering new constructions that balance redundancy and complexity.

By addressing the theoretical and practical aspects of burst error correction, this work

provides a valuable framework for further exploration in error-correcting codes.
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Chapter 6

Summary

This thesis explores the design and analysis of burst deletion correcting codes, address-

ing a challenging error scenario in coding theory. Through extensive and modular

constructions, this work provides new approaches for correcting bursts of deletions in

both binary and q-ary sequences.

We proposed three codes: one for two bursts of exactly t deletions in binary, one for

q-ary sequences, and one for three bursts of exactly t deletions. These codes balance

redundancy, complexity, and extensibility, providing practical frameworks for real-

world applications such as data storage and communication. While our constructions

sometimes incur higher redundancy than existing methods, they excel in extensibility,

computational efficiency, and adaptability to larger error scenarios.

By advancing the understanding of burst deletion correction, this thesis lays a foun-

dation for future research in constructing codes with lower redundancy, improving

complexity, and addressing even more complex error models. The findings presented

here contribute both to the theoretical development of error-correcting codes and to

their application in domains requiring robust data reliability.
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