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Abstract

Drinfeld and Jimbo introduced quantum groups as deformations of the universal enveloping
algebras associated to semi-simple and Kac-Moody Lie algebras. The study of the structure
of these algebras lead to the discovery of canonical bases by Lusztig. These bases have
many desirable properties, and recently have played an important role in the development
of categorified quantum groups.

This dissertation studies the structures and canonical bases for quantum supergroups
of anisotropic type; that is, quantum groups associated to Kac-Moody Lie superalgebras
with no isotropic odd roots. We proceed by utilizing the framework of covering quantum
groups, which are algebras with two parameters, namely the quantum parameter ¢ and half
parameter 7 satisfying 72 = 1, which interpolates between a Drinfeld-Jimbo quantum group
(the m =1 case) and a quantum supergroup (the m = —1 case). A version of these algebras
was first introduced by Hill-Wang in the context of categorifications of quantum groups.

We develop analogues of several classical quantum group constructions, including a
(braided) Hopf algebra structure and a quasi-R-matrix which intertwines two coproducts.
We also define an analogue of the BGG category O and show that the integrable modules in
O are completely reducible. The covering quantum group admits a bar-involution § = 7¢~*
and a bar-invariant integral form. We construct canonical bases for integrable modules
of O and for the half-quantum covering group, generalizing Kashiwara’s grand loop and
globalization constructions. This canonical basis is then extended to a modified form of the
quantum covering group a la Lusztig. Specializing our constructions to m = —1 yields the

first examples of canonical bases known for quantum supergroups.
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Chapter 1

Introduction

1.1 The quantum groups associated to a Kac-Moody Lie algebra g have been
studied intensely since they were introduced in the seminal work of Drinfeld [D] and
Jimbo [Ji]. These Hopf algebras have interesting and fruitful connections to a wide
array of topics; indeed, while the notion of a quantum groups originally motivated
by mathematical physics, they also are intimately related to Lie theory, modular
representation theory [Lu2], knot invariants [RT], categorification, and so on.

The connection to categorification germinated from the discovery of a remarkable
basis, called the canonical basis, for the negative half of the quantum group associ-
ated to g. This basis was discovered by Lusztig [Lul], using geometric methods of
perverse sheaves on quiver representations, and subsequently by Kashiwara [Kasl],
using algebraic constructions called crystal bases. One of its remarkable properties is
that if the associated Lie algebra g has a symmetric generalized Cartan matrix, the
structure coefficients with respect to the canonical basis lie in N[g, ¢!, where ¢ is
the quantum parameter. This fact, which is a consequence of the geometry utilized
by Lusztig, directly suggests a categorification and such a categorification has been
produced in the work of Khovanov-Lauda [KL] and Rouquier [R] using quiver Hecke
algebras. Since then, there has been a flurry of developments in categorification; see

for example [We, BK, VV].



1.2 Given the physical origins of the study of quantum groups, a natural exten-
sion of the study of quantum groups associated to Kac-Moody Lie algebras would be
to study quantum supergroups associated to Lie superalgebras (see [Kac, ChW] for
more on Lie superalgebras). In fact, many papers have been produced defining quan-
tum supergroups and determining many of their properties [BKM, Ge, Y1, Y2, Z].
Unfortunately, the more complicated structure of Lie superalgebras is reflected in the
structure of their associated quantum groups. Despite the construction of crystal
bases [BKK, Kw, MZ], no examples of canonical bases have been known for quantum
supergroups, and indeed the prevailing expectation was that they did not exist.

On the other hand, some recent developments in categorification suggest the ex-
istence of canonical bases. In a paper of Kang-Kashiwara-Tsuchioka [KKT], it was
suggested that quiver Hecke superalgebras, a natural super-analogue of KLR algebra
which have also been studied in [Wa, EKL], could also be used to categorify Kac-
Moody quantum groups (this conjecture was verified by Kang-Kashiwara-Oh [KKO]).
However, any superalgebra comes equipped with a Z/27Z grading, called the parity
grading, and this grading induces functors on the representation categories. The cat-
egorification proposed in [KKT] essentially forgets this additional structure to obtain
a non-super decategorification.

A key insight of Hill-Wang [HW] was that this parity could be used to encode a
new additional “half-parameter” 7 (satisfying 72 = 1). If we consider quiver Hecke
superalgebras associated to Cartan datums of anisotropic type - that is, a Cartan
datum which is Z/2Z-graded and has with no isotropic odd roots - and we keep track
of the parity functor, we can obtain a categorification of a half-quantum covering
group. This half-quantum covering group is an algebra with two parameters, namely
the (generic) quantum parameter ¢ and half parameter 7 satisfying 72 = 1, which
specializes to a half-quantum group at @ = 1, and a half-quantum supergroup at
m = —1. This perspective implies that there is at least a notion of a categorical

canonical basis for the half-quantum supergroup arising from the indecomposable



projective modules of the associated quiver Hecke superalgebra.

1.3 Motivated by this result, we examined the quantum group associated to
osp(1]2) [CIW]. As this is the simplest anisotropic type quantum group and had
already been studied in the literature, any hope for a canonical basis would start there.
However, our investigation lead us to two variant definitions of the quantum group
which each captured different sets of finite-dimensional simple modules. Combining
them led to the construction of canonical bases for all the simple modules, as well as
a canonical basis on a modified form of the quantum supergroup.

An important aspect of these results is that all of our constructions could be
defined using the half-parameter 7 such that structure coefficients, when suitably
interpreted, are positive. It was conjectured [CIW] that, in the rank 1 case, a notion
of a categorified modified quantum covering group could be constructed analogously
to [Lau], and indeed this has been accomplished by Ellis-Lauda [EL]. Moreover, it
is hoped that such categorifications could provide a categorical explanation for the
existence of odd Khovanov homology [ORS], an idea which is corroborated by some

upcoming work of Mikhaylov-Witten [MW].

1.4 It is the combination of the perspectives in [CIW, HW] which leads us to the
definition of the quantum covering group, the main object of study in this dissertation.
All of the main results stated in this dissertation were originally published in the
sequence of papers [CHW1, CHW2, C] (also cf. [CFLW, CHW3]). Here we will
present a coherent narrative of these results.

The quantum covering group U associated to an anisotropic Cartan datum is an
algebra over the ring Q(q)" = Q(¢q) ® Q(q)7, where ¢ is the quantum parameter (in
the usual sense) and 7 is again a “half-parameter” satisfying 72 = 1. Just as with
half-quantum covering groups of [HW], the main idea is that the quantum covering

group interpolates between usual quantum group at 7 = 1 and a quantum supergroup



at m=—1.

Our definition of a quantum supergroup is new, but is closely related to the defini-
tions which have appeared in the literature. The main difference from these standard
definitions is the addition of new generators to the Cartan part. To wit, a Drinfeld-
Jimbo quantum group associated to g has a subalgebra generated by elements of the
form ¢", where h is an element of the Cartan subalgebra h C g and ¢" acts on a M-
weight space by ¢*™. Our quantum covering groups additionally have elements of the
form 7. Some important benefits of our definition is that the quantum supergroups
are defined over Q(q), afford a Z[q, ¢~ ']-integral form, and admit simple integrable
modules for all dominant weights (compare with [Z, Je]).

The interpolation perspective of quantum covering groups allows us to develop the
structure theory the quantum supergroups in tandem to that of quantum groups, and
in particular most of the structural features (e.g. the triangular decomposition, the
quantum Casimir operator and the quasi-R-matrix) can be developed in the covering
algebra setting. Moreover, we define a notion of a category O for U, which is a direct
sum of categories Oy of representations of the m = +1 specializations of U. On the
other hand, a natural subclass of U-modules are the 7-free modules; that is, modules
which are free with respect to the coefficient ring Q(¢)". This leads us to our first

main result.

Theorem A. Let U be the quantum covering group associated to an anisotropic
Cartan datum. For each dominant weight X, there is a unique simple 7-free integrable
module V(X) € O of highest weight A. Moreover, any integrable 7-free module M € O

15 a direct sum of such simple modules.

1.5 A strong understanding of the structure of the quantum covering group U be-
gins with first understanding the structure of U™, the half-quantum group associated
to the negative roots. A useful abstraction of this algebra (which is isomorphic the

half-quantum group) is the twisted bi-algebra f, which was introduced for quantum



groups by Lusztig. These algebras enjoy several useful structures, such as a (twisted)
co-product, a non-degenerate bilinear form which entwines the multiplication and
coproduct, and auxiliary structures such quantum derivations. To find a canonical
basis, we would also need an integral form of f, and an essential fact (which was first
observed in [HW]) is that if we use the unorthodox bar involution q — wq™!, this
algebra has a natural bar-invariant integral form.

One main intent in our study of these algebras is to show that a reasonable intrinsic
definition of a canonical basis exists, and to determine its properties. In particular,
this demonstrates (for the first time) a family of quantum supergroups admitting

canonical bases.

Theorem B. Let U be the quantum covering group associated to an anisotropic Car-
tan datum. Then the half-quantum group U~ admits a canonical basis B. Moreover,
for each dominant weight A and associated simple module V() with highest weight
vector n, the set {bn : b€ B} \ 0 is a basis of V().

To prove this result, we have two potential paths to follow. The first would be
to attempt to mimic Lusztig’s geometric approach; however, there does not seem to
be any geometry to use in the super case. Given the previous successes of crystal
basis theory in the super world, we instead use Kashiwara’s grand loop argument to
construct crystal bases. Many essential arguments for this proof almost carry over
exactly from [Kas1] with minor bookkeeping, but there are some significant deviations,
most notably to obtain the globalization part of the argument.

Indeed, in the covering setting it is much harder to show that the crystal lattices
are invariant under a certain antiautomorphism of f, a property which features cru-
cially in constructing the canonical bases. To obtain this result, we use techniques
from [CFLW], which were motivated by the two-parameter construction given by Fan-
Li [FL]. In particular, we construct some remarkable isomorphisms, called twistors,
over a complexification of our algebra which allow us to directly link the super and

non-super versions of our quantum group. These isomorphisms are used in an essen-



tial way to prove the existence of the canonical basis; moreover, we show that they

preserve the canonical basis in a suitable sense.

1.6 It is crucial to the argument for Theorem B that the Cartan datum is
anisotropic. However, there are many other interesting Lie superalgebras which we
could consider, most notably those of basic type (cf. [ChW]). For instance, two fam-
ilies of basic type Lie superalgebras are the general linear Lie superalgebra gl(m|n)
and the orthosymplectic Lie superalgebra osp(m|2n). (The only basic type Lie su-
peralgebras with an anisotropic Cartan datum are osp(1|2n) for n > 1.)

It is an interesting question to ask if Theorem B can be extended to basic type
quantum supergroups. This question is partially answered in [CHW3], where canon-
ical bases are constructed for quantum groups associated to gl(1|n), osp(2|2n), and
0sp(1|2n). However, the methods used are quite different then the ones we shall em-
ploy here, and so we shall not discuss these cases. We note that an interesting open
question is to relate the bases constructed for osp(1|2n) herein and those constructed

in loc. cit., and we expect these bases to match.

1.7 The remainder of this dissertation addresses extending the canonical basis
to the whole quantum covering group in some sense. In the context of Drinfeld-
Jimbo quantum groups, the precise construction was originally devised in type A in
a paper of Beilinson-Lusztig-McPherson [BLM|, and generalized by Lusztig [Lu3].
Essentially, we can add orthogonal idempotents to the quantum group associated
to each weight with the proviso that the quantum Cartan subalgebra acts on each
idempotent according to its weight. The resulting algebra, called a modified quantum
group, carries much of the same structure as the quantum group, and has essentially
the same representations. This procedure generalizes to quantum covering groups,

and so in this way we construct the modified quantum covering group U.

Theorem C. Let U be the modified quantum covering group associated to a Cartan



datum of anisotropic type. Then U admits a canonical basis B of its integral form.
Moreover, U carries a bilinear form {—, =}, extending the bilinear form on f, which
s invariant under several automorphisms of U. Moreover, the basis B is almost

orthonormal (in a suitable sense) with respect to {—,—} on U.

Given the prodigious role of such bilinear forms in categorification, we expect our
bilinear form on U to play a significant role in efforts to categorify modified quantum

covering groups.

1.8 The following is an outline for the dissertation.

In Chapter 2, we define the notion of an anisotropic Cartan datum and root
datum. We then define the algebra f and deduce some of its important properties
and structures. In particular, we define the twistor isomorphism on f and use it to
deduce a Serre presentation for f.

In Chapter 3, we define the quantum covering group. We show that several of
the essential properties of quantum groups can be generalized to the covering setting,
including a (braided) Hopf algebra structure and a triangular decomposition. We
then discuss analogues of weight modules and category O; in particular, we define
the Verma modules M () and their simple quotient modules V' (\)|+;. Along the way,
we show that the twistor on f can be extended to an isomorphism on U. Moreover, we
show that the Verma and simple modules have induced twistor isomorphisms, and use
these to deduce a character formula for the simple modules. We then construct the
quasi-R-matrix and a quantum Casimir-type operator, which is then used to prove
Theorem A.

In Chapter 4, we develop the machinery for crystal bases. in particular, we define
an analogue of Kashiwara’s “boson algebra” and use its representation theory to define
crystal structure on f. We then introduce a notion of crystal bases for U-modules,
a tensor product rule for crystals, and a bilinear form (called a polarization) on

each V(). We then adapt the grand loop argument to the covering setting, proving



the existence of crystal bases. After developing a relationship between the twistor
isomorphism on f and the crystal structure on f, we show that the crystal bases can
be upgraded to the bases in Theorem B.

In Chapter 5, we define the modified form of U and relate it to the family of
U-modules N (A, X), which are certain tensor products of modules. We define a
bar-involution on the N(A, \’) using the quasi-R-matrix (in an analogue to Lusztig’s
construction) and use it to construct canonical bases for N (A, \'). We then show that
these canonical bases can be “glued together” in some sense to a canonical basis of
U. We then define a bilinear form on U and develop its properties, which proves
Theorem C.

Finally, we have an appendix on twisted bialgebras, which are certain general-
izations of f. The structure of these algebras are developed with an eye towards
understand the twistor isomorphisms and the related constructions in [FL]. In par-

ticular, some of these results are used to prove the Serre presentation for f.



Chapter 2

The twisted bialgebra f

2.1 The Cartan datum

Definition 2.1. A Cartan datum is a pair (I,-) consisting of a finite set I and a

Z-valued symmetric bilinear form v,v' — v-v' on the free abelian group Z[I| satisfying
(a) di =% €Ly, Viel;
(b) ai; :2% € Z<y, fori#jin I.

A Cartan datum is called an anisotropic super Cartan datum (or anisotropic datum,

in brief) if there is a partition I = Iy [[ Iy which satisfies the anisotropic condition
(c) 22 € 2Z ifi € L.

An anisotropic datum is called bar-consistent if it additionally satisfies
(d) d; =p(i) mod 2, Viel.

We will always assume I; # () without loss of generality. An anisotropic datum
is always assumed to be bar-consistent in this paper. We note that a bar-consistent

anisotropic datum satisfies
i-je2Z foralli,jel. (2.1)

We set the notation

bij =1- Qjj- (22)
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The ¢ € Iy are called even, v € [ are called odd. We define a parity function
p:1 — {0,1} so that i € I,;). This function extends to a homomorphism p : Z[I] —
7,/27., and so p induces a parity Z/27-grading on Z[1].

Remark 2.2. We will freely identify Z./27 (and later, Z./AZ) with the subset {0,1}
(resp. {0,1,2,3}) of Z, and use this identification implicitly in equations; for example,

p(@)?+p(x)
) 2

an expression such as (—1 implicitly assumes p(x) € {0,1}.

We define the height function on Z[I] by letting ht(} .., cii) = > ,.;ci. For

V=) .c1Vil, we define the notation

A root datum associated to a anisotropic datum (7, -) consists of

(a) two finitely generated free abelian groups Y, X and a perfect bilinear pairing

(—,—): Y x X =7
(b) an embedding I C X (i +— ') and an embedding I C Y (i — i) satisfying
(c) (i,5') = 2L for all 4,5 € 1.

Remark 2.3. We are using the conventions used by Lusztig in his text [Lu4], which
are conveniently minimal for the (sometimes) involved formulae which shall appear. It
15 simple to pass between this notation and the more traditional root system notation:
each v € I is the index of a simple root ov;, and the generalized Cartan matrix is given
by a;j; the embedding I C'Y gives the dual roots, and the embedding I C X realizes

the simple roots as elements of the weight lattice.

If the image of the imbedding I C X (respectively, the image of the imbedding
I C Y) is linearly independent in X (respectively, in Y'), then we say that the root
datum is X-regular (resp. Y-regular).

For i # j € I such that (i,7') (j,i') > 0, we define an integer m;; > 2 by

cos? = 2 (i,5") (4, 7'y if it exists, and set m;; = co otherwise. We have
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(006 |0 1 2 3 >4

The braid group (associated to I) is the group generated by s; (i € I) subject to

the relations (whenever m;; < co):

S$iSjSi = S555i55 -, (24)
N—— ——

The Weyl group W is defined to be the group generated by s; (i € I) subject to
relations (2.4) and additional relations s? = 1 for all 7.

For i € I, we let s; act on X (resp. Y) as follows: for A € X, \V € Y,
si(A) =X = (i, \)7, si(AY) =AY — (N, )i

This defines actions of the Weyl group W on X and Y.

If V' is a vector space graded by Z[I] (respectively, X), we will use the weight
notation |z| = p if € V, for p € Z[I] (respectively, X). If V is a Z/2Z-graded
vector space, we will use the parity notation p(z) = a if z € V, for a € Z/27Z. In
particular, all formulae containing the notations |- | and p(-) implicitly assume that

the elements within are homogeneous with respect to the corresponding grading.

2.2 Quantum parameters
Let ¢ be a formal parameter and let m be an indeterminate such that
72 =1.
For a ring R with 1, we will form a new ring R™ = R[r]|/(7*—1). Given an R™-module
(or algebra) M, the specialization of M at m = +1 means the R-module (or algebra)

M|;—41 = Ry @pr~ M, where Ry = R is viewed as a R™-module on which 7 acts as

+1.
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Assume 2 is invertible in R; i.e. % € R. We define

147 l1—m
= 2.5
Ey = 5 € 5 ( )

and note that R™ = Re, & Re_. In particular, since mex = +e, for an R™-module
M, we see that
Mlpeiy Z e M.

The principle rings of concern in this paper are Q(¢)" and A = Z[q, ¢ ']™. Unless
otherwise stated, by convention the tensor product of Q(g)"-modules is always taken
over Q(q)".

For k € Z>o and n € Z, we use a (g, 7)-variant of quantum integers, quantum

factorial and quantum binomial coefficients:

], = P4 oy
’ T —4q
. =110, €A (2.6)

€ A.

I=1
{n} _ [Tl i (7)) —q7")
k g, an:l ((Wq)m - q_m)

These binomial coefficients arise naturally in the following way. If x,y are two
elements in a Q(g)"-algebra such that zy = w¢*yx, then for any a > 0, we have the

quantum binomial formula:
(x+y)* = gte? {ﬂ Yttt (2.7)
q,T
We will use the notation
¢ =q% m=n% foriel.

More generally, for v =" i, we set

w=][a" m~=]]="

i€l el
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There are two notable automorphisms of Q(¢)" and A for our purposes. The
bar involution on Q(q)" is the Q™-algebra automorphism defined by m = f(mq™")
for f(q) € Q(q)". The dagger involution on Q(q)" is the Q™-algebra automorphism
defined by f(q)" = f(mq) for f(q) € Q(q)". We note that both involutions restict to
Z"-algebra automorphisms of A.

Note that the (g, 7)-integers [n]; and the (g, 7)-binomial coefficients in general are

not necessarily bar-invariant unless the anisotropic Cartan datum is bar-consistent.

Moreover, the (g, 7) integers are not f-invariant in general; to wit,
Kb = 7 o (K" = 7GR M = hn=h) M |
q,T

In particular, we note that {Z} is f-invariant if and only if n is odd or £ is even.

q77T

Remark 2.4. We note that [n]l = LD could well be the definition of (q,m)-

q—mq"

integers, and we regard it as an alternate convention.

These (g, m)-quantum integers satisfy identities analogous to more traditional

quantum integers.

fa]  _ (—1)trta=(2) [t - ctz — 1] - 2.8)

L dgm

- s o<t <aq

o= oxlo=tlan if a >0, (2.9)
- -aT 0 ifa>t

a—1 a

H (1+ (m¢*)'2) = 7r(§>qt(“—1) {ﬂ 2 ifa>0. (2.10)
§=0 t=0 a7

Here z is another indeterminate. If o/, a” are integers and ¢ € N, then

a'—i—a” RV RV R VN T a/ a,”
[ t } LY st H H | 2.11)
q,m t/ q,mT q,m

) =t )

)

These identities can be proved directly, or by specializing analogous identities in

the Gaussian integers (n), = % at © = mqg®. This latter strategy is demonstrated
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in [CHW2, Lemma 7.2] which proves the following identity: if » > 0 and n > 1, then

~ ety [t =1 Jt+r4n] [r4n]l o
;( 1)'m : A R T B 1 rl2). (2.12)

We note the following specializations of some of the above identities. Observe that

l_tl] = (—1)%031) for any ¢t > 0, ¢ € I. Furthermore if @ > 1, then we have
q,m

a

3 (= 1)irgtan m =0 (2.13)

t=0

which follows from (2.10) by setting z = —1.

2.3 The algebras 'f and f

We define 'f to be the associative Q(¢)"-algebra with 1 and with generators 6; for
i € I. The algebra 'f is a superalgebra, where the parity grading on 'f is given by
p(0;) = p(i). We also have a N[I]-grading | - | on 'f defined by setting |0;| = i.

The tensor product 'f ® 'f can be equipped with an associative Q(q)"-algebra

structure with multiplication defined by
((131 X 1‘2)(1'/1 X (1;/2) = q|$2||93/1|7.‘.p(232)p(50,1)x1x/1 ® x2x’2'

This structure can be extended to arbitrary tensor powers of 'f; for example, the

algebra 'f @ 'f ® 'f, has an associative product defined by:

(21072 ® 73) (7] ® 74 ® )

N ; - ’ / /
_ gleable s bl el pp(ep) +p(esp @) @p @) o o @ pot @ gl

We define the coproduct r : 'f — 'f®'f to be the algebra homomorphism satisfying
r(0;) = 0; 14+ 1®46; for all i € I. One checks the following equality of algebra

homomorphisms holds:

rel)r=0xrr:f->"Te'fx'f.
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In particular, there are well defined homomorphisms 7 : 'f — £2+1 for all n > 1
obtained by inductively applying r to any choice of tensor factor. The coproduct

allows us to construct a bilinear form as follows.

Proposition 2.5. There ezists a unique bilinear form (—,—) on 'f with values in Q

such that (1,1) =1 and

(a) (0:,0;) = 0i;(1 —mig; *)~" (Vi j € I);

(b) (z,y'y") = (r(x),y ®y")  (Va,y,y" €T);

(¢) (xa',y") = (e @', r(y")) (Vo,2',y" €'f).
Moreover, this bilinear form is symmetric.

Here, the induced bilinear form ('f ® 'f) x ('f ® 'f) — Q(q) is given by
(11 ® @9, 7, @ xh) := (w1, 7)) (e, 7)), (2.14)

for homogeneous x1, x, 27, x4, € 'f.

Proof. Define an associative algebra structure on 'f* := &,'f by transposing the
“coproduct” r : 'f — 'f ® 'f. In particular, for g,h € 'f*, we define gh(z) :=
(9 ® h)(r(x)), where (g ® h)(y ® 2) = g(y)h(=).

Let & € 'f be defined by &(6;) = (1 — mq; >)~". Let ¢ : 'f — 'f* be the unique
algebra homomorphism such that ¢(6;) = & for all i. The map ¢ preserves the
N[I] x Zs-grading.

Define (z,y) = ¢(y)(x), for z,y € 'f. The properties (a) and (b) follow directly
from the definition. Clearly (z,y) = 0 unless (homogeneous) x,y have the same
weight in N[/] and the same parity. All elements involved below will be assumed to

be homogeneous.
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It remains to prove (c). Assume that (c) is known for y” replaced by y or 3/ and

for any z,2’. We then prove that (c) holds for y” = yy’. Write
r(z) = le R 9, r(z')= lel ® 5,
r) =Y n @y, )= D
Then
raa) = 3 g erel g 0! @ o,
r(yy') = Z q|y2|~|y’1\Wp(yz)p(yi)ylyi ® Yoll.
We have
(z2',yy') = (6(y)o(y)) (x2) = (d(y) ® o(y"))(r(z2"))
— Z q|962|'|w'1|7rp(w2)p(9€'1)
= gl (p) @ 2 v (y)) (12 @ 2, r(y))

= 7 g e (0 ) (2, ) (2, 1) (2, ). (2.15)

1711'/1, y) (I’QZL‘,% y,)

(
(
(
(

On the other hand,

(z @2, r(yy)) = Z quz\-lyilﬁp(yz)p(yi)(x ® 2, 11, @ yaish)

— Zq|y2|-\yi|7rp(y2)p(y’1)(x’ylyi)(f,yw;)

= Z g2l WP W) (r () 4y @ ) (r(2)), v ® 1)

=D W) () (2, o) (2, 4 (2, ) (2.16)
For a summand to make nonzero contribution, we may assume that each of the four
pairs {z1,y1}, {2}, 2}, {z2, ¥} }, {x}, y4} have the same weight in N[/] and the same

parity. One checks that the powers of ¢ and 7 in (2.15) and (2.16) match perfectly.
Hence the two sums in (2.15) and (2.16) are equal, and whence (c). O

We set Z to denote the radical of (—, —). As in [Lu4], this radical is a 2-sided ideal
of 'f. Let f = 'f/Z be the quotient algebra of 'f by its radical. Since the different
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weight spaces are orthogonal with respect to this inner product, the weight space
decomposition descends to a decomposition f = @, f, where £, is the image of 'f,.
Each weight space is finite dimensional. The bilinear form descends to a bilinear form

on f which is non-degenerate on each weight space.

Remark 2.6. An alternate convention for extending the inner product to "% which

we could take is
(551 & $27$/1 ® $l2)signed = Wp(xll)p(m)(iflj 55/1)(372,55/2)

For example, this is the convention taken in [Y1, Ge]. We note that (—, —)signed
is equivalent to (—,—) up to a renormalization on each weight space; see Corollary
A.8 or [CHWS, Lemma 2.3]. In particular, the radicals are identical so there is no

ambiguity in the definition of f.

The map r : 'f — '£%? satisfies r(Z) C Z®'f +'f ® Z, essentially by construction,
whence it descends to a well-defined homomorphism r : £ — f®2. Let 'r : 'f — 'f®2

be the composition of r with the permutation map
rTRQY—yYQx

of 'f¥2 to itself. (Note that this map is an anti-automorphism of 'f®2.) We also let

o:'f —'f be the map satisfying o(6;) = 0; for each i € I and
o(zy) = o(y)o(x).
Lemma 2.7. (a) We have r(o(z)) = (0 ® 0)'r(x), for all x € 'f.
(b) We have (o(x),o0(z")) = (x,2') for all z,2" € 'f.
(c) o descends to f and satisfies (a) and (b).

Proof. First note that (c) follows from the fact that (b) implies o(Z) C Z. Since (b)
will follow immediately from (a), it suffices to prove that r(o(x)) = (0 ® o)'r(z), for

all z € 'f. This is obviously true for x € {1,0; : 7 € I}.
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Suppose that 7(o(z')) = (0 ® 0)'r(2’) and r(o(x”)) = (0 ® 0)'r(z”). Let r(z') =
Sa) @b and r(2”) = Y. 2¥ @ 2. Then r(z'z") = 3 =l pp@2)p@ g o @ 1t ol

and we have
r(o(a'z")) = r(o(z"))r(o(z"))
= (D ela) @ o) (D olah) @ olah))

= el o(2hal) @ p(ah ) = 0 ® o('r(a'z")).
The lemma is proved. O

We define a bar involution ~ : 'f — 'f such that §; = 6, for all i € I and fz = f7 for
f€Q(q)" and x € 'f. Let '"fR'f be the Q(q)"-vector space 'f ® 'f with multiplication
given by

(gjl (%) gg)(:[;/l (%) 33/2) = (ﬂ-q_l)‘xQ"|$/1|7TP($2)p($,1)x1x’1 ® 1’21'/2.

Define 7 still by 7(z) = r(Z). Then 7 : 'f — f&'f is an algebra homomorphism,

being a composition of homomorphisms. The co-associativity holds for 7:

TR 1)(F(x)=re)r@) =0r)r@) =(17F)(F(x)).

By checking on the algebra generators 6;, it is an easy computation to see that this
is an algebra homomorphism.

Let {—,—} :'f x'f — Q(q) be the symmetric bilinear form defined by
{z.y} =(@.7).
Then we have {1,1} =1, {6;,6;} = 6;;(1 — mq?) ™", and
{z,y'y"} = {F(z),y @ y"}, for all z, 9, y" €'f.
Lemma 2.8. (a) Let r(z) =) x1 ® xy. We have

F(l’) = Z(ﬂ'q)_h“l|'|x2|ﬂ-p(m1)p(l‘2)x2 ® x.
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o P@P@tp@)
(6) {z,y} = (1) g 2 (2, o(y)).
(¢c) — descends to an involution on f.

Proof. Tt is straightforward to check both claims are true when x = 0; and y = 0, for
some i,j € I. Assume (a) holds for = replaced by 2’ and by x”. We shall prove the
claim for # = 2’2”. Recall ¢ = mq~!, and r(T) = 7(z). Write

/ / 1! 1/ "
:E ] @ Ty, r(a:):g ] ® T,

'z Zq\x {Fwb| pp(@))p(h) 0 " @ ahal. (2.17)
By assumption, we have

_/) - Z q\:v’l\-lwélwp(zi)p(w’g)x_lz ® 5’5_,17

E |27 |- |25 | P (@ )p(5) 17 ) 17
q 2R s ® T

r@)r (@) = 3 gt g neb) glel el e e 0o (5 0 37 (27 0 27)

= Zq\x3\~|x’zl+\ﬂc’1’l~lr’2’ mP@)P(@2) +p())p(ez)+p(z1)p(e2) glvi | Ilex/ 7 Q T
Then,

7(2'2") = r(?)r(ﬁ)
! ! 1 " /
_ Z =} 41 a1t Ht ) (e (a0 W+ 0Dt g 11 ) 1 7

= E ~letay Hages | pp(erepatas) gloy ol pp@Dpl) Hay ozl ! o @ gt o
Now, since the datum is consistent, |z - |z5| € 2Z, and hence we have
_ ol ot ||l el .y = AR, "
'r(x/x”) = g (77(]) |z 27| |x212|7Tp(1111)p(952x2)q|x1| ‘xz‘ﬂ-p(% )P(ffz)x' 513'” ® x’lx’l’ (218)

Comparing (2.17) and (2.18), we see that (a) holds.
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Let S be the set of y € 'f such that (b) holds for all x € 'f. Let ¢/, 3" € S; we will
show y = ¢'y" € S Let x € 'f and write r(z) = > 2’ ® 2” with z, 2” homogeneous.
Then

{I y/ //} _ {T( )7y/ ® y//} _ {Z(Trq)—\a:'|~|x//|7rp(1»/)p(g;u)x// ® x’,y' ® y//}
— Zq—|$'| |z p (z")p(z {.fl?,/,y } {.T y//}
ol =l Ly 1=l Ly =2le | "
= ) (=)l : G|~ o]
« 7.‘_p(x/)p(z//)+P(fC )P(y2 )tp(z )+P(Z )P(ZJQ)—P(T ) (:E//7 Q(y/))(x/’ Q(y//))
*) 2| ==yl p(z)p(y)+p(z)
D ()M g m T (2 @2, oY) @ oY)

z ||yl p(x)p(y)+p(z)
= (=DM g gr (3 0(y'y")

where the equality () follows from the observation that the nonzero terms in the sum
only occur when the each of the pairs {z/,3”} and {2”,y'} are of the same weight
and parity. Therefore we see y € S§. Since the algebra generators lie in S, the claim

is proved. O

2.4 Differentials and Serre relations

Let ¢ € I. There are unique Q(¢)"-linear maps r;,;r : 'f — 'f such that r;(1) =
ZT(l) =0 and ri(0j> = ir(0j> = (5@' satisfying

ir(zy) = ir(@)y + 7P i ()

rilay) = TP )y + ari(y)

for homogeneous z,y € 'f. We see that if x € 'f,, then ,r(x),r;(x) € 'f,_; and
moreover that

r(x) =ri(z) ®0; + 6, ® ;r(x) + (...) (2.19)
where (...) stands in for other bi-homogeneous terms =’ @ 2" with |2/| # ¢ and |2"| # 1.

Therefore, we have

(g, 2) = (6:,0:)(y,r(2)),  (y0i, x) = (6:,0:) (y, 7:(2)) (2.20)



21

for all z,y € 'f, so ;7(Z) Ur;(Z) C Z. Hence, both maps descend to maps on f. It is

also easy to check that
Tip = Pl

Indeed, this is trivially true for the generators, and if this holds for x,y € f, then

ri p(xy) = ri(p(y)p(x)) = PP g ey (p(y) p(z) + p(y)ri(p(z))

= p(n? PO (y) + i (2)y) = par(ey).

We define the bar-conjugate differentials ;7 = o,y 0o~ and 7; = ~or; 0 —. Note
that they satisfy similar properties to ;7 and r;, but with » and (—, —) everywhere
replaced with 7 and {—, —}. In fact, a more explicit relationship can be realized as
follows.

Lemma 2.9. For any homogeneous x € f, we have
ri(x) = aP@PO—POPE) glelimit =gy
Proof. This is trivial when x = 6;. Now assume this is true for z,y € 'f. Then

W — ﬁy + P@)p(i) (Wq)—lrliﬁ
— W*p(w)p(i)w(i)p(i)qflml-iﬂ'-in.(x)y
+ 7 PWPOFPOPE) o=yl i gp(@p() () =leligy ()
— W—p(z+y)p(i)+p(i)p(i)q—lw+y|~i+i~i (ﬂp(y)p(i)qu"in(x)y + m’i(y))

— g P@+y)p())+p(i)p(7) *Iw+y|-i+i-in<

q ry)-
The lemma is proved. O
Lemma 2.10. Let = € f, where v € N[I] is nonzero.

(a) If ri(x) =0 for alli € I, then x = 0.

(b) If ;r(z) =0 for alli € I, then x = 0.
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Proof. Suppose that r;(z) = 0 for all i. Using (2.20), this means that (y6;,z) = 0 for
all y € f and all + € I. But since f is spanned by monomials in the 6;, this implies

x €T, and so x = 0 in f. The proof of (b) proceeds similarly. O

For any n € Z, let the divided powers 91(") (in f or 'f) be defined as 6;/[n],, . if
n > 0 and 0 otherwise. Let ,f be A-subalgebra of f generated by the elements 955)
for various ¢« € I and s € Z. Since the generators QZ(S) are homogeneous, we have
Af = @, af, where v runs over N[I]| and f, = Af N {,.

The next two lemmas describe the behavior of divided powers with respect to the

previously defined structures on f.
Lemma 2.11. For any n € Z we have
(@) (") = Xrpvmn 66 @ 6",
(8) T(O0") = Lpon(mia) 0 7.

Proof. By the quantum binomial formula (2.7) applied to x = 1 ® 6; and y = 6, ® 1,

the formula follows. O

Lemma 2.12. For any n > 0, we have

n—+1

n n - T; n 2 —L\—n : -
(95 ),9§ )) = H— =T Qi( )(Wi%‘ —q ") ([n]lhﬂ'z) g

Proof. We prove by induction on n. The lemma is true by definition for n = 0, 1. For

general n, it follows by Lemma 2.11(a) that
(67.607) = Ik, (60" @01, (6))

= g, <9§”” @0, > g0’ e eE”)

t+t'=n

=l (8 0 0.0 @)

= ¢/ '[n], 4, (63, 0:) (91@_1)» 9§n_1)> :
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Hence by the induction hypothesis, we have

(6,6) = g~ )y, (=m0 (g — ) (- 10 )
— N ("-2H> P A ! -1
= T; q; (ﬂ-z(b q; ) ([n]qi,ﬂ) :

The lemma is proved. O

We are almost ready to define the essential relations in f, but we first need the

following lemma.

Lemma 2.13. Let N € N and a,a’ € N with N = a+d'. Leti,j,k € I be pairwise

distinct. Then
(a) r(6/70,61) = 0,
) (@08 = D0 [N o)
qi, T4
(c) Ti(ega)ejel(a')) _ qq’+(N+(iaj>—1)7T{1’+p(j)6;l(a—1)ngga/) +q;1’—191(a)9j9§a'—1)'

(2 K3

Proof. Part (a) is clear from definitions. By (2.19) and Lemma 2.11(a) we have

a a—1p(a—1)
T‘i/(ej(.,)) = 5277]‘/(]. 97:’ .

Parts (b) and (c) follow from this and noting
ri(cha) = cbri(a) + wp(i)p(“)qi'mcn(b)a + 7Tp(i)p(a)er(i)p(b)qi~|al+i-\blri(C)bw
The lemma is proved. O

Proposition 2.14 (Quantum Serre relation). The generators 0; of f satisfy the re-

lations
S (T g (221)

foranyi#j inl.
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Proof. By the previous lemma, we have

(S (e P g 000 Z 0 tor k£,

n+n’:bij

In addition, we have

Sy (—1)%”’””( >9<”99§”’>

7

ntn/=b;;
= Z (—1)”/7r:/p(j)+<g)q?l<i’j>7T?/p(j) [i’g] elgbij)
n+n/=b; gi i
— pii) bij (_1)t (1) \t(1=bsy) bij
o t=0 e {tLim

By (2.1), 1-b;; € 2Z if i is odd, so in any case, the right-hand side of the last equation
is

bl] b
(ma; >“”“‘”M =0

i, T4

t:()

where the last equality follows from (2.13). Finally,

|l > (1) )9<”99<”

TL—‘—?’L’ Zbij

I Z n’ np +(2)q?/_10§n)0j0§n/_1)

n+n'/=b;;

tp()+p()+("5") 4 abii—1—t) 5 At
= (1)’ (3 >Qf9¢ ! 0,;0,"

_ (_1)t7r(t+1)p(j)+(t;rl)qte(bij—lft)‘g yIO

) 174 I

Now Proposition 2.14 follows by Lemma 2.10. O
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Remark 2.15. Note that the bar map — on £ may not be well-defined if we do not
assume that the Cartan datum is bar-consistent. For example, suppose (I,-) has

1, € Ig with i -j = —1, hence d; = d; = 1. Then the calculations above hold; that

is, Sij = 952)@ — 0,00, + QJHZQ) = 0; howewver, since [2]; = m[2];, it is easy to see that
Sy ¢T.

In fact, the quantum Serre relations generate all other relations.
Proposition 2.16. The ideal T of 'f is generated by the Serre relations.

Remark 2.17. An alternate proof of this result using a U-module character formula
argument is giwen in [CHW1] using the results in [BKM]. We will present an in-
dependent proof in the next section, which instead uses some general results about

“twisted bialgebras”; see the appendix for details of these structures.

2.5 The twistor isomorphism

Let t be a square root of —1. For a ring R and R-module M (resp. R-algebra A), let
M]It] = R[t] ®g M (resp. A[t] = R[t] ®r A) be the corresponding scalar extension.
In particular, we consider the Q(q, t)"-algebra f[t]. We define t; = t%.

Definition 2.18. An enhancer ¢ is an function ¢ : Z[1]| x X — Z/AZ satisfying

(a) o, A\+p') = ¢(v, 1) + (v, A) and (v+p, A) = d(v, \) +d(u, A) for v, € N[I]
and \ € X.

(b) $(i,') € 22/A7 fori#j € 1.
(c) ¢(i,5") — ¢(j,1") =i j +2p(i)p(j) and ¢(i,i") = d; fori+#j € I.

Remark 2.19. A particular choice of enhancer is defined in [CFLW] where the Car-
tan datum is X -reqular, so such an enhancer certainly exists. The reqularity condition

is not necessary if we take the restriction ¢|znxzp, hence for many results pertaining
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to f we need not assume X -reqularity. Nonetheless, we will brush this matter under

the carpet and henceforth we will always assume an enhancer exists.

Fix a choice of ¢. Define a new multiplication * on f[t] by setting
xxy = t2UebW) gy (2.22)

Since ¢ is bilinear and the original multiplication was associative, (f[t],*) is a N[I]-

graded associative algebra generated by ;. We will use the notation

T =xxxr*... %2
—

n
for powers taken with respect *. The eponymous isomorphism of the section is de-

scribed in the following lemma.

Lemma 2.20. There is a Q(t)-algebra isomorphism X : f[t] — £[t], called a twistor,
defined by

X(0,)=0; iel), X(q)=-tq, X(n)=-m X(zy)=2%X(z)*xX(y). (2.23)
Proof. Set

bi;
Sij = (—1)k(—7r)(g)p(i)+kp(i)p(j) {b]ij

k=0 :|t-1‘h7(_77)i

k3

0, x0; % 07"

To show such a Q(t)-linear map X exists, it suffices to show that the images of the
generators satisfy (2.21) with respect to *; that is,

S =0 foralli#jel. (2.24)

To that end, let i, 5 € I such that ¢ # j. Unraveling the definition of %, we have

N ye () +Rp(p() | D
Siy =Y (=D (-mz [k;qu_ o,

k=0
x £((8)+(*5 ) Hh(bi =it (b =000 ) +hol5i) ghis g gk
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One verifies that (g) + (birk) = (bij) — k(b;j — k) and

2 2

|:@f| — tk(bijfk)di |:b1]:| )
k ti_llh’a(—”)i k qisTi

Using these identities, we rewrite S;; as

bij
¢~ () S, = Z(_1)k(_ﬂ)(’;)p(i>+kp<z'>p<j> {Zﬂ £ (bR ) +ho(i0) b~y gk
k=0 ti_lqi)(_ﬂ-)i
bij k . N
= (_1)k(_7r)(2)p(z)+kp(Z)p(J) [ kzj} t"’@?ij_kejﬁf, (2.25)
k=0 qi,T;

where
& = k(bij — k)di + (bij — k)o(i, §') + ko (4, 7)
= k(1 — ay — k)d; + i ¢, 5') + k(i - j 4 2p(i)p(5))

=i ingoti.d)+2 ( (§)o0) + bntip(i) ) - (mod 0

Then we can rewrite (2.25) and apply the Serre relation (2.21) for f to conclude that

bij
Bii\ s A N o
¢~ (5 ) di—ig—bij8(i.g )8, = E :(_1)k7r('§)p(2)+kp(l)p(a) {b;;] Q?w keﬂf —0.
k=0 qi,T

Therefore, (2.24) is verified and W is well defined.

Finally, to see that X is an isomorphism we can observe that since products in
f[t] and (f[t],*) are equal up to a scalar, the Serre presentation for f induces a
presentation for (f, ) by rewriting the Serre relations in terms of . In particular, a

similar argument can be used to show that a map 9) : (f[t], *x) — f[t] satistying

D(0:) =0, V(g) =tq, V(r)=—-7, D(z*y)=D()D(y),
is well defined as well; clearly %) is the inverse of X. ]

A particularly useful property of the twistor isomorphism is that it restricts to a
Q(t)-vector space isomorphism of f[t]|,—; and f[t]|,=_1, thus allowing us to compare

the non-super and super aspects of f.
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Remark 2.21. [t follows from the map X that the canonical basis of f|,—1 induces a
Q(t7'q)-basis of £[t]|x=_1. Moreover, we shall see that X commutes with the respective

bar involutions, so this basis is bar-invariant. However, it is

It turns out that this isomorphism is forced to exist by some general structure
theory, and this perspective allows us to prove that the Serre relations generate all
the relations.

Sketch of proof of Proposition 2.16

First, the algebra 'f[t] is an example of a twisted bialgebra over Q(gq,t)™; see the
appendix for a discussion of the structure of such algebras. The twistor X defined
above is just an explicit description of an isomorphism of nondegenerate twisted
bialgebras. Indeed, (f[t],*) is just the t-twist of f[t], where t(u,v) = t?¢+*). In
particular, one can show it is the unique (up to isomorphism) nondegenerate twisted
bialgebra of type (I,¢,1) for a particular bicharacter ¢. On the other hand, f[t] is
a nondegenerate twisted bialgebra of type (I,e,1) up to the change of parameters
q — t7'¢ and T — —m, so it must be isomorphic to (f[t],*). In particular, this
provides an alternate proof of Lemma 2.20 which is independent of Proposition 2.16.

Now, the twistor lifts easily to an isomorphism of 'f[t] and ('f[t],*). By the
computations in the proof of Lemma 2.20, the image of a Serre relation under this
isomorphism is proportional to itself. On the other hand, Z|,—; is known to be
generated by the Serre relations. Then their images generate Z[t]|,—_1, hence the
Serre relations themselves are generators and lie in Z|,—_; finishing the proof. O]

It will be useful to see how the map X intertwines with the maps —, o, r;, and ;r

defined on f above.

Proposition 2.22. For all z € £, we have X(T) = X(z).

Proof. Since both maps are Q(t)-algebra isomorphisms, it suffices to show the equal-

ities on the generators. First note that the statement is clear for x = 6, for ¢ € I and
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x = m. It remains to verify this for x = ¢:

X(q) = X(rg™") = —twg ! =t g = X(q).

For iq,...,4, € I, we denote

Nyt tin) = Y dpeiy,

1<r<s<n

p<i1 +...F Zn) = Z p@r)p(is)‘

1<r<s<n

By convention, N(i;) = p(i1) = 0. Note that N(-) is always an even integer by (2.1).

Proposition 2.23. The involutions XoX ™' and o on f[t] are equal up to a sign on

each weight space. More precisely, we have
—1() — NG +p(v)
Vol (x) = (—1) 2 o(z), forx e ft],. (2.26)

Proof. We prove the formula (2.26) by induction on the height ht(|z|). The formula
clearly holds when ht(|z|) < 1.
Now assume that the formula holds for x with ht(|z|) > 1 and for y with ht(|y|) >

1. Recall t2 = —1. Then applying the definitions, we have

ol Yz *y) = V(o(T(y)) o(¥ ' (2)))
= WoU ' (y) x Uol ' (z)

(—1) 3PP+ +p(la)

o(y) * o()
(—1) " 224D+ =G +p(aD) go(slal~6 (el vl o( 1 4 )

(1) 509D o 4 ).

Hence the formula (2.26) holds for x % . This completes the induction.
Since N and p only depend on the weight, ¥ p¥~! and g are proportional on each
weight space. The proposition is proved. O



Lemma 2.24. For any x € f[t],,

X(r(2) =t ir(X(2),  X(ri(x)) =t (X(2)).

Proof. This is a straightforward verification.

30
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Chapter 3

The quantum covering group U

3.1 The algebras 'U and U

Definition 3.1. [CHW1] The quantum covering group U associated to the root datum
((I,-), Y, X, (—,—)) is the Q(q)"-algebra with generators E;, F;, K,,, and J,, for

1€ 1 and p €Y, subject to the relations:

Ludy = Jpr, KK, =K, Ko=Jy=J'=1 JK,=K,J, (3.1)

JEy =B g, JF=a IR, (3.2)
KB = ¢""EK, K,F,=q¢""FK, (3.3)
EF — aPOr)p g — 5. Jailai = K di (3.4)
=] 7+ 1) 1 .
TG — g,
bij i
Y (1) GO B BT B ER = 0 (i # ), (3.5)
k=0 o - Q4,74
bzg _b -
Z(_l)kﬂ( 5)pli)+kp(i)p(7) k:] Fri R EF =0 (i # ), (3.6)
k=0 = Q5,74

fori,5€l and pv €Y.

We also consider the associative Q(g)"-algebra "U (with 1) defined by the gener-
ators

E (el), F (el), J, (ueY), K, (neY)

only the relations (3.1)-(3.4) above.
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From Proposition 2.16, we see that there are well-defined algebra homomorphisms
f - U, x — 2t (with image denoted by U") and f — U, x — 2z~ (with image
denoted by U~) such that F; = 6;" and F; = 0 for all i € I. Clearly, there are well
defined algebra homomorphisms 'f — "U with the aforementioned properties.

As a matter of convenience, we will use the notations

JV = JD» KV = KD

for v € Z[I], where U is defined as in (2.3).

(In terms of standard notations used in some other quantum group literature, it
is understood that K, = ¢ and K; = ¢". Tt is instructive to see our new generators
J’s can be understood in the same vein as J, = 7 and J; = mhi)

For any p > 0, we set EZ,(p) — (Ql(p))Jr and Fi(p) _ (9(1}))—'

)

Example 3.2. In the case I = It = {1}, we can identifyY = X =Z withi=1€Y,
i'"=2¢€ X, and {(u,\) = puX. Then U is the Q(q)"-algebra generated by E,F,K,J
such that

JK=KJ, JE=EJ, JF=FJ J =1,

KEK = B, KFK — ¢ °F,
JK — K1
Tq—q
Note that the quotient algebras U/((J £ 1)U) are isomorphic to the two variants of
the quantum group U,(osp(1]2)) defined in [CIW].

EF —7nFE =

By inspection, there is a unique algebra automorphism (of order 4) w : 'U — 'U

such that

U.)(EJ = Fi> W(E) = WiJiEia W(KH) = K,M, W(J#) = JH

fori € I, p € Y. We have w(zt) = 2~ and w(z~) = 7y Jj,z* for all x € f, and thus

the same formula defines a unique algebra automorphism w : U — U.
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Similarly, there is a unique isomorphism of Q(q)"-vector spaces ¢ : "U — U such
that
o(E;) = Ei,  o(F;) = Wijin', oK) =K, o(Ju) =J,

for i € I, p € Y such that o(uu') = o(u')o(u) for u,u’ € U. We have
o(x™) = o(x)", o(x7) = M Jppo(x)~, Vo ef. (3.7)

Again, this implies that the same formula defines a unique algebra automorphism
o : U — U. Note that o on U™ matches exactly o on f, but ¢ on U~ looks quite
different from g on f (in contrast to the quantum group setting [Lu4]).

Finally, the bar-involution on f extends to an automorphism of U. Specifically,

there is a Q™-algebra automorphism ~ defined by

Ei = Ei; F'L == E7 ?I/ = JnylM jl/ - Jl/7 q = qul. (38>
We also have a Q™-linear automorphism { on U extending T : Q(q)" — Q(q)".

Lemma 3.3. There exists a Q"-algebra automorphism 1 : U — U, denoted by - — T,

such that
El =mJE;, F'=F, K =JK, J=1J, ¢=mq (3.9)

Proof. To see that 1 is a well-defined map, we may check that the images of the
generators satisfy the defining relations. All of the relations are trivial to verify
except the Serre relations when p(i) # 0. However, since b;; = 1 — a;; is odd in this
case, the binomial coefficients are dagger-invariant. Then (3.6) is dagger-invariant,

and the image of (3.5) is proportional to itself (by a factor of Wbijp(i)+p(j)jbiji+j). O

Remark 3.4. One interpretation of the automorphism 1 is as follows. There is an

algebra Ut with generators E, FI, JI Kl (i € I,v € Y), and subject to (3.1)-(3.6)

(with E;, F;, J,, K, replaced by EJ, FZ-T, JI, KT ) except with (3.4) replaced by
K- JIKT,

EfTpT — 7p@pG) pt gt — 5 i
! ! Qi — Tiq;
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The algebra Ut may be thought of as U defined with respect to the alternate convention
of (v, )-integers, and T defines a Q-algebra isomorphism t: U — U' defined by

E;—E!, F,—F. K,—JK, J,—J, ve "«

For Zy-homogeneous elements z, y € U, we write the supercommutator as [z, y] :=

ry — 7P@PWyz The relation (3.4) can be generalized to the following commutator

identities.

Proposition 3.5. Forxz €'f and i € I, we have (in'U)

7"1(1')4_(];[21 — f(_i ’/T]Z-D(I)ip(i) i?”(.ﬁl?)+

(a) [$+a FZ] = 1 )
Tiqi — 4,

_ szz i?"(l’)_ — Wf(x)ip(i)ri(l')_f(,i

(b) [Ei’x ]: 1 .

Tiq; — g,
Proof. Assume that (a) is known for 2’ and 2”; we shall show it holds for z = 2’z".

Let v/ = ()", s/ = ;r(2')" and similarly for r;, 2 and x.

y/y;/jl['{-z . Z//f(—i ﬂ.ZP(Zﬁ)*P(Z’) iy”

yF =y Fy +

i Tigi — q; "
— @) oy 4 ) Y iRy — Km0y
' ' T — q; "
N y/ y;/jzf(l . y/f(_m_lp(x”)—P(l) iy//
Tt — q;
- TR @)
— 7_{.p(aﬁ T )p(z)E Y+ Y 77'2_1 y
T4 — 4;

Since (a) holds for the generators, it holds for all x € 'f.

If we apply w™!, we obtain

i = p(z)—pli _
T B — P @0 fp - ri(x)” ;K_; — K; 7} p(®) ()
iJi i i i Tods — (],L_l )

and multiplying both sides by 7?7 J; establishes (b). O
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The following corollary follows by applying the bar involution to the above iden-

tities.
Corollary 3.6. For x €'f and i € I, we have (in'U)

p(@)=p() ] [ == _ K
(a) [x+,Fi] _ T KT (z)* Ti(r) K ’

WiQi_qi
p(z)—p(7)
_ 7Ti JK K,“JT
(b) [Eia] = ri(z)” i ()~
T4 — q;

We record the following formulas for further use.
Lemma 3.7. For any N, M > 0 we have in U or'U

EMNFM ZWMN (%) por- ”{ 2= M= N}E.( ",

EM M) = pMNoni) pOD g gt

where

|: :| ﬁ,]rqas+1JK sa—lf(_y
7TVq1/) _QV ‘

s=1
Let 42UT = 4f*. We define 4U to be the A-subalgebra of U generated by E’i(t),
Fz-(t), [i;t“], J, and K, for all i € I, p € Y and positive integers a > t.

Let J be the (2-sided) ideal of U generated by {J, —1|u € Y'}. The specialization
at m = —1 of the algebra U/7 is naturally identified with a quantum group associated
to the Cartan datum (7,-) (cf. [Lud]). The specialization at m = 1 of the algebra U,
denoted by Ul|,—1, is a variant of this quantum group, with some extra (harmless)
central elements J,. Specialization at @ = 1 for essentially reduces our results to
those of Lusztig [Lu4].

The specialization at m = —1 of the superalgebra U/J is identified with a quan-

tum supergroup associated to the super Cartan datum (7, -) considered in the liter-

ature; cf. [Y1, BKM]. The specialization at 7 = —1 of U, denoted by U|,-_;, will
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also be referred to as a quantum supergroup of type (I,-), and the extra generators J;
allow us to formulate integrable modules V() for all A € X*, which was not possible

before.

3.2 Hopf Structure

An important facet of the covering quantum group is that it has the structure of
a braided Hopf algebra. There are many possible choices for the coproduct, as one
would expect from the theory of quantum groups. However, the covering quantum
group has even more natural choices for the coproducts; see [C, §2.4]. We make

"U®'U (respectively, U ® U) a Q(q)"-algebra via the product
(a®b)(c®d) = 7P ac @ bd.
The main coproduct we shall consider is the following.

Lemma 3.8. There is a unique algebra homomorphism A :'U — "U @ "U (resp.
A:U—-U®U) where'U®'U (resp. U U) is regarded as a superalgebra in the
standard way, defined by

V=E®K,+1®E (icl),

)=F®1+JKQF (icl),

A(K,) =K, @ K, (peY),
Ay =Ju@Jy (ney).

Proof. The relations (3.1)-(3.3) are trivial to verify. For (3.4), we have

AE)A(F) = BiF; @ K + J;K; @ EiFy + PO @ B, + EJ,K; © K_F},

A(F)A(E) = FE®@ K+ J;K; ® FjE; + F; ® E; + 7P LK, B, © FjK ;.
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So using the fact that Eijjf(j ® f(_,FJ = jjf(jEi ® ij(_i, we have

A(E)A(F)) = e OPDA(F) A(E;)

:(EiFj—Wp(i)p(j)FjE)®K i+ K @ (BF; — gp(@p (])FE)

=5 -
" mid; — g, !

Finally, define maps j* : 'f @ 'f — U ® 'U given by
JHz®y) ::(:+®I~(_‘w|y+, J (z®vy) :x’jy‘[?|y|®y’.
Then by construction, these maps are algebra homomorphisms, and satisfy
jir(e) = Al), jT(r) = A).

Since r, T factor through f, so do %7 and 7 r implying that

forall f(6;:i€1)eT. O

The coproduct A is coassociative, and the verification is the same as in the non-
super case. Furthermore, we observe that A(,U) C U ®, 4U.

One of the alternate coproducts we could consider is given by

A(E
A'(F,
A'(Ky
A,

Let A = (w®w) o Aow™. Also, let ‘A be the composition of A with the

)=E®K ,+J®FE (icl),
V=Fe1+KeF (icl),
) =K, ®K, (pheY),
)= Ju®Ju (neY).

automorphism 7 : U® U — U ® U given by 2z ® y — 7?@PWy @ z. Note that w ® w
commutes with 7, so 'A% is well-defined. Then unravelling the definitions, we get the

following lemma.
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Lemma 3.9. We have the identification
A =TAY
From the identities j7r(z) = A(z™) and j77(z) = A(x™), we deduce that
Aty = oy @ K, 2],
M) = 32 Aene) (rg) sy o Ry @ 27,
for r(x) = > x1 ® x9. In particular, this yields the formulas

Ep qupE(p ®KPE()
p'+p=p

ol

A(E'(p)> _ Z (miq;) PP Jp F(p’)}T(?:p//@Fi(p//).
p'+p’=p

There is a unique algebra homomorphism ¢ : U — Q(q)" satisfying ¢(E;) =
§(F;) = 0 and ¢(J,) = ¢(K,) = 1 for all 4, . This is the counit for A and makes
U into a braided bi-algebra. This bi-algebra structure can be completed to a Hopf

structure by defining an antipode as follows.

Lemma 3.10. Let v € N[I|. Writev =3, vi and v =" i, for i, € I. Then we

set

c(v) = V-V/Z—Zyii-i/Q €Z,
= " plia)p(is) € Z

(a) There is a unique Q(q)"-linear map S : U — U such that
S(E) = -EK;, S(F)=—J,K_F, S(K,)=K_, SJ)=J,,
and S(xy) = TP@PWS(y)S(z) for all x,y € U.
(b) For any x € f,, we have

S(at) = (=) a g o(2) K,

) = (~)" T Om,q O K o(x)".
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(¢) There is a unique Q(q)"-linear map S": U — U such that
S(E;) = —KE;, S'(F)=-FJ K, S(K)=K_,, S(J,)=J.,
and S'(zy) = wP@PW S (1) S"(x) for all z,y € U.
(d) For any x € f,, we have
5@ = (<) r g R, o(a)"
§(a) = (— )"0, ¢ ) g(x) K,
(e) We have SS"'=5'S =1

(f) If v € £, then S(x*) = ¢ 7V S' (z+) and S(z~) = ¢V S"(x7) where f(v) =
The map S (resp. ) is called the antipode (resp. the skew-antipode) of U. Note
that

3.3 Triangular Decomposition
If M’, M are two "U-modules, then M’ ® M is naturally a 'U ® "U-module; hence by

restriction to “U under A, it is a "U-module.

Lemma 3.11. Let A € X. There is a unique "U-module structure on the Q(q)"-
module 'f such that for any homogeneous z € 'f, and p € Y and any i € I, we

have

K, z= giAlz Jy-z= A=l B =62, E;-1=0.
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Proof. The uniqueness is immediate. To prove the existence, define

DN z)—p(i i —|z| 3’
—ari(z) + T (i) A (2)
Tidi — ¢; '

Ei'Z:

Note that this is essentially the formula prescribed by Proposition 3.5. A straightfor-
ward computation shows that this, along with the desired formulas for the F' and K

actions define a "U-module structure on 'f. O

We denote this "U-module by M’(X) (which is a free Q(¢)"-module). Similarly, to
an element \ € X, we associate a unique "U-module structure on 'f such that for any

homogeneous z € 'f, any p € Y and any i € I we have
K, z= q(u7—/\+IZI>Z7 Jy 2= W(uv—k+|2|>2’ E;,-z=6,z, F,-1=0.

We denote this "U-module by “M’(A) (which is again a free Q(¢)"-module). We form
the "U-module “M'(X') ®gg~ M'(A) for A, X' € X; we denote the unit element of
'f = M'(X\) by 1 and that of 'f = M’(\’) by 1’. Thus, we have the canonical element
I'®1e” M'(N)®qg~ M'(X). We emphasize that “M'(\) ®g(g)~ M'()) is again free
as a Q(q)"-module.

Proposition 3.12. Let U° be the associative Q(q)"-algebra with 1 defined by the
generators K,,, J, (u € Y) and the relations (3.1). Then U° is isomorphic to the
group algebra of Y x (Y/2Y) over Q(q)". Moreover,

(a) The Q(q)"-linear map 'f @ U’ ®@'f = 'U given by u® J, K, @ w — u™ J,K,w*

18 an isomorphism.

(b) The Q(q)"-linear map 'f @ U° @ 'f — U giwen by u® J, K, @ w + utJ,K,w~

18 an isomorphism.

Proof. Note that (b) follows from (a) by applying w. As a Q(g)"-module, ‘U is
spanned by words in the £, F;, K, and J,. By using the defining relations, we can
rewrite any word as a linear combination of words where the F; come before the J,

and K, which come before the E;, thus the given map is surjective.
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To prove the map is injective, let A, \" € X, and consider the module “ M’ (X')®g(g)~
M'(X) described before. There is a Q(g)"-linear map ® : U — “M'(N) Qqg~
M'(\) given by ®(u) = u -1 ® 1. Pick a Q(q)"-basis of 'f consisting of homoge-
neous elements containing 1. Assume that in ‘U there is some relation of the form
> b I bT =0 and let N be the largest integer such that ht|t'| = N and
cy up 7 0 for some g, b.

Then

0=0( 3 st TEb) = D s AY KDL 1@ 1,

b 1,0, Y g,
Now
A7) = Z g'(V, by, by)b™ @ Ky by
bY,b
A(bY) = Z g(b, by, b2)bfj|b2\f(|b2| ® by,
b1 ,ba
so we have

0=> w200, L bg(b, by, ba)g' (U, b, by)by %

X Kb Ty Ky - 1 @ Ky by J, K b3 - 1.

If by # 1, then by - 1 = 0 so we must have by = 1 and thus b; = b. Therefore the

expression reduces to
0="> a0y, ug (1,05, )by T T -1 @ Ky by J, K, - 1.
By the definition of the module structure, this becomes
0= S wr IOy gl (1, b, by m AN GUAN I g b

We can now project this equality onto the summand “ M'(\)®@q(y)~'f, where ht v = N.
Then by construction, |b5| < |b| and ht|b5| = N. Since ¢y ,p = 0 if ht|b'| > N, we

must have |b| = |b| and thus b’ =0, b} =1, so

Z 7Tp(b’)P(b)Cb, s bW<V7>\*>\’+|b|>q(u,Af)\urlbDb Qb =0.
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It follows that

v A—N4|b AN By
S b o 1) g A=X+1l) — )
v,

for all choices of A\, X', 1, b and 0’ with ht|0’| = N. Therefore ¢y ., = 0 for any ¥/
with ht|b'| = N, contradicting the choice of N. O

Corollary 3.13. (a) The Q(q)"-linear map f@U®f — U given by u®.J, K,Qw —

u‘J,,KMwJr s an isomorphism.

(b) The Q(q)"-linear map f @ U @ £ — U given by u® K, @ w — utJ,K,w™ is

an 1somorphism.

Proof. Once again (b) follows from (a) by applying the involution w. Let Ji be the

two-sided ideal of ‘U generated by Z= = {#* : x € Z}. Then U = J;% Now from

Proposition 3.5 iterated, we see that
(UNHzZ-cz7U('Ut); ZIT(U7)c(U)uzt.
Using the triangular decomposition of "U, we have J_ ='UZ~'U C Z-U°('U™) C
J_, hence J_ = Z-U°('U™). Similarly, J, = (U")U°Z*. Therefore,
/U— UO /U+ /U— /U+
U= _ (%9 (9 - _ ® UO ® ’
"W UIT+I-9U'®’'U I I+
from which (a) follows. O O

Corollary 3.14. The maps * : f — U*, 2z — z*, are Q(q)"-algebra isomorphisms,
and U° — U is a Q(q)"-algebra embedding.

For v € N[I], we shall denote the image f£ by UZ.
Proposition 3.15. Let x € f, where v € N[I] is nonzero.
(a) If xTF; = Wf(x)Fix* foralli € I then x = 0.
(b) If 2~ E; = 7" Bz~ for alli € I then x = 0.

Proof. It follows from Proposition 3.5 and the linear independence of rz(xﬁjlf(z
(respectively, the linear independence of J;K_; ;r(z)") that r;(z)™ = ;r(x)* = 0 for

all 7. Hence x = 0 by Lemma 2.10. O
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3.4 The twistor automorphism of U

Let T be the group algebra of the group Z[I| x Y; that is, the Q(g, t)™-algebra with

generators T, Y, for p € Y and v € Z[I], and relations
Ty =Torw, 1Yo =Tor, T,0, =TT, Top=Te=1. (3.10)
We define an action of T on U[t] by
T, -x=t""g Y, o=tz for all x € Ult],,. (3.11)

Then we form the semi-direct Q(g, t)™-algebra U[t] = T x Ul[t] with respect to
the above action of T; that is, TeT™' = T -z for all T € T and =z € U[t]. By
specialization, we obtain a Q(q, t)™-algebra IAJ[t], which is called the extended covering
quantum group. We will extend the tilde notation to T, = T;. Now we will define a
version of the twistor isomorphism on this algebra. We will abuse notation and also

use X to denote this map.

Proposition 3.16. There is a Q(t)-algebra automorphism % on U[t] such that

X(E) =t 'Y TE, X(F)=FRY, XK)=T,K, X(J)=T.],
X(T,) =T, X(Y,)=T, X(¢=t"'q U(r)=-m
The automorphism X will be called the twistor on Ul[t).
Proof. We first show that such a map is well defined by showing that relations (3.1)-
(3.6) and (3.10) are satisfied by the images of the generators. The relations (3.1)-(3.3)
and (3.10) are straightforward to verify, and we leave this to the reader.
Let us verify (3.4). On one hand, we have
X(B)R(F) = X(m)""OX(F) U(E)
=t 'Y LEF Y — (—m)P P T T TE,
_ et oGPy ( B, F; — +90:0-000) (_ypon) E)

= t_di+dj_¢(j’i)TiT]-_1ﬁ(EZ-Fj _ Wp(i)p(j)FjEi)’ (3.12)
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where the last equality follows from Definition 2.18(c) and t* = —1. On the other
hand,

5%((];)%( i) —%(f(_i) 5 T}Zf(Z — Z-f(_i
N X(m) % (q;) — X(qs) 7t N (—t)~dimq; — tiqi_l
IR R
— 6ijti—1TiW' (3.13)

Then comparing (3.12) and (3.13), we see that they are equal for all 7, 7 € I,whence
(3.4).
It remains to check the Serre relations (3.5) and (3.6). As these computations are

entirely similar, let us prove (3.6). As in the proof of Theorem 2.20, we have

bij
Z(_l)k(_”)(Q)p( ) { k‘]} (E03) (BT ) (R
k=0 t=lqs,—m;
bij
_ Z(_l)kﬁ(g)p(i)—kkp(i)p(j) {b]ij] Ebij_kF}Fik t(b?)ﬂ'j—’_bi’j(b(i’j/)Tbiji_s-j —0.
k=0 qi T
The proposition is proved. O

Remark 3.17. An earlier construction of Lanzmann [Lan] described a similar trans-
formation in finite type, which explained various similarities between the representa-
tion theories of 0sp(1|2n) and so(1+ 2n). The twistor isomorphism can be viewed as
a variant of that construction, which has the advantage of working for non-finite type

as well.

Now note that the maps 6; — 6; = F; and 6; — 0" = F; extend to embeddings
f[t] — U~ and f[t] — U*. These embeddings relate the twistor maps as follows: for

v=7> . vii € N[I] and x € f[t],,

X(z7) =X(x) Yo,  X(ah) = tOIR2ix(2) M, Ty (3.14)

3.5 The categories C and O

By a representation of the algebra U we mean Q(g)"-module on which U acts. Note

we have a direct sum decomposition of the Q(¢q)"-module Q(q)" = €, Q(q) ® e_Q(q),
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where 7 acts as 1 on €,Q(q) and as —1 on e_Q(q).
We define the category C (of weight U-modules) as follows. An object of C is a
Z./27Z-graded U-module M = M° & M, compatible with the Z/2Z-grading on U,

with a given weight space decomposition

M = EBMA, M, = {m eM|Km= ¢ N, J,m = TN m, VY e Y} ,
reX

such that My = MY @& M} where MY = My, N M° and M} = M\, N M'. The Z/2Z-
graded structure is only particularly relevant to tensor products, and will generally
be suppressed when irrelevant.

We have the following Q(g)"-module decomposition for each weight space: M* =
e_ My & e, M,; accordingly, we have M = M|,—y & M|,—_; as U-modules, where
M| ;=11 = @®rexe+ M, is an U-module on which 7 acts as +1, i.e. a U|;—+1-module.
Hence the category C decomposes into a direct sum C = C,. & C_, where C. can be

identified with categories of weight modules over the specializations Ul|;—4.
Lemma 3.18. A simple U-module is a simple module of either Ul|,—1 or Ul,=_1.

Let M € C and let m € M,. The formulas below follow from Lemma 3.7.

3

_(t+1 _ .
(a) B EMy, — 5~ MN=(5) {N Mt+ <M>} FO-0 -0,

(b) FODEMpy = 3 A (r-0(v-0-2 [M - Nt— (i, A)} B0 M0,

(¢) FMEMm = BN EMm, for i # j;

i J J
(d) Gal o _ (i,\) +a "
t t ;
A tensor product of U-modules M ® N is naturally a U ® U-module with the
obvious grading under the action (z ® y)(m ® n) = 7?@P(Mgm @ yn. In particular,

the tensor product of modules is naturally a U-module under the coproduct. To wit,

given U-modules M and M’, we set M @M’ = M ®gqq~ M" as Q(q)"-modules with the
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U-action given by u-m®m’ = A(u)m®@m'. Similarly, we set M @' M’ = M @qq)~ M’
with the U-action given by u-m @ m’ = A'(u)m @ m/.

We see that C is closed under both tensor products. To any M € C, we can define
a new U-module structure via u - m = w(u)m; we denote this module by “M. By
definition, note that “M, = M_,. We can also see how the w-twist affects tensor

products of modules.

Lemma 3.19. For any U-modules M, M’', there is a U-module isomorphism
w(M®IMI)_>wMI®wM
given by 7(z ®@ y) : 7PWPE)y @ 1.

Proof. Recall that A" = *A¥. Let u € U and suppose A'(w(u)) = > u; ® ug with

U1, Uy homogeneous. Then

(A (w(w)(z @ y) =7(Y_ Dz @ wy)

= 3 e o) S gy 0y
— (32 AP0 (ug) © w7 () (2 @ )
=70 (W @w ™) 0 Ay(w(w)r(z ® y)
=A(u)T(r ®y).

]

Let A € X. Then there is a unique U-module structure on f such that for any
yef, peY andi € I we have K,y = geA=lvhy gy = pA=lhy  Fy = 6y,
and F;1 = 0. As in the non-super case, this follows readily from the triangular
decomposition. This module will be called a Verma module and denoted by M (\).
The parity grading on f induces a parity grading on M(\) where p(1) = 0. As
before, we have a U-module decomposition M(\) = M(\)|,=1 & M(\)|=_1, where
M (XN)|z=+1 can be identified as the Verma module of Ul,—4; (which is a Q(g)-vector

space).
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For any M € C and an element m € M, such that E;m = 0 for all ¢, there is a
unique U-homomorphism M(A) — M via 1 — m. This can be proved as in [Lu4,
3.4.6] using now Lemma 3.7.

Let O be the full subcategory of C such that for any M in O and m € M, there
exists an n > 0 such that xtm = 0 for all x € f, with htv > n. Note that M ()\) and
its quotient U-modules belong to O.

An object M € C is said to be integrable if for any m € M and any 7 € I, there
exists ng > 1 such that Ei(n)m = Fi(n)m = 0 for all n > ng. Let Cyy be the full
subcategory of C whose objects are the integrable U-modules.

For M, M’', M" € Ci,, we have “M, M’ @ M" € Ciy. The proof of the following

lemma proceeds as in the non-super case; see [Lu4, Lemma 3.5.3].

Lemma 3.20. For (a;),(b;) € N' and X\ € X, let M be the quotient of U by the left
1deal generated by the elements FiaiH, EfiH, K, — ¢#N with p €Y, and J, — 7N

with v € Y. Then M is an integrable U-module.

The proof of the following proposition proceeds as in the non-super case; see [Lu4,

Proposition 3.5.4 and 23.3.11].

Proposition 3.21. If u € U such that u acts as zero on every integrable module,

then u = 0.
Proposition 3.22. Let A € X .

(a) Let T be the left ideal of £ generated by the elements (91-@’/\”1 forallv e 1. Then
T is a U-submodule of the Verma module M(\).

(b) The quotient U-module V(X) := M(X)/T is integrable.

The proof is as in the non-super case [Lu4, Proposition 3.5.6]. As usual V/(\) =
V(M) |rz1 @V (AN)|rec1, and T = T |z21 @ T |r=—1; moreover we have the identification
V()\)’ﬂ:il = M(A)’w:il/T’ﬂ:il-
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We denote the image of 1 in V(A) by 17,. This module has an induced parity grad-
ing from the associated Verma module, so in particular p(n,) = 0. When considering

the image of 1 in the module “V'(\), we will denote this vector by &,.

Proposition 3.23. Let M be an object of Ciy and let m € M> be a non-zero vector
such that E;m=0 for all i. Then A\ € Xt and there is a unique morphism (in Ciy)
t': V(X)) — M sending ny to m.

Proof. The proof is as in the non-super case [Lu4, Proposition 3.5.8]. ]

An important variant of these modules are the integral forms. Since M () = f as
a vector space, it is automatically endowed with an A-submodule s M(\) = of. We
call this the integral form of M (X). We also have integral forms for the irreducible
modules: we call the A-submodule 4V (A) = JUE ) (resp. $V(A) = JUE_,) the
integral form of V(\) (resp. “V(A)).

The following particular family of U-modules will be of critical importance later

on. We define
NAN)=VA)@“V(X), aNAXN)=V() s (KVN)). (3.15)

Then N(A, X) (resp. oN(A, X)) is a U-module (resp. yU-module) under the coprod-
uct A. When we wish to view these spaces as modules with respect to the coproduct
A’; we will use the notation N'(A, ') (respectively, 4 N'(A, \')). The module struc-
tures on N(A, \') and N'(A, \') are quite closely related, as demonstrated by the

following lemma.
Lemma 3.24. The linear isomorphism N (A, X') — N'(\, X') given by

PNy @y forallz € VN, y € “V(N),_n, veN[],

TRYt—>m
15 a U-module isomorphism.

Proof. This is elementary to verify using the definitions. ]
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Since w is not an involution, we could also consider **M for any module M.
However, twisting the action on V() by w? does not yield any new module. To wit,

we have the following lemma.

Lemma 3.25. The Q(q)"-linear isomorphism w?® : V() — “’V(\) given by
W (z) = m,a"Ne, x e V(N ve N[,

15 a U-module isomorphism.

Proof. For any homogeneous u € U, w?(u) = m,J,u. Then for x € V(\)s_,, with

v € N[I], we have w?(uz) = 7,4, 7" Nur = w?(u)w? (). O

3.6 The twistor and modules

Recall the notation M[t] = Q(q,t)™ ®gg~ M. Let M € C. Then M[t] carries a

natural action of T by setting
T, Y, m = t 2N e Mt
In particular, M[t] is a U[t]-module.
Lemma 3.26. Let X, : M(X\)[t] — M (N)[t] be the map defined by
Xy (z) =tV E(2)
for homogeneous x € £[t],. Then Xx(uz) = X(u)Xx(z) for allu € U and z € £[t].

Proof. 1t is enough to prove the lemma for the generators of U. First note that Xy
preserves weight spaces, and so the lemma is clear for 7, and T ; it is also clear that
X(gm) = X(q)Xx(x) and X(7mx) = X(7)X5(x), whence X\ (K,z) = X(K,)X\(z) and
Xa\(Jux) = X(J,)Xx(x). It remains to check for u = E; and u = F;.

Let z € f[t],. Then for u = F; we have

X\(Fix) = Xa(0ix) = t20) =00+ Ng. % () = BT X5 (2) = X(F) %A (2).
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On the other hand, for u = E; we have

v)=pli i i A=t
(B — x, [ @) ) = g N e
l Qi — qi_l

— t—di—o(v=i\) t?p(i)p(y_i)w’wﬁ ] Ly (ri(2))(m z‘Qz')<i’A>

Tids — q; '
bl tz{z’,,\u+i’>qi<z‘,,\u+i):{(ir(x)>
T4 — 4,
i i vyt Bl (X)) (mig) Y — g ()

g —q; "

where
* =2p(i)p(v — 1) + d; (i, \) — p(v —i,i) — d; (i, \ — v +1i') + o(i, v — 7).
One checks that % € 4Z and therefore,

%)\<Eﬂ]) _ t—di—gf)(u—i,A)—i-di <i’A_”+i/>_¢(i’”/_i/)Ez%(x)

. thi,)\fu)tqﬁ(i,Afu)tf(ﬁ(u,)\)Jeri EZ%(.T)

= 2B, T, X\ (7) = X(E) %5 (2).
O

Recall that V(\) = f/(é’fi’MJrl : ¢ € I) as vector spaces. Then V(A)[t] =
£[t]/(6"V" : i € I). Since we further have

(O e D) = (0" e
we see that X, induces a Q(t)-linear isomorphism
Xy VA)E] = V(A)t].
Lemma 3.27. There is a Q(t)-linecar map X, : V(AN)[t] — V(A)[t] which satisfies
Xa(ma) = na and X\ (um) = X(u)X,(m) for all u € U andm € V(A)[t].

There is an important immediate corollary. By a character of an X-graded vector

space over a field I, we mean the formal expression chgM =3, dimpM ye, where

e* are the basis elements of the group ring Z[X].
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Corollary 3.28. Recall that W is the Weyl group associated to (I,-). Denote by
p € X such that (i,p) =1 for alli € 1. Then for every A € X+:

Zwew(_l)f(w)ew(Aer)—p

chg(g) V(A)lr=t1 = ey EoT (3.16)
Moreover, the character of U™ is given by
_ 1
chgg) U™ |41 = (3.17)

ZwEW(_ 1)5(W)eU/(P)*p

Proof. Since the m = 1 case is known, it suffices to prove the character formula for
m = —1. In this case, both results follow from the twistor isomorphisms. Indeed, it is
clear that these characters hold when dimensions are taken with respect to Q(q,t),
but each weight space is just a scalar extension of a Q(g)-vector space, so of course

dimensions stay the same. [

Remark 3.29. A particular consequence of this character formula is that the weight

spaces of V() are always free Q(q)™ modules for each A\ € X ™.

There is a version of the map X, which can be defined on the w-twisted module
structure. Set X’ = w™! o X o w; we note that for i € I, vy, 15,13 € Y, and pu € Z[I],

we have

X(E) = T_X(E), X/(F) = X(F)T, X(J,K,T,,Y,) = 2(J, K, T,,Y,0).

AX(E)) = X(E) @ X/(K) Y + t2(7 @ ¥ (E) (T, @ Th),
AX(E)) = X(F) @ Yo+ (Y X(JK) @ X (F)T @ To).
Lemma 3.30. There is a Q(t)-linear map X_y : “V/(A)[t] — “V(A)[t] which satisfies
Xa(6-n) =&x  Tw_s(um) = X'(u)X_x(m)

for allu € U and m € “V(\)][t].
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Proof. View m € “V(\)[t] as an element of V(\)[t] as an element of V() and set
%_A(m) = }:)\(m) Then

X a(u-m) =X\(wu)m) = X(w(u))Xr(m) = X'(u) - X_x(m).

We can now define a version of the twistor on the modules N(A,\). To do
this, we first require the existence of a certain normalization function. Let A, =
{AN=V'|veN[I]}and V), ={V — X | v € N[I]}. and for ( € A, (resp. ( € V) such
that ( = A — v (resp. ( =v — A), set p(¢) = p(v).

Lemma 3.31. There is a function s = s x : A\ X Vy — Z/AZ satisfying
1o x#(¢=1,() = (¢, ¢) = (i, ¢');
2. 5(C, ¢ +1) = #(¢, <) + (i, €) + 2di + (1, ¢ + ¢') + 2p(O)p(i).
3. 2\, =N)=0
Proof. Let pu,v € N[I] and write ( =X — v, (' = pu — N. Set
x(\, =) =0, w( A=V, =X) =, \).
Then we have defined s(A — v/, i/ — X’) for ht(u) = 0; now assume ht(u) > 0. Define

s N=V 0+ = N) =A=' ) = N)+ o(i, A — V') + 2d,

+ (i, A=V + = X) + 2p(v)p(i).

It is straightforward to check that this definition does not depend on the choice
of i; that is, if i + u = j + i for some g € N[I], then »(A — v, i' + /' — XN) =
w A=V, i + i = N).

Now we need to check that s¢(A — v/, i/ — \) satisfies (1) and (2). By construction,
we see that (1) and (2) hold for ht(v 4+ p) = 0, so assume that ht(v + p) > 0. By
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construction, (2) holds and so it suffices to check (1). Write u = p; +j for some j € [
and v; € N[I]. Then by induction we compute that
s A=V =iy =N =N =V =y — N+ (A =V — i) + 2d;
+ (G A=V =i 4y — N+ 2p(v +4)p(i)
=x(N=v uy —N) — (i, uy — N)+ o(j, N\ — v —i') + 2d;
+ (G A=V =i 4 phy — X+ 2p(v +4)p(i)
= 2(A = v,y = X) + 2p(v)p(4) + 64, A — V') + 24,
+ G A=V +py =Ny =i j+2p(D)p(j) — (4, i) — @i, ph — N)
=2\ =V, @ = X) =i j+2p(i)p(j) — ¢4, 1) — d(i, 4y — X)
Now —i - j+ 2p(i)p(7) — ¢(j,7) = —¢(i,7), and thus we see that
sN=v = ) = N) =N =V ) = X)) — (i, 1 — N).
[
Proposition 3.32. The Q(t)-linear map X : N(\, X)[t] = N(X\,XN)[t] defined by
}:/\7)\/ (U X w) = t”“”l"w')%)\(v) (%9 }:_)\/<ZU),
where |v] = A — V' and |w| = N — 1/ for v, € N[I]. Then X,y (A(u)v ® w) =
A(X(U,))%AJ\/(U X UJ)
Proof. 1t is enough to check when wu is a generator. If u is K,,, J,, T,,, or T, then this
is trivial, so it remains to check when u = E; or u = F;. Let v @ w € N(\, X) with
lv| = ¢ and |w| = ’. First, we compute that
A(X(E))EA(0) @ X_y(w) =t*0 %, (Biv) @ ¥_y(K_; - w) (3.18)
+ Wp(i)p(v)thﬂrdi<LC+C’)+¢(LC):{A(U) QR X_w(E;-w)

AX(F)XA(v) @ X_y(w) =t~ %, (Fiv) @ X_y (w) (3.19)
+ PP gdilid=C) =00 x| (J. K 0) @ X_y(F; - w)
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AX(E)) Ean (v @ w) = t*COAZ(E)) (Xr(v) @ X_x(w))
— t¢("’</)+”(<’4/)%A(Eiv) ®X_y(K_; - w)
+ Wp(i)p(v)t%(C:Cl)+2di+di<i’c+c/>+¢(i7<)%)\(/U) R X_w(E;-w)
— t(b(lvcl)""”(CvCl)_%(C'i_lvgl)%)\’)\/ (Elv ® k—i . w)
PO () =)+ 2k di (106G 3 (@) F - w)
— %/\A,(Ew ® _f(_i -w) + 7Tp(i)p(v)»[-J2fl>(l')z>(€)%A7)\, (v® E; - w)
= %)\7,\/(A(Ei)v X w)
Similarly, using (3.19), we have
AX(F))Xax (v © w) = tCDAR(F)) (X (v) @ Xy (w))
— t*¢(l’,<')+%((:<’)%>\(}7’iv) ® X_yv(w)
+ aPAP@)IAC=dilicH =000 x| (T K0) @ X_y (F - w)
— t—¢(i,C’)+%(<,<’)—%(C—i’,C’)xA7A,(FZ.U ® w)
+ PDp(V) (G, =2 =) =di (.G =0 (0.0) ¢ | V(LK @ Fy - w)

= X (A(F)v @ w)

3.7 The quasi-R-matrix
Consider the vector spaces

HNzu—U(’( 3 Uj)®U+U®U+U°< > UZ)

htv>N htv>N

o4

for N € Z~y. Note that Hy is a left ideal in U ® U; moreover, for any u € U ® U,

we can find an r > 0 such that Hy.,u C Hy.
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Let (U ® U)" be the inverse limit of the vector spaces (U ® U)/H,. Then
the Q(q)"-algebra structure extends by continuity to a Q(g)"-algebra structure on
(U® U)”, and we have the obvious algebra embedding U ® U — (U @ U)".

Let 7: U® U — U ® U be the Q-algebra homomorphism given by — @ ~. This
extends to a Q-algebra homomorphism on the completion. Let A : U = U ® U be
the Q(q) -algebra homomorphism given by A(x) = A(Z).

Theorem 3.33. (a) There is a unique family of elements ©, € Ul @ U, (with
v € N[I]) such that ©g=1® 1 and © =) 0, € (U U)" satisfies A(u)O =
O©A(u) for all u € U (where this identity is in (U @ U)").

(b) Let B be a Q(q)"-basis of £ such that B, = BNf{, is a basis of £, for any v. Let
{b*|b € B,} be the basis of £, dual to B, under (—,—). We have

0, = (-1)"7Wr,q, > b b €U U,

beB,

where e(v) is defined as in Lemma 3.10.

The element © will be called the quasi-R-matriz for U.

Proof. Consider an element © € (U ® U)" of the form © = )  ©, with ©, =
D bwen, Crpb ™ @0, ey € Q(q)". The set of u € U such that A(u)O = OA(u) is
clearly a subalgebra of U containing U°. Therefore, it is necessary and sufficient that

it contains the F; and F;. This amounts to showing that

Z Cb1,b2Eib>'1K+ ® K—ZbQ_ + Z Wf(b3)cb37b4b§+ ® Ezbzz

bi1,b2€B, _; b3,ba€By
_ § ' p(b2) *t —F . _
= T, Cb1,bzb1 El X b2 Jsz + Cb37b4l)3 X b4 Ei,
b1,b2€B,—; bs,ba€By

and
p(b1) 7 1o pt — s+ —
§ T Coy by JilSibyT @ Fiby + Cog b Fib3" © by
b1,b2€B,_; b3,b4€B,

= Y auwbTELaobhF+ Y w e, b R

b1,b2€B,_; b3,b4€B,
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Let z € f. Then since the inner product is nondegenerate, this equality is equivalent

to the equality

> (05, 2) (B — 0y B

b3 b4€BV

+ Z Cb1,ba <(91b>{, Z)f(_zb; — Wf(bQ)(bTQiy Z)bg—jlf(z> —0,

b1,b2€B, _;

and

STt (b, 2) (057 F — 705 )

b3,b1€By
+ Y n ((b29i, AR — 17 (0,0, Z)Jif(ibﬁ) = 0.
b1,b2€By_;
Note that p(b1) + p(i) = p(b2) + p(i) = p(bs) = p(bs). Using Proposition 3.6 and the
derivations, we have

S (i — 4 e (B, ) (@ TR (1)K~ K(ba))

b37b4€BV

+ Y Cn(6:,6) (<b;ir< DK _iby — w2 (b7, i(2))by JiK: ) =0,

b1,b2€B, _;
and

N7 (migi — 7 en O (04, 2) (7 PO LR T (05— TR0 TR )

b3, by€B,
T Z Coy o (03, 6:) <(b2,Ti(2))b’1ﬁ+K7i - Wf(bl)(bzmr(fZ))ibeﬁ) =0.
b1,bo€B, _;

Using the triangular decomposition, this is equivalent to the equalities (in f)

Z Cb1 b2 b17 TZ b? + Z Qz Cb3 b4 bS’ Z)Tl<b4> O’ (320)
bl,bz b3 b4
Y o, (2))be + D @i e, (b, 2)T(ba) = 0, (3:21)
b1,b2 b3 b4
Z Cb1,bo <b2a ZT(Z»bT + Z Qiﬂ-f(y)cb&m (b47 Z)F(b;) =0, (3'22)
b1,b2 b3,b4
Z Chy by (D2, 7:(2))] + Z qiﬂf(y)cb37b4(b4, 2)75(b3) = 0. (3.23)

bl,bz b37b4
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Now suppose ¢,y = (—1)2 7 g, 8,4. Note that e(v) = p(v—i)p(i)+e(v—i).

Then we have

D (0 ri(2))b = D (b, 2)Ed) =0,

b 4
> ()b = > (1", 2)7(W) =0,
> (2" = (¥, 2)F(b) =0,
b b
D (i) =D (¥, 2)T(b) = 0.
b 4

These equalities are easily verified by checking when z is a basis or dual basis
element.

Thus the existence of such a © is verified. Suppose ©/, and O’ also satisfy the
conditions in (a). Then © —©" = > ¢, yb~ @ V' must satisfy (3.20)-(3.23) and has
ey = 0 for b € By. Suppose ¢,y = 0 for b0 € B], for ht(v') < n and assume
ht(v) = n. Then the first sum in (3.20) is zero, so Ti(_y, ;, Cbsbs (b3, 2)bs) = 0. But
then >, ;. Coy s (03, 2)ba = 0, whence (32, s ps3,2) = 0 for all z € f. Therefore

Chy b, = 0 for all by, by € B,. By induction © — ©' = 0 proving uniqueness. O

Recall that the bar involution on U makes sense under the assumption that the

super Cartan datum is consistent.

Corollary 3.34. Assume that the super Cartan datum is consistent. We have ©0 =
00 = 1® 1 with equality in the completion.
Proof. First note that by construction © is invertible. We have A(u)© = OA(u),

so OA(u) = ©A(u) = ©A(u). Now applying the bar involution to both sides and

rearranging, we get

By uniqueness, © = = 0. ]
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We can specialize the identity A(u)© = ©A(u) to deduce
(B ® K_)0,_;i + (1® E))O, = 0,_(E; ® J;K;) + 0,(1® Ey),
(JiKi®@ F)O,_i + (Fi®1)0, =0, i(K_; @ F}) + O,(F; ®1).
Setting O, = thu<p O,, we obtain that

(B;®@K_i+1® E)0<, — 0, (E; @ JK; +1® E;)

=Y (E®K_)0,— > 0,(E® JK), (3.24)
htr=p htv=p
(F; 1+ jJN(Z ® F;)O<, — 0, (F, @1+ K_z‘ ® F;)
=Y (JKi®F)®,— Y 6,(K_,®F). (3.25)
htv=p htv=p

There is a variant of the quasi-R-matrix for the coproduct A’. Let A : U - UU
be the Q(g)"-algebra homomorphism given by A(z) = A(T).

Corollary 3.35. Let © = 3 (J, ® 1)0,. Then A'(u)© = OA/(u) for all u € U
(where this identity is in (U @ U)").

Proof. Note that (.J, ® 1) is central in U ® U. We have
(1® E)O, — 0,(1® E;) = 0,4(E; ® JiK;) — (E;® K_;)0,_;,
in U ® U, which implies

(“71 ® E;)0, — @V(ji ® E;) = (jz ®1)0,_i(E; KG) — (B, @ K) (i ®1)0,_;.

&

Multiplying both sides by J,,
(J; ® E;)O, — 0,(J; ® E;) = 0,_,(E; ® JK;) — (E; ® K_,)0!,_,.
A similar argument applies to F', so we have
(B; @ K_,)O,_. + (J; ® E)0, =0,_.(B;® JK;)+ 0. (J;® E),
(Ki @ F)O,_, + (F; @ 1)0), = 0)_ (K ® F,) + O,(F,®1).

Then we have analogues of (3.24), (3.25) and so by continuity, we obtain the desired

equality:. O
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3.8 The quantum Casimir

Let B, B, be as in Theorem 3.33. Let S be the antipode and m : U ® U — U be
the multiplication map v ® v’ — wu'. Applying m(S ® 1) to the identities (3.24) and
(3.25), we obtain that, for any p > 0,

S Y ()", (S(Eib”)f(_ib‘ + P S B

htv<p beB,

IS B LK — S(b*H)b )
=3 S (—Pma ( (B YK b~ — 7" S E)b~ JK)

htv=p beB,

and

> S 1 g (SN SR Fb

htv<p beB,

ISR — S(b**f(,i)b*FO

=3 S Wma (VSRS R = SR )R

htv=p beB,

Now set QL =37 > hep, (=1 mq,S(b*7)b~. Then observing that
S(EH K _ib~ + 7" S0 ) Eb~
= — "V SE)Eb + 7PV S Eb =
and that a similar identity for F; exists, we have
EK QL JiK; — QL E;
-3 S —1rma (ﬂf(”)S(Eib*Jr)f(,ib’ S E) Kb ) :

htv=p beB,
J K i FQL, — KQLF,
_ (wf(”)S(jif(ib”)Eb’ - S(b**f(,i)b*FO .
Now we set Q<, = S'(QL,). Let M € O. Then for any m € M we have that

Q(m) = Q<,m is independent of p when p is large enough. We can write

Q(m) => (=1)"Plg_, ' (b7)b" m

b
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We then have
KiEiQ'Sp = J_iK_iQ’SpEZ-, OF, =F,J ;K_QK_;, QOLK, = J,K\,
as operators on M. Therefore for m € M), we have
QE;m = (mg?) ) E,.Qm, QFm = (mq?)” "N E,Qm.

Let C be a fixed coset of X with respect to Z[I] < X. Let G : C — Z be a

function such that

GO\ -G\ =) = - (i,A) forallXeC,iel. (3.26)
Clearly such a function exists and is unique up to addition of a constant function.
Lemma 3.36. Let A\ N € CNXT. If A\ > X and G(\) = G(X), then A = X.

Let M € C. For each Z[I]-coset C' in X, define M¢ = @, My. It is clear that

M= P M. (3.27)
cex/z(I

Proposition 3.37. Let M € O, and let Q2 : M — M be as above.

(a) Assume there exists C' as above such that M = M¢. Let G : C — 7Z be a
function satisfying (3.26). We define a linear map = : M — M by Z(m) =
(7¢®)"CNm for all X € C and m € My. Then QZ is a locally finite U-module

homomorphism.
(b) Assume that M is a quotient of M(X'). Then Q= acts as (1¢*)~¢™) on M.
(c) For M as in (a), the eigenvalues of Q= are of the form (wq*)¢ for ¢ € Z.

The operator 2= is called the Casimir element of U (though note that the Casimir

element formally lives in a completion of U).
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Proof. We compute that for m € M,,
QEEZ’I’TL _ Q(WQQ)_G(A+i,)Eim _ (ﬂ_qQ)—G()\+i’)+G()\)+di<i,>\+i/>EiQEm _ EZQEm

A similar argument applies to the Fj, and clearly Q= commutes with K,, J,
proving the first assertion of (a). The local finiteness claim is a standard category O

type argument. Parts (b) and (c) follow now easily. O

3.9 Complete reducibility in Ojy

Recall the categories O and Cj,, and form another category Oiy := O N Ciyt-

Lemma 3.38. Let M € C. Assume that M 1is a nonzero quotient of the Verma
module M () and that M is integrable. Then

(a) € XT;
(b) M|x=1 and M|.—_1 are either simple or zero.

Proof. Tt is clear that (a) holds by some rank one consideration. An argument similar
to that for [Lu4, Lemma 6.2.1] shows that if dimgq) My = 1 then M is simple; in
this case, M must be equal to either M|,—; or M|.—_;. Otherwise, dimgg) M\ = 2,
then dimg(q) Mi|r—1 = dimg(g) Mx|r——1 = 1, and we repeat the argument above for

the integrable U-module M |,—. O

Theorem 3.39. Let M be a U-module in Oyy. Then M is a sum of simple U-

submodules.

Proof. Note that as discussed in §3.5 we may assume that M = M|,—; or M =
M|.=_1. Since the case for M|,—; follows from [Lu4, Theorem 6.2.2], it is enough
to prove the theorem for M = M|,—-_;. Virtually the same argument as in loc. cit.

holds, which we will now sketch.
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Using (3.27), we may further assume there is a coset C' of Z[I] in X such that
M = Mc¢. Then we may pick a function G satisfying (3.26) and avail ourselves of
Proposition 3.37. Since the Casimir element commutes with the U-action, we may
further assume that M lies in a generalized eigenspace of the Casimir element.

Consider the set of singular vectors of M (that is, the set of vectors m € M for
which E;m = 0 for all i € I) and let M’ be the submodule they generate. Then each
homogeneous singular vector generates a simple submodule by virtue of Lemma 3.38,
so M’ is a sum of simple modules.

It remains to show that M = M’ so take M” = M /M’ and suppose M" # 0.
Then there is a maximal weight A € C' such that M} # 0. Then the Casimir element
acts on the submodule generated by a nonzero m; € MY by (—¢*)~¢™ by Proposition

*G(’\)-eigenspace of the

3.37, and so in particular M must lie in the generalized (—¢?)
Casimir element.

On the other hand, m is the image of a vector m € M \ M’. The UT-module
generated by m contains a singular vector msy of weight n > A, and the Casimir
element acts on the module generated by my as (—¢?)~¢™. Then G(n) = G(\) and
n > A, so by Lemma 3.36 n = A\. But the m is a singular vector, contradicting that

our choice of m; was nonzero. O

Corollary 3.40. (a) For A € X*, the U-modules V(A)|z=1 and V(X)|,=_1 are
simple objects of Oiyt.

(b) For A, X' € X*, the U-modules V(A)|z=1 and V(X)|=1, and respectively the
modules V(A)|r=—1 and V(XN)|z=—1, are isomorphic if and only if A = X.
(Clearly, V(N)|r=1 and V(XN)|z=—1 are non-isomorphic.)

(c) Any integrable module in O is a direct sum of simple modules of the form

V(A)|nzt1 for various A € X+.

Proof. The argument in [Lu4, Corollary 6.2.3] holds using our Lemma 3.38 above. [
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In light of Corollary 3.40 and Remark 3.29, we are lead to the following definition.
We say a U-module M is 7-free if it is a weight module such that M) is a free Q(q)"-
module for all A € X. Then the category of m-free modules contains most of the
interesting modules; for example, the modules M (A), V(\), N(A, ), and indeed U
itself all lie in this category. In fact, each module in Oy, is a direct summand of a

m-free module.

One reason to assume modules are m-free is to utilize the following definition.

Definition 3.41. Let R be a ring. A w-basis for a free R™-module M is a set S C M
such that there exists an R™-basis B for M with S = BUTB.

Suppose M and M’ are free R™-modules with m-bases S C M and S’ € M’. The
SRS ={s®s|seS, s eS8} is clearly a m-basis for M ® M’. However, we note
the map S x " — S ® S’ given by (s,s') — s ® s’ is not a bijection, since clearly
s® s = (ms) ® (mws'). We will occasionally need an honest index set, so let ~ be the

equivalence relation on S x S’ given by (7s, s') ~ (s, 7s’). Then we set
Sx,8=85x8/~. (3.28)

We note that a m-basis of an R™module M is an R-basis of M. We will now turn to

constructing a particular m-basis for U™ and the modules V().
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Chapter 4

Crystal basis and the grand loop

4.1 The (gq,7)-boson superalgebra

From now on, we always assume that the root datum is Y-regular. Let F = F,; be

the Q(q)"-superalgebra generated by odd elements e, f subject to the relation
ef =nqg %fe+ 1.

We set f(") = fm/[n]".
One checks that

n m t+l —-nm _—(n— m— n m— n—
g =St oy
q,T

>0

The following properties may be directly verified.
Lemma 4.1. Let M be a F-module which is locally finite for e.
(i) P = ano(—l)an(g)f(”)e” defines an endomorphism of M satisfying

eP=Pf =0 and Z(Wq)(;)f(t)Pet = 1. (4.2)

>0

(i) Let m € M. Then any u € M has a unique decomposition u = Y -, fMu,

where u,, € kere; in fact, u, = (Wq)(g) Pe"u.

(11i)) M =imf @ kere. Moreover P : M — M is the projection map onto kere along

this direct sum decomposition.
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Define the algebra B’ to be the Q(¢)"-algebra generated by the elements e; and

fi for i € I, subject to the relations

e;f; = mPPDg " fre. + 6,  foralld,j € 1. (4.3)
Then B’ is naturally a superalgebra with parity on generators given by p(e;) = p(f;) =

p(i) for i € I. Set f™ = fm/[n]\. The superalgebra B by definition has the same
generators as B’ subject to the relation (4.3) and the additional (g, 7)-Serre relations

(4.4):

bij : )
(_1)15%(2)“;)(]) {bﬂ e lejel = 0,
t=0 qi, T4
(~1)m? { ZJ] =0,
t=0 qi,T
where we recall that
bij =1- Clij.
Let ,
17 t ] N PR a—
Sij = Z(—l)tﬁl(2)+tp(J) {sz] ef” tejeﬁ eB. (4.5)
t=0 qi,T5

Lemma 4.2. The following holds in B" for all i,j,k € I with i # j:

bijp(i)+p(s) —(k,biji'+j")
Sijfk =Ty’ % WEDE

Proof. Let Czk] _ Sijfk . WZijp(i)‘i’p(j)qkj<k,biji’+j’>kaij‘
If & # i, then then it is apparent that C’fj = (0 from the defining relations.
When £ = j, then we have

' , bij . (t) b
ij =’ Z(‘l)tqz' o [ f] =0,
t=0 qi, T

by using 1 — a;; = b;; and the identity Z?:O(—l)tqf(”_l)wi(Q) {Z] =0.
qi T

Finally, if £ = ¢ then we have
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i ¢ bii— —1 +(t+1 (
Cij = Z (_l)tqz‘ tei o z< 2 "
=0
ai; | bij bi;
ij | Vij o _ | Yy
X (Wi |: t :| [blj t](hﬂri |f + 1:| [t + 1]¢1i,7rz') :
qi,T qi,T5
aij bi]‘ b,’j .
We see that m, b [bij — tlgims — f41 [t+1], », = 0 by noting that we have
qi,74 qiyT
[n] n—t]gm = L ﬁ 1] [t + 14 and a;;p(i) € 2Z. The lemma is proved. [
qi,75 qi,7

Remark 4.3. A multi-parameter version of the quantum boson algebra can also be

found in [KKO].

Comparing with Propositions 3.5 and 3.5 and using the triangular decomposition,

we see that if r e f and v~ =y € U™

PR (o) — B )
[E“y] _ Jz i ZT(ZL') _1Z ZT<m) 7 for y = xr~ eU. (46)
™iq; — g,

In particular, we record the following formulae
Lemma 4.4. Fory € £, we have
ir(05y) = ﬂ-p(])qi(w 0, r(y) + 65y,
Proposition 4.5. We have ;7 jr = Wp(i)p(j)qj<»j’i,>j7° i, fori,j €1
Proof. Let v € N[I] and let y € f,. If htv < 1, then ;7 ;7(y) = 0 = ;777(y). Otherwise,
we may assume y = 0y’ for some k € [ and ' € U~ with ht(—|y’|) < ht(—v). Then
i yr(y) =7 (m] q 9k; r(y') +0y)
13 K0T (4 73 b gr (o) + 0 ()

f (i, 5, k)07 jr(y )+Wp(z)p(j)qdju’i/)@kjr(y/) + 0,7 (Y)
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and similarly
() = fi, 5, k)0 jr i (y) + aP PO gm0 s () + S (yY)

where we have denoted f(i,j, k) = W(p(i)+p(j))p(k)q§j’k/>q_d"<i’k/>+dj Gk,
Note that d;{j,i') = d; (i, j'") and by induction 7 ;r(y) = mPOPDgP") 17 (y).
Therefore, we have ;7 ;r(y')(y) = Wp(i)p(j)q;-j’i > T (Yy)- 0

Lemma 4.6. Let i € I and x € £, such that ;7(z) = 0. Then for any U-module M

and m € My such that e;m = 0, we have

R (2030t 1)
KI'Erum = 70N — (;r"z) " m.
B =)

Proof. This lemma has essentially the same proof as [Kasl, Lemma 3.4.6]. The power

of 7 comes from the central element .J;. O
Our interest in the superalgebra B comes from the following result.

Proposition 4.7. f is a B'-module as well as a B-module, where f; acts as multipli-

cation by 0; and e; acts by the map ;7 for all i € I.

Proof. By Lemma 4.4, f is a B-module. Recall the Serre elements s;; € B’ from (4.5)

and denote the f-counterparts by

by

g - Z . 1>t7Ti(;>+tp(j) {bt]}

t=0

ot e B

To show that f is a B-module, it suffices to show that s;; and sj; act as zero on any

y € f. By the definition of the action and the Serre relations in U,

%yz(Ejvn%#”W”ﬁﬂﬂwwﬁQyzo

t=0

For s;;, we may assume that y is a monomial in the generators ¢; for ¢ € I, so
y = m(f)1 where m(f) € B’ is a monomial in the f; for ¢ € I. By repeated application
of Lemma 4.2, s;;m(f) = ¢ m(f)s;; for some scalar ¢ € Q(q)". Since ;7(1) = 0 for all

ke 1, s;;1 =0 whence s;;y = 0. O
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Corollary 4.8. As B-modules, f =B/ ). Be;.

Proof. The final remark in the proof of Proposition 4.7 shows that there is a B-module
homomorphism B/, Be; — f. On the other hand, the f; generate a subalgebra of

B isomorphic to f, so this map must be an isomorphism. O

Proposition 4.9. There is a unique bilinear form (—, —)p on f satisfying

(1,1)p, =1, (fiy,2)p = (y,€i2)p Vy,zef, iel
Moreover, this bilinear form is symmetric.

Proof. Note that we have

(Qiy, Z)P = (fi%Z)P = (f%@iZ)P = (yﬁ_TZ)Pa

and we already have a unique bilinear form satisfying this requirement; namely,
(. 2)p = n(ly]) {=, y} where n (3, vii) = [Tie, {6:,0:3 7 O

Corollary 4.10. The bilinear form (—,—)p on f is nondegenerate; moreover, we

have (f,,£,)p, =0 if v # p.

The bilinear form (—,—), will be referred to as the polarization on f. Corol-
lary 2.10 implies the following.

We define a category P as follows. The objects of P are B-modules M such that
for any m € M, there exists an ¢ € N such that for any 41,...,i € I, €;, ...e;;m = 0.

The homomorphisms are B-module homomorphisms. Then we have f f|,—4; € P.

In fact, f|,—4; are the only simple modules up to isomorphism and P is semisimple.

Lemma 4.11. Let M € P. For each i € I, every m € M has a unique expression of
the form

m = Z fi(t)mt

t>0

where m; € kere; and my is nonzero for finitely many t. We will refer to this as its

i-string decomposition.
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Proof. By the definition of P, each e; is locally finite on M. Note that e; and f;
generate a subalgebra of B isomorphic to F,, ., and so Lemma 4.1(ii) finishes the

proof. O]

4.2 Crystal bases

Let i € I. Let M € P and m € M such that m =}, fi(t)mt with m; € kere;. We

define the Kashiwara operators
em = Z fi(t—l)mt’ and fim = Z fi(t+1)mt-
t t

Note that these operators (super)commute with B-module homomorphisms.

Let A C Q(q)™ be the subring of functions regular at ¢ = 0.

Definition 4.12. A free A-submodule L of B-module M which is free as a Q(q)"-

module in the category P is called a crystal lattice if
1. L(XJAQ(C])7r =M;
2. &L CL and fiL C L.

(Note that L/qL is a free Q"-module.) M is said to have a crystal basis (L, B) if a
subset B of L/qL satisfies

(3) B is a m-basis of L/qL (in the sense of Definition 3.41);
(4) &B C BU{0} and f;B C B;
(5) Forbe B, if &b # 0 then b= fiéb.

Remark 4.13. We can similarly define the notion of crystal basis to B|ii-modules
by specializing the above definition similarly. In particular, a crystal basis with respect

to Blr=1 is precisely the same as the crystal basis defined in [Kasl].
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We let £ be the A-submodule of f generated by all elements of the form ﬁ»l e fit 1.
We let B = {weﬁl o fil G, vin) € I";n > 0,€ € {0, 1}} be the subset of L/qL.
We shall prove that (£, B) is a crystal basis of f. Note that the bilinear form allows

us to define a dual lattice in f as follows:
LY ={zef|(x,L)p CA}.
There are analogous constructions for U-modules which we will develop now.

Lemma 4.14. Let M € O. For each i € I, every m € My has a unique expression
of the form

m = Z Fz'(t)mt

where my € My Nker E; are nonzero for finitely many t. We will refer to this as

its i-string decomposition.

Proof. This lemma is known when p(i) = 0; see [Kasl, §2.2]. When p(i) = 1, M is
a direct sum of simple U(i)-modules, where U(i) is the quantum group of osp(1]2);
see [CIW]. This proves existence. Uniqueness is proved similarly to the case when

p(i) = 0. O

Definition 4.15. Let m € M, with

m = Z Fi(t)mt

t>0

where my € My, Nkere; are nonzero for finitely many t. We define
&m = Z Fi(t—l)mt7 flm _ Z F’i(t+1)mt.
t t

Note that é;m € My, and f,»m e M*". Moreover, ¢é; and ﬁ (super)commute

with U-module homomorphisms.

Definition 4.16. Let M be a w-free U-module in the category O. A free A-submodule
L of M 1s called a crystal lattice of M if
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1. LeaQq)" = M;
2. L=, pLx where Ly = LN My for all X € P;
3. &L C L and fiL C L.

A pair (L, B) is called a crystal basis of M if a subset B of the Q™-module L/qL

satisfies
(4) B is a m-basis of L/qL over Q";
(5) B =11, cp Br where By = BN Ly/qLj,
(6) &B C BU{0} and f;B C BU{0};
(7) For b,V € B, &b =1 if and only if b= fily.

Also a m = =£1 version of crystal basis for U|,—4; integrable modules can be

formulated similarly as in Remark 4.13.

Remark 4.17. We shall set out to prove the existence of the crystal bases for the
w-free integrable modules V(X), for A € XT. Assume for the moment that we have
done this. Since these axioms are unaffected under direct sums of lattices and parity
changes, we can endow any m-free module M € Oy, with a crystal basis built out of
direct sums of the simples. (In fact, by specializing the crystal bases at m = +1, we
see that any integrable module in Oy can be endowed with a crystal basis in a more
general sense.) Uniqueness of a mazimal crystal basis on M (up to isomorphism) can

be proved by the same arguments as in [Kasl, §2.6].

Example 4.18. Let I = {i}. Then the simple modules are (n + 1)-dimensional
modules V(n) for n € Zsq, which are generated by the highest weight vectors n,,.
Define the A-lattice L(n) = @y_y AF®n, in V(n), and define the set B(n) =
{7 F®n, +qL(n) |0 <k <n,ec{0,1}} (the index i is suppressed here). Then
(L(n),B(n)) is a crystal basis of V(n). In this case, B(n) is actually a genuine
Q™ -basis for L(n)/qL(n).
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Example 4.19. Let A € Pt and recall ny is a highest weight vector of V(X). Con-
sider the subset B(\) := {Weﬁ-l o fitin (i, i) € 170 > 0, € € {0, 1}} \ {0} of
V(A). Let L(N) be the A-submodule of V(X) generated by B(X\). We shall prove that
(L(A),B(X)) is a crystal basis.

Example 4.20. Assume that I, contains i,j such that a;; = aj; = 0. Then f~,f; =

Wﬂﬁ In particular, this demonstrates why we should expect a w-basis as opposed to

a Q(q)"-basis.

4.3 Tensor Product Rule

We will demonstrate a rule to define the tensor product of crystal bases. We will first
do this in rank 1, so suppose for the moment that I = {i} with p(i) = 1 and let us
suppress the subscripts on the generators of U. We note that A(E) = EQ K '+1QF
and A(F)=F®1+JK®F.

Let n € Zso and We consider the module V(n) ® V(1). This module has two
submodules over Q(q)" generated by singular vectors: a submodule N; generated by
the (even) singular vector

W = 1n @M

and N, generated by the (odd) singular vector
2 =1 ® Fny — qn],  Fin @ 1.
We directly compute

F®Fy = F(k)nn ®@n + (Wq)"H*kF(kfl)ﬁn ® F'n,

F®z = (1— (Wq)n_k[n]_l [k]q,ﬂ)F(k)nn ® Fm — q[n];}r[k + 1]q,ﬂF(k+1)77n & N1

q?Tr

Observing that 7(7wq)"*[n], L[k],~ € ¢*"** A, we have

q,m

F®n, @n if0<k<n+l1
F®yy = mod gL, (4.7)

Fp @ Fn  ifk=n+1
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and

F® 5 = F(k)nn ®Fn mod gL, 0<k<n-—1 (4.8)

In particular, V(n) @ V(1) = Ny & Noa =V (n+ 1)@ V(n—1).
The above calculations remain to make perfect sense for V(n)|,—11 ® V(1)|z=41,

with 7 in the formulas above interpreted as 1 and —1 accordingly. In particular,
V() |a=t1 @ V(D]azt1 EN1 O No Z V(0 + 1)|rzst1 V(0 — 1) |r=s1

We can use these calculations to prove a tensor product rule for crystal bases in
general, so let I be arbitrary. Let M be an integrable U-module with crystal basis
(L, B). For each i € I and b € B, define

ei(b) = max {n | fo # 0},
gi(b) =max{n|e'b#0}.

(4.9)

We note that ¢;(b) = (o), p) + €;(b) for b € B,,.

Theorem 4.21. Let M, M’ € Oy be modules with crystal bases (L, B) and (L', B').
Let B B' = {b®@¥V € (L/qL) ®q~ (L'/qL’) : b€ B,V € B'}. The tensor product
M & M' has a crystal basis (L ® 4 L', B® B') subject to the rules:

(
. fbav if i(b) > ealt)),
fi(b@V) = A y
Wf(b)ﬂz,\b\)b ® fibl  otherwise;
\
(
PO @ e if pi(b) < (b)),
e(bel) = | "
\éib QU otherwise.

(All equalities are understood in L @4 L' /qL @4 L'.)

Proof. 1t is sufficient to prove this for a fixed ¢, in which case the theorem reduces
to a statement for I = {i}. When p(i) = 0, the theorem is [Kasl, Theorem 1].

Assume p(i) = 1. Since modules are completely reducible, it suffices to prove this
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for tensor products of simple modules V' (n) ® V' (m), by induction on m. Recall from
Example 4.18 that (£(n),B(n)) is a crystal basis for V(n).

From the odd rank 1 calculations, the theorem holds for V' (n) ® V(1). This takes
care the base case of induction.

Now assume the theorem holds for V' (n)|,——1 ® V(m)|,——_1. Note that
Vin)@V(m)@ V(1) ZV(n)@ (Vim+1)®V(im-—1)).

By the complete reducibility and the base case proved above, we conclude that (E(n)@
L(m)®L(1),B(n)®@B(m)®B(1)) is a crystal basis of V(n)®V (m)®V (1). Moreover,
(L(n)®@L(m)® L(1),B(n)@B(m)®B(1)) decomposes as (L(n) @ (L(m+1)®L(m—
1)), B(n) @ (B(m+1) UB(m —1))). Therefore, (£(n) @ L(m+ 1), B(n) @ B(m + 1))
is a crystal basis of V(n) @ V(m + 1).

Finally, the tensor product rules are proved by directly computing the action of
f, € on each element of (B(n) ® B(m)) ® B(1) and rewriting it in terms of B(n) ®
(B(m) ® B(1)). The key feature is that the power of 7 in the tensor product rule is
Z-linear in |b). O

As one might expect, the tensor product rule is dependent upon the choice of
coproduct. In fact, as shown in [CHW2], it takes the following more natural form if

we consider A’-induced module structure instead.

Theorem 4.22. Let M, M’ € Oy be modules with crystal bases (L, B) and (L', B').
Let B B' = {b®@V € (L/qL) ®q~ (L'/qL’) : b€ B,V € B'}. The tensor product
M &' M’ has a crystal basis (L @4 L', B® B') subject to the rules:

ey ey e a0
7O fibl otherwise;

G (b @) el if pilb) < (b)),
ebRb otherwise.

(All equalities are understood in L @4 L' /qL @4 L'.)
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4.4 Polarization

Let 74 : U — U be the anti-automorphism defined by
7'1<Ei) = q;lkflﬂ, Tl(ﬂ) = q;lszl, Tl(K‘u) = Kﬂ’ TI<J/L) == Jl“ (Z S I,/JJ S Pv)
such that 71 (zy) = 71 (y)7i(z) for x,y € U. One checks that 72 = 1.

Proposition 4.23. Let A € X*. There is a unique bilinear form (—,—) on V (),

which satisfies (nx,my) = 1 and
(uv,w) = (v, 71 (u)w), Vu e U, v,w e V(A). (4.10)
Moreover, this bilinear form on V(\) is symmetric.

Recall the A-lattices L(\) of V() from Example 4.19. We define the dual lattices
in V(X) to be
L) ={veV(A)|(v,L(N) C A}
For a weight U-module M, we call a bilinear form (—, —) on M a polarization if

(4.10) is satisfied with M in place of V(X). Note that if m € M, and m’ € M,,, then
(m,m') = 0 unless A = p and p(m) = p(m’). (4.11)

Recall [Kasl, Lemma 2.5.1] that the tensor product of modules admitting polar-
izations also admits a natural polarization given by the tensor of the bilinear forms.
In our super setting, this is not quite true due to the additional asymmetry in the
definition of the coproduct. However, this can be resolved by requiring the A and A’

actions to be adjoint.

Lemma 4.24. Assume M, N € Oy admit polarizations (—, —). Then the symmetric
bilinear form on the module M & N given by (m; @ ny, mg ® ny) = (mq, me)(nq,ns)

satisfies
(A(u)(m1 ®ma),ny ® nz) = (m1 ® ma, A'(11(u))(n1 & ”2»7

foru e U,my,mg € M,ny,ng € N.
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We call such a bilinear form on M ® N a J-polarization, as the difference on A

and A’ is caused by the J,’s.

Proof. This follows from direct computation. For example, we shall verify this for

u = F;. Let m; € M, and my € M,,. By a direct computation, we have

(A(F)(m1 ® ny),my @ ny) = (Fymy, ma)(ng, ny)

+ Wf(ml)(ﬂz‘%)(i’m (ma, ma)(Fyny, ng), (4.12)
and

(ml & nq, A/(q;lKiEi>(m2 ® nz)) =(my, q;lKiEz'mﬂ(nl, n2)
+ Wf(m”(mql-)<o‘iv’“,> (m1, ms)(n1, q; " KiEmns).
(4.13)
By (4.11) and the definition of a polarization, (4.12) and (4.13) are equal. O

Remark 4.25. To see why we need A" in Lemma 4.2/, we compute using 2\ in replace

of A" that

(m1 @ 11, A(T(E)) (m2 @ n))

= (my, 71 (E;)mz)(ny,ng) + ﬂf(mZ)qi<a"v’ul> (my,ma)(ny, 71 (E)ng).  (4.14)

In particular, if p(i) =1 and (o), 1’y & 27, then (4.14) is not equal to (4.12).
For A\, u € X, we define the U-module homomorphisms

XA ) VA1) = V)@V (1), Magu = mr @1,

(4.15)
YA ) V)@ VI(p) = VA+ 1), mx @0y = Mgy,

)
XAp) s VA1) = V)@ V), iy = 1a @ 1,
)
YApu) V) V() = VAt ), @ = g
Then v(A, 1) o x(A, ) and v/(A, ) o X'(A, p) are the identity map on V(A + u). In
particular, V(\) @ V(u) = imy @ kery and V(\) ® V(u) = imy’ @ ker+’. Note that

these maps, being U-module homomorphisms, commute with Kashiwara operators.

A key property of these maps is the following adjointness statement.
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Lemma 4.26. Let \,u € Xt. Let (—,—) denote the polarization on V(X + u) and
the J-polarization on V(X)) @ V(u). Then we have

(’7(/\7 :u)(w)’ U) = (w’ X/()‘v :u) (U))v (7/()‘7 HJ) (w)v U) = (wv X()‘v :u) (U)),

forve V(IA+p) andw e V(A) @ V(u).

4.5 Main statements and grand loop argument

Recall the definitions of £, L(\), B, B()\) given in §4.2. We are now ready to formulate

the main theorems on crystal bases for f and integrable modules V().

Theorem 4.27. (£, B) is a crystal basis of f. Moreover, let x =}, -, GE")xn be the

1-string decomposition of x € £. Then,
1. x € L if and only if x, € L for all n.
2. If x +qL € B, then x = an)xn mod qL for somen and x, + qL € B.
3. If éjx =0 for all j € I then x = 0; if €2 # 0 then fjéjx =z.
Theorem 4.28. Let A € XT. Then (L(N),B())) is a crystal basis of V(N).

Recall that we may view f naturally as a U -module. For A € X, we define the

U -linear projection map
or: T —V(N), 1 n,. (4.16)
Theorem 4.29. Let A € XT.

(This induces a homomorphism Oy : L/qL — L(X)/qL(N).)
2. ox sends {b € B | pr(b) # 0} isomorphically to B(\);

3. if b € B satisfies px(b) # 0, then é;0,(b) = pa(E;:D).
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These statements are proved in [CHW?2| using a modified version of Kashiwara’s
grand loop argument (cf. [Kasl, §4]). For A\,u € X7, recall the maps v(\, 1) and
X(A, ) from (4.15). We also define a map

SO L) VN ® V(i) — V() (4.17)

by S(A, p)(u®@n,) =uand SO\, p)(V(A) ® > fiV (i) = 0. This is a U~ -linear map.
Therefore, we have a U~ -linear map S(A, p) o x(A\, 1) : V(A + p) — V(A) sending

Mat+p £O M-

Then let A(l) ={C € A:ht { <I}.
Theorem 4.30. Let C; be the collection of the following statements.

(C1.1) For ¢ € A1),
&Le C L.

(C1.2) For ¢ € A(l) and X € X+,
EL(AN)a—¢r T L(N).

(C1.3) For ¢ € A(l) and A € X+, pxLe = L(N)a—c'-
(C.4) For ¢ € A(l), B is a m-basis of L¢/qLe.
(C1.5) For ¢ € A(I) and A € X+, B(\)s_¢r is a w-basis of L) a—¢'/qLAN)a—¢:-
(C1.6) For ¢ € Al —1) and A € X+, fi(zny) = (fix)ny mod gL(N) for x € Le.
(C,.7) For ¢ € A(l) and A € X+, &B, € BU{0} and &B(\)x_cr C B(A) U {0}.
(C.8) For ¢ € A(l) and \,u € X,

XA ) (L A+ 1)xru—¢r) € LA) © L ().
(C1.9) For ¢ € A(l) and \,u € X,

100 (£ © L))y, o ) € LO ).
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(C1.10) For ¢ € A(l) and M\, € X+,

100 ((BO) @ B1))y ) € BO+ ) U {0}

(C;.11) For ¢ € A(l) and X € X+,

(b€ B : pa(b) # 0} = B

15 a bijection, where Oy is the map induced by @y.

(C1.12) For ¢ € A(l), A € Xt and b € B such that 5(b) # 0, we have

(C1.13) For ¢ € A(l), A € Xt b e B\a_¢ and V' € BN a_¢ryi, b= fibl if and only if
b/ == ézb

(C.14) For ¢ € A(l) and b € B, if &b # 0 then b= f;&;b.

Then C; holds for all | € N.

In the case I = I, Kashiwara (cf. [Kasl]) proved these statements via an induction
on [. These arguments can be adapted to our super setting, with the main change
being book-keeping for the power of m. We will abstain from stating the proofs
here, but the essential changes in the argument are stated in [CHW2]. While the
main coproduct used there is our A/, the statements stay the same except for minor

cosmetic changes for Lemma 5.2(2) and the proof of Lemma 5.7 in loc. cit..

4.6 Further properties of the polarization

Let us examine more closely the properties of the polarizations on £(\) and on L.
We will say a m-basis B is m-orthonormal with respect to a bilinear form (—, —) if

(b,b') = w0 5y for some e, € {0,1}.
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Proposition 4.31. Let either (1) V =1 and (L,B) = (L,B) or (2) V =V(X) and
(L,B) = (LX), B(X\)) for A€ XT. Let (—,—) be the polarization on V given in §4.1
or §4.4, accordingly. Then,

(i) (L,L) C A, and so it descends to a bilinear form
(= =)o: LjqL x L/qL — Q", (x+qL,y+qL)o = (z,y)lg=0-

(ii) (fiu,v)o = 7" (u, &v)o for u,v € L/qL.

1

(11i) B is a w-orthonormal w-basis of L/qL with respect to (—, —)o.
(w) L ={ueV;(u, L) C A}

Proof. For notational simplicity and certainty, we will prove the case (2) in detail,
while the case (1) is entirely similar.
The same easy reduction as in the proof of [Kasl, Proposition 5.1.1] reduces the

proof of Parts (i) and (ii) to the verification of the following identity
(fou,v) = 78 (u,60)  mod gA (4.18)

where u = F-(n)lb() € £<)\))\_C/+i/, v = F-(m)v() S ;C(/\))\_C/ with EiU() = EiUO = 0.

K3 K3

To that end, we have the following computation (compare [Kasl, (5.1.2)]):

(Fi(nH)UO, F‘(m)vo) = 5n+1,qum<i7)\_</>+m2(Ez‘(m)Fi(m)uOv vo)

m2+m+1 mliA—c! m2 Z,)\_ ! +2m
= On+1,mT; s )qi A {< fn> } (0, v0)
qi,T5

m

= 577,—}—1,777,7TZ‘ : (Uo, UO) mod un

where we have used (™}') +m? = (7)) mod 2. Therefore (fiu,v)o = 7" Y (u, &v),.
Since m — 1 = n = ¢;(u), the identity (4.18) follows, and whence (i) and (ii).

Part (iii) follows by induction on weights and using Theorem 4.28 from the identity

(b, b0 = (fi&sb, V) = (&b, &b )o,
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where b, € B and i € [ is chosen such that é;b € B.

To prove (iv), it remains to verify that {u € V;(u, L) C A} C L thanks to (i).
Denote sgn(b) = (b, b)g. Suppose u € V' is a u-weight vector such that (u, L) C A. By
Theorem 4.28 and the definition of crystal basis and 7-basis, one can find Bg C B,
which is an honest Q™-basis for L, /qL,. Then u can be written as u = ZbeBg CpUp.
where u, + gL = b and ¢, € Q(¢). Assume u ¢ L. Then there exists a minimal
r € Zsg such that ¢"¢, € A for all b € B,. Since (u, L) C A, we have in particular
that (u,sgn(b)g" 'up) € A. On the other hand, since (uy, uy) € qA for b # b, we
compute that (u,sgn(b)q"uy) € ¢" ey + A for all b, whence ¢" !¢, € A for all b,

contradicting the minimality of r. This completes the proof of the proposition. [

Remark 4.32. In contrast to the usual quantum group setting in [Kas1, Luj/, (—, —)o
here is not positive definite in general, as it could happen that (b,b)y = 7 for some
crystal basis element. In particular, the well-known characterization in the usual
quantum group setting that an element w lies in the crystal lattice if and only if

(u,u) € A fails in our super setting in general; see Example 4.33.

Example 4.33. Let U be the quantum osp(1|4), with I = {1,2} (where 1 is the odd
simple root). Then

1-1=2, 1-2=2-1=-2
Then fffz -1 = 6&4)92 and fffzfl 1= 953)(0291 — ¢%0105) + q29§4)92 (these will be
canonical basis elements as developed in Section 4.8). A direct computation shows
that

(65 (8261 — ¢%6165),6"65) =0,

and also

(0765, 0705) = (rq)°([4]}) 7" € 1+ ¢*Z7[[q]),

q?Tr

(037 (0201 — 20202, 017 (0201 — ¢0102))

= (7q)*([3],.) " (1 — ¢*) € T+ ¢*Z"[[q]].
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It follows that

1. (fife 1, fif2-1) =1 mod ¢*Z7[[q]);

2. (fifefi 1. fifafi-1) =7 mod ¢*Z7[[q)];

3. (fifa- L fifafi-1) = ¢* mod ¢*Z[[q]].

Now (1) and (2) provide us an example that the squared norm of (canonical basis)
elements in B of the same weight do not have uniform sign. Combined with (3), this

implies that £ C {u € f|(u,u)p € A}, since ¢ (1 —7)(fifa-1+ fifafs-1) belongs
to the right-hand side, but not to L.

Now let us compare the bilinear forms on £(A) and £. Let us introduce the
following notation. For A € X, we say A > 0 with respect to ¢ € N[I] if (i, A — (') >
0 for all 7 € I.

Proposition 4.34. For given x,y € L¢, take X > 0 with respect to (. Then
(@™ y Mo = (2, Y) p o, where (—,—)p o is the induced bilinear form on L/qL.

Proof. This is obvious for ( = 0. We proceed by induction on the height of (. We

can write z = 6,2’ for some ¢ € I. Then

(=™ y m) = (2", g KBy )
JiKZr(y)” — 7 (y)”
:<$/_77>\7 iir(y) () m)

miq; — 1
R
= ﬂ_qlz 1 (:1: X, 1T(y> n)\) + 11— ﬂ'Zq’? (I’ N, ZT(y) 7’])\)

Hence, by induction and the assumption A > 0, we have
(@ nx g m)o = (@ 0T (y) "o = (2, 75(y))o = (2, y)o-
The proposition is proved. [

A similar argument directly relates the polarization on modules with the bilinear

form {—, —}. By lim)_,, we mean the limit as min;e; (\,7) — 0.
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Proposition 4.35. Let xz,y € f. Then limy (2", y nn) = {z,y} in the q-adic

norm.

Proof. Recall from §2.3 a defining property of {—, —} is that

{ei? 91} {QJ, Z_T(y)} = {eixa eiy} .

We have (m;q?)@ I+ — 0 in the g-adic norm as A +— +o0; so using the

computations in the proof of Proposition 4.34, we find that

Jim (o, ym) = T o' EL0)} = {650 (')} = (.0}

1
O
We note finally the following result, which follows from the g-invariance of (—, —)
on f.
Proposition 4.36. For x,y € f, we have
(o(x), oY) p = (2, 9) p- (4.19)

The fact that o(L|r=1) = L|z=1 follows easily from (4.19) and the orthonor-
mality characterization of crystal lattice in the standard quantum group setting
[Kasl]. While such orthonormality characterization fails in general as noted in Re-
mark 4.32(2), the p-stable property of the crystal lattice remains to be true. This

will require us to use the twistor isomorphism defined in §2.5.

4.7 Twistors and the crystal structure

We let Aft] = Q(t) ®q A, the subring of Q(g,t)™ of rational functions with no poles
at ¢ = 0, and set L[t] = A[t]®4 L C f[t]. The isomorphism X from §2.5, which sends
q — t7'q and ™ — —m, clearly preserves the Q(t)-algebra Alt].

Lemma 4.37. The following properties hold:
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1. (0™ = 6™ forn > 1;

2. 7 (X(x)) = t?ClI=0X (7 (x)) for all homogeneous x € f[t] and i € I;
Ty iy B (n) - B
3. Let x € f[t], with its i-string decomposition x = Y -, 0;" x, with 77 (x,) = 0

for a given i € I. Then X(x) has the following i-string decomposition

%(l’) _ Z t¢(ni,u)—n2di9§n)x(xn)‘

n>0

Proof. First note we have
X ([n]qz‘mi) = [n]tflqiv(*l)p“)m - t?_l[n]qz‘ﬂm 0; * 9?_1 = t?_lezn

We prove (1) by induction on n. The case when n = 1 is clear. Assume %(95“71)) =

(91("_1). By definition of the divided power, we have
x(0) = x (In], 200" )
qi T

— I ]l X(0) * X (e§"—1>)

=t 00 = 0,

qi>Tq 1

Next, (2) is immediate from Lemma 2.24 and Proposition 2.22. Finally, we prove
(3). Such an identity for X(x) follows by the definition of X and (1), and the claim

that this is an é-string decomposition follows from (2). O

Proposition 4.38. The isomorphism X preserves the lattice L[t], i.e., X(L]t]) =
L[t]. Furthermore, X induces an isomorphism Xo on L[t]/qL[t] such that

Xo(z) = t" @z Vo € B,
where ((x) is some integer depending on x.

Proof. We first observe that X(L[t]) C L[t], as this follows from using induction on
height along with Theorem 4.27(1) and (3), and Lemma 4.37(3). On the other

hand, Lemma 4.37 can be rewritten in terms of X~! (essentially by replacing t with
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t~! in (2) and (3)) and so a similar argument shows X~ '(L[t]) C L[t]. Therefore
X(L[t]) = L[t].

Let x + qL[t] € B. We proceed by induction on the height of x. First note that
Xo(14 qL[t]) = 1+ qL[t] and Xo(7 + ¢L[t]) = —7 + ¢L][t], so the proposition holds
with £(1 + ¢L[t]) = 0 and {(7 + ¢L[t]) = 2.

If ht|z| > 1, then by Theorem 4.27(2) and (3), there is an ¢ € I such that we can
write x + ¢L[t] = 92(")9(:” + ¢L[t] with z,, + ¢L[t] € B and n > 0. Then by induction
on the height and Lemma 4.37(3), we have

Xo(z + qL[t]) = torm P ditllentallt) oy o pry].
The proposition is proved. O
Now we can prove the p invariance of the crystal lattice.
Proposition 4.39. The involution o preserves L, i.e., o(L) = L.

Proof. Since 3 € A, we note that

L= €+£ Pe_ L= »C|7r:1 S¥ ﬁlﬂ:_l.

We similarly have a decomposition ¢ = o, ® o where pi(x) = p(erx), and by

definition we see that under the isomorphism e, f[t] = f[t]|,—1+1, 0+ corresponds to

Q‘ﬂ':il‘

Since it is known [Kasl, Lud] that p.—1(L|r=1) = L|,—1, it suffices to show that

Q’ﬂ271(£|7r:71> - E’ﬂzfl.

Since X(m) = —m, we have X(L[t]|=1) = L[t]|r=—1. Let = € L|,—_;. Since
x € L|z=—1 C L[t]|z=—1, by Proposition 2.23 we have

Olrei(2) = (~1) 75 DX X () € L]t]aemr.
On the other hand, by definition we have g(x) € f|,—_1, and hence

Q|7r:—1<x) € *C[t”w:—l N f|7r:—1 = £|7r:—1~
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The proposition is proved. O]

4.8 Canonical bases

Recall the integral form ,f of f. It is easy to see that ,f is stable under — and ;7

whence ,f is stable under Kashiwara operators €; and f;-; therefore

T = Z@En)mn € afand e, =0 = x, € of".
n>0

Let 4(07f) = 0°f N ,f. Then

a(00F) =04, forn > 0.
k>n
Moreover, x = Zﬁgk)xk € A(07f) if and only if uy, = 0 for k < n. Set 4 £ = L N ,f.
Then » L is stable under the Kashiwara operators ¢; and fz Therefore, B C oL/qpL C
L/qL.

Let Az be the Z™-subalgebra of Q(q)" generated by ¢ and (1—(7g?)")~! for n > 1.
Letting K7, be the subalgebra generated by Az and ¢!, we have A; = AN Ky. Then
we see that (af,af)p C Kz, whence (uL,sL)p C Az. Therefore, (—, —)p is Z7-
valued on ,L/qaL, and ,L/qaL is a free Z™-module with m-basis B.

Recall ,V(A) = afny. Then 4V (A) is a pf-module. We set also, for n > 0,

(EPV) = n(08) T = Y FP V().

k>n

Note that ,V(A\) and 5 (F*V(\)) are bar-invariant.
Let oL(X) = AV (A) N L(A). Since L(N) = pr(L) we have

AL(A) C palal)

and so B(A) C aL(N)/gaLl(X) C L(N)/qL(N).

The following is a m-analogue of [Kasl, Lemma 6.1.14].
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Lemma 4.40. Let A\ € P, i € I, andu € M* for an integrable U-module M. Assume

n=—{(a/,\) > 1. Then we have

n

qi,T4

k>n

Proof. We may assume u = F™y with v € ker ei N Myima, with m > n. Then

()

—n| k=1 (k) k)
S sa] AR
k -n i,

k>n

m k+1 _ o _
-y A H3) (qypen {Z Tll] [kﬂz n] B ),
m>k>n G, qisTi
e+ (%1 nlk—1 k+m—n m m
s N N
m>k>n qi;Tq q:,T5 qis T

By a change of variables with t = kK —n and » = m — n, we have

kem+(* 47 k=1 k4+m-—n m
I I
i, qi,T5 qi,Tq

m>k>n
T

_ (_1)tﬂ_§t+n)(r+n)+(t+g+l) {t +n— 1} {t +r+ n} {r + n] '
qi,74 qi,Tq iy

v t T t+n
t=0

The proof is completed by applying (2.12). ]

Proposition 4.41. Let M € Oy and sM a JU-weight submodule of M. Let A € X
and i € I. Suppose n = — (i, \) > 0. Then

aMy = Z F® y My .

k>n

Proof. The lemma implies that 4 M, C Zkz” Ff’ﬂ aMy .. The reverse inclusion is

clear. ]

Theorem 4.42. Let us consider the following collection (G)) of statements for 1 > 0.
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(G;.1) For any ¢ € A(1),
Af( N AE ﬁA_ﬁ — A‘CC/QA‘CC

s an isomorphism.

(G1.2) For any ¢ € A(l),

AV AN)age NALA) N ALA) = s L) s /qa LN e
18 an isomorphism.
Let G, Gy be the inverses of these isomorphisms.
(G1.3) For any ¢ € A(1), n >0, and b € f(Beyni),

G(b) € f°f.

Then (Gy) holds for each 1 > 0.

The rest of this chapter is dedicated to the proof of this theorem. Note that when

[ = 0, these statements are obvious. We shall prove G; by induction on [, so assume

{ > 0 and G;_; holds.

Lemma 4.43. For ( € A(l — 1) we have

AfC N A,C = @ ZW[Q]G(b),

bEBC

ofe = P 270, 471GO),

bGBC

AV Mo NLA) = @ Z7[q)GA(b),

bEB()‘)AJ,-(’

Ve = P Z7q.q " GAD).

bEB()\)AJ’_C/

Proof. This follows from [Kasl, Lemma 7.1.1] applied to the 7 = +£1 cases and
(G1_1.1)-(G,_1.2). O
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Lemma 4.44. For ( € A(l—1), b€ p\L/qsL, and X € P,
G(b)"mn = GaA(PaD).

Lemma 4.45. For ( € A(l—1) and b € 4L/qaL, we have

Proof. Set ) = GT(FL@ Then Q € (,f)° N gal N 4L, and hence Q = 0. O

q—q~!
The remaining components of the inductive proof of (G;.1)-(G;.3) proceed just as

in [Kasl, §7.4-7.5]. We summarize the main theorem on canonical bases.
Theorem 4.46. 1. B = {G(b) | b € B} forms a bar-invariant w-basis for ,f.

2. For every A € Pt, G(b)ny = GA(pxb). Moreover, B(X) = {G(b) | b € B(\)}
forms a bar-invariant w-basis for ,V(X).

We shall freely identify B(X) with {b € B | b=ny\ # 0}.

Our canonical basis is a 7-basis, but not a genuine basis in general. We do not
regard this as a defect of our construction though as this is completely natural from
the viewpoint of categorification ([HW]): 7 corresponds to “spin” (i.e., a parity shift
functor IT), each (projective) indecomposable module M comes from two “spin states”

{M,IIM}, and there is no preferred choice among M and IIM a priori.

Example 4.47. Assume that I, contains i,j such that a;; = aj; = 0. Then F}F; =
mF;F;. Both F;F; and F;F; are canonical basis elements in U™, and there is no

preferred choice among the two.

Specializing m = 1 yields the usual canonical basis of Lusztig and Kashiwara, while
specializing m = —1 yields a (signed) canonical basis for the half quantum supergroup.
Even though we have established a connection on the level of crystal lattices and
crystal bases, it is somewhat surprising to see that X allows us to establish a direct

and precise link between the canonical bases for the two specializations. Recall £(-)
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from Proposition 4.38, which is integer-valued but may not be even-integer-valued in

general.
Theorem 4.48. For any b € B, we have
X(G(b)) = t"OG(b).
In particular, X(G(b)|r=1) is proportional to G(b)|r=—1.

Proof. 1t follows by Lemma 2.22 that X(G(b)) is bar-invariant. It follows by the

definition of the maps and Proposition 4.38 that
X(G(b)) + qL[t] = X(b) = t“®p.
Therefore, t“®X(G(b)) = G(b) and thus X(c,.G (b)) = e_t*®G(b). O

Example 4.49. Let (I,-) be the super Cartan datum associated to osp(1|4) with
I ={1,2} (where 1 is the odd simple root). Then

Furthermore, we can take a choice of ¢ in Definition 2.18 such that
61,1 =1, ¢(1,2")=0, ¢(2,1)=-2, ¢(2,2")=2.
It is an easy computation that
Fifafil = 01(0201 — ¢20:05) + 0105

In particular, G(flfzfll + q‘C) = 919261, and %(G(flf;fll + Q£)) = t_1919291.
On the other hand, G(fyf1f21) = 952)92 and X(G(f1f1f21)) = 952)92. In particu-
lar, note that ¢(b) is not constant on B, for v € N[I].

Lastly, we note the following additional properties of B.
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Lemma 4.50. Let (—, —) be the polarization on V(X).
1. We have (4 V' (A), V(X)) C A.
2. (b7, 07 ny) € sgn(b)dpy + qZ[g]™ for any b,b € B.
3. For b € B, either o(b) = b or o(b) = wb, so in particular o(B) = B.
4. bnx =0 if and only if b € Afﬁi(n) for some i € I and n > (i, \) + 1.

Proof. (1) and (2) are proved analogously to [Lu4, Proposition 19.3.3].
For (3), it is known that B|,—; is p-invariant ([Lu4, Theorem 14.4.3(c)]). By
Proposition 2.23, pX and Xp are equal up to a sign. Then X(o(b)) = st“® o(b), where

s = 1. But then using p-invariance of the canonical basis when 7 = 1,
t"®e_b = X(eyb) = X(0(esb)) = ct™e_p(b).

Since —e_ = me_, p(e_b) = e_b or e_mwb. Therefore, o(b) = b or p(b) = 7b, as claimed.
Finally, we note that X(f[t]0]') C f[t]0", the statement of (4) holds for B|,—;
(cf. [Lu4, Theorem 14.4.11]), and we have X(erb) = t‘®ecb. Combining these facts

proves (4) for B|,-_; and hence for B.



92

Chapter 5
The modified form of U

5.1 The modified form

Definition 5.1. The modified quantum covering group U associated to the root da-
tum (Y, X, 1,-) is the associative Q(q)"-algebra without unit on symbols x1, and 1\

for x € U and A € X satisfying the relations
r1zyly = Oty (zy) 1y, 21y = Lo for all homogeneous x,y € U, \ € X,
Kul/\zq<y’)\>1)\, JV1A:7T<V’)\>1)\ fOT' CL”IJEY,)\EX.

Remark 5.2. A version of U was defined in [CELW, CIW] in different ways. In
[CFLW, Definition 4.2/, the modified form is defined using generators 1, E;1 and
Ei1, fori eI and \ € X satisfying certain relations; it is straightforward to see that
this is equivalent to our definition. In [CIW, §6.1], a rank one modified form is defined
using certain quotients of U in direct parallel to the definition in [Luj, §23.1]. This
construction can be generalized to higher rank, and results in an algebra isomorphic

to our definition.

The algebra U is naturally a 7-free U-bimodule under the following action: for
x,y,z € U, we set
z(yly)z = (zyz) 1z
We note the following commutation relations which may be deduced from Lemma

3.7.
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Lemma 5.3. We have the following identities in U':

t

_(t41 .
Ez'(N)L\Fi(M) = ZWZMN ( )Fz'(M_t) [M " Nt+ <Z? )\q 1)\+2N+2M—2tE@'(N_t)a
t q; T
FM1, EOD _ Z(_1)tﬂ_i(M—t)(N—t)_t2Ei(M—t) [M + N — (i, )\>] Lo ongsa V0.

t qi5Ti

EMFM1, = gMNep0) FD M f i 2 g,
j 7

The next proposition shows that the various algebra (anti)automorphisms on U
we have previously defined have analogous (anti)automorphisms on U which are com-

patible with the bimodule presentation.

Proposition 5.4.
1. There exists a Q(q)"-algebra automorphism w of U satisfying
w(xly) = w(z)l_y.
2. There exists a Q(q)"-algebra antiautomorphism o of U satisfying

o(z1y) = 1_xo(z).

3. There exists a Q-algebra involution — of U satisfying

$_1)\ - fl,\

4. There exists a Q™-algebra involution T of U satisfying
(IIA)T = l‘TL\.
5. Let U[t] = Q(q, t)" Rq(q)™ U. There is an automorphism ¥ : U[t] — U[t] such
that X(uly') = X(u) 1L, X (W) for u,u’ € Ult].

Proof. This follows as an elementary consequence of the existence of these maps on
U and the U-module structure on U. In particular, for X, we note that there is a

natural U[t] on U[t] given by extending the U-action via T, T, 1, = t&N+eEN 1, 0
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From the triangular decomposition of U, U has a m-basis consisting of elements
of the form b*J,K,b'~ where (b,b') € B x, B (where here we are using the notation

from (3.28)) and u,v € Y. Since
(BT T Kb 7)1y = gldgAngty o

where \; = A — |V/], we see that {bT1,0/~ : (b, V) € B x, B} forms a 7-basis of U,.
Similarly, {b~ 1,0/ : (b,1) € B x, B} forms a m-basis of U. In fact, these elements

span an integral form of U.

Lemma 5.5.

1. The A-submodule of U spanned by the elements x™1ya'~ (with z,2" € Af)
coincides with the A-submodule of U spanned by the elements x~ 1,2t (with

x,z’ € of). We denote it by JU.

2. The elements {bT1,0'~ : (b,V/) € B x. B} (resp. {b~ 1,0/t : (b,0') € B x,.B})

form a w-basis of AU.

3. 4U is a A-subalgebra of U which is generated by the elements EZ-(n)l)\ and Fi(n)l,\
foriel, n>0, and A € X.

Proof. Recall that ,f is the Z[q, ¢~']™ generated by an) for i € I and n > 0, and so
repeated application of Lemma 5.3 implies (1) and (3). (2) follows from the triangular

decomposition of U. O

Now let us examine the connection between the representation theory of U and

U. We have the following natural family of U-modules.

Definition 5.6. A U-module M is called unital if for any m € M, m = D.cx Lim
with 1xm = 0 for all but finitely many A € X.

Unital U-modules may naturally be viewed as weight U-modules by interpreting

the idempotent 1, as a projection onto the A-weight space. More precisely, any
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unital U-module M is a weight U-module under the action z-m = 3 rex Tlam, and
similarly any weight U-module M is a unital U-module via 21y\m = am,, where my
is the orthogonal projection of m to the M) weight space.

The algebra U does not admit a natural co-product, as any candidate would
require an infinite sum (cf. [Lu4, §23.1.5]). However, since unital modules and weight
modules are equivalent, the Hopf structure on U imposes a unital U-module structure
on the tensor product of weight modules.

In fact, the structure of U is intimately related to tensor products of modules.
Recall that the Verma module M ()) is isomorphic to f as a free Q(¢q)"-module. We

shall now describe a generalization of this identification to U.

Proposition 5.7. Let A\, N € X. The Q(q)"-linear map
Ot Ulyy = MOA) @MW), u—u(l®1) (5.1)

s an isomorphism. Similarly, the A-linear map

A0\ ¢ ULy = aMOA) @ §MY), u—u(l®l) (5.2)

s an isomorphism.

Proof. The U-module M()\) ® “M(X) is naturally a weight U-module, hence a U-

module. As it will often be convenient, we will use the Q(g)"-module identification
MN@“MN)=fxf.

From the triangular decomposition of U, the elements b0~ 1, with (b,V/) € B x, B

and ¢ € X comprise a m-basis of U. Likewise, the canonical basis of f induces a
m-basis BB ={b®0 | (b)) € B x,B} on f&f.

If { = A— X, then since a 7-basis over Q(q)" is in particular a Q(q)-basis, we have

VY 1(1®1) = b (b ®@1) = 7?0y @ b+ Z Cy , by @ by, (5.3)
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where cy 5, € Q(q) are constants, v = [b|, and the sum is over (by,0}) € B x, B
such that ht|b;| < ht|b|, ht||| < ht|t’| and ¥, belongs to the U-submodule of M ()
generated by &'. Moreover, since B C ,U, the left-hand side of (5.3) lies in ,f @4 of
and hence we have ¢y, € Z[q,q7"].

Similarly, from the triangular decomposition of U, the elements b~V *1, comprise

a m-basis of U. If ( = A — X, then
b1 (1el)=b(1b)=bxb + Z Coy 4, D1 @ B, (5.4)

where 6;71,5'1 € Zl|q,q" '] are constants and the sum is over by,b] € B x, B such that
ht|by| < ht|b|, ht|b)| < ht|'| and ¥} belongs to the U-submodule of “M()') generated
by b'.

In either case, note that the transition matrix between the 7-basis B ® B and
the elements {b~0'"1.(1® 1) | b0/ € B x, B} is upper unitriangular with entries in
Zlq,q '], hence the latter is also a 7-basis. O

Now let us examine the relationship between the modules N (A, \’) from (3.15)
and M(X\) @ “M(XN). Let ( € X and let @ = >, a;i,a' = ), ali € N[{] such that
(i,¢) = a} — a; for all i € I. We define the ideals

P(¢a.a) =Y UFM1 + Y UEM1,

,n>a; [ n>a

P(¢a.a) =Y JUFY1+ Y JUE™

L,n>a; 7 n>a

(5.5)

Proposition 5.8. Let \, N € Xt and set a; = (i, \), a, = (i, \') foralli € I. Set( =
N—=Xa=).ai€N[], and a =), a;, € NI|. The map v — u(n ® {_x) defines
a surjective linear map U — N\, X)) with kernel equal to P(C,a,a’). Moreover,
restriction of this map to U gives a surjective linear map JU — AN\, X)) with

kernel equal to yP((,a,d’).

Proof. Let T (resp. T') be the kernel of the canonical homomorphism of U-modules
f=M(\) — V(A) (resp. f =“M(N)— “V(X)). Then by Theorem 4.46 and Lemma
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4.50 (4), T (resp. T') is generated by b € B such that b € Af0§”) for some n > a;
(resp. n > a}).

Then taking tensor products, we obtain the surjective homomorphism
M) @“M(N) — N N).

The kernel of this map is the subspace T @ f +f @ 7.
Let D(A) = B\ B(\). Now by the triangular decomposition, the description of T,

and (5.3), 9y » maps the subspace

> Q=Y UF"1,

beD(N),b'eB 9,N>a;

onto the subspace

Y Qe =Taof.

beD(N),b'eB

Similarly by the triangular decomposition, the description of 77, and (5.4), 0, y maps

the subspace

Y Q=Y UEM™

beB b eD(N) i,n>a;

onto the subspace

Y e@er=feT.

beB,b’ €D(XN)

We note that replacing everything with the integral form in the preceding argument

does not effect the argument, which finishes the proof. m

We now note that each module N(A, \') comes equipped with a 7-basis. Indeed,

the elements
B(A) @ B(N) = {bT¢a @V ny 1 b x b € B(A) x.B(X)} (5.6)

form a m-basis of N(A,\). They generate a Z[g|"-submodule £ = L(A,\) and a
A-submodule ,L.
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5.2 A bar involution on N(\,\)

Recall the quasi-R-matrix © = ZyeNm O, from §3.7. We recall in particular that ©

lives in a suitable completion of U ® U, and that (in this completion) we have
Au)® = OA(u), ©0 = 1.

where 7: U®@U - U@Uisthemap zr @y =T Q7.

Let M and M’ be weight modules such that “M € O or M’ € O. Then since
©, € Ul @ U™, given any x € M ® M’, we must have ©,z = 0 for all but a finite
number of v € N[I]. Then by regarding M ® M’ as a U ® U-module, © defines a
linear map © : M@ M’ — M @ M’ by m@m’ — > 0,(m®@m'). This is well-defined

because only finitely many terms may be non-zero, and we see that

Aw)O(me@m') = O(A[@)m @ m').

In particular, suppose that M and M’ are equipped with bar-involutions —: M — M
and — : M’ — M’ such that wm = wm and um/ = am/ for all w € U, m € M and
m’ € M’'. Then

A(w)B(m @ m') = O(A(@m ©m),

where " =" @ MM - M M.

Theorem 5.9. Let A\, \' € X and consider the Verma modules M (\) and M(X'). Set
M =M) €O and M' =“M(N) € C. Then O is a well defined map on M @ M’
which leaves stable the A-submodule s M @4 (4 M').

Proof. The proof of this result is essentially the same as in [Lu4, Prop 24.1.4], but
we shall state it here for completeness.

Since the ambient space of M(X) and M()\') is f, there are well defined maps
M — M and ~ : M’ — M'. On the other hand, M(\) and “M(\') may be

identified as U-modules with certain quotients of U such that the bar involution on



99

U induces those on M and M’, whence wm = uwm and um/ = um/ foru € U, m € M
and m' € M'. Thenweset " =" Q@ MM - M M.

Now let us identify M(A) and “M()\') with f. We note that by definition, 1T = 1
in M and M’. Moreover, O(1 ® 1) =1 ® 1. Then we have

uw(l®1l)=0(u(le1l)).

Since the ambient space of 4 M(\) and {M(N') is 4f, which is bar-invariant, we
see that s M(A) @4 (XM (X)) is stable under —. Take x € M (\) ®4 (4M (X)), and
set ' =T € \M(\) ®p (M (N)).

On the other hand, the isomorphism gJUly_y — 4 M(X\) @4 (Y M (X)) implies there
isau € ,Ul,_y such that ' (1®1) = 2. Thereis alsoau = v/ € 4U1,_y. Therefore,
r=0=v(1®1)=u(1®1),and so O(z) =u(1®@1) € ,M(\) @4 (XM (N)).

]

Remark 5.10. In fact, it can be shown that the conclusion of the theorem holds for
any “sufficiently nice” choice of module M'; that is, one possessing a basis analogous
to B, B(A). (These are what Lusztig calls “based modules”, (cf. [Lu4, §27] which
we do not develop here.) This was recently observed by Bao and Wang [BW] in the
Drinfeld-Jimbo quantum group setting; the proof amounts to observing that the module
1s “approximately cyclic” and generalizing the above proof. We note that the proof

their transfers over almost word for word to the covering quantum group setting.
This immediately implies the following corollary.

Corollary 5.11. The map © leaves stable the A-submodule s N(X, \') (respectively
AN (N X)) of N(A X)) (respectively N'(A, ) ).

Let = : V(X) — V(X) be the unique Q™-linear involution such that umy = uny
for all u € U; similarly, let = : “V(A\) — “V(\) be the unique Q™-linear involution
such that ué_y =ué_) forallu € U. Let T="®@ " : N(\,X) = N\, \N).
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Since the maps ©,7 : N(A\,X') — N(A, \') are well-defined, let ¥ = © o —. Then
note that

U(A(u)yme@m') =0(A(u)ymem/) = A@)O(m e m’) = A[@)¥(m @ m'),

and that U2 = 1, from whence we call ¥ the bar-involution on N (X, \').

5.3 The canonical basis of N(\, \)

Now we have the necessary machinery to define a canonical basis on each module
N (A, XN) using the bar-involution ¥ and the 7-basis B(A\) ® B()\'). First, we present

an analogue of [Lu4, §24.2] in the covering setting.

Lemma 5.12. Let H be a set with a partial order < such that for any h < h' in H,
the set {h" : h < h" < W} is finite. Assume that for each h < h' in H, there ezists

an element vy, € A such that rp, =1 and

E Fh,h”rh”,h’ = 5h,h’

hh<h! <k’
forallh <h' € H.
Then there is a unique family of elements py o € Zlq]™ defined for all h < h' € H
such that prp =1, ppp € qZ[g|™ for all h < W' in H, and
Php = Z PhopThe b
W h<h!<h'

forallh <h' € H.

Proof. For h < k' in H, denote by d(h,h’) the maximum length of a chain h = hg <
hy < ... < hy = k' € H. Note that d(h,h’) < oo by our assumption on H. For
any n > 0, let P, be the assertion of the lemma restricted to those h < A’ such that
d(h,h’) < n (and note that all the assertions make sense under this restriction. We

will prove P, by induction.
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First note Fp is trivial and assume that n > 1. Let h < h'. If d(h,h’) < n then
ph is defined by P,_;. If d(h, k') = n, then z = Zh”;hgh”<h’ Py The e is defined.
First, we shall show that z + 2z = 0. Indeed, using P,_; and the assumptions of

the lemma,

ztz= § PhhoTho b T E Phhy Thy

hish<ho<h/ hish<hi<h/

= E DhhoThoba Tha b+ § Ph,hoThosha Thy b/
ho,h1;h<ho<hi=h’ ho,h1;h<ho<hi<h

= E Ph,hoThosha Thy b/

ho,h1;h<ho<hi1<h/;ho<h’

= E ]_Qh,ho E Thoha Tha b/

ho;h<ho<h’ h1;ho<hi<h/
= § PhohgOno.nr = 0.
hosh<ho<h'

Now we claim that since Z + z = 0, there is a unique 2z’ € ¢Z[g|™ such that
2 —2 =0.

Indeed, we can write z = > a,q" with a, € Z™ for n € N. Then since

m,neN

247z =0, we see that a,, = —7"a_,, for all m,n € N. In particular, ag = 0 and a,, =0

if and only if a_,, = 0 for n € Z. Then taking 2’ = ) a,q", we see that z = 2’ — 2

and 2’ € ¢qZ[q]™. In particular, we can set pp, = 2/, and then

Pow =247 = D Buwrtww +Paw = Y PrwTww.
R R<KH! <K R h<h!' <K

]

Remark 5.13. For R a commutative ring, we can define a bar-involution on A =
Rlz,y] by f(z,y) = f(y,x). This involutions descends to a bar-involution on A, =
R[z,y]/(xy —r)R[z,y] = R[z,rz~"] for any r € R. Then the assertions of the lemma
apply with A replaced by A or A,., q replaced with x, and with Z[q|™ replaced everywhere
by R[x]. In particular, Lemma 5.12 (respectively, [Lu4, §24.2]) is a special case for

R =77 and r = 7 (respectively, R=7 andr =1).
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Let A\, N € X*. We shall consider the following partial order on the set B x, B:
we say that (by, b)) < (by, b)) if

ht[by | — ht|b | = ht[by| — ht[b))]
and if we have either
ht|by| < ht|by| and ht|b]| < ht|by],

or

(b1, b2) ~ (blpblz)-
Here, ~ is as in (3.28). Note that, in particular, (by,b}) and (b1, 7b}) are not com-
parable under <. For given A\, )’ € X7, this induces a partial order on the set
B(A) x, B(X).

Then from the definition, we have that for all (by,b]) € B(\) x, B(X),
Wby @0 y) = > Py b by ba Ta @ U5TE
(b2,b,)EB(A) X1 B(N)

where 7y, 40,5 € Zlg,q '] and 7y, 44, = 0 unless (by,by) > (b, b); in particular,
the sum is finite.

Moreover, we note that 7y, pr 5, 5, = 1, and from ¥? = 1 we see that

E Ty b o by Voo blysbs by = O(by b4 ):(bs ) -
(b1,6});(b2,b4); (b3 by )EB(N) X B(Y)

Then H = B()\) Xz B(X') and 7y, 4,4, satisfy the assumptions of Lemma 5.12,

so there exist elements py, 5,4, € Z[g]™ such that

Doy sbr b, = 1,
Dby b iba,py, = 0 unless (ba, b)) < (b1, b)),
Dby b 5b2,b € qZ[Q]F for (b27b/2) < (bl?b,l)’

P 35,05 = Z ﬁbl,bﬁ;b%bérb%bé;b&bé'
(b2,by)EB(A) X7 B(X)
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Recall from (5.6) that B(\) @ B(N) = {bT¢ A @by : bx b € B(A) x, B(\)},
and we that £ (resp. 4£) denotes the Z[g|™-lattice (resp. A-lattice) spanned by this

basis.

Theorem 5.14. 1. For any (b,0') € B(\) xx B(X), there is a unique element
(b ) of the U-module N (X, ') such that

\Ij((bob,))\’A/) = (bob,)k)\’ and (bob,))\)\/ — b_n_>\ & b/+f_)\/ € Q£
2. We have (mbb' )y v = (bOT ) x v = (O ) A n

3. (bOY ) A is equal to b= ny @V TE_y plus a qZ[q]™-linear combination of elements
by @ U ey with (by, b)) < (b, V).

4. The elements (bOY ) s form a w-basis of L, oL, and N (X, N).

5. The natural homomorphism LN V(L) — L/qL is an isomorphism.

Proof. By the definition of Dobriby b, We see that
OV ax = D> Prypabim @ BTy
(b1, b7) <(b,0')
satisfies the requirements of (1) proving existence, and the same considerations prove
(3). (4) is immediate from the fact that the transition matrix from the Q(g)-basis
by @ bTE v is unitriangular with entries in Z[g]. (5) follows from (4) and the
observation that (bOV )y € LN U(L), and so the map sends (bOY)x v to the basis
element b= ny @ b'T¢_y of L/qL, which also implies uniqueness. Finally, uniqueness

implies (2). O
We call the elements (bb')\ v the canonical basis of N (A, \).

Remark 5.15. We may repeat verbatim §5.2 with respect to ©" defined in Corollary
3.35 to obtain a bar-involution W' on N'(X\,X'). Then we see that the results of this
section (and in particular Theorem 5.14) may be restated with ¥, N (X, X') replaced
by W', N'(\, X). When we need to distinguish them, we denote the canonical basis of
N/, XY by (BB v
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5.4 Cancellation and stability

Our goal in this subsection is to exhibit maps between modules of the form N(\, \)
which are compatible with their canonical bases. These maps will correspond to a

form of cancellation on the pairs (A, \') € X x X namely, the cancellation
A+ NN+ X)) = (A N)

can be realized as a U-module homomorphism N(A 4+ X' A+ X) — N(AN).
To construct this, first we must construct maps to pull apart the weights, in some

sense. We already have these in the form of the maps x (A, \') defined in §4.4.
Proposition 5.16. Let A, N € XT. Write n =nx, n' = ny, and 0" = nan .

1. There is a unique homomorphism of U-modules x : V(A + X) — V() @ V(X))
such that x(n") =n 1.

2. Let b € B(A+X). We have x(b™n") = >, 4, f(b;b1,b2)byn @ byn' where the
sum is over (by,by) € B(X) xXx B(X') and f(b;by,bs) € Z[q].

3. Ifbon’ #0, then f(b;b,1) =1 and f(b;by,1) =0 for any by #b. If b= =0,
then f(b;b1,1)) =0 for any b;.

Proof. We already defined such a map in §4.4; that is, x = x(A, ). Since x(\, X)
preserves the crystal lattice and B C Af, we see that f(b; by, by) € Z[q]™; moreover, up
to identifying 7 (b n®by 1) with (7b] )n®by 1, we may assume that f(b; by, bs) € Z[q].

(3) is immediate from the definition of the coproduct. O
Proposition 5.17. Let \\ N € XT. Write { =&, & =&y, and &' = E_5_y.

1. There is a unique homomorphism of U-modules “x : “V(A + X) = “V(XN) &
“V(N) such that “x(£") =& ®¢.
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2. Let b e B(A+ \),. We have

wX(b+f”) _ Z ﬂ-p(bl)p(b?)f(b; by, bg)bgfl ® bff

b1,b2

where the sum is over (by,by) € B(X) xx B(X') and f(b;b1,bs) € Z[q]™.

3. If b # 0, then f(b;b,1) =1 and f(b;b1,1) = 0 for any by # b. If we have
bte' =0, then f(b;b1,1)) =0 for any b;.

Proof. Proposition 5.16can be entirely rewritten in terms of the coproduct A’ and

the map x/(\, ). Moreover x'(\, \') can be viewed as a homomorphism
“VA+XN) = V(A @ V(X)).
By Lemma 3.19, we have an isomorphism
“WVA) @ VX)) = “VN)@V(A) gz W gy,

Then taking “y to be the composition of these homomorphisms proves (1). The

remaining properties follow by the definitions. O]

Now we define a pairing on N(A, A) which will allow us to “cancel” V(\) and
“V(A).

Proposition 5.18. Let n=mny and £ =&_,.

1. There is a unique homomorphism of U-modules &y : N(A\,\) — Q(q)", where
Q(q)" is a U-module under the counit map <, such that x(§ ®@n) = 1.

2. Let b,/ € B(\). Then 0,(bT¢ @b ™n) = 1ifb =10 =1 and is in qZ[q|"

otherwise.

Proof. For such a map to exist, we would need

AE)z®y) = Bz ® Ky + 7" @ Fy € ker(d,) for all z @ y € N(\, A);
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AF)z®y) =Fzoy+m ) Kz mJEy € ker(dy) for all z @ y € N(\, \):;
AK,-1)(z@y)=K,x@ K_,y—x®vy € ker(d,) for all t ® y € N(\, \);
A, —D(z®y)=J,2® J,y—2®@y € ker(dy) for all z @ y € N(\, \);

The following statement is equivalent to (1). There is a unique bilinear pairing [—, —] :

V() x V(X)) = Q(q)" satistying [n,n] =1,

[EifC; Kiy] = —Wp(x) [SU,Fz‘y]? [FZJC,Z/] = —Wf(w)[LRiSU,WiLEiy]

[K r,y| = [z, KM?J] [J,ﬁ,y] = [z, Juy]-

We may rewrite the conditions as

[Ei$>y] = _Wp(x) [%Fif(—iy]? [Ex,y] = —Wp(x) [$a7Tif(iFiy]

[K,ux’y] = [ZL’, K,uy]v [Juxvy] = [ZE, ‘],uy]'

Let & : U — U be the map defined by
&(E;) = —Fz'—f(—z', (1) = _WiKiEiu *(Ku) = K, &(J ) W

*(zy) = 7O & (y) ().

To see this is a well-defined map, we note that & = wS where S is the antipode
defined in §3.2.

Then we see that (1) is equivalent to proving the existence of a unique bilinear pair-
ing [—, —] : V(A\) xV(A) = Q(q)" satisfying [, 7] = 1 and [uz, y] = 7P@PW) [z, &(u)y].
This follows by standard argument (i.e. the restricted dual V(A\)* has a U-action
(uf)(z) = 7P f(&(x)u) under which we have an isomorphism V(\)* = V()),
and [—, —] is the natural pairing).

Let (—, —) be the polarization on V(). We show by induction on htr > 0 that
@,y = (=1)"7P7,q, (2,y) (5.7)

for z,y € V(A\)a—y, where here we set p(>_, %) = >, _, p(is)p(i).
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This is obvious for ¥ = 0. Assume that htr > 1. Then we can assume that

x = F;2' for some i such that v; > 0. Then by induction, we compute
[z, y] = [Fzﬂ?/,y] = —Wf(x/)[ﬂﬂl,ﬂfQEiy] = —Wf(yii)ﬂi[l“/, KiEy]

= —Wf(y_i)ﬂi (— 1)ht(y_i)77p(y_i)ﬂy—z‘qu—i (xla f(iEiy)

7

= (-1 7PV, g, (Fia',y) = (-1)"™ 7P r,q, (2, y).

This proves that (5.7) holds. Now recall from Lemma 4.50 (2) that (bn,b'n) € Z[q|"

for any b, € B. Combining this with (5.7), we see that (2) follows.

Let A, N, )\ € X*. We define a U-module homomorphism
ENAFNNHXN) = NN
defined as the composition
t=(1®d§H®1)o(x®“Y).

Lemma 5.19. We have Ut = tW.

[]

Proof. We write n = ny,n and € = £_y_y». Since any element of N(A 4+ X, X @ \")

is of the form u(n ® &), it is enough to check that

t0(u(n ®§)) = O(t(u(n ©£))).

Well, on one hand

tO(u(n ®¢)) = tud(n @ &) = ut((n © £)) = u(ny @& xr).

On the other hand,

O(t(u(n ®¢))) = Out(n @ &) = uB(Ny ® -x) = u(nr @ Exr).

The lemma is proved.
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Lemma 5.20. 1. Let b€ B()\) and V" € B(\"). Then
t(D™agn @ V" TE _xn) = DT @ B TEy mod gL(A, \").
In partz’cular, t((bob/),\_,_,\/?)\/_i_)\//) = (b<>b/))\,)\// mod Q,C()\, )\N).

2. Letb € B(A+X) and b’ € B(N+X"). Assume that eitherb ¢ B(X) ord” ¢ B(N\).
Then
t(bin)\JrA/ (%9 b”Jrf,)\I,,\//) =0 mod qﬁ()\, )\//).

In particular, t((bOY ) xix viar) = 0 mod gL(A, N").
3. 1 is surjective.

Proof. Parts (1) and (2) follow from Propositions 5.16-5.18 and the definition of ¢. In
particular, note that t(ny;n @ Exv_ar) = Ny ® v, which generates N(A, \). O

Proposition 5.21. 1. Let b € B(\) and V" € B(\"). Then
t((BOY ) agar ) = (BOY ) x .

2. Let b € BIA+ X) and b" € B(N + \"). Assume that b ¢ B(X) or V" ¢ B(X\").
Then
t((bOO ) rarx ar) = 0.

Proof. The differences of the two sides of the claimed equalities in (1) and (2) lie in
gL(\, \") and are fixed by ¥, hence the difference is zero. O

5.5 The canonical basis of U

We are now in a position to produce a canonical basis for U which descends to the

canonical bases of N (A, \).

Theorem 5.22. Let ( € X and (b,0") € B x, B.
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1. There is a unique element u = bé>cb" € JU such that

A(U’) (/rb\ ® g)\") - (b<>b”))\7)\//
for any \, " € X such that b € B(\), b" € B(X"), and { = X — \'.

2. If \,\ N € XT are such that A\ — X' = ( and either b ¢ B(\) or 0" ¢ B(X\"), then
ABO D) (i ® E-xr) = 0.

3. DO = bl

4. The elements b b”, for various ¢,b,0" as above, form a Q(q)"-basis of U and
a A-basis of 4U.

Proof. The proof of this theorem proceeds exactly as in [Lu4, Theorem 25.2.1]. We
state it here for completeness.

First recall that we assume the root datum is Y-regular. Then we can find A\, \” €
X7 such that b € B(\), 0" € B(\"), and A — N = (.

For any integers Ny, Ny, let P(Ny, Ny) be the A-submodule of AU spanned by the
elements by b3 1, where by and by run through the elements of B such that ht|b;| < Ny,
ht|by| < No, and |by| — |bo| = |b] — |V

Recall that any element of N(\, \”) of the form f7n\ ® f'T¢_\ with 8,5 € B is
equal to uy(ny ® £_») for some u; € P(ht|f5], ht|F’|); moreover, u; can be taken to be
equal to f~3'T1; plus an element in P(ht|5| — 1,ht|5’| — 1). In particular, we see
that (bOV ) is of the form u(ny ® £_y») for some u € P(ht|b|, ht|d”|); moreover, u
can be taken to be equal to b~ 0”1, plus an element in P(ht|b| — 1, ht|b"”| — 1).

Assume that v is such an element and ' is another such element. Then (u —
u)(my ® E_xv) = 0, and so by Proposition 5.8

w—u)e > JUF"1+ Y WUEM1.

imn>(i,\) in> (i)
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However, since u — v’ € P(ht|b|, ht|d”]), we must have v — «' = 0 if (i, \) > ht|b| and
(1, ") > ht|b"| for all ¢ € I. For such A, \” the element u is uniquely determined, and
we denote it by uy .

Assume now that A\, \" € X satistfy b € B(\), b” € B(\”), and A — X\ = (. Let

N € Xt such that A >> 0 so that v/ = UNN N+ is defined. Then

u' (1 @ Enr) = 't (magn ® Evnr) = t((BOD ) agv vgar) = (bOB )y v

Then wuy y» is independent of A\, \” if it is defined, so we may denote it as u without
specifying A, \”. In particular, this element satisfies the requirements of (1), proving
existence and uniqueness.

This argument also proves (2), since in this case we may pick X" so that b € B(A+))
and b € B(N + \”), and then ¢((bO) xparavsar) = 0.

The bar-invariance of the canonical basis of N(A, \”) and the uniqueness of the
element u shows that @ = u, and hence (3) holds.

Finally, the uniqueness of u forces b¢b” = b~b""1, modulo P(ht|b| — 1, ht|b"| — 1)
Since b~b"*1, forms a basis of U, the transition matrix from b=b"*1; to bcb” may

be made upper unitriangular (by a suitable ordering), hence b 0" forms a basis. [

We let B = {(bcb = (b, V) € B x, B, ¢ € X} and call this the canonical basis of
U.
Example 5.23. Suppose that [ = It = {i}. Then B = {w€9§a) ca € Nye € {0, 1}}

Let a,b € N and suppose that n > a + b. Then using similar computations as in the

proof of [CIW, Theorem 6.2],

(690,60 = FOELL,

K3 K3

(95“)021)_”01@)) — WabEi(b)E(a)l—w

We note that the though this w-basis matches the one in loc. cit., the (B x, B) x X

labeling differs because several conventions differ.
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Since the canonical basis of U descends to the canonical basis of N(), '), a natural

question to ask is what this basis descends to on N'(\, \).

Corollary 5.24. Let ( € X and (b,V) € B x. B. For any \,N € Xt such that
be B\, i € BOV),, and ¢ = A — X,
A'(BO ) (ny @ En) = 7T<D’)‘>(b<>/b,)/\,x-

Proof. Let u = b{cb'. Then by definition, A(u)ny®E_y» = (bob/ ™)y v, and (bSO )y v —
by ® b=&_yx € qL. Therefore, applying the isomorphism in Lemma 3.24 (which

obviously preserves L),
A )y @ €y — 7" Vbtn, @ b7¢y € gL
On the other hand, W'(A'(u)ny ® E_xv) = A'(u)ny @ v by the bar-invariance of u.

Then by uniqueness, we have A'(u) = 7% (b)) 5 v O

Finally, recall that the twistor ¥ has an incarnation defined on U[t]. Given our
success at relating the canonical basis of f via a twistor isomorphism, it is reasonable

to hope such a connection can be made for the canonical basis of U we have just
defined. This is in fact the case. Recall the maps Xy : N(A, ) — N(A, X) from
§3.6.

Theorem 5.25. Let b,b' € B and A, N € X*. Set ( =X — \.
1. We have Xy (0O )an) = t/OV OO )\ for some f(b,V, () € ZJ4AZ.
2. We have (b)) =t/ (b D).

Proof. For (1), first note that the claim Xy (b )an) = t7EYAN) (0O, 0 for
some integer f(b,b', A\, \') follows by combining the definition of the canonical basis
of N(A, ') with Proposition 3.32, Lemma 3.26 and Theorem thm:CB comparison.

Let u = bdcl. Then X(u(ny ® £ y)) = t/GYAN(BOH) ) i on the other hand,
X(u(n @&-x)) = A(X(u))(ny @ E-x). Therefore, we see that

A(X(u)(m @ &) = tf(b’b/’A’X)(be,),\,x
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Let \' € XT. Then

A(X(uw)(m ®E-x) = AX(u)t(mrrar @ Enr—x)
= t(AX(u)mriar @ Exr-x)
= t(tf(b’b/’HX/’/\NH/)(be/)MA",A”H')

— tf(b,b’,/\+>\”7/\”+>\’) (b<>b/))\ N

In particular, we see that f(b,0', A\, ') = f(b,0', A\4+ X", A"+ \) modulo 4, so t/®¥'AX)
is determined by b, b, and ¢ = A\ — X', which finishes the proof of (1).
In particular, setting f(b,b',() = f(b,0/, A\, \),

A () (13 @ E-xy) = t7C0 (00020,

for all Ao, Ay € X with ( = A\g — Ay, so (2) follows by uniqueness. O]

5.6 The bilinear form on U

Now we will show that a bilinear form with several desirable properties can be defined

on U.
Theorem 5.26. There exists a unique Q(q)" -bilinear form
{—-}1:UxU=Q)"
such that the following hold.
1. {1,,21,,, 1,\3:10’1)\/2} is zero unless A\y = N}, Ay = \};
2. {uz,y} = {z, m(uw)y} for all z,y € U and u € U;
3. a1, 2" 1} = {x,2'} for all x,2" € f and all \;

4. We have {z,y} = {y,x}.
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Proof. The proof is virtually the same as [Lu4, Theorem 26.1.2]. In brief, one uses
the triangular decomposition of U and the bilinear form on f to construct a linear
functional on Ulc for each ¢ € X. Then this functional can be used to define a bilinear

form on each space, and the direct sum of these forms has the desired properties. []

To develop the properties of this bilinear form, we need to understand the relations

between compositions of some of the (anti-)automorphisms of U. To that end, recall
the maps ¢ and w from §3.1 7 from §4.4 and let 7; to be the map u — 71(u); that
is, the map satisfying

T1(E;) = WiQflpijikiy T (F;) = Wiq;lEijifCi, n(Ky) =Ky, mi(Jy) = Jo
Lemma 5.27. We have the identities

— —1
071 = T10, W T =TWw.

Proof. 1t suffices to check these identities on the generators, and therefore, since all
compositions considered fix J, and K, we only need to check on F; and Fj for ¢ € I.

Well for o = 710:

o(m(Ey)) = Q(qjll?,l-Fi) = q;lFifQ, T1(o(E;) = ﬂ(ﬂijiEi) = Q;le’f(z’a

o(Ti(F)) = o(¢; 'K, B) = mq; ' BiiK i, T1(o(F) =71(E;) = ¢ "B, K.

Checking the left-hand equations to the right-hand equations verifies the identity.

Similarly, for w™'m = rw:

w () = W_1<Q¢_1f(—iFi) = qi_lf(iEia n(w(E;)) =7n(F) = qi_lf(iEia
w_l(Tl(Fi)) = w(qi_lf(iEi) = Wiq;ljik—iFia T (w(F;) = Tl(WijiEz’) = Wiqi_ljz‘f(—iFi-

Comparing the left-hand equations to the right-hand equations verifies the identity.
]

Proposition 5.28. We have {zu,y} = {z,y71(u)} for all z,y € U,u € U.
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Proof. It suffices to prove this for the generators; it is clear for K, J,. It remains to

verify that

{ina y} = {xaﬂ_zqz_lyF’ZJzkl} ) {an y} = {$, quflyEljlkfz} .

We may further assume that x = u'l; where v’ € U and ¢ € X. Then setting

y' = 11(u')y, we see that the previous equalities follow from
{1cE;,y'} = {1477Tiqi_1y/FijiKi} , {zF,y} = {IﬂTz'%_lyEz‘jif(—i} :

Once more, we can assume that y' = 71(y; )y, 1;; for homogeneous y1,y2 € f, so it

suffices to show that
{yr Bl gy 1) = m PO g0 0 Loy s Bl ) (a)

[yi Fileppy 1L} = il =i 1) {y71lc,ys Bl } (b)
By symmetry, (a) and (b) are equivalent, so we shall prove (a). Then we may assume

("= ¢—i" and [p] = [y2| + 1.

Using Proposition 3.6 we have

O OT () TR — K ()

By le — Py FBily = 2 1,
Y1 ¢ i N ¢ Tals — q{l ¢
from whence we see that
7))~ K — P(yl)kﬂ‘ (Y1)~
y1_Ei1C’ _ ﬂ.f(yﬂEiyl— 1</ + 0 (3/1) - T; (yl) 1<.

q;  — Tiqi

Now note that

{ﬂ.if(yl)Eiyf 10’ y; 14/} — 7.‘.Z‘P(yl)qilJr(inQ|*C> {y; 1{/’ Fzy5 1(/}

_ 71.117(y1)qz‘14r<i7|y2|*C ) {yh (91;3/2} 7

7
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and that
(0 \— T W) 7 = -
Ty ) Jsz — Wf K,Z’ Ty _
{ v ) le,yp 1o

q;l — Tiq;

1+{i,¢") 1+, —i— _
={mﬁJ{wﬁ‘<wﬁ*<%xm>1¢— P T ) 10,y 1o

= TG L9 03 [Tan), yay — P g I L0, 03 T (i), )
— OGO Ly ) — P I )

Then we see that

_ _ 14(i,¢ iC!
{yr Ele,yy 1cy =m0 00 Ly 0,0}

N ! -/ _1
14(i,¢"+4 >ql +(4,¢'+1") {yl 1<,+Z,y2 FlC’-H } ,

=
which proves (a). O
Proposition 5.29. We have (o(z), 0o(y)) = (x,y) for all z,y € U.

Proof. 1t suffices to show that x,y — (o(x), ¢'(y)) satisfies the defining properties of
(—,—). All of these are obvious except Theorem 5.26 (2). However, this follows from

the previous proposition and the fact that o = 74 0. O
Lemma 5.30. For z,2' € f,, v € N[I] and A € X, (271, 2"*1) = 7, 77N (2, 2).
Proof. We have
(x 1,2 1y) = (Iy, ()2’ 1) = (15, 1yo(z")ori (27))
= (L, o(2™")T10(z") 1)

Then we may rearrange to obtain

(5U+1A, xl+1,\) = (ﬁ@(mur)l—,\,71@(1’+)1—,\)-

Now note that for any x € f,, To(z™) = qul,qN(”)g(x)_jl,f(,,, where recall N(i; +
A+ in) = D o.pls - 1. Since N(v) € 2Z for all v € Z[I], we obtain T1o(z%) =
4-,q NWo(2)" K,. Then

(rio(2 )1y, Tro(z™)1o)) = ma™M (2, 2')
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Proposition 5.31. We have (w(z),w ' (y)) = (x,y) for all z,y € U.

Proof. Tt suffices to show that z,y — (w(z),w™!(y)) satisfies the defining properties
of (—,—). It is clear that (1) holds. Since wr = Tw, it is clear that (2) is satisfied.
Note that w(z~1,) = 7,7%N ot while w™ (2'~1,) = 2/*1, for each z, 2’ € f,, whence
(3) holds by the previous lemma. Finally, we note that w?(y) = 7, 7”Nz for any

z € Uly, and hence (w?(z),w?(y)) = (x,y) for any z,y € U, proving (4). O

Example 5.32. We compute the following inner products. Let \; = (i, \).

‘ ‘ e (miq?)
k
’“+1)+k>\1 1
(EM1, B, = 7%-( ’
51;[1 1 —(miq})®
1-\;
(EiFi1y), 1)) = %
’ 11— 7Tiqz‘2
E,F1,,FE;F1,) =gt t—~"7
I BED) = e
14+ mg?
E;Fily, FEily) = 7t ————1
( A )\) m (1 _ 7Tiq7;2>2

We note that under the identification v? = wq?, these values are formally similar to
the values of the analogous bilinear form on Ul|,—1 over Q(v) (but with an additional

factor of some power of 7).

Proposition 5.33. Let 1 be the Q(q)"-linear automorphism of U defined by
n(E) =qKF, 7(F)=¢K'E, 7(K)=K, n((J)=./J

Then there is a Q(q)"-bilinear pairing (—, —) : UxU — Q(q)™ such that the following
hold.

1. (Inzly,, Ly x'ly) ds zero unless Ay = Nj, g = Ay,
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2. (ux,y) = (z,7(w)y) for all z,y € U and u € U;

3. (z7 1,27 1)) = (z,2) for all x,2" € f and all \;

4. We have (z,y) = (y,x).

Moreover, we have (w(z),w " (y)) = (o(z), 0(y)) = (x,y)".

Proof. Forz,y € U, set (z,y) = WT. This gives us a Q(¢)"-bilinear pairing which
clearly satisfies (1) and (4). (2) follows from the observation that 7/(u")" = 7 (u).
For (3), by Theorem 5.26 (3) we have (z~ 1,2/~ 1)) = (27, 2'T)T. However, it is easy
to check that the bilinear form (—, =)' : f x f — Q(q)" defined by (z,y) = (zf,y")T
for z,y € f satisfies the defining properties of (—, —), hence (z,y)" = (x,y).
Lastly, we note that uJ(ﬂJf)Tl(u)T and o(u') = WT, so o- and w-

invariance follows from the properties of {—, —}. ]

Remark 5.34. In [CIW], the bilinear form (—,—) is defined on U for I = I; =
{i}. With respect to this form, (E@1,, E®1,) is not almost-rw-orthonormal with

Uin general (see Definition 5.37), a fact which is not desirable from a

respect to q~
categorification standpoint. In this regard, the bilinear form defined in Theorem 5.26
15 a better choice. Howewver, in light of Remark 3.4, Proposition 5.33 demonstrates
that (—, —) is well suited to the t-twisted U: that is, the algebra on generators E'1,,,

F'1,,, and 1,, such that
1n1m = 5nm1n7 1n+2<E/1n)1n = Ellna 1n72<F/1n>1n = Fllna
E'l,_oF'1, — mF'1,2,F'l, = [n]'1,.

Let ¢ € X and A\, ) € X such that A=\ = (. Let (—, —), denote the polarization
on V(A), and let (—, —)y denote the polarization on V()\). Then (—,—)y can be
viewed as a bilinear form on “V()\) and is in fact a polarization since w and 7

commute.
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Proposition 5.35. Consider the bilinear pairing (—, —)an : N(A,X) x N(A,N) —
Q(q)" defined by setting

(‘T & l’l, ) X y,)A,A’ = 7TV7T<I;7/\/><1'7 y)k(xlv y/))\’
for homogeneous x,x’' € V() and y,y' € V(N) and y € V(N)r_, for some v € N[I].
Then (—, —)agn 1S a J-polarization.

Proof. This is an elementary verification, and we note that the 7% factor is

related to Lemma 5.30. O

Proposition 5.36. Let z,y € Ulg. When the pair (A, X') tends to oo (in the sense
that (i, \) and (i, \') tends to oo for all i), the inner product (x(ny @ (_x),y(Ny ®
C_x))an converges in Q7((q)) to {z,y}.

Proof. Assume first that x = 2 1, and y = y; 1¢ for x1,y; € f Then
z(m ® Cv) = 27 @ (s

Y ® Cxn) = y1 @ (v
Therefore (z(ny @ C_x), y(nx @ C_x))ax = (0, yna)r, and the right-hand side con-
verges to (z,y) = {z~ 1,y 1¢} by Proposition 4.35.
Now assume that = 1, and y is arbitrary. Then we may assume that y =
T1(x7)y; 1¢ for some x1, 29 € f. But then by the polarization property,

(Le(m @ Cx), y(m @ Cox))ay = (21 (a @ Con) yr (M @ (o).
Using the previous case, this converges to
{z1le,yr 1} = {1e, (a7 )y I} = {z,y}-

Finally, let us assume z and y are both arbitrary. We may assume that x = ul

for some u € U. Then
(2 @ Cx), y(ma @ Cox))ay = (u(ma @ Cox), y(ma @ Coxv))an
= (Le(m ® Cx), i(w)y(m @ C-x)).

Again, by the previous case, this converges to {1, 71 (v)y} = {z, y}. O
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Now we shall define a notion of almost-orthogonality with a view toward the

m-orthonormality of our canonical basis of f.

Definition 5.37. Given Q(q)"-modules M, M’ and a pairing (—,—) : M x M' —
Q(q)", we say a w-basis B of M is almost-m-orthonormal to a m-basis B’ of M' if
they satisfy the following conditions:

(b,8) € Z™[la]] N Q(q)™;
(b,b") € qZ7([q]] if b #V and b # 7l';
(b,b) € 7+ qZ"[[q]] for some € € {0,1}.

We note that by Lemma 4.31, the canonical bases B and B(A\) C V(\) are almost-

m-orthonormal.
Theorem 5.38. The basis B is almost-m-orthonormal.

Proof. 1t is trivial that (bcb, b1Oeb)) = 0 if ¢ # ¢'. Recall by construction and by
Corollary 5.24 that for all A, \' € X such that A\ — X' = (,

ABOD ) @ oy = (DO )an,

A'(bOb ) ® Eoy = T(bOY ) A,

where € € {0,1} (and by convention, we set (bJsb')an = 01if b & B(A) or b’ ¢ B(X)).

By the previous proposition, it suffices to show that for all A\, ' € X such that
if A — X = ( such that b € B(\) and b’ € B()\), (bOV)a v is almost-m-orthonormal
to (b1 O'b))an for all by, b). But this follows from the definition of the bilinear form
and the almost-m-orthonomality of B(\). O

Remark 5.39. [t should be noted that, in contrast to the non-super case, a charac-
terization ofIBB via almost-m-orthonormality is not possible, since in particular it is

not possible for B.



120

Appendix A

Twisted Bialgebras

In this appendix, we will discuss the structure theory of a class of algebras related
to f, which we call twisted bialgebras. Our motivation for studying these algebras is
to construct a framework for understanding the transformation between a one- and
two-parameter half-quantum group which was defined by Fan-Li [FL]. In particu-
lar, this helps to explain the twistor defined in §2.5, which is a variant of Fan-Li’s
transformation.

We define twisted bialgebras as natural generalizations of a notion of twisted bial-
gebra already existing in the literature (cf. [LZ]) and we note it is also closely related
to the constructions appearing in [AYY, FL, Gr, HP]. After defining these algebras,
we develop some general structure theory a la Green [Gr]. We then proceed to define a
generalization of Fan-Li’s transformation, which is a twisting of the multiplication on
the algebra, and we show that the resulting bialgebra structure is essentially unique in
some sense. In particular, we derive some algebra isomorphisms of which the twistor

on f is a particular example.

A.1 Definitions

Let K be a field. Let BF be the space of Z-valued bilinear forms on Z[I]. Let T" be the
the group of bicharacters; that is, the group of functions f : Z[I| x Z[I] — K* under

point-wise multiplication which is generated by the functions f such that f(n,v) =
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2°0Y) for all n,v € Z[I] and some b € BF, » € K*. In particular, each f € T satisfies
flun+v) = f(u,n)f(p,v) and f(p+nv) = f(p,v)f(n,v). Let 7 : T — T be

the automorphism where 7(f)(n, u) = f(u,n). The collection of T-invariant elements
are called symmetric bicharacters, and the set of elements f with 7(f) = f~! will be
called skew-symmetric bicharacters.

Let t,t' € T. We define F-bialgebra F to be of type (I,t,t') if it satisfies the

following properties:

(TB1) F = B,cyn+ Fiu is Z[I]"-graded algebra such that Fy = F1, F; = Ff;, and the
elements 60; generate F.
(TB2) There is a comultiplication r : F — F ® F such that

(b) 7 is an algebra homomorphism where F ® F is given the multiplication
(z@y)(@' @y) =t(yl, [o')zz" @ yy';

(TB3) There is a K-valued symmetric bilinear form (—, —) on F such that

() (FuF,) = 0if 1 # v

(b) (1,1) = 1 and (0, 0;) # O;
(c) (zy,2) = (x ®y,7(2)), where (z @y, 2’ @) = t'(Jy], |2']) (x, 2") (y, V')

We call F a twisted bi-algebra. If G is another twisted bialgebra of type (1,s,s’)
with generators ¥;, we will say F is isomorphic to G as twisted bi-algebras if there is
an algebra isomorphism ¢ : F — G such that ¢(6;) = v;.

Given a twisted bialgebra F of type (I,¢,t'), then F¥" = F Qg F ®k ... Qg F has a
natural algebra structure given by iterating (TB2)(b). It is an easy exercise to verify
that r is co-associative, and in particular that iterating r (by applying inductively to

any choice of tensor factor) induces an algebra homomorphism ™ : F — F®™.
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Lemma A.1. An algebra of type (I,t,1') exists if and only if t't = 7(t't); that is, tt’

18 symmetric.

Proof. Suppose t,t" € T satisfy tt' = 7(tt'). Then we have

t'(n,v)t(n,v) =t (v,n)t(v,n) for all n, u € Z[I]. (A1)

The existence of an algebra satisfying (TB1)-(TB3) absent the bilinear form being
symmetric is trivial. Indeed, the free algebra F on I with the given algebra structure
on F®? satisfies (1) and (2), and multiplication on the restricted dual F* is induced
by r with a twist by ¢ so that fg = ¢(|g|,|f])(f ® g) o r. The natural algebra
homomorphism F' — F* gives rise to a unique bilinear form satisfying (3a)-(3c). To
show this form is symmetric, by uniqueness it is equivalent to proving that (z,y'y") =
(r(z),y ®y"). This is trivially true when x = 6.

Let = 22", and for z € {a',2",y/,y"} set r(z) = Y. 21 ® zo. Then r(z) =
> t(|wyl, |2V ])xi2) @ ahay and r(y'y") = 32 t(lyal, Wi Dy1y) © yhys. On one hand,

(a'2",y'y") = (" @ 2", r(y'y") = Dt (2"] lyig DEsl, 1D (s vt (" o).

which by induction implies
(/2" y'y") = Y (12", lyiw! sl Ly D (s [yi D (5], 1gal)
X (@, 1) (o, 91 ) (2, 15) (25, 15).-
On the other hand,
(r(e)y @y") =Yt (|ahas, [y (5], |27 ) (@iat, o) (25, y")
= (s, 1y e, [« (1], v DE (251, 97 ])
X (', yh) (2, o) (g, 1) (25, 5).
Comparing these, we see they are equal if
t'(lwgg |, [y DE(las], [y e (2], [y D (g, 1A

= (12", [y DEClwsl, [y D (125, 93 D (151, [ga])-
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Since the bilinear form is only nonzero between homogeneous elements of the same

weight, this is equivalent to

t' (12 + va, g1 + V1)t (po, 1) (v1, )t (v, p2)

=t' (11 + v, 4 p2)t(vr, po)t' (12, )t (v, 1) (%)

where [2] = [yt = mn, J2b] = [}l = pa, 2] = [yal = w4, and [2}] = |yi] = va.
By expanding and rearranging factors, we see that (x) is equivalent to (A.1), which
shows that we get such a symmetric bilinear form (and hence a twisted bialgebra)
when (A.1) holds.

On the other hand, if F is a twisted bialgebra of type (I,¢,t'), then (TB3) implies

(A.1) by checking on the generators. To wit,

hence by symmetry and the condition (3b), we must have ¢(j,4)t'(j,7) = t(i,5)t'(4, j)
for all 1, 5. O]

We note the following immediate corollary.

Corollary A.2. Suppose that s,t,t' € T such that s and tt' are symmetric. Then
there exist twisted bialgebras of types (I,s,1), (I,ts,t'), (I,t,t's), and (I,t,7(t)).

Remark A.3. We shall see later that there is a unique non-degenerate algebra only
depending on I, t, and the coset t'S, where S is the subgroup of symmetric bicharac-

ters.

Let F be a bialgebra of type (I,t¢,t"). Let (/) denote the words in I, and for
w=1y...00€ (I)let 0, =0, ...6,,.

Let £ = {1,...,4} and P = {P,..., P,} be a partition of £ into n (possibly
empty) sets. Then for x,y € ¢, we say x <p y if x € P, and y € P, such that z < y
and a > b. Then we define

tw,P) = [ tix.iy). (A.2)

z<py
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In the case where n = ¢ and no set in P is empty, the partition defines a unique
permutation sp € Sy via sp(a) = b if b € P,, and conversely any permutation s € S,

defines a unique partition Pg. In this case, we will write t(w, s) = t(w, Py).

Lemma A.4. Let w =14y...ip € (I) of length ¢ and let n > 1. Then

r(0,) => tw, Py, @ ... D0, (A.3)
P

where the sum is over (n + 1)-set partitions P = {Py,..., Pyy1} of £ and w, =

Upylpy - - - p, With Py = {p1 < ... < p.}.

Proof. Note that 7™ (6;) = 3, 19%®6,21%"71¥ 5o this is trivially true on generators.
The proof may be finished by induction in a straightforward way, which is left as an

exercise to the reader. ]

As in the proof of Lemma A.1, the free algebra F can be made a twisted bialgebra
of type (I,t,t") satisfying (A.1), and so its coproduct r induces a product defined on
its dual F*. Let G be the subalgebra of F* generated by the elements &, with w € (I)
such that &,(60,) = d,, for all v € (I). First we will express the product in the £-basis.
Note that &, ... &, = T(t)(w,wp)&, @ ... @ Eigor!= | where wy is the order-reversing
permutation on ¢. For convenience, let us use t'(w) = 7(t')(w,w,). Note that if ¢’
is symmetric, then ¢'(w) = t/(v) when |w| = |v| and we write ¢/(v) = t/(w), but in

general this is not the case.

Example A.5. Leti,j € I. Thent'(ij) =t'(j,i) and t'(ji) = t'(i,j) hence t'(w) only

depends on |w| if and only if t' is symmetric.

Letw =iy ...7p € (I} and let v € (I). Then using Lemma A.4 and the definition of
the product, we see that &, ...&;,(0,) = 0if |v| # |w|. On the other hand, if |v| = |w],
then &, ®...®¢;, evaluates to 0 on all the summands of =1 in (A.3) except if, for
some s € Sy, P, = {s(a)} with jyq) = 4, for all a, yielding &, ® ... ®¢&;,(0,) = t(w, s).
Define the action of Sy, on f-length words via s(ky ... k) = Es1y ... ks@y. Then we

obtain the following lemma.



125

Lemma A.6. Let w=1iy...ip € ([). Then &, ...&, =t'(w) ) cq, t(w, s)E1()

We call this product the twisted shuffle product on G. It can be generalized to an
arbitrary collection of words rather than letters, though we will not do this here.

Define My (1) = 3_,_s-1(,) t(w, ), so that &, ... &, = t'(w) 32, My(t)&. Note
that the M, ,(t) only depend on the words v,w € (I > and the bilinear forms com-
prising ¢. Specifically, suppose t(v, ) =[]/, ¢ () for ¢, € KX and b, € BF, and

n 1

define t, (v, p) = [™, 20" € Z[z7, ..., 2], Then the M, ,(t,) are polynomials

n= 1

which only depend on the bilinear forms b, and M, ,(t;)(c1, - .., cm) = My (t).

Proposition A.7. Let F be a twisted bialgebra of type (I,t,t'). Then for w =
i1...90,v € (I) of weight v =11 + ... + iy,

(0, 0,) = t/(w)Mw,v<t)Bu(F)a
where B, (F) = H 1(0:,,6,).

Proof. By noting that M;;(t) = 1 and M,,,(t) = 0 if |w| # |v|, clearly this holds

for the generators. Now we may assume w = iy...7 with ¢ > 1. Then writing

rE=00,) =S pt(v,P)l, @...®0,,
(0, 0,) = (0;, @ ... ® 6,77 V(8,))

Z 22’ |v1|) (137 |U1| + |U2|> o ‘t/(ib |U| - |Ug|)(6)“, 6) ) (01470 )
P

Note that we must have v, = i, for all a to have a nonzero summand. This implies that
the sum is only over partitions corresponding to permutations, the factors involving
t' can be simplified to #(w), and the factors involving inner products combine into a

factor of B, (F). Therefore,

(6w, 0u) = t'(w) B, (F) t(w, 5) = t'(w) Mu,,(t) By (F).

The following corollary is now obvious.
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Corollary A.8. Let F be a twisted bialgebra of type (I,t,t") with coproduct r and
bilinear form (—,—). Let s € T be symmetric. Then F is a twisted bialgebra of type
(I,t,st") with respect to the coproduct r and the bilinear form (x,y)s = s(|z|)(x,y).

The importance of the polynomials M,,, is made clear by the following proposi-

tion.

Proposition A.9. Let x € F, and write x = ), cy,0,. Then x € Rad(—, —) if and
only if

> cut' (W) My (t) =0

we(l),
for allv € (I) and v € Z[I]. If in addition t' is symmetric, then x € Rad(—, —) if
and only if

> My (t) =0

we(l),

for all v € (I) and v € Z[1].

Proof. 1f z is in the radical if and only if (z,6,) = 0 for all v € (I). In particular, if
lv| = v (z,0,) = 0if and only if 3~y cwMuo(x)t'(w)B,(F) = 0 for all v € (I) and
v € Z[I]. Since B, (F) is invertible and M,,, = 0 if |v| # |w|, (z,6,) = 0 if and only if
> weny, CoMuw(X)t(w) = 0 for all v € (I) and v € Z[I]. In the case t' is symmetric,
t'(w) only depends on |w| = v. Since t'(w) is invertible, it can be canceled, finishing

the proof. 0

Corollary A.10. Let F and G be non-degenerate bi-algebras of types (I,t,t') and
(I,t,t") such that t't"~1 is symmetric. Then F and G are isomorphic as twisted bi-

algebras.

Proof. Write t' = st” with s a symmetric bicharacter. Denote the generators of
F by 0 and the generators of G by J. Then we have ) ¢,0, = 0 if and only if
> we(ny, Cot' (W) My () = 0 for all v € (I) and v € Z[I] if and only if

s() Y et (w) My, (t) =0,

we(T)

v
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for all v € (I) and v € Z[I] if and only if Y ¢,,¥,, = 0 by Proposition A.9. Therefore,
we have a well-defined bijection > ¢,,0, — D ¢y O

A.2 The Fan-Li transformation
Let F be an algebra of type (I,t,t') and let s,s" € T'. Define
wxy =s'(|z), lyey,  (z@y)* (@' @y) =t(yl, [z))s(|yl, [z])(z*2") @ (y=y'), (A.4)
ro(x) =Y s'(Jz], [2a]) 2y @ p where r(z) =) 2 ® . (A.5)

Write r(x) = > x1 @ 9 and r(y) = > y1 ® y2. Then

ro(@) xrg(y) =D (el [e2) 78 (l, ly2)) 7' (laal 1y )8 (), Jye)

X (|2l [ya))s(zal, [yr)) 2191 © T2y

and
o / -1
ro(a s y) = (2], ) Y s (lww s [wawa]) (], [t )z @ 22y,

Comparing these equations, we see that r4(z) * rs(y) = rs(x * y) if

s'(|z], lyl)s'(levyal, Joaye) ™" =8 (Jal, |2a2) 7' (Jwl, lyal) s (] 1)

x 8'(|zal, [y2])s (|22, [y1])- (%)

After to expanding and rearranging factors in (x), we see it is equivalent to

s(2l, [y1]) = 8" (|22, [y2)s ([l |22]) 7

Now define

(@.9)s = (z,y), (@@y,2 @y).= ()Yl |v'])(z.2")(y,1). (A.6)
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Then we claim that (z*y,2)s = (z ® y,74(2))s. Indeed if we write r(z) = > 21 ® 21,
then

(w @y, 7s(2))s = 'yl [21)s' (1] [ D 8" (2] [22]) 7 (2, 21) (g, 20)
= ¢yl 1) (2], yD)s (], [y]) ™ (2, 20)(y, 22)
= s'(|z], [y])(zy, 2) = (z %y, 2)s

In particular, this bilinear form is symmetric, and hence (F,*) is a bialgebra of

type (I,ts,t'7(s")). Hence we obtain the following.

Proposition A.11. Let F be a bialgebra of type (I,t,t'). Choose s € T, and set
s = s'7(s')7'. Let %, ry, (—,—)s be defined as in (A.4)~(A.6). Then (F,*) is a
bialgebra of type (I,ts, t'7(s')?) with coproduct ry and bilinear form (—, —)s.

Corollary A.12. If F is the non-degenerate twisted bialgebra of type (I,t,t'), then

(F, %) is isomorphic to the non-degenerate twisted bialgebra of type (I, ts, t'T(s)?).

We will call % the s'-twisted multiplication and (F,*) the s'-twist of F. It turns
out that the formulae for ry and (—, —), are forced upon us by the axioms of twisted
bialgebras. To wit, let F be a twisted bialgebra of type (I,¢,t') and a,b,c,d,e € T.
Define

vy = a(lzl, [y)zy;
ro() =Y b(|z1l, |zal)ar @ wo;
(z®@y) (@' ®@y) = (tc)(lyl, |2')(z x 2") @ (y *y');
(@, y)a = d(|z], [y (2, y);
@y 2’ @y)e = {t'e)(|yl, 12') (2, 2)ay, ¥ )a-

Lemma A.13. Keep the notations of the previous paragraph. We have the following

statements.
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1. 1y is an algebra homomorphism with respect to * if and only if a = b~ and
c=ar(a)™".
2. We have (x*y,2)qg = (x @y, 14(2))e if and only if e = dr(d)7(a)? if and only if
(ZL’, Y * Z)d = (Tb(x)ﬂ Yy Z)e-
In particular, (F,x) is the a-twist of F.
Proof. First, consider (1). Write r(z) = > 21 ® z2 and 7(y) = > 11 ® y2. Then
r(zy) =S t(|xa|, |y1])x1y1 @ 22y2, and by direct computation
ro(@) xm(y) = Y b, [2a))b(|al, [ga]) (o) (|, [1a])
x a(|z, [yi])al|zz], |y2) 2191 @ 229,

ro(z xy) = a(|z, |y|) Zb(|$1yl|> |[22y2]) T1y1 @ T2ys.

Therefore, we see that ry(x) * r(y) = rp(z * y) if

(te)(|al; [yrallals [yrDallasl, [y2]) = allz], [y)b(|y1], lz2 )b ], ly2])- - (%)

If we write |z2| = p, |y1| = v, |x1| =1, y2 = ¢, then after rearranging (x) we see it is

equivalent to
c(p, v)a(u, v) (v, n) ™t = a(n, b(n, Q).
Therefore, (%) is true if a = b~! and ¢ = a7(a)~!. On the other hand, suppose x = 0,
and t = 0;. Then the same computation yields
All of the summands are linearly independent, hence we obtain a(i, j)b(i,j) = 1 and
a(i, 7)b(4,4) = c(i, 7). This finishes the proof of (1).
The proof of (2) is similar, so to minimize tedious calculation we will restrict

ourselves to the proof that e = dr(d)7(a)? is necessary for (z*y,2)s = (r @y, 15(2))e

to hold. By direct computation,

(91 * 9]‘, ej * ez)d = a(iaj)a(jv Z)d(l + ]al + j)t(zvj)t,(l7])(9m 91)(937 9j)7



130

(QZ(X)Q], rb(Qz*é’])) = (QZ®9], t(], Z)C(], Z)ez®0])e = (et'tc) (], Z)d(l, Z)d(], j)(@z, QZ)(QJ, 9])
By assumption, these inner products are equal. Moreover, by (TB3)(b), we have

(6;,6,)(6;,0;) #0, so
(et'te) (4, )d(i, §)d(j, 5) = a(i, j)a(f, 1)d(i + j,i + (i, )t (4, 5)-
Expanding and rearranging the factors, we have the identity
e(j,1) = a(i, j)a(j, 1)e(5,1)d(i, j)d(j,1) = a(i, j)*d(i, 7)d(j, 7).

Finally, we note that by Corollary A.8, (F,x) is a twisted bialgebra of type
(I,tat(a)~!,t'7(a)?) which is exactly the a-twist of F.. O

Remark A.14. Note that the twist transformation defines a T-action on the class of
twisted bialgebras. This transformation generalizes the twistor isomorphism in §2.5,
as well as the connection between Lusztig’s algebra £ and the two-parameter version

appearing in [FL].



131

Bibliography

[AYY] S. Azam, H. Yamane, and M. Yousofzadeh, Classification of Finite Dimen-
stonal Irreducible Representations of Generalized Quantum Groups via Weyl

Groupoids, arXiv:1105.0160

[BW]| H. Bao, W. Wang, Canonical bases in tensor products revisited,
arXiv:1403.0039.

[BKK] G. Benkart, S.-J. Kang and M. Kashiwara, Crystal bases for the quantum
superalgebra U,(gl(m, n)), J. Amer. Math. Soc. 13 (2000), 295-331.

[BKM] G. Benkart, S.-J. Kang and D. Melville, Quantized enveloping algebras for
Borcherds superalgebras, Trans. AMS. 350 (1998), 3297-3319.

[BLM] A.A. Beilinson, G. Lusztig, R. McPherson, A geometric setting for the quan-
tum deformation of GL,,, Duke Math. J. 61 (1990), 655-677.

[BK] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and
Khovanov-Lauda algebras, Invent. Math. 178 (2009), 451-484.

[ChW] S.-J. Cheng and W. Wang, Dualities and Representations of Lie Superalgebras,
Graduate Studies in Mathematics 144, AMS, Providence, RI, 2002.

[C] S. Clark, Quantum supergroups IV. The modified form, arXiv:1312.4855.

[CFLW] S. Clark, Z. Fan, Y. Li and W. Wang, Quantum supergroups III. Twistors,
accepted in Comm. Math. Phys., arXiv:1307.7056.



132

[CHW1] S. Clark, D. Hill and W. Wang, Quantum supergroups I. Foundations, Trans-
form. Groups 18 (2013), 1019-1053.

[CHW2| S. Clark, D. Hill and W. Wang, Quantum supergroups II. Canonical basis,
arXiv:1304.7837.

[CHW3] S. Clark, D. Hill and W. Wang, Quantum shuffles and quantum supergroups
of basic type, arXiv:1310.7523.

[CIW] S. Clark and W. Wang, Canonical basis for quantum osp(1]2), Lett. Math.
Phys. 103 (2013), 207-231.

[D] V. Drinfeld, Quantum groups, Proceedings of the ICM (Berkeley, 1986), 798-820,
Amer. Math. Soc., Providence, RI, 1987.

[EKL] A. Ellis, M. Khovanov and A. Lauda, The odd nilHecke algebra and its dia-
grammatics, IMRN, 2013, arXiv:1111.1320.

[EL] A. Ellis and A. Lauda, An odd categorification of U,(sly), arXiv:1307.7816.

[FL] Z. Fan and Y. Li, Two-parameter quantum algebras, canonical bases and cate-

gorifications, arXiv:1303.2429.

[Je] K. Jeong, Crystal bases for Kac-Moody superalgebras, J. of Alg. 237 (2002),
562-590.

[Ji] M. Jimbo, A g-analogue of U(gl(N + 1)), Hecke algebra, and the Yang-Bazter
equation, Lett. Math. Phys. 11 (1986), 247-252.

[Kac] V. Kac, Lie Superalgebras, Adv. Math. 26 (1977), 8-96.

[Kasl] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping

algebras, Duke Math. J. 63 (1991), 456-516.



133

[Kas2] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69
(1993), 455-485.

[KKO] S.-J. Kang, M. Kashiwara and S.-J. Oh, Supercategorification of quantum
Kac-Moody algebras I, arXiv:1303.1916.

[KKT] S.-J. Kang, M. Kashiwara and S. Tsuchioka, Quiver Hecke superalgebras,
arXiv:1107.1039.

[Kh] M. Khovanov, How to categorify one-half of quantum gl(1|2), arxiv:1007.3517.

[KL] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of
quantum groups I, Represent. Theory 13 (2009), 309-347; /I, Trans. AMS. 363
(2010), 2685-2700; 111, Quantum Topology, 1 (2010), 1-92.

[Kw] J.-H. Kwon, Crystal Bases of q-deformed Kac Modules Over the Quantum
Superalgebra U, (gl(m|n)), Int. Math. Res. Notices 2014 (2014), 512-550.

[HP] N. Hu and Y. Pei, Notes on Two-Parameter Quantum Groups, (1), Comm.
Alg. 40 (2012), 3202-3220.

[HW] D. Hill and W. Wang, Categorification of quantum Kac-Moody superalgebras,
Trans. Amer. Math. Soc. (to appear), arXiv:1202.2769v2.

[Lan] E. Lanzmann, The Zhang transformation and U,(osp(1,2l))-Verma modules

annihilators, Alg. and Repr. Theory 5 (2002), 235-258.

[Lau] A. Lauda, A categorification of quantum sl(2), Adv. Math. 225 (2010), 3327
3424.

[LZ] Libin Li and Pu Zhang, Tuwisted Hopf Algebras, Ringel-Hall Algebras, and
Green’s Categories, Journal of Algebra 231 (2000), 713-743.

[Lul] G. Lusztig, Canonical bases arising from quantized enveloping algebras,

J. Amer. Math. Soc. 3 (1990), 447-498.



134

[Lu2] G. Lusztig, Finite dimensional Hopf algebras arising from quantum groups, J.

Amer. Math. Soc. 3 (1990), 257-296.

[Lu3] G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. U.S.A.
89 (1992), no. 17, 8177-8179.

[Lud| G. Lusztig, Introduction to Quantum Groups, Progress in Math. 110,
Birkhauser 1993.

[Ge] N. Geer, Etingof-Kazhdan quantization of Lie superbialgebras, Adv. in Math.
207 (2006), 1-38.

[Gr] J. A. Green, Quantum groups, Hall algebras and quantized shuffles, in “Finite
Reductive Groups; Related Structures and Representations” (M. Cabanes, Ed.),
Prog. in Math. 141, Birkh&user (1997), 273-290.

[IMW] V. Mikhaylov and E. Witten, Branes and supergroups, to appear.

IMZ] .M. Musson and Y.-M. Zou, Crystal basis for U,(osp(1,2r)), J. of Alg. 210
(1998), 514 534.

[ORS] P. Ozsvath, J. Rasmussen, and Z. Szabd, Odd Khovanov homology.
arXivimath.QA/0710.4300

[RT] N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via link polynomials
and quantum groups, Invent. Math. 103 (1991), 547-597.

[R] R. Rouquier, 2-Kac-Moody algebras, arxiv:0812.5023.

[VV] M. Varagnolo and E. Vasserot, Canonical bases and KLR algebras, J. Reine
Angew. Math. 659 (2011), 67-100.

[Wa] W. Wang, Double affine Hecke algebras for the spin symmetric group, Math.
Res. Lett. 16 (2009), 1071-1085.



135

[We] B. Webster, Knot invariants and higher representation theory I, arxiv:1309.3796.

[Y1] H.‘Yamane, Quantized enveloping algebras associated with simple Lie superal-
gebras and their universal R-matrices, Publ. Res. Inst. Math. Sci. 30 (1994),
15-87.

[Y2] H. Yamane, On defining relations of affine Lie superalgebras and affine quantized
universal enveloping superalgebras, Pub. Res. Inst. Math. Sci. 35 (1999), 321-
390.

[Z] Y.-M. Zou, Integrable representations of U,(osp(1,2n)), J. of Pure and Applied
Alg. 130 (1998), 99-112.



