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Abstract

I investigate the effects of financial deregulation on the volatility of macroe-

conomic variables. First, I develop a model of small business borrowing that

explicitly incorporates borrowing costs. I embed the optimal small business bor-

rowing contract model into a Dynamic Stochastic General Equilibrium model. I

find that the borrowing costs are significant to the macroeconomy in my model,

and that the pattern of borrowing costs changes over time. I obtain first and

second order accurate parameter estimates, and conclude that the second order

is significant to the model dynamics and parameter estimates.
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1 Introduction

In the 1980’s, United States macroeconomic variables exhibited a substantial decrease

in volatility (Stock and Watson (2003))1. According to McConnell and Perez-Quiros

(2000), this moderation occurred abruptly in the first quarter of 19842. The phe-

nomenon is known in the literature as the “Great Moderation” (Stock and Watson

(2003). Although the timing of the Great Moderation is well-documented, there is

still debate over its causes.

One possible cause of the Great Moderation is improved monetary policy. Inflation

volatility and macroeconomic volatility tend to move together (Blanchard and Simon

(2001)), so it is possible that a decline in the variance of inflation in the 1980’s led

to the Great Moderation. Inflation volatility and macroeconomic volatility were both

high in the 1970’s and early 1980’s. The 1970’s was also a period of poor monetary

policy performance (Romer and Romer (2002)). After 1979, the Federal Reserve

committed to a policy of low inflation (Stock and Watson (2003)). However, inflation

variability did not fall until 1984 (Bernanke (2004)). The lag between the Federal

Reserve’s policy change and the variance of inflation weakens the link between the

two events, and Stock and Watson (2003) suggest that monetary policy changes had

little to do with the Great Moderation.

Another possible explanation is the decreased variability of structural shocks in the

mid-1980’s (Stock and Watson (2003)). In their 2007 paper, Justiniano and Primiceri

evaluate the explanatory ability of the variance of structural shocks by estimating

a Dynamic Stochastic General Equilibrium model with time-varying volatilities of

1Also discussed by Sims and Zha (2006)
2Also Kim and Nelson (1999), Stock and Watson (2002), Chauvet and Potter (2001), Herrara

and Pesavento (2005)
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structural shocks. After estimating their model, Justiniano and Primiceri (2007)

perform a counterfactual experiment in which the variance of the investment-specific

shock is set at its pre-1984 level. The investment specific shock refers to the price

associated with converting investment to capital. In this experiment, GDP and other

macroeconomic variables are significantly more volatile than in the data. Justiniano

and Primiceri (2007) conclude that the decreased variance of the investment-specific

shock was a major contributor to the Great Moderation.

Justiniano and Primiceri’s (2007) shocks are structural in the DSGE model, but

do not have a clear interpretation. Without a theoretical context for exploring the

investment-specific shock, we can only conclude that the volatility of the investment

specific shock declined on its own. By explicitly modeling borrowing costs, I provide

a framework to test the interpretation suggested by Justiniano and Primiceri (2007)

that the investment shock represents borrowing costs and that financial deregulation

in the 1980’s caused these costs to be come more stable.

To study the effect of the mean and variability of borrowing and lending costs on

macroeconomic variables, I model a lending contract between individual savers and

small businesses. This model is based on an agency cost model by Carlstrom and

Fuerst (1997). The terms of the contract depend on the borrowing and lending costs.

After constructing the optimal contract for small business loans, I incorporate it into

a Dynamic Stochastic General Equilibrium Model. The model includes a number of

standard structural shocks. In one version of the model, I allow the variances of the

shocks to change over time.

I first estimate the model using a first order accurate method. Although this

method cannot account for agents’ knowledge of stochastic volatility, it is simpler to
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apply when the parameter space is large. I also perform a second order accurate ap-

proximation and compare the first- and second-order results. I find that, although the

second-order accurate approximation is much more computationally intensive than

the first order, it provides crucial information about the parameters and the behavior

of the economy. I do not, however, find significant differences in model dynamics

or parameter estimates between the time-invariant and time-varying versions of the

model. The model fits major macroeconomic variables, such as output, investment

and consumption, by design - I use these variables to estimate the model parame-

ters. With a few modifications to the main model, I also capture the cycles of other

variables such as the interest rate and the rental rate of capital.

I also show changes in the cycles of borrowing costs starting in the 1980’s. These

changes coincide with a time of financial deregulation in the United States. A number

of regulatory changes, enacted during the late 1970’s and early 1980’s, gave increased

power and flexibility to lenders. For example, the Depository Institutions Deregula-

tion and Monetary Control Act (DIDMCA), passed in 1980, removed the power of

the Federal Reserve to set interest rates on savings accounts. Because a large amount

of small business lending comes in the form of bank loans, the increased flexibility of

lenders may have affected the entrepreneur’s search costs. The DIDMCA also allowed

banks to merge. Larger institutions had more leverage over borrowers, thus decreas-

ing the monitoring cost faced by the lender. The coincidence of changes in borrowing

cost cycles and financial deregulation may imply that the two are connected, although

further experiments using data from different countries would be need to bolster this

argument.

In Section 2, I provide a brief literature review. In Section 3, I present the dynamic
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stochastic general equilibrium model. The model solution equations, steady state,

data, and estimation processes are discussed in Section 4. Section 5 contains the

results for the benchmark model. In Section 6, I review results from alternative

model specifications. Section 7 concludes.

2 Literature Review

The Great Moderation refers to a decrease in the volatility of U.S. macroeconomic

variables that occurred in the mid-1980’s. However, similar phenomena have occurred

throughout history. The post-World War II moderation of macroeconomic variables is

the first moderation to be discussed at length in the literature, and this research may

be able to contribute to our understanding of the more recent moderation. DeLong

and Summers (1984) find that a moderation in the variability of the rate of change

of annual GNP occurred in the United States after World War II. Diebold and Rude-

busch (1992) concur with this finding, noting that expansionary periods were much

longer after World War II than before. This indicates a post-war decrease in the

volatility of production and other macroeconomic variables. The lengthening of the

business cycle after World War II is statistically significant (Diebold and Rudebusch

(1992)).

The literature explores a number of explanations for the moderation that occurred

after World War II. DeLong and Summers (1984) find that increased government

involvement and the growing availability of private credit stabilized consumption after

World War II. DeLong and Summers (1984) also investigate the avoidance of financial

panics as a stabilizing force, but find that this did not play a role. Watson (1994)

dismisses economic explanations for the post-war moderation, instead concluding that
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the stabilization was caused by improved data collection. Before the war, the NBER

collected only a few economic time series. Watson (1994) concludes that pre-war

volatility was the result of too few data points and that the post-war decrease in

variance was due to the increased number of time series analyzed. The literature fails

to find any convincing economic or structural explanations for the moderation that

occurred after World War II.

More recently, the growth rate of U.S. GDP has stabilized significantly since the

mid-1980’s. McConnell and Perez-Quiros (2000) are the first to examine the sta-

tistical significance and timing of this more recent moderation using quarterly U.S.

GDP growth from the second quarter of 1953 to the second quarter of 1999. They first

regress GDP growth on a constant and linear time trend, and find that the trend coef-

ficient is negative but statistically insignificant (McConnell and Perez-Quiros (2000)).

In a regression of the square of GDP growth, however, the trend coefficient is negative

and statistically significant to the 1% level (McConnell and Perez-Quiros (2000)). Fi-

nally, McConnell and Perez-Quiros (2000) test the hypothesis that a structural break

occurred in the standard deviation of GDP growth. They reject the null that there is

no structural break (i.e. σ1 = σ2) and identify the first quarter of 1984 as the break

point. Kim and Nelson (1999), using a Bayesian approach, also find evidence that

a structural break occurred in the first quarter of 1984. Although other literature

finds slightly different dates 3, the first quarter of 1984 is generally accepted as the

beginning date of the Great Moderation.

The moderation in economic variability is not limited to the United States. Other

G7 countries, including the Italy, Germany, Japan and the U.K., also experienced

3Stock and Watson (2003) find that the structural break occurred around the second quarter of
1983
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moderations in the 1980’s or 1990’s (Stock and Watson (2005)). Mills and Wang

(2003) find evidence that the structural breaks in the variance of GDP growth oc-

curred at different times in each country. The dates of the structural breaks range

from Germany in 1974 to the U.K. in 1993 (Mills and Wang (2003)). It is clear, then,

that although the moderation is international in nature, it did not occur in response

to a phenomenon that affected all countries in the same way or at the same time.

Although the timing of the Great Moderation is well-documented both in the

United States and abroad, its causes remain unclear. One possible cause is improved

monetary policy and a decline in inflation volatility in the United States, which oc-

curred at roughly the same time as the Great Moderation. According to Blanchard

and Simon (2001), inflation and macroeconomic volatility often move together. The

1970’s was a period of high inflation volatility and poor monetary policy performance

(Romer and Romer (2002)). The Federal Reserve committed to a policy of low infla-

tion in 1979 (Stock and Watson (2003)), and it is possible that this caused a decline in

macroeconomic variability in the United States. Although Stock and Watson (2003)

find some role for monetary policy in the Great Moderation, the link is weak because

of the five year lag between the policy change and the volatility change (Bernanke

(2004)). Ultimately, the literature suggests that changing monetary policy had little

effect on macroeconomic variability (Stock and Watson (2003), Bernanke (2004)).

Others argue that the Great Moderation was caused by changes in the structure

of the economy. For example, Kahn, McConnell and Perez-Quiros (2002) suggest

that improved information about demand for durable goods has led to less durable

goods production volatility, which in turn has decreased overall output volatility.

This finding is supported by McConnell and Perez-Quiros’ (2000) earlier observation
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that a decrease in the variance of durable goods output accounts for most of the de-

creased variance of total output. Although the volatility of the production of durable

goods has declined, Kahn, McConnell and Perez-Quiros (2002) find no concurrent

fall in the variance of final sales of durable goods. This, they argue, indicates that

producers have better knowledge of demand and are less likely to over-produce or

under-produce durable goods (Kahn, McConnell and Perez-Quiros (2002)). This the-

ory depends necessarily on the lack of change in the volatility of durable goods sales.

However, other literature has found convincing evidence for a structural break in sales

of durable goods as well as their production4. These findings significantly undermine

the inventory management explanation of the Great Moderation.

A more accepted theory is that the Great Moderation was caused by a decline

in the volatility of shocks to the economy. Stock and Watson (2003) find that more

stable shocks account for some of the decline in GDP volatility. More recently, Jus-

tiniano and Primiceri (2007) find that shocks played a significant role in the Great

Moderation. Using a Dynamic Stochastic General Equilibrium model with time-

varying volatilities of structural shocks, they find that a more stable investment-

specific shock can account for most of the increased stability of GDP (Justiniano and

Primiceri (2007)). The relevance of this shock also extends to investment, labor and

consumption volatility (Justiniano and Primiceri (2007)).

The Justiniano and Primiceri (2007) model suggests that the investment-specific

shock may be interpreted as a shock to borrowing costs. To investigate this theory,

I incorporate borrowing costs into my model explicitly. The model that I develop is

based on the optimal contract model developed by Carlstrom and Fuerst (1997). In

4Including Ahmed, Levin and Wilson (2002), Herrera and Pesavento (2002), Kim, Nelson and
Piger (2001), Stock and Watson (2002)
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this model, entrepreneurs borrow investment goods. The lender incurs a monitoring

cost in case of borrowing default. The Carlstrom and Fuerst model builds on Bernanke

and Gertler (1989) and Fuerst (1995). My model builds on this earlier work by

introducing a search cost, incurred by all borrowers, in addition to the monitoring

cost, which is incurred only in case of default.

Justiniano and Primiceri (2007) use first order methods to estimate their model. I

will produce second-order accurate parameter estimates for my model. I implement a

particle filter, along the lines of Fernandez-Villaverde and Rubio-Ramirez(2006) and

An and Schorfheide (2007). The Fernandez-Villaverde and Rubio-Ramirez (2006)

work demonstrates the use of the particle filter to estimate a nonlinear and non-

normal model. In particular, linear methods calculate the likelihood function for a

linear approximation of the model. In contrast, the particle filter calculates the like-

lihood for a second-order approximation of the model and does not require normally

distributed shocks. Earlier work (Fernandez-Villaverde, Rubio-Ramirez and Santos

(2006) as well as Fernandez-Villaverde and Rubio-Rameriz (2005)) demonstrates that

the linearization required by first-order techniques can have a significant impact on

estimation results. The errors from linearization are compounded in each period, so

that they will be much more significant in larger samples. I will use a large sample

of approximately 150 periods, so this is especially relevant to my work.
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3 The Dynamic Stochastic General Equilibrium

Model

The dynamic stochastic general equilibrium model contains a firm and two families of

individuals. Each individual is a member of a family that makes investment, employ-

ment and consumption decisions for its members (as in Alexopoulos (2006)). At the

beginning of each period, an employment agency assigns some individuals to work for

the firm and some to be entrepreneurs. Entrepreneurs are members of one family and

non-entrepreneurs are members of the other. Each family makes consumption and

investment decisions for its members. The non-entrepreneurial family also chooses

the amount of labor for its members. In each period, all households contribute the

capital that they have earned to the family’s capital stock. The family then rents its

capital to the firm. This is the entrepreneurial family’s sole source of income. The

non-entrepreneurial family also collects the wages earned by each of its members.

The economy also has a final goods firm that produces consumption goods using

labor and capital inputs. In this economy, the firm also produces capital goods.

It uses its own capital in production and also rents capital from the families. If

small businesses were the only producers of capital in the economy, the model might

overstate the effects of deregulation that affects small businesses only. This structure

also allows me to explore the effects of financial deregulation related to corporate

investment activities in future work.
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3.1 Model Shocks

The model contains five exogenous shocks. In the baseline version of the model, the

variances of these shocks are fixed over time. In an alternate version of the model,

the shock variances themselves follow an exogenous process and are also subject to

shocks.

3.1.1 Model Shock Processes

The firm is subject to a technology shock, At, which affects its production of con-

sumption goods. This shock is a unit root and its growth rate, zt = log At
At−1

follows

the exogenous process:

ln zt = ρzlnzt−1 + εz,t

where εz,t ∼ N(0, θ2
z,t).

The firm is also subject to a capital adjustment cost shock, ζt, which affects its

conversion of investment to capital. This shock represents costs associated with time-

to-build, and is applied to the rate of change of capital stock from the prior period

to the current period. This shock takes the form:

ln ζt = (1− ρζ)µζ + ρζlnζt−1 + εζ,t

where εζ,t ∼ N(0, θ2
ζ,t).

The stochastic lending search costs and borrower monitoring costs associated with

lending between entrepreneurs and non-entrepreneurs are given by:

µt = (1− ρµ)µµ + ρµµt−1 + εµ,t
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ρt = (1− ρρ)µρ + ρρρt−1 + ερ,t

where εµ,t ∼ N(0, θ2
µ,t) and ερ,t ∼ N(0, θ2

ρ,t). Note that the structure of the borrowing

costs does not require them to be nonnegative.

Finally, the non-entrepreneurial family, which works for the firm, is subject to a

shock to the disutility of labor:

ln ψt = (1− ρψ)µψ + ρψln ψt−1 + εψ,t

where εψ,t ∼ N(0, θ2
ψ,t).

3.1.2 Time-Varying Volatility

In one version of the dynamic model, the shocks have time-varying stochastic volatil-

ity. In this formulation, the variance of the structural shock follows an autoregressive

process. Using the variance of the technology shock, θz,t, as an example, the variance

follows the following process:

ln θz,t = (1− ρθ,z)ln µθ,z + ρθ,zln θz,t−1 + εθ,z,t

where εθ,z,t ∼ N(0, νz). This formulation allows me to examine changes in the struc-

tural shocks over time. However, the increased flexibility does require an additional

10 parameters to be estimated, which comes at a nontrivial computing time cost.
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3.2 The Firm

The risk-neutral firm produces consumption goods using capital and labor inputs.

The consumption good production process is subject to a stochastic technology shock,

At, which grows at rate zt. The firm obtains labor at the market-clearing wage rate,

wt. It uses some of its profits to finance capital production (similar to Poveda and

Coen-Pirani (2005)). The firm’s capital production process is subject to a capital ad-

justment cost shock, ζt. This shock represents time-to-build associated with capital

investment. The firm uses all of its capital, given by KF
t , in its production of con-

sumption goods, and also rents capital from the families, in the amount KH
t , at the

market clearing rate qt. The firm combines its capital, KF
t , with the capital rented

from the families, KH
t , to obtain the total amount of capital available for final goods

production, Kt, using the following function:

Kt = (KH
t )γ(KF

t )1−γ

In each period, the firm chooses the amount of investment in capital production,

IFt . Then the shareholder dividend is given by:

Dt = f(Kt, Lt)− wtLt − qtKH
t − IFt

The firm’s capital accumulation equation is given by:

KF
t+1 = (1− δ)KF

t + ζt

(
1−

(
IFt
IFt−1

)2
)
IFt
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The firm’s production function is:

f(Kt, Lt) = A1−α
t Kα

t L
1−α
t

The firm’s optimization problem is to maximize shareholder dividends, subject to

the constraints given in Equations 9 through 12. The problem is given by:

max
It,KH

t ,Lt,K
H
t

E0

∞∑
t=0

βtDt

s.t. Dt = f(Kt, Lt)− wtLt − qtKH
t − It

f(Kt, Lt) = A1−α
t Kα

t L
1−α
t

Kt = (KH
t )γ(KF

t )1−γ

KF
t+1 = (1− δ)KF

t + ζt

(
1−

(
IFt
IFt−1

)2
)
IFt

From the first order condition for labor (Lt), the marketing clearing wage rate is:

wt = (1− α)A1−α
t

(
Kt

Lt

)α

The first order condition for rental capital, KH
t , is:

qt =
αγ(AtLt)

1−αKα
t

KH
t

The first order condition for firm-owned capital is:

βt+1
t+1E0

[(
α(1− γ)(At+1Lt+1)1−αKα

t+1

KF
t+1

)
+

(
1− δ
ζt+1

)]
= βttE0

(
1

ζt

)
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The firm’s problem pins down the the wage rate faced by the family when making

decisions for its members. The firm also contributes to the total stock of capital in

the economy.

3.3 The Small Business Borrowing Contract

Individuals may be entrepreneurs (small-business owners) or non-entrepreneurs. Small

businesses may borrow from non-entrepreneurs. I construct a static model of the op-

timal borrowing contract between a borrower and a lender that is a modification of

Carlstrom and Fuerst’s (1997) agency cost model. The borrower is a capital-producing

small business. The borrower invests personal wealth and borrowed funds in the busi-

ness. The optimal lending contract maximizes the profit of the business, while leaving

the lender indifferent.

3.3.1 Small Business Capital Production

A business produces ω units of the capital good per unit of investment. The produc-

tion process, ω, is stochastic and is distributed uniformly on [0, 2]. The business’s

capital production is also affected by its ability, j, which is uniformly distributed on

the interval [0.5, 1.5]. A j value of 0.5 means that the business has low ability and

a j value of 1.5 means that the business has high ability. These distributions are

chosen to allow me to find a closed form solution to the optimal contract problem.

Also, the range of j allows entrepreneurial ability to be applied multiplicatively to

capital production. The borrower is also subject to a cost, ρ, associated with finding

financing. This search cost means that a percentage, (1−exp (ρ)), of the total capital

is consumed by the potential borrower in the search for a lender. A business of ability
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j produces capital in the amount of:

j exp(ρ) ω i(j)

where j is ability, ω is the realization of the stochastic production process, ρ is the

financing search cost, and i(j) is the total amount of investment capital.

3.3.2 The Financial Contract

The financial contract between a business of ability j and a lender will determine the

total amount to be invested, i(j), the interest rate, r(j), and the threshold value of

ω(j) below which the borrower will default, called ω̄. The contract is a one-period

contract, so that lending must be negotiated in every period. The total amount

of investment capital used by the business is i(j) and ie(j) represents its internal

investment. Then i(j) − ie(j) is the amount borrowed, if (j). The business that

borrows if (j) agrees to repay the lender (1 + r(j))if (j) capital goods tomorrow. In

addition, the business must pay a search cost, ρ, destroying a portion of the capital

it produces. Because the capital production function is stochastic, the borrower may

not be able to honor the terms of the contract. Default will occur when the proceeds

from the capital project, exp(ρ)jω(j)i(j), are less than the debt obligation to the

lender, (i(j)− ie(j))(1 + r(j)):

j exp(ρ)ω(j)i(j) < (i(j)− ie(j))(1 + r(j))
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Then the threshold value of ω(j), ω̄(j), below which the borrower will default, is given

by:

ω̄(j) =
(1 + r(j))(i(j)− ie(j))

exp(ρ) j i(j)
(1)

If rk is the end-of-period price of capital, the business’s expected profit can now

be written in terms of rk, i(j), r(j), ω̄, ρ and j:

rk
[∫ 2

ω̄(j)

ω(1 + r(j))ji(j)Φ(dω)− (1− Φ(ω̄))(1 + r(j))(i(j)− ie(j))
]

or, equivalently:

rkji(j) exp(ρ)

[∫ 2

ω̄(j)

ωΦ(dω)− (1− Φ(ω̄(j)))ω̄(j)

]

Let the function f(ω̄(j)) be defined as:

f(ω̄(j)) =

[∫ 2

ω̄(j)

ωΦ(dω)− (1− Φ(ω̄(j)))ω̄(j)

]

so that the business expected profit can be represented as:

rkji(j) exp(ρ)f(ω̄(j)) = rkji(j) exp(ρ)

[∫ 2

ω̄(j)

ωΦ(dω)− (1− Φ(ω̄(j)))ω̄(j)

]

When the borrower defaults, the lender seizes all of the proceeds of the en-

trepreneur’s capital project. The lender also incurs costs associated with monitoring

the borrower in the case of default. To monitor the project and discover the borrower’s

realization of ωt, the lender destroys a percentage, (1− exp (µ)), of the capital seized

from the project. The lender’s expected income from lending to a business with ability
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h is given by:

rk

[
exp(µ)

∫ ω̄(h)

0

exp(ρ)ωi(h)hΦ(dω) + (1− Φ( ¯ω(h)))(1 + r(h))(i(h)− ie(h))

]

or, equivalently:

rkh exp(ρ) i(h)

[
exp(µ)

∫ ω̄(h)

0

ωΦ(dω) + (1− Φ(ω̄(h)))ω̄(h)

]

Let the function g(ω̄(h)) be defined as:

g(ω̄(h)) =

[
exp(µ)

∫ ω̄(h)

0

ωΦ(dω) + (1− Φ(ω̄(h)))ω̄(h)

]

Then the lender income may be represented as:

rkh exp(ρ) i(h)g(ω̄(h)) = rkh exp(ρ) i(h)

[
exp(µ)

∫ ω̄(h)

0

ωΦ(dω) + (1− Φ(ω̄(h)))ω̄(h)

]

To make the notation less cluttered, we will keep in mind that i, ω̄, r and n are

functions of entrepreneurial ability and remove the function notation, so that the

entrepreneur’s income becomes:

rkij exp(ρ)

[∫ 2

ω̄

ωΦ(dω)− (1− Φ(ω̄)ω̄

]
= rkij exp(ρ)f(ω̄, j)

The individual income is given by:

rkih exp(ρ)

[
exp(µ)

∫ ω̄

0

ωΦ(dω) + (1− Φ(ω̄))ω̄

]
= qih exp(ρ)g(ω̄, h)
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The lender may choose not to lend. In order for the lender to loan money to the

business, the expected income from lending must at least equal the amount being

loaned:

rkih exp(ρ)

[
exp(µ)

∫ ω̄

0

ωΦ(dω) + (1− Φ(ω̄))ω̄

]
= qih exp(ρ)g(ω̄, h) ≥ i− ie (2)

3.3.3 The Optimal Contract

The optimal contract for a business with ability j is found by solving for the i, ω̄, r

combination that maximizes the business’s expected profit, subject to the lender

participation constraint (Equation (2)), the equation that determines the threshold

value of ω (Equation (1)), and the equation that describes the total amount of

investment:

max
i,ω̄,r

rkij exp(ρ)

[∫ 2

ω̄

ωΦ(dω)− (1− Φ(ω̄)ω̄

]

s.t. rkij exp(ρ)
[

exp(µ)
∫ ω̄

0
ωΦ(dω) + (1− Φ(ω̄))ω̄

]
= i− ie

ω̄ij exp(ρ) = (1 + r)(i− ie)

i = ie + if

Equivalently, the problem in terms of f(ω̄) and g(ω̄) is given by:

max
i,ω̄,r

rkij exp(ρ)f(ω̄)
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s.t. rkij exp(ρ)g(ω̄) ≥ i− ie (3)

ω̄ij exp(ρ) = (1 + r)(i− ie) (4)

i = ie + if (5)

I obtain the terms of the optimal contract by solving the maximization problem. Let

the optimal contract terms for an entrepreneur with ability j be given by ω̄∗t (j), r
∗
t (j),

and i∗t (j).

The lender’s participation constraint must hold with equality, so Equation (3)

can be used to solve for i as a function of ω̄. In addition, Equation (4) can be

rearranged to define r in terms of i and ω̄5. When these equations are substituted

into the objective function, the problem reduces to:

max
ω̄

rkj exp(ρ)f(ω̄)
ie

1− rkj exp(ρ)g(ω̄)

The first order condition with respect to ω̄ is:

qj exp(ρ)f ′(ω̄)
ie

1− qj exp(ρ)g(ω̄)
+ (qj exp(ρ))2f(ω̄)g′(ω̄)

ie

(1− qj exp(ρ)g(ω̄))2
= 0

The first order condition can be 6 solved for ω∗:

ω∗ =
−(2rk exp(r)(i+ ie)− 4i)

(i− ie)(2rk exp(r)− (rk)2 exp(2r)
(6)

5For details, see Appendix B
6For full details, see Appendix B
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After finding ω̄, I can solve for r(j) and i(j) using Equation (4) and Equation (5):

i∗ =
ie

1− rkj exp(ρ)g(ω̄∗)
(7)

1 + r∗ =

(
ω̄i∗j exp(ρ)

i∗ − ie

)
(8)

3.4 Families

Every individual is part of a family based on his employment assignment. An in-

dividual with entrepreneurial ability j higher than the cutoff ability j̄ will be part

of the family of entrepreneurs. Individuals with ability j less than j̄ are members

of the non-entrepreneurial family. The value of j̄ will be chosen by the employment

agency in each period such that the household at the cutoff point, where j = j̄, would

produce the same amount of capital whether an entrepreneur or not.

The families are similar to those used in Alexopoulos (2006). They make all

investment and consumption decisions for their members. Each individual contributes

the capital that he has accumulated via entrepreneurial activity or lending activity

to the family stock of capital. The family’s income comes from renting its capital

stock to the production firm. The non-entrepreneurial family also receives income

from wages. The entrepreneurial family does not receive wage income because it is

composed of individuals working in small self-owned businesses.

The entrepreneurial household produces capital via its small business. The non-

entrepreneurial family’s capital is produced by lending to the small business. This

is its only source of capital production. The mechanism for inter-family lending or

borrowing is described in the preceding section. In each period, the family makes



21

consumption and investment decisions for each family member. It chooses how much

to invest in capital production and distributes this amount between all family mem-

bers. Entrepreneurs will borrow investment goods from non-entrepreneurs, and the

lending contract will be structured such that the entrepreneur must invest all of his

investment goods in his enterprise. Each family’s optimal investment and consump-

tion decision will be dependent on j̄, the cutoff ability value, which is chosen by the

employment agency. Entrepreneurs also, by definition, invest all working hours in

their business, so the entrepreneurial family does not choose labor hours.

3.4.1 The Family of Entrepreneurs

The family of entrepreneurs is composed of individuals with ability j ∈ [j̄, 1.5]. Each

entrepreneur is given an equal amount of investment, ie, regardless of ability. In

addition, the entrepreneur receives investment from the lender, if (j) based on his

ability level. Given the functions ω̄∗(j), if∗(j) and rk∗(j)k∗, defining the optimal

contract for ability j, an entrepreneur of ability j produces capital in the amount of:

(
ie + if∗(j)

)
j exp(ρ) f(ω̄∗(j), j)

Then the total capital production of the family composed of individuals with ability

j ∈ [j̄, 1.5] is given by:

N

∫ 1.5

j̄

j(ie + if∗(j)) exp(ρ)f(ω̄∗(j), j)dj

Based on the expected addition to the capital stock in each period, the family can

make investment and consumption decisions. The total amount invested, iet+i
f∗(jt) =
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it, is given by equation (42) from the optimal contract section. The family’s capital

production is subject to the stochastic costs of borrowing: borrower search cost, µt,

and lender monitoring cost, ρt. Finally, the entrepreneur works full-time. His labor

amount is fixed at 1 and is not a choice variable. The entrepreneurial family’s problem

is described by the following:

max
cet ,i

e
t ,K

e
t+1

∞∑
t=0

Nβtt(1.5− j̄t)
(
ln(cet )−

1

1 + ν

)

s.t. (cet + iet )(1.5− j̄t) = qtK
e
t

Ke
t+1 = (1− δ)Ke

t + exp(ρt)
∫ 1.5

j̄t
itjf(ω̄∗t (j), j)dj

it =
iet

1−rkt j exp(ρt)g(ω̄∗
t )

The law of motion of capital can be rewritten to incorporate the third constraint, so

that the second constraint becomes:

Ke
t+1 = (1− δ)Ke

t + exp(ρt)i
e
t

∫ 1.5

j̄t

jf(ω̄∗t (j), j)

1− Et(qt+1) exp(ρt)jg(ω̄∗t (j), j)
dj

Note that the integral,
∫ 1.5

j̄t

jf(ω̄∗
t (j),j)

1−Et(qt+1)(1−ρt)jg(ω̄∗
t (j),j)

dj is independent of the entrepreneur’s

decision variables so that it is a constant in relation to the maximization problem.

To simplify the equations, then, let:

γet =

∫ 1.5

j̄t

jf(ω̄∗t (j), j)

1− Et(qt+1) exp(ρt)jg(ω̄∗t (j), j)
dj
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The solution to the entrepreneurial family’s optimization problem is given by the

resource constraint and the law of motion of capital, along with the Euler Equation:

βtt(1.5− j̄t)
exp(ρt)γet c

e
t

= βt+1
t+1Et

[
qt+1

cet+1

+
(1.5− j̄t)(1− δ)
exp(ρt)γet+1c

e
t+1

]

The integral represented by γet cannot be solved analytically. Because I will use

only first- and second-order accurate solutions to the model, I will use a second-

order Taylor series to approximate the function to be integrated7. The approximated

function can be integrated with respect to j to solve for the approximate value of γet .

3.4.2 The Family of Non-Entrepreneurs

The non-entrepreneurial family is made up of individuals with ability j ∈ [0.5, j̄].

Non-entrepreneurs earn wages and also accumulate capital goods by lending to en-

trepreneurs. Individual wages are contributed to the family’s wealth and capital

earnings are contributed to the family’s capital stock. A non-entrepreneur lending to

an entrepreneur of ability j accumulates capital in the amount of:

i∗t j g(ω̄∗(j), j)

The total capital production of the non-entrepreneurial family, lending to entrepreneurs

of ability j ∈ [j̄, 1.5], is given by:

∫ 1.5

j̄

ji∗tg(ω̄∗(j), j)dj

7Details can be found in Appendix E
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The optimal amount of investment, i∗t is determined by Equation (7) from the solution

to the optimal contract problem:

i∗t =
iet

1− rkt exp(ρt)jtg(ω̄∗t )

Further, the sum of the total entrepreneurial investment, iet , and non-entrepreneurial

investment, ift , must be equal to total investment in the small business, i∗t . This

implies that ift is fully dependent on iet , so investment is not a decision variable for

the non-entrepreneurial family. From the law of motion of capital, this implies that

the non-entrepreneurial family’s capital stock in period t+1 is also determined by the

optimal contract problem. Therefore, the family will choose consumption and labor

hours only. The non-entrepreneurial family is subject to a shock to labor disutility,

ψt. Then the non-entrepreneurial family’s problem is given by:

max
cft ,lt

E0

[
∞∑
t=0

Nβtt(j̄ − 0.5)

(
ln(cft )− ψt

l1+ν
t

1 + ν

)]

s.t. (cft + ift )(j̄t − 0.5) = qtK
f
t + (j̄t − 0.5)wtlt

lt ≤ 1
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The solution to the maximization problem is given by (details can be found in Ap-

pendix D):

βtt(j̄t − 0.5)

(
wt

cft
− ψtlνt

)
= λ2t

λ2t(1− lt) = 0

cft =
qtK

f
t

(j̄t − 0.5)
+ wt − ift

In addition, the period t+ 1 capital stock is given by:

Kf
t+1 = (1− δ)Kf

t +N exp(ρt)

∫ 1.5

j̄t

j(it)g(ω̄∗t (j), j)dj

Again, from the optimal contract problem (Equation (7)), recall that it is given by:

it =
iet

1− rkt j exp(ρt)g(ω̄∗t )

Inserting this expression into the Non-Entrepreneurial Family’s capital accumulation

equation, obtain:

Kf
t+1 = (1− δ)Kf

t +N exp(ρt)i
e
t

∫ 1.5

j̄t

jg(ω̄∗t (j), j)

1− rkt j exp(ρt)g(ω̄∗t
dj

For simplicity, let γft represent the integral:

γft =

∫ 1.5

j̄t

jg(ω̄∗t (j), j)

1− rkt j exp(ρt)g(ω̄∗t
dj

The expression γft is an integral that cannot be solved analytically. Again, I find

a second order approximation for this expression, details of which can be found in
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Appendix E.

3.4.3 The Employment Decision

The employment decision is made by an employment agency. The cutoff ability, j̄

determines how many entrepreneurs there are in each period. The agency chooses

j̄ such that the expected income for an entrepreneur with ability j̄ equals the ex-

pected income for a non-entrepreneur with the same ability. Thus, the solution the

employment decision is:

f(ω(j̄))− g(ω(j̄)) = 0

All households with ability j > j̄ will be entrepreneurs and all households with

ability j < j̄ will be non-entrepreneurs. This decision-making mechanism assigns

each individual to the occupation in which he should produce the most capital, based

on the expected values of the shocks to which the capital production is subjected.

This allocation produces the most possible capital for the economy in each period.

4 Model Solution and Data

4.1 Model Solution Equations

There are forty one model solution equations, in addition to the equations describing

the evolution of the structural shock variances. There are ten state variables and

thirty one control variables. The ten state variables are: zt, µt, ρt, ψt, ζt, Kt, K
F
t ,

KH
t , Ke

t , and Kf
t . The thirty one control variables are qt, jt, ωt, ft, gt, wt, r

k
t , It, I

F
t

γet , γ
f
t , iet , i

f
t , c

f
t , c

e
t , , lft , λt, Ct, Yt, I

H
t , f ′t , g

′
t, Γe0,t, Γf0,t, Γe1,t, Γf1,t, Γe2,t, Γf2,t, rt, π

i
t, and

πkt .
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The first five state variables are the model’s shocks. These evolve according to

the following equations:

ln(zt+1) = ρz ln(zt) + εz,t

ln(ζt+1) = (1− ρζ)(µζ) + ρζ ln(ζt) + εζ,t

ρt+1 = (1− ρρ)µρ + ρρρt + ερ,t

µt+1 = (1− ρµ)µµ + ρµµt + εµ,t

ln(ψt+1) = (1− ρψ)(µψ) + ρψ ln(ψt) + εψ, t

The shock, zt, represents the growth rate of the technology shock, At:

zt = ln

(
At
At=1

)

From the firm’s problem, the following equation solves for wages, wt:

wt = (1− α)(At)
1−α
(

Kt

lft (j̄ − 0.5)

)α

The following equation from the firm’s problem solves for the rental rate of capital,

qt:

qt = αγ

[
Atl

f
t (j − 0.5)

Kt

]1−α

The Euler Equation from the firm’s problem is:

βα(1− γ)Et

[
(At+1)1−α(Kt+1)α(lft+1(jt+1 − .5))1−α

KF
t+1

]
=

1

ξt
− βEt

[
1− δ
ξt+1

]

The total amount of capital used by the firm is a combination of the capital produced
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by individual households, KH
t , and capital stock held by the firm, KF

t :

Kt = (KH
t )γ(KF

t )1−γ

The firm’s capital stock evolves according to its capital accumulation equation:

KF
t+1 = (1− δ)KF

t + ζt

(
1−

(
IFt
IFt−1

)2
)
IFt

Finally, the firm’s total production, Yt, is given by:

Y = A1−α
t (Kt)

α (lf )
(1−α)

The entrepreneurial family’s model yields the Euler Equation:

βtt(1.5− j̄t)
exp(ρt)γet c

e
t

= βt+1
t+1Et

[
qt+1

cet+1

+
(1.5− j̄t)(1− δ)
exp(ρt+1)γet+1c

e
t+1

]

The entrepreneurial family’s budget constraint is:

N(cet + iet )(1.5− j̄t) = qtK
e
t

Finally, the entrepreneurial family’s capital stock evolves according to the equation:

Ke
t+1 = (1− δ)Ke

t + exp(ρ)ietγ
e
t
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The non-entrepreneurial family’s optimization problem produces two equations:

Nβtt(j̄t − 0.5)

(
wt

cft
− ψtlνt

)
= λt

λt(1− lt) = 0

The non-entrepreneurial family’s budget constraint is:

cft =
qtK

f
t

N(j̄t − 0.5)
+ wt − ift

The non-entrepreneurial family’s capital stock evolves according to the following equa-

tion:

Kf
t+1 = (1− δ)Kf

t +N exp(ρ)ietγ
f
t

The employment decision yields the following equation:

f(ω(j̄))− g(ω(j̄)) = 0

The optimal contract problem provides an additional three equations. The optimal

cutoff value, ω̄∗t , below which the borrower will default, solves the first order condition

of the optimal contract problem:

qtjt exp(ρt)f
′(ω̄t)

iet
1− qtjt exp(ρt)g(ω̄t)

+(qtjt exp(ρt))
2f(ω̄t)g

′(ω̄t)
iet

(1− qtjt exp(ρt)g(ω̄t))2
= 0

In addition, the optimal contract problem allows us to solve for ift as a function of iet :

ift = iet

[(
1

1− rkt jt exp(ρt)g(ω̄t)

)]
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The optimal contract problem also allows us to solve for the interest rate using the

following equation:

rt = log

(
ω̄titj̄t exp(ρt)

it − iet

)
Also from the optimal contract problem, I obtain the equations for ft, gt, f

′
t , g

′
t

8:

ft = f(ω̄t, jt) =
1

4
ω̄2
t − ω̄t + 1

gt = g(ω̄t, jt) =
exp(µt)

4
ω̄2
t + ω̄t −

1

2
ω̄2
t

f ′t = f ′(ω̄t, jt) =
1

2
ω̄t − 1

g′t = g′(ω̄t, jt) =
exp(µt)

2
ω̄t + 1− ω̄t

The eight equations for the approximated integrals γet and γft , as well as the

coefficients in those approximations (Γe0,t, Γf0,t, Γe1,t, Γf1,t, Γe2,t, and Γf2,t) can be found

in Appendix E.

Finally, there are a number of aggregation equations. The total household con-

sumption, investment and capital are given by:

C = (1.5− jt)cet + (j − 0.5)cft

IHt = (1.5− jt)iet + (j − 0.5)ift

KH
t = Ke

t +Kf
t

The price of capital, qt, is given by:

qt = rkt − 1

8Details in Appendix A
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The total investment in the economy (by both the firm and the households) is:

It = IFt + IHt

There are two model variables that are used in analysis. These equations give the

relative price of investment:

πi =
exp(ρ) exp(γe)

(1− δ)

and the relative price of capital:

πk = (1− δ)

4.2 Steady State

An analytical steady state does not exist for the model. As a result, I solve for

the steady state using non-linear solvers in either Matlab or Fortran. To obtain

the starting steady state values required by Dynare for the first order parameter

estimation, I use the solve function in Matlab. However, after using the provided

steady state values as a starting point, Dynare computes a new steady state for

each set of possible parameter values. Thus the steady state must be found just

once. However, the particle filter code to find the second order parameter estimates

is implemented in Fortran. This code requires the steady state to be found for each

set of parameter values. The steady state equations for some variables may be found

analytically. For the system of equations that cannot be solved analytically, I use the

DNEQNF (non-linear solver) function in the Fortran IMSL library to solve for the
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steady state in the particle filter implementation.

4.3 Data

I estimate five shocks using five data series. All data is from the Federal Reserve Eco-

nomic Database, unless otherwise noted. For FRED data series, I provide the series

ID in parentheses. Production, Y , is given by nominal quarterly GDP (GDP) divided

by population (POP) and the GDP implicit price deflator (GDPDEF). Wages, w, are

given by hourly wages of non-farm workers. The series comes from the Bureau of

Labor Statistics. Wages are seasonally adjusted, and are divided by the GDP defla-

tor. Total household investment, IH , is given by investment in consumer durables

(PCDF) plus private investment (GDPI) divided by the GDP deflator and popula-

tion. Consumption is calculated as consumer spending on non-durables (PCND) and

services (PCESV), divided by the GDP deflator and population. Finally, labor hours

are given by average weekly hours of production and nonsupervisory employees (total

private), also from the Bureau of Labor Statistics database. The data starts in Q1 of

1964 and ends in Q1 of 2010. It is necessary to use significant data from both before

and after the Great Moderation (1984).

I use a number of other series to further analyze the results of the DSGE model.

These series are not used in parameter estimation, instead providing a view of how

well the model fits series to which it is not calibrated. Tobin’s Q is the market value

of installed capital divided by the replacement cost of that capital. I use a series

calculated by ycharts.com. I construct the relative price of investment by dividing the

price of investment by the price of consumption, as in Gabler (2006). For the price of

consumption, I use the chain type price index for personal consumption expenditures
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(PCECTPI) from the Federal Reserve Economic Database. I use the chain type price

index for Gross Private Domestic Investment (GPDICTPI) from the Federal Reserve

Economic Database for the price index of investment. To approximate the interest

rate faced by small business borrowers, I use the yield on Moody’s BAA corporate

bonds (BAA). This series is monthly, so I adjust it to a quarterly series by taking

the average yield over the months of the series. I also adjust this series for inflation.

Finally, I use the real U.S. return to capital from Gomme and Rupert (2008) with

some slight modifications. Gomme and Rupert assume a depreciation rate of 0.0177,

while I assume a higher depreciation rate of 0.1. I correct for this difference in the final

series. It should be noted that there are some other implicit parameter assumptions

make by Gomme and Rupert that I cannot adjust for.

I use an additional set of data to understand the implications of the static optimal

contract model, outside of the context of the DSGE model. For this analysis, I use

the Gomme and Rupert (2006) calculations of U.S. real return to capital discussed

in the previous paragraph. I also use the bank prime rate (MPRIME), adjusted for

inflation. Finally, I calculate the per-capita value of business loans outstanding by

dividing the total value of business loans outstanding (BUSLOANS) by population

(POP).

I apply the Band-Pass filter to all data series used for model calibration and DSGE

model comparison. Filtering removes long-frequency cyclical effects and trends from

the data. I use Matlab code implementing methods discussed by Christiano and

Fitzgerald (1999). The Matlab code is available on Terry Fitzgerald’s Cleveland

Federal Reserve website. I use the unit root option, which specifies that there is a

unit root in the time series. I filter out data with a period of shorter than 1.5 years
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or longer than 6 years. This ensures that I eliminate any short-cycle noise and any

long-term trends. I use unfiltered series to analyze the static Optimal Contract model.

4.4 First Order Estimation Procedure

The first-order estimates assume policy function linearity that may not exist in a

large-scale DSGE model. Because of this linearity assumption, the estimate neglects

the agents’ expectations of stochastic volatility. Although the first-order estimate has

some limitations, it serves a few functions. First, it can be obtained with relatively

little programming using Dynare, a Matlab-based solution algorithm. In addition,

earlier work on the Great Moderation (such as Justiniano and Primiceri (2007)) uses

first-order accurate estimates only. Therefore, comparing the differences between the

first- and second-order estimates will be a useful exercise.

4.4.1 Description

The first order accurate parameter estimates are obtained via Dynare. Dynare is a free

software platform that functions as an add-on to Matlab. Dynare uses the Kalman

filter to estimate the likelihood. The underlying assumption of the Kalman filter is

that the system is linear and that all errors are normally distributed. Because it uses

the Kalman filter, Dynare accounts only for the linear component of the model when

estimating parameters (although Dynare does compute the second-order solution).

After calculating the likelihood and posterior, Dynare runs one or more Metropolis-

Hastings chains to characterize the posterior distributions of the parameters. Dynare

has a number of benefits. It requires relatively little programming. The model so-

lution equations must be entered into a file, along with any relevant commands for
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Dynare. Dynare also produces a wide range of diagnostic information, including

convergence diagnostics, prior and posterior distribution graphs, model solution ap-

proximations, and other results. A final benefit is that Dynare is significantly faster

than the second order Particle Filter code that I implement. Dynare can run 250,000

Metropolis-Hastings draws in less than a day. The particle filter requires multiple

weeks on significantly better hardware to execute the same number of draws. The

performance will be discussed in more detail in subsequent sections.

4.4.2 Performance

Dynare is run on a personal machine with an Intel i7-2620M chip at 2.70 GHz. The

system has 8.00 GB of memory and is a 64-bit Windows 7 Operating System. The pro-

cesses use Matlab 7.12.0 (R2011a). I use four Metropolis-Hastings chains to estimate

13 parameters in the time-invariant version of the model. This runs for approximately

12 hours (including the likelihood calculations). I use four Metropolis-Hastings chains

of 250,000 draws to estimate 17 parameters in the time-varying version of the model.

This runs for approximately 24 hours. The increase in runtime is accounted for in

part by a longer time required to calculate the likelihood, but it is mostly in the

Metropolis-Hastings chain step.

4.5 Second Order Estimation Procedure

The second-order accurate solution will allow non-linearities in the policy function and

will help me determine whether agent expectations are an important component of my

model. However, accounting for non-linearities requires a significantly more complex

and time-consuming estimation procedure. As a result, the linearity assumption is
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far more common when estimating DSGE. However, the second order can provide

valuable information about agent expectations and is, thus, a critical component to

understanding a DSGE model.

4.5.1 Description

I use the particle filter to obtain the second-order accurate parameter estimates for

my model. The particle filter accounts for non-linearities in the policy function that

first-order accurate methods do not. First, I use the Schmitt-Grohe (2004) perturba-

tion method to approximate the second-order model solution. I then implement the

particle filter, in the manner of Fernandez-Villaverde (2010) and An and Schorfheide

(2007).

To describe the implementation of the particle filter, I borrow notation from Dave

and DeJong (2007). Recall that the objective of the particle filter is to evaluate the

likelihood function over the time t = 1, ..., T . The likelihood function is given by:

L(XT |µ) = πTt=1

∫
p(υt(X

t, s0))p(s)|X t)ds0

The expression L(XT |µ) represents the likelihood of the series of observations,

XT given a set of parameter values, µ. The expression p(υt(X
t, s0)) represents the

probability of the structural shock that is implied by the data series X t and the initial

states, s0. I integrate over s0 so that the likelihood is independent of the initial states.

The particle filter approximates the series of integrals in the likelihood expression.

To describe the particle filter, I use the term “particle” to refer to a draw from the

initial distribution of state variables conditional on the data series X t. A sequence of

particles is referred to as a “swarm”. The particle filter must be initialized with an
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initial swarm of particles. The initial swarm of state variable values is drawn from a

normal distribution. The mean of the distribution is the state variable’s steady state

value, and the the initial variance is taken from a simulation of the model.

For each initial particle (set of state values), I can calculate this period’s control

variables and next period’s state variables. The control variables and next period

state variables are quadratic functions of the states and shocks, since I am using a

second-order approximation. To evaluate the likelihood of each particle, the particle

filter calculates the forecast errors of the observables. The particle filter will return

a zero likelihood if the set of parameters gives an indeterminant model solution.

The forecast errors are assumed to be normally distributed with a mean of zero and

variances that are some fraction of the variance of the data. Once I have calculated

the likelihood of each particle draw, I can obtain the unconditional likelihood of the

implied shocks by calculating a weighted average of the shocks in each time period

(where the weight is the likelihood of the particle). I also re-sample from the initial

swarm of particles to obtain the next period swarm. Again, the weight of each particle

is its calculated likelihood.

I use the GLOBAL optimization routine from Tibor Csendes9 (Csalinear, Csendes,

and Markot (2000))to maximize the likelihood function as calculated by the parti-

cle filter. After finding the set of parameter values that maximizes the likelihood,

these parameter values are used to initialize the Metropolis-Hastings process. I use

a Metropolis-Hastings process to draw from the posterior distribution. For a full

discussion of the particle filter implementation, refer to Appendix F.

9The GLOBAL fortran code is available on Csendes’ website, http : //www.inf.u −
szeged.hu/ csendes/linkeken.html
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4.5.2 Performance

I run one Metropolis-Hastings chain in the particle filter implementation. Each pass

through the particle filter uses 20,000 particles. The code is written in Fortran and

runs on the Fir Linux Cluster supported by the University of Virginia Alliance for

Computational Science and Engineering. More information about the specific config-

urations of the nodes in the Fir cluster can be found on the UVACSE website10. The

job is implemented in parallel using 4 nodes with 2 processors per node and 2 parallel

processes on each node, for a total of 16 parallel processes. The time-invariant model

estimates 13 parameters. Using the particle filter to calculate the likelihood, the code

takes approximately 110 hours to maximize the likelihood. The Metropolis-Hastings

portion of the process takes approximately 133 hours to execute 25,000 Metropolis-

Hastings draws. However, this is not enough draws for the chain to converge. I have

run 75,000 Metropolis-Hastings draws for the time-invariant model. In total, the run-

time of the entire process is around 500 hours (approximately 3 weeks). The process

must be run in parts because the maximum runtime allowed by the Linux cluster is

168 hours (1 week).

The time-varying model estimates 17 parameters. The likelihood maximization

step takes slightly longer than the time-invariant case, executing in approximately

160 hours. The time-varying version of the code can execute approximately 10,000

Metropolis-Hastings draws in 168 hours. The time-varying version of the model has a

significantly longer runtime than the time-invariant version, so I run fewer Metropolis-

Hastings draws for this model.

10http://www.uvacse.virginia.edu/itc-clusters/
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5 Results

In this section, I present the results from the second-order accurate time-invariant

dynamic model, which serves as the benchmark model for further discussion. The

second order accurate parameter estimates were obtained using the particle filter

code, which is discussed in detail in section 4.5 and in Appendix F. Recall that the

model contains five structural shocks: zt, the growth rate of the firm’s technology

shock; ρt, lending search costs for entrepreneurs; µt, borrower monitoring costs; ψt, a

shock to the disutility of labor; and ζt, the firm’s capital adjustment cost shock. The

shocks take the following form:

ln zt = ρzln zt−1 + εz,t

µt = (1− ρµ)µµ + ρµµt−1 + εµ,t

ρt = (1− ρρ)µρ + ρρρt−1 + ερ,t

ln ψt = (1− ρψ)µψ + ρψln ψt−1 + εψ,t

ln ζt = (1− ρζ)µζ + ρζln ζt−1 + εζ,t

The stochastic elements of the shocks, εz,t, εµ,t, ερ,t, εψ,t, and εζ,t, are distributed

normally with means of zero and variances, respectively, of θ2
z,t, θ

2
µ,t, θ

2
ρ,t, θ

2
ψ,t, and

θ2
ζ,t. In this case of the model, the variances of the shocks are fixed over time: θ2

z , θ
2
µ,

θ2
ρ, θ

2
ψ, θ2

ζ .
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5.1 Convergence

Due to the substantial processing time of the particle filter code, I only run one

Metropolis-Hastings chain for the second order accurate parameter estimation pro-

cedure. As a result, the Brooks-Gelman convergence statistics cannot be computed.

Thus, I rely on the shapes of the posterior distributions and the progress of the chains

themselves to assess convergence. The posterior distributions of the parameters are

generally normally distributed, with the possible exception of the search shock au-

tocorrelation parameter (ρρ). This parameter is bounded between 0 and 1 and has

nontrivial density throughout the allowed range. This can be seen in Figure 9. Oth-

erwise, the posterior distributions of the parameters are reasonably distributed (also

see Figures 10 and 11).

The Metropolis-Hastings chains themselves also provide insight. The chains gen-

erally do appear to vary around established means. There are a few that do seem to

have difficulty settling around a mean. In Figure 12, the autocorrelation parameter

of the search cost (ρρ) varies widely within its allowed range. The variation of the

firm’s capital adjustment cost autocorrelation parameter (ρζ) also appears to be a bit

larger than desirable (also in Figure 12). Finally, the autocorrelation parameter of

the tech shock (ρz) is very stable, but near its lower bound (see Figure 12). This is

an artificial lower bound, imposed because autocorrelation parameters generally do

not approach it. In this case, the parameter may want to go negative. In the Figure

38 through Figure 43, I provide details regarding a test run in which I expand the

bounds of the autocorrelation parameter of the tech shock to -1 to 1, rather than 0

to 1. The parameter does go lower than 0. However, the change also introduces some

instability to some of the other parameter chains. The only other chain of note is the
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chain of the steady state value of the monitoring cost (µµ, which can be found in Fig-

ure 13. This chain diverges from what looks like a well-established mean. However,

it does return to its previous pattern at the end of the chain. All other chains, which

can be seen in Figures 12, 13, and 14, look stable around an established mean.

Thus, with a few minor concerns, the chains for this model appear to have converged.

5.2 Parameter Estimates

Table 2 shows selected summary statistics for the posterior distributions of the pa-

rameter estimates. The median values of the posterior distributions are generally

reasonable. The median of the Inverse Frisch Labor supply, ν, is 2.7. This is within

the range of 2 to 5 that is suggested by the micro data (Gali, Gertler and Lopez-

Salido (2003)). The borrower monitoring cost shock, the labor disutility shock, and

the firm capital adjustment cost shock are all highly persistent, as measured by the

autocorrelation parameters for these shocks (all above 0.9). The technology shock is

hardly correlated with the last period’s shock, and tends to revert to the mean. The

search cost shock is fairly persistent, with an autocorrelation parameter of 0.68.

The search cost shock is by far the most variable, with an estimated median

variance of 0.0581. The monitoring cost shock and the capital adjustment cost shock

are slightly less variable than the search cost. Finally, the technology shock and the

labor disutility shock are the least variable.

The steady state values of the monitoring cost, µµ, and the search cost, µρ, also

provide useful information about these costs. These give the percent of small busi-

nesses earnings that are destroyed by each cost in the steady state. The parameter

estimates must be converted, so that the percent of income destroyed by search costs
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in the steady state is given by 1 − exp
(µρ

10

)
. The percent of income destroyed by

monitoring costs in the steady state is given by 1 − exp
(µµ

10

)
. Thus, the percent of

capital destroyed by search costs in the steady state is 5%. The percent of capital

destroyed by monitoring costs is slightly larger at 18.5%. In total, monitoring and

search costs destroy about 22.5% of the small business’s profit. This is similar to the

25% agency cost estimated in Carlstom and Fuerst (1997), whose optimal contract

model is similar to mine but has just one borrowing cost.

5.3 Impulse Response Functions

The impulse response functions for this model, using the posterior median parameter

estimates, can be seen in Figure 28 through Figure 37. These figures show both the

first order IRF (in green) and the second order IRF (in blue). Figure 28 and Figure

29 show the IRFs for selected model variables responding to a technology shock (z).

The first and second order responses are nearly identical, except for the response

of the firm’s investment (IH), which can be seen in 29. Firm investment responds

more strongly to a technology shock when the second order effects are included. The

impulse responses to the search cost (ρ) can be seen Figure 30 and Figure 31. For

most of the variables shown, the first and second order IRFs have the same direction of

response, but a slightly different magnitude of response. However, household capital

(KH , Ke and Kf ) responds negatively to a search cost shock in the first order, but

positively to the search cost shock in the second order. The response of firm capital

(KF ) is slightly smaller (though still positive) in the second order. This indicates

that the second order effect of the search cost on capital is significant, and that the

use of the second order changes the dynamics of the model. The different impulse
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response functions are caused by significant second-order effects on Ke and Kf , where

the first and second order responses have opposite signs. For example, entrepreneurial

capital, Ke, would experience a decline of 0.0258 in response to an increase of 1 in ρ

in the first order (based on the appropriate element of the gx matrix). However, in

the second order, there is a positive effect when the combination of ρ and household

capital increase. Although there are other negative second order effects, the positive

second order effect outweighs the negative first order and second order effects. The

other two variables, KH and Kf , behave similarly. Firm investment also has a very

large response to a search cost shock in the second order, far outweighing its first

order response.

The responses to the monitoring cost shock (Figure 32 and Figure 33) all move in

the same direction for both the first and the second order. However, the second order

IRFs are smaller in magnitude for all variables except the firm’s investment (which

has a slightly larger response in the second order). Impulse responses to a shock to

the firm’s capital adjustment costs (Figure 34 and Figure 35) are slightly larger in

the second order, but are directionally the same between first and second order. The

response of firm investment in the second order is again very large compared to the

first order. Firm investment appears to be very sensitive to the second order effects

of both the capital adjustment cost shock and the search cost shock. This is caused

by large second order responses to a number of state variables which are also affected

by the shocks).
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5.4 Recovered Shocks

In order to evaluate the usefulness of the model, it is helpful to know whether it can

construct a variable series that is similar to the data. The model should have a very

good fit for the data series that are used in parameter estimations. However, there is

no guarantee that the model will closely fit other data series not used in estimation.

To evaluate this aspect of my model, I construct implied variable series. To do so,

I start with an initial set of state variable values. These are calculated by taking

a likelihood-weighted average of the state variable values using 20,000 particles in

the particle filter. Using these state values to initialize the process, I solve for the

structural shocks in each period by comparing the calculated model variable values

to the data for the 5 data series that were used in estimation. This allows me to

then compute the implied values for all model variable series using last period’s state

variable values and the implied shock values. This process is implemented in Matlab

with the exception of finding the initial steady state values, which is done by the

particle filter in Fortran. The result of the process is a series of implied values for

each model variable. These can then be compared to the data. Before comparing the

two series, I filter both series using the band-pass filter. All variables are also in log

format prior to being filtered.

First, I look at four variables that are not used in the estimation procedure:

interest rate, return to capital, relative price of consumption and relative price of

investment. In all figures, the model series is shown in blue and the data series is

shown in green. The first set of results uses the second-order accurate parameter

estimates but the first order model solution (Figure 15). In the first order, the

interest rate model series has significantly more variation in the early part of the
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sample (through approximately 1986). It levels out toward the end of the sample

period, and variability is much more aligned with the data after 1986. The variability

of the return to capital is significantly lower in the model than it is in the data. The

data shows a distinct decline in variance in the 1980’s, which does not appear to be

captured fully by the model. It is interesting to note that the model is much more

similar to the data at the end of the sample. It is possible, then, that the current

structure of the model is more accurate for current economic conditions than for

historical conditions. The price of investment is far more variable in the model than

it is in the data, although its variance does decline significantly after approximately

1986. Finally, the price of capital (Tobin’s Q) varies significantly in the data, but is

fixed in my model. This may be an important enhancement to the model that could

expand its usefulness.

The second set of results (Figure 18) uses the second-order parameter estimates

as well as the second order model solution. This version exhibits excess volatility

throughout the sample period for all model variable series, except for Tobin’s Q (which

is fixed in the model). The interest rate and the return to capital are significantly

more volatile when the second order effects are considered. The variability of the price

of investment may have increased slightly with the inclusion of the second order. All

three variables are significantly more variable than the data in the second order.

The excess volatility appears to come from the capital adjustment cost expression

that is applied to the firm. The model uses the standard time-to-build formulation:

ζt

(
1−

(
IFt
IFt−1

)2
)

(9)

When this expression is completely removed, the variance of the recovered vari-
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ables is significantly reduced (Figure 22). The interest rate variability implied by the

model is very close to the data series. The return to capital is less variable than the

series in the first half of the sample, but has a good fit in approximately the last half

of the sample. The price of investment is still more variable than the data, but the

variability of the model series is significantly reduced when the capital adjustment

cost is removed.

Because the capital adjustment cost as it is constructed in my model introduces

excess volatility, I test a modified version of the capital adjustment cost. Rather than

use the original time-to-build formulation, I change the expression to reflect the size

of investment relative to the current capital stock, as seen below:

ζt

(
1−

(
IFt
Kt

)2
)

(10)

This change reduces the variability from the original case, but it is higher in this

case than in the model with no adjustment cost (Figure 25). In this case, implied

interest rate variability is still fairly close to the data variability. Return to capital is

again slightly less variable than the data suggest. Price of investment is less variable

than it was with the original capital adjustment cost formulation, but more variable

than the case where the capital adjustment cost is removed entirely.

I calculate the magnitude squared coherence functions for the four variables that

are discussed above. The coherence function quantifies the level of similarity between

the model implied series and the data series over business cycle periods (1.5 years to

6 years). The figure for the original model with the time-to-build construct of the

capital adjustment cost can be found in Figure 19. In the original model, all four

variables have greater coherence in the shorter cycles and less coherence in the longer
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cycles. The price of capital appears to have a high coherence value, but this should

not be given much attention since this variable is fixed in the model. Overall, the

return to capital implied series has the highest coherence of the variables that do

change in the model, which confirms what I observe in the graph of the two series

(Figure 18). The interest rate is the next most coherent with the data, with the

price of investment being the least coherent. Again, this matches the observations

from the graph of the model implied series and the data series.

When I remove the capital adjustment cost completely (Figure 23), the coherence

of the return to capital is less than in the original model. However, it still has the

same pattern of declining as the cycle length increases. The interest rate has about

the same coherence at short and long cycles, with the least coherence in the middle-

length cycles of around 3.5 to 4 years. The coherence of the price of investment series

is highest in the short cycle of 1.5 years and the middle-length cycle of 4.5-5 years. It

is low for cycles of around 2.5 to 3 years and for cycles of around 6 years. The overall

coherence levels are lower for the model without the capital adjustment cost.

For the model with the modified capital adjustment cost, the return to capital

coherence (Figure 26) is similar to the return to capital coherence in the original

model. It declines as cycle length increases, and peaks around 0.45 on a scale from 0

to 1. The interest rate coherence is slightly higher in the modified model than in the

original model. It is highest in the short cycle lengths of 1.5 to 2 years and is smallest

for a cycle length of 4.5 years. The price of investment coherence is actually slightly

lower than in the original model. It is highest for shorter cycle lengths and lowest for

the long cycle lengths. Overall, the coherence appears to be lowest for the model in

which I have removed the capital adjustment cost ( 23). Although the model series
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variability is higher when the capital adjustment cost is included, it appears to be

important to include this shock because it allows the model to capture the data cycles

better.

It is also illustrative to look at the series of recovered shocks implied by the model

and the data. I will focus on the borrowing cost shocks: the loan search cost shock,

ρ, and the loan monitoring cost, µ. The recovered series of these shocks can be seen

in Figure 21, using the second order solution11. The search cost (ρ) does appear

to become less variable from approximately 1986 to 1996, although there are some

cycles at the end of the data series with a larger amplitude. The monitoring cost, µ,

has shorter cycles prior to 1986, and much longer cycles between 1986 and 2000. This

could be construed as less variability - although the cycle minima and maxima are

approximately the same, the cycles occur less frequently. Generally, the borrowing

costs do appear to become more stable in the 1980’s. However, the change seems to

lag the start of the Great Moderation in the second quarter of 1984. This is probably

reasonable, given that a number of regulatory changes were enacted throughout the

1980’s.

The Depository Institutions Deregulation and Monetary Control Act (DIDMCA)

was passed on March 31, 1980. The changes enacted by the DIDMCA included abol-

ishing interest rate ceilings on savings accounts, lowering or removing reserve require-

ments for financial institutions, and allowing financial institutions to merge. These

measures enabled banks to become more flexible in offering funding, and improved

their ability to monitor borrowers through resource pooling and increased leverage

over borrowers. The regulatory changes were enacted in phases. The repeal of interest

11The recovered shocks using the first order solution can be seen in Figure 17.
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rate ceilings was entirely in place by 1986, and the changes in reserve requirements

had been implemented fully by 1988. Thus, the decline of borrowing cost variability

around 1986 is sensible if the changes were caused by financial deregulation.

As a final check of the reasonableness of the recovered shocks, I compare the

standard deviation of the recovered shocks to the estimated standard deviation of

the shock processes (Table 3). The standard deviations of the recovered shocks are

somewhat smaller than the estimated values, but are generally similar.

5.5 Simulations

The implied series discussed in the previous section characterize the behavior of the

model over a time period that it similar to the data. To evaluate the model over

a longer period, I simulate the model over 10,000 periods. I calculate the moments

of the simulated series as well as the data series to determine whether the long-

term simulation of the model behaves similarly to the observed data. The mean

of the unfiltered series, the standard deviation of the filtered series and the output

correlation of the filtered series for three variables that were not used in estimation

can be found in Table 4. The mean of the unfiltered simulated relative price of

investment is 0.82, which is similar to the mean of the unfiltered data, which is 0.78.

The rental price of capital in the data, 7%, is also very similar to the mean value in

the data, 9%. The difference in this case may be caused by differences in parameter

vales between my model and Gomme and Rupert’s (2003) model. This is discussed

in more detail in section 4.3. Finally, the model interest rate, 9.1%, is close to the

interest rate in the data, 8.4%. The variability of the model is significantly higher

than the data in two of the three variables of interest. The standard deviation of the
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filtered data series is very small (0.0084), while the standard deviation of the filtered

simulated series is significantly larger (0.19430). The simulated filtered interest rate

is also significantly more variable than the filtered series. The simulated standard

deviation is 0.611, compared to 0.050 in the data. The rental price of capital has the

correct amount of variability compared to the data - the data has a standard deviation

of 0.071, while the simulation’s standard deviation is 0.074. This is consistent with

the results from the implied data series, in which the implied rental price of capital

was similar to the data, while the relative price of investment and the interest rate

were significantly more variable than the data. As discussed in the previous section,

this excess volatility is caused largely by the formulation of the firm’s investment

adjustment cost. Finally, I review the correlation of the three variables with output.

The relative price of investment is negatively correlated with output both in the data

and in the simulation. However, the negative correlation is more significant in the

model than in the data. The rental price of capital is positively correlated with

output in both the model and the data, and the level of correlation is roughly similar.

Finally, the interest rate is negatively correlated with output in both the data and

the model. However the negative correlation is more significant in the model than in

the data.

I check the simulated series to the data series for selected variables used in esti-

mation, which can be seen in Table 5. The model series are slightly more variable

than the data series for all three variables (production, investment and consumption).

Investment and consumption are correlated positively with output in both the data

and the model, although the strength of the correlation does differ.

I also look at the mean values of the unfiltered series for additional model variables
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that were not used in estimation. I do not characterize the series for these variables

because time series data for the variables is not readily available. The mean value

of the simulated series of the ability cutoff, j̄, is 1.0411. The variable j represents

entrepreneurial ability. Ability is randomly assigned to each individual in each period.

Ability, j, is distributed uniformly on the support [0.5,1.5]. The cutoff ability, j̄, is

the ability above which an individual will be an entrepreneur. Thus, a j̄ of 1.0411

implies that approximately 46 % of families will be entrepreneurs in the average

period. This is significantly higher than the U.S. rate of self-employment, which is

estimated to be about 10% (Hipple (2010)). There are a few possible explanations for

this difference. First, some people may start a business while remaining employed by

a firm. Indeed, Kirchhoff and Phillips (1989) note that small businesses often operate

part-time before becoming full-time. It is also possible that the failure rate of small

businesses is quite high in the first year. Kirchhoff and Phillips (1989) estimate that

40% of small business survive for 6 years. If businesses fail at an even rate over those

6 years, this would be about a 10% failure rate per year. However, Kirchhoff and

Phillips (1989) use a data set maintained by the U.S. Small Business Administration,

and note that business are 2 years old, on average, at the time they are contacted for

survey. Thus, the paper’s results cannot measure the failure rate of small businesses

in the first year, which may be higher than the average of about 10%. If the failure

rate is, indeed, high in the first year, that may mean that some entrepreneurs both

enter and leave self-employment within the year. Such entrepreneurs may not be

measurable. In addition, the employment decision in the model is made by an agency,

which selects the point at which the family would be indifferent to its employment

situation (self or not). However, self-selection may not be as precise, and may use
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different or imperfect inputs and decision criteria. Thus, the self-selection rate may

not match the model’s optimal selection decision.

The mean of the simulated series of the default threshold, ω̄, is 0.5972. The

variable ω is the stochastic rate of capital production, which is randomly assigned to

each entrepreneur. The production rate is uniformly distributed on [0,2]. A small

business will default on its loan when its production rate falls below 0.5972. Thus, the

default rate in the average period is approximately 30%. This aligns with a study by

the National Federation of Independent Business, which estimates that about 30% of

small businesses lose money over the life of the business (Klein (1999)). In addition,

Kirchoff and Philips (1989) find that about 40% of small businesses survive for six

years. This indicates that 60% of small businesses fail within 6 years of opening.

However, it’s reasonable to assume that the failure rate is significantly lower in any

given quarterly period. In addition, the model default rate is similar to the default rate

on Standard & Poor’s BB rated bonds, which are the highest-rated non-investment

grade bonds. This seems like a reasonable comparison, although the return on lending

to small businesses is more in line with the yield to the higher-rated Baa/BBB bonds,

which are lower investment-grade. Although there are some difficulties in interpreting

the failure rate, the model data series seems to be roughly in line with survival rates

or default rates of small businesses.

The mean search cost, 0.95, implies that 5% of small business profits are destroyed

by costs associated with finding funding. The mean monitoring cost of 0.82 implies

that 18% of profits are destroyed by the costs associated with monitoring borrowers

who default. Combined, these costs destroy approximately 22% of small business

profits. Carlstrom and Fuerst (1997) construct an optimal contract model that is
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similar to the one that I use. However, they have just one agency cost. They estimate

the value of this cost to be 25%, which is very close to the total cost imposed by search

and monitoring costs in my model. The range of values for such a cost (in total) is

between 20% and 36% (Carlstrom and Fuerst (1997)). Thus, my estimate is at the

smaller end of the range.

6 Alternative Model Specifications

I estimate three alternative models as comparisons to the base model. In the base

model, the variances of the shocks are fixed over time. The parameter estimation

procedure is second-order accurate using the particle filter to calculate the likelihood.

The first alternative model is also time-invariant, but the parameter estimates are

first-order accurate. I also obtain first-order estimates for a time-varying version of

the model, in which the variances of the shocks may change over time. Finally, I

obtain second-order accurate estimates for the time-varying version of the model. In

this section, I also present an analysis of the static optimal contract model embedded

in the DSGE model.

6.1 First Order Time Invariant

I obtain the first-order accurate parameter estimates using Dynare with 4 Metropolis-

Hastings chains of 250,000 draws each.
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6.1.1 Convergence

The Brooks-Gelman convergence diagnostics (Brooks and Gelman (1998)) are com-

puted for the Metropolis-Hastings chains. The interval measure is computed, as well

as the second- and third-order measures. The multivariate diagnostic measures con-

verge rather early in the chain, around 100,000 draws. This can be seen in Figure

46. The diagnostic measures are also produced for each estimated parameter. For

many parameters, the diagnostic measures converge almost immediately. For others,

convergence occurs between 50,000 and 100,000 draws. The chains for all estimated

parameters converge reasonably in 250,00 draws. For reference, see Figure 47 through

Figure 51

In addition to convergence diagnostics, I check the path of one Metropolis-Hastings

chain to determine whether the chain is settling on a parameter value. Nearly all of

the parameter chains settle very quickly on a value. The steady state values of

the two costs associated with small-business borrowing, the search cost (µρ) and the

monitoring cost (µµ) take slightly longer to settle on a value. The chain for the steady

state search cost µρ can be found in Figure 54 and the chain for the steady state

monitoring cost µµ can be found in Figure 55. In both cases, the eventual median

value is different from the starting value. However, changing the starting values

and/or priors for these parameters does not yield better results. The posteriors of

the two parameters do not appear to be bimodal.

In addition to reviewing the convergence diagnostics and the Metropolis-Hastings

chains, it is also important to review the characteristics of the posterior distributions

of the parameters. The posterior distributions for all estimated parameters are ap-

proximately normal, as expected. For the parameters θψ, ν and ρψ, the posterior
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distributions are nearly identical to the prior distributions. The posterior distribu-

tions for the other parameters are somewhat different from the priors, but in no case

is this difference extreme. Finally, no posterior distribution has an excessively large

variance from the mean. Graphs of the posterior distributions can be found in Figure

44 and Figure 45. In addition, other aspects of the posterior distribution, such as

mode, median, standard deviation, 10th and 90th percentiles, can be found in Table

7.

6.1.2 Parameter Estimates

The first order time-invariant parameter estimates can be found in Table 7. The

estimates of the shock persistence parameters (ρz, ρρ, etc.) indicate a high level

of shock persistence, even after the data has been de-trended. In particular, the

technology shock (z), monitoring cost shock (ρ), search cost shock (µ) and firm capital

adjustment cost shock (ζ) all appear to be very persistent, with ρ parameter values

between 0.9651 and 0.9996. The remaining shock, labor disutility (ψ), appears to be

significantly less persistent with a ρψ value of 0.6667.

The steady state values of the monitoring cost, µ, and the search cost, ρ, are

estimated. Due to some manipulation of these shocks within the model solution

equations, the µµ and µρ parameter estimates may not be interpreted directly. Rather,

the are converted using the following equations:
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µ̄ = exp
(µµ

10

)
ρ̄ = exp

(µρ
10

)

Thus, the steady state value of the search cost, ρ, is estimated to be 1.0259. This

means that, on average, the small business actually receives an extra 2.59% during

the search for capital. This result is significantly different from the baseline model

estimate of 5% of capital destroyed. The steady state value of the monitoring cost, µ,

is estimated to be 0.4434. This means that approximately 56% of the small business’

capital is destroyed in the process of valuing the business’s assets when it defaults.

This result is significantly higher than the baseline estimate of 18%. Note that it

appears that the search cost is smaller in magnitude in the first order estimate (to

the point of going positive), while the monitoring cost is significantly larger. This

motivates the question of whether the some search costs are being pushed to the

monitoring cost in the first order.

The monitoring cost shock has the highest shock variance, at an estimated 0.0876.

The labor disutility shock (ψ) and the firm capital adjustment shock are significantly

less variable at 0.0057 and 0.0038 variances, respectively.

6.1.3 Simulation Results

I simulate selected model variables at the posterior median. I simulate the model for

10,000 periods. I apply the band-pass filter to both the simulated series and the data
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series to remove any very short or long-term cycles. The data and variables are in

log form, except when I note the unfiltered mean, which I have converted to non-log

form for ease of interpretation.

First, I look at three variables that are not used in the parameter estimation, but

for which I have data. The first variable is the price of investment. The data used

is the ratio of the price index of investment to the price index of consumption, as in

Gabler (2006). The rental price of capital is the rate that the firm pays to rent capital

from the households in each period. The data used for this variable is the estimate of

U.S. return to capital from Gomme and Rupert (2008). Finally, I compare the interest

rate faced by small business borrowers to the yield on BAA Moody’s Corporate bonds,

which are lower investment grade. These yield approximately the same average return

(8.4 %) as does lending to small businesses in my model. The data is discussed in

detail in section 4.3

Selected moments of the simulated variables and data can be found in Table 8

through Table 10. The un-filtered mean of the price of investment is very close to the

mean of the data. However, the standard deviation of the simulation is smaller than

that of the data. Both the simulated and actual series are negatively correlated with

output, although the negative correlation is a bit stronger in the simulation. The

rental price of capital in the model has a simulated mean of 6 %, while the data has

an average of 9 %. This may be attributable to differences in model assumptions or

fixed parameter values. The standard deviation of the simulated series is very close to

the standard deviation of the data. However, the data series is positively correlated

with output, while the simulated series is negatively correlated with output. This

difference is resolved in the second order simulation, which is discussed in section 5.5.
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Finally, the mean of the simulated interest rate series is 5 %, while the mean of the

data series is 8.4 %. The simulated mean is significantly higher in the second-order

simulation discussed in section 5.5. In the first-order version, the standard deviation

of the simulated interest rate is also significantly higher than it is in the data. Finally,

the interest rate is negatively correlated with output in the data, while it is positively

correlated with output in the simulation.

I also look at the standard deviations and output correlations of selected variables

used in parameter estimation (refer to Figure 9). The standard deviations of the

simulations of consumption, investment and production are much closer to the values

in the data. However, the standard deviations of all three variables are higher in the

simulation than in the data itself. This is likely caused by the capital adjustment

cost to which the firm is subjected, a topic which will be discussed further in section

5.4. All variables are positively correlated with output in both the simulation and

the data.

Finally, I review some additional model variables for which I have limited data.

The mean simulated value of the cutoff ability, j̄, above which a household will be

an entrepreneur, is 1.1. Recall that the variable j is distributed uniformly on the

interval [0.5, 1.5]. Thus, the steady state value j̄ = 1.1 implies that approximately

40% of households are entrepreneurs in the steady state. This is about the same self-

employment rate as I see in the second-order time-invariant model, which is higher

than the data suggest.

The expected default rate of small-business borrowers can be measured in my

model by the variable ω̄, which is the capital production technology shock to which

the small business is subject. This shock is distributed uniformly on [0, 2], as discussed
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in section 3.1.1. When the realization of the shock falls below the required value, the

small business will default on its loan. The simulated mean of ω̄ is 0.6256. This

implies that approximately 30% of small businesses will default in a given period.

This is the same default rate estimated for the second-order time-invariant model.

The simulated mean search cost is 0.96, which means that the small business

earns roughly 4% of the small businesses’s profit is destroyed by costs associated

with finding funding. The monitoring cost is significantly higher - approximately

55% of profit is consumed in the process of monitoring defaulting businesses. This

seems high, and it should be noted that the second-order simulated costs using the

second order accurate parameter estimates are significantly lower (see Section 5.2).

6.2 First Order Time Varying

The second case of the model allows the shocks to vary over time. In the time-varying

case, the shock variances take the following form:

ln θz,t = (1− ρθ,z)ln µθ,z + ρθ,zln θA,t−1 + εθ,z,t

ln θµ,t = (1− ρθ,µ)ln µθ,ρ + ρθ,µln θµ,t−1 + εθ,µ,t

ln θρ,t = (1− ρθ,ρ)ln µθ,µ + ρθ,ρln θρ,t−1 + εθ,ρ,t

ln θψ,t = (1− ρθ,ψ)ln µθ,ψ + ρθ,ψln θψ,t−1 + εθ,ψ,t

In the time varying model, I estimate ρθ,z, ρθ,µ, ρθ,ρ, ρθ,ψ, ρθ,ζ , µθ,z, µθ,ρ, µθ,µ, µθ,ψ,

and µθ,ζ . I also estimate the variances of the shock variance processes: νz, νµ, νρ,

νψ and νζ . Finally, I estimate the steady-state values of the search cost shock, ρt,

and the monitoring cost shock, µt. I fix the other parameters at their time-invariant
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values. This is partly due to limitations of the particle filter, discussed in Section

4.5.2. I obtain the first-order accurate parameter estimates using Dynare with four

Metropolis-Hastings chains of 250,000 draws each.

6.2.1 Convergence

I compute the Brooks-Gelman diagnostics (Brooks and Gelman (1998)) for the Metropolis-

Hastings chains. The interval, second-, and third-order measures are computed. The

multivariate measure converges around 200,000 draws, which is slightly later than the

convergence of the time-invariant process. The multivariate diagnostic can be seen in

Figure 66.

A few parameters (υψ, υζ , υρ, µρ, and µµ) converge later in the chain. However,

the other twelve estimated parameters converge fairly early in the process - generally

around 50,000 draws. The convergence diagnostics for the individual parameters can

be seen in Figure 67 through Figure 72.

I also check the paths of the Metropolis-Hastings chains to make sure that the

chain is settling around one parameter value. In particular, I want to check for cases

where the chain appears to be bimodal or the chain appears to have a trend even

at the end of the chain. As we saw in the time-invariant case, all parameters seem

to settle on a value relatively quickly, except for the steady state search cost (µρ)

and the steady state monitoring cost (µµ). These chains do settle at a value, but are

moving until they get to about 50,000 draws. The chains for both variables can be

seen in Figure 74. The chains for all variables can be seen in Figure 73 to Figure

77

As a final check, I review the posterior distributions of the estimated parameters.
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All posterior distributions are approximately normally distributed. With a few excep-

tions, the posterior distributions are not too far from the prior distributions. There

are three parameters for which the prior distribution is significantly different from the

posterior distribution: µµ, µρ, and µθζ . In all cases, I experimented with changing

the moments of the prior to more closely match the posterior estimate. However,

these experiments yielded undesirable results. Finally, no posterior distribution has

an excessive variance from the mean. Graphs of the posterior distributions for each

parameter can be found in Figure 64 and Figure 65. In addition, selected moments

of the posterior distributions, such as mode, median, standard deviation, 10th and

90th percentiles, can be found in Table 11.

6.2.2 Parameter Estimates

Table 11 shows the first order parameter estimates for the time-varying model. The

time-varying model allows the shock variances to change over time according to an

auto-regressive process. Thus, rather than estimating the variance of the shock over

the entire data series (as in the time-invariant case), I estimate the parameters of the

processes that define the evolution of the variances. The parameters ρez, ρeρ, ρeµ,

ρeψ and ρeζ describe the level of persistence of the shock variances. In my model,

the technology shock variance and the firm capital adjustment cost shock variance

are most persistent, with an estimated autoregressive coefficient of ρez = 0.81 and

ρeζ = 0.82. The monitoring cost process shock variance is slightly less persistent with

an estimated ρeµ of 0.60. Finally, the search cost variance and the labor disutility

shock variance are least persistent, with estimates of ρeρ = 0.19 and ρeψ = 0.39,

respectively. Thus, the variances of the search cost shock and the labor disutility
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shock are most likely to revert to their steady-state values.

As expected, the estimated steady-state values of the shock variances in the time-

varying case are similar to the variances estimates in the time-invariant case. The two

exceptions are the variances of the firm capital adjustment cost shock and the labor

disutility shock. The steady state estimates of these variances are both significantly

larger than the time-invariant estimates. The comparison can be seen in Table 12.

Finally, the estimates of the steady state values of the monitoring cost shock and

the search cost shock differ slightly from the time-invariant estimates. As discussed

in section 6.3.3, the parameter estimates must be converted prior to the steady state

costs themselves. The search cost steady state parameter estimate, µρ, is −0.0494.

This means that a very small amount of capital, 0.005%, is destroyed in the process

of finding capital. The monitoring cost is significantly higher. A parameter estimate

of µµ = −6.7991 means that about 49% of capital is destroyed by the borrower

monitoring process. Note that these costs are slightly different from those estimated

in the time-invariant process.

6.3 First Order Comparison: Time-Invariant vs. Time-Varying

6.3.1 Parameter Estimate Comparison

Many of the parameters are estimated for the first-order time-invariant case, and

then fixed in the time-varying model. The following parameters, therefore, are fixed

at their time-invariant values for the time-varying model estimation: υ, ρz, ρρ, ρµ, ρψ,

and ρζ . An additional list of 10 parameters are new in the time-varying model. These

are the autoregressive parameters and the shock variances of the processes describing

the variance of the model’s exogenous shocks. There are a remaining 7 parameters
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that may be compared between the two models. This list includes the steady-state

value of the monitoring cost, µµ, and the steady-state value of the search cost, µρ. In

addition, we may compare the estimated values of the shock variances in the time-

invariant case to the steady-state values of the shock variances in the time-varying

case. The comparison between these 7 parameters can be found in Table 12.

The search cost is slightly positive in the time-invariant case and slightly nega-

tive in the time-varying case. The monitoring cost is slightly more negative in the

time-varying case, translating into a larger cost associated with monitoring borrow-

ers. The standard deviations of both parameters are the same in both models. These

differences are discussed in additional detail in section 6.4.3, above. The differences

between the tech shock variance, the monitoring cost variance and the search cost

variance are minimal. All three of these parameters have similar median values and

similar standard deviations in both models. The major differences are between the

labor disutility shock variance (θψ) and the firm capital adjustment cost shock vari-

ance (θζ). In both cases, the variance of the shocks is significantly higher in the

time-varying case. The standard deviations of both estimates are also significantly

higher in the time-varying case.

6.3.2 Impulse Response Function Comparison

The impulse response functions are virtually identical between the time-varying and

the time-invariant case. This is expected because model itself has not changed. The

only change has been to the shock variances, which are fixed in the time-invariant

case but not in the time-varying case. Thus, it is expected that the model responds

to a shock in the same way, regardless of the formulation of the shock variance.
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6.4 Second Order Time Varying

The model is unchanged from the model discussed in the first order time-varying

section. However, the parameter estimates obtained in this section are second-order

accurate. They are obtained using the particle filter to calculate the likelihood.

6.4.1 Convergence

The runtime of the second-order time-varying version of the parameter estimation

process precludes the possibility of running multiple chains. I only run slightly over

30,000 draws of Metropolis-Hastings due to the long runtime. As a result, some of the

chains appear to need more time to converge. The steady state value of the search

cost, µρ, currently has a slightly bimodal distribution (Figure 86). This chain clearly

requires more draws to converge. The autocorrelation parameter of the technology

shock variance, ρez, appears to be poorly identified (Figure 86). A median may

emerge with more Metropolis-Hastings draws. Also in Figure 86, the autocorrelation

parameter of the search cost shock variance, ρeρ, has significant density at 1.00 in

addition to an apparent median at a lower value. The autocorrelation parameter of

the labor disutility shock variance, ρeψ (Figure 87) also has significant density at

both 1.00 and a lower value. Finally, the steady state value of the labor disutility

shock variance, µeψ, appears to be markedly bimodal. The chain may converge over

time to a value between the two apparent modes. The posterior distributions of the

variances of the shock variance process look reasonably normally distributed.

The Metropolis-Hastings chains confirm that some of the parameters have not

yet settled on a median value. In particular, the autocorrelation parameters for the

technology shock and the search cost shock, ρez and ρeρ are still moving quite a bit
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(Figure 90). The autocorrelation parameter for the labor disutility cost shock, ρeψ,

is also still moving (Figure 91). The steady state values of the variances of the labor

disutility shock and the firm capital adjustment cost shock also do not appear to

have converged (Figure 92). The combination of the posterior distributions and the

Metropolis-Hastings chains indicate that the time-varying second order parameter es-

timation process needs more Metropolis-Hastings draws to converge. This is hindered

by the processing time required by this version of the model.

6.4.2 Parameter Estimates

The selected moments of the posterior distributions of the estimated parameters may

be found in Table 13. The median steady state value of the search cost, 1.8487,

translates to 16.88% of profit destroyed by search costs. This is significantly higher

than the 5% estimated by the second order time-invariant model. The median steady

state value of the monitoring cost, 1.1280, implies that 10.67% of profits are destroyed

by monitoring costs. Combined, the monitoring and search costs destroy 25.75% of

small business earnings. The combined cost was 22% in the time-invariant case.

Rather than estimating larger costs in the time-varying case, the time-varying model

appears to move some costs from the monitoring cost to the search cost. The shock

variance processes do not appear to be highly persistent, with the exception of the

capital adjustment cost variance process. The steady state values of the shock vari-

ances appear to be of similar magnitude. The exception is the steady state value of

the search cost shock variance, which appears to be about 10 times smaller than the

other steady state variance estimates. However, the variability of the process appears

to be captured in the variance of the search cost shock variance process, which is
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significantly larger than the variances estimated for the other shock processes. The

firm capital adjustment cost shock variance process also appears to be more variable

than the other processes.

6.5 Optimal Contract Model Results

In this section, I present an extended analysis of the static optimal contract model,

which represents the lending agreement between the small business and the lender.

This provides more insight into the behavior of the optimal contract independent of

the DSGE model.

6.5.1 Solving for Costs

The solution to the optimal contract problem yields the optimal loan amount and

interest rate. These combine to determine the cutoff value of capital production, ω̄,

below which the borrower will default. I will use historical data for loan amounts and

interest rates to solve for financing search costs, ρ, and lender monitoring costs, µ, as

functions of the data.

First, I use Equation (6) and Equation (8) to solve for ρ as a function of µ.

Combining the two equations and rearranging yields 12:

exp(ρ) =
(i− ie)(4− 2rk exp(r))

2i− irk exp(r) + ierk(1 + r)

Now that I have obtained an expression for ρ in terms of µ, I plug this into

Equation (7). Also, using the equation for the function g(ω̄) from Appendix A and

12See Appendix C for details
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equation (6) to substitute for ω̄, obtain :

exp(µ) =
2i exp(r)− irk exp(2r) + ierk exp(2r)

4ij − 2ijrk(1 + r)

6.5.2 Data and Additional Parameters

Historical data on loan amounts and interest rates is readily available. I use the

total per-capita value of business loans outstanding (the value of business loans out-

standing divided by population) from the Federal Reserve Economic Data database.

The quarterly real interest rate is calculated from the bank prime rate and ex post

quarterly inflation (both from the Federal Reserve Economic Data database). The

rental rate of capital is taken from Gomme and Rupert’s (2008) calculation of the

U.S. return to capital.

This still leaves us with 5 unknowns (j, ρ, µ, n, and ω̄) and only three equations

from the optimal contract problem. To overcome this difficulty, I assign values to two

unknowns. Ability, j, equals one, which is the mean of the distribution of j. The

amount of internal investment, n, is derived by setting the business’s share of income

to 0.3913. This implies that 39% of the funding comes from the business, while 61% is

borrowed from outside sources. This implies that n = 0.39i. Since the amount of the

loan is known (i−n), we are able to solve for i and n. Now there are three remaining

unknowns (ρ, µ, and ω̄) and three equations.

13This value comes from the steady state solution to the Carlstrom and Fuerst (1997) agency cost
model
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6.5.3 Financing Costs and Default Threshold Values

The parameter µ represents the percent of capital seized from defaulters that is de-

stroyed in the process of monitoring borrowers who attempt to default. Figure 2

shows the quarterly values for this parameter between 1964 and 2000. Figure 4 plots

both monitoring costs and real interest rates. The monitoring cost estimates range

from 24% to 30%. There is a noticeable drop in the magnitude of the monitoring

cost in 1980. Between 1980 and 2000, monitoring costs are significantly lower in

magnitude than they were before 1980. Note that µ moves in the opposite direction

of the real interest rate. When the real interest rate rises in the early 1980’s, the

monitoring cost drops. The drop in monitoring costs beginning in the 1980’s is in-

tuitively sensible - information sharing techniques are constantly improving, and the

1980’s marked the beginning of the widespread use of personal computers. In fact,

the use of personal computers in homes and offices more than doubled from 2 million

in 1981 to 5.5 million in 1982 (website reference, see bibliography). This may account

for increased ease of record-keeping and loan-tracking, which could have reduced the

costs associated with monitoring borrowers.

The costs associated with borrowing money are measured by ρ in the model. This

parameter represents the percentage of total capital that is destroyed in the process

of finding funding for a capital project. Figure 3 shows the estimated quarterly

value of ρ between 1964 and 2000, while Figure 5 shows both ρ and real interest

rates. Search costs range from almost 13% to 17%. Unlike monitoring costs, search

costs increase slightly in 1980 and remain at slightly higher levels through 2000. The

search cost moves in parallel with the real interest rate. When the overall level of the

real interest rate rises in the early 1980’s, the search costs also rise slightly. This is
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contrary to intuitive expectations - it could be surmised that an increase in techno-

logical availability would make it easier and cheaper to search for a loan. However,

improved use of technology may actually have made it more difficult to obtain a loan

beginning in the 1980’s. Guru and Horne (2000) find that consolidation in the U.S.

banking industry since approximately 1985 has significantly reduced the number of

small, local banks and has had a significant impact on small-business lending. Avery

and Samolyk (2000) also observe reduced small-business loan availability in markets

affected by bank mergers in the 1990’s. Rural markets are more affected than urban

markets. This is consistent that small-business lending is done mostly by local insti-

tutions, which have expert knowledge of the prospects in the local economy (Avery

and Samolyk (2000)). Such judgements are much more difficult for a large, national

bank to make. The sum of this literature thus indicates that, while financial frictions

in the overall economy may have been reduced by bank consolidation, it may have

caused increased loan search costs for small businesses.

Estimating values for ρ and µ allows us to estimate ω̄. This is the cutoff value of

the capital production shock below which the borrower will default. Figure 6 shows

the estimate of ω̄ between 1964 and 2000. The range of this variable is small; it takes

on values between 1.59 and 1.89. The shock, ω, is uniformly distributed on [0, 2],

so the values for ω̄ are a bit above the median of the distribution of ω. The value

of ω̄ implies (approximately) a 88% probability of default for a small business owner

with ability j of 1, which is the median ability. The interpretation of this ”default

probability” is not entirely obvious. The first important observation is that a person

of average ability (j = 1) is unlikely to start a small business. Hipply (2010) estimates

that the rate of self-employment in the U.S. is about 10%. Thus, if individuals self-
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select correctly, only people in the top 10% of ability would start a small business.

This would translate to a j value of approximately 1.4. Thus, an entrepreneur with

a lower ability would have a higher probably of default than someone with an ability

more in line with estimated self-employment rates.

In the model, a business defaults if they make less than the amount they owe

the borrower (principal plus interest). It might be reasonable to interpret the model

default probability as the survival probability of a small businesses. Kirchhoff and

Philips (1989) find that about 40 % of small businesses survive for six years, which is

in line with the model default probability of 40 %. In reality, a business might have

reserves from which to pull in a period where they make less than the loan repayment

amount. Because reserves are not an element in this model, we could consider the

default in the model to be simply losing money. A study by the National Federation

of Independent Business indicates that about 30 % of business lose money over the

life of the business (Klein (1999)). This is certainly lower than the model default

probability, but the failed businesses are more difficult to poll and therefore may be

underrepresented in the study. In addition, as previously mentioned, the estimated

default rate is based on an average ability, which may not be representative of the

ability of people who actually start small businesses in the data. Finally, the model

does not account for credit scoring, so that a default in this period does not have an

effect on the loan terms available in the next period. This may translate to a greater

probability of default in the model because there is no mechanism to penalize the

small business for defaulting.
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6.5.4 Stability of Costs

For both monitoring and search costs, volatility increases significantly in the late

1970’s and early 1980’s (see Figure 7 and Figure 8). The standard deviation of

the monitoring cost, µ, starts to drop in the third quarter of 1984. The standard

deviation of the search cost, ρ, begins trending down around 1982. The standard

deviation of the monitoring cost, µ, seems to vary a little more - its range is from

0.001 to 0.013. The standard deviation of the search cost, however, varies from 0.001

to 0.006. There does seem to be significant variability within the standard deviations.

6.5.5 Financial Deregulation and Borrowing Costs

In the static model, monitoring costs decrease dramatically in the early 1980’s, while

search costs increase around the same time. Real interest rates also increase at

approximately the same time. The time series of monitoring costs roughly mirrors

the pattern of real interest rates (Figure 4). Monitoring costs decrease when real

interest rates increase. Note that the gap between real interest rates and monitoring

costs prior to 1980 shrinks (and in some cases disappears) after 1980. The time series

of search costs matches the graph of real interest rates almost exactly (Figure 5).

When interest rates increase in the early 1980’s, so do borrowing search costs. In a

way, this is intuitive - increased interest rates may cause the potential borrower to

do more research and compare institutions in order to find the best possible rate. In

addition, a higher interest rate signals a reduced availability and/or a higher demand

for loans, which could also cause loan search costs to increase.

In addition to a decrease in the magnitude of costs around 1980, volatility also

begins to decrease during this time. However, volatility settles at or slightly above
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its pre-1975 level. This differs from the path of macroeconomic volatility, in which

post-1984 volatility is significantly lower than all pre-1984 volatility levels (see Figure

1).

The period during which monitoring costs fall and search costs rise corresponds

with a time of deregulation in the financial industry. The Depository Institutions

Deregulation and Monetary Control Act (DIDMCA) was passed on March 31, 1980.

This lines up almost exactly with the observed change in magnitude of the borrowing

costs. Although deregulation increased the flexibility of banking institutions overall,

there is evidence that deregulation actually decreased the availability of small busi-

ness loans, while increasing the ease with which standard corporate loans could be

obtained. This may explain the drop in monitoring costs and the coincident rise in

loan search costs. Regardless of the explanation, the timing suggests that there may

be a relationship between financial deregulation and borrowing costs.

7 Conclusion

In summary, I construct a Dynamic Stochastic General Equilibrium model with some

standard shocks. I also add two unique shocks to capture costs associated with

borrowing. These shocks, a cost incurred in searching for funding and a cost incurred

by lenders who must monitor borrowers, are introduced via a static optimal contract

model. The shocks explicitly capture the more generic investment cost shocks that

have been discussed in previous work. I formulate two version of the model: one in

which the variance of the shocks is fixed over time and one in which the variance of

the shocks may change over time.

I estimate the parameters of the models using two methods. First, I find a standard
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first-order estimate using Dynare. I also implement a particle filter process in Fortran

to obtain second-order accurate parameter estimates for each version of the model.

The particle filter, which does not have the linearity assumption of the Kalman filter,

allows me to account for both first and second order effects.

After obtaining the parameter estimates, I analyze the dynamics of the baseline

time-invariant model. I find that the model does a fair job of capturing the variability

of various economic data series that are not used in model estimation. The model

also captures a decrease in the volatility of borrowing costs in the 1980’s, during

a time of financial deregulation in the United States. I also find that the second

order component of the model is critical in a few cases. In particular, it changes the

direction of the impulse response functions for the household’s capital in response to

a search cost shock. In addition, the second-order estimates of the steady state values

of the borrowing costs are much more reasonable than the first-order estimates.

Although the particle filter required significant coding and substantial processing

time, the second order effects are critical to developing a full understanding of the

model dynamics. In the second order, I am able to estimate reasonable values for

the borrowing costs, as well as capture a decrease in borrowing cost variability in the

1980’s. I also capture the fluctuations of other economic variables in a reasonable

manner. Thus, the major innovations of my research - introducing explicit borrowing

costs and implementing the particle filter to obtain second-order parameter estimates

- are both relevant and provide information about the effect of borrowing costs and

financial deregulation on the macroeconomy.
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8 Tables

Parameter Symbol Value

Capital Share of Production α 0.33

Depreciation Rate δ 0.1

Discount Rate β 0.99

Firm Share of Capital γ 0.5

Steady State of Labor Disutil Shock µψ 1.0

Steady State of Cap Adj Shock µζ 1.0

Table 1: Fixed Parameters
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Shock Implied STD Estimated Process STD

µ 0.0308 0.0391

ψ < 0.0001 0.0192

z 0.0007 0.0240

ζ 0.0128 0.0494

ρ 0.0093 0.0581

Table 3: Second Order Time Invariant
Recovered Shock STD Compared to Estimated Shock STD
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Data Source Shocks Mean Unfilter Std Output Corr

Relative Price Data All 0.7806 0.0084 -0.0916
of Investment Sim All 0.8193 0.1943 -0.4109

Rental Price Data All 0.09 0.071 0.523
of Capital Sim All 0.07 0.074 0.637

Interest Rate Data All 0.084 0.050 -0.176
Sim All 0.091 0.611 -0.4258

Table 4: Second Order Time Invariant
Simulations of Selected Variables not used in Estimation

Data Source Shocks Std Output Corr

Production Data All 0.0130 1.00
Sim All 0.0220 1.00

Investment Data All 0.0468 0.170
Sim All 0.1928 0.509

Consumption Data All 0.0074 0.121
Sim All 0.0438 0.773

Table 5: Second Order Time Invariant
Simulations of Selected Variables Used in Estimation

Data Model Variable Shocks Unfiltered Mean

Ability Cutoff j All 1.0411

Default Threshold ω All 0.5972

Search Cost ρ All 0.9500

Monitoring Cost ρ All 0.8200

Table 6: Second Order Time Invariant
Mean of Other Selected Simulated Variables
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Data Source Shocks Mean Unfilter Std Output Corr

Relative Price Data All 0.7806 8.38x10−3 -9.16x10−2

of Investment Sim All 0.7815 7.19x10−2 -4.55x10−1

Rental Price Data All 0.09 0.071 0.523
of Capital Sim All 0.06 0.079 -0.708

Interest Rate Data All 0.084 0.050 -0.176
Sim All 0.05 0.388 0.105

Table 8: First Order Time Invariant
Simulations of Selected Variables Not Used in Estimation

Data Source Shocks Std Output Corr

Production Data All 0.0130 1.00
Sim All 0.0207 1.00

Investment Data All 0.0468 0.170
Sim All 0.1424 0.476

Consumption Data All 0.0074 0.121
Sim All 0.0231 0.883

Table 9: First Order Time Invariant
Simulations of Selected Variables Used in Estimation

Data Model Variable Shocks Unfiltered Mean

Ability Cutoff j All 1.1006

Default Threshold ω All 0.6256

Search Cost ρ All 0.9567

Monitoring Cost ρ All 0.4324

Table 10: First Order Time Invariant
Mean of Other Selected Simulated Variables
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Time-Invariant
Posterior Distribution

Param Description Model Mode Median Std

µρ Search Cost SS Time-Invariant −1.00 0.256 1.00
µρ Time-Varying −1.00 −0.050 1.00
µµ Monitoring Cost SS Time-Invariant −3.87 −8.133 0.120
µµ Time-Varying −3.00 −6.799 0.120
θz Tech Shock Var Time-Invariant 0.040 0.038 0.002
µez Time-Varying 0.039 0.039 0.002
θρ Monitoring Cost Var Time-Invariant 0.024 0.022 0.001
µeρ Time-Varying 0.024 0.022 0.001
θµ Search Cost Var Time-Invariant 0.088 0.104 0.005
µeµ Time-Varying 0.104 0.098 0.006
θψ Labor Disutil Var Time-Invariant 0.006 0.008 0.002
µeψ Time-Varying 0.028 0.029 0.005
θζ Cap Adj Cost Var Time-Invariant 0.004 0.004 0.001
µeζ Time-Invariant 0.036 0.035 0.002

Table 12: First Order Time-Invariant and Time-Varying Comparison
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9 Figures

Figure 1: Time-Varying Volatility of GDP Growth: 1964 to 2009



84

Figure 2: Model Monitoring Costs: 1964 to 2000
Optimal Contract Model
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Figure 3: Model Financing Search Costs: 1964 to 2000
Optimal Contract Model
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Figure 4: Model Monitoring Costs and Quarterly Real Interest Rates: 1964 to 2000
Optimal Contract Model
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Figure 5: Model Search Costs and Quarterly Real Interest Rates: 1964 to 2000
Optimal Contract Model
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Figure 6: Model Default Threshold Values: 1964 to 2000
Optimal Contract Model
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Figure 7: Time-Varying Volatility of Model Monitoring Costs: 1964 to 2000
Optimal Contract Model
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Figure 8: Time-Varying Volatility of Model Search Costs: 1964 to 2000
Optimal Contract Model
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Figure 9: Second Order Time Invariant Posterior Distributions
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Figure 10: Second Order Time Invariant Posterior Distributions
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Figure 11: Second Order Time Invariant Posterior Distributions
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Figure 12: Second Order Time Invariant MH Sample Chain
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Figure 13: Second Order Time Invariant MH Sample Chain
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Figure 14: Second Order Time Invariant MH Sample Chain
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Figure 15: First Order Solution, Second Order Parameter Est, Time Invariant
Implied Variable Series: Not used in Estimation

Green: Data, Blue:Model
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Figure 16: First Order Solution, Second Order Parameter Est, Time Invariant
Implied Variable Series: Used in Estimation

Green: Data, Blue:Model
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Figure 17: First Order Solution, Second Order Parameter Est, Time Invariant
Recovered Shock Series

Green: Data, Blue:Model
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Figure 18: Second Order Solution, Second Order Parameter Est, Time Invariant
Implied Variable Series: Not used in Estimation

Green: Data, Blue:Model
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Figure 19: Second Order Solution, Second Order Parameter Est, Time Invariant
Implied Variable Series Coherence: Not used in Estimation
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Figure 20: Second Order Solution, Second Order Parameter Est, Time Invariant
Implied Variable Series: Used in Estimation

Green: Data, Blue:Model
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Figure 21: Second Order Solution, Second Order Parameter Est, Time Invariant
Recovered Shock Series

Green: Data, Blue:Model
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Figure 22: Second Order Solution, Second Order Parameter Est, Time Invariant
No Capital Adjustment Cost

Implied Variable Series: Not used in Estimation
Green: Data, Blue:Model
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Figure 23: Second Order Solution, Second Order Parameter Est, Time Invariant
No Capital Adjustment Cost

Implied Variable Series Coherence: Not used in Estimation
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Figure 24: Second Order Solution, Second Order Parameter Est, Time Invariant
No Capital Adjustment Cost

Implied Variable Series: Used in Estimation
Green: Data, Blue:Model
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Figure 25: Second Order Solution, Second Order Parameter Est, Time Invariant
Modified Capital Adjustment Cost

Implied Variable Series: Not used in Estimation
Green: Data, Blue:Model
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Figure 26: Second Order Solution, Second Order Parameter Est, Time Invariant
Modified Capital Adjustment Cost

Implied Variable Series Coherence: Not used in Estimation
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Figure 27: Second Order Solution, Second Order Parameter Est, Time Invariant
Modified Capital Adjustment Cost

Implied Variable Series: Used in Estimation
Green: Data, Blue:Model
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Figure 28: Second Order Time Invariant Param Est 1st and 2nd order IRF
Technology Shock: z

Green: 1st Order, Blue: 2nd order
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Figure 29: Second Order Time Invariant Param Est 1st and 2nd order IRF
Technology Shock: z

Green: 1st Order, Blue: 2nd order
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Figure 30: Second Order Time Invariant Param Est 1st and 2nd order IRF
Search Cost Shock: ρ

Green: 1st Order, Blue: 2nd order
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Figure 31: Second Order Time Invariant Param Est 1st and 2nd order IRF
Search Cost Shock: ρ

Green: 1st Order, Blue: 2nd order
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Figure 32: Second Order Time Invariant Param Est 1st and 2nd order IRF
Monitoring Cost Shock: µ

Green: 1st Order, Blue: 2nd order
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Figure 33: Second Order Time Invariant Param Est 1st and 2nd order IRF
Monitoring Cost Shock: µ

Green: 1st Order, Blue: 2nd order
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Figure 34: Second Order Time Invariant Param Est 1st and 2nd order IRF
Capital Adjustment Cost Shock: ζ
Green: 1st Order, Blue: 2nd order
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Figure 35: Second Order Time Invariant Param Est 1st and 2nd order IRF
Capital Adjustment Cost Shock: ζ
Green: 1st Order, Blue: 2nd order
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Figure 36: Second Order Time Invariant Param Est 1st and 2nd order IRF
Labor Disutility Cost Shock: ψ

Green: 1st Order, Blue: 2nd order
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Figure 37: Second Order Time Invariant Param Est 1st and 2nd order IRF
Labor Disutility Cost Shock: ψ

Green: 1st Order, Blue: 2nd order
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Figure 38: Second Order Time Invariant Unbounded Test
MH Sample Chain
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Figure 39: Second Order Time Invariant Unbounded Test
MH Sample Chain
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Figure 40: Second Order Time Invariant Unbounded Test
MH Sample Chain
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Figure 41: Second Order Time Invariant Unbounded Test
Posterior Distributions
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Figure 42: Second Order Time Invariant Unbounded Test
Posterior Distributions
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Figure 43: Second Order Time Invariant Unbounded Test
Posterior Distributions
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Figure 44: First Order Time Invariant Posterior Distributions
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Figure 45: First Order Time Invariant Posterior Distributions
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Figure 46: First Order Time Invariant Multivariate Convergence Diagnostics
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Figure 47: First Order Time Invariant Univariate Convergence Diagnostics
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Figure 48: First Order Time Invariant Univariate Convergence Diagnostics
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Figure 49: First Order Time Invariant Univariate Convergence Diagnostics
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Figure 50: First Order Time Invariant Univariate Convergence Diagnostics

Figure 51: First Order Time Invariant Univariate Convergence Diagnostics
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Figure 52: First Order Time Invariant MH Sample Chain
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Figure 53: First Order Time Invariant MH Sample Chain
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Figure 54: First Order Time Invariant MH Sample Chain
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Figure 55: First Order Time Invariant MH Sample Chain
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Figure 56: First Order Time Invariant Impulse Response Functions
Technology Shock: z



138

Figure 57: First Order Time Invariant Impulse Response Functions
Technology Shock: z
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Figure 58: First Order Time Invariant Impulse Response Functions
Search Cost Shock: ρ
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Figure 59: First Order Time Invariant Impulse Response Functions
Search Cost Shock: ρ
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Figure 60: First Order Time Invariant Impulse Response Functions
Monitoring Cost Shock: µ
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Figure 61: First Order Time Invariant Impulse Response Functions
Monitoring Cost Shock: µ
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Figure 62: First Order Time Invariant Impulse Response Functions
Capital Adjustment Cost Shock: ζ
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Figure 63: First Order Time Invariant Impulse Response Functions
Capital Adjustment Cost Shock: ζ
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Figure 64: First Order Time Varying Posterior Distributions
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Figure 65: First Order Time Varying Posterior Distributions
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Figure 66: First Order Time Varying Multivariate Convergence Diagnostics
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Figure 67: First Order Time Varying Univariate Convergence Diagnostics
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Figure 68: First Order Time Varying Univariate Convergence Diagnostics
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Figure 69: First Order Time Varying Univariate Convergence Diagnostics
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Figure 70: First Order Time Varying Univariate Convergence Diagnostics
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Figure 71: First Order Time Varying Univariate Convergence Diagnostics



153

Figure 72: First Order Time Varying Univariate Convergence Diagnostics
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Figure 73: First Order Time Varying MH Sample Chain
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Figure 74: First Order Time Varying MH Sample Chain
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Figure 75: First Order Time Varying MH Sample Chain
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Figure 76: First Order Time Varying MH Sample Chain
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Figure 77: First Order Time Varying MH Sample Chain
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Figure 78: First Order Time Varying Impulse Response Functions
Technology Shock: z
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Figure 79: First Order Time Varying Impulse Response Functions
Technology Shock: z
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Figure 80: First Order Time Varying Impulse Response Functions
Search Cost Shock: ρ
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Figure 81: First Order Time Varying Impulse Response Functions
Search Cost Shock: ρ
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Figure 82: First Order Time Varying Impulse Response Functions
Monitoring Cost Shock: µ
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Figure 83: First Order Time Varying Impulse Response Functions
Monitoring Cost Shock: µ
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Figure 84: First Order Time Varying Impulse Response Functions
Capital Adjustment Cost Shock: ζ
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Figure 85: First Order Time Varying Impulse Response Functions
Capital Adjustment Cost Shock: ζ
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Figure 86: Second Order Time Varying Posterior Distributions
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Figure 87: Second Order Time Varying Posterior Distributions
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Figure 88: Second Order Time Varying Posterior Distributions
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Figure 89: Second Order Time Varying Posterior Distributions
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Figure 90: Second Order Time Varying MH Sample Chain
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Figure 91: Second Order Time Varying MH Sample Chain
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Figure 92: Second Order Time Varying MH Sample Chain
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Figure 93: Second Order Time Varying MH Sample Chain
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A Appendix A: Optimal Contract Useful Relations

The functions f(ω̄, j) and g(ω̄, j) can be simplified, given the uniform distribution of

ω on [0, 2]:

f(ω̄, j) =
1

2

∫ 2

ω̄

ωdω − (1− ω̄

2
)ω̄ =

1

4
ω̄2 − ω̄ + 1

and:

g(ω̄, h) =
exp(µ)

2

∫ ω̄

0

ωdω + (1− ω̄

2
)ω̄ =

exp(µ)

4
ω̄2 + ω̄ − 1

2
ω̄2

The derivatives of the functions f(ω̄, j) and g(ω̄, j) with respect to ω̄ are given

by:

f ′(ω̄, j) =
1

2
ω̄ − 1

and

g′(ω̄, h) =
exp(µ)

2
ω̄ + 1− ω̄

The sum of f ′(ω̄, j) and g′(ω̄, j) is:

f ′(ω̄, j) + g′(ω̄, j) =
exp(µ)

2
ω̄ − 1

2
ω̄

When solving for the optimal contract, the following relation is also useful:

f(ω̄, j) + g(ω̄, j) = 1 +
exp(µ)

4
ω̄2 − 1

4
ω̄2

Finally, note that:

f ′(ω̄, j)2 =

[
1

2
ω̄ − 1

]2

=
1

4
ω̄2 − ω̄ + 1 = f(ω̄, j)
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B Appendix B: Solving for the Optimal Contract

The non-entrepreneur’s participation constraint must hold with equality, so Equation

15 can be used to solve for i as a function of ω̄:

i =
if

1− rkj exp(ρ)g(ω̄)

Plugging this into the objective function, the maximization problem becomes:

max
ω̄,rk

rkj exp(ρ)f(ω̄)
ie

1− rkj exp(ρ)g(ω̄)

s.t. ω̄ij exp(ρ) = (1 + r)(if )

In addition, note that Equation (8) defines r in terms of i and ω̄:

r =
ω̄ij exp(ρ)

if
− 1

So the problem reduces to:

max
ω̄

qj exp(ρ)f(ω̄)
ie

1− qj exp(ρ)g(ω̄)

The first order condition with respect to ω̄ i:

rkj exp(ρ)f ′(ω̄)
ie

1− qj exp(ρ)g(ω̄)
+ (qj exp(ρ))2f(ω̄)g′(ω̄)

ie

(1− qj exp(ρ)g(ω̄))2
= 0
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Canceling
ierkj exp(ρ)

1−qj exp(ρ)g(ω̄)
, obtain:

f ′(ω̄) + qj exp(ρ)f(ω̄)g′(ω̄)

[
1

1− qj exp(ρ)g(ω̄)

]
= 0

Multiplying both sides by 1− rkj exp(ρ)g(ω̄) obtain:

[
1− rkj exp(ρ)g(ω̄)

]
f ′(ω̄) + qj exp(ρ)f(ω̄)g′(ω̄) = 0

Recall that [f ′(ω̄)]2 = f(ω̄). Then the equation becomes:

[
1− rkj exp(ρ)g(ω̄)

]
f ′(ω̄) + qj exp(ρ) [f ′(ω̄)]

2
g′(ω̄) = 0

This can be divided by f ′(ω̄) to obtain:

[
1− rkj exp(ρ)g(ω̄)

]
+ qj exp(ρ)f ′(ω̄)g′(ω̄) = 0

The solution to the optimal contract problem is given by three equations. The first

solution equation is the equation above. The second is the borrower’s participation

constraint, and the third is the definition of ω̄. Thus, these three equations form the

solution the problem:

[
1− rkj exp(ρ)g(ω̄)

]
+ qj exp(ρ)f ′(ω̄)g′(ω̄) = 0

i =
if

1− rkj exp(ρ)g(ω̄)

r =
ω̄ij exp(ρ)

if
− 1

These equations can be solved for the optimal values of total investment, i, interest
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rate, r, and the failure rate, ω̄.

C Appendix C: Solving the Entrepreneurial Fam-

ily’s Optimization Problem

The entrepreneurial family’s optimization problem is:

max
cet ,i

e
t ,K

e
t+1

∞∑
t=0

Nβtt(1.5− j̄t)
(
ln(cet )−

1

1 + ν

)

s.t. N(cet + iet )(1.5− j̄t) = qtK
e
t

Ke
t+1 = (1− δ)Ke

t +N exp(ρt)
∫ 1.5

j̄t
itjf(ω̄∗t (j), j)dj

it =
iet

1−qt+1 exp(ρt)jg(ω̄∗
t (j),j)

Combining the second and third constraints, obtain the following law of motion of

capital:

Ke
t+1 = (1− δ)Ke

t +N exp(ρt)i
e
t

∫ 1.5

j̄t

jf(ω̄∗t (j), j)

1− qt+1 exp(ρt)jg(ω̄∗t (j), j)
dj

Note that the expression:

∫ 1.5

j̄t

jf(ω̄∗t (j), j)

1− qt+1 exp(ρt)jg(ω̄∗t (j), j)
dj

is independent of all of the entrepreneur’s decision variables, so it is functionally

constant in the entrepreneur’s maximization problem. To simplify notation for now,
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let:

γet =

∫ 1.5

j̄t

jf(ω̄∗t (j), j)

1− qt+1 exp(ρt)jg(ω̄∗t (j), j)
dj

The Lagrangian for the maximization problem is given by:

L =
∞∑
t=0

βt
[
N (1.5− jt)

(
ln (cet )−

1

1 + ν

)
+ λ1t [qtK

e
t −N (1.5− j̄t) (cet + iet )]

+ λ2t

[
(1− δ)Ke

t +N exp(ρt)i
e
tγ

e
t −Ke

t+1

] ]
(11)

The first order condition with respect to cet is given by:

λ1t =
1

cet

The first order condition with respect to iet is given by:

λ2t =
(1.5− j̄t)
exp(ρt)γet c

e
t

Finally, the first order condition with respect to Ke
t+1 is given by:

−βttλ2t + βt+1
t+1 [λ1t+1qt+1 + λ2t+1(1− δ)] = 0

Plugging in for λ1t and λ2t, obtain the Euler Equation:

βtt(1.5− j̄t)
exp(ρt)γet c

e
t

= βt+1
t+1

[
qt+1

cet+1

+
(1.5− j̄t)(1− δ)
exp(ρt+1)γt+1cet+1

]
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D Appendix D: Solving the Non-Entrepreneurial

Family’s Optimization Problem

The non-entrepreneurial family’s optimization problem is given by:

max
cft ,lt

∞∑
t=0

Nβtt(j̄ − 0.5)

(
ln(cft )− ψt

l1+ν
t

1 + ν

)
(12)

s.t. N(cft + ift )(j̄t − 0.5) = qtK
f
t +N(j̄t − 0.5)wtlt

lt ≤ 1

The Lagrangian for this problem is simple:

L =
∞∑
t=0

βt

[
N(j̄t − 0.5)

(
ln(cft )− ψt

l1+ν
t

1 + ν

)
+ λ1t

[
qtK

f
t +N(j̄t − 0.5)wtlt −N(cft + ift )(j̄t − 0.5)

]
+ λ2t [1− lt]

]
(13)

The resulting first order condition on cft is:

λ1t =
1

cft

and the first order condition on lt is:

N(j̄t − 0.5)ψtl
ν
t − λ2t + λ1tN(j̄t − 0.5)wt = 0
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Finally, the transversality condition on lt is:

λ2t(1− lt) = 0

Substituting for λ1t, the first order condition on lt becomes:

N(j̄t − 0.5)ψtl
ν
t +N(j̄t − 0.5)

wt

cft
= λ2t

E Appendix E: Function Approximation

A function may be approximated using a Taylor series about a real or complex num-

ber, a, which takes the form:

f(x) ∼ f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + ....

I will obtain a second order accurate model solution and parameter estimation, so I

will use the second order Taylor series approximation.

E.1 The Entrepreneurial Family

The Euler Equation contains an integral that cannot be solved analytically. The

integral takes the following form:

∫ 1.5

j̄

jf(ω̄∗t )

1− rkt exp(ρt)jg(ω̄∗t )
dj
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The expression inside the integral cannot be integrated analytically, so I obtain a

linear approximation of this expression. Let Γet be the expression to be integrated:

Γet =
jf(ω̄∗t )

1− rkt exp(ρt)jg(ω̄∗t )

The expression Γet will be integrated with respect to j, so the Taylor approximation

will be taken with respect to j. The approximation will be about the median value of

j, which equals 1. Let jmid represent the median value of j such that jmid = 1. The

Taylor series approximation about jmid is given by:

Γet ∼ Γet (jmid) +

δΓet (jmid)

δj

1!
(j − jmid) +

δ2Γet (jmid)

(δj)2

2!
(j − jmid)2

Recall from Appendix A that f(ω) and g(ω) are functions of ω. Using the expressions

for f(ω) and g(ω) from Appendix A, Γet (jmid) is given by:

Γet (jmid) =
1
4
ω2 − ω + 1

1− rk exp(ρ)
(
ω +

exp(µ)

4
ω2 − 1

2
ω2
)

The first derivative of Γet with respect to j and evaluated at jmid is given by:

δΓet (jmid)

δj
=

4 (ω − 2)2

(4ωrk exp(ρ)− 2ω2rk exp(ρ) + ω2rk exp(µ) exp(ρ)− 4)2

The second derivative of Γet with respect to j and evaluated at jmid is given by:

δ2Γet (jmid)

(δj)2
=

−
[
8rk exp(ρ)(ω − 2)2 (4ω + exp(µ)ω2 − 2ω2)

]
(4ωrk exp(ρ)− 2ω2rk exp(ρ) + ω2rk exp(µ) exp(ρ)− 4)3
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To simplify the Γet expression, let the above expressions be represented by the follow-

ing:

Γe0,t = Γet (jmid)

Γe1,t =
δΓet (jmid)

δj

Γe2,t =
δ2Γet (jmid)

(δj)2

Then the Taylor series for Γet is given by:

Γet ∼ Γe0,t + Γe1,t(j − jmid) +
1

2
Γe2,t(j − jmid)2

This can be expanded to obtain the following equation, which is quadratic in j:

Γet ∼ Γe0,t + Γe1,t(j − jmid) + 1
2
Γe2,t(j

2 − 2jmidj + j2
mid)

= Γe2,tj
2 + (Γe1,t − 2jmidΓ

e
2,t)j + (Γe0,t − Γe1,tjmid + Γe2,tj

2
mid)

This can then be integrated to obtain the approximation for γte:

γte =
∫ 1.5

j̄
Γetdj

∼
∫ 1.5

j̄
Γe2,tj

2 + (Γe1,t − 2jmidΓ
e
2,t)j + (Γe0,t − Γe1,tjmid + Γe2,tj

2
mid)dj

∼ 1
3
Γe2,tj

3 + 1
2
(Γe1,t − 2jmidΓ

e
2,t)j

2 + (Γe0,t − Γe1,tjmid + Γe2,tj
2
mid)j |1.5j̄

The second order approximation for the expression γet is given by:

γet ∼
1

3
Γe2,t(1.5

3− j̄3)+
1

2
(Γe1,t−2jmidΓ

e
2,t)(1.5

2− j̄2)+(Γe0,t−Γe1,tjmid+Γe2,tj
2
mid)(1.5− j̄)
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E.2 The Non-Entrepreneurial Family

The Euler Equation contains an integral that cannot be solved analytically. The

integral takes the following form:

∫ 1.5

j̄

jg(ω̄∗t )

1− rkt exp(ρt)jg(ω̄∗t )
dj

The expression inside the integral cannot be integrated analytically, so I obtain a

linear approximation of this expression. Let Γft be the expression to be integrated:

Γft =
jg(ω̄∗t )

1− rkt exp(ρt)jg(ω̄∗t )

The expression Γft will be integrated with respect to j, so the Taylor approximation

will be taken with respect to j. The approximation will be about the median value of

j, which equals 1. Let jmid represent the median value of j such that jmid = 1. The

Taylor series approximation about jmid is given by:

Γft ∼ Γft (jmid) +

δΓft (jmid)

δj

1!
(j − jmid) +

δ2Γft (jmid)

(δj)2

2!
(j − jmid)2

Recall from Appendix A that g(ω) is a function of ω. Using the expression for g(ω)

from Appendix A, Γft (jmid) is given by:

Γft (jmid) =
ω +

exp(µ)

4
ω2 − 1

2
ω2

1− rk exp(ρ)
(
ω +

exp(µ)

4
ω2 − 1

2
ω2
)
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The first derivative of Γft with respect to j and evaluated at jmid is given by:

δΓft (jmid)

δj
=

(4 exp(µ)− 8)ω2 + 16ω

(4ωrk exp(ρ)− 2ω2rk exp(ρ) + omega2rk exp(µ) exp(ρ)− 4)2

The second derivative of Γft with respect to j and evaluated at jmid is given by:

δ2Γft (jmid)

(δj)2
=
−
(
2rk exp(ρ)((4 exp(µ)− 8)ω2 + 16ω)(4ω + ω2 exp(µ)− 2ω2)

)
(4ωrk exp(ρ)− 2ω2rk exp(ρ) + ω2rk exp(ρ)− 4)3

To simplify the Γft expression, let the above expressions be represented by the follow-

ing:

Γf0,t = Γft (jmid)

Γf1,t =
δΓft (jmid)

δj

Γf2,t =
δ2Γft (jmid)

(δj)2

Then the Taylor series for Γft is given by:

Γft ∼ Γf0,t + Γf1,t(j − jmid) +
1

2
Γf2,t(j − jmid)2

This can be expanded to obtain the following equation, which is quadratic in j:

Γft ∼ Γf0,t + Γf1,t(j − jmid) + 1
2
Γf2,t(j

2 − 2jmidj + j2
mid)

= Γf2,tj
2 + (Γf1,t − 2jmidΓ

f
2,t)j + (Γf0,t − Γf1,tjmid + Γf2,tj

2
mid)
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This can then be integrated to obtain the approximation for γtf :

γtf =
∫ 1.5

j̄
Γft dj

∼
∫ 1.5

j̄
Γf2,tj

2 + (Γf1,t − 2jmidΓ
f
2,t)j + (Γf0,t − Γf1,tjmid + Γf2,tj

2
mid)dj

∼ 1
3
Γf2,tj

3 + 1
2
(Γf1,t − 2jmidΓ

f
2,t)j

2 + (Γf0,t − Γf1,tjmid + Γf2,tj
2
mid)j |1.5j̄

The second order approximation for the expression γft is given by:

γft ∼
1

3
Γf2,t(1.5

3− j̄3)+
1

2
(Γf1,t−2jmidΓ

f
2,t)(1.5

2− j̄2)+(Γf0,t−Γf1,tjmid+Γf2,tj
2
mid)(1.5− j̄)

F Appendix F: The Particle Filter Code

F.1 The Steady State

The steady state cannot generally be found analytically. After simplifying my model

equations, I use the Fortran non-linear solver, DNEQNF, which is available via the

IMSL computing library. I solve for the remaining variables analytically (9 in the

time-invariant case and 14 in the time-varying case). Of these, the majority are

AR(1) shocks, which can easily be solved for the steady state value.

F.2 The Second-Order Model Solution

The model solution is given by the function g, which determines the time t control

variables given the time t state variables:

yt = g(xt)
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and the function h, which describes the evolution of the state variables:

xt+1 = h(xt) + νσηt+1

Let ny be the number of decision variables and nx be the number of state variables.

The large scale of the DSGE model means that the policy functions cannot be

solved for analytically. Thus, I use the second order perturbation method described

by Schmitt-Grohe (2005). The second-order approximations of g and h take the

following form:

[g(x, σ)]i = [g(x̄, 0)]i + [gx(x̄, 0)]ia[(x− x̄)]a + [gσ(x̄, 0)]i[σ]

+1
2
[gxx(x̄, 0)]iab[(x− x̄)]a[(x− x̄)]b

+1
2
[gσσ(x̄, 0)]i[σ][σ]

and

[h(x, σ)]j = [h(x̄, 0)]j + [hx(x̄, 0)]ja[(x− x̄)]a + [hσ(x̄, 0)]j[σ]

+1
2
[hxx(x̄, 0)]jab[(x− x̄)]a[(x− x̄)]b

+1
2
[hσσ(x̄, 0)]j[σ][σ]

where i = 1, ..., ny, a, b = 1, ..., nx and j = 1, ..., nx. Note that ny is the number

of control variables and nx is the number of state variables. The superscript on

the function derivative describes the matrix row, and the subscript describes the

column. For example, the expression [gx(x̄, 0)]ia refers to the (i, a) element of the

matrix [gx(x̄, 0)].
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Schmitt-Grohe (2005) provides Matlab code to estimate each component of the h

and g functions described above. I have converted this code to Fortran, and it is used

in the particle filter to estimate the second-order accurate model solution for each

set of parameter values. The solution functions are then used by the particle filter to

calculate the likelihood function.

F.3 The Particle Filter

The particle filter assumes a continuous decision rule, h, by which the state variables

of the model evolve, given a vector of shocks, ut and the time t state variable values,

xt. The shocks are i.i.d. with means of zero. The evolution of the state variables is

described by the following equation:

xt+1 = h(xt, ut)

The control variables are determined by the policy function, g, given the shocks

ut and the time t values of the state variables:

yt = g(xt, ut)

Before describing the particle filter, the following definitions will be useful. A

particle refers to a draw from the distribution of state variables. A swarm is a collec-

tion of many particles. Thus, a swarm drawn from the distribution of state variables

should itself closely represent the distribution of these state variables.

We want to choose the set of parameters, µ, which maximize the likelihood func-

tion of the observed data conditional on the parameter values:
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L(XT |µ) = πTt=1

∫
p(υt(X

t, s0))p(s)|X t)ds0

To calculate the probabilities, the particle filter follows the following steps:

1. Initialize: Each particle in the first swarm is drawn from a normal distribution

with a mean of each state variable’s steady state value and a variance calculated

from the simulated standard deviations from the first order simulation

2. For each particle, xit, in the swarm, draw an i.i.d. exogenous shock, uit

3. Construct the period t control variables and the period t+ decision variables

according to the decision rules:

xt+1 = h(xt, ut)

yt = g(xt, ut)

4. Assign a likelihood to each particle based on the assumption that forecast error

is normally distributed:

yit − yt = eit ∼ N(0, σe)
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5. Use importance sampling with the likelihoods calculated in the previous step

to draw particles from the period t swarm to construct the period t+ 1 swarm,

using the policy function:

xit+1 = h(xit, uit)

6. Continue the process starting at step 2 for each period of observed data

After the process has completed, the average likelihood of all particles will be the

estimate for L(XT |µ)

F.4 Global Optimization

The Tibor Csendes’ GLOBAL routine14 is used to maximize the likelihood function

calculated by the particle filter. The parameter values at the global maximum like-

lihood are used as the starting point for the Metropolis-Hastings chain. The global

routine is time-consuming and takes approximately 24 hours to complete for the time-

invariant model with 20,000 particles and approximately 36 hours to complete for the

time-varying model with 20,000 particles.

F.5 Metropolis-Hastings

The Metropolis-Hastings chain uses the parameter values that maximize the likeli-

hood as its starting point. For subsequent draws, the candidate vector of parameter

values is drawn using the last draw and the jump density. The jump density for

each parameter was originally the posterior variance from the first order parameter

14The GLOBAL fortran code is available on Csendes’ website, http : //www.inf.u −
szeged.hu/ csendes/linkeken.html
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estimation. However, some jump densities were altered to allow the chain to move

more quickly. After constructing the candidate draw, its likelihood is evaluated using

the particle filter. Again,the particle filter uses 20,000 particles in each period to

calculate the likelihood. The ratio of the likelihood of the candidate to the likelihood

of the last period’s draw is then multiplied by the ratio of the proposal density in

both directions. Let the product of the two expressions be referred to as a. Then,

the chain accepts the candidate draw with a probably of a. It stays with last period’s

draw with a probability (1− a).


