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Abstract                                                                                                                               I 

 

We use a geostatistical framework to analyze new, high resolution, 

column-averaged CO2 (XCO2) measurements from NASA’s Orbiting Carbon 

Observatory 2 (OCO-2) and provide a characterization of seasonal and sub-seasonal 

variability within XCO2 over the conterminous United States and adjacent ocean basins. 

Of particular interest are the differences between land and ocean XCO2 distributions, 

which are significant in CO2 at the surface. Surface measurement networks have shown 

that surface CO2 fluxes are greater and more variable over land. We investigate whether 

this contrast is reflected in XCO2, for which large-scale transport generally obscures local 

fluxes. We show land and ocean seasonal XCO2 variability is most divergent for the west 

coast and fairly smoothed across the east coast. Our results are mostly consistent with 

modeled XCO2, showing a mean increasing north-south meridional pattern and high 

seasonal variability over areas affected by boreal carbon fluxes. The western United 

States has strikingly lower seasonal amplitudes than the adjacent Pacific Ocean and 

eastern United States. Higher latitudes in the domain tend to have greater seasonal 

amplitudes, and the highest seasonal amplitudes are over the Canadian Shield. Our results 

suggest synoptic-scale XCO2 variance is driven primarily by advection across the mean 

meridional gradient, consistent with findings from the ground-based Total Carbon 

Column Observing Network (Keppel-Aleks et al., 2011). Synoptic-scale XCO2 variance 

is greater (almost doubled for the west coast) over land than ocean, and greatest over the 

northwest and northeast. The impact of instrument and algorithm noise as well as small 

spatial-scale geophysical signals are evaluated by averaging adjacent retrievals  

 



II 

along-orbit and found to impart ~25% of the variability in XCO2 data analyzed. There are 

certain incongruencies between our results and modeled or observed XCO2 that prompt 

further investigation into the OCO-2 data as well as model representations of atmospheric 

transport and surface fluxes. Future work will focus on attributing the observed 

variability to real geophysical signals or residual bias in OCO-2 soundings. This analysis 

provides insight on real carbon cycle and atmosphere-driven XCO2 variations and may be 

used to improve modeling and satellite retrieval techniques. 
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1. Introduction  

Constraining surface CO2 fluxes is a primary and ongoing pursuit in carbon cycle 

science, and a critical aspect of Earth system modeling, carbon monitoring, and 

mitigation activities. Atmospheric inversion studies that aim to accurately and robustly 

quantify surface CO2 fluxes require descriptions of transport, mixing, and atmospheric 

CO2 variations (Baker et al., 2006). While CO2 variability is more well-documented near 

the surface than in the total air column, the introduction of satellite CO2 observations is 

rapidly expanding column data and our understanding of its variations (Eldering et al., 

2017). Total column-averaged CO2 measurements are less sensitive to boundary layer 

vertical mixing and exchange with the free troposphere than surface CO2 data and thus 

provide a novel constraint in surface CO2 flux estimation (Keppel-Aleks et al., 2011).  

Differences between CO2 in continental and marine air have been observed and 

quantified by surface measurement networks. CO2 in remote marine air has a well-mixed, 

hemisphere-mean signature while continental CO2 is generally more variable due to the 

influence of regional human and terrestrial biospheric emissions (Geels et al., 2004). The 

impact of this land-ocean contrast in CO2 behavior throughout the total atmospheric 

column is currently underexamined, as global coverage of total column CO2 has only 

been made recently available with satellite data. Describing the continental CO2 influence 

over the ocean is necessary to further constrain and interpret CO2 fluxes. A recent study 

found transported urban CO2 emissions had a significant impact on nearshore air-sea gas 

exchange over Monterey Bay, CA (Northcott et al, 2019), uncovering a mechanism that 

is not adequately accounted for in coastal carbon flux estimation. There is good 

agreement between different estimates of global and long-term mean ocean fluxes, but  
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temporal and spatial variability in CO2, especially above coastal oceans, remains a major 

source of disagreement (Sitch et al., 2015). 

New, high resolution satellite data can improve the understanding of atmospheric 

CO2 variations. NASA’s Orbiting Carbon Observatory 2 (OCO-2) provides global 

measurements of dry air mole fractions of total-column-averaged CO2 in parts per million 

(XCO2) (Eldering et al., 2017). Because carbon fluxes are so spatially and temporally 

heterogeneous, they need to be characterized at regional and sub-annual scales to monitor 

the effectiveness of different carbon sinks over time.  XCO2 data fills a gap in the 

spatially-sparse but temporally-dense land and ocean surface network measurements 

currently employed to resolve the carbon budget. Using OCO-2 XCO2, we investigate 

spatiotemporal patterns in atmospheric CO2 variability with a focus on land-ocean 

boundaries to better understand the transition between continental air mass XCO2 and 

background maritime air mass XCO2.  We provide a characterization of spatial means, 

seasonal and sub-seasonal variability in XCO2 across the conterminous U.S. and adjacent 

oceans, along with a comparison of land and ocean XCO2 distributions along the east and 

west coastlines. We discuss how further work can attribute the observed variability to real 

signals either from surface fluxes or atmospheric transport and residual bias in OCO-2 

soundings. We validate our results using XCO2 from the Total Carbon Column Observing 

Network (TCCON), a ground-based network of Fourier transform spectrometers which 

have been used to investigate variability in column CO2 (Keppel-Aleks et al., 2012). 

Attributing variability in XCO2 can improve earth system modeling  
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and satellite measurement techniques as well as identify measurement biases over land 

and ocean (Baker et al., 2010). 

 

2. Literature Review 

2.1 The North American and Coastal Ocean Carbon Budget 

Synthesis estimates show that North America is a net source of CO2, contributing 

approximately ~1,008 teragrams of carbon (Tg C) to the atmosphere annually (Hayes et 

al., 2018). North American annual fossil fuel emissions are relatively well constrained to 

~1,774 Tg C annually (Marcotullio et al., 2018). North American natural land and ocean 

sinks are estimated to offset its fossil emissions by ~43% with medium confidence 

(Hayes et al., 2018). Flux estimates of natural carbon sinks and sources have significant 

and variable uncertainty due to measurement gaps and disagreement among model 

representations of atmospheric transport and ecosystem carbon dynamics. Using 

inventory based, bottom-up approaches, the average annual uptake from 2004-2014 by 

the continental North American carbon sink and its coastal oceans was estimated as ~606 

Tg C and ~160 Tg C, respectively (Hayes et al., 2018). Coastal oceans are affected by 

direct air-sea gas exchange as well as transport of dissolved organic and inorganic carbon 

from inland waters (Fennel et al., 2019). Limited observations and complex small-scale 

variability create significant uncertainty in coastal ocean carbon flux estimates. To 

predict the strength of these sinks into the future and assess  
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economic/ecologic risks such as coastal acidification, temporal and spatial variations in 

CO2 flux must be further constrained (Fennel et al., 2019). 

While the Atlantic coastal ocean acts a net carbon sink, it has a large-scale 

meridional gradient in air-sea CO2 flux, with more carbon uptake in the northern latitudes 

(Fennel et al., 2019). To the North of Cape Hatteras, there is a prominent seasonal cycle 

in CO2 flux. Cool temperatures increase CO2 solubility and spur uptake in the winter. 

CO2 uptake through photosynthesis continues through spring, while summer and fall are 

periods of outgassing due to warming and respiration. To the South of Cape Hatteras, 

biological CO2 uptake is reduced and there is less seasonality in CO2 flux. In this region, 

there are sporadic drawdown events due to input from high-nutrient Gulf Stream water 

and riverine inputs (Fennel et al., 2019). 

The Pacific coastal ocean is acted upon by westerly winds, which cause 

equatorward currents and upwelling of carbon rich water (Fennel et al., 2019). Though 

this causes significant CO2 outgassing in the region, the Pacific coast is still a weak to 

moderate net carbon sink. Similar to the Atlantic, there is stronger CO2 flux seasonality in 

northern latitudes of the Pacific. The region has large spatial and temporal variability in 

carbon flux due to variable wind forcing, freshwater influence, rough bathymetry, and 

primary production. ENSO conditions drive interannually alternating periods of either 

dominant CO2 efflux from upwelling and outgassing or CO2 influx from relaxation and 

biological drawdown (Fennel et al., 2019). The dynamics of the coastal ocean off 

California is heavily controlled by wind-driven coastal upwelling, which Garcia-Reyes  
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and Largier (2012) divided into three seasons: April-June upwelling, July-September 

relaxation, and a December-February storm season.  

2.2 Seasonality in North American Carbon Fluxes 

For our study domain and the entire Northern Hemisphere, the seasonal CO2 cycle 

is primarily driven by the biosphere. It can be characterized by a seasonal maximum CO2 

release (net respiration) and CO2 uptake (net photosynthesis) controlled by plant growing 

seasons (Olsen and Randerson, 2003). XCO2 seasonal minimum and maximum values are 

lagged by several months from peak CO2 drawdown and release at the surface. The areas 

in our study domain with the highest gross primary productivity are along the western 

seaboard, the southeast, the northeast, and north of the Great Lakes (Zhang et al., 2017). 

Boreal forest carbon fluxes have especially large seasonal amplitudes due to the short 

length of the boreal growing season. Seasonality induced by the short boreal forest 

growing season and seasonal northern latitude human emissions result in high surface and 

column CO2 seasonality in northern latitudes (Sweeney et al., 2015). Modeled global 

column CO2 amplitudes were greatest over eastern Eurasia and eastern boreal North 

America. Compared to Europe, mean seasonality in human emissions is weak for the 

United States because a secondary summer peak due to air conditioning counteracts the 

wintertime heating peak, and wintertime heating demands are weakening with 

interannual temperature rise (Sweeney et al., 2015). Anthropogenic emissions are greatest 

along the densely populated northeastern coast and greater in general over the eastern 

half of North America (Marcotullio, 2018). 
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2.3 The Orbiting Carbon Observatory 2 (OCO-2) 

NASA’s Orbiting Carbon Observatory 2 provides global coverage of XCO2 with a 

ground track that repeats every 16 days and eight footprints across track (Eldering et al., 

2017).  XCO2 is the average concentration of CO2 in a column of dry air extending from 

the Earth’s surface to the top of the atmosphere. OCO-2 retrieves XCO2 from NIR spectra 

(1.61 and 2.06 µm) of passive solar radiation reflected/scattered back from the surface 

(land, ice or water) and offers a fine spatial resolution (~1.29 x 2.25 km) and precision 

(0.5 ppm) (Chatterjee et al., 2017). The ratios of column-averaged CO2 and O2 number 

densities are taken along the optical path between the Sun, surface footprint, and 

instrument, and multiplied by the concentration of column-averaged oxygen to estimate 

XCO2. OCO-2 provides retrievals from both nadir pointing mode and glint pointing 

mode, the latter increasing signal and reducing retrieval uncertainties over the ocean 

(Baker et al., 2010). The Level 2 V9 data product we use provides geolocated XCO2 from 

cloud-free scenes along with retrievals of surface pressure, albedo, aerosol content, water 

vapor, and temperature profiles. Because retrieval is sometimes inhibited by clouds, thick 

aerosols, and topography inhomogeneities, the data products contain error measures for 

quality filtering. 

These new XCO2 measurements can improve carbon flux estimates produced by 

atmospheric inverse models, which have difficulties representing atmospheric vertical 

mixing. They improve upon the existing in situ measurement network by providing 

global coverage and upon CO2 observations from the GOSAT satellite, which uses 

measurements of atmosphere CO2 thermal NIR emissions, by providing more frequent  
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soundings, lower retrieval errors, and a smaller field of vision. OCO-2 enables top-down 

carbon flux estimation at finer regional scales than could previously be achieved. OCO-2 

data is validated using XCO2 from the Total Carbon Column Observing Network 

(TCCON), which has 23 operational instruments worldwide and three within our North 

American study domain. TCCON XCO2 is collected with upward looking, ground-based 

spectrometers that measure trace gas absorption in the solar spectrum. The primary 

science mission of OCO-2 is to characterize and monitor the geographic distribution of 

CO2 sinks and sources over time, as they control the atmospheric CO2 concentration and 

therefore regulate our climate. 

2.4 XCO2 Relationship with Surface CO2 Fluxes 

Ongoing efforts aim to constrain the impact of surface fluxes and different 

atmospheric transport mechanisms on XCO2 patterns. XCO2 measurements have a large 

footprint, as the area of surface flux influencing the column increases with altitude, 

giving XCO2 its unique ability to capture large-scale carbon gradients and provide 

information about continental-scale sinks and sources (Baker et al., 2010; Olsen and 

Randerson, 2003). It can also be used to infer regional surface fluxes when paired with 

top-down atmospheric inversion methods (Keppel-Aleks et al., 2011; Baker et al., 2006). 

While the signal of large-scale variability is larger than the signal of regional fluxes in 

XCO2, they can be drawn out if the biospheric CO2 mean state is accurately described 

(Keppel-Aleks et al., 2011). 
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Total column-averaged CO2 measurements are affected by different gradients and 

modes of variability than CO2 at the surface. A study by Olsen and Randerson (2003) 

investigated differences in surface and column CO2 using an atmospheric transport model 

simulation. Because column CO2 includes a larger fraction of the atmosphere than surface 

layer CO2, variability driven by surface fluxes creates a bigger change in concentration at 

the surface. In general, column CO2 was less variable spatially and temporally than 

surface CO2 and diurnal variability contributed less to overall variability in the column 

than from processes that take place over multiple days. High frequency variability driven 

by diurnal surface fluxes decreased with altitude in the modeled column. Seasonal 

variability in column CO2 is more similar to surface CO2, though there are phase delays 

in the timing of maximum and minimum seasonal peaks in the column, likely due to the 

time required for vertical mixing. Compared to surface CO2 in the Northern Hemisphere, 

column-averaged CO2 is greater in the summer and fall and lower in the winter and 

spring. The seasonal cycle of surface CO2 had a much higher amplitude over land than 

ocean, whereas land and ocean seasonality in the column were more similar. The spatial 

north-south gradient in surface CO2 during the growing season was also more 

pronounced over land than ocean compared to column CO2. They speculated that the 

lower contrast between land and ocean XCO2 was likely due to more wind dispersal in 

the free troposphere than in the boundary layer (Olsen and Randerson, 2003). 

2.5 Geographic Characteristics of Mean XCO2 Distribution 

The geographic variation in XCO2 means reflects a combination of surface carbon 

fluxes and large-scale atmospheric transport including mean meridional circulation,  
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stationary eddies, and transient eddies (Crisp et al., 2011; Parazoo et al., 2011). XCO2 has 

primarily meridional patterns that vary over the seasonal cycle, with larger variations in 

the north-south direction than the east-west direction. Due to its latitudinal structure, 

global patterns are commonly assessed using zonal means (Crisp et al., 2011). During the 

winter and spring, biospheric and anthropogenic CO2 emissions decrease from north to 

south, creating a decreasing north-south gradient in XCO2 (Keppel-Aleks et al., 2011). 

During the growing season, transition from net respiration to net photosynthetic uptake 

reverses the winter/spring gradient and creates a relatively stronger increasing 

north-south gradient in XCO2 (Keppel-Aleks et al., 2011). Zonal mean estimates of XCO2 

from GOSAT and OCO-2 show that XCO2 decreases with latitude from 30 N to 50 N 

from June to August, primarily reflecting the strong growing season gradient after 

averaging over a full annual cycle (Liang et al., 2017). 

 

2.6 Temporal Scales of XCO2 Variability 

As discussed in the previous sections, the biosphere creates a prominent seasonal 

cycle in both XCO2 and surface CO2, though XCO2 is more affected by transported 

seasonal variability in addition to local surface flux seasonality. Keppel-Aleks et al. 

(2011) analyzed TCCON data to study the imprint of surface fluxes and horizontal 

atmospheric transport on XCO2 variability. They found XCO2 was more sensitive to the 

advection of large gradients by synoptic-scale weather than local surface fluxes and local 

vertical mixing. Synoptic-scale XCO2 variations, primarily driven by transient eddy  
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advection across the north-south meridional gradient, contributed up to half the seasonal 

XCO2 cycle in mid-latitude TCCON observations. Robust spatiotemporal descriptions of 

the mean meridional gradients in CO2 are therefore necessary for CO2 flux attribution, 

with significant impacts on estimates of the net annual North American sink 

(Keppel-Aleks et al., 2011). Synoptic-scale variations occur on time scales of 1-2 weeks 

and spatial scales of ~1000 km. Large-scale transient eddies are primarily driven by 

baroclinic instability and the net effect of their transport can be evaluated by monthly 

averaging (Parazoo et al., 2011). Over multiple synoptic cycles, Parazoo et al., (2011) 

found net poleward transient eddy transport, with poleward transport of CO2 greater than 

fossil CO2 emissions in mid-latitudes. This effect causes reduced seasonality in 

mid-latitudes and amplify seasonality at high latitudes (Parazoo et al., 2011).  

Torres et al. (2019) continued resolving the variance budget of XCO2 using 

TCCON and OCO-2 data. Variability from synoptic-scale transport was twice as large in 

magnitude as the variability induced by local diurnal fluxes in OCO-2 XCO2 (Torres et 

al., 2019). Mesoscale variability, induced by advection from small-scale weather features, 

was about half the size of the diurnal variability during the growing season, but greater 

than diurnal variability in the winter. Synoptic variability in TCCON and OCO-2 XCO2 

were strongly correlated to the magnitude and seasonal cycle of the large-scale 

north-south gradient, while mesoscale variability only exhibited a moderate correlation. 

Advection of variations by mean wind and variability produced by transient eddies acting 

on the mean gradient are the drivers of explained synoptic OCO-2 XCO2 variability (~0.5 

ppm). Unexplained variability caused by errors and spatially-coherent retrieval bias is on  
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the same order (0.3 to 0.8 ppm), overprinting real variability and affecting the 

independence of along-track observations. Compared to land XCO2, this variability is 

about half the size in ocean XCO2, which is less complicated by topography and albedo 

retrieval problems (Torres et al., 2019). 

 

3. Research Questions 

Based on the importance of understanding spatiotemporal variations in XCO2 described 

above, my research is focused on the following science questions: 

● From the open ocean, across the coast, into the continental interior, how do 

properties of atmospheric XCO2 (central tendency, seasonal and synoptic 

variability, synoptic anomaly seasonality) vary in space and time? 

● How do these patterns compare over different latitudes of the east and west 

continental U.S. coasts and between land and ocean XCO2 populations? 

● Assuming that a continental signal can be identified, how far does it extend over 

the coastal ocean and into the open ocean before transitioning to a well-mixed 

marine air signal? Does this boundary region differ from east to west coast in its 

extent? 

● How do our results differ when using retrievals from combined nadir and glint 

pointing modes versus glint mode only? 

● To what degree is the analysis impacted by small-scale spatial correlation in 

OCO-2 XCO2 discussed in Torres et al (2019)? 
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4. Methods 

We analyze XCO2 patterns using combined glint and nadir mode NASA Orbiting 

Carbon Observatory- 2 (OCO-2) column-averaged dry air mole fraction CO2 (XCO2) data 

retrieved from 9/6/2014 to 6/1/2019. We use the V9r OCO-2 Level 2 data product of 

bias-corrected XCO2 retrieved using the Atmospheric CO2 Observations from Space 

(ACOS) algorithm (O’Dell et al., 2018). August 2017 is omitted due to on-orbit 

calibration of the satellite.  

The first analysis will be conducted on 20 latitude bands of cross-coast XCO2 

observations from 30 N – 50 N and -145 W to - 50 W, across the conterminous United 

States and adjacent ocean basins (Figures 1a, 2a, 3a, & 4a). The study domain is 

evaluated zonally due to the dominant west to east wind direction and dominant mean 

structure of XCO2 (Tables 1-4). Longitudinal patterns are also assessed by dividing each 

latitude band into bins of 5 degrees longitude. Averaging XCO2 parameters according to 

this grid ensures adequate data coverage for a full seasonal cycle, given gaps in data 

coverage due to OCO-2’s sparse 16-day repeat cycle and to cloud cover. A seasonal data 

coverage bias remains in some northern latitude bins and its impact is discussed in 

Section 4. 

A second analysis will focus on comparing onshore to offshore XCO2 

distributions by aligning bins with the east and west coastlines (Figures 1b-c, 2b-c, 3b-c, 

and 4b-c). The midpoint of the coastline for a given latitude band is identified, dividing 

four offshore bins from four onshore bins (each bin spanning 1 degree latitude x 5  
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degrees longitude), allowing for the comparison of bins far enough inland and far enough 

offshore to see a transitions in XCO2 behavior relating to land-ocean transport patterns, 

fluxes, or retrieval biases.  

The procedure for each analysis is described below: 

1. Filter out poor quality XCO2 soundings by excluding all soundings flagged with a “1” 

for poor data quality in the quality flag variable in V9 Lite files. This quality filter 

identifies thresholds for different variables that correlate with significant XCO2 bias 

or scatter. Combined glint and nadir XCO2 observations used in the “original” 

analysis are denoted as X.  Glint mode only XCO2 observations used in the following 

“glint only” analysis are denoted as glintX. 

 

2. Detrend data using a linear regression on an XCO2 time series encompassing the full 

study domain. This strong and direct trend (R = 0.8) describes a long-term linear 

increase in XCO2, reflecting the long-term increase in anthropogenic CO2 emissions. 

For the computed trend, the intercept uncertainty is 0.3 years, the slope uncertainty is 

1.5 * 10-4 ppm/ year, and the covariance is -4.7 * 10-5 ppm/year. 

Eq. 1 

 (ppm) = (time in decimal years * 2.6) - 50X̂  

3. Compute long-term temporally detrended anomalies, X', by removing values 

predicted by the long-term linear trend in XCO2 all observations.  
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Eq. 2 

 =  - X ′ X X̂  

4. For each bin, compute its mean over all years of long-term temporally detrended data, 

. This is done to remove the spatial mean pattern in the data for a better directX   

comparison of seasonal and synoptic variability between bins. Compute long-scale 

temporally and spatially detrended anomalies, .X ′′  

Eq. 3 

 =  - X ′′ X ′ X   

5. For each bin, compute the monthly means and standard deviations of large-scale 

temporally and spatially detrended anomalies. Using the monthly averages of the 

anomalies, construct the mean seasonal cycle of each bin. Compute each bin’s 

seasonal amplitude, A, by subtracting the minimum monthly average value from the 

maximum monthly average value of the mean seasonal cycle.  

Eq. 4 

 = monthly averages of X
→

X ′′  

A = max - minX
→

X
→

 

6. Calculate monthly deseasonalized anomalies, X*, by subtracting the monthly average 

values for the corresponding month of large-scale temporally and spatially detrended 

anomalies. After removing the mean seasonal cycle, the data primarily reflects  
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synoptic variability. Compute the average X* standard deviation, variance, skewness, 

kurtosis, and the month of peak X* variance for each bin.  

Eq. 5 

X* = - X ′′ X
→

 

We then repeat the analysis using only glint mode data, glintX, compare variance 

ratios between the glint mode analysis and original combined mode analysis, X, and 

record the degree to which the variance changes between the two. This is done to 

evaluate whether the original analysis results are robust or if they are sensitive to viewing 

mode. 

We investigate small-scale spatial correlation identified by Torres et al. (2019) by 

averaging combined glint and nadir retrievals into 0.1 degree latitude bins along the orbit 

track. This averaging scale is consistent with scale of spatial correlation in XCO2 found in 

Torres et al., (2019). We repeat the analysis using the orbit-averaged data, orbitX  and 

compare the ratio of variance from the orbit-averaged analysis to the original analysis for 

each bin. This is done to evaluate whether the variance observed in our original analyses 

are robust to the impact of instrument and algorithm noise as well as small spatial-scale 

geophysical signals.  
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5. Results and Discussion 

5.1 Linearly Detrended XCO2 Spatial Means 

The geographic variation observed in atmospheric XCO2 reflects a combination of 

surface carbon fluxes and large-scale atmospheric circulation, and the relative influence 

of these mechanisms vary across the study domain. A spatial map of detrended XCO2 

spatial means across the full study domain is computed using Equation 2 and displayed in 

Figure 1a. Figures 1b and 1c are computed in the same manner using spatial bins that are 

aligned with the land-ocean boundary along the west and east U.S. coastlines to highlight 

differences between land and ocean XCO2 distributions. Southern bins are defined as bins 

between 30 N and 40 N. For the west coast, northern bins are defined as bins between 40 

N and 50 N. Because Figures 1b and 1c are meant to illustrate land-ocean differences, 

northern bins for the east coast are defined between 40 N and 45 N, as bins cannot be 

adequately aligned with coastline above 45 N.  

Figure 1 shows large scale geographic variation in XCO2 annual means with 

latitude. Annual mean XCO2 decreases from 30 N to 50 N, consistent with findings in 

Liang et al., (2017). The average mean XCO2 for northern (40-50 N) and southern (30-40 

N) is -0.8 ppm and -0.1 ppm respectively. The average mean XCO2 for the Pacific Ocean 

is slightly more positive than that of the continent and Atlantic Ocean. The net XCO2 

mean is slightly negative, in contrast with the surface CO2 budget, in which fossil fuel 

emissions cause North America to be a net source of CO2 to the atmosphere (Hayes et al., 

2018). This indicates that mean XCO2 patterns primarily reflect mean east-west  
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atmospheric transport as opposed to local surface carbon fluxes. A seasonal sampling 

bias occurs in ocean bins and some near-coast land bins above ~43 N, where there are 

few observations in January and December. This bias causes an incomplete picture of the 

seasonal cycle and a lack of representation of the greater wintertime emissions in certain 

northern bins. This could exaggerate the north-south gradient we observe in spatial XCO2 

means. 

For both Figures 1b and 1c, there is not a clear contrast between adjacent land and 

ocean bin means, highlighting the importance of horizontal atmospheric winds smoothing 

east-west variations. For both the west and east coasts (Figures 1b and 1c), spatial means 

are more positive in the southern bins than northern bins, though the north-south 

difference is greater for the east coast. The north-south difference is greater for land bins 

than ocean bins over the west coast (1.06 ppm vs. 0.60 ppm). The north-south difference 

is more similar for land and ocean bins over the east coast (1.16 ppm vs 0.97 ppm). 

Surface carbon fluxes also have a greater north-south difference over land due to growing 

season carbon uptake by the terrestrial biosphere, though unlike what we see in XCO2, 

this difference is more prevalent over the eastern United States at the surface due to the 

region’s higher primary productivity. For the west coast, the average spatial mean of all 

land bins is more negative than the average of ocean bins (-0.37 ppm vs -0.05 ppm). In 

contrast, the average spatial mean of all ocean bins is more negative than the average of 

land bins (-0.36 ppm vs. 0.17 ppm) for the east coast. More negative ocean means over 

the Atlantic could indicate that airmasses off the east coast have integrated the full  
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continental terrestrial drawdown, accentuated by the sampling bias by overweighting the 

summertime data. 

  

 

Figure 1. Figure 1a is a spatial map of the time-mean detrended XCO2 for 1x5 degree 

latitude-longitude grid cells. Figure 1b is a spatial map of the time-mean detrended XCO2 

for grid cells that are aligned with the western United States coastline into 4 ocean bins 

and 4 land bins for each latitudinal band. Figure 1c is a spatial map of the time-mean 

detrended XCO2 for grid cells that are aligned with the eastern United States coastline 

into 4 ocean bins and 4 land bins for each latitudinal band. 
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5.2 XCO2 Seasonal Cycle Amplitudes   

The seasonal variability observed in XCO2 could reflect seasonality in local 

carbon fluxes or transported variability from regions upstream in the mean atmospheric 

transport path. From our findings in the spatial patterns of XCO2 means, we would expect 

transported variability to be an important component in XCO2 seasonal variability. If 

seasonality in local carbon fluxes are contributing to the seasonal amplitudes we observe 

in XCO2, XCO2 amplitudes would be increased over regions with the most biosphere 

productivity, where surface CO2 uptake and release rates would be higher in the summer 

and winter, respectively.  

A spatial map of XCO2 seasonal amplitudes across the full study domain is 

computed using Equations 3 and 4 and displayed in Figure 2a. Figures 2b and 2c are 

computed in the same manner using spatial bins that are aligned along the west and east 

U.S. coastlines. Northern bins for Figure 2b are defined between 40 N and 50 N, and 

defined between 40 N and 45 N for Figure 2c. Southern bins are defined between 30 N 

and 40 N for Figures 2b and 2c. Seasonal amplitudes are highest over the continental 

northeast and adjacent Atlantic Ocean, and lowest over the western half of the continent. 

Bins between 125 W and 100 W (western half of continent) have an average amplitude of 

6.3 ppm, which is almost 2 ppm lower than the average for the rest of the domain (8.2 

ppm).  

The continental patterns are consistent with the seasonality in underlying surface 

CO2 fluxes, which are more seasonal for the more vegetated eastern United States.  
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Seasonal amplitudes are greater to the north of Cape Hatteras in the Atlantic Ocean, 

consistent with descriptions of air-sea flux in Fennel et al., (2019). However, greater 

seasonal amplitudes over the northern Pacific Ocean compared to the adjacent forested 

continent suggests XCO2 amplitudes are not totally driven by local fluxes. The spatial 

pattern in amplitudes is similar to results found in a study by Sweeney et al. (2015), in 

which column CO2 climatologies are compared to dominant wind transport patterns. The 

study found a continuous, mostly meridional band of elevated seasonal column CO2 

amplitudes. Upon reaching the west coast, it diverts in a northeast direction away from 

the U.S. northwest and toward British Columbia. The greater Pacific Ocean XCO2 

amplitudes shown in Figure 2 may, therefore, be a result of seasonal variations upwind 

being transported from Eurasia. The band dips slightly lower in latitude over eastern 

North America, where we see the greatest XCO2 amplitudes. The signal of this highly 

seasonal boreal air seems to track over the Atlantic Ocean. Atlantic Ocean primary 

productivity is highly seasonal to the north of Cape Hatteras (Fennel et al., 2019), so this 

could also be contributing to the high seasonal XCO2 amplitudes we observe there.  Low 

seasonality air from southern latitudes are shown to blow upward toward the continental 

southwest, where Figure 2b shows the lowest XCO2 amplitudes. 

Over the oceans, seasonal amplitudes gradually decrease from north to south 

while seasonal amplitudes over land vary more with longitude. The west coast exhibits 

significant differences between land and ocean populations. Figure 2b shows a clear 

contrast across the land-ocean boundary in the northern latitudes. West coast ocean bins 

have a greater average seasonal amplitude than land bins (8.1 ppm vs. 6.3 ppm) and the  



21 

difference between northern and southern bins is more pronounced for ocean bins than 

land bins. For the east coast, land and ocean bins have more similar average amplitudes 

(7.9 ppm vs. 7.8 ppm) and more similar north-south difference. Land and ocean 

similarities for the east signify that the east coast more closely reflects North American 

seasonal carbon cycling while the west coast seasonal XCO2 cycle is likely more 

influenced by transported variability from other continents.  
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Figure 2. Figure 2a is a spatial map of XCO2 seasonal amplitudes for 1x5 degree 

latitude-longitude grid cells. Figure 2b is a spatial map of XCO2 seasonal amplitudes for 

grid cells that are aligned with the western United States coastline into 4 ocean bins and 4 

land bins for each latitudinal band. Figure 2c is a spatial map of the XCO2 seasonal 

amplitudes for grid cells that are aligned with the eastern United States coastline into 4 

ocean bins and 4 land bins for each latitudinal band. 

 

5.3 Synoptic XCO2 Anomaly Variability  

As indicated in the previous sections, variations in spatial XCO2 means and 

seasonal amplitudes are shaped by large-scale flux and transport patterns. Smaller scale  



23 

advection and stirring of these large-scale spatial gradients, namely the north-south 

growing season gradient, are the primary driver of temporal synoptic-scale variability in 

XCO2 (Keppel-Aleks et al., 2011). After linear detrending, spatial detrending, and 

seasonal detrending, variability in the resulting XCO2 anomalies primarily reflect 

variability on the atmosphere mesoscale (on the order of 10s to ~100 km and hours to 

days) and synoptic-scale (on the order of 100s to ~1000 km and days to a couple of 

weeks). Though our current methods aggregate mesoscale/synoptic and 

subseasonal/interannual variability, later efforts will focus on partitioning the two, and 

for simplicity here the seasonally detrended anomalies are referred to as synoptic 

anomalies.  

A spatial map of synoptic-scale XCO2 anomaly variability across the full study 

domain is computed using Equation 5 and shown in Figure 3a. Figures 3b and 3c are 

computed in the same manner using spatial bins that are aligned along the west and east 

U.S. coastlines to highlight differences between land and ocean XCO2 populations. 

Northern bins for Figure 3b are defined between 40 N and 50 N, and defined between 40 

N and 45 N for Figure 3c. Southern bins are defined between 30 N and 40 N for Figures 

3b and 3c. Synoptic variability is greatest above the continental northwest and northeast 

(2-3 ppm2) and greater for land bins than ocean bins, similar to the findings in Torres et al 

(2019). Variability over the ocean basins is more spatially coherent, while the spatial 

patterns in variability over land vary more with latitude and longitude.  

Distinct meridional and land-ocean patterns are present in synoptic XCO2 

variability. For bins following the west coast (Figure 3b), there is a clear contrast in  
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synoptic XCO2 anomaly variance for adjacent land and ocean bins, resembling the 

contrast we observe in seasonal amplitudes. There is a cluster of high variance bins above 

the Rocky Mountains in Idaho and western Montana, containing the highest variance bin 

for the entire domain. Variance is also higher over northern Colorado and above Los 

Angeles than surrounding bins. Overall, northern bins have a higher average variance 

(1.8 ppm2) than the average variance of southern bins (1.2 ppm2). For the west coast, 

average variance of all land bins is almost double the average variance of ocean bins (1.9 

ppm2 vs. 1.0 ppm2) and land bins have a greater north-south difference.  

For bins following the east coast (Figure 3c), synoptic XCO2 variability is greatest 

over upstate New York, Vermont, New Hampshire, and Maine. Compared to the west 

coast, there is a less clear contrast in variability for adjacent land and ocean bins. The 

average variance of all land bins is slightly higher than that of ocean bins (1.6 ppm2 vs. 

1.1 ppm2) and the north-south difference is similar for land and ocean bins. Compared to 

the northwest coast, there seems to be more east-west smoothing of XCO2 across the east 

coast, as observed in the seasonal amplitudes. There is a continental signal to the synoptic 

variance that tracks out over the northern Atlantic.  

The patterns seen in Figure 3 could have several possible explanations, the first 

being patterns of atmospheric transport. Advection of variations by mean winds and 

variability produced by transient eddies acting on the mean spatial XCO2 gradient create 

synoptic variance in XCO2 (Keppel-Aleks et al., 2011). With this in mind, we would 

expect XCO2 variance to be greatest in the summer in areas that experience the most 

atmospheric mixing of northern air with low mean XCO2 and southern winds with high  
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mean XCO2. When the north-south gradient reverses after the growing season, we would 

also expect advection to produce synoptic XCO2 variability in regions where southern air 

with low mean XCO2 mixes with northern air with high mean XCO2, though this gradient 

is weaker. The relative strength of the two gradients differs by region due to spatial 

emissions patterns and large-scale transport. Mean synoptic weather development in 

North America is greatest over coastal British Columbia and Arizona and most prevalent 

during the cool season, though synoptic weather peaks in April for most of the inland 

continent (Lareau and Horel, 2011). Synoptic XCO2 variability is low over Arizona 

because synoptic weather needs to be acting on a spatial gradient, and the winter gradient 

is weak compared to the summer gradient, as shown in Figure 1. In section 5, we discuss 

seasonality in synoptic XCO2 variability and the relative impact of seasonal XCO2 

gradients.  

Spatiotemporal variations in ecosystem and anthropogenic surface fluxes, though 

generally obscured by large-scale XCO2 variations, can induce synoptic variability in 

XCO2 (Keppel-Aleks et al., 2011). During the growing season, local diurnal fluxes were 

found to contribute up to 1-2 ppm of within-day XCO2 variability at midlatitude TCCON 

sites (Torres et al., 2019). It is possible that areas with high synoptic XCO2 variability 

could be a result of surface ecosystem fluxes responding to synoptic weather driven 

temperature and precipitation changes. In future analysis, we can use band pass filtering 

to further parse temporal scales of variability and isolate the local flux signal, which 

unlike weather events, is tied to a diurnal cycle (Torres et al., 2019). The high variance  
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bin over Los Angeles could be tied to the advection of dense local anthropogenic fluxes 

in the boundary layer, trapped to the west of the Sierra Nevada range. 

We see similarities and differences in the observed synoptic XCO2 

variability and synoptic XCO2 variability simulated by GEOS-5, a supercomputer model 

of atmospheric CO2 levels. The model shows CO2 stirring by large-scale weather patterns 

over a year (Jing et al., 2018), with the highest concentrations over major emissions 

sources, namely eastern North America, Europe, and Asia. Regions that exhibit the most 

synoptic variability in the simulation are similar to those observed in the synoptic XCO2 

anomalies, with the exception of elevated synoptic XCO2 variance over the Pacific 

Northwest. In the simulation, less large-scale eddies act on this region relative to the 

ocean and the eastern United States over the course of a year.  

High synoptic OCO-2 XCO2 variability over the western United States appears to 

have a spatial correlation with topography, with greater variability over mountain ranges 

such as the Sierra Nevada-Cascades and the Rockies compared to the plateaus/basins 

down their eastern slope, such as the Nevada Basin, eastern Colorado, and eastern 

Montana. Mountain-related meteorology could induce more mixing in these regions, 

compounded by variability in biospheric fluxes with elevation. This could be why 

variability is not heightened over lower elevation ranges like the Appalachians that do not 

generally reach the treeline. Additionally, there is a potential topography-related bias in 

OCO-2 retrievals due to errors in the prior surface pressure (Kiel et al., 2019). Offsets in 

the geolocation of the pointing of the spectrometer cause significant errors in assumed 

surface pressure above rough topography (Kiel et al., 2019). Over Lauder, New Zealand,  
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the variance induced by this error was 0.55 ppm2 in v9 OCO-2 XCO2 data (Kiel et al., 

2019). In the synoptic XCO2 anomalies shown in Figures 3a and 3b, changes in variance 

that could correspond to topographic differences between bins are at or above 1 ppm2, 

which suggests the topographic effect may not entirely reflect an instrument bias.  

In addition to the advection of large XCO2 gradients, the effects of topography, 

and local flux variability, it is also possible that patterns of synoptic variability are caused 

by retrieval issues. Identifying and correcting the biases produced by aerosols, cloud 

cover, and albedo is an ongoing pursuit of the OCO team. The synoptic XCO2 anomaly 

variances presented in Figures 3a-c are heightened over the northwest and northeast, 

which are prone to cloudiness. Massie et al., (2017) estimated variance produced by 

cloud bias between 1.4 and 6.8 ppm2. The higher variance XCO2 is likely not related to 

cloud bias because variance is generally highest in the summer for those regions, whereas 

we would expect peak cloudiness in the winter (Stubenrauch et al., 2010). We discuss 

this and other seasonal differences in synoptic XCO2 variability in the section below. 
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Figure 3. Figure 3a is a spatial map of synoptic XCO2 anomaly variance for 1x5 degree 

latitude-longitude grid cells. Figure 3b is a spatial map of synoptic XCO2 anomaly 

variance for grid cells that are aligned with the western United States coastline into 4 

ocean bins and 4 land bins for each latitudinal band. Figure 3c is a spatial map of 

synoptic XCO2 anomaly variance for grid cells that are aligned with the eastern United 

States coastline into 4 ocean bins and 4 land bins for each latitudinal band. 

 

5.4 Seasonality of XCO2 Synoptic Anomaly Variability 

Seasonal patterns in synoptic XCO2 variability provide information about what 

processes are driving the spatial patterns in synoptic XCO2 variability. Figure 4a is a  
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spatial map showing the months of peak synoptic XCO2 variability across the full study 

domain. Figures 4b and 4c are computed in the same manner using spatial bins that are 

aligned along the west and east U.S. coastlines to highlight differences between land and 

ocean XCO2 populations. Northern bins for the west coast (Figure 4b) are defined 

between 40 N and 50 N, and defined between 40 N and 45 N for the east coast (Figure 

4c). Southern bins are defined between 30 N and 40 N for both coasts.  

Figure 4 shows that most bins peak in July, consistent with findings in 

Keppel-Aleks et al., (2011) that synoptic XCO2 variability is primarily driven by 

advection across the meridional growing season gradient. This signifies that 

advection-induced variations are a larger contributor to observed synoptic XCO2 

variability than retrieval covariates, especially over the midcontinent, where almost all 

bins peak in the summertime. Bins that exhibit the highest synoptic XCO2 variability (the 

northwest and northeast shown in Figure 3) usually have peak variance in the summer 

months. The exception is a high variance bin over southern California, which peaks in 

October. Bins farther south and farther north from the middle of the mean gradient 

(shown in Figure 1 to be ~40 N) more often have peak variability outside of the growing 

season. This indicates that the mixing of XCO2-elevated and XCO2-depleted air during 

the growing season is not the primary driver of synoptic variability in those regions.  

Most bins from 30 – 45 N and east of 125 W (the west coast) reach peak 

variability in June, July, and August. The spatial distribution of bins that peak in the 

summertime could indicate when there is the most advection of the summertime gradient 

and provide insight toward the phasing of biospheric fluxes. From 45-50 N, bins most  
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commonly peak in June. Chen and Yang (2020) observed an earlier start of the growing 

season above 43.5 N, and a delayed start of the growing season below in MODIS 

observations over the period 2001-2014. This could be related to the earlier XCO2 

synoptic anomaly peaks we see in the northern bins. In Figure 4b showing the west coast, 

a larger fraction of bins peak earlier in the growing season (June) compared to the 

western land bins. For the east coast (Figure 4c), bins that peak in June are mainly above 

40 N. Synoptic XCO2 variance peaking in June could be indicative of northern latitude 

boreal fluxes, which we can infer from Sections 2 and 3 have a larger signal over the 

Pacific Ocean, the northeast, and the northern Atlantic. Bins that peak in August are more 

evenly dispersed across the study domain, exhibiting no apparent relationship with 

surface type or latitude.  

While most bins peak during the growing season, some spatially coherent bins 

peak in the winter (December and January). Though weaker than the summertime 

gradient, advection across the reverse wintertime gradient could be responsible for high 

synoptic XCO2 variability in these bins. We observe cold season bins primarily over the 

northern Midwest, the northeast, and California. Peak cold season variability could reflect 

a relatively stronger wintertime gradient, more weather mixing, or higher variability in 

winter emissions, either local or transported, for these bins. For California and adjacent 

ocean bins (Figure 4b), which peaks primarily in Nov-Dec-Jan, high wintertime 

anthropogenic emissions from densely populated regions of California are mixing more 

with mean low latitude, CO2-depleted winds flowing east. This contrasts with high 

wintertime emissions sources in the northeast, where mean winds flowing east from high  
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latitudes are already CO2-enriched so there is only a weak concentration gradient. This is 

likely why areas like New York City and the DC area do not reach peak synoptic 

variability in the wintertime.  

Synoptic XCO2 variance is greatest during winter months for ocean bins along 

the California coast (Figure 4b), which could be due to wintertime gradient mixing 

described above or to regional variability in air-sea CO2 fluxes. From December to 

February, strong and variable winds act on the central and northern California coast, 

causing intense mixing, sporadic upwelling events and variable sea surface temperatures 

(Garcia-Reyes and Largier, 2012). These are stormy months for the adjacent continent as 

well; Washington to California experiences the most intense synoptic weather from 

November to February. We see in Figure 4b coastal bins above California that reach peak 

variance in the wintertime. Inland areas experience the most intense synoptic weather in 

the early Spring, though no inland bins reach peak synoptic XCO2 variance then. 

For the lower latitude Atlantic Ocean, in bins below 40 N, there are a few bins 

that reach peak variance in November. XCO2 over this region of the Atlantic is impacted 

relatively more by the trade winds, which bring easterly, CO2-depleted, low latitude air 

during the winter months. The amount of mixing across this early winter gradient, 

therefore, is on par with the amount of mixing across the summertime gradient for the 

lower-latitude Atlantic. For the lower latitude Pacific Ocean below 40 N, relative to the 

Atlantic, there are fewer bins that peak in November and more bins that peak in October. 

The wintertime gradient is likely less strong in the Pacific because wintertime emissions 

from Mexico and North America can get entrained in the trade winds and increase Pacific  
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Ocean wintertime XCO2. This is reflected in Figure 1, where the lower latitude Pacific 

Ocean has a more positive spatial mean than the lower latitude Atlantic Ocean.  

Bins that peak in May are less common, but occur over the Pacific Ocean, lower 

Atlantic Ocean, and one bin over Pennsylvania. Freshwater discharge into the Atlantic is 

greatest in May (Dai and Trenberth, 2002), which could induce variability in air-sea 

fluxes and therefore variability in XCO2. There are also some bins that peak in April over 

the Pacific Ocean. Perhaps the mean decreasing north-south gradient is stronger during 

the spring in those areas, or perhaps there is more April weather and therefore more 

mixing. This explanation is also possible for bins that peak in March, which mostly occur 

over the continental north and northern Atlantic.  
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Figure 4. Figure 4a is a spatial map showing the months of peak synoptic XCO2 

variability for grid cells that are divided across the western United States coastline into 4 

ocean bins and 4 land bins for each latitudinal band. Figure 4b is a spatial map showing 

the months of peak synoptic XCO2 variability for grid cells that are divided across the 

eastern United States coastline into 4 ocean bins and 4 land bins for each latitudinal band. 

 

5.5 Synoptic XCO2 Anomaly Skewness  

Overall, synoptic XCO2 anomalies are distributed normally around their mean, 

with a full domain average skewness of -0.1 ppm, which is small in magnitude relative to  
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the full domain average synoptic XCO2 variance of 1.5 ppm2. The average skewness of 

land bins is 0.0 ppm for the east coast and 0.1 ppm for the west coast. Ocean bins are 

slightly negatively skewed, with an average skewness of -0.4 ppm for the west coast and 

-0.3 ppm for the east coast. The most positive skewness of any bin is 1.9 ppm and the 

most negative skewness is -1.2 ppm. Both bins are over the northern Atlantic Ocean, 

indicating that region may be more heavily influenced by outliers.  

 

5.6 Summary of XCO2 Statistical Parameters 

The following tables summarize land-ocean, east-west, and north-south features 

of different XCO2 parameters. There are separate tables for the full study domain, east 

coast, and west coast analyses.  
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Table 1. Statistical parameters for bins across the full study domain, averaged spatially 

into groups and across 1-degree latitude bands. The general Pacific Ocean region is 

represented by averaging XCO2 from 145 – 125 W, the western half of the U.S. is 

represented by averaging from 125 – 100 W, and the combined eastern half of the U.S. 

and Atlantic Ocean are represented by averaging from 100-50 W. Northern bins are 

represented by averaging 40 – 50 N and southern bins by averaging 30 – 40 N. 

 

 

Bin Group Averages 
Detrended XCO2 

Spatial Mean (ppm) 
XCO2 Seasonal 

Amplitude (ppm) 

XCO2 Synoptic 
Anomaly Variance 

(ppm^2) 

XCO2 Synoptic 
Anomaly Skewness 

(ppm) 
Month of Greatest 

Synoptic Variability 

All bins -0.3 7.8 1.5 -0.1 7 
145 - 125 W -0.1 8.1 1.1 -0.4 6 

125 - 100 W -0.3 6.3 1.8 0.1 7 
100 - 50 W -0.4 8.4 1.6 -0.2 7 

30 - 40 N -0.2 7.9 1.2 -0.3 7 
40 - 50 N -0.8 8.6 1.8 -0.1 7 

49 – 50 N -1.0 8.5 2.0 -0.2 6 
48 – 49 N -1.0 10.9 1.9 -0.2 6 
47 – 48 N -0.9 9.2 2.0 -0.1 6 
46 – 47 N -0.9 8.7 2.1 -0.2 6 

45 – 46 N -0.7 8.5 2.1 -0.2 7 
44 – 45 N -0.7 8.1 2.0 -0.1 7 
43 – 44 N -0.8 8.1 1.7 0.0 7 

42 – 43 N -0.7 8.0 1.6 -0.1 7 
41 – 42 N -0.7 7.9 1.5 0.0 7 
40 – 41 N -0.5 7.8 1.6 -0.1 7 
39 – 40 N -0.3 7.7 1.5 -0.2 7 

38 – 39 N 0.0 7.5 1.5 -0.1 7 
37 – 38 N 0.0 7.2 1.3 -0.2 7 
36 – 37 N 0.2 7.2 1.3 -0.2 7 
35 – 36 N 0.2 7.1 1.2 -0.2 7 

34 – 35 N 0.3 6.8 1.2 -0.1 7 
33 – 34 N 0.4 6.7 1.1 -0.2 7 
32 – 33 N 0.3 6.7 1.0 -0.2 7 
31 – 32 N 0.4 6.6 1.0 -0.2 7 

30 – 31 N 0.4 6.6 1.0 -0.2 7 
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Table 2. Statistical parameters for land bins aligned with the west coast of the United 

States, averaged across 1-degree latitude bands.  

 

 

 

 

 

 

Latitude Band 
(bottom bound) 

Detrended XCO2 
Spatial Mean (ppm) 

XCO2 Seasonal 
Amplitude (ppm) 

XCO2 Synoptic 
Anomaly Variance 

(ppm2) 

XCO2 Synoptic 
Anomaly Skewness 

(ppm) 
Month of Greatest 

Synoptic Variability 
49 – 50 N -0.9 6.9 2.7 -0.1 6 

48 – 49 N -1.1 7.4 2.6 -0.1 7 
47 – 48 N -1.1 7.3 2.4 0.1 7 
46 – 47 N -0.9 7.2 2.5 0.1 7 
45 – 46 N -1.0 6.7 2.7 0.0 7 

44 – 45 N -1.0 6.5 2.7 -0.1 6 
43 – 44 N -1.1 6.5 2.4 0.0 7 
42 – 43 N -0.9 6.1 2.2 0.0 7 
41 – 42 N -0.7 6.1 2.0 0.1 12 

40 – 41 N -0.4 5.9 2.2 0.0 7 
39 – 40 N -0.3 5.8 2.1 0.0 7 
38 – 39 N -0.1 6.0 1.9 -0.1 7 
37 – 38 N 0.0 6.0 1.6 0.1 7 

36 – 37 N 0.2 6.0 1.5 0.1 7 
35 – 36 N 0.1 5.8 1.3 0.2 7 
34 – 35 N 0.4 5.7 1.6 0.3 7 
33 – 34 N 0.4 5.9 1.2 0.2 7 

32 – 33 N 0.3 5.9 1.1 0.3 8 
31 – 32 N 0.3 5.9 1.1 0.1 7 
30 – 31 N 0.3 6.0 1.2 0.1 7 

Average Land -0.4 6.3 1.9 0.1 7 
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Table 3. Statistical parameters for ocean bins aligned with the west coast of the United 

States, averaged across 1-degree latitude bands.  

 

 

 

 

 

 

Latitude Band 
(bottom bound) 

Detrended XCO2 
Spatial Mean (ppm) 

XCO2 Seasonal 
Amplitude (ppm) 

XCO2 Synoptic 
Anomaly Variance 

(ppm2) 

XCO2 Synoptic 
Anomaly Skewness 

(ppm) 
Month of Greatest 

Synoptic Variability 
49 – 50 N -0.3 8.9 1.1 -0.3 7 

48 – 49 N -0.2 9.2 1.0 -0.4 1 
47 – 48 N -0.5 8.9 1.3 -0.5 8 
46 – 47 N -0.3 9.0 1.1 -0.3 6 
45 – 46 N -0.3 8.9 1.4 -0.5 7 

44 – 45 N -0.4 8.4 1.5 -0.4 8 
43 – 44 N -0.4 8.4 1.2 -0.4 8 
42 – 43 N -0.2 8.1 1.1 -0.3 7 
41 – 42 N -0.4 8.0 1.0 -0.3 1 

40 – 41 N -0.4 8.5 1.0 -0.6 6 
39 – 40 N -0.2 8.3 0.9 -0.6 1 
38 – 39 N -0.1 7.8 1.0 -0.4 3 
37 – 38 N -0.1 7.5 0.9 -0.4 6 

36 – 37 N 0.3 7.6 0.9 -0.4 6 
35 – 36 N 0.2 7.5 0.9 -0.2 1 
34 – 35 N 0.4 7.3 0.9 -0.2 6 
33 – 34 N 0.5 7.2 1.0 -0.3 6 

32 – 33 N 0.4 7.4 0.8 -0.3 4 
31 – 32 N 0.6 7.3 0.8 -0.2 6 
30 – 31 N 0.6 7.2 0.7 -0.4 7 

Average Ocean -0.1 8.1 1.0 -0.4 5 



 

38 

Table 4. Statistical parameters for bins aligned with the east coast of the United States, 

averaged across 1-degree latitude bands. Land bins are shaded in gray. 

 

 

Latitude Band 
(bottom bound) 

Detrended XCO2 
Spatial Mean (ppm) 

XCO2 Seasonal 
Amplitude (ppm) 

XCO2 Synoptic 
Anomaly Variance 

(ppm2) 

XCO2 Synoptic 
Anomaly Skewness 

(ppm) 
Month of Greatest 

Synoptic Variability 
44 – 45 N -0.7 9.1 2.3 0.1 6 

43 – 44 N -0.8 9.0 2.1 0.0 7 
42 – 43 N -0.7 8.8 1.9 0.0 7 
41 – 42 N -0.6 9.2 1.8 0.2 6 
40 – 41 N -0.2 8.9 1.8 -0.1 8 

39 – 40 N 0.0 9.1 1.7 0.1 6 
38 – 39 N 0.2 8.6 1.9 0.1 6 
37 – 38 N 0.3 7.8 1.6 0.1 8 

36 – 37 N 0.6 7.7 1.8 -0.1 8 
35 – 36 N 0.7 8.0 1.7 -0.1 7 
34 – 35 N 0.7 7.2 1.7 -0.1 7 
33 – 34 N 0.8 6.5 1.5 -0.1 7 

32 – 33 N 0.7 6.6 1.4 -0.2 7 
31 – 32 N 0.7 6.1 1.5 -0.2 7 
30 – 31 N 0.8 6.0 1.6 0.1 7 

Average Land 0.2 7.9 1.7 0.0 7 

44 – 45 N -0.6 9.1 1.4 0.0 3 
43 – 44 N -1.1 9.0 1.1 0.2 6 
42 – 43 N -1.1 9.2 1.1 0.0 6 
41 – 42 N -1.2 8.4 1.1 -0.1 7 

40 – 41 N -1.0 8.6 1.5 0.2 6 
39 – 40 N -0.6 8.1 1.3 -0.7 7 
38 – 39 N 0.0 7.9 1.1 -0.4 7 
37 – 38 N -0.1 8.0 1.1 -0.4 7 

36 – 37 N -0.3 7.7 1.1 -0.7 7 
35 – 36 N -0.1 7.5 1.0 -0.7 7 
34 – 35 N 0.1 7.2 0.9 -0.5 7 

33 – 34 N 0.1 6.8 0.9 -0.3 7 
32 – 33 N 0.2 6.5 0.9 -0.5 7 
31 – 32 N 0.2 6.7 0.9 -0.4 7 
30 – 31 N 0.2 6.8 0.8 -0.4 7 

Average Ocean -0.4 7.8 1.1 -0.3 7 
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5.7 Glint Mode Only Analysis 

We compared the analysis using combined glint and nadir pointing mode 

observations to an analysis only using glint mode observations to examine how pointing 

mode impacted our results. We found differences between the analyses to be mostly 

insignificant, with the exception of a 0.9 ppm difference in seasonal amplitudes for the 

45-46 N latitude band. Additionally, above 48 N, synoptic anomaly variances tended to 

be ~20% lower when only using glint mode observations. Glint mode observations are 

more susceptible to cloud encounters due to their longer paths through the atmosphere, 

which are generally more prevalent the higher latitudes of our study domain. 

 

 

 

 

 

 

 

 

 

 



40 

Table 5. Differences in statistical parameters following the west coast of the United 

States (glint parameter - glint+nadir parameter). Positive values indicate using glint mode 

observations only increases the parameter relative to using both glint and nadir mode 

observations.  

 

 

 

 

 

 

 

 

 

Latitude Band 
(bottom bound) 

Detrended XCO2 Spatial 
Mean (ppm) 

XCO2 Seasonal 
Amplitude (ppm) 

XCO2 Synoptic Anomaly 
Variance (ppm^2) 

XCO2 Synoptic Anomaly 
Skewness (ppm) 

49 – 50 N 0.1 0.1 -0.4 0.2 

48 – 49 N 0.2 -0.2 -0.3 0.1 
47 – 48 N 0.3 0.1 -0.4 0.0 
46 – 47 N 0.0 0.0 -0.2 -0.2 
45 – 46 N 0.1 0.9 -0.1 0.0 

44 – 45 N 0.2 0.1 -0.2 0.0 
43 – 44 N 0.0 0.2 -0.1 -0.1 
42 – 43 N 0.0 -0.1 -0.1 -0.1 
41 – 42 N 0.0 0.1 0.1 0.0 

40 – 41 N 0.1 -0.1 -0.2 -0.1 
39 – 40 N 0.2 -0.1 0.0 0.2 
38 – 39 N 0.0 0.0 -0.1 0.2 
37 – 38 N 0.1 0.1 0.0 0.1 

36 – 37 N 0.2 0.0 0.0 0.0 
35 – 36 N 0.2 0.0 0.0 -0.1 
34 – 35 N 0.0 0.0 -0.3 -0.1 
33 – 34 N 0.2 0.0 0.0 -0.1 

32 – 33 N 0.2 -0.1 0.0 -0.2 
31 – 32 N 0.1 -0.2 0.0 -0.1 
30 – 31 N 0.1 0.1 0.0 -0.1 

Average West 0.1 0.0 -0.1 0.0 
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Table 6. Differences in statistical parameters following the east coast of the United States 

(glint parameter - glint+nadir parameter). Positive values indicate using glint mode 

observations only increases the parameter relative to using both glint and nadir mode 

observations.  

 

 

 

5.8 Impact of Small-Scale Spatial Correlation 

By averaging along the orbit track and repeating the analysis, we estimate the 

amount of variance imparted by instrument/algorithm noise or small-scale spatial 

geophysical signals to contribute about a quarter of overall synoptic XCO2 variance. The 

orbit averaging technique increases the fraction of independent XCO2 observations and 

thus reflects actual variance more robustly. Spatially correlated variance contributes more 

to the overall variance budget over land than ocean by about 1%. The spatially correlated  

Latitude Band 
(bottom bound) 

Detrended XCO2 Spatial 
Mean (ppm) 

XCO2 Seasonal 
Amplitude (ppm) 

XCO2 Synoptic Anomaly 
Variance (ppm^2) 

XCO2 Synoptic Anomaly 
Skewness (ppm) 

44 – 45 N 0.1 -0.1 -0.2 -0.1 

43 – 44 N 0.0 0.3 -0.2 -0.2 
42 – 43 N -0.1 0.0 -0.1 0.0 
41 – 42 N 0.1 0.0 -0.1 0.0 
40 – 41 N 0.1 0.0 -0.1 0.1 

39 – 40 N 0.0 0.0 0.0 0.0 
38 – 39 N 0.1 0.0 0.0 0.0 
37 – 38 N 0.0 0.2 0.0 -0.1 
36 – 37 N 0.0 0.0 -0.1 -0.1 

35 – 36 N 0.1 0.0 0.0 -0.1 
34 – 35 N 0.0 0.1 0.0 0.0 
33 – 34 N 0.0 0.1 0.0 0.0 
32 – 33 N 0.0 0.0 0.0 -0.1 

31 – 32 N 0.0 0.1 0.0 -0.1 
30 – 31 N 0.0 0.0 0.0 -0.1 

Average East 0.0 0.0 -0.1 -0.1 
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component of variance does not affect the large-scale trends observed in the analysis. As 

mentioned in Section 4.3, in further research we will use a band pass filtering technique 

to better constrain this component of variability within the synoptic XCO2 anomalies. 

 

6. Summary  

Geographic patterns in the mean spatial distribution and temporal variations in 

atmospheric XCO2 reflect a combination of surface carbon fluxes and large-scale 

atmospheric circulation. The relative influence of these mechanisms vary across the study 

domain and for the different features of XCO2. The decreasing pattern in detrended 

OCO-2 XCO2 means from 30 N to 50 N is consistent with findings from GOSAT, 

TCCON, and modeled XCO2 (Liang et al., 2017; Jing et al., 2018). Therefore, the spatial 

distribution of XCO2 when averaged over full seasonal cycles reflect mean east-west 

atmospheric transport of the growing seasonal meridional gradient more directly than 

local surface carbon fluxes. The horizontal atmospheric winds smoothing east-west 

variations is exemplified in the lack of a contrast between adjacent land and ocean bin 

means. Integration of the full North American terrestrial drawdown for air off the east 

coast could be the driver of more negative ocean XCO2 means over the Atlantic than the 

Pacific. 

Seasonal variability in XCO2 reflects seasonality in local carbon fluxes as well as 

transported variability from regions atmospherically upstream. The dominant continental 

pattern in seasonal amplitudes is low over the western U.S. and greater over the eastern  
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U.S., consistent with seasonality in underlying surface CO2 fluxes, which have a greater 

seasonality in the more vegetated eastern United States. However, other patterns 

observed in the seasonal amplitudes are not consistent with the seasonality expected from 

underlying biospheric surface fluxes, illustrating where XCO2 seasonal variability is 

heavily influenced by transported variability as opposed to local fluxes. This feature 

emerges when we observe greater seasonal amplitudes over the northern Pacific Ocean 

compared to the adjacent forested Pacific northwest and greater amplitudes observed over 

less productive Canadian Shield compared to more productive southeastern states such as 

Mississippi. A continuous, mostly meridional band of highly seasonal variable air 

induced by aggregated boreal surface fluxes around the globe was found by Sweeney et 

al., (2015). This highly seasonal boreal air seems to be contributing to the greater 

seasonal XCO2 amplitudes over the northern Pacific Ocean, the northeastern continent, 

and the northern Atlantic Ocean. Adjacent land and ocean similarities in seasonal 

amplitudes are observed over the east, signifying the Atlantic Ocean more closely reflects 

North American seasonal carbon cycling while the Pacific seasonal XCO2 cycle is more 

influenced by transported variability from other continents.  

For most bins, synoptic XCO2 variance is greatest in the summer, reinforcing 

findings from Keppel-Aleks et al., (2011) that synoptic-scale XCO2 variations are 

primarily driven by advection across the meridional growing season spatial gradient. Bins 

with the greatest synoptic XCO2 variance are located above the continental northwest and 

northeast (2-3 ppm2) and have peak variance in the summer. While most bins in the 

domain have greatest synoptic XCO2 variance during July, most bins from 45-50 N peak  
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in June, potentially reflecting an earlier start of the boreal growing season, observed in 

Chen and Yang (2020).  

Land bins have higher synoptic variances on average than ocean bins, possibly 

resulting from spatial variability in local fluxes as well as the stronger spatial gradient we 

observe over land in Figure 1. There could also be a land-ocean retrieval bias, which we 

plan to investigate in future work using retrieval covariates. For bins aligned along the 

western coastline, there is a clear contrast in synoptic XCO2 anomaly variance for 

adjacent land and ocean bins, resembling the contrast we observe in seasonal amplitudes. 

Compared to the northwest coast, there seems to be more east-west smoothing of XCO2 

across the east coast, and the continental signal tracks out over the Atlantic Ocean as 

observed in the seasonal amplitudes. 

There is a surprising amount of synoptic XCO2 variance over the northwest, given 

the XCO2 transport simulated by Jing et al., (2018) which shows less large scale eddies 

acting on the region. These high variance bins have a spatial correlation with topography, 

suggesting that retrieval bias, mountain meteorology, or biological flux variability owing 

to the treeline can drive significant variations in synoptic-scale XCO2. The possible 

topography effect on synoptic XCO2 variance is not observed over the lower elevation 

Applachian range. 

Though weaker than the summertime gradient, advection across the reverse 

wintertime gradient can also induce synoptic XCO2 variance. Peak cold season 

variability, primarily observed over the northern Midwest, the northeast, California and  
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its adjacent coastal ocean could reflect a relatively stronger wintertime gradient, 

storm-induced air-sea flux variability, more weather mixing, or higher variability in 

winter emissions, either local or transported, for these bins. For the lower latitude 

Atlantic Ocean (below 40 N), some bins have peak synoptic variance in November, 

suggesting a strong influence of the trade winds, which bring easterly, CO2-depleted air 

frow lower latitudes during the winter. The high variance bin over Los Angeles peaks in 

October, and could be tied to the mixing of dense local wintertime anthropogenic fluxes 

with CO2-depleted air flowing east from lower latitudes. This mixing could be 

exacerbated by the Sierra Nevada range trapping emissions in western California. There 

are dense wintertime emissions sources in the northeast, but mean winds flowing east 

from high latitudes are already CO2-enriched, creating only a weak concentration 

gradient. This is likely why areas like New York City and the DC area do not reach peak 

synoptic variability in the wintertime.  

7. Conclusions and Future Directions 

Mean east-west transport of strong growing season CO2 drawdown outweighs the 

strong wintertime emissions in northern latitudes, creating the net negative, increasing 

north-south mean detrended XCO2 gradient over the study domain. We observe east-west 

smoothing of land and ocean XCO2 distributions for both coasts in detrended XCO2 

means. For seasonal and synoptic scale variability, this smoothing is not present across 

the northwestern coast. The pattern of high XCO2 seasonal amplitudes reflect the 

meridional transport path of northern latitude boreal fluxes, which seem to have a larger 

signal over the Pacific Ocean, get deflected off the northwestern coast, and dip back  
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down over the northeast and adjacent northern Atlantic. The continental signal for 

seasonal amplitudes and synoptic variance tracks out over the northern Atlantic Ocean. 

Seasonality in the northern Atlantic Ocean’s air-sea fluxes could induce variability as 

well, but they are not large enough to entirely produce the amplitudes we observe. The 

dominant patterns in synoptic XCO2 variance are driven by advection across the 

meridional growing season gradient, but advection across the weaker reverse wintertime 

gradient affects could be more important for some southern regions. Variability in air-sea 

flux for the California coastal ocean during the stormy winter season could also be a large 

contributor to the region’s synoptic variance. Over the Pacific Northwest, topography 

may induce synoptic-scale XCO2 variations. Patterns in variability for land and ocean 

XCO2 are very uniform across the northeastern coast while heavily contrasted across the 

northwestern coast.  

Our results show that there is a spatially and temporally variable influence of 

local fluxes (biosphere, air-sea, human-mediated), XCO2 transported from boreal regions 

(either North American or from other continents), and advection across large-scale spatial 

gradients (growing season or wintertime) in XCO2. In further work, we aim to diagnose 

and quantify the mechanisms of XCO2 variability uncovered in this study. We can use 

HYSPLIT-2, an atmospheric back trajectory model to determine the origin of XCO2 

anomalies of interest. This can help explain the high synoptic XCO2 variance we observe 

in different regions and help us identify any potential measurement biases (such as a 

topography or land-ocean related bias). It will also help us identify the relative 

contribution of North American seasonal variability versus variability transported from  
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another continent for different regions in the study domain. Our investigation into the 

different drivers of XCO2 variability at seasonal and sub-seasonal scales provides new 

and relevant insight into the carbon cycle. These insights may be useful in efforts that 

leverage atmospheric CO2 observations for flux inference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

8. References 

Baker, D. F., et al. "Carbon source/sink information provided by column CO 2 measurements from the 

Orbiting Carbon Observatory." Atmospheric Chemistry & Physics 10.9 (2010). 

Baker, David F., Scott C. Doney, and David S. Schimel. "Variational data assimilation for atmospheric 

CO2." Tellus B: Chemical and Physical Meteorology 58.5 (2006): 359-365. 

Chatterjee, A., et al. "Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings 

from NASA’s OCO-2 mission." Science 358.6360 (2017): eaam5776. 

Chen, Xiaona, and Yaping Yang. "Observed earlier start of the growing season from middle to high 

latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014." 

Environmental Research Letters 15.3 (2020): 034042. 

Crisp, David, et al. "The ACOS CO2 retrieval algorithm-Part II: Global XCO2 data characterization." 

(2012): 687. 

Crisp, David, et al. "The orbiting carbon observatory (OCO) mission." Advances in Space Research 34.4 

(2004): 700-709. 

Dai, Aiguo, and Kevin E. Trenberth. "Estimates of freshwater discharge from continents: Latitudinal and 

seasonal variations." Journal of hydrometeorology 3.6 (2002): 660-687. 

Eldering, A., et al. "The Orbiting Carbon Observatory-2 early science investigations of regional carbon 

dioxide fluxes." Science 358.6360 (2017): eaam5745. 

Fennel, K., et al. “Carbon cycling in the North American coastal ocean: a synthesis” Biogeosciences 16 

(2019): 1281-1304. 

 

 



49 

García-Reyes, M., and J. L. Largier. "Seasonality of coastal upwelling off central and northern California: 

New insights, including temporal and spatial variability." Journal of Geophysical Research: 

Oceans 117.C3 (2012). 

Geels, C., et al. "Investigating the sources of synoptic variability in atmospheric CO2 measurements over 

the Northern Hemisphere continents: a regional model study." Tellus B: Chemical and Physical 

Meteorology 56.1 (2004): 35-50. 

Hayes, D. J., et al. "Chapter 2: the North American carbon budget." Second State of the Carbon Cycle 

Report (SOCCR2): A Sustained Assessment Report. US Global Change Research Program, 

Washington, DC, USA (2018): 71-108. 

Jing, Yingying, et al. "Global atmospheric CO2 concentrations simulated by GEOS-Chem: Comparison 

with GOSAT, carbon tracker and ground-based measurements." Atmosphere 9.5 (2018): 175. 

Keppel-Aleks, G., P. O. Wennberg, and T. Schneider. "Sources of variations in total column carbon 

dioxide." Atmospheric Chemistry and Physics 11.8 (2011): 3581-3593. 

Kiel, Matthäus, et al. "How bias correction goes wrong: measurement of XCO2 affected by erroneous 

surface pressure estimates." Atmospheric Measurement Techniques 12.4 (2019). 

Lareau, Neil P., and John D. Horel. "The climatology of synoptic-scale ascent over western North America: 

A perspective on storm tracks." Monthly weather review 140.6 (2012): 1761-1778. 

Liang, Ailin, et al., “Comparison of Satellite-Observed XCO2 from GOSAT, OCO-2, and Ground-Based 

TCCON.” Remote Sensing 9.10 (2017):1033 

Marcotullio, P. J., et al., “Chapter 3: Energy systems” Second State of the Carbon Cycle Report (SOCCR2): 

A Sustained Assessment Report. US Global Change Research Program, Washington DC, USA 

(2018): 110-188 

 



50 

Massie, Steven T., et al. "Observational evidence of 3-D cloud effects in OCO-2 CO2 retrievals." Journal 

of Geophysical Research: Atmospheres 122.13 (2017): 7064-7085. 

Northcott, Devon, et al. "Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification 

in nearshore waters." PloS one 14.3 (2019). 

O'Dell, Christopher, et al. "Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with 

the version 8 ACOS algorithm." (2018): 6539. 

Olsen, Seth C., and James T. Randerson. "Differences between surface and column atmospheric CO2 and 

implications for carbon cycle research." Journal of Geophysical Research: Atmospheres 109.D2 

(2004). 

Parazoo, N. C., et al. "Moist synoptic transport of CO2 along the mid-latitude storm track." Geophysical 

Research Letters 38.9 (2011). 

Sitch, Stephen, et al. "Recent trends and drivers of regional sources and sinks of carbon 

dioxide." Biogeosciences 12.3 (2015): 653-679. 

Stubenrauch, C. J., et al. "A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS 

and a statistical analysis in synergy with CALIPSO and CloudSat." (2010). 

Sweeney, Colm, et al. "Seasonal climatology of CO2 across North America from aircraft measurements in 

the NOAA/ESRL Global Greenhouse Gas Reference Network." Journal of Geophysical Research: 

Atmospheres 120.10 (2015): 5155-5190. 

Torres, Anthony D., et al. "A geostatistical framework for quantifying the imprint of mesoscale 

atmospheric transport on satellite trace gas retrievals." Journal of Geophysical Research: 

Atmospheres 124.17-18 (2019): 9773-9795. 

Zhang, Yao, et al. "A global moderate resolution dataset of gross primary production of vegetation for 

2000–2016." Scientific data 4 (2017): 170165. 

 


