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Abstract ii

Abstract

The emergence of complex, functional electron materials has generated significant

interest due to their potential applications in various technologies, including quantum

computing and energy storage. However, understanding and modeling these materials

present a major challenge because of the complexity of their electronic structure and

interactions. This dissertation explores the use of machine learning to enable large-

scale modeling of functional electron materials, with a focus on the Falicov-Kimball

model, itinerant electron magnets, and disordered spin systems. We leverage neural

network architectures to create efficient energy models, thereby enabling simulations

that are otherwise computationally prohibitive. Our results demonstrate that ML can

capture complex phenomena, such as phase separation and spin dynamics, with high

accuracy. This work not only provides insights into the behavior of functional electron

materials but also establishes a framework for employing ML in computational physics

to solve otherwise intractable problems.
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Chapter 1

Introduction

Functional electron materials, such as high-temperature superconductors and ma-

terials exhibiting charge density waves, are renowned for their complex, emergent

properties arising from strong electron correlations [6–25]. These materials exhibit

a wide range of mesoscale patterns, including stripes, checkerboards, and spin tex-

tures, which emerge due to intricate electronic interactions. Understanding the ori-

gin, stability, and evolution of these patterns is essential, as they often underpin

the unique electronic, magnetic, and transport properties of the materials, render-

ing them promising candidates for a variety of advanced technological applications,

ranging from data storage to quantum information processing and energy-efficient

devices.

The remarkable behaviors exhibited by functional electron materials are not solely

determined by their atomic lattice structure but are profoundly influenced by elec-

tronic interactions that give rise to collective phenomena. For instance, the emergence

of high-temperature superconductivity in certain cuprates and iron-based materials is

1
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believed to be driven by unconventional electron pairing mechanisms, which remain

the subject of intense theoretical investigation. Similarly, charge density waves and

spin textures [26–34] often result from the competition between different interactions,

such as Coulomb repulsion, lattice coupling, and magnetic exchange, driving the sys-

tem into complex, spatially non-uniform states. These emergent properties are of

significant interest not only because they represent novel phases of matter but also

because they hold transformative potential for future technologies.

The theoretical modeling of such complex systems has traditionally relied on var-

ious numerical techniques, including Monte Carlo simulations, exact diagonalization,

density functional theory (DFT), and etc [35–42]. These approaches, while highly

successful for small systems, become computationally prohibitive as the system size

increases, limiting our ability to explore emergent behavior in larger systems or to

capture phenomena that manifest at realistic scales. Moreover, the non-equilibrium

dynamics of these systems, which are often central to their functional properties, re-

quire an efficient and accurate means of modeling both local electronic interactions

and large-scale structural evolution. The challenge lies in capturing the intricate

interplay between local electron correlations and global structural order, which is es-

pecially important when attempting to understand the behavior of these materials

under experimental conditions, such as temperature quenches or applied electromag-

netic fields.

In recent years, machine learning (ML) has emerged as a powerful tool to address
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these computational challenges [43–56]. Machine learning techniques, particularly

deep learning, offer sophisticated methods for recognizing and exploiting complex

patterns in data, which is crucial for modeling systems characterized by a high degree

of freedom and strong correlations. By training neural networks on smaller, exactly

solvable systems, we can construct predictive models that generalize effectively to

larger, more complex configurations. This strategy, often termed multi-scale mod-

eling, enables the simulation of the dynamics of functional electron materials at a

fraction of the computational cost of conventional approaches. Neural networks (NN)

are particularly well-suited for this task because they can effectively learn the un-

derlying relationships between the microscopic states of a system and its emergent

macroscopic properties, thereby obviating the need for computationally intensive cal-

culations at every step.

A key advantage of machine learning in this context is its capacity to handle the

high dimensionality inherent in many-body systems. Traditional methods are often

hindered by the so-called "curse of dimensionality," in which the computational cost

grows exponentially with the number of particles or degrees of freedom in the system.

Machine learning models, however, can be trained to identify efficient representations

of these high-dimensional systems, thereby reducing the effective dimensionality and

making it possible to study larger and more complex configurations. Furthermore,

ML models can be trained to predict energy landscapes, forces, and other relevant

properties based on local configurations, which is particularly advantageous for inves-
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tigating the emergent properties of these materials, especially due to the scalability

of the system.

This dissertation presents a detailed investigation into the application of machine

learning for large-scale modeling of functional electron materials. We begin with the

Falicov-Kimball model [57], a canonical model that captures essential aspects of phase

separation and charge ordering in correlated electron systems. This model serves as

an ideal testbed because it incorporates many of the fundamental features of electron

correlation while remaining tractable for detailed analysis. We demonstrate that

neural networks can efficiently model the complex energy landscape of the Falicov-

Kimball model, enabling large-scale kinetic Monte Carlo simulations that reveal the

dynamics of phase separation and the development of charge density wave order.

These simulations provide new insights into the mechanisms of phase separation,

including the role of thermal fluctuations, domain growth, and the stabilization of

long-range order.

We then extend our methodology to investigate the dynamics of itinerant electron

magnets and disordered spin systems [19–25]. Itinerant electron magnets, in which

magnetic moments arise from the collective behavior of delocalized electrons, pose

distinct challenges compared to localized spin systems. The interplay between elec-

tron mobility and magnetic exchange interactions leads to rich phase diagrams and

complex, non-trivial dynamical phenomena. By utilizing machine learning models,

we simulate the time evolution of these systems, capturing intricate behaviors such
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as spin-wave propagation, magnetic domain formation, and the effect of external per-

turbations on magnetic ordering. For disordered spin systems, where the presence

of randomness significantly influences the physical properties, machine learning pro-

vides a powerful approach to explore the impact of disorder on both magnetic and

electronic characteristics, offering fresh perspectives on spin-glass states and other

disordered phases.

Our results show that machine learning can not only replicate the outcomes of

traditional exact methods with remarkable accuracy but also extend the simulations

to substantially larger system sizes [58,59]. This capability is particularly crucial for

the study of emergent phenomena, which often become prominent only at macro-

scopic length scales. For example, the formation of large-scale magnetic domains, the

nucleation and growth of charge order, or the cooperative behavior in spin glasses ne-

cessitate simulations that include many thousands of particles—far beyond the scope

of conventional computational approaches. By leveraging machine learning, we bridge

the gap between small-scale theoretical models and the large-scale behavior observed

in experiments, thereby enhancing our ability to understand and predict the physical

properties of these materials.

In summary, the work presented here establishes a robust framework for employ-

ing machine learning to deepen our understanding of complex, correlated electron

materials. This approach paves the way for studying emergent phenomena in sys-

tems that were previously intractable using conventional computational techniques,
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thereby opening new opportunities for the design, discovery, and application of func-

tional electron materials. By integrating the strengths of machine learning with tradi-

tional physics-based modeling, we can develop a more comprehensive understanding

of these fascinating systems, ultimately contributing to advancements in energy stor-

age, quantum computing, spintronics, and other cutting-edge fields of technology.



Chapter 2

Machine Learning in the
Falicov-Kimball Model

2.1 Introduction

Complex mesoscopic textures are common in strongly correlated electron materi-

als [6–18]. Notable examples include stripe and checkerboard patterns in high-Tc

superconductors, as well as nanoscale mixtures of metallic and insulating domains in

manganites. These mesoscopic textures are not only fundamentally important in cor-

related electron physics but are also central to the emergence of novel functionalities

in these materials. The nanoscale patterns in correlated electron materials often result

from phase-separation instabilities driven by electron correlation effects. Indeed, a

common feature of lightly doped Mott insulators is their strong tendency toward phase

separation, where doped holes are expelled from locally insulating antiferromagnetic

domains [60–67]. Despite considerable efforts to understand the mechanisms of phase

separation and the properties of mixed-phase states in strongly correlated materi-

als, the non-equilibrium pattern-formation dynamics in these systems remains poorly

7
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understood.

Intermediate states with complex structures are also observed in discontinuous

phase transitions in many classical systems [68,69]. The kinetics of first-order transi-

tions is a well-established subject with a long history [70–72]. These studies focus on

the evolution of a system from an unstable or metastable state toward its equilibrium

phase, often characterized by the emergence of complex spatial-temporal patterns.

Several numerical techniques, ranging from kinetic Monte Carlo (KMC) and molec-

ular dynamics (MD) simulations to phase-field modeling, have been developed for

large-scale simulations of phase-separation phenomena [35–38]. Of particular inter-

est in such studies are the dynamical universality class and the associated universal

growth law [73,74]. The phase-ordering process is often modeled using partial differ-

ential equations for the order-parameter fields that describe the symmetry-breaking

structure. However, most work in this field is based on empirical energy models, which

often fail to capture the complex and long-ranged interactions of order-parameter

fields, particularly in correlated electron systems.

Comprehensive modeling of correlation-driven phase separation requires simulta-

neous consideration of microscopic electronic processes and mesoscopic pattern for-

mation dynamics. For instance, one could obtain the driving forces on the order-

parameter fields by integrating out the electrons on-the-fly, meaning that the elec-

tronic structure problem must be solved at every time step of the macroscopic dy-

namics simulation. However, repeatedly solving the electronic problem using methods
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ranging from exact diagonalization (ED) to more sophisticated many-body techniques

can be prohibitively expensive for large-scale simulations. These computational chal-

lenges are partly why progress in understanding phase-ordering dynamics in correlated

electron systems has been limited.

In this chapter, we take an important step toward the goal of multi-scale dynam-

ical modeling of strongly correlated electron systems by utilizing machine learning

(ML) techniques to develop an efficient yet accurate energy model. This approach has

allowed us to achieve the first-ever large-scale simulation of phase separation phenom-

ena in the Falicov-Kimball (FK) model [57], one of the canonical correlated electron

systems. Originally introduced as a limiting case of the Hubbard model [75], the FK

model was later independently proposed to describe semiconductor-metal transitions

in rare-earth and transition-metal compounds [57]. The FK model describes inter-

actions between conducting c-electrons and localized f -electrons through an on-site

repulsive interaction. Its relative simplicity allows for numerically exact solutions,

which serve as important benchmarks for sophisticated many-body methods [76].

The FK model itself has rich phase diagrams and is one of the most well-studied

correlated electron systems that exhibit complex pattern formation and phase sepa-

ration [77–85]. In particular, the FK model provides a proof of principle that stripe

and checkerboard orders—prominent features in the phenomenology of high-Tc su-

perconductivity—can arise purely from electronic correlation effects [78–81], such as

the Kivelson-Emery scenario of phase separation.
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2.2 Kinetic Monte Carlo for the Falicov-Kimball Model

In this work, we consider the spinless FK Hamiltonian on a square lattice [76,81]:

H = −tnn
∑

⟨ij⟩

c†icj + U
∑

i

c†icin
f
i , (2.1)

Here, c†i (ci) is the creation (annihilation) operator for a c-electron at site i, ⟨ij⟩

denotes nearest-neighbor pairs on the lattice, nfi is the occupation number of the

f -electron, tnn is the nearest-neighbor hopping constant (serving as the energy unit),

and U > 0 is the strength of the on-site repulsive interaction. Due to the quadratic

nature of the c-electron Hamiltonian, the equilibrium phases of the FK model can,

in principle, be solved exactly by combining the classical Monte Carlo (MC) method

for f -electrons with ED for c-electrons [83–85]. Furthermore, within the framework

of dynamical mean-field theory, the quantum impurity problem associated with the

FK model can also be solved exactly [76,82].

The equilibrium phases of the square-lattice FK model have been extensively stud-

ied over the years. At half-filling for both c and f electrons, the ground state exhibits

a charge-density wave (CDW) order, with the f -electrons forming a checkerboard

pattern [84, 85]. Away from half-filling, the model displays various stripes and in-

commensurate phases [80,81]. With slight electron or hole doping, a phase-separated

regime is stabilized [81–83], similar to the Hubbard model. Despite being a prominent

model for electronic phase separation, the phase-ordering dynamics in FK systems

has not been explored. Important questions, such as whether the system exhibits
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dynamical scaling and the nature of the domain-growth law, remain open.

To address these issues, we develop a KMC method [37,86] to simulate the phase

ordering process of the FK model under a temperature quench. While the c-electrons

have well-defined dynamics in the FK Hamiltonian, the f -electrons are static discrete

variables, with nfi = 0 or 1, similar to classical Ising spins. To provide dynamics for

the f -electrons, we use a random-walk algorithm to model their diffusive motion. At

each time step, an attempt is made to move a randomly chosen f -electron to one of

its empty neighbors. Whether the move is accepted is determined by the standard

Metropolis criterion [37]. We further assume that the equilibration of c-electrons is

much faster compared to the random walks of f -electrons, analogous to the Born-

Oppenheimer approximation in quantum MD [87]. Consequently, the motion of the

heavier f -electrons depends on the free energy of the quasi-equilibrium c-electrons

before and after the update. The acceptance probability for such a nearest-neighbor

move is given by:

pi→j =
1

4
min

(
1, e−∆Ei→j/kBT

)
, (2.2)

where ∆Ei→j represents the free-energy difference of c-electrons due to the hopping

of an f -electron from site i to j. The probability that the f -electron stays in place is

pi→i = 1−∑j pi→j. It is worth noting that lattice gas systems combined with kMC

simulations are widely used to describe phase separation in conventional alloys [88,89].

However, most works are based on empirical energy models, often formulated as
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effective classical Ising Hamiltonians. In this work, we demonstrate that deep neural

networks (NN), trained using exact solutions, can provide an accurate and efficient

energy model for the f -electrons in the FK system.

The c-electron free energy can be calculated using either ED or more efficient

techniques, such as the kernel polynomial method [90]. However, the quantum KMC

simulation described above is very time-consuming for large systems, as one must

solve the electron tight-binding problem four times at each time step to update just

one f -electron.

2.3 Machine Learning Architecture

To address the computational bottleneck, we apply ML methods that have been suc-

cessfully used to enhance the efficiency of quantum MD simulations [91–97]. Similar

techniques have also been applied to enable large-scale quantum spin dynamics in

double-exchange systems [98, 99]. The central idea of our approach, summarized in

Fig. 2.1, is rooted in the principle of locality [100,101], often referred to as the "near-

sightedness" of electronic matter by W. Kohn. In our context, the locality principle

implies that the energy change ∆Ei→j depends only on the f -electron configuration

within the vicinity of the local update.

Specifically, the energy change ∆Ei→j of a local update is assumed to depend on

the neighborhood configuration through a universal function:

∆Ei→j = ε(n̂ij, Ci), (2.3)
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Figure 2.1: Schematic diagram of NN energy model for kMC dynamics simulation of
the FK system. A descriptor is used to construct effective coordinates {Gℓ} from
neighborhood f -electron configuration {nfj } up to a cutoff rc = 10. These feature

variables {Gℓ} are input to the NN which predicts the energy differences ∆E at the
output.

where n̂ij = ±x̂,±ŷ denotes the orientation of the i → j bond, and Ci =
{
nfj
∣∣ |rj −

ri| ≤ Rcutoff

}
describes the neighborhood f -electron configuration up to a cutoff radius

Rcutoff . The complex dependence of the energy function ε(·) on the local environment

is encoded in a NN that is trained using exact solutions from small systems.

2.3.1 Lattice Descriptor

Next, the effective energy function ε(·) is expected to also preserve the site-symmetry

of the lattice. A descriptor is used to construct effective coordinates {Gℓ} from the

neighborhood f -electron configuration {nfj } up to a cutoff radius Rcutoff = 10. These

feature variables {Gℓ} are then fed into the NN, which predicts the energy differences

∆Ei→j caused by the update at the output. As the energy prediction should preserve
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the discrete lattice symmetry of the square-lattice FK model, the generalized coordi-

nates {Gℓ} are expected to be invariant under symmetry operations of the discrete

point group, for example 90◦ rotation about the z-axis, or mirror reflection about xz,

yz planes. To this end, we first use the fact that the f -electron occupation numbers

{nfj } within the cutoff form the basis of a high-dimensional representation of the point

group, which in the case of the square lattice is the D4 group. By decomposing this

high-dimensional representation into the irreducible representations (IRs) of the sym-

metry group, invariants can be systematically constructed from the basis functions of

the various IRs [102].

Since the distance is preserved by symmetry operations of the point group, the

representation matrices of the neighborhood occupation are automatically block-

diagonalized according to the distances to the central point. This significantly sim-

plifies the task of finding the IRs. For example, Fig. 2.2 shows the case of the neigh-

boring sites {wj} forming an 8-dimensional block, which can be readily decomposed

as 8 = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E. The corresponding basis of the IRs are the linear
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combination of {wj} as follows:

fA1 = w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8

fA2 = w1 − w2 + w3 − w4 + w5 − w6 + w7 − w8

fB1 = w1 + w2 − w3 − w4 + w5 + w6 − w7 − w8

fB2 = w1 − w2 − w3 + w4 + w5 − w6 − w7 + w8

fE1 = (w2 − w3 − w6 + w7, w1 + w4 − w5 − w8)

fE2 = (w1 + w2 − w5 − w6, w3 + w4 − w7 − w8)

(2.4)

By repeating the same procedures for each block, we arrange the resultant IR basis

functions into a vector fΓ
r = (fΓ

r,1, f
Γ
r,2, · · · , fΓ

r,DΓ
) where Γ labels the IR, r enumerates

the multiple occurrences of Γ in the decomposition of the f -electron configuration,

and DΓ is the dimension of the IR. The IR basis follows the D4 point group’s character

table in Table 2.1. Given these basis functions, one can immediately obtain a set of

invariants called the power spectrum {pΓr }, which are the amplitude of each individual

IR function, i.e. pΓr =
∣∣fΓ
r

∣∣2. However, feature variables based only on the power

spectrum are incomplete in the sense that the relative phases between different IRs

are ignored. For example, the relative "angle" between two IRs of the same type:

cos θ = (fΓ
r1
·fΓ

r2
)/|fΓ

r1
||fΓ

r2
| is also an invariant of the symmetry group. Without such

phase information, the NN model might suffer from additional error due to spurious

symmetry, namely two IRs can freely rotate independently of each other.

A systematic approach to include all relevant invariants, including both amplitudes
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Figure 2.2: The example of a block of the f -electron configuration {wj} that is used
to generate block-diagonal representations of the D4 point group of the square

lattice. These eight sites are the 4th nearest neighbor to the ion w0 = 1, where wj is
either occupied (1) or unoccupied (0).

E 2C4(z) C2(z) 2C ′2 2C ′′2

A1 1 1 1 1 1

A2 1 1 1 -1 -1

B1 1 -1 1 1 -1

B2 1 -1 1 -1 1

E 2 0 -2 0 0

Table 2.1: D4 point group character table
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Figure 2.3: Five different nearest-neighbor configurations for updating an f -electron
at the central site nf0 = 1. The blue circles denote nearest neighbor sites that are

occupied by an f -electron, while the yellow circles denote empty sites.

and relative phases, is the bispectrum method [103, 104]. In this work, we develop a

descriptor similar to the one used in Ref. [105], that is modified from the bispectrum

method. We introduce a set of reference basis functions fΓ
ref for each IR of the point

group. These reference basis are computed by averaging large blocks of f -electrons,

such that they are less sensitive to small changes in the neighborhood f -electron

configurations. We then define the relative "phase" of a IR as the projection of its

basis functions onto the reference basis: ηΓr ≡ fΓ
r · fΓ

ref/|fΓ
r | |fΓ

ref |. The effective

coordinates are then obtained from the power spectrum and the relative phases:

{Gℓ} = {pΓr , ηΓr }.

It is worth noting that the energy cost of hopping to a neighbor that is already

occupied by another f -electron is infinite. Numerically, it is very difficult to include

this special situation among finite predictions. However, for such infinite energy cost,

the corresponding probability is zero, which means we can preclude such transition

probability in our consideration for such situations. Consequently, it is easier in

practice to implement several different NN models, one for each of the five different

nearest-neighbor f -electron configurations shown in Fig. 2.3. Importantly, depending
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on the nearest-neighbor configuration, different point-group symmetry has to be used

for computing the generalized coordinates {Gℓ}. Our discussion of the descriptor

above is mainly focused on the case of four empty neighbors shown in Fig. 2.3(a).

For configurations shown in Fig. 2.3(b), (c), and (e), the symmetry group is reduced

to C2, while the situation shown in Fig. 2.3(d) is described by point group D2.

2.3.2 Convolutional Neural Network

Inorder to predict the energy cost, we have built an 8-layer NN model on PyTorch [106]

for the large-scale ML-kMC simulations of the FK model. Details of the NN model are

summarized in Table 2.2. We have included convolutional layers in our NN to extract

characteristic patterns of the input f -electron configurations [107]. Notably, we have

verified that NN models with additional convolutional layers outperform those based

only on fully connected layers.

The NN model was trained by datasets generated from kMC simulations on a

30×30 square lattice using ED method. The following parameters are used: nearest-

neighbor hopping tnn = 1, on-site repulsive energy U = 2 tnn, temperature T = 0.05,

f -electron density ρf = 0.187, and c-electron density ρc = 0.55. As discussed in

the next section, these parameters were chosen in order to realize a low-temperature

phase consisting of a mixture of checkerboard patterns and uniform domains that are

free of f -electrons.

The training datasets come from both random configurations and ED-kMC sim-

ulations for a thermal quench to T = 0.05. On average, the NN models for the five
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Layer Network

Input Layer [316,1]a

Convolutional Layer 1
conv(5,1,0,16)b
maxpool(3,3)c
actd = ReLU

Convolutional Layer 2

conv(5,1,1,32)
maxpool(3,3)
act = ReLU

flattene → [1088]

Hidden Layer 3 FC(1088,256)f
act = ReLU

Hidden Layer 4 FC(256,128)
act = ReLU

Hidden Layer 5 FC(128,64)
act = ReLU

Hidden Layer 6 FC(64,32)
act = ReLU

Output Layer FC(32,1)

aThe shape of the input data [one-dimensional dataset length, No. channels]
bOne-dimensional convolutional filter with arguments (filter size, stride, padding, No. filters).
cMax-pooling layer with arguments (pool size, stride length).
dThe activation function.
eFlatten the multi-channel output of the previous layer to the one-dimensional neurons.
fFully connected layer with arguments (input size, output size).

Table 2.2: The ML model structure
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Figure 2.4: Correlation between the NN predictions and the exact solutions for
energy differences ∆E→, ∆E←, ∆E↑, and ∆E↓, corresponding to the energy

cost/gain of hopping to right, left, top, and bottom nearest neighbors of a randomly
chosen f -electron. The blue dots show the training data prediction with
MSE = 0.041 and the orange dots show the testing data prediction with

MSE = 0.046.
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different nearest-neighbor configurations shown in Fig. 2.3 are each trained by at least

106 datasets. The Adam optimizer [108] with a learning rate of 0.001 is used to mini-

mize the loss function, which is defined as the mean square error (MSE) of the energy

prediction. We have obtained nice overall agreement between the predicted values

and exact calculations, as demonstrated by the validation results shown in Fig. 2.4.

2.3.3 Results

Next, we integrate our NN with the kMC to further benchmark the performance of the

ML methods compared with the ED kMC results. We first calculate 100 independent

simulations using the ED-kMC with parameters above. Another 100 independent

simulations with the same parameters are then carried out by ML-kMC using the

trained NN model. Fig. 2.5(a) and (b) show the characteristic lengths of the checker-

board clusters and their super-clusters (or effective Ising domains defined in the main

text) obtained from ED and ML-kMC simulations. These two characteristic lengths,

ℓ and L, are obtained from the time-dependent structure factor of f -electron config-

urations and Ising configurations, respectively. In both cases, reasonable agreements

between the two methods are obtained. Comparisons of the f -electron correlation

functions Cij = ⟨nfi nfj ⟩ obtained from ED and ML-kMC simulations are shown in

Fig. 2.5(c) and (d) for 50 and 500 time-steps, respectively, after a thermal quench.

The reasonable agreements of the correlation functions indicate the ML-model can

successfully capture the relaxation dynamics of the FK model.
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Figure 2.5: (a) The characteristic length ℓ(t) of the f -electron configuration {nfj } as
a function of time for ED-kMC and ML-kMC simulations. (b) The time dependence

of the characteristic linear size L of the Ising domains associated with the
super-clusters. The panels on the right show the comparison of f -electron

correlation function Cij = ⟨nfi nfj ⟩ after (c) t = 50 and (d) t = 500 from the same
initial condition.
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2.4 Phase Separation in the Falicov-Kimball Model

We employ the benchmarked NN energy model to perform large-scale ML-KMC simu-

lations of the FK model with up to 105 lattice sites. Our objective is to investigate the

growth dynamics of checkerboard clusters after a temperature quench. Specifically,

we consider a slightly doped c-electron system with a filling fraction of ρc = 0.55 and a

low f -electron density of ρf = 0.187. The repulsive interaction is set at U = 2 tnn. In

the low-temperature phase, the system exhibits phase separation characterized by a

mixture of checkerboard CDW ordering of f -electrons and a metallic region devoid of

f -electrons [82]. Some stripe-like orders are also observed. In our simulations, the sys-

tem is initially prepared in a random configuration, and the temperature is abruptly

reduced to T = 0.05 tnn at time t = 0. A snapshot of the f -electron configuration

at a later time after the quench, as shown in Fig. 2.6(b), clearly displays multiple

checkerboard clusters along with some diagonal stripe patterns of the f -electrons.

Figure 2.6(a) shows the growth of the average checkerboard cluster size ⟨s⟩ over

time, indicating the aggregation of f -electrons to form CDW order during relaxation.

Since the number of f -electrons is conserved, the growth of checkerboard domains

resembles the phase separation of a conserved order parameter, which is expected to

follow a t1/3 power-law growth as predicted by the Lifshitz-Slyozov-Wagner (LSW)

theory [109,110] or the model-B dynamical model [73,111]. As shown in the inset of

Fig. 2.6(a), the characteristic length scale of checkerboard clusters follows a power-

law ∆ℓ ∼ tα in the early stages of phase separation, with an exponent α ≈ 0.35 that
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Figure 2.6: (a) Average size ⟨s⟩ of checkerboard cluster as a function of time
obtained from ML-kMC simulations on a 150× 150 lattice. The inset shows the

time dependence of the characteristic length scale ℓ(t) = ℓ0 +∆ℓ, where ℓ = ⟨s⟩1/2.
The dashed line indicates a power-law growth with exponent α ≈ 0.35. Here time is
measured in terms of 100 MC steps. (b) A close-up view of f -electron configuration

at t = 800 after quench.

is slightly higher than the LSW prediction. This discrepancy may arise from the fact

that LSW scaling is generally expected to hold during the coarsening of very large

domains at late times [112].

However, this power-law growth is only sustained for a short duration, and the

domain growth significantly slows down at later stages. This stagnation in domain

growth cannot be attributed to finite-size effects, as the average cluster size remains

much smaller than the system size at late times. Instead, the freezing of the checker-

board clusters is associated with a hidden sublattice symmetry breaking in the phase

separation process, which we discuss in detail below. To illustrate this effect, we use

different colors to label the f -electrons on the two sublattices of the square lattice.

As shown in the top row of Fig. 2.7, when the checkerboard clusters are small, f -
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Figure 2.7: Top: snapshots of f -electron configuration obtained from kMC
simulations of phase separation in a 150× 150 square-lattice FK model. The blue
and red dots indicate f -electrons on the A- and B-sublattice, respectively. Bottom:

configurations of Ising variables σi that characterize the Z2-symmetry-breaking
domains associated with super-clusters.
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Figure 2.8: (a) Scaling plot of the time-dependent structure factor S(k, t) obtained
from the Fourier transform of the Z2 order parameter. The dashed line shows the
k−3 Porod’s law in 2D. (b) Characteristic length L(t) of the super-clusters as a

function of time for three different lattice sizes. The dashed line indicates the linear
growth ∆L(t) ∼ t.

electrons on the same sublattice tend to cluster together, forming super-clusters of

checkerboards. Importantly, the formation of such super-structures also breaks the

Z2 sublattice symmetry.

It is important to note that two distinct symmetry-breaking processes are occur-

ring simultaneously during the temperature quench: the conventional CDW-metal

phase separation at smaller length scales and the coarsening of super-clusters or ef-

fective Ising domains at larger scales. The formation of super-clusters is not an

inevitable outcome of phase separation involving CDW order. Since the f -electrons

in a CDW cluster can occupy either the A or B sublattice, each cluster can be charac-
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terized by a Z2 variable, referred to as its polarity. In a typical phase-separated state,

one would expect a mixture of CDW clusters with opposite polarities. However, our

simulation results suggest that the energy of these mixed-phase states can be further

reduced through the alignment of CDW clusters with the same polarity, resulting in

the formation of super-clusters. As discussed below, this alignment is driven by a

nonlocal interaction mediated by the c-electrons.

To describe the larger-scale Z2 symmetry breaking associated with super-cluster

coarsening, we introduce an Ising variable σi at each lattice site, such that σi =

+1 (−1) if the f -electron closest to site i belongs to the A (B) sublattice. Based

on this definition, the bottom row of Fig. 2.7 shows the Ising configurations {σi}

corresponding to the respective f -electron distributions {nfi } shown on the top. In the

language of Ising spins, the clustering of checkerboards into super-clusters corresponds

to the growth of Ising ferromagnetic domains. The order parameter ϕ describing this

Z2 symmetry breaking is then given by the magnetization density of Ising spins, i.e.,

ϕ = ⟨σi⟩. It is noteworthy that ϕ is not conserved in the KMC dynamics of f -electrons.

Phenomenologically, such a non-conserved field is governed by the time-dependent

Ginzburg-Landau (TDGL) equation, or model-A dynamics [73]. The resulting domain

coarsening is characterized by the Allen-Cahn power law [70,72]

L ∼ t1/2. (2.5)

However, as we will show, the coarsening of super-clusters in our system does not



Chapter 2. Machine Learning in the Falicov-Kimball Model 28

follow the expected power law due to an unusual self-confinement effect among the

f -electrons.

To characterize the growth of Ising domains associated with the super-clusters,

we compute the structure factor of the Ising spins, S(k, t) =
∣∣ 1
N

∑
i σi(t) exp(ik ·ri)

∣∣2.

Ferromagnetic ordering implies that S(k, t) exhibits a growing peak at k = 0. The

inverse of the width of this peak can be used as a measure of the characteristic length

scale of the super-clusters: L−1(t) ∼ ∆k =
∑

k S(k, t)|k|/
∑

k S(k, t). Using this

characteristic length as a scale factor, Fig. 2.8(d) shows the scaled time-dependent

structure factor versus the dimensionless momentum |k|L(t). As seen in the figure,

the data points at different times collapse roughly onto the same curve, indicating

that the coarsening of the Ising domains exhibits dynamical scaling,

S(k, t) = L2(t)G[|k|L(t)], (2.6)

where G(x) is a universal scaling function. The 1/k3 power-law tail at large momenta,

consistent with the 2D Porod’s law [71], results from the sharp interfaces between the

two different types of Ising domains, or super-clusters with opposite polarities.

The characteristic length L(t) extracted from the structure factor is shown in

Fig. 2.8(b) as a function of time for three different lattice sizes. Interestingly, except

for a short initial period (up to t ∼ 10), the growth of this length scale does not follow

the expected power law, especially at late times. Moreover, even the initial seemingly

power-law growth is inconsistent with the α = 1/2 Allen-Cahn law. Instead, L seems
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to increase linearly with time in this initial regime. To understand this anomalous

behavior, we note that the TDGL equation, or the Allen-Cahn theory, describes an

interface-controlled domain growth in which the interfacial velocity is proportional to

the curvature of the domain interface [113]. In our case, since the Z2 order parameter

is defined by whether the aggregating f -electrons are on the A- or B-sublattice, the

resulting domain growth need not rely on the expansion of an existing boundary.

Instead, a super-cluster can quickly increase its size as f -electrons in its neighborhood

move from one sublattice to another via only a nearest-neighbor hopping. Due to the

collective movement of f -electrons, the growth of super-clusters exhibits an avalanche-

like behavior similar to the Barkhausen effect in magnetic domain growth. A faster

linear growth of the super-clusters thus arises from such avalanche dynamics at the

early stage. As discussed below, this collective behavior is induced by an effective

non-local interaction between f -electrons.

Although the repulsion U between the two types of electrons is local in the FK

model, the heavier f -electrons experience an effective long-range interaction mediated

by the itinerant c-electrons. In particular, due to this non-local interaction, the pres-

ence of a checkerboard cluster creates a staggered potential in its neighborhood that

takes alternating values on neighboring sites of the bipartite lattice. This effective

potential is illustrated in Fig. 2.9(a), where a test f -electron is placed in the neighbor-

hood of a checkerboard cluster at the center. Exact MC simulation was used to obtain

the frequency νi with which the test particle stays at site i, from which the potential



Chapter 2. Machine Learning in the Falicov-Kimball Model 30

0

0.02

0.04

0.06

0.08

0.1

2 3 4  0.2  0.4  0.6  0.8
0

0.02

0.04

0.06

0.08

0.1

<latexit sha1_base64="Etgc0Ov/QDkAaoF7ySACdHetf8U=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs27frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzQKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7Gsy4AqZERNLKFPc3krYiCrKjM2mZEPwll9eJe1a1bus1poXlXo9j6MIJ3AK5+DBFdThFhrQAgYIz/AKb86j8+K8Ox+L1oKTzxzDHzifP6U5jNU=</latexit>

L

<latexit sha1_base64="d9TDcM30HSRZTpQa9e9fD1uFGnU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkR7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUdAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3U6k2r8v1Wh5HAc7hAq7Ag1uowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AeGGMsQ==</latexit>

0

<latexit sha1_base64="oH9rC4r/ZKVkomF9cFz2S6WfE5w=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSIIQtktfh08FLx4rOC2hXYp2XS2Dc1mlyQrlNLf4MWDIl79Qd78N6btHrT1QcjjvRlm5oWp4Nq47rezsrq2vrFZ2Cpu7+zu7ZcODhs6yRRDnyUiUa2QahRcom+4EdhKFdI4FNgMh3dTv/mESvNEPppRikFM+5JHnFFjJf/crbiX3VLZfjOQZeLlpAw56t3SV6eXsCxGaZigWrc9NzXBmCrDmcBJsZNpTCkb0j62LZU0Rh2MZ8tOyKlVeiRKlH3SkJn6u2NMY61HcWgrY2oGetGbiv957cxEN8GYyzQzKNl8UJQJYhIyvZz0uEJmxMgSyhS3uxI2oIoyY/Mp2hC8xZOXSaNa8a4q1YeLcu02j6MAx3ACZ+DBNdTgHurgAwMOz/AKb450Xpx352NeuuLkPUfwB87nDy8PjZs=</latexit>

+0.05

<latexit sha1_base64="mNwCbi4SEHsL5vntq+8q/68At9U=">AAAB7HicbVA9SwNBEJ3zM8avqKXNYhBsDHfBr8IiYGMZwUsCyRH2NnPJkr29Y3dPCCG/wcZCEVt/kJ3/xk1yhSY+WPbx3gwz88JUcG1c99tZWV1b39gsbBW3d3b39ksHhw2dZIqhzxKRqFZINQou0TfcCGylCmkcCmyGw7up33xCpXkiH80oxSCmfckjzqixkn/uVtzLbqlsvxnIMvFyUoYc9W7pq9NLWBajNExQrduem5pgTJXhTOCk2Mk0ppQNaR/blkoaow7Gs2Un5NQqPRIlyj5pyEz93TGmsdajOLSVMTUDvehNxf+8dmaim2DMZZoZlGw+KMoEMQmZXk56XCEzYmQJZYrbXQkbUEWZsfkUbQje4snLpFGteFeV6sNFuXabx1GAYziBM/DgGmpwD3XwgQGHZ3iFN0c6L8678zEvXXHyniP4A+fzBzIfjZ0=</latexit>�0.05

<latexit sha1_base64="8HTD5wg+TABuZYoErdHuoU/hh2s=">AAAB83icbVBNSwMxFHxbv2r9qnr0EixCvZTdIurBQ8GLxwq2FrpLyabZNjTJLklWKEv/hhcPinj1z3jz35ht96CtA4Fh5j3eZMKEM21c99spra1vbG6Vtys7u3v7B9XDo66OU0Voh8Q8Vr0Qa8qZpB3DDKe9RFEsQk4fw8lt7j8+UaVZLB/MNKGBwCPJIkawsZLfrfsCm3EYIXU+qNbchjsHWiVeQWpQoD2ofvnDmKSCSkM41rrvuYkJMqwMI5zOKn6qaYLJBI9o31KJBdVBNs88Q2dWGaIoVvZJg+bq740MC62nIrSTeUK97OXif14/NdF1kDGZpIZKsjgUpRyZGOUFoCFTlBg+tQQTxWxWRMZYYWJsTRVbgrf85VXSbTa8y0bz/qLWuinqKMMJnEIdPLiCFtxBGzpAIIFneIU3J3VenHfnYzFacoqdY/gD5/MH+M2Q+g==</latexit>

V (r)

�

<latexit sha1_base64="uGd0okehDoFk+oRyzO0MixH+Fuk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUL0VvXisYD+gDWWz3TRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmBQln2rjut1Pa2Nza3invVvb2Dw6PqscnXR2nitAOiXms+gHWlDNJO4YZTvuJolgEnPaC6V3u956o0iyWj2aWUF/giWQhI9jk0jCJ2Khac+vuAmideAWpQYH2qPo1HMckFVQawrHWA89NjJ9hZRjhdF4ZppommEzxhA4slVhQ7WeLW+fowipjFMbKljRoof6eyLDQeiYC2ymwifSql4v/eYPUhNd+xmSSGirJclGYcmRilD+OxkxRYvjMEkwUs7ciEmGFibHxVGwI3urL66R7Vfca9ZuHRq11W8RRhjM4h0vwoAktuIc2dIBABM/wCm+OcF6cd+dj2VpyiplT+APn8wcXaI5L</latexit>

(a)

<latexit sha1_base64="nzZMz75W+4pqT4E4cAyMGF5i2jA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3COot6MVjRPOAZAm9k9lkyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFWUNGotYtQPUTHDJGoYbwdqJYhgFgrWC0e3Mbz0xpXksH804YX6EA8lDTtFY6aGM571iya24c5BV4mWkBBnqveJXtx/TNGLSUIFadzw3Mf4EleFUsGmhm2qWIB3hgHUslRgx7U/mp07JmVX6JIyVLWnIXP09McFI63EU2M4IzVAvezPxP6+TmvDKn3CZpIZJulgUpoKYmMz+Jn2uGDVibAlSxe2thA5RITU2nYINwVt+eZU0qxXvonJ9Xy3VbrI48nACp1AGDy6hBndQhwZQGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBi+uNVA==</latexit>

(b)

<latexit sha1_base64="OMwsrho5YM8NyJaTBb/QwXXGNHw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3COot6MVjRPOAZAmzk9lkyOzsMtMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChIpDLrut5NbW9/Y3MpvF3Z29/YPiodHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbmt564NiJWjzhOuB/RgRKhYBSt9FAOznvFkltx5yCrxMtICTLUe8Wvbj9macQVMkmN6Xhugv6EahRM8mmhmxqeUDaiA96xVNGIG38yP3VKzqzSJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMrfyJUkiJXbLEoTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippViveReX6vlqq3WRx5OEETqEMHlxCDe6gDg1gMIBneIU3RzovzrvzsWjNOdnMMfyB8/kDjXCNVQ==</latexit>

(c)

<latexit sha1_base64="2boeDiN2BZuARi0wR6OhJPulNoY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3COot6MVjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5aMYJ+hEdSB5yRo2VHsrsvFcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjlT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0qxXvonJ9Xy3VbrI48nACp1AGDy6hBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBjvWNVg==</latexit>

<latexit sha1_base64="a8twJyZAC5e3ZNHhM9r8zgMJPWI=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIjHxRHbVqEdEDx4xkUcCGzI79MKE2YczvSRkw3d48aAxXv0Yb/6NA+xBwUo6qVR1p7vLi6XQaNvfVm5ldW19I79Z2Nre2d0r7h80dJQoDnUeyUi1PKZBihDqKFBCK1bAAk9C0xveTv3mCJQWUfiI4xjcgPVD4QvO0Ehu5w4kMtropjfVSbdYssv2DHSZOBkpkQy1bvGr04t4EkCIXDKt244do5syhYJLmBQ6iYaY8SHrQ9vQkAWg3XR29ISeGKVH/UiZCpHO1N8TKQu0Hgee6QwYDvSiNxX/89oJ+tduKsI4QQj5fJGfSIoRnSZAe0IBRzk2hHElzK2UD5hiHE1OBROCs/jyMmmclZ3L8vnDRalSzeLIkyNyTE6JQ65IhdyTGqkTTp7IM3klb9bIerHerY95a87KZg7JH1ifP/1ZkZo=</latexit> �
V

A
B

<latexit sha1_base64="a8twJyZAC5e3ZNHhM9r8zgMJPWI=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIjHxRHbVqEdEDx4xkUcCGzI79MKE2YczvSRkw3d48aAxXv0Yb/6NA+xBwUo6qVR1p7vLi6XQaNvfVm5ldW19I79Z2Nre2d0r7h80dJQoDnUeyUi1PKZBihDqKFBCK1bAAk9C0xveTv3mCJQWUfiI4xjcgPVD4QvO0Ehu5w4kMtropjfVSbdYssv2DHSZOBkpkQy1bvGr04t4EkCIXDKt244do5syhYJLmBQ6iYaY8SHrQ9vQkAWg3XR29ISeGKVH/UiZCpHO1N8TKQu0Hgee6QwYDvSiNxX/89oJ+tduKsI4QQj5fJGfSIoRnSZAe0IBRzk2hHElzK2UD5hiHE1OBROCs/jyMmmclZ3L8vnDRalSzeLIkyNyTE6JQ65IhdyTGqkTTp7IM3klb9bIerHerY95a87KZg7JH1ifP/1ZkZo=</latexit>

�
V

A
B

Figure 2.9: (a) Density plot of effective potential V (ri) = −kBT log νi for
f -electrons created by a checkerboard cluster at the center. The potential field V (r)

exhibits the same staggering patten as that of the checkerboard cluster at the
center. Ions in the neighborhood thus tend to reside on the same sublattice, leading
to the growth of the super-cluster. The depth of the staggering potential, given by
the averaged potential difference between the two sublattices ∆VAB versus (b) the

characteristic length L of super-clusters and (c) the Ising order parameter ϕ.
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is computed as Vi = −kBT log νi. As shown in Fig. 2.9(a), the effective potential

field V (ri) exhibits the same staggered pattern whose polarity is determined by that

of the center checkerboard cluster. Consequently, f -electrons in the neighborhood of

this checkerboard cluster tend to be trapped in the same sublattice. Importantly, this

staggered potential also causes existing checkerboards in the neighborhood to change

their polarity, thereby leading to the formation of a super-cluster and subsequent

growth that is not captured by the interface-controlled mechanism.

In the late stage of the phase separation, a much slower logarithmic-like growth

sets in for super-clusters, as shown in Fig. 2.8(b). Interestingly, the staggered potential

discussed above is also responsible for the stalled growth of the Ising domains and, in

fact, the smaller checkerboard clusters as well. To understand this unusual freezing

behavior, we note that while the strength of the staggered potential increases with the

size of the CDW cluster from which it originates, the energy barrier ∆VAB between

the two sublattices is also enhanced as more and more checkerboards merge to form

larger super-clusters. To demonstrate this effect, we consider different geometrical

arrangements of a finite number of checkerboard clusters on a 30× 30 lattice, giving

rise to different shapes and sizes of super-clusters or Ising domains. MC simulation

with ED is then used to compute the resultant effective potential V (ri) for the f -

electrons. A 30× 30 lattice with periodic boundary conditions is evenly divided into

9 blocks; see Fig. 2.10. A small checkerboard cluster of arbitrary shape is placed in

each block. Different super-cluster configurations can be realized by rotating and/or
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Figure 2.10: Panels (a) and (b) show two examples of f -electron configuration
obtained by the block method described in the text. Yellow regions represent the
same-shaped checkerboard cluster, randomly rotated and placed in each of the 9

blocks; the blue background represents the empty sites. Panels (c) and (d) are the
corresponding Ising configuration σi according to the definition discussed in the

main text. Red (blue) regions correspond to σ = +1 (−1). Panels (e) and (f) show
the effective potential experienced by a test f -electron created by the collection of

checkerboard clusters (shown in black).
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Figure 2.11: (a) Strength of the staggered potential ∆VAB = |VA − VB| versus the
characteristic length L of Ising domains from 50 different f -electron configurations

generated by the block method. Points of different color share the same block
magnetization M , as discussed in the text.

translating the (same-shaped, same-sized) checkerboard cluster within each 10 × 10

block.

For each f -electron configuration {nfi } generated by the above procedure, we first

compute the corresponding Ising configuration {σi}; see Figs. 2.10(c) and (d) for

two examples. Next, we compute the resultant characteristic length L of the Ising

domains, which represents the typical size of super-clusters, from the structure factor

of the Ising variables. For the same f -electron configuration, we also perform MC

simulations with ED to compute the effective potential Vi = −kBT log νi experienced

by a test particle, where νi is the frequency with which the test f -electron stays at
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site i. The average potential difference between the A/B sublattices is given by

∆VAB =
〈 1

N/2

∣∣∣
∑

i∈A

Vi −
∑

i∈B

Vi

∣∣∣
〉

(2.7)

The relation between the staggered potential ∆VAB and the corresponding Ising do-

main length L is shown in Fig. 2.11 for 50 different f -electron configurations randomly

generated by the block method.

Interestingly, the data points seem to fall into four groups, as highlighted by

different colors in Fig. 2.11. To understand this unusual result, we note that we can

introduce an Ising variable σJ for the J-th block (J = 1, 2, · · · , 9), which is defined

as the majority of Ising spins inside this block. According to the definition discussed

above, the majority of Ising variables in a given block is σ = +1 (−1) if the f -electrons

of the small checkerboard cluster inside the block reside on the A (B) sublattice.

Different f -electron configurations generated using the block procedure can then be

classified according to the block Ising spins {σJ}. The total "magnetization" of the

block Ising spins is given by M =
∑9

J=1 σJ . It turns out that the four different groups

in Fig. 2.11 correspond to block magnetizations |M | = 1, 3, 5, and 7. Our results thus

indicate that the strength of the staggered potential ∆VAB depends mainly on the

total block magnetization M . The average potential difference between the A/B

sublattices ∆VAB is shown in Fig. 2.9(b) as a function of the numerically obtained

characteristic length L of the Ising domains. The staggered potential ∆VAB indeed

increases with the size of the super-clusters. Moreover, we observe an intriguing linear
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dependence of the potential barrier ∆VAB on the effective Ising order parameter ϕ,

as shown in Fig. 2.9(c).

Importantly, the fact that the energy barrier ∆VAB increases with the size of the

Ising domains also explains the freezing behaviors observed in our ML-kMC simu-

lations. As the size L of super-clusters increases with time, the potential difference

between the two sublattices becomes so strong that individual f -electrons are deeply

trapped at one sublattice and cannot hop to the neighboring sites. For example, con-

sider a checkerboard cluster on sublattice-A in Fig. 2.9(a) and a test particle sitting at

a site that belongs to the lower-energy sublattice-A. Although the checkerboard at the

center has a strong affinity to the new particle, as evidenced by the rather low poten-

tial energy at the edge of the cluster, the large energy barrier at B-sublattice prevents

the f -electron from joining the cluster. The reduced mobility of the f -electron thus

results in an arrested coarsening of both the super-clusters as well as the smaller-sized

checkerboard clusters.

Importantly, the fact that the energy barrier ∆VAB increases with the size of the

Ising domains also explains the freezing behaviors observed in our ML-kMC simu-

lations. As the size L of super-clusters increases with time, the potential difference

between the two sublattices becomes so strong that individual f -electrons are deeply

trapped at one sublattice and cannot hop to neighboring sites. For example, consider

a checkerboard cluster on sublattice A in Fig. 2.9(a) and a test particle sitting at

a site that belongs to the lower-energy sublattice A. Although the checkerboard at
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the center has a strong affinity for the new particle, as evidenced by the relatively

low potential energy at the edge of the cluster, the large energy barrier at the B-

sublattice prevents the f -electron from joining the cluster. The reduced mobility of

the f -electron thus results in arrested coarsening of both the super-clusters and the

smaller checkerboard clusters.

2.5 Conclusion and Outlook

In summary, by employing modern ML techniques, we have successfully developed

a NN energy model that enables the first-ever large-scale KMC simulation of the

well-studied FK model. Our findings reveal a novel phase-ordering phenomenon,

characterized by domain coarsening occurring simultaneously at two different scales:

the growth of checkerboard clusters and the expansion of Ising domains associated

with a hidden broken sublattice symmetry. The interplay between these two pro-

cesses results in an anomalously slow phase separation. Several intriguing dynamical

phenomena, such as the early-stage avalanche domain growth and the decelerated

coarsening of super-clusters, require further investigation and are left for future work.

Unusual domain coarsening has been reported in classical systems, often linked to

frustrated interactions or quenched disorder [114–118]. In this work, we describe a

new freezing mechanism that arises from the interaction between itinerant c-electrons

and classical f -electrons. Similar glassy dynamics could be a general feature of phase

ordering in other correlated electron systems. A characteristic feature of correlated

electron materials is the coexistence of fast electron quasiparticles and slow bosonic
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or collective degrees of freedom. The nontrivial interplay between these two sets

of variables may lead to novel dynamical phenomena unique to correlated electron

systems. Given the complexity of such systems, we envision ML techniques as indis-

pensable tools for multi-scale modeling of nonequilibrium dynamics driven by electron

correlation effects.



Chapter 3

Machine Learning for Itinerant
Electron Magnets on Lattice

3.1 Introduction

Itinerant frustrated magnets with electron-mediated spin-spin interactions frequently

exhibit complex non-collinear or non-coplanar spin textures. Among these textures,

particle-like objects such as magnetic vortices and skyrmions are of particular interest,

not only for their fundamental role in magnetism but also for their significant techno-

logical potential in the emerging field of spintronics [19–25]. These nanometer-sized,

localized spin textures are characterized by nontrivial topological invariants, making

them stable objects with long lifetimes. In itinerant electron magnets, skyrmions

can be manipulated—moved, created, or annihilated—by applying magnetic fields

or electrical currents, owing to electron-spin interactions. Such versatility highlights

their potential for practical applications. Furthermore, these complex spin textures

can give rise to intriguing electronic and transport properties, such as the topolog-

ical Hall effects and topological Nernst effects [25, 119–121]. These effects originate

38
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from the nontrivial Berry phase acquired by electrons when traversing closed loops

of non-coplanar spins [122].

Dynamical modeling of complex textures in itinerant spin systems, however, is a

computationally challenging task. While magnetic moments in most metallic skyrmion

materials can be well approximated as classical spin vectors, the local effective mag-

netic fields, analogous to forces in molecular dynamics, originate from exchange in-

teractions with itinerant electrons and must be computed quantum mechanically.

Dynamics simulations of such itinerant magnets thus require solving an electronic

structure problem associated with the instantaneous spin configuration at every time

step. Repeated quantum calculations would be prohibitively expensive for large-scale

simulations. Consequently, empirical classical spin Hamiltonians, from which the lo-

cal fields can be explicitly calculated, are often employed in large-scale dynamical

simulations of skyrmion magnets [123, 124]. Yet, such classical spin models often

fail to capture the intricate long-range spin-spin interactions mediated by electrons,

limiting their accuracy in describing complex magnetic phenomena.

The computational complexity of the above quantum approaches to spin dynamics

is akin to that of ab initio MD methods. Unlike classical MD, which relies on empirical

force fields, quantum MD calculates atomic forces by integrating out electronic degrees

of freedom on-the-fly as atomic trajectories are generated [87]. Various many-body

methods, notably density functional theory (DFT), have been employed for force

calculations in quantum MD. However, the high computational cost associated with
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repeated electronic structure calculations severely restricts the feasible scale of atomic

simulations. To address this challenge, ML methods have been leveraged to develop

force-field models that accurately emulate the computationally expensive many-body

calculations, enabling large-scale MD simulations with quantum-level accuracy.

Crucial to the remarkable scalability of ML-based force-field models is the divide-

and-conquer approach proposed in the pioneering works of Behler and Parrinello [91],

and Bartók et al. [92]. In this approach, the total energy of the system is decomposed

into local contributions, E =
∑

i ϵi, where ϵi represents the atomic energy and depends

solely on the local environment of the i-th atom [91, 92]. The atomic forces are

subsequently derived from the predicted energy: Fi = −∂E/∂ri, where ri is the

atomic position vector. The complex dependence of the atomic energy ϵi on its local

neighborhood is efficiently approximated by an ML model, trained to ensure that

both the predicted individual forces Fi and the total energy E align with quantum

calculations [91–94, 96, 97, 125–130]. By leveraging the principle of locality [100, 101]

mentioned above, the ML model can focus on local atomic environments, significantly

reducing the computational cost while preserving quantum-level accuracy.

The tremendous success of ML methods in quantum MD simulations has spurred

similar approaches to multi-scale dynamical modeling of other functional electronic

systems in condensed matter physics [58, 59, 98, 99, 105, 131, 132]. In particular, the

Behler-Parrinello (BP) ML scheme [91,92] was generalized to build effective magnetic

energy or torque-field models with the accuracy of quantum calculations for itinerant
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electron magnets [98,99,133,134]. Notably, large-scale dynamical simulations enabled

by such ML models uncovered intriguing phase separation dynamics that results from

the nontrivial interplay between electrons and local spins. While the conventional

BP scheme can only represent conservative forces, a generalized potential theory

for the Landau-Lifshitz equation allows one to extend the BP scheme to describe

non-conserved spin torques that are crucial to the dynamical modeling of out-of-

equilibrium itinerant spin systems [132].

In this chapter, we present ML torque models for itinerant magnets utilizing convo-

lutional neural networks (CNNs) and fully connected neural networks with symmetry-

constrained descriptors. CNNs are a class of neural networks characterized by their

local connectivity, implemented through finite-sized convolutional kernels. Impor-

tantly, the convolution operation inherently incorporates the locality principle into

the ML model, offering an efficient implementation of torque models that can be

scaled to larger systems. Our CNN model is designed to directly predict the vector

torque field at each site, avoiding the need for the introduction of local energies as

required in the BP scheme. To incorporate spin-rotational and lattice symmetries,

we employ data augmentation techniques, ensuring the CNN model respects these

fundamental physical properties. We demonstrate the efficacy of our approach using

an itinerant spin model that exhibits a skyrmion crystal phase under intermediate

magnetic fields. Our results show that dynamical simulations with magnetic torques

computed from the trained CNN model faithfully reproduce the relaxation processes
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observed in itinerant spin systems. Furthermore, despite being trained on datasets

derived from small systems, the CNN model effectively stabilizes a skyrmion lattice

(SkL) in larger systems, demonstrating both the transferability and scalability of our

ML approach. This capability highlights the potential of CNN-based torque models

for studying complex magnetic textures in practical, large-scale scenarios.

3.2 s-d Model for Itinerant Magnets

The magnetization dynamics in spin systems are governed by the Landau-Lifshitz-

Gilbert (LLG) equation [135]:

dSi
dt

= Ti − αSi ×Ti + τi, (3.1)

where Ti represents the magnetic torque, defined as

Ti = γSi ×Hi. (3.2)

Here, γ is the gyromagnetic ratio, Hi is the effective exchange field acting on i-th spin,

α is the damping coefficient, and τi(t) = Si × ηi(t) is a fluctuating torque generated

by a random local field ηi with zero mean. The stochastic field ηi is assumed to be a

Gaussian random variable with variance determined by α and temperature T , as dic-

tated by the fluctuation-dissipation theorem. LLG simulations are widely employed

to study dynamical phenomena in various magnetic systems, including spin waves in

exotic magnetic phases and the dynamics of skyrmions and other spin textures.

For adiabatic spin dynamics, the local exchange field is given by the derivative of
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the system energy E = E(Si):

Hi = − ∂E

∂Si
. (3.3)

In magnetic insulators, spin interactions are often short-ranged. The resultant mag-

netic energy typically involves bilinear interactions between a few nearest-neighbor

spins on the lattice, such as E =
∑

ij (JijSi · Sj +Dij · Si × Sj), where Jij denotes

the isotropic Heisenberg exchange interaction and Dij represents the anisotropic ex-

change, also known as the Dzyaloshinskii-Moriya interaction [123,124]. The exchange

field in such models can be expressed as Hi = −∑j (JijSj +Dij × Sj), where the

summation is restricted to the few nearest neighbors, making it computationally ef-

ficient for large-scale LLG simulations.

In metallic magnets, the exchange fields originate from interactions between local

spins and itinerant electrons. We consider spin dynamics under the adiabatic approx-

imation, analogous to the Born-Oppenheimer approximation in quantum molecular

dynamics [87]. In this limit, the relaxation of electrons is assumed to be much faster

than the dynamics of local magnetic moments. Consequently, the magnetic energy

E in Eq. (3.3) can be obtained by freezing the spin configuration and integrating

out the electronic degrees of freedom. The resulting spin-dependent energy function

E = E(Si) can be viewed as a potential energy surface (PES) in the high-dimensional

spin space, similar to the PES in Born-Oppenheimer MD simulations. Practically,

calculating this magnetic PES involves solving the electronic structure problem, which
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depends on the instantaneous spin configuration {Si(t)}.

To illustrate, we consider a generic single-band s-d model for itinerant magnets.

The s-d model describes the interaction between itinerant s-band electrons and local-

ized magnetic moments Si of d-electrons. The Hamiltonian is given by:

H =
∑

ij

∑

α=↑,↓

tijc
†
iαcjα − J

∑

i

∑

α,β=↑,↓

Si · c†iασαβciβ, (3.4)

where c†iα and ciα are the creation and annihilation operators for an electron with

spin α =↑, ↓ at site i, tij is the electron hopping constant between sites (i, j), and J

is the strength of local Hund’s coupling between the electron spin and the magnetic

moment Si of localized d-electrons. For most skyrmion magnets, these local magnetic

moments can be well approximated as classical spins of fixed length |Si| = S.

For weak Hund’s coupling J ≪ tij, the effective spin energy can be derived by

integrating out the electrons via second-order perturbation theory, leading to a long-

range oscillatory interaction, similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction [136–138]. However, for intermediate and strong Hund’s coupling, the

effective energy used in force calculations in Eq. (3.3) must be obtained by integrating

out electrons on-the-fly:

E = ⟨H⟩ = Tr(ρH), (3.5)

where ρ = exp(−H/kBT ) is the density matrix of the equilibrium electron liquid

under the adiabatic approximation. Calculating the density matrix, in the absence of

electron-electron interactions, amounts to solving a disordered tight-binding Hamilto-
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nian for a given spin configuration. The standard approach for solving tight-binding

models involves exact diagonalization, which scales cubically with the system size.

Therefore, repeated exact diagonalization calculations for large-scale LLG simula-

tions of the s-d model can become computationally prohibitive.

As discussed above, the BP scheme has been extended to develop ML-based mod-

els for the effective spin energy E({Si}) of itinerant magnets [98,99,132–134]. In this

approach, the total energy is partitioned into local contributions:

E =
∑

i

ϵi =
∑

i

ε(Ci), (3.6)

where the local energy ϵi = ε(Ci) is associated with the i-th lattice site and depends

only on the spin configuration Ci = {Sj | |rj − ri| < rc} in its neighborhood. This

local energy function ε(Ci) serves as the building block of the magnetic PES. Im-

portantly, the complex dependence of the PES on neighboring spins is approximated

using ML models [98, 99, 132]. To preserve SO(3) spin rotation symmetry, the in-

ner product between spin pairs bjk = Sj · Sk and the scalar product of spin triplets

χjkl = Sj · (Sk × Sl) within the neighborhood are used as features for the neural

network. Finally, the exchange fields Hi acting on the spins are obtained by applying

automatic differentiation to the ML energy model.

3.3 Machine Learning Architecture

The BP-type schemes described here provide energy-based ML models for force field

calculations, with the total energy partitioned into local contributions ϵi. These con-
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tributions cannot be directly computed from the electronic structure methods used

to generate the training dataset, complicating the training process. The loss function

L, typically constructed from MSE or force-based metrics (in this case, spin torque

fields), depends indirectly on the predicted energy through automatic differentiation.

However, introducing such intermediate local energies adds uncertainties that com-

plicate the training of BP-type models.

While BP-type schemes explicitly include the physical constraint of conservative

forces, they are inherently restricted to modeling only conservative forces. In this

section, we present alternative ML approaches that directly predict vector forces

without relying on intermediate energy calculations.

3.3.1 Convolutional Neural Network Model

The fact that spins in metallic magnets are defined on well-known lattices suggests

that spin configurations can be treated as generalized "images", which can then be

processed using image-processing techniques, such as CNNs. Below, we present a

CNN model for directly predicting the torques Ti that drive spin dynamics. As

illustrated in Figure 3.1, the proposed network takes the spin configuration {Si} on

the lattice as input and returns the torques {Ti} as output. The model comprises

multiple convolutional layers fm with associated activation (nonlinearity) layers σm,

capturing the nonlinear relationship between {Si} and {Ti}. The CNN model is

described as a composition of these layers: fCNN = (σL ◦ fL) ◦ · · · ◦ (σ1 ◦ f1), where L

is the depth of the CNN.
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Sy
i

<latexit sha1_base64="Z0NQDTTJCJ9JqBmHw4Bl03sHBms=">AAAB7HicbVBNTwIxEJ3iF+IX6tFLIzHxRHaNX0eiF48YXSCBlXRLFxq63U3bNcENv8GLB43x6g/y5r+xwB4UfMkkL+/NZGZekAiujeN8o8LS8srqWnG9tLG5tb1T3t1r6DhVlHk0FrFqBUQzwSXzDDeCtRLFSBQI1gyG1xO/+ciU5rG8N6OE+RHpSx5ySoyVvLsuf3jqlitO1ZkCLxI3JxXIUe+Wvzq9mKYRk4YKonXbdRLjZ0QZTgUblzqpZgmhQ9JnbUsliZj2s+mxY3xklR4OY2VLGjxVf09kJNJ6FAW2MyJmoOe9ifif105NeOlnXCapYZLOFoWpwCbGk89xjytGjRhZQqji9lZMB0QRamw+JRuCO//yImmcVN3z6tntaaV2lcdRhAM4hGNw4QJqcAN18IACh2d4hTck0Qt6Rx+z1gLKZ/bhD9DnD79Hjqk=</latexit>

Sz
i

<latexit sha1_base64="fb1Rs4dU+f5eCq/g70CrBNNa8ic=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewav45ELx4xukACK+mWLjR0203bNZINv8GLB43x6g/y5r+xwB4UfMkkL+/NZGZemHCmjet+O4Wl5ZXVteJ6aWNza3unvLvX0DJVhPpEcqlaIdaUM0F9wwynrURRHIecNsPh9cRvPlKlmRT3ZpTQIMZ9wSJGsLGSf9dlD0/dcsWtulOgReLlpAI56t3yV6cnSRpTYQjHWrc9NzFBhpVhhNNxqZNqmmAyxH3atlTgmOogmx47RkdW6aFIKlvCoKn6eyLDsdajOLSdMTYDPe9NxP+8dmqiyyBjIkkNFWS2KEo5MhJNPkc9pigxfGQJJorZWxEZYIWJsfmUbAje/MuLpHFS9c6rZ7enldpVHkcRDuAQjsGDC6jBDdTBBwIMnuEV3hzhvDjvzsesteDkM/vwB87nD7w/jqc=</latexit>

Sx
i <latexit sha1_base64="Mcm418EZ2pTClQ6yS1dxR15nurM=">AAAB9HicbVDJSgNBEK1xjXGLevTSMQiewoy4HYNePEYwC2SG0NPTkzTpWeyuCYSQ7/DiQRGvfow3/8ZOMgdNfFDweK+Kqnp+KoVG2/62VlbX1jc2C1vF7Z3dvf3SwWFTJ5livMESmai2TzWXIuYNFCh5O1WcRr7kLX9wN/VbQ660SOJHHKXci2gvFqFgFI3kBW7ZRRFx7ZZJ0C1V7Ko9A1kmTk4qkKPeLX25QcKyiMfIJNW649gpemOqUDDJJ0U30zylbEB7vGNoTM0ibzw7ekJOjRKQMFGmYiQz9ffEmEZajyLfdEYU+3rRm4r/eZ0MwxtvLOI0Qx6z+aIwkwQTMk2ABEJxhnJkCGVKmFsJ61NFGZqciiYEZ/HlZdI8rzpX1cuHi0rtNo+jAMdwAmfgwDXU4B7q0AAGT/AMr/BmDa0X6936mLeuWPnMEfyB9fkDrDeRZg==</latexit>

d⇥d

<latexit sha1_base64="Mcm418EZ2pTClQ6yS1dxR15nurM=">AAAB9HicbVDJSgNBEK1xjXGLevTSMQiewoy4HYNePEYwC2SG0NPTkzTpWeyuCYSQ7/DiQRGvfow3/8ZOMgdNfFDweK+Kqnp+KoVG2/62VlbX1jc2C1vF7Z3dvf3SwWFTJ5livMESmai2TzWXIuYNFCh5O1WcRr7kLX9wN/VbQ660SOJHHKXci2gvFqFgFI3kBW7ZRRFx7ZZJ0C1V7Ko9A1kmTk4qkKPeLX25QcKyiMfIJNW649gpemOqUDDJJ0U30zylbEB7vGNoTM0ibzw7ekJOjRKQMFGmYiQz9ffEmEZajyLfdEYU+3rRm4r/eZ0MwxtvLOI0Qx6z+aIwkwQTMk2ABEJxhnJkCGVKmFsJ61NFGZqciiYEZ/HlZdI8rzpX1cuHi0rtNo+jAMdwAmfgwDXU4B7q0AAGT/AMr/BmDa0X6936mLeuWPnMEfyB9fkDrDeRZg==</latexit>

d⇥d<latexit sha1_base64="Mcm418EZ2pTClQ6yS1dxR15nurM=">AAAB9HicbVDJSgNBEK1xjXGLevTSMQiewoy4HYNePEYwC2SG0NPTkzTpWeyuCYSQ7/DiQRGvfow3/8ZOMgdNfFDweK+Kqnp+KoVG2/62VlbX1jc2C1vF7Z3dvf3SwWFTJ5livMESmai2TzWXIuYNFCh5O1WcRr7kLX9wN/VbQ660SOJHHKXci2gvFqFgFI3kBW7ZRRFx7ZZJ0C1V7Ko9A1kmTk4qkKPeLX25QcKyiMfIJNW649gpemOqUDDJJ0U30zylbEB7vGNoTM0ibzw7ekJOjRKQMFGmYiQz9ffEmEZajyLfdEYU+3rRm4r/eZ0MwxtvLOI0Qx6z+aIwkwQTMk2ABEJxhnJkCGVKmFsJ61NFGZqciiYEZ/HlZdI8rzpX1cuHi0rtNo+jAMdwAmfgwDXU4B7q0AAGT/AMr/BmDa0X6936mLeuWPnMEfyB9fkDrDeRZg==</latexit>

d⇥d

<latexit sha1_base64="g3kFmBY1sNTtqAorl3+YD77L/iQ=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewav45ELx4xYYEEVtItXWhou5u2ayQbfoMXDxrj1R/kzX9jgT0o+JJJXt6bycy8MOFMG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUEeqTmMeqHWJNOZPUN8xw2k4UxSLktBWObqd+65EqzWLZMOOEBgIPJIsYwcZKfqPHHp565YpbdWdAy8TLSQVy1Hvlr24/Jqmg0hCOte54bmKCDCvDCKeTUjfVNMFkhAe0Y6nEguogmx07QSdW6aMoVrakQTP190SGhdZjEdpOgc1QL3pT8T+vk5roOsiYTFJDJZkvilKOTIymn6M+U5QYPrYEE8XsrYgMscLE2HxKNgRv8eVl0jyrepfVi/vzSu0mj6MIR3AMp+DBFdTgDurgAwEGz/AKb450Xpx352PeWnDymUP4A+fzB73Hjqg=</latexit>

T x
i

<latexit sha1_base64="tknQ9veyw5Ih0TqDcVB68+qQEf0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx68VihaQttLJvtpl26uwm7GyGE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTDjTxnW/nZXVtfWNzdJWeXtnd2+/cnDY0nGqCPVJzGPVCbGmnEnqG2Y47SSKYhFy2g7Hd1O//USVZrFsmiyhgcBDySJGsLGS3+yzx6xfqbo1dwa0TLyCVKFAo1/56g1ikgoqDeFY667nJibIsTKMcDop91JNE0zGeEi7lkosqA7y2bETdGqVAYpiZUsaNFN/T+RYaJ2J0HYKbEZ60ZuK/3nd1EQ3Qc5kkhoqyXxRlHJkYjT9HA2YosTwzBJMFLO3IjLCChNj8ynbELzFl5dJ67zmXdUuHy6q9dsijhIcwwmcgQfXUId7aIAPBBg8wyu8OdJ5cd6dj3nrilPMHMEfOJ8/v0uOqQ==</latexit>

T y
i

<latexit sha1_base64="EfKLheCQeQd0Jx0rJRR2tbUYysQ=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewav45ELx4xYYEEVtItXWjotpu2a4IbfoMXDxrj1R/kzX9jgT0o+JJJXt6bycy8MOFMG9f9dgorq2vrG8XN0tb2zu5eef+gqWWqCPWJ5FK1Q6wpZ4L6hhlO24miOA45bYWj26nfeqRKMykaZpzQIMYDwSJGsLGS3+ixh6deueJW3RnQMvFyUoEc9V75q9uXJI2pMIRjrTuem5ggw8owwumk1E01TTAZ4QHtWCpwTHWQzY6doBOr9FEklS1h0Ez9PZHhWOtxHNrOGJuhXvSm4n9eJzXRdZAxkaSGCjJfFKUcGYmmn6M+U5QYPrYEE8XsrYgMscLE2HxKNgRv8eVl0jyrepfVi/vzSu0mj6MIR3AMp+DBFdTgDurgAwEGz/AKb45wXpx352PeWnDymUP4A+fzB8DPjqo=</latexit>

T z
i

<latexit sha1_base64="Q+GQtisPmWKqu/DNE9W0uHHJ9PY=">AAAB+3icbVDLSgMxFL3js9bXWJdugkVwVWYKPpbFblxWsA9oh5JJ0zY0kwxJpjiU/oobF4q49Ufc+Tdm2llo64HAyTnnkpsTxpxp43nfzsbm1vbObmGvuH9weHTsnpRaWiaK0CaRXKpOiDXlTNCmYYbTTqwojkJO2+GknvntKVWaSfFo0pgGER4JNmQEGyv13VJdiqnkSXZDHKc22nfLXsVbAK0TPydlyNHou1+9gSRJRIUhHGvd9b3YBDOsDCOczou9RNMYkwke0a6lAkdUB7PF7nN0YZUBGkpljzBoof6emOFI6zQKbTLCZqxXvUz8z+smZngbzJiIE0MFWT40TDgyEmVFoAFTlBieWoKJYnZXRMZYYWJsB0Vbgr/65XXSqlb868rVQ7Vcu8vrKMAZnMMl+HADNbiHBjSBwBM8wyu8OXPnxXl3PpbRDSefOYU/cD5/AHMOlLc=</latexit>

Convolution layers

Figure 3.1: Schematic diagram of the CNN-based ML model for spin-torque
prediction of itinerant electron magnets. The spin configuration {Si} on a lattice is

first flattened into three arrays, corresponding to the three components of spins,
which are input to a series of ResNet blocks. Details of the ResNet are presented in

Fig. 3.2. The output of the ResNet blocks is processed through additional
convolutional layers, resulting in three arrays that, once reshaped, correspond to the

torques {Ti} driving the spin dynamics.

Each convolutional layer fm maps an input vector field V ∈ C∞(R2,Rd) onto an

output vector field W ∈ C∞(R2,Rk) by convolving a kernel tensor field hm(X) :=

h(X; θm), with trainable parameters θm, via the convolution operation:

W (r) :=

∫

R2

V (q)hm(r− q)dq. (3.7)

Each vector element of W then undergoes an activation function σm : R → R to

produce the output vector field A ∈ C∞(R2,Rk), called activation maps. In this

work, we use the rectified linear unit (ReLU) activation function [139]:

σm(x) := max(0, x). (3.8)

for m = 1, . . . , L − 1. Note that the final layer fL does not have an associated

activation function, or technically, σL(x) = x.
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Typically, the support of a kernel supp(hm), i.e., the region where hm has nonzero

values (also known as the receptive field), is limited to a small region (e.g., 5 × 5

lattice sites) such that the activation response W (r), and thus A(r), at position r is

influenced only by the input values in the close vicinity of r. This design follows the

principle of locality, where local physical quantities, such as the spin torque Ti, are

predominantly determined by the local environment:

Ti = T (Ci), (3.9)

where Ci represents the magnetic environment around site i, and the function T (·) is

modeled by the CNN. The size of the neighborhood Ci is determined by the sizes of

kernels and the number of convolutional layers.

The hierarchical structure of the convolutional layers enables multi-scale modeling

of the spin-torque relationship. Earlier layers represent local, primitive patterns, while

deeper layers represent more global, complex patterns. The stacked convolutional

layers also produce an effective receptive field (ERF) that grows with the depth of

the network, allowing the model to capture interactions over larger spatial extents.

A purely convolutional CNN, without fully connected layers, restricts the overall

receptive field to a predetermined lattice size, providing the benefit of built-in locality.

This design also enables scalability, as the CNN model can be applied to larger lattice

systems without retraining, making it naturally suited for studying systems based on

locality principles.
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<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+

<latexit sha1_base64="HpmuosjGUwdGG2JxeUW1BWHsVIw=">AAAB7HicbVBNS8NAFHzxs9avqkcvi0XwVJKC2mPBi8cKpi20oWy2r+3SzSbsboQS+hu8eFDEqz/Im//GbZqDtg4sDDPvsW8mTATXxnW/nY3Nre2d3dJeef/g8Oi4cnLa1nGqGPosFrHqhlSj4BJ9w43AbqKQRqHATji9W/idJ1Sax/LRzBIMIjqWfMQZNVbyuUxSM6hU3Zqbg6wTryBVKNAaVL76w5ilEUrDBNW657mJCTKqDGcC5+V+qjGhbErH2LNU0gh1kOXHzsmlVYZkFCv7pCG5+nsjo5HWsyi0kxE1E73qLcT/vF5qRo0gyxOhZMuPRqkgJiaL5GTIFTIjZpZQpri9lbAJVZQZ20/ZluCtRl4n7XrNu6ldP9SrzUZRRwnO4QKuwINbaMI9tMAHBhye4RXeHOm8OO/Ox3J0wyl2zuAPnM8fGNKO2g==</latexit>

input

<latexit sha1_base64="gliQc6hT7Cp6wABd9czjKN2iKiE=">AAAB7XicbVDLSgMxFL1TX7W+qi7dBIvgqswU1C4LblxWsA9oh5JJM21sZjIkd4Qy9B/cuFDErf/jzr8xbWehrQcCh3PuJfecIJHCoOt+O4WNza3tneJuaW//4PCofHzSNirVjLeYkkp3A2q4FDFvoUDJu4nmNAok7wST27nfeeLaCBU/4DThfkRHsQgFo2iltkoxSXFQrrhVdwGyTrycVCBHc1D+6g8VSyMeI5PUmJ7nJuhnVKNgks9K/dTwhLIJHfGepTGNuPGzxbUzcmGVIQmVti9GslB/b2Q0MmYaBXYyojg2q95c/M/rpRjW/UzENhGP2fKjMJUEFZlHJ0OhOUM5tYQyLeythI2ppgxtQSVbgrcaeZ20a1Xvunp1X6s06nkdRTiDc7gED26gAXfQhBYweIRneIU3RzkvzrvzsRwtOPnOKfyB8/kDA76PZQ==</latexit>

output

<latexit sha1_base64="Kp6SzBW8EvpE1bwBM/Fp/vepptw=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EmwFT2W3oPZY8OKxgv2AdinZNNuGZpMlyRbK0n/ixYMiXv0n3vw3pu0etPXBwOO9GWbmhQln2njet1PY2t7Z3Svulw4Oj45P3NOztpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044uV/4nSlVmknxZGYJDWI8EixiBBsrDVy34vcNi6lGfgURKaYDt+xVvSXQJvFzUoYczYH71R9KksZUGMKx1j3fS0yQYWUY4XRe6qeaJphM8Ij2LBXYLguy5eVzdGWVIYqksiUMWqq/JzIcaz2LQ9sZYzPW695C/M/rpSaqBxkTSWqoIKtFUcqRkWgRAxoyRYnhM0swUczeisgYK0yMDatkQ/DXX94k7VrVv63ePNbKjXoeRxEu4BKuwYc7aMADNKEFBKbwDK/w5mTOi/PufKxaC04+cw5/4Hz+ALiGkmc=</latexit>

1 ⇥ 1 conv
<latexit sha1_base64="H101NdYam/asvA8y3MhWch/Yvd0=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewG1BwDXrwZg3lAEsLspDcZMju7zMwKYckfePGgiFf/yJt/4yTZgyYWNBRV3XR3+bHg2rjut5Pb2Nza3snvFvb2Dw6PiscnLR0limGTRSJSHZ9qFFxi03AjsBMrpKEvsO1Pbud++wmV5pF8NNMY+yEdSR5wRo2VGveNQbHklt0FyDrxMlKCDPVB8as3jFgSojRMUK27nhubfkqV4UzgrNBLNMaUTegIu5ZKGqLup4tLZ+TCKkMSRMqWNGSh/p5Iaaj1NPRtZ0jNWK96c/E/r5uYoNpPuYwTg5ItFwWJICYi87fJkCtkRkwtoUxxeythY6ooMzacgg3BW315nbQqZe+6fPVQKdWqWRx5OINzuAQPbqAGd1CHJjAI4Ble4c2ZOC/Ou/OxbM052cwp/IHz+QNJPY0t</latexit>

OR
<latexit sha1_base64="awcfjwGjLqjS4S9RGTbpaXf1lNw=">AAAB83icbVDLSgMxFM34rPVVdekmWARXZaagdllw47KCfUA7lEx6pw3NJCHJCGXob7hxoYhbf8adf2M6nYW2Hrhwcs695N4TKc6M9f1vb2Nza3tnt7RX3j84PDqunJx2jEw1hTaVXOpeRAxwJqBtmeXQUxpIEnHoRtO7hd99Am2YFI92piBMyFiwmFFinTQQEksFOn8MK1W/5ufA6yQoSBUVaA0rX4ORpGkCwlJOjOkHvrJhRrRllMO8PEgNKEKnZAx9RwVJwIRZvvMcXzplhGOpXQmLc/X3REYSY2ZJ5DoTYidm1VuI/3n91MaNMGNCpRYEXX4UpxxbiRcB4BHTQC2fOUKoZm5XTCdEE2pdTGUXQrB68jrp1GvBTe36oV5tNoo4SugcXaArFKBb1ET3qIXaiCKFntErevNS78V79z6WrRteMXOG/sD7/AEoYZG+</latexit>

no operation

<latexit sha1_base64="kGzeQbRyjTx9Kes7f77tYTMIKSc=">AAAB63icbVBNS8NAEN34WetX1aOXxSJ4KklB7bHgxYOHKqYttKFstpN26e4m7G6EEvoXvHhQxKt/yJv/xk2bg7Y+GHi8N8PMvDDhTBvX/XbW1jc2t7ZLO+Xdvf2Dw8rRcVvHqaLg05jHqhsSDZxJ8A0zHLqJAiJCDp1wcpP7nSdQmsXy0UwTCAQZSRYxSkwuPcCdP6hU3Zo7B14lXkGqqEBrUPnqD2OaCpCGcqJ1z3MTE2REGUY5zMr9VENC6ISMoGepJAJ0kM1vneFzqwxxFCtb0uC5+nsiI0LrqQhtpyBmrJe9XPzP66UmagQZk0lqQNLFoijl2MQ4fxwPmQJq+NQSQhWzt2I6JopQY+Mp2xC85ZdXSbte865ql/f1arNRxFFCp+gMXSAPXaMmukUt5COKxugZvaI3RzgvzrvzsWhdc4qZE/QHzucPqjON+A==</latexit>

ReLU

<latexit sha1_base64="kGzeQbRyjTx9Kes7f77tYTMIKSc=">AAAB63icbVBNS8NAEN34WetX1aOXxSJ4KklB7bHgxYOHKqYttKFstpN26e4m7G6EEvoXvHhQxKt/yJv/xk2bg7Y+GHi8N8PMvDDhTBvX/XbW1jc2t7ZLO+Xdvf2Dw8rRcVvHqaLg05jHqhsSDZxJ8A0zHLqJAiJCDp1wcpP7nSdQmsXy0UwTCAQZSRYxSkwuPcCdP6hU3Zo7B14lXkGqqEBrUPnqD2OaCpCGcqJ1z3MTE2REGUY5zMr9VENC6ISMoGepJAJ0kM1vneFzqwxxFCtb0uC5+nsiI0LrqQhtpyBmrJe9XPzP66UmagQZk0lqQNLFoijl2MQ4fxwPmQJq+NQSQhWzt2I6JopQY+Mp2xC85ZdXSbte865ql/f1arNRxFFCp+gMXSAPXaMmukUt5COKxugZvaI3RzgvzrvzsWhdc4qZE/QHzucPqjON+A==</latexit>

ReLU

<latexit sha1_base64="/mlfgH2c/SdDD+UnyGvoFjXfG40=">AAAB+XicbVBNTwIxEO3iF+LXqkcvjWDiieySoBxJvHjERJAENqRbutDQbTftLAnZ8E+8eNAYr/4Tb/4bC+xBwZdM8vLeTGbmhYngBjzv2ylsbe/s7hX3SweHR8cn7ulZx6hUU9amSijdDYlhgkvWBg6CdRPNSBwK9hRO7hb+05Rpw5V8hFnCgpiMJI84JWClgetW6n3gMTO4XsFUyenALXtVbwm8SfyclFGO1sD96g8VTWMmgQpiTM/3EggyooFTwealfmpYQuiEjFjPUknssiBbXj7HV1YZ4khpWxLwUv09kZHYmFkc2s6YwNisewvxP6+XQtQIMi6TFJikq0VRKjAovIgBD7lmFMTMEkI1t7diOiaaULBhlWwI/vrLm6RTq/o31fpDrdxs5HEU0QW6RNfIR7eoie5RC7URRVP0jF7Rm5M5L86787FqLTj5zDn6A+fzB8T2km8=</latexit>

5 ⇥ 5 conv
<latexit sha1_base64="0fw9irZephE0SJhZOy/jKiAfoY0=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0kK1R4LXjxWsB/QhrLZTtulm03Y3Qgl9G948aCIV/+MN/+NmzYHbX0w8Hhvhpl5QSy4Nq777RS2tnd294r7pYPDo+OT8ulZR0eJYthmkYhUL6AaBZfYNtwI7MUKaRgI7Aazu8zvPqHSPJKPZh6jH9KJ5GPOqLHSoO7VCJtSKVHoYbniVt0lyCbxclKBHK1h+WswilgSojRMUK37nhsbP6XKcCZwURokGmPKZnSCfUslDVH76fLmBbmyyoiMI2VLGrJUf0+kNNR6Hga2M6Rmqte9TPzP6ydm3PBTLuPEoGSrReNEEBORLAAy4gqZEXNLKFPc3poloCgzNqaSDcFbf3mTdGpV76Zaf6hVmo08jiJcwCVcgwe30IR7aEEbGMTwDK/w5iTOi/PufKxaC04+cw5/4Hz+AO7fkPQ=</latexit>
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512 channels

Figure 3.2: Diagram of a ResNet block. The input to a ResNet block goes through
two pathways: the skip connection, where no operation is performed if input and

output have the same number of channels, or a 1× 1 convolution otherwise; and the
main connection, where two 5× 5 convolution-ReLU activation blocks are stacked.

The outputs of both pathways are then added together.
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The architecture of the ResNet block is shown in Fig. 3.2. Similar to the original

ResNet, the input undergoes two separate pathways. One pathway is a skip connec-

tion where the input is directly copied if no dimensionality change is required, or a

1 × 1 convolution if needed. The other pathway contains two convolutional layers,

each followed by ReLU activation [139], which develop feature representations of the

input vector field at each local neighborhood. The outputs of these two pathways are

then added to produce the overall output of the ResNet block. Note that we do not

employ batch normalization, as it was found to overly regularize the network, leading

to underfitting.

Our training and testing datasets consist of 60 independent spin dynamics sim-

ulations performed on a 48 × 48 triangular lattice. The parameters used for the s-d

Hamiltonian in Eq. (3.4) include a nearest-neighbor hopping term t1 = 1, which serves

as the reference unit for energy, and a third-neighbor hopping term t3 = −0.85 to

stabilize a triple-Q magnetic order that underpins the SkL phase [140]. The electron-

spin coupling constant is J = 1, the electron chemical potential is µ = −3.5, and

an external magnetic field Hext = 0.005 was applied to break time-reversal symmetry

and induce the SkL phase [140]. As discussed above, the exchange fields Hi acting

on the spins are obtained by solving the electron Hamiltonian. Specifically, using

Eq. (3.3) and the s-d Hamiltonian in Eq. (3.4), the exchange fields are given by

Hi = J
∑

α,β=↑,↓

σαβ ρiβ,iα, (3.10)
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where ρiα,jβ := ⟨c†jβciα⟩ represents the electron correlation function, or single-electron

density matrix. The kernel polynomial method (KPM) [90,141] was used to compute

the electron density matrix for generating the training dataset. KPM is significantly

more efficient compared to ED and is considered numerically exact when a large

number of Chebyshev polynomials and random vectors are used.

The timescale of the precessional dynamics of the LLG equation (3.1) is given

by t0 = (γJS)−1, where γ is the gyromagnetic ratio, J is the electron-spin coupling,

and S represents the magnitude of the localized magnetic moments. The damping

term introduces an additional timescale, tdamping = t0/α, which characterizes the rate

of energy dissipation, where α is a dimensionless damping coefficient. In this work,

simulation time is measured in units of t0, with a damping coefficient α = 0.05.

The initial conditions for the simulations are categorized into two types. The first

type, referred to as perturbed SkL, consists of a periodic SkL with random noise added

to the spins. The second type consists of randomly initialized spin configurations.

For each type of initial condition, a total of 30 simulations were performed, with each

simulation comprising 5,000 time steps. To integrate the LLG equation (3.1), we

used a semi-implicit second-order scheme [142] that preserves the spin length, with a

timestep ∆t = 0.1.

The spins and their corresponding exchange fields at all lattice sites were collected

every 10 steps of the simulation. To focus on training for the electron-induced ex-

change field, the external constant field Hext = 0.005 in the z direction was removed.
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Figure 3.3: Predicted spin torque components (Tx, Ty, Tz) versus ground truth
components from the testing set. The red-dotted diagonal lines indicate perfect

prediction. The top row shows the prediction results based on spin configurations
obtained from LLG simulations of a perturbed SkL. Results from LLG simulations

with random initial states are shown in the bottom row.

The field Hi was then decomposed into components parallel and perpendicular to

the spin direction, and only the perpendicular component—equivalent to the torque

Ti—was retained, as the parallel component has no effect on the evolution of the spin

configuration and is approximately two orders of magnitude larger than the perpen-

dicular component. The perpendicular fields were subsequently normalized to have a

mean magnitude of 1 over the entire dataset. 70% of the entire dataset was used for

training, while the remaining 30% was used for validation. The split of the dataset

was stratified to ensure that both the training and testing sets contained the same

proportion of the two types of simulations.

The triangular-lattice s-d Hamiltonian in Eq. (3.4) is invariant under two indepen-
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dent symmetry groups: the SO(3)/SU(2) rotation of spins and the D6 point group

of the triangular lattice. The rotation symmetry refers to the global rotation of local

magnetic moments Si → R · Si (treated as classical vectors), along with a simul-

taneous unitary transformation of the electron spinor ĉiα → Ûαβ ĉiβ, where R is an

orthogonal 3 × 3 matrix and Û = Û(R) is the corresponding 2 × 2 unitary rotation

operator. The ML model, corresponding to an effective force-field model obtained by

integrating out the electrons, must preserve the SO(3) rotation symmetry of the spins,

implying that under a uniform rotation R of all spins in the neighborhood, the ML-

predicted spin torques should undergo the same rotation transformation Ti → R·Ti.

Under a symmetry operation g of the D6 point group centered at a lattice point, both

spins and torques transform according to the D6 point group as follows: Si → Sj and

Ti → Tj, where the lattice points rj = R(g) · ri, and R(g) denotes the 3× 3 matrix

corresponding to g.

To incorporate both symmetries into the CNN model, we introduced data aug-

mentation during the training phase. Specifically, for each input spin configuration

and its corresponding torque field, a random SO(3) rotation was applied to the spins

Si, and a random D6 symmetry operation was applied to the lattice points. The same

symmetry operations, for both spin-space and real-space lattice, were also applied to

the torque fields {Ti}. These additional symmetry-generated input/output config-

urations were included alongside the original data for supervised training. Unlike

previous ML models, where the symmetry is explicitly included through descriptors,
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our data-driven approach enforces the symmetry of the itinerant electron Hamiltonian

statistically.

Since the torques in the dataset could differ by at most an order of magnitude,

we found that conventional mean absolute error or mean square error loss functions

did not perform well. Instead, we adopted a mean percentage absolute loss function:

L =
1

N

N∑

i=1

|T xi − T̂ xi |+ |T yi − T̂ yi |+ |T zi − T̂ zi |
|T̂i|

, (3.11)

where N is the total number of lattice sites within each batch, summed across all lat-

tices, T̂i is the ground truth field vector at the i-th lattice site, and Ti = (T xi , T
y
i , T

z
i )

is the predicted field vector.

The model was trained using the Adam optimizer [143], with an initial learning

rate of 10−3, which was later reduced to 10−6 when the loss plateaued on the testing

set. No regularization methods, such as dropout or weight decay, were used, and

there was no evidence of overfitting when comparing loss values between the training

and testing sets. The model and training process were implemented in PyTorch [144],

and training was performed on an Nvidia A100 GPU for approximately 72 hours.

The spin torques Ti predicted by the trained CNN model are compared against

the ground truth in Fig. 3.3 using configurations from the test dataset. Two types

of testing data are employed for this benchmark: LLG simulations of an initially

perturbed SkL state, and LLG simulations starting from random spin configurations.

In both cases, the predicted torque components closely follow the ground truth with
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(b)(a)

Figure 3.4: (a) Comparison of predicted field vector magnitude against the ground
truth. The red line indicates perfect agreement between predictions and ground

truth, while the outer red dotted line represents a deviation of 10−2 from the ground
truth magnitude, and the inner one represents a deviation of 10−3. The color

indicates the logarithmic density. (b) Angular difference between the ground truth
field vector and the predicted field vector.

comparable variance across the entire range. It is notable that the torque component

values in the random spin case span a range nearly twice as large as that of the

SkL case. As expected, the ML model performs better for the SkL simulations since

these spin configurations correspond to a relatively small and specialized subset of

the overall state space. Nevertheless, a reasonably good agreement was obtained even

for the test dataset with completely random initial spins.

We further examine the magnitude of the predicted torques compared to the

ground truth, as well as the angle between the predicted field vector and the ground
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truth vector in Fig. 3.4. Again, overall satisfactory agreement was observed, with the

majority of predictions closely aligned with or symmetrically distributed around the

ground truth values. It should be noted that, due to the distortion introduced by the

logarithmic function, the same deviation from the ground truth at large and small

magnitudes may appear asymmetric, creating an apparent "bias" towards smaller

values. To address this, two red dotted lines indicating constant deviations of 10−2

(outer) and 10−3 (inner) have been added in Fig. 3.4(a). Even at large magnitudes,

where the error of the ML model is greatest, the difference in field vector magnitude

is almost always less than 10−2. At smaller magnitudes, the difference in field vector

magnitude is typically less than 4×10−3, with most values around 10−3. No noticeable

bias was found in our ML prediction results. The ML-predicted vectors are also well

aligned with the ground truth field vectors. As shown in Fig. 3.4(b), most vectors

exhibit an angular difference of less than 10◦, and it is extremely rare for a predicted

vector to deviate by more than 30◦ from its ground truth counterpart.

3.3.2 Lattice Descriptor

To ensure strict symmetry preservation for the triangular lattice, which belongs to the

D6 point group, we employ bond and chirality variables around a spin Si as illustrated

in Fig. 3.5. These variables provide a basis for a high-dimensional representation of

the D6 group, which can be decomposed into its IRs. Specifically, linear combinations

of bond and chirality variables form the basis of each IR, denoted by fΓ
r , where Γ

labels the IR and r indicates the multiplicity within the IR.
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Figure 3.5: The architecture for integrating a NN with LLLG dynamics simulation
of the s-d model using the BP scheme. Under the adiabatic approximation, for a
given local spin during an LLG step, we train a fully-connected NN, denoted as
yθ(x), to predict the local energy Ei based on the configuration {Ci} of the

surrounding spins, resulting in Ei = yθ(x|{Ci}). By combining the BP scheme with
Eq.(3.3) and Eq.(3.6), the local exchange field {Hi} is computed through automatic

differentiation of the total energy E =
∑

iEi. The input x for the NN includes
descriptors such as the bond {bjk} and chirality {χjmn}, which are selected to

maintain the symmetry properties of the system.
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Figure 3.6: Examples of different neighborhood spin configurations used to compute
the symmetry-invariant descriptors. (a) The six bond variables bj = Si · Sj, where
{Sj||ri − rj| = a}, form the basis of a six-dimensional reducible representation of the

D6 point group. (b) Similarly, the six bond variables bj = Si · Sj, where
{Sj||ri − rj| =

√
3a}, form the basis of a reducible six-dimensional representation of

D6. (c) The twelve bond variables bj = Si · Sj, where {Sj||ri − rj| =
√
7a}, form the

basis of a twelve-dimensional reducible representation. (d) The six scalar chirality
variables χj = Si · Sm × Sn, where {Sm,n||ri − rm,n| = a}, form the basis of a

six-dimensional reducible representation.

Moreover, the generalized coordinates {Gl}, which are invariant under both lattice

symmetry operations and SO(3) rotations, can be derived from the amplitudes and

relative phases of these IR bases. In this framework, the generalized coordinates {Gl}

serve as inputs to the NN to predict the local energy Ei. Both the input and output

of the NN are designed to ensure that the symmetries of the s-d model are preserved,

which is crucial for obtaining physically consistent results.

Next, the magnetic descriptor is derived from the local spin environment through

the following process.

{Ci} → {bjk, χjmn} → {ξΓr } → {Gl = pΓr , β
Γ
r } (3.12)

where {Ci} represents the spin configurations in the neighborhood of i-th site, {bjk, χjmn}

are the bond bjk = Sj×Sk and chirality variable χjmn = Sj ·Sm×Sn calculated from
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the {Ci}, {ξΓr } comprises basis functions composed of IRs, and {Gl = pΓr , β
Γ
r } repre-

sents the generalized variables, or the magnetic descriptor, which serve as inputs to

the NN model.

The bond, chirality, and local energy variables determined by the ML model pos-

sess invariance under any spin rotation. Consequently, the generalized variables {Gl}

that are constructed using the IRs are only required to maintain the symmetries of

the triangular lattice. However, as the number of spins in the neighborhood increases,

the number of bond and chirality variables also increases factorially. Therefore, only

bond and chirality variables that meet specific criteria are utilized, as follows:




bij = Si · Sj |ri − rj| ≤ r1

bmn = Sm · Sn |ri − rm,n| ≤ r1

χimn = Si · Sm × Sn |rm − rn| ≤ r2

(3.13)

where the cutoff radii are set to r1 = 6a and r2 = 2a (a is the lattice constant) in our

implementation.

The incorporation of discrete point group symmetry into the descriptor is achieved

using the bispectrum method, which involves the use of triple products of the basis

functions or coefficients of the IRs of the symmetry group. To obtain all the IR

bases of the magnetic environment, the finite reducible representation, as determined

by the bond and scalar chirality variables previously discussed, is considered. As

the distance between a bond or chirality variable from the central site is maintained

under the operations of the discrete symmetry group, the IRs are calculated in blocks
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corresponding to bonds or chiralities of a fixed distance. For the triangular lattice,

the dimension of each block is either 6 or 12. For example, consider the case shown

in Fig. 3.6(a), where the 6 bonds bj = Si · Sj are between the nearest neighbor spins

of i-th site {Sj||ri − rj| = a} and spin Si. This reducible representation {bj} can be

decomposed into 6 = A1

⊕
B1

⊕
E1

⊕
E2 with the following basis:

ξA1 = b1 + b2 + b3 + b4 + b5 + b6

ξB1 = b1 − b2 + b3 − b4 + b5 − b6

ξE1
x = 1

2
(b1 − b2 − 2b3 − b4 + b5 + 2b6)

ξE1
y =

√
3
2
(−b1 − b2 + b4 + b5)

ξE2
x = 1

2
(b1 + b2 − 2b3 + b4 + b5 − 2b6)

ξE2
y =

√
3
2
(b1 − b2 + b4 − b5) (3.14)

Similarly, for the case shown in Fig. 3.6(b), the 6 bonds bj = Si · Sj connect the

second-nearest neighbor spins of i-th site {Sj||ri − rj| =
√
3a} and spin Si. This

reducible representation {bj} can be decomposed into 6 = A1

⊕
B2

⊕
E1

⊕
E2 with

the following basis:

ξA1 = b1 + b2 + b3 + b4 + b5 + b6

ξB2 = b1 − b2 + b3 − b4 + b5 − b6

ξE1
x =

√
3
2
(b2 + b3 − b5 − b6)

ξE1
y = 1

2
(2b1 + b2 − b3 − 2b4 − b5 + b6)
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ξE2
x = 1

2
(2b1 − b2 − b3 + 2b4 − b5 − b6)

ξE2
y =

√
3
2
(−b2 + b3 − b5 + b6) (3.15)

In the case shown in Fig. 3.6(c), the 12 bonds bj = Si · Sj connect the fourth-

nearest neighbor spins of i-th site {Sj||ri − rj| =
√
7a} and spin Si. This reducible

representation {bj} can be decomposed into 12 = A1

⊕
A2

⊕
B1

⊕
B2

⊕
2E1

⊕
2E2

with the following basis:

ξA1 = b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 + b11 + b12

ξA2 = b1 − b2 + b3 − b4 + b5 − b6 + b7 − b8 + b9 − b10 + b11 − b12

ξB1 = b1 − b2 − b3 + b4 + b5 − b6 − b7 + b8 + b9 − b10 − b11 + b12

ξB2 = b1 + b2 − b3 − b4 + b5 + b6 − b7 − b8 + b9 + b10 − b11 − b12

ξE1
x = 1

2
(2b1 − 2b2 + b3 − b4 − b5 + b6 − 2b7 + 2b8 − b9 + b10 + b11 − b12)

ξE1
y =

√
3
2
(−b3 + b4 − b5 + b6 + b9 − b10 + b11 − b12)

ξE1
x

′
=
√
3
2
(b3 + b4 + b5 + b6 − b9 − b10 − b11 − b12)

ξE1
y

′
= 1

2
(2b1 + 2b2 + b3 + b4 − b5 − b6 − 2b7 − 2b8 − b9 − b10 + b11 + b12)

ξE2
x = 1

2
(2b1 + 2b2 − b3 − b4 − b5 − b6 + 2b7 + 2b8 − b9 − b10 − b11 − b12)

ξE2
y =

√
3
2
(−b3 − b4 + b5 + b6 − b9 − b10 + b11 + b12)

ξE2
x

′
=
√
3
2
(b3 − b4 − b5 + b6 + b9 − b10 − b11 + b12)

ξE2
y

′
= 1

2
(2b1 − 2b2 − b3 + b4 − b5 + b6 + 2b7 − 2b8 − b9 + b10 − b11 + b12) (3.16)

Note that the chirality variable changes sign under certain lattice rotations, such
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as χjmn = −χjnm. For the 6 chirality variables χj = Si·Sm×Sn where {Sm,n||ri−rj| =

a}, shown in Fig. 3.6(d), this reducible representation {χj} can be decomposed into

6 = A2

⊕
B1

⊕
E1

⊕
E2 with the following basis:

ξA2 = χ1 + χ2 + χ3 + χ4 + χ5 + χ6

ξB1 = χ1 − χ2 + χ3 − χ4 + χ5 − χ6

ξE1
x = 1

2
(2χ1 + χ2 − χ3 − 2χ4 − χ5 + χ6)

ξE1
y =

√
3
2
(−χ2 − χ3 + χ5 + χ6)

ξE2
x =

√
3
2
(χ2 − χ3 + χ5 − χ6)

ξE2
y = 1

2
(2χ1 − χ2 − χ3 + 2χ4 − χ5 − χ6) (3.17)

By applying the same procedures to all invariant blocks, one can obtain all the

IRs of the bond/chirality variables {bjk, χjmn} in the neighborhood {Ci}. For ease

of use, the basis functions of a given IR in the decomposition are arranged into

a vector {ξΓr }, where Γ labels the IR and r enumerates its multiple occurrences.

With these basis functions, a set of invariants known as the power spectrum, pΓr =

|ξΓr |2, can be immediately obtained, representing the amplitudes of each individual

IR coefficient. However, it is important to note that feature variables based solely

on the power spectrum are incomplete, as they ignore the relative phases between

different IRs. For instance, the relative "angle" between two IRs of the same type,

cosθ = (ξΓr1 · ξΓr2)/|ξΓr1||ξΓr2 |, is also an invariant of the symmetry group. Without

this phase information, the NN model may incur additional error due to spurious
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symmetry, as two IRs can rotate independently of each other.

A comprehensive approach for incorporating all necessary invariants, encompass-

ing both amplitudes and relative phases, is the bispectrum method. By utilizing the

coefficients of all relevant IRs {ξΓr }, the bispectrum coefficients can be determined as

follows:

BΓ,Γ1,Γ2
r,r1,r2

= CΓ;Γ1,Γ2

α,β,γ ξΓr,αξ
Γ1
r1,β

ξΓ2
r2,γ

(3.18)

where CΓ;Γ1,Γ2

α,β,γ are the Clebsch-Gordan coefficients of the point group. To address

the issue of an excessive number of bispectrum coefficients, a modified descriptor has

been implemented in this study. This descriptor utilizes reference basis functions ξΓref

for each IR type of the point group. These reference basis functions are obtained by

averaging large blocks of bond and chirality variables, thereby rendering them less

susceptible to minor variations in the neighboring spin configurations. The relative

"phase" of an IR is then defined as the projection of its basis functions onto the

reference basis, βΓ
r = (ξΓr ·ξΓref)/|ξΓr ||ξΓref|. The generalized variables are a combination

of the power spectrum coefficients and the relative phases, {Gl = pΓr , β
Γ
r }. Using

the aforementioned approach, we ensure that the input and output of the NN model

remain invariant under the operations of the system’s symmetry.

3.3.3 Neural Network

As shown in 3.5, a multilayer perceptron (MLP) NN model fθ(x) was implemented

using PyTorch. The model consisted of eight hidden layers, each containing a specific
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number of neurons, namely 2048× 1024× 512× 256× 128× 64× 64× 64. The input

layer of the model was determined by the number of feature variables {Gl}, which

in this case was 1806. The output layer of the model consisted of a single neuron,

which was used to predict the local energy Ei. The ReLU activation function was

employed between layers of the NN model. Given that the torque Ti = Si × Hi is

the key component to derive the LLG dynamics, the MSE loss function used in the

training of the model was

L =
N∑

i=1

|Si × Hexact
i − Si × HML

i |2 (3.19)

The optimization of the NN parameters, θ, was conducted using the Adam stochastic

optimization algorithm with a learning rate that decreased exponentially as the num-

ber of training iterations increased, starting at 0.1 and decreasing to 0.0001. During

the initial phase of training, the learning rate was progressively decreased by an or-

der of magnitude for each increment of 10 epochs, up to a maximum of 30 epochs.

Specifically, for the first 10 epochs, the learning rate was 0.1, for the next 10 epochs,

the learning rate was 0.01, and for the final 10 epochs, the learning rate was 0.001.

Subsequently, for all remaining epochs, the learning rate was fixed at 0.0001. To train

the neural network, a dataset consisting of 40,000 snapshots obtained from precise

simulations was utilized, and the training process was conducted over 200 epochs. To

prevent overfitting, a 5-fold cross-validation strategy was employed.

Through training a NN model with 40,000 spin configurations from 40 independent
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Figure 3.7: (a) Comparison between the exact local exchange force field H⊥i,exact and
the NN prediction H⊥i,ML perpendicular to the same site spin Si with the training

datasets (blue) and the test datasets (orange). (b) Display examples of the
intermediate configuration for the skyrmion phase from the ML-LLG simulations.

(c) Demonstrate the structure factor of the final state of skyrmion phase in the first
BZ.

simulations, we achieved a model with a MSE of 9.82 × 10−7 and observed no signs

of overfitting, as depicted in Fig. 3.7(a). The intermediate spin configuration, which

evolved from randomly initialized spins, clearly illustrates a swirling configuration of

chiral spin structures, consistent with the skyrmion order, as shown in Fig. 3.7(b).

Since there are three degenerate wave factors, we expect six structure factor (defined

in the next section) peaks in the first Brillouin zone (BZ), corresponding to the k-point

Q(π/3, 0), due to the unit cell size of 12, as depicted in Fig. 3.7(c).

3.4 Results

A critical benchmark for evaluating the performance of the trained ML model is its

ability to accurately capture the dynamical evolution of the itinerant spin model.

To assess this, we incorporated the trained CNN and the NN with descriptors into

LLG dynamics simulations and compared the outcomes with those obtained from
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LLG simulations using the KPM [90, 141]. Specifically, we focused on simulations

of a thermal quench process, where an initially random magnetic configuration was

quenched to nearly zero temperature at time t = 0. The parameters of the s-d

Hamiltonian were chosen to stabilize a spontaneous SkL ground state. Notably, the

emergence of the SkL breaks both spin-rotation symmetry and lattice translational

symmetry. The periodicity of this spatial modulation, particularly the lattice constant

of the SkL, is determined by the underlying electron Fermi surface. While an SkL

state can be conceptually described as a periodic array of particle-like spin textures,

in practice, SkL phases often emerge due to an instability induced by quasi-nesting

of the electron Fermi surface, leading to a multiple-Q magnetic order [140,145,146].

In this study, the geometry of the Fermi surface at a chemical potential of µ = −3.5

exhibits significant segments that can be connected by three wave vectors: Q1 =

(π/3a, 0) and Q2,3 = R±2π/3 · Q1, which are related by symmetry operations of the

D6 group. Here, a represents the lattice constant of the underlying triangular lattice.

This configuration indicates that the maximum energy gain through electron-spin

coupling is achieved by spin helical orders associated with one of these three wave

vectors. Further analysis suggests that the electron energy is minimized when all

three wave vectors order simultaneously, resulting in the formation of an emergent

triangular lattice of skyrmions.
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3.4.1 Dynamics for Convolutional Neural Network Model

While the trained CNN model yields relatively accurate predictions for spin torques,

small residual errors are still present, as described in the previous section. Sta-

tistically, these errors resemble the stochastic noise term, τi(t), in the LLG equa-

tion (3.1). These site-dependent, fluctuating random torques are akin to thermal

forces in Langevin dynamics, both arising from thermal fluctuations induced by cou-

pling to a thermal bath. Consequently, while the temperature in the ML-LLG sim-

ulations was set to exactly zero, a very low but nonzero temperature T = 0.001 was

introduced in the exact LLG dynamics to mimic the prediction error.

The relaxation of the magnet following the thermal quench is primarily governed

by the formation of a triangular SkL. A perfect SkL is characterized by six Bragg

peaks at q = ±Q1, ±Q2, and ±Q3 in momentum space. However, due to the local

nature of spin interactions, the crystallization of skyrmions is inherently incoherent.

Small skyrmion crystallites form randomly, separated by large domains of disordered

structures. To quantitatively characterize this crystallization process, we compute the

time-dependent spin structure factor, defined as the square of the Fourier transform

of the spin field:

S(q, t) =
〈∣∣∣∣

1

N

N∑

i=1

Si(t) exp(iq · ri)
∣∣∣∣
2〉
, (3.20)

where ⟨· · · ⟩ denotes averaging over the thermal ensemble as well as initial conditions.

The structure factor represents the Fourier transform of the spin-spin correlation
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Figure 3.8: Comparison of spin structure factors obtained by averaging 30
independent LLG simulations based on KPM (left) and the CNN model (right). The
same set of random initial conditions on a 48× 48 triangular lattice was used in both

simulations. The red dashed lines indicate the first BZ of the momentum space.
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Figure 3.9: Snapshot of the spin configuration at the end of the LLG simulation
with random initial conditions on a 48× 48 triangular lattice.

function in real space and can be directly measured in neutron scattering experiments.

The spin structure factors at various times after the quench, obtained from LLG

simulations based on both KPM and CNN models, are shown in Fig. 3.8. Due to the

stochastic nature of these simulations, the results were obtained by averaging over

30 independent runs. Overall, the LLG simulations using the trained CNN model

exhibit strong agreement with those obtained from the numerically exact KPM.

Both simulations reveal that a ring-like structure emerges rapidly in the structure

factor following the quench. The radius of the ring is approximately equal to the
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magnitude of the three nesting wave vectors Qη, indicating the initial formation of

skyrmions. As the system relaxes toward equilibrium, the ring-like structure becomes

more distinct, and spectral weight begins to concentrate at the six spots corresponding

to the ±Qη wave vectors. Physically, the emergence of the six broad segments reflects

the growth of SkL domains. The size of these intermediate skyrmion crystallites can

be inferred from the width of the six spots. However, both simulations indicate that

even at a late stage of equilibration, the structure factor exhibits only six diffuse

peaks at the nesting wave vectors, rather than the sharp Bragg peaks characteristic

of a perfect SkL. The broad peaks at the late stage of phase ordering suggest an

arrested growth of SkL domains in real space. A snapshot of the real-space spin

configuration at t = 104 after the quench is shown in Fig. 3.9. The snapshot reveals

small triangular clusters of skyrmions coexisting with stripe-like structures of varying

orientations. These stripes, or helical spin states, correspond to the single-Q magnetic

order, which represents metastable states of the s-d model.

This intriguing freezing phenomenon can be partially attributed to the frustra-

tion electron-mediated spin interactions. Another contributing factor is the degen-

eracy between skyrmions of opposite vorticity, or circulation of in-plane spins. The

two opposite circulations correspond to topological winding numbers w = ±1 for the

skyrmions. As previously discussed, spin-rotation symmetry is decoupled from the lat-

tice in the s-d Hamiltonian (3.4), which serves as a minimal model for centrosymmetric

itinerant magnets without spin-orbit coupling. Consequently, skyrmions with clock-
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Figure 3.10: CNN-based LLG simulation on a 96× 96 lattice demonstrating the
restoration of a perturbed SkL. The CNN model was originally trained on a 48× 48

lattice. The initial spin configuration is given by the SkL ansatz (3.21) with
additional site-dependent random phases and amplitudes of Sz.

wise circulation are energetically degenerate with those exhibiting counter-clockwise

circulation. This degeneracy implies that SkL domains of opposite circulations are

nucleated with roughly equal probability after the thermal quench, and subsequent

annihilation of skyrmions with opposite vorticity prevents the formation of a large,

coherent SkL.

As discussed in Sec. 3.3.1, the CNN model, due to its locality property and fixed-
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size kernels, can be directly scaled to larger lattice systems without retraining, en-

abling large-scale dynamical simulations beyond conventional approaches. Here, we

demonstrate the scalability of the CNN spin-torque model by applying it to LLG sim-

ulations of large-scale SkL phases. Specifically, we conducted LLG simulations of a

perturbed SkL state on a 96×96 lattice using a CNN model trained from simulations

on a 48×48 lattice. The triangular SkL, characterized by three nesting wave vectors,

can be understood as a superposition of three helical spin orders. Explicitly, a perfect

SkL can be approximated by the following ansatz [140,146]:

Si ∼
(
cosQ1i −

1

2
cosQ2i −

1

2
Q3i

)
ê1

+

(√
3

2
cosQ2i −

√
3

2
cosQ3i

)
ê2 (3.21)

+ [A (sinQ′1i + sinQ′2i + sinQ′3i) +M ] ê3,

where ê1,2,3 are three orthogonal unit vectors, Qηi = Qη · ri, and Q′η,i = Qη,i + ϕ are

phase factors of the three helical orders, with ϕ, A, and M as fitting parameters. To

demonstrate that the ML model can indeed stabilize the SkL, which is the ground

state of our chosen s-d Hamiltonian, we initialize the system with a perturbed ar-

ray of skyrmions, as shown in Fig. 3.10(a). The randomness in the initial state was

introduced by allowing site-dependent parameters ϕi, Ai, and mi, which were ran-

domly generated in the SkL ansatz (3.21). Contrary to the completely random spin

configurations used in the previous dynamical benchmark, this initial state preserves

a coherent structure of skyrmion winding numbers. Since these topological numbers
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Figure 3.11: Evolution of the structure factor over time for a Skyrmion initial
condition in a simulation extending far beyond the training duration. The dashed
black line indicates the duration of the training simulation. Our ML-based LLG

simulation maintains a stable structure factor for more than five times the duration
of the training simulation.

must be conserved, the relaxation of the system is free from random annihilation of

skyrmions. As shown in Fig. 3.10, our ML-based LLG simulations successfully restore

and stabilize a nearly perfect SkL over an extended simulation period.

We further investigate the scalability in the temporal domain by extending our

ML-based LLG simulation well beyond the training duration. Fig. 3.11 shows a nearly

constant structure factor long after the training duration. While a significant reduc-

tion in the structure factor was observed between t = 15, 000 and t = 23, 000, it

quickly recovered to its original stable value (S(q, t) ≈ 305). These temporal fluctua-

tions can be attributed to the prediction errors of the ML model, which, as previously

discussed, play a role akin to stochastic noise in Langevin-type dynamics simulations.
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Our results demonstrate the robustness of the SkL against small random perturba-

tions. Notably, this benchmark underscores the scalability of our ML models not

only in spatial domains (larger lattices) but also across temporal scales (significantly

longer simulation times).

To incorporate the underlying symmetries of a physical system into an ML model,

appropriate biases (prior knowledge) need to be introduced during the statistical

learning process. Two primary approaches to achieve this are: (i) data augmentation

based on the symmetry group of the system, and (ii) constructing symmetry-invariant

descriptors or equivariant neural network architectures with respect to the symme-

try group. These approaches correspond to introducing observational and inductive

biases, respectively, in the context of physics-informed ML (see, e.g., [147–152]).

As discussed in Section 3.3.1, the local symmetries of our system, namely spin-

space and real-space lattice symmetries (also known as internal (gauge) and space-

time symmetries [153]), consist of G-valued fields over the underlying lattice, where

G = SO(3)×D6. In this work, we adopted the data augmentation approach to enforce

the symmetry constraints for the reasons explained below.

First, we briefly summarize the theoretical justification for how data augmen-

tation during the training phase introduces the aforementioned symmetries into the

supervised learning process (see [149,154,155] for details). For simplicity, let (S,T) =

({Si} , {Ti}) denote a pair of spin configurations and their corresponding torque field,

collectively represented as F. Our training data F1, · · · ,Fn consist of independent
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identically-distributed samples from a probability distribution P over the space of all

spin-torque fields. It is fundamentally important that the probability distribution P

remains invariant under the action of each local symmetry g ∈ G , where G denotes

the space of all local symmetries of the system1. Thus, the data augmentation process

can be viewed as enriching our set of samples from the probability distribution P by

adding transformed spin-torque fields g · F, g ∈ G.

During training, at each step t, a minibatch Bt of spin-torque samples (S,T) of

size |Bt| is selected, and a random local symmetry gt,b ∈ G is applied to each spin

Sb and torque Tb field, b ∈ Bt. Then, according to the stochastic gradient descent

(SGD) algorithm, the parameters θ of the CNN model fθ are updated as

θt+1 = θt −
η

|Bt|
∑

b∈Bt

∇θL
(
fθ(gt,b · Sb) , (gt,b · T̂b)

)
, (3.22)

where L denotes the loss function given by Eq. (3.11), and η is the learning rate.

In other words, the augmented SGD can be interpreted as the minimization of the

empirical risk associated with the following augmented loss function:

∫

G
L
(
fθ(g · S) , (g · T̂)

)
dQ(g) , (3.23)

where the average is taken along the entire orbit of the group action with respect

to a probability distribution Q over G. It has been proven that data augmentation

based on the underlying symmetry group reduces the variance of general estimators
1The action of a local symmetry g ∈ G on a spin S and a torque T field is the induced transfor-

mation by g . We denote it by g · F := (g · S , g ·T).
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Figure 3.12: Distribution of the equivariance error
erreq := fCNN({RSi})−RfCNN({Si}), where R is an arbitrary rotation. The overall

prediction error ("predicted torque" minus "ground truth torque") on the test
dataset is superimposed for comparison. The equivariance error is significantly
smaller than the overall prediction error, indicating that the model effectively

preserves the underlying symmetry of the physical system.

and improves their generalizability [149].

The theoretical justification above can also be validated empirically. Fig. 3.12

shows the typical prediction error (blue), representing the difference between pre-

dicted and ground truth torques, and the equivariance error (orange), defined as

fθ(g · S) − g · fθ(S). As observed in the figure, the equivariance error is smaller

than the typical prediction error, indicating that the data augmentation employed

effectively preserves the underlying symmetry of the physical system.

To further validate the locality principle, we analyze the receptive field of our CNN

model in this section. As discussed in Section 3.3.1, the receptive field of a convolution
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Figure 3.13: ERFs of the ML model. Since both the input and output tensors at
each lattice site have three components, there are a total of nine ERFs

corresponding to the nine partial derivatives of the three output torque components
with respect to the three input spin components. The sum of the absolute values of

these derivatives is presented in this figure, with darker pixels indicating smaller
derivative values. The red line roughly traces the nonzero value regions of the ERF.
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layer fm is defined as the support supp(hm) of the corresponding convolution kernel

hm, i.e., the region where the function values of hm are nonzero. The receptive field

of the entire CNN model is computed as the Minkowski sum of the receptive fields

of individual convolution layers, or RF = supp(h1)⊕ · · · ⊕ supp(hL). For our model,

consisting of 10 layers in depth, each comprising 5× 5 convolution kernels with stride

1, the theoretical receptive field size is calculated to be 41. This implies that, in

principle, the spin directions within a 41-site neighborhood can influence the torque

prediction at lattice site i.

However, the naive computation of the receptive field size may be misleading, as

the kernel size of a convolution layer indicates only the theoretical maximum of the

receptive field. The actual region of nonzero values may be significantly smaller than

the theoretical receptive field size. To address this, we used the approach of [156] to

compute the extiteffective receptive field size, within which the function values are

practically nonzero. Fig. 3.13 presents the result of this calculation for the trained

CNN model. The red hexagonal line delineates the region within which function values

are practically nonzero, while values outside this region are essentially zero. The

grayscale values inside the hexagon indicate different levels of influence of neighboring

spins on the computed torque vector. At lattice site i, located at the center of the

red hexagon, the weighting factor is largest, indicating that Ti is predominantly

determined by Si. The immediate neighbors, or 1-neighborhood N1(i), also exhibit

high intensity values, implying that the relative configuration of the spin direction Si
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with respect to its neighboring spins Sj at j ∈ N1(i) has a significant influence on

the predicted torque Ti. Similarly, the spin directions in the 3-neighborhood have a

substantial influence, with smaller influences detectable up to the 6-neighborhood.

These results are consistent with previous ML spin-torque models based on symmetry-

invariant descriptors [98,99], which demonstrate that the spin dynamics of similar s-d

models can be accurately captured by bond-product BP-type models employing fully

connected NNs with inputs from neighborhoods up to rc ∼ 5 lattice constants. Phys-

ically, as discussed earlier, the finite size of the ERF is due to the local nature of

spin torques. However, the range of locality can only be indirectly inferred from ex-

act calculations. In practice, the cutoff radius is treated as an ad hoc parameter in

BP-type ML models or determined through trial and error. It is noteworthy that the

CNN model provides a systematic and rigorous method for determining this crucial

physical characteristic of electronic models.

3.4.2 Dynamics for Neural Network Model with Descriptor

After concluding the preliminary phases of experimentation as described in Sec. 3.3.3,

our investigation progressed to examining the skyrmion phase to further assess the

NN’s performance with descriptors in analyzing ML-LLG dynamics. Initially, we

compared the structure factor along the high-symmetry path Γ(0, 0) → K(4π
3
, 0) →

M(2π, 0) by executing 50 independent simulations employing both the ML-LLG and

KPM-LLG methodologies. These simulations, initiated from random spin configura-

tions, were conducted with LLG parameters set to dt = 0.1 and α = 0.2 for both
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(d) t = 4000

Figure 3.14: Comparison of the structure factor S(q) along the high-symmetry path
Γ(0, 0) → K(4π

3
, 0) →M(2π, 0) obtained from KPM-LLG and ML-LLG simulations

at different time steps from t = 50 to 4000. The blue lines represent the average
value of S(q) from 50 individual KPM-LLG simulations on a 48× 48 lattice, with
the blue regions indicating the standard deviation. The red dots with error bars
depict the average S(q) and its standard deviation from ML-LLG simulations.

approaches. The findings, illustrated in Fig. 3.14, reveal that both approaches man-

ifest similar dynamics in the structure factor peaks of the skyrmion phase at the

commensurate wave number Q = (π
3
, 0), with comparable average values and stan-

dard deviations.

The temporal evolution of the magnetic phases in the system is depicted in

Fig. 3.14. In the initial stage (Fig. 3.14(a)), two peaks, designated as Q(π
3
, 0) and

M(2π, 0), grow, while significant fluctuations are observed at K(4π
3
, 0). This behavior

indicates the formation of antiferromagnetic stripes and the emergence of a vortex

phase. As the growth of the stripes stabilizes, the vortex phase becomes more domi-

nant, as shown in Fig. 3.14(b). Subsequently, the skyrmion phase emerges from the

vortex phase, as illustrated in Figs. 3.14(c) and (d). This progression of magnetic

phases highlights the dynamic evolution of the system and the complex interplay

between different magnetic phases.

Given the favorable outcomes of the previous ML-LLG simulations, we applied
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(d) t = 8000

Figure 3.15: Top panels: Density plots of the spin configuration {Szi } on a 150× 150
lattice at different time steps from t = 50 to 4000. Bottom panels: Vector arrows
representing the in-plane spin configuration {Sxyi } at the top-right corner of the

respective upper panels, with {Szi } represented by the arrow colors.

this method to a larger triangular lattice of size N = 150× 150, as the approach has

demonstrated scalability to arbitrary lattice sizes. Fig. 3.15 illustrates the spin dy-

namics at different time steps. The top panels show density plots of the z-component

of the spins {Szi }, while the bottom panels display vector plots for the in-plane spin

components {Sxyi } in the top-right corner of the upper panels. The dynamics observed

in Fig. 3.15 reveal three distinct stages in the evolution of the spin system. Initially,

the random spins form multiple stripes at various angles. In the intermediate stage,

these stripes, with opposing ferromagnetic order in the z-direction, begin to form

skyrmions. Finally, the formation of stripes and skyrmions stabilizes, and the growth

of skyrmion clusters is arrested.

The corresponding structure factor of the system is shown in Fig. 3.16(a), obtained
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(c)

Figure 3.16: Left four panels (a): Structure factor density plots of the ML-LLG
simulations on a 150× 150 lattice in the first BZ from t = 50 to 4000. (b) Skyrmion

structure factor peak order M as a function of time from t = 10 to 104. (c)
Characteristic length of the ML-LLG simulations from t = 10 to 104.

by averaging over 50 independent simulations. These results are consistent with

the conclusions previously discussed. Additionally, to quantify the growth of the

structure factor peaks, we defined the skyrmion structure factor peak order and the

characteristic length scale of the skyrmions as M(t) = ⟨S(kpr, t)⟩kpr and L(t) =

∑
k S(k,t)|k−kp|∑

k S(k,t)
, where kp is the structure factor peak, and ⟨· · · ⟩ represents averaging

over kpr such that |kpr − kp| ≤ 0.1. The evolution of M(t) and L(t) with time

is illustrated in Figs. 3.16(b) and (c). Both quantities exhibit similar trends: slow

growth during the initial stage, rapid growth during the intermediate stage with

M(t), L(t) ∝ t, and eventual saturation during the final stage.
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3.5 Conclusion and Outlook

In this chapter, we introduced a CNN model alongside a NN model equipped with

descriptors to predict spin torques from input spin configurations in large-scale LLG

dynamics simulations of itinerant magnets. Our CNN is purely convolution-based,

avoiding fully connected (dense) layers, offering an inherent benefit in terms of local-

ization. Each layer of the CNN applies a convolution using a kernel or filter, akin to

a Green’s function that portrays the finite response to a nearby source. Thanks to its

finite number of trainable parameters, the CNN model is suitable for running dynam-

ical simulations on larger systems without needing to retrain or rebuild the neural

network. We demonstrated the practicality of our ML models with a triangular-

lattice s-d model exhibiting a skyrmion crystal as its ground state. By using the ML-

predicted torques in the LLG dynamics simulations, we validated that the trained

ML model can effectively replicate the relaxation dynamics of the skyrmion phase

in itinerant spin models. Additionally, we showed the scalability and transferability

of our method by proving that large-scale LLG simulations using our CNN model

can stabilize a disturbed SkL and sustain its stability over long durations. Further-

more, large-scale LLG simulations using the NN model with descriptors uncovered an

atypical phase separation of skyrmions.

Unlike ML force-field models that use the BP scheme, our CNN model predicts

torques directly, which are analogous to atomic forces in spin systems. BP-type mod-

els, employing methods such as Gaussian process regression or fully connected neu-
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ral networks, focus on local energy prediction, which does not allow straightforward

comparison with exact calculations. In these models, forces are obtained as gradi-

ents of the total energy, composed of all local energies. The concept of local energy

leverages locality properties and aids in integrating symmetry into ML frameworks.

However, deriving forces from energy gradients confines BP-type models to repre-

senting only conservative forces and quasi-equilibrium electron systems. In contrast,

our CNN model can represent both conservative and non-conservative spin torques.

This feature is especially beneficial for simulating out-of-equilibrium systems driven

by non-conservative electron-mediated torques, such as spin transfer torques, which

are vital in spintronics applications.

In future studies, we plan to investigate approaches for more robustly enforcing

constraints derived from symmetry or conservation laws. Previous work on equiv-

ariant CNNs within computer vision [157] may provide valuable directions for con-

straining CNN layers to maintain SO(3) and D6 symmetries. Furthermore, our current

research limits itself to estimating torques based on spin directions at each time step,

without directly addressing the LLG equation as presented in Eq. 3.1. Nonetheless,

recent developments have focused on resolving the governing partial differential equa-

tions (PDEs) of physical systems through the use of physics-informed deep NN, as

seen in Nguyen et al. [150]. Utilizing these physics-informed CNN techniques, we

expect to achieve quicker and more precise estimates of spin dynamics, highlighting

a promising path for upcoming research.



Chapter 4

Machine Learning for Metallic Spin
Glass

4.1 Introduction

Spin glasses are disordered magnetic systems characterized by frustrated interactions

between localized magnetic moments due to quenched disorder [158–161]. As a re-

sult of these frustrated interactions, conventional long-range magnetic order, such as

ferromagnetic or N’eel order, cannot be established. Nevertheless, spin-glass systems

exhibit a collective freezing transition below a characteristic temperature Tf , indi-

cating the emergence of new magnetic states at low temperatures. The term "glass"

draws an analogy between the disordered spins in a spin-glass phase at low tempera-

tures and the atomic positional disorder found in structural glasses [162,163]. Unlike

structural glasses, where atomic configurations freeze due to the exponentially slow

relaxation of a supercooled liquid, spin-glass behavior arises from quenched random-

ness, which plays a central role in their physics.

Several theoretical models have been proposed to understand the nature of spin-
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glass phases and transitions. A canonical example is the Edwards-Anderson model [164],

which describes random exchange interactions between nearest-neighbor Ising spins σi

on a lattice: H = −∑⟨ij⟩ Jijσiσj. In this model, the coupling coefficients are random

variables, with equal probability of being positive (ferromagnetic) or negative (antifer-

romagnetic). Mean-field theories of spin glasses, such as the Sherrington-Kirkpatrick

model [165], have further elucidated the nature of spin-glass order, leading to the

concept of replica symmetry breaking and related order parameters for spin-glass

phases [166–169]. The physical insights and mathematical techniques developed in

the study of spin glasses have found applications in diverse fields such as computer

science, biology, and economics [170–172].

Experimentally, prototype spin-glass materials include dilute magnetic alloys,

where magnetic impurities such as Fe or Mn are randomly substituted into the lat-

tice of a nonmagnetic metallic host (e.g., Ag, Cu, Pt) [159–161, 173, 174]. These

materials are prepared by rapidly cooling the liquid alloy, thereby fixing the mag-

netic impurities at random positions within the solid. Since the magnetic impurities

are typically several lattice constants apart, their effective interactions are mediated

by conducting electrons from the metallic host. Due to the itinerant nature of the

conducting electrons, the resultant effective spin-spin interactions are long-ranged,

exemplified by the well-known RKKY interactions [136–138]. The RKKY interaction

also oscillates between ferromagnetic and antiferromagnetic couplings as the distance

increases, providing a mechanism for frustration that stabilizes spin-glass phases.
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The RKKY type interactions, however, are obtained based on the assumption

of a spherical Fermi surface in the limit of weak electron-spin coupling. In general,

the electron-mediated interactions in metallic spin glasses depend on the electronic

structure of the underlying metallic system. A full dynamical simulation of such

disordered itinerant electron magnets, however, is computationally a very challenging

task. As the driving forces come from electrons, integration of the LLG equation

for spin dynamics requires solving an electron Hamiltonian at every time-step. Such

repeated electronic structure calculations could be prohibitively time-consuming for

dynamical simulations of large systems. The computational complexity is similar

to the quantum MD simulations, where atomic forces are computed from electronic

structure solutions [87].

In this chapter, we present a scalable ML framework for large-scale dynamical

modeling of metallic spin glass and disordered itinerant electron magnets. Central to

our approach is a deep-learning NN, trained by exact solutions from small systems,

that can accurately and efficiently predict the effective local magnetic fields acting on

spins. This approach is similar in spirit to ML-based force field models which have rev-

olutionized the field of ab initio MD simulations [91–94,96,97,125,127–129,175–178].

By accurately emulating the calculation of Kohn-Sham equations, ML interatomic

potentials offer the efficiency of classical force-field models with the desired quantum

accuracy. Similar ML frameworks have recently been developed to enable large-scale

dynamical simulations in several condensed-matter lattice systems [58,59,98,99,132,
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179,180].

Physically, the linear scalability of ML force-field models is based on the principle

of locality, or nearsightedness, of electronic matter [100, 101]. A practical approach

to incorporate the locality principle into ML models for quantum MD was proposed

in the pioneering work of Behler and Parrinello [91]. The central idea of BP type

ML structures involves introducing a local energy ϵi [91, 92] which, in our case, is

associated with individual spins Si in a disordered magnet. The local effective field

is obtained from the derivative of the total energy. Importantly, invoking the locality

principle, the local energy is assumed to depend on the immediate neighborhood of

Si and a deep-learning NN is trained to capture this complex dependence.

A crucial component of the scalable ML model is the appropriate representation

of the local environment which preserves the symmetry of the original quantum sys-

tems. Indeed, atomic descriptors play a central role in the field of ML-based quantum

MD methods [91, 92, 96, 104, 181–185]. In our case, a proper representation of spin

configurations in a local neighborhood needs to be invariant with respect to real-space

rotation and translation symmetries, as well as the SU(2) rotation symmetry in the

spin-space. To this end, we develop a magnetic descriptor which is a generalization

of a widely used atomic descriptor called atom-centered symmetry function (ACSF)

for ML-MD simulations [91,181].

We apply our ML force-field model to study the relaxation dynamics of a metallic

spin-glass model with Heisenberg spins. We note that most works on spin-glass phases
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are based on lattice models of either Ising or Heisenberg spins with quenched random

nearest-neighbor exchange interaction Jij [159]. There are a few remarkable works on

the ab initio modeling and dynamical simulations of the prototypical MnCu metal-

lic spin-glass alloys [186–189]. In these approaches, however, a classical Heisenberg

model is used to describe the magnetic alloys with an RKKY-like exchange interac-

tion determined from first-principles density functional theory calculations [190]. To

demonstrate the ML model for electron-driven spin dynamics, here we consider an

amorphous generalization of the well-studied s-d model as a model metallic spin glass.

ED combined with LLG dynamics are used to simulate this random s-d model and

to generate datasets for training of the ML models.

4.2 Adiabatic Dynamics of Itinerant Electron Mag-
nets

As discussed in several previous works, magnetic moments in dilute magnetic alloys

such as CuMn can be well described by Heisenberg spins. We consider a metallic spin

system with randomly distributed Heisenberg spins, based on the s-d type electron-

spin coupling [191]:

Ĥ = Ĥe

(
ĉ, ĉ†

)
− J

∑

i

∑

α,β=↑,↓

Si ·
(
ĉ†i,ασαβ ĉi,β

)
. (4.1)

Here Si represents a local classical spin at a random position ri, and c†i,α (ci,α) de-

notes the creation (annihilation) operator of an electron with spin α =↑, ↓ localized

at ri. The first term Ĥe is the Hamiltonian of the electron subsystem, which cor-



Chapter 4. Machine Learning for Metallic Spin Glass 90

responds to the metallic host in dilute magnetic alloys. The electron operators in

the parentheses of the second term correspond to the spin operator of the electrons:

ŝi =
ℏ
2

(
ĉ†i,ασαβ ĉi,β

)
. Physically, the coefficient J describes a Hund’s coupling between

electron spin and local moment.

As discussed in Sec. 4.1, in the limit of small electron-spin coupling, one can

integrate out the electrons to obtain an effective interaction between local spins.

In particular, assuming an electronic system described by a Fermi liquid Ĥe =

∑
|k|<kF

∑
α εkĉ

†
k,αck,α, with a parabolic dispersion εk = ℏ2|k|2/2me, one obtains the

well-known RKKY interaction [136–138]

E =
∑

ij

JRKKY(2kF |ri − rj|)Si · Sj, (4.2)

where JRKKY(x) = 9π(J2/εF )(x cosx−sinx)/x4, kF and εF are the Fermi wavevector

and Fermi energy, respectively. For large coupling J ≳ εF and more complex elec-

tronic models, the effective interaction in general needs to be computed numerically.

For example, such effective interactions have been computed using DFT for realistic

CuMn alloys [186–188].

The magnetization dynamics for Heisenberg magnets is governed by the LLG

equation

dSi
dt

= γSi × (Hi + ηi)− αSi × (Si ×Hi), (4.3)

where γ is the gyromagnetic ratio, α is the damping constant, Hi is the local effective

field that drives the spin dynamics, and ηi represents a stochastic magnetic field due to
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thermal fluctuations. The random fields at different sites and times are uncorrelated.

The three independent components of ηi are modeled by a Gaussian random variable

of zero mean and a variance proportional to αkBT , where T is temperature. For

effective spin Hamiltonian, such as the RKKY interaction in Eq. (4.2), the effective

local field is given by

Hi = − ∂E

∂Si
= −

∑

j

JRKKY(2kF |ri − rj|)Sj

Although this interaction is long-ranged, the 1/r3 decay is sufficiently fast that a

cutoff radius is introduced in practical calculations. The effective field in general can

be efficiently computed for such RKKY type interactions.

It is worth noting that spin dynamics based on such effective interactions is a spe-

cial case of the adiabatic approximation, which is similar to the Born-Oppenheimer

approximation for quantum MD simulations [87]. Within the adiabatic approxima-

tion, electrons are assumed to quickly relax to quasi-equilibrium with respect to the

instantaneous configuration of classical spins. In this limit, the effective energy is

given by E = ⟨Ĥ⟩ = Tr(ρ̂eĤ), where ρ̂e is the electron density operator:

ρ̂e = exp(−Ĥ/kBT )/Z, (4.4)

and Z = Tr exp(−Ĥ/kBT ) is the partition function. The local magnetic field for

Hamiltonian (4.1) in this adiabatic limit is given by

Hi = −∂⟨Ĥ⟩
∂Si

= J
∑

αβ

σαβ⟨ĉ†i,αĉi,β⟩. (4.5)
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Here we have used the Hellmann-Feynman theorem ∂⟨Ĥ⟩/∂Si = ⟨∂Ĥ/∂Si⟩ to relate

the local field to the electron correlation function Ciα,jβ ≡ ⟨ĉ†j,β ĉi,α⟩. The calculation of

the correlation function, however, requires solution of the equilibrium electron density

matrix ρ̂e, which amounts to solving a disordered electron Hamiltonian for a given spin

configuration. In the absence of electron-electron interactions, the standard method

for solving the electronic structure is based on ED. However, since the electronic forces

have to be computed at every time-step of the LLG dynamics simulation, the O(N3)

time complexity of ED can be overwhelmingly time-consuming for large systems.

4.3 Machine Learning Force-Field Model For Disor-
dered Spins

In this section we present a scalable ML framework to essentially derive an effective

spin Hamiltonian E(Si) for metallic spin glass models in Eq. (4.1). It should be noted

that this effective energy E, or effective classical spin Hamiltonian, is technically

obtained by freezing the spin configuration and integrating out the electrons using

the electron density operator in Eq. (4.4). It can be viewed as a more complicated

version of the RKKY interaction. The ML methods offer a systematic approach to

obtain an accurate and efficient parametrization of this effective spin Hamiltonian.

4.3.1 Behler-Parrinello Machine Learning Framework

Fundamentally, as discussed in Sec. 4.1, linear-scaling electronic structure methods

are possible mainly because of the locality nature of many-electron systems [100,101].
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Figure 4.1: Schematic diagram of ML force-field model for metallic spin glass. The
input of the ML model is the magnetic configuration Ci centered at the i-th spin Si,
while the output is the local energy ϵi associated with the center spin. The atomic
and spin configuration within the neighborhood Ci is processed using a magnetic
version of the ACSF method. The resultant feature variables {Gk} are input to a
feed-forward fully connected neural network with a single output that is the local

energy ϵi. The total energy is obtained by applying the ML energy model to all spins
in the system. The local effective field is computed using automatic differentiation.

Modern ML techniques provide an explicit and efficient approach to incorporate the

locality principle into the implementation of O(N) methods. In particular, the BP

type schemes provide a practical method to incorporate locality and symmetry to the

ML models. Indeed, most ML force-field models for quantum MD simulations are

based on BP approaches. Here we generalize the BP scheme to implement an ML

model for the efficient prediction of system energy E and the local effective fields Hi

for spin dynamics.

A schematic diagram of our ML force-field model is outlined in FIG. 4.1. First,

as in the original BP approach, we partition the effective spin energy into local con-

tributions

E =
∑

i

ϵi =
∑

i

ε(Ci), (4.6)
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where ϵi is associated with the i-th local spin of the disordered magnet. In the sec-

ond step of the above equation, we have further assumed that the local energy only

depends on the immediate neighborhood, denoted by Ci, of the i-th spin through a

universal function ε(·). The validity of this step naturally relies on the locality prin-

ciple mentioned above. Practically, the neighborhood Ci is defined as configuration of

spins within a sphere of cutoff radius Rc centered at Si, i.e. Ci =
{
Sj
∣∣ |rj − ri| < Rc

}
;

see FIG. 4.1. Importantly, the universal function ε(·) that relates local energy ϵi to

the neighborhood is to be approximated by a deep-learning neural network model.

As shown in FIG. 4.1, the local magnetic environment is processed to produce a set

of symmetry-invariant feature variables, denoted as {Gm}, which are then fed into

the neural network.

Once the total energy E is obtained by applying the same descriptor and neural

network model to every spin in the system, the local field acting on spin Si can then

be efficiently computed through automatic differentiation:

Hi = − ∂E

∂Si
= −

∑

j

′ ∂ϵj
∂Si

. (4.7)

Here the prime in the summation indicates that only local energies ϵj within the

neighborhood of the i-th spin are considered, again, assuming the locality of the

effective field.

Another important insight in the original work of Behler and Parrinello [91] is

the introduction of descriptors, or feature variables, that provide an appropriate rep-
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resentation of the neighborhood Ci. It is worth noting that, despite the universal

approximation power of neural networks, symmetry properties of a function can only

be learnt statistically, but not exactly. The goal of a descriptor is to incorporate

the symmetry of the original quantum Hamiltonian into the classical effective energy

model. Since the output of the ML model in the BP framework is a local energy,

which, as a scalar, is invariant under symmetry transformations of the original sys-

tem, the feature variables {Gm} need to be also invariant with respect to the same

symmetry group.

In the case of ML-based quantum MD methods, extensive studies have been de-

voted to the development of atomic descriptors [91, 92, 96, 104, 181–185]. A proper

representation of the atomic neighborhood should be invariant under rotational and

permutational symmetries, while retaining the faithfulness of the Cartesian repre-

sentation. A widely used atomic descriptor, which is physically intuitive, is the

ACSF representation introduced in the original work of Behler and Parrinello [91].

The ACSFs are built from the relative distances and relative angles among atoms in

the neighborhood, which are manifestly invariant under rotations [91, 181]. A more

systematic approach to build invariant feature variables is based on the so-called

bispectrum coefficients, which are special triple-products of IRs of the symmetry

group [92,103,104].

The group-theoretical method has also been employed to develop a general theory

of descriptors for electronic lattice models in condensed-matter systems [58]. Com-
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pared with the MD systems, the SO(3) rotational symmetry of free-space is reduced

to discrete point-group symmetries in lattice models. On the other hand, the dy-

namical degrees of freedom in lattice models, such as local magnetic moments or

order-parameters, are characterized by additional internal symmetry group. A proper

descriptor for lattice systems thus needs to be invariant with respect to both the in-

ternal symmetry group and the lattice point group.

In particular, following the general theory, a magnetic descriptor is developed

to incorporate the lattice point-group and SU(2) spin-rotation symmetries into the

ML force-field models for lattice models of itinerant electron magnets, such as the

s-d or Kondo-lattice models [98, 99, 132]. A two-step approach is used to construct

the feature variables. First, to preserve the rotation symmetry in spin-space, bond

bjk = Sj ·Sk and scalar chirality χijk = Si ·Sj×Sk variables, which are inner product

and scalar triple product of spins within a neighborhood, are used as building blocks

for the magnetic descriptor. A group-theoretical approach based on reference IR [58],

which is a modified bispectrum method, is used to derive feature variables that are

also invariant under symmetry operations of the lattice point group.

We note in passing that in order to model atomic systems with finite magnetic

moments, atomic descriptors have been generalized in several recent works to include

spin degrees of freedom [133, 134, 192–195]. For such magnetic materials, magnetic

contributions are crucial for modeling the mechanic phase stability, vibrational prop-

erties, and defect dynamics. However, since the goal of these descriptors is to assist
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ML-based quantum molecular dynamics, the magnetic structure of atoms are assumed

to be fixed throughout the MD simulations. Moreover, often collinear Ising-type spins

are considered. Here, on the other hand, we present a magnetic descriptor to be com-

bined with an ML model for spin dynamics, whereas atomic configurations are fixed.

4.3.2 Magnetic Descriptor for Disordered Spins

The symmetry group of the spin glass model described in Eq. (4.1) includes the real-

space translation and rotation symmetries of atoms (which carry a local spin Si) and

the global SO(3)/SU(2) rotation symmetry of classical/electron spins. The translation

symmetry is readily accounted for in the BP framework, as exactly the same descriptor

and neural network are applied to every spin in the system. To account for the rotation

symmetry of atoms in real space, we first review the idea of symmetry functions

which are built on two fundamental scalars: the relative distance between two atoms

Rij = |rj − ri| and the relative angle between three atoms cos θijk = (rj − ri) · (rk −

ri)/RijRik. As scalars, these two types of variables are manifestly invariant under

uniform rotations of atoms in the neighborhood. A two-body symmetry function

centered at ri is defined as

G2(Λ) =
∑

j ̸=i

F2(Rij; Λ), (4.8)

where Λ = {p1, p2, · · · } denote a set of parameters characterizing G2, and F2(R; Λ) is

a user-defined function, parameterized by Λ to extract atomic structures at certain

distances from the center atom. For example, the following function is proposed in



Chapter 4. Machine Learning for Metallic Spin Glass 98

the original work [91] to sample atoms at a distance d± w from the center

F2(R; d, w) = e−(R−d)
2/w2

fc(R). (4.9)

Here fc(r) = 1
2

[
cos( πr

Rc
) + 1

]
for R ≤ Rc and zero otherwise is a soft cutoff func-

tion. The two parameters d and w specify the center and width, respectively, of the

Gaussian function. The 3-body symmetry functions are defined as

G3(Λ) =
∑

j,k ̸=i

F3(Rij, Rik, Rjk, θijk; Λ), (4.10)

An example of the three-body envelop function characterized by three parameters

is [91, 127]

F3(R1, R2, R3, θ; ζ, λ, d, w, d
′, w′) = 21−ζ(1 + λ cos θ)ζ

×F2(R1; d, w)F2(R2; d, w)F2(R3; d
′, w′). (4.11)

These functions are designed to sample relative orientations between atomic pairs,

where the angular resolution is controlled by the parameter ζ. The three F2 functions

are introduced to constrain the distances of the three pairs of spins.

To incorporate the spin degrees of freedom, we first note that assuming the elec-

tronic part He in Eq. (4.1) is magnetically isotropic, the metallic spin system is

invariant under a global rotation of local magnetic moments Si → R · Si, and a si-

multaneous unitary transformation of the electron spinor ĉiα → Ûαβ ĉiβ, where R is

an orthogonal 3×3 matrix and Û = Û(R) is the corresponding 2×2 unitary rotation

operator. The ML force-field model, which is essentially an effective classical spin
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model by integrating out electrons, should preserve the SO(3) spin-rotation symme-

try. Similar to magnetic descriptors for lattice models, we use the bond and scalar

spin chirality variables bij = Si · Sj and χijk = Si · Sj × Sk as building blocks for

characterization of the magnetic environment [98, 99, 132]. These variables are also

manifestly invariant under global rotations of all spins.

Based on these building blocks, invariants with respect to rotations in both real

space and spin space are obtained by "attaching" these variables into the symmetry

functions. A schematic diagram showing the construction of the three types of mag-

netic symmetry functions is shown in FIG. 4.1. First, we define a magnetic two-body

symmetry function

Gm
2 (Λ) =

∑

j ̸=i

F2(Rij; Λ) (Si · Sj). (4.12)

Here the superscript m is used to indicate magnetic version of the ACSF. With the F2

function defined in Eq. (4.9), this magnetic symmetry function accounts for spin-spin

correlations between the center Si and neighboring spins Sj at a distance d±w from

the center. Next, a symmetry function which involves three atoms is defined:

Gm
3 (Λ) =

∑

jk ̸=i

F3

(
Rij, Rik, Rjk, θijk; Λ) (Sj · Sk), (4.13)

This symmetry function, however, only involves two spins. Collectively, they describe

the two-spin correlations with certain relative angles and distances in the neighbor-

hood of the i-th spin.

The total energy Eq. (4.6) computed from the ML model is now a function explicit
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of these magnetic ACSFs, i.e. E = E({Gm
2 (Λ), G

m
3 (Λ)}). This can also be viewed as

an effective classical spin Hamiltonian, which can be formally expanded as

E =
∑

ij

Jij Si · Sj +
∑

ijkl

Kijkl(Si · Sj)(Sk · Sl) + · · · (4.14)

For example, the two-body Jij interaction can be obtained through linear combina-

tions of the F2 and F3 functions in Eqs. (4.12) and (4.13), respectively:

Jij =
∑

Λ

α(Λ)F2(Rij; Λ) (4.15)

+
∑

Λ′

∑

k ̸=i,j

β(Λ′)F3(Rki, Rkj, Rij, θkij; Λ
′).

Here α and β are coefficients that are determined through training. The first term

above, which depends only on the distance Rij between the spin pair, is similar to

the RKKY effective interaction discussed in Sec. 4.2. The second F3 term describes a

two-spin interaction which depends not only on the pair distance Rij, but also on the

immediate atomic environment of the spin pair. The F3-type interactions are thus

the magnetic analogs of the bond-order potentials, a class of empirical MD potentials

that include effects of atomic environment on a chemical bond [196–198]. The higher-

order terms in Eq. (4.14) are generated in nonlinear transformations of the neural

net. In particular, the four-spin interactions Kijkl are known to play a crucial role in

stabilizing non-coplanar spin structures in itinerant electron magnets [199,200]

Finally, the three-body F3 functions can also be combined with the scalar spin
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chirality χijk to form a magnetic symmetry functions centered at the i-th spin

Gχ
3 (Λ) =

∑

jk ̸=i

F3

(
Rij, Rik, Rjk, θijk; Λ) (Si · Sj × Sk), (4.16)

Since the scalar chirality χijk is nonzero only when the three spins are non-coplanar,

the above Gχ
3 variables are also very effective in modeling magnetic structures with

non-coplanar spins, similar to the 4-spin terms in Eq. (4.14). However, unlike the bond

variables, the scalar chirality is a pseudo-scalar, which changes sign χijk → −χijk

under time-reversal transformation, or simultaneous inversion of three spins. As a

result, they are not appropriate for ML modeling of time-reversal symmetric magnetic

systems, such as most spin glasses. One could still include the chirality ACSFs in

the feature variables and use data augmentation, i.e. by adding time-reversed spin

structures to training dataset, to approximate the time-reversal symmetry. This

would lead to, e.g. 6-spin terms
∑
Lijklmnχijkχlmn in the effective spin Hamiltonian.

However, our numerical experiments show that inclusion of chiral ACSFs does not

lead to significant improvement.

4.4 Relaxation Dynamics of an Amorphous s-d Model

We apply the above ML framework to a random s-d model as an example for metallic

spin glasses. The Hamiltonian in Eq. (4.1) describes a general itinerant magnet

with s-d type electron-spin coupling. We note that one can also include short-range

Heisenberg type interactions Jex Si ·Sj among localized moments, due to either direct

or super-exchange mechanisms, to this Hamiltonian. Since the short-range interaction
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can be easily included in LLG dynamics simulations, here we focus on ML modeling for

the electron-driven forces. The details of the electron-mediated interactions depend on

the electronic Hamiltonian Ĥe. For example, the well-studied s-d model, also known

as the Kondo-lattice model for spin-1/2, corresponds to a periodic array of local spins

Si and a tight-binding Hamiltonian with nearest-neighbor hopping defined on the

same lattice [201–203]. The ferromagnetic s-d model in the strong coupling limit,

also known as the double-exchange model, plays an important role in the colossal

magnetoresistance phenomena [14,204].

Here we introduce an amorphous generalization of the s-d model. First, instead of

placing the spins on a periodic lattice, the local moments are randomly distributed in

a three dimensional space. Specifically, the position ri of spin Si is a random vector

uniformly distributed within a 3D cubical box of side L, with the only constraint that

the distance between any pair of spins is greater than a minimum, i.e. Rij = |rj−ri| >

rmin. For a given random atomic configuration {ri}, a disordered tight-binding model

is employed to describe the electronic subsystem Ĥe, giving rise to a disordered s-d

Hamiltonian

Ĥ =
∑

ij

∑

α=↑,↓

t
(
|ri − rj|

)
c†iαcjα

−J
∑

i

∑

α,β=↑,↓

Si ·
(
ĉ†i,ασαβ ĉi,β

)
. (4.17)

The electron hopping coefficient tij = t(Rij) is a random variable dependent on the

distance Rij between an atomic pair through a Yukawa-type exponentially decaying
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Figure 4.2: Electron density of states of the disordered tight-binding model
Eq. (4.17) in the absence of electron-spin coupling J = 0. The hopping constant

t0 = 1, which serves as the unit of the energy. The number of atoms is N = 100 in a
cubical box of linear size L = 5ℓ with periodic boundary conditions. The electron
filling fraction is set at f = 0.5. The zero of the energy, indicated by the dashed

line, corresponds to the Fermi level.

function

t(R) = t0 exp(−R/ℓ). (4.18)

In the following, we set t0 = 1 which also serves as the reference for energy. The

characteristic range or length scale of electron hopping is given by the decay length ℓ.

It is worth noting that such Yukawa tight-binding models have long been used in the

modeling of amorphous systems [205–209].

We first examine the electron density of states (DOS) of the random tight-binding

Hamiltonian. To this end, we set the s-d coupling J = 0 and use exact diagonaliza-
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tion to compute the eigen-energies ϵk of the electron hopping Hamiltonian. The DOS,

defined as ρe(ϵ) = 1
N
⟨∑k δ(ϵ−ϵk)⟩, is obtained by averaging 500 different atomic con-

figurations {ri}. In this calculation, N = 500 atoms are randomly distributed within

a simulation box of linear size L = 5ℓ, with a minimum separation rmin = 0.5ℓ. The

resultant DOS is shown in FIG. 4.2. The Fermi energy ϵF is determined from the

condition of half electron filling. The DOS exhibits a pronounced peak in the vicinity

of the Fermi level. The nonzero DOS at Fermi level ρ(ϵF ) indicates a gapless elec-

tronic state that is susceptible to small perturbations. Moreover, previous large-scale

numerical study shows that electron wave functions for the eigenstates in the middle

of the band is likely to be delocalized [209]. These extended electron eigenstates near

the Fermi level are the dominate contributors to the long-range effective spin-spin

interactions.

Our goal is to build a ML model for the disordered s-d system (4.17) with a

large electron-spin coupling J = 6t0. We note that the RKKY type perturbation

methods cannot be applied to such strong coupling regime of s-d type models. The

ML methods thus provide a non-perturbative approach to derive an effective classical

spin Hamiltonian and force field that are beyond the analytical methods. To generate

the training and testing datasets, ED and ED-LLG simulations are carried out on a

system consisting of N = 100 atoms with a half-filled electron band in a cubical box

of linear size L = 5ℓ. The minimum separation is again set at rmin = 0.5ℓ. 10 different

realizations of random atomic configurations are used in generating the dataset. For
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each realization of the atomic structure, the s-d model is solved using the ED for

250 different spin configurations, including random spins and states obtained from

relaxation simulations. It is worth noting that, as the prediction of local field Hi

for each spin counts as single training data point, the size of the effective datasets is

250× 10× 100 = 2.5× 105.

A neural network with 8 hidden layers is constructed using PyTorch [106] to learn

the dependence of local energy ϵi on the feature variables {Gk} that characterize the

neighborhood Ci. The number of neurons at the input layer is determined by the

number of feature variables and is fixed at 450. The number of neurons in successive

hidden layers are: 1024 × 1024 × 512 × 256 × 128 × 128 × 128 × 128. The NN

performs a series of nonlinear transformations on the input neurons where ReLU [210]

is used as the activation function between layers. The NN model is trained based on

a loss function including the mean square error (MSE) of both the effective field and

total energy. Since only the perpendicular component of the local field Hi,⊥ = Si×Hi

contributes to the driving force for spin dynamics, the loss function focuses on the

MSE of the perpendicular field. Specifically, for a given spin configuration, the loss

function is defined as

L = µH

N∑

i=1

∣∣∣HED
i,⊥ −HML

i,⊥

∣∣∣
2

+ µE

∣∣∣EED − EML
∣∣∣
2

, (4.19)

where µH and µE determines the relative weights of the force and energy constraints

in the loss function. As shown in Eq. (4.7), the ML local field is obtained from the
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derivative of the sum of local energies. This can be efficiently done using automatic

differentiation in PyTorch [211]. Trainable parameters of the NN are optimized by

the Adam stochastic optimizer [212] with a learning rate of 0.001. A 5-fold cross-

validation and early stopping regularization are performed to prevent overfitting.

To incorporate the rotation symmetry, both in real and spin space, to the ML

model, a descriptor with all three Gm
2 , Gm

3 and Gχ
3 symmetry functions is developed

to characterize local spin configurations Ci. A cutoff radius Rc = 2.5ℓ is used for

computing these feature variables. First, the two-body symmetry functions Gm
2 (d, w)

depend on two parameters characterizing a mass shell of thickness w and radius d.

The width of the shell is fixed at w = 0.05ℓ, while 50 different radii d in the range of

[0.5, 2.46] (in units of ℓ) are used. For both three-body symmetry functions Gm
3 and

Gχ
3 , there are two parameters ζ, λ for characterizing the angular distribution, similar

d, w for a mass shell, and another set d′, w′ for the distance between two neighboring

spins; see Eq. (4.11). Here we set ζ = 1 and consider two λ = ±1 corresponding

to an angular function (1 ± cos θijk) with a peak at a relative angle θijk = 0 and

π, respectively. For the three F2 functions in Gm
3 and Gχ

3 , we use w′ = 1 and two

different d′ = 1 and 2 in units of ℓ, and the same w, d parameters as in the Gm
2 . The

total number of feature variables is 50 + 2× 200 = 450.

The benchmark of force prediction for the above ML model with all three Gm
2 , Gm

3 ,

and Gχ
3 symmetry functions is shown in FIG. 4.3(a) and (b). Excellent agreements

between the ML predicted local fields and the exact values are obtained for both train-
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Figure 4.3: Benchmark of ML prediction for the perpendicular local field. Panel (a)
shows the predicted components of H⊥ versus the ground-truth values for the

trained NN model based on a magnetic descriptor with all three symmetry functions
Gm

2 , Gm
3 , and Gχ

3 . The corresponding histogram of prediction error δ = HML
⊥ −HED

⊥
is shown in panel (b). The results for ML model with a descriptor that excludes the

chirality feature variables Gχ
3 are shown in panels (c) and (d).
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ing and testing datasets. The histogram of the prediction error, shown in FIG. 4.3(b),

is characterized by a rather small mean square error σ ≈ 0.001. However, as discussed

in Sec. 4.3.2, the chirality feature variables Gχ
3 change sign under the time-reversal

transformation. The resultant effective spin Hamiltonian and the force-field model is

not invariant with respect to time-reversal symmetry, which is an intrinsic symmetry

of the original s-d model. The time-reversal symmetry can be incorporated into the

ML model, albeit inexactly, using data augmentation, i.e. by including both spin

configurations ±Si in the dataset. On the other hand, effective interactions involving

scalar chirality that is also time-reversal symmetric,
∑
Lijklmnχijkχlmn, is of six-order

in spin variables. It is likely that their contribution is negligible compared to that of

bond variables.

For comparison, we have also developed a ML model with a magnetic descriptor

only involves the two magnetic symmetry functions Gm
2 and Gm

3 . Since these two

feature variables are built from bond variables bij = Si · Sj, hence are invariant

under time-reversal, the resultant ML models automatically preserve the time-reversal

symmetry. The force benchmark of this ML model without chirality variables is

summarized in FIG. 4.3(c) and (d). Notably, the ML predicted local fields also agree

very well with the ED calculations. This result indicates that the spin chirality

variables do not play a major role in the effective spin Hamiltonian. The bond

variables alone provide accurate approximations to the amorphous s-d model.

Next we perform dynamical benchmarks of the ML force-field models. To this end,
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we integrate the trained ML models with the LLG method and perform thermal-

quench simulations of the random s-d model. Specifically, for a given disordered

atomic configuration, an initial state of random spins is quenched to a temperature

T = 0.001t0 at time t = 0. A damping coefficient α = 0.05γ in Eq. (4.3), where γ

is the gyromagnetic ratio, is used for both the ML- and ED-LLG simulations. The

LLG simulations are then repeated for different independent initial random spins and

realization of atomic disorder. The ensemble-averaged dynamical evolution of the

quenched states is then compared with that obtained from the ED-LLG simulations.

In particular, we compute the time-dependent correlation functions

C(rij, t) = ⟨Si(t) · Sj(t)⟩ − ⟨Si(t)⟩ · ⟨Sj(t)⟩, (4.20)

where ⟨· · · ⟩ means ensemble average over both atomic and spin configurations. FIG. 4.4

shows the ensemble-averaged spin-spin correlation functions at different times during

the quench. The correlations obtained from the ML-LLG simulations agree well with

those from the ED methods, showing that the ML force-field model not only accu-

rately predicts the driving forces, but also capture the spin dynamics and relaxation

process.

The correlation functions are assumed to depend only on the distance rij between

of a pair of spins, thanks to the rotation and translation symmetry of the disordered

states. The ensemble-averaged magnetization is found to be nearly zero, m = ⟨Si⟩ ≈

0, in both ML and ED-LLG simulations. Moreover, we find that the relaxation
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dynamics slows down significantly at large times after the quench. The freezing of

spin dynamics thus indicates that the system settles into a local minimum of the

effective spin Hamiltonian.

Due to the minimum distance constraint, there are no spin pairs with distance

less than rmin = 0.5ℓ. On the other hand, early in the relaxation, e.g. at t ≲

30 in units of (γt0)
−1, an anti-parallel spin-spin correlation C(r) ≈ −0.4 quickly

develops at the minimum separation rmin. This negative correlation then decays with

increasing separation and vanishes at r ≈ 1.4ℓ. This result shows that the effective

spin-spin interaction is predominantly antiferromagnetic at short distances. Indeed,

as has been demonstrated in the case of lattice s-d models at half-filling, the electron-

mediated interaction in the large coupling limit is antiferromagnetic [213]. This can

be understood from the J → ∞ (or t0 = 0) limit where the ground states are given by

configurations with exactly one electron per atom. As atoms are decoupled from each

other, the local moment Si, which is entangled with the spin of localized electron, can

point in arbitrary directions. This macroscopic ground-state degeneracy is lifted in

the presence of a small t0. Standard second-order perturbation leads to an effective

antiferromagnetic interaction Jeff
ij = t2ij/J > 0.

As the system further relaxes toward lower energy states, a weak ferromagnetic

correlation starts to develop at an intermediate distance, as indicated by the small

peak at r ∼ 1.5ℓ for the correlation functions at t ≳ 150. Compared with lattice

models where electron hopping is restricted to nearest neighbors, the emergence of
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(c) t = 70

Figure 4.4: Dynamical benchmark of the ML force-field model for the random s-d
system. The spin-spin correlation functions C(rij) = ⟨Si · Sj⟩ at various time-steps
after a thermal quench are obtained from LLG simulations of N = 100 spins using
the ML force-field model and the ED method. The radius is measured in units of ℓ,
and the shaded area indicates the forbidden region where r < rmin. The simulation
time is measured in units of (γt0)−1, where γ is the gyromagnetic ratio and t0 is the

energy scale of electron hopping.
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Figure 4.5: The correlation length ξ as a function of the the logarithm of time log(t)
in a log-log plot; the inset shows the ξ(t) in the linear scale. ML-LLG simulations

are performed on a random s-d system of N = 500 atoms. The length ξ is computed
from the resultant ensemble-averaged correlation functions after a thermal quench

at t = 0. The simulation time is measured in units of (γt0)−1, where γ is the
gyromagnetic ratio and t0 is the energy scale of electron hopping. The red line

corresponds to a power law ξ(t) ∼ (log t)1/ψ with an exponent ψ ≈ 1.02.

this ferromagnetic correlation at intermediate separation indicates the complexity of

electron-mediated interactions in disordered s-d systems. Interestingly, our results

show that the effective spin-spin interactions exhibits an RKKY-like oscillation, al-

though with a much reduced amplitude, even in the large coupling regime.

To quantify the relaxation process, we compute a time-dependent correlation

length ξ(t) from the correlation functions. For a well-defined exponential decaying

correlation, C(r) ∼ exp(−r/ξ), the correlation length can be easily computed from



Chapter 4. Machine Learning for Metallic Spin Glass 113

the large r behavior. Due to the more complicated forms of the spin-spin correlation

functions in our case, we employ an empirical formula to obtain the correlation length

ξ(t) =
∫∞
0
r
∣∣C(r, t)

∣∣dr
/∫∞

0

∣∣C(r, t)
∣∣dr, It can be easily shown that this formula cor-

rectly reproduces the correlation length for an exponential-decaying function as well

as for correlation functions exhibiting a dynamical scaling: C(r, t) = F(r/ξ(t)), where

F(x) is the scaling function. Applying this formula to the correlation functions ob-

tained from ML-LLG simulations for a random s-d model with N = 500 atoms, the

result is shown in the inset of Fig. 4.5. The ML model is trained from a system of

N = 100 atoms with the same model parameters as discussed above. The ensemble-

averaged correlation functions here are obtained from 10 different random realizations

of atomic configurations and 20 independent initial random spin states.

As the system relaxes after the thermal quench, the correlation length quickly

increases initially. The late-stage relaxation dynamics of a spin glass, often charac-

terized by aging phenomena, is intimately related to its complex energy landscape.

Although there is no conventional long-range order in spin glasses, the relaxation pro-

cesses can still be viewed as the growth of "ordered" domains in which a local energy

minimum is attained. It is worth noting that growth of ordered domains in a conven-

tional symmetry breaking phase is controlled by topological defects of the associated

order parameter fields and is often characterized by a power-law behavior [70].

On the other hand, the growth of the spin-glass order has been discussed within

the phenomenological droplet model, which predicts a growth law R(t) ∼ (log t)1/ψ,
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where R(t) is a measure of the linear domain size and ψ is called the barrier exponent

which characterizes the activation barrier height at the interface [214, 215]. Using

the extracted correlation length as a qualitative measure of the domain size, Fig. 4.5

shows ξ(t) versus log(t) in a log-log plot. The late-stage domain coarsening can be

approximated by a power-law with an exponent ψ ≈ 1.02. Our preliminary results are

consistent with the scaling theory of the droplet model. More systematic investigation

of the aging dynamics and domain growth will be left for future work.

4.5 Conclusion and Outlook

In summary, we have introduced a scalable ML force-field model tailored for the

spin dynamics in metallic spin glasses. Our methodology extends the BP frameworks

that are prevalently employed in ML-based force-field models for quantum molecu-

lar dynamics (MD). Our study concentrates on spin glass systems characterized by

three-dimensional Heisenberg spins, which are representative of prototype metallic

spin-glass materials such as dilute magnetic alloys. To ensure the preservation of

rotational symmetry in both real and spin spaces, we have refined the ACSF atomic

descriptor, a tool extensively utilized in ML-based MD simulations, by incorporating

spin degrees of freedom into the symmetry functions. As a demonstration of our ap-

proach, we examine the relaxation dynamics of an amorphous version of the classical

s-d model. It is demonstrated that the trained ML model not only precisely predicts

the effective local fields but also effectively represents the dynamical evolution of spins

when subjected to a thermal quench.



Chapter 4. Machine Learning for Metallic Spin Glass 115

Our work also opens a new avenue to large-scale simulations of nonequilibrium dy-

namical phenomena in spin glasses. Partly because of the computational complexity,

most large-scale studies of spin-glass dynamics are based on short-range random-J

spin models on a lattice. Moreover, local Monte Carlo updates are employed as a

surrogate dynamics for Ising-type spin-glass models. Here we outline a general ap-

proach to derive realistic off-lattice spin-glass model with electron-mediated spin-spin

interactions. Our work demonstrates the proof of principle that accurate ML force-

field models can be developed for a large class of metallic spin glass systems with

local s-d electron-spin coupling. Importantly, the efficiency of ML models, which are

essentially effective classical spin models, could enable large-scale simulations which

are essential for understanding the dynamical properties of spin glass systems.

In particular, our ML framework could also be used to model dilute magnetic al-

loys such as CuMn. As discussed in the Introduction, DFT has been applied to solve

the magnetic ground states of a few representative magnetic alloys for a given atomic

configuration where the magnetic atoms randomly occupy sites of the host lattice.

However, such first-principles calculations of the magnetic moments and the corre-

sponding effective fields are very time-consuming even for relatively small systems. In

practice, often an effective Heisenberg model is first obtained by fitting the exchange

interactions with DFT energy. An alternative approach is to derive an effective s-d

Hamiltonian from first-principles calculations, which can then be used to develop a

ML force field model as outlined in this work.



Chapter 5

Machine Learning for Silicon Band
Structures

5.1 Introduction

Recent advances in electronic structure methods and rapid progress in computational

capabilities and artificial intelligence techniques have enabled accurate and fast com-

putation of materials’ properties. This new paradigm of materials research is further

assisted by the creation of large freely available databases containing many years

worth of human knowledge [216, 217]. For example, several ML models have been

developed for accurate and efficient structure-property mapping from large databases

of Kohn-Sham DFT calculations [39–42]. Another prominent application is the ML

based force-field or interatomic potential models trained by dataset from DFT calcu-

lations [91–93, 96, 97, 125, 127, 128, 175–177]. Such ML models, which are essentially

classical force-field models, yet with a desired quantum accuracy, allows for larger

scale and longer time ab initio MD simulations. More fundamentally, ML mod-

els are also shown to provide accurate approximations of the density functionals or

116
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the Hohenberg-Kohn mapping from external potential to electron density function-

als [218–223].

The integration of ML and data science techniques with ab initio electronic struc-

ture methods have provided a tantalizing prospect of inverse materials design where

a novel material of a given functionality can be predicted from available experi-

mental measurements and theoretical calculations [224–227]. Yet, despite tremen-

dous progress, efficient calculation of materials’ properties beyond the idealized zero

temperature remains a challenge for a successful data-driven design and discovery

pipeline. In particular, one important thermal effect is the phonon-induced renormal-

ization of electronic structures [228,229]. This renormalization is the main mechanism

for the temperature dependence of band gap energy.

A well-developed first-principles approach to incorporate electron-phonon cou-

pling is based on the density functional perturbation theory (DFPT) [230–232]. For

example, both phonon dispersion relations and electron-phonon matrix elements can

be obtained from DFPT. These calculations can then be combined with the per-

turbative Feynman diagram methods to compute, e.g. the phonon-induced electron

self-energies, including both the Fan and the Debye-Waller terms [233–236]. A consis-

tent theory of temperature-dependent band structures up to second-order in electron-

phonon coupling was developed by Allen, Heine and Cardona (AHC) [234,235]. Vari-

ous phonon-induced thermal effects, such as band gap renormalization and broadening

of absorption edge, can be included within this framework [237–239]. The perturba-
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tive calculation of the electron-phonon interaction can also be elegantly integrated

with the GW approximation [240–242] to partially account for electron-electron in-

teractions. However, as this first-principles approach is built on the Kohn-Sham DFT,

it is also restricted to this particular electronic structure method.

The frozen phonon method [243–249] offers an alternative framework for first-

principles electron-phonon calculations. This approach is also more general in the

sense that it can be used with any electronic structure solver, which implies that

systems with weak and strong electronic correlations can be treated on the same

footing. In fact, one of the earliest ab initio electron-phonon calculations was based

on the frozen phonon method [245]. The central idea of this approach is rather

straightforward: by comparing electronic structure solutions without and with the

atomic displacements of a certain normal mode of the lattice, one can numerically

compute the shift in electron eigen-energies or other physical observables induced

by this particular phonon modes. This numerical calculation, often based on the

finite difference method up to quadratic order, is then repeated for all phonon modes

allowed in a supercell [249,250].

Alternatively, thermal effects of lattice fluctuations can be directly computed by

MC sampling of thermal phonon configurations [251–254]. Each sampled configura-

tion of the frozen nuclei defines an electronic structure problem with frozen atomic

displacements. Expectation values of physical quantities, such as band gap, at finite

temperatures are obtained by averaging over solutions of the sampled configurations.
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Instead of MC sampling, dynamical methods such as adiabatic ab initio MD [255–257]

and path-integral MD [258–261] have also been used to generate the phonon configu-

rations. The vibrational expectation value of physical quantities here is obtained by

averaging along dynamical paths.

Compared with the above finite-difference frozen phonon method, the approach

of sampling phonon configurations, either stochastically or dynamically, has the ad-

vantage that higher-order electron-phonon couplings can be straightforwardly in-

cluded [253,254]. However, the sampling approach is computationally very demanding

as an electronic structure problem has to be solved for each sampled frozen phonon

configuration in a supercell, and accurate evaluation of physical quantities requires a

large number of configurations. To circumvent this computational difficulty, it was

shown that the configurational averaging can be approximated by averaging over a

set of special configurations called thermal lines [262, 263] or even by fully deter-

ministic supercell calculations based on a single optimal configuration of the atomic

positions [264]. While these approximations significantly reduce the cost of repeated

electronic structure calculations, they are exact only in the thermodynamic limit of

large supercells. In practical implementations of finite supercells, their accuracy has

to be carefully benchmarked.

In this work, we propose a ML approach to solve the efficiency issue of configu-

rational averaging method. The central idea is to build a ML model that accurately

predicts the physical quantities of interest corresponding to a configuration of nuclei
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in a supercell. MC algorithm based on an ab initio phonon model is used to sample

atomic configurations, and the trained ML model is employed to efficiently predict the

corresponding physical property. As a proof of principle, we apply this MC-ML ap-

proach to compute the temperature dependent electronic band gap of silicon crystal.

We use silicon as an example as it has been extensively studied by using various meth-

ods and thus provides a testbed for validating our methods. Our approach not only

produces accurate temperature dependence of the gap energy, but also significantly

reduces the number of DFT calculations in the process.

The ML model in our proposed framework can be viewed as a special case of

the general ML structure-property mapping models [265–269] which have played a

central role in the high-throughput materials design strategy. A proper descriptor

of the input structure is an important ingredient of such ML models. In our case,

the descriptor is particularly important for preserving the symmetry properties of the

original electronic model in the mapping from phonons to properties. To this end,

we employ group-theoretical methods to obtain generalized coordinates of atomic

configurations in a supercell which are invariant under the point group symmetry of

the crystal. The use of the phonon descriptor enhances both the training efficiency

and the accuracy of the ML model.
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5.2 Stochastic Formalism and Machine Learning Mod-
els

Our framework of vibronically renormalized electronic band structures is based on the

stochastic frozen-phonon method. There are two major components in our framework:

(i) the ab initio lattice dynamics model for sampling the phonon configurations in a

supercell, and (ii) the ML model that maps the phonon configuration to the physical

properties of interest, e.g. the electronic band gap energy.

5.2.1 Ab Initio Phonon Models

The fundamental assumption of most ab initio electron-phonon calculations, espe-

cially the frozen-phonon methods, is the Born-Oppenheimer or adiabatic approxima-

tion. The fact that masses of nuclei are much larger than that of electron indicates

that the electron velocities are much larger than the nuclear ones, suggesting that

electrons can follow the motion of the slow nuclei almost instantaneously. The well-

separated time scales of the two sets of degrees of freedom allows one to write the full

nuclei-electron wave function as a product form |Ψ⟩ = |χ⟩⊗|ψ⟩, where |χ⟩ and |ψ⟩ are

the phonon and electron wave functions, respectively. Under the adiabatic approxi-

mation, one can integrate out the electron degrees of freedom to obtain a potential

energy surface E(R1,R2, · · · ,RN) as a function of the coordinates Ri of the nuclei.

Practically, this involves solving an electronic structure problem with each atomic

configuration frozen in Ri based on DFT calculations, or other electronic structure

methods.
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The Hamiltonian of nuclei in Born-Oppenheimer approximation is given by Hnucl =

∑
iP

2
i /2Mi+E({Ri}), where Pi is the momentum operator of the i-th nuclei and Mi

is the corresponding mass. However, since the computation of the potential energy

for each atomic configuration {Ri} requires solving an electronic structure problem,

direct ab initio determination of the phonon modes is computationally intractable,

if not impossible. As discussed in Sec. 5.1, ML force-field approaches offer an effi-

cient and accurate approximation to the potential energy surface. However, due to

the lack of explicit analytical expressions for E({Ri}), the phonon modes cannot be

directly derived from the ML model. Vibrational thermal average has to be done in

conjunction with dynamical simulations based on the ML force-field models.

Direct phonon or lattice models can be obtained based on the harmonic approx-

imation to the nuclear Hamiltonian Hnucl. For crystalline systems, nuclei only un-

dergo small amplitude oscillations about their equilibrium positions. We can then

write the nuclear positions as Ri = R
(0)
i + ui, where R

(0)
i is the equilibrium po-

sition and ui is the displacement vector. Assuming small displacements, one can

then express the potential energy E({Ri}) in a power series of the displacement

vectors. Since the equilibrium positions minimize the potential energy, the linear

term in the expansion vanishes. To the leading second-order, the potential energy is

E = E0+
∑

ij

∑
α,βDiα,jβu

α
i u

β
j , where uαi denotes the α-component of the displacement

vector of the i-th nucleus (α = x, y, and z), and Diα,jβ = ∂2E/∂ui,α∂uj,β, evaluated

at the equilibrium positions {R(0)}, is the dynamical matrix which encapsulates the
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normal modes of the lattice.

The normal modes V
(ν)
s,k of the crystalline systems are obtained by diagonalizing

the harmonic Hamiltonian, here ν is the branch-index, s is the sublattice index, and k

is the reciprocal lattice wave vector. The displacement vectors can then be expressed

as

ui =
∑

ν,k

ξν,kV
(ν)
si,k
eik·R

(0)
i , (5.1)

where ξν,k are the effective or normal-mode coordinates. In terms of the effective

coordinates, the vibrational dynamics of the lattice is described by the following

phonon Hamiltonian

Hphonon =
∑

ν

∑

k

(
−ℏ2

2

∂2

∂ξ2ν,k
+

1

2
Ω2
ν,kξ

2
ν,k

)
. (5.2)

Here Ωνk is the eigen-frequency of the normal modes. Ab initio calculation of the

phonon modes can now be routinely computed using DFT methods, both based on

the DFPT or frozen-phonon formalisms. Computation of the dynamical matrices

using methods beyond DFT have also been demonstrated [270,271].

5.2.2 Stochastic Vibrational Average

Next we consider the computation of observables such as in the frozen-phonon frame-

work. Quantum mechanically, an observable corresponds to a Hermitian operator

O({rl}, {Ri}) which depends on both electron and nuclei coordinates. By integrating

out the electronic degrees of freedom within the Born-Oppenheimer approximation,
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the observable

O({Ri}) = ⟨ψ({rl})|O({rl}, {Ri})|ψ({rl})⟩

becomes a function of nuclear coordinates only. The electron quantum state |ψ({rl})⟩

in general also implicitly depends on the nuclei configuration {Ri}. The vibrational

expectation value of the observable quantity at finite temperature T is then given

by [249]

⟨O(T )⟩ = 1

Z
∑

M

⟨χM({Ri})|O({Ri})|χM({Ri})⟩e−EM/kBT ,

(5.3)

where the summation is carried over nuclear quantum states |χM({Ri})⟩ whose energy

is EM , Z =
∑

M exp[−EM/kBT ] is the partition function of phonons and kB is the

Boltzmann constant.

In this work, the observable of interest is the electronic band gap Eg but the

formalism applies to any other observables. Similar formulas can also be derived for

matrix elements Ajk({Ri}) between different electronic states; the resultant expecta-

tion values will determine the transition rates such as optical absorption and dielectric

coefficients [272,273].

In the harmonic approximation, the quantum number of the nuclei is given by

an array of integers M = {nν,k}, and the corresponding wave function becomes a

product state: χM({Ri}) ∝ ∏
ν,kHnν,k

(ξν,k) exp[−ξ2ν,k/2], where Hn(x) is the n-th

order Hermite polynomial, Ri = R
(0)
i + ui, and the displacement vectors ui is ex-
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Figure 5.1: Machine learning model for band gap prediction for a given atomic
displacement field ui within the a box of linear size ℓ. The ML model is composed

of two central components: the descriptor and the neural network. The input of the
ML model is a cubic block of displacement vectors ui. The descriptor corresponds
to a representation or feature variables G = (G1, G2, G3, · · · ) of the displacement

vectors that is invariant under symmetry operations of the point group of the
lattice, which in the case of Si is the Td group. The complex dependence of the band

gap on the nuclei configurations is encoded in the NN which takes the
symmetry-invariant feature variables G as well as the temperature T as the input,

and the predicted gap energy at the output.

pressed in terms of the normal mode coordinates ξν,k through Eq. (5.1). As the

atomic displacements will play a central role in this work, we introduce the notation

U = {u1,u2, · · · ,uN} to denote the collection of displacement vectors. Within the

quadratic approximation, the summation over the integer quantum numbers nν,k in

Eq. (5.3) can be recast into integrals over the normal mode coordinates:

⟨O(T )⟩ =
∏

ν,k

∫
dξν,k

exp(−ξ2ν,k/2σ2
νk,T )√

2πσνk,T
O(U), (5.4)

where the width σν,k of the Gaussian integral is given by:

σ2
νk,T = (2nνk,T + 1)

(
ℏ

2Ων,k

)2

, (5.5)
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and nνk,T = [eℏΩνk/kBT−1]−1 is the Bose-Einstein occupation of the (ν,k) phonon. The

displacement configuration U in O(U) of the Gaussian integrals is again expressed

as superposition of the phonon modes as in Eq. (5.1).

The computation of the multidimensional Gaussian integral, however, is compu-

tationally challenging for observables with a complex dependence on the nuclei con-

figuration. The calculation can be simplified by expanding the observables as a power

series expansion of displacement vectors, often up to second order, the Gaussian inte-

gral can then be analytically evaluated. Within the DFT framework, the expansion

coefficients can be similarly computed using DFPT [230, 274–276] or frozen-phonon

methods [243,246].

An alternative approach, which also allows one to go beyond perturbation theory

and DFT, is the stochastic Monte Carlo method [251–253]. To this end, we rewrite

the integral in Eq. (5.4) as

⟨O(T )⟩ =
∫

DUπG(U)O(U) ≈ 1

N
N∑

k=1

O(U(k)). (5.6)

Here DU is a simplified notation for the multiple integrals over the effective coordi-

nates ξν,k, and πG(U) is an effective probability density function of U, corresponding

to the product of Gaussian density functions. The Metropolis-Hastings algorithm is

then used to implement a transition probability P (U → U′) = min [1, πG(U
′)/πG(U)]

for sampling the displacement configurations. A series of displacement configurations

U(k) sampled from the Markov-Chain Monte Carlo is used to compute the vibrational
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average as indicated by the approximation in Eq. (5.6) above.

5.2.3 Machine Learning Model

Having obtained an ab initio phonon model, sampling of the nuclei configuration, or

more specifically the displacement field u, is relatively straightforward. The bottle-

neck of the stochastic approach to vibrational thermal averaging is the computation

of the observable O(U) for the sampled configurations. As discussed in Sec. 5.1, to

overcome this computational complexity, a fully deterministic method based on the

idea of effective vibrational configurations is proposed to replace the stochastic MC

sampling. It has been shown that the vibrational average can be approximated by

either a single nuclear configuration, called special displacement configuration [264],

or a reduced MC sampling along so-called thermal lines [262]. While these meth-

ods greatly simplify the problem and have been shown to work reasonably well for a

wide range of materials [277], they are essentially based on quadratic approximation

of electron-phonon theory and therefore may fail to capture higher order effects in

certain class of materials [278]. In addition, it has been shown very recently that

the special displacement method fails to correctly account for the renormalization

of energy levels of nitrogen vacancy centers in diamond [279]. Hence, it is desirable

to develop an efficient vibrational averaging method without sacrificing too much

accuracy.

Modern ML methods, especially supervised learning, offer a promising solution to

the issue of computational efficiency by providing an accurate and efficient mapping
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from the phonon configuration U to the electronic observable O of interest. Funda-

mentally, this approach relies on the universal approximation theorem which shows

that deep multilayer NN can be trained to accurately approximate any given high-

dimensional functions [280, 281]. A schematic diagram of our proposed ML model is

shown in FIG. 5.1; the input of the model is a frozen phonon configuration represented

by a displacement field U and the temperature T , while the output is the predicted

observable corresponding to the expectation value O(U) = ⟨ψ|Ô|ψ⟩ where |ψ⟩ is cal-

culated from some electronic structure methods. Using an ab initio phonon model

discussed in Sec. 5.2.1 to generate a series of displacement fields U
(r)
T at a few pre-

determined temperatures T , the electronic states |ψ(r)⟩ are then solved consistently

based on the same first-principle methods. A dataset of the form
{
U

(r)
T , T ; O(r)

}
is

used to train the above ML model.

Broadly speaking, our proposed ML model for O(U) can be viewed as a special

case of ML-based modeling of structure-property relationships in materials science [98,

265–267, 269, 282, 283]. Yet, while the inputs to most conventional ML structure-

property model are static disordered or quasi-random structures of the system, a

frozen phonon configuration as represented by a displacement field U describes an

instantaneous structure of nuclei. In this sense, our ML model is also similar to the

ML-based interatomic potential models which maps a dynamical atomic configuration

in a finite range to a local atomic energy [91–93,96,97,125,127,128,175].

As shown in Fig. 5.1, there are two central components of the ML model: (i) a
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(c)

Figure 5.2: Group of atoms sharing same distance to the center of the box form an
invariant block of the representation matrix of the symmetry group. Panels (a), (b),
and (c) show such invariant groups of 4, 6, and 12 atoms, respectively, in a diamond

lattice.

learning model based on deep multi-layer NN and (ii) a descriptor which provides

generalized or effective coordinates of frozen phonons. The ML model works as fol-

lows. First, the set of displacement vectors U = {ui} that characterizes the atomic

configuration within a cubic box is mapped to a collection of symmetry-invariant

feature variables G = {G1, G2, · · · }, also known as a descriptor. These feature vari-

ables are then fed into the NN which produces the predicted observable O(U) at the

output node, thus bypassing the time-consuming electronic structure calculations.

Integrating this ML phonon-to-property model into the stochastic framework offers

an efficient yet accurate vibrational thermal average.

5.3 Descriptors for Frozen Phonon Configurations

While a NN-based learning model is used mainly because of its superb approximation

capability, the descriptor plays a crucial role not only to facilitate the training effi-

ciency, but also to preserve the symmetry of the original electron-phonon system. In
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conventional image processing models, the so-called data augmentation technique is

commonly employed to artificially expand the size and diversity of a training dataset

by applying various transformations to the original images. These transformations

can include rotation, scaling, flipping, translation, or color changes, among others.

The goal is to make the model more robust and invariant to these transformations,

which helps improve generalization and performance on unseen data. However, de-

spite the universal approximation capability of NN models, symmetries of the original

physical Hamiltonian can only be learned approximately even with the augmented

datasets.

To ensure that the symmetry of the original electronic system is exactly preserved

in the ML model, a proper representation of the frozen phonon configuration is to

be fed into the learning model instead of the raw displacement vectors. Indeed,

similar symmetry-based descriptors also play a crucial role in both ML structure-

property models as well as ML force-field models for ab initio MD simulations. This

is particularly important for the BP type ML schemes for interatomic potentials. The

output of such BP-type ML models is an atomic energy which, as a scalar, is invariant

under symmetry operations of the crystalline system including rotation, reflection,

and permutation of same-species atoms. Consequently, a proper descriptor of the local

neighborhood not only should be able to differentiate distinct atom configurations,

but also remain invariant under the above symmetry transformations.

Over the past decade, several learning models based on a variety of atomic descrip-
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tors have been proposed [91,92,96,104,181–185]. For example, the ACSF, which is one

of the most popular atomic descriptors, is based on the two-body (relative distances)

and three-body (relative angles) invariants of an atomic configuration [91, 127]. The

group-theoretical method, on the other hand, offers a more controlled approach to the

construction of atomic representation based on the bispectrum coefficients [92,104].

In our ML phonon-to-property models, the continuous translation and SO(3) rota-

tion symmetries of crystalline systems are reduced to discrete point group symmetry

associated with a supercell. On the other hand, the discrete rotation, reflection, and

mirror symmetries of the point group not only transform the atoms in the super-

cell, but also act uniformly on all displacement vectors ui. The output of the ML

models is often a scalar, such as band gap energy or optical absorption coefficient.

As these quantities are invariant under symmetry operations of the point group,

symmetry requirement means that two atomic displacements U(a) and U(b) related

by symmetry operations, when fed into the ML model, should produce exactly the

same scalar observable. It is worth noting that, in the absence of descriptors, such

symmetry-related configurations will be treated by the neural net as unrelated inputs.

To ensure the invariance of the predicted scalar quantity (gap energy), the feature

variables G = {G1, G2, · · · } have to remain invariant under symmetry operators of

the point group associated with the lattice.

A general theory of descriptors for lattice systems was recently developed based on

group-theoretical methods [58,105]. Implementations of specific descriptors have also
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been demonstrated mostly for lattice model systems in condensed matter physics [59,

99,131,132,179]. Here we adopt the group-theoretical approach to develop a symmetry-

invariant descriptor for the frozen phonon configuration in a supercell. To this end,

the first step is to decompose a given displacement field U into irreducible repre-

sentations, from which invariant feature variables can be obtained. In the case of

silicon where atoms reside on a diamond lattice, the relevant point group of the site

symmetry is Td. Take an arbitrary lattice point as the center of reference frame,

under a discrete rotation, represented by the 3 × 3 orthogonal matrix A, the dis-

placement vectors transform according to ui → u′j = A · ui where the two lattice

points are related by Rj = A ·Ri. For N atoms in the box, their displacement field

thus constitute a 3N -dimensional reducible representation of the Td group. Since the

distance is preserved by symmetry operations of the point group, the decomposition

of this high-dimensional representation can be simplified as the representation matrix

is automatically block-diagonalized, with each block corresponding to a fixed distance

from the center-site of the block. FIG. 5.2 shows examples of such invariant group of

atoms in the diamond lattice.

Since there are three components for each atomic displacement vector uj, the

dimension of each block is related to the number of atoms nb in the corresponding

neighboring group through the relation Db = 3 × nb. For the diamond lattice, there

are four distinct types of neighboring groups with nb = 4, 6, 12, and 24 atoms.

Consider the simplest case of a 4-atoms group, as shown in FIG. 5.2(a). The dis-
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placement vectors of the four atoms, denoted as a, b, c, and d for simplicity, form

a Db = 12 dimensional representation of the Td group, which can be decomposed

as 12 = A1

⊕
E
⊕

T1
⊕

2T2, where, A1 denotes 1D representation, E denotes 2D

representation and T denotes 3D representation. The A1 component, for example, is

given by the combination

fA1 = ax + ay + az − bx − by + bz

+cx − cy − cz − dx + dy − dz.

Another example is the basis functions of one of the T2 IR:

fT2x = ax + bx + cx + dx,

fT2y = ay + by + cy + dy,

fT2z = az + bz + cz + dz.

Details of the IR decompositions and the basis functions can be found in Appendix A.

By repeating the same procedures for each block, the displacement field U is fully

decomposed into the IR of the Td group. For convenience, we arrange the resultant

IR basis functions into a vector

fΓ
r = (fΓ

r,1, f
Γ
r,2, · · · , fΓ

r,DΓ
), (5.7)

where Γ labels the type of IR, r enumerates the multiple occurrence of IR-Γ in the

decomposition of the displacement configuration, and DΓ is the dimension of the
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corresponding IR. Given these basis functions, one can immediately obtain a set of

invariants called power spectrum {pΓr }, which are the amplitude of each individual IR

basis, i.e.

pΓr =
∣∣fΓ
r

∣∣2 . (5.8)

The power spectrum coefficients constitute a basic set of feature variables that are

invariant under symmetry transformations of the point group. However, a descriptor

based only on the power spectrum is incomplete in the sense that the relative phases

between different IRs are ignored. For example, the relative "angle" between two IRs

of the same type: cos θ = (fΓ
r1
· fΓ

r2
)/|fΓ

r1
||fΓ

r2
| is also an invariant of the symmetry

group. Without such phase information, the NN model might suffer from additional

error due to the spurious symmetry, namely two IRs can freely rotate independent of

each other.

A systematic approach to include all relevant invariants, including both amplitudes

and relative phases, is the bispectrum method [103,104]. The bispectrum coefficients

are triple product of IR basis functions defined as

BΓ,Γ1,Γ2
r,r1,r2

= CΓ;Γ1,Γ2

α,β,γ fΓ
r,αf

Γ1
r1,β

fΓ2
r2,γ

(5.9)

where CΓ;Γ1,Γ2 are the Clebsch-Gordan coefficients of the point group [103]. While a

bispectrum descriptor provide a faithful invariant description of the phonon field, the

number of all bispectrum coefficients increases cubically with the size of supercell.

Moreover, many of them are redundant. In this work, we develop a descriptor similar
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to the one used in Ref. [58, 105], that is modified from the bispectrum method. We

introduce a set of reference basis functions fΓ
ref for each IR Γ of the point group. These

reference basis are computed by averaging large blocks of displacement variables, such

that they are less sensitive to small changes in the supercell. For example, by dividing

the supercell into 24 symmetry-related blocks for the case of Td point group, we define

the average displacement vector of a block-B as uB =
∑

i∈B ui. The reference basis

fΓ
ref can then be computed from these block-averaged displacement vectors using

exactly the same decomposition formulas.

Given the reference IR, we then define the relative "phase" θΓr of an IR as the

projection of its basis functions onto the reference basis:

exp
(
iθΓr
)
≡ fΓ

r · fΓ
ref/|fΓ

r | |fΓ
ref |. (5.10)

The relative phases between two IR basis of the same type can then be obtained

via their respective phases with the reference. Finally, the relative phases between

different IR basis are provided by the bispectrum coefficients computed entirely from

the reference IRs. To summarize, the lattice descriptor are comprised of the following

three types of variables:

G = {Gℓ} = {pΓr , eiθ
Γ
r , BΓ,Γ1,Γ2

ref }. (5.11)

Here BΓ,Γ1,Γ2

ref is the bispectrum coefficient in Eq. (5.9) where all three IRs are com-

puted from the reference. These feature variables are not only invariant under the

point-group symmetry, but also provide a faithful representation of phonon configu-
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rations (module symmetry operations) in the supercell.

5.4 Computational Details and Results

5.4.1 DFT Calculations

First principles DFT calculations were done using Quantum Espresso (QE) [284]

package. Perdew-Zunger (PZ) exchange-correlation functional [285] within the local

density approximation (LDA) was used in all the calculations. Full lattice relaxation

of primitive cell of Si crystal was performed which gave lattice parameter of 5.398

Å consistent with previous works [249]. The primitive BZ was sampled by using

k -mesh of 24 × 24 × 24 and energy cutoff of 30 Rydberg was used after careful con-

vergence tests. The relaxed lattice was used to perform ab initio phonon calculation

using DFPT [230–232] within the harmonic approximation as implemented in QE.

For phonon calculations, we used a q-mesh of 8 × 8 × 8. From the information of

phonon eigen-frequencies Ων,k and eigenvectors V
(ν)
s,k, we generated atomic supercell

configurations of size 6 × 6 × 6 primitive unit cells containing 432 Si atoms using

importance sampling Monte Carlo according to Eq. (5.4). Subsequently, DFT self-

consistent calculation were performed on about 10% of the distorted atomic supercell

configurations using k -mesh of 3 × 3 × 3 to generate a database of electronic band

gap as a function of atomic configurations.

In FIG. 5.3, we show the electron and phonon dispersion relations in the ground

state of silicon crystal obtained from DFT calculations. These results are consistent

with previous literature [286]. DFT calculations show an indirect band gap of 500
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Figure 5.3: Ground state (a) electron and (b) phonon dispersion of Si crystal along
high-symmetry directions of the lattice.
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meV which is severely underestimated compared to the experimental band gap of 1.12

eV. Such band gap underestimation of insulators and semiconductors is a well known

problem in DFT and more sophisticated methods like GW calculations are known

to give better estimation of the band gap. In practice, GW correction of band gap

is similar to the "scissor shift" of bands. Since we are interested in the band gap

reduction induced by thermal phonons, this underestimation of band gap should not

be an issue as the same GW-correction (to leading order) appears in both the perfect

and perturbed crystal structures. Hence, in the following, we will use phonon induced

band gap correction ∆Eg = Eeq
g − Edistorted

g as our observable of interest, where Eeq
g

is the band gap of the perfect crystalline structure and Edistorted
g is the band gap of

the distorted structure.

The phonon dispersion shown in FIG. 5.3 is also consistent with previous studies.

By sampling the normal mode coordinates ξνk according to Eq. (5.4), a displacement

configuration U = {ui}, or a frozen phonon configuration, within the supercell is con-

structed according to Eq. (5.1). Fixing the nuclei positions at Ri = R
(0)
i + ui in the

supercell, DFT calculations were performed to obtain the optimized electron density

distribution. An energy gap Eg(U) corresponding to a particular phonon configu-

ration is computed as the difference between the lowest unoccupied and the highest

occupied states. In FIG. 5.4, we show histogram plot of the band gap correction ∆Eg

for a sample size of 100 at two different temperature values. As seen from the plots,

the MC method has not fully converged and needs large number of samples to get
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Figure 5.4: Histogram showing distribution of phonon-induced band gap correction
at (a) T = 0K and (b) T = 200 K using 100 data points for Si-supercell of size 6 × 6

× 6.

a better estimation of the band gap. In the following, we show that it is possible

to get a better estimation (i.e. smaller standard deviation) of the band gap without

incurring additional computational cost by first using the DFT calculated dataset to

train a ML phonon-to-band gap mapping, and then using the ML model to predict

band gap for a large number of configurations to obtain thermal average.

5.4.2 Neural Network Architecture and Model Training

As shown in FIG. 5.1, our learning model is based on a fully-connected NN, also

known as a multilayer perceptron model. A fully-connected NN comprises of a series

of fully connected linear layers with non-linear activation functions that are applied at

each layer. The parameters of the j-th layer are the matrix of network weights W(j)

and bias vector b(j). The weights introduce coupling between neurons of adjacent
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Layer Network

Input Layer [838,2048]a

Hidden Layer 1 [2048,1024]

Hidden Layer 2 [1024,512]

Hidden Layer 3 [512,256]

Output Layer [256,1]

aFully connected layer with arguments [input size, output size].

Table 5.1: The architecture of neural network. GeLU activation function and
drop-out rate of 0.3 was used in all layers except output layer.

layers. The mapping of neurons x from one layer to the next is achieved by a linear

transformation followed by a nonlinear activation function as

x(j+1)
m = fav

(∑

n

W (j)
mn x

(j)
n + b(j)m

)
. (5.12)

A commonly used activation function is the ReLU [287] defined as fav(x) := max(x, 0).

However, sometimes a large number of ReLU neurons remains inactivated in the

model. Hence, often some variants of leaky ReLU [288] are used instead. In this

work, we used the Gaussian Error Linear Units (GeLU) [289] activation function,

which shows better performance than the standard ReLU.

We build a fully-connected NN with four hidden layers. The dimension of the

hidden layers are (2048, 1024, 512, 256); see Table 5.1 for details. Moreover, a

dropout layer with 0.3 dropout rate is introduced. As for the initialization of each

layers, we utilize the Xavier uniform for the weights and the Normal distribution for

the bias. Adam optimizer with initial 0.0001 cosine learning rate and l2 regularization
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coefficient 5× 10−9 is used.

As noted above, the phonon configurations are sampled from a supercell consisting

of 6 × 6 × 6 primitive unit cells. Here a primitive unit cell corresponds to a paral-

lelepiped formed from primitive vectors a1 = (0, a/2, a/2), a2 = (a/2, 0, a/2), and

a3 = (a/2, a/2, 0), where a is the length of a conventional cubic unit cell. The skewed

primitive unit cell, however, does not preserve the cubic symmetry of the silicon crys-

tal. To facilitate the incorporation of the point-group symmetry, here we instead use

an input block comprised of 3× 3× 3 cubic cells with a total of 279 atoms.

To further improve the statistics of the ML predictions, we apply the same ML

model to multiple overlapping cubic blocks of the supercell. Specifically, we choose

sites with coordinate (i, j, k)a and (i+1/2, j+1/2, k+1/2)a as the center, where i, j, k

are integers ranging from 0 to 2. For these 54 sites, we consider their surrounding sites

within a block of 3 × 3 × 3 cubic cells which includes 279 sites. Since our descriptors

keep the same dimension as the configuration, the number of the input features is

838 = 279×3+1, where first 837 features are the descriptors of 279 sites configuration

and the rest feature is the temperature. The band gap energy corresponding to the

phonon configuration U of the supercell is obtained by averaging ML predictions from

these 54 blocks. Accordingly, the loss function used for training the NN is given by

the following MSE

L =

〈∣∣∣∣∣E
DFT
g − 1

M

M∑

k=1

Ê(k)
g

∣∣∣∣∣

2〉
, (5.13)

where Ê(k)
g denotes the ML predicted band gap energy for the k-th cubic block, M =
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54 is the number of blocks, and ⟨· · · ⟩ indicates averaging over the training dataset. We

have generated 103, 108, 113, and 204 distinct phonon configurations for four different

temperatures at T = 0, 100, 200, and 300K, respectively, and performed fully self-

consistent DFT calculations on these configurations to estimate the band gap EDFT
g .

For each temperature, 80 randomly chosen configurations and the corresponding band

gap energies are used to train the ML model, while the rest of the configurations are

kept as the validation and test dataset. After 600 epochs of training process with

each batch including only one configuration, the loss function value is converged to

around 0.0024297 for the training dataset and 0.00410986 for the validation dataset.

The whole process takes 540 seconds on NVIDIA GPU A100 workstation.

FIG. 5.5 shows the parity plot of ML predicted band gap corrections ∆g versus

those from DFT calculations for four temperatures used in NN training. As expected,

the phonon-induced correction to the band gap energy is enhanced at higher temper-

atures due to the increased number of thermal phonons. While an overall agreement

was obtained between the ML predicted values and DFT results, the prediction accu-

racy varies with the temperatures. For a more detailed comparison, histogram pots

of the prediction error δ = ∆EML
g − ∆EDFT

g are shown in FIG. 5.6(a)–(d) for four

different temperatures. The error is larger for higher temperature because the width

of the Gaussian distribution used in MC sampling increases with temperature. Yet,

it is remarkable that the error from NN trained on ∼ 100 data points is merely of the

order of 10 meV, thus demonstrating the robustness of our ML model.
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Figure 5.5: Scatter plot showing phonon-induced band gap correction (in meV
units) predicted by ML model versus DFT calculation for 6× 6× 6 Si-supercell at

four different temperature values.
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(d) T = 300 K

Figure 5.6: Histogram of the prediction error defined as δ = ∆EML
g −∆EDFT

g for
temperatures at (a) T = 0 K, (b) 100 K, (c) 200 K, and (d) 300 K.



Chapter 5. Machine Learning for Silicon Band Structures 145

After NN training and optimization, we used the trained NN to predict band gap

for a large number of MC generated supercell configurations at the four temperature

values at which DFT calculations were performed to train the ML model. FIG. 5.7

shows the temperature dependence of the phonon-induced band gap correction of Si

using DFT and NN prediction. For comparison, we also show the experimentally

measured band gap correction. It should be noted that, although there are noticeable

discrepancies between experiment and computational results for higher temperature

region (T ≳ 150 K), the ML predictions agree quite well with the DFT calculations.

Importantly, by using ML-predicted data set, we were able to reduce the errorbars at

T = 0, 100, 200 and 300 K significantly compared to the DFT calculation.

It is remarkable that both DFT calculation and ML prediction correctly capture

the temperature dependence of band gap, especially in the low temperature regime.

The discrepancy at higher temperature is likely due to the anharmonic and lattice

thermal expansion effects which are not incorporated in our calculations. Inclusion

of these effects in ab initio calculations and application of more accurate exchange

correlation functionals could yield better comparison with experiments [290,291]. As

discussed above, by training a ML model using more accurate ab initio data, our

proposed framework can also incorporate such many-body effects into the electron-

phonon couplings and the phonon-induced temperature dependence.

Moreover, since temperature serving as a conditional control is another input to

our NN (see FIG. 5.1), we also apply the trained ML model to predict the band gaps
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Figure 5.7: Temperature dependence of the phonon-induced band-gap correction
∆Eg of Si. In total, 528 DFT calculations on 432-atom Si supercell were done. ML
prediction was done on 1000 configurations at each temperature. Experimental data

is extracted from Ref. [1]. The experimental data is shifted by DFT calculated
zero-point band gap correction energy.
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at intermediate temperature values (see FIG. 5.7). The inclusion of temperature as

a control parameter to the ML model, which was trained by datasets from multiple

temperatures, could impose further constraints by enforcing a consistency between

predictions at different temperatures. We have also trained ML models only trained

by dataset from a particular temperature and obtained better prediction accuracies at

that temperature. However, such models not only lack the generality for other tem-

peratures, but also likely suffer from over-fitting. On the other hand, the ML models

with additional conditioning from the temperature is shown to produce consistent

trend of temperature dependent band gap energy. The prediction accuracies at the

intermediate temperatures are of the same order as those used for the training. We

note that the overall prediction accuracy can be improved by increasing the number

of training data points or the scale of the neural network. Our results show that,

by leveraging the power of transfer learning, band gap corrections at intermediate

temperatures (where training data are not available) can also be accurately predicted

by our trained ML model without incurring any significant computational cost. The

only cost is in generating supercell configurations which is nominal.

5.5 Conclusion and Outlook

In summary, we have proposed a ML-based ab inito framework to incorporate phonon-

induced renormalization of electronic band structures and other electronic properties.

Our ML framework is based on the well-established stochastic approach to temper-

ature dependent band structures and transition processes due to electron-phonon
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coupling. In this approach, frozen phonon configurations within a supercell are first

sampled from Monte Carlo or dynamical simulations based on an ab initio phonon

model. Supervised learning methods are then applied to build a ML model that accu-

rately maps the sampled frozen phonon configuration within a supercell to the phys-

ical properties of interest. With the efficient sampling of phonon configurations and

prediction of the corresponding physical properties, accurate vibrational temperature

dependence can be obtained based on moderate datasets of ab initio calculations.

A crucial component of our ML framework is a phonon descriptor for incorporat-

ing the point-group symmetry of the crystalline system into the ML model. Contrary

to atomic descriptors used in most ML-based ab initio molecular dynamics methods,

where the objects of interest are the atomic species and relative coordinates to a

central atom, the dynamical variables in our case are atomic displacement vectors

(from their equilibrium position in a perfect crystal). To properly account for these

differences, we have employed the group-theoretical methods to obtain feature vari-

ables for the input to the neural network which is used as the learning model in our

framework.

In this work, we apply the proposed ML framework to obtain the temperature

dependence of phonon-induced corrections to the electronic band gap in crystalline

silicon. We demonstrate that the prediction errors of the energy gaps can be signifi-

cantly reduced from less than 100 datasets thereby reducing the number of expensive

DFT computations necessary for better estimation. Moreover, applying the trained
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ML model at temperatures not included in the training dataset, we show that ac-

curate and consistent trend of the band-gap corrections are obtained, highlighting

the power of transfer learning. While our work focuses on the prediction of band gap

energy, the proposed ML framework is of general purpose and can be used for thermal

vibrational effects on other electronic properties or transition coefficients as long as

Born-Oppenheimer approximation is valid.

While the ML model developed in this work is based on a specific flavor of

DFT (local density approximation for electron and phonon calculations) and density-

functional perturbation theory-based ab-initio phonon model, as discussed above, the

frozen phonon approach is independent of the underlying electronic structure meth-

ods. This means that many-body effects beyond DFT can be readily included in this

approach. However, the ab initio phonon model used to generate the atomic config-

urations should be consistent with the first-principle method employed for training

the ML model.



Chapter 6

Nonequilibrium Dynamics in Charge
Density Wave Insulators

6.1 introduction

Complex adaptive materials with multiple resistant states are widely exploited as

building blocks for next generation electronic and information technology. The op-

eration of conventional metal-oxide semiconductor field-effect transistors (MOSFET)

relies on the electrostatic charging of free electrons in thermal equilibrium, leading to a

switching speed bounded by 60 mV per decade, also known as the Boltzmann limit. In

contrast, controllable switching between many-body states with different resistances

offers the possibility of high-speed and low-power transistor operations. In particu-

lar, it has been suggested that ultrafast switching can be achieved by the collective

response of electrons in an insulator-to-metal transition (IMT) [292–294]. Indeed, an

emerging technology called the "Motronics" aims at achieving electronic and logical

operations by controlling electron correlation in the Mott insulators [295–297]. The

high-resistant state of these materials results from the localization of electrons due

150
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to the short-range Coulomb repulsion. The Mott insulator can be induced to a low-

resistant state via a first-order transition by reducing the electron repulsive energy

through electrostatic doping.

A charge density wave (CDW) state [298–300] is another many-body state that

attracts enormous attention due to their potential electronic and optoelectronic appli-

cations. A CDW phase is a macroscopic quantum state consisting of a periodic modu-

lation of the electronic charge density accompanied by a periodic structural distortion.

Early interests in CDW focused on the sliding phase of the quasi-one-dimensional in-

commensurate states with nonlinear conductivity at low applied voltage [299]. Other

novel properties include giant dielectric response, multi-stable conducting states, and

proximity to unusual superconductivity. The interest in CDW is rekindled in recently

years due to the advent of quasi-2D van der Waals materials, where CDW phases can

manifest themselves at room temperatures and above [301–309]. Moreover, as these

CDW phases can be readily manipulated by temperature, strain, bias voltage, and

other stimuli, these quasi-2D CDW materials are emerging as a new paradigm for

multifunctional devices.

In particular, electrically induced transitions between different CDW phases, as

well as CDW-metal transitions have been demonstrated in the 1T polymorph of tan-

talum disulfide (TaS2) [310–315], with a timescale of a few nanoseconds, making

this material a promising candidate for high-speed energy-efficient electronic appli-

cations [315–317]. The voltage or electric field induced IMT or resistive transition is
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known to be a highly complex process which involves a large variety of microscopic

mechanisms including carrier dynamics, lattice distortions, heat transport, and elec-

tron correlation effect. The electrical switching from CDW to metallic state is no

exception. On the other hand, recent experiments indicated that this process is

driven mainly by motion of complex domain walls [311] and is qualitatively differ-

ent from the resistive switching in complex oxides or chalcogenide glass which are

characterized by highly inhomogeneous intermediate states [318–324].

Despite its fundamental importance and technological implications, theoretical

modeling of the electrically induced CDW transitions remains mostly at the phe-

nomenological level. This is understandably a difficult task due to the multi-scale

nature of the problem. On one hand, one needs to describe the dynamical evolution

of the lattice degrees of freedom, while accounting for the nonequilibrium nature of

the electron system. On the other hand, large-scale real-space simulation is required

in order to capture the transient pattern formation and domain-wall propagation.

Finally, for systems with strong electron correlation, the need of proper many-body

techniques further adds the computational complexity.

In this chapter, we present the first-ever large-scale dynamical simulations of the

CDW phase transition, focusing on the interplay of lattice dynamics and the influence

of the out-of-equilibrium electrons. We consider the adiabatic limit of the Holstein

model in which the lattice degrees of freedom can be treated as classical variables,

and the model can then be exactly solved numerically. By performing large-scale
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quantum Brownian dynamics simulation with the forces computed from the nonequi-

librium Green’s function method, we demonstrate a reversible gating-induced CDW-

to-metal transition that is driven by the domain-wall motion. We further obtain a

dynamical phase diagram and characterize the voltage and temperature dependence

of the domain-wall dynamics.

6.2 Gating Induced Charge Density Wave to Metal
Transition

We consider a capacitor structure with a square-lattice Holstein model sandwiched by

two electrodes shown in Fig. 6.1(a). The right electrode serves as the substrate, while

a gate voltage V is applied at the left electrode. The total Hamiltonian of the system

is H = HHols + Hres, where HHols is the Holstein Hamiltonian for the square-lattice

in the center, and Hres describes the electrodes, reservoir degrees of freedom. The

Holstein Hamiltonian reads [325]

ĤHols = −tnn
∑

⟨ij⟩

ĉ†i ĉj − g
∑

i

Qi

(
n̂i −

1

2

)
(6.1)

where ĉi/ĉ†i is the annihilation/creation operators of spin-less electron at site-i, and

n̂i ≡ ĉ†i ĉi is the corresponding number operator, Qi describes a local structural distor-

tion at site-i, such as the breathing mode of the oxygen octahedron. The first-term

describes nearest-neighbor hopping tnn of electrons, and the second term denotes

phonon-electron interaction with a coupling constant g. As discussed above, here

we treat the Holstein phonon Qi as classical variables with the following elastic en-
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ergy [325]

V =
k

2

∑

i

Q2
i +

∑

⟨ij⟩

κQiQj , (6.2)

where k is the effective on-site spring constant, and κ describes a nearest-neighbor

repulsion between the local distortions. The Holstein model is one of the most stud-

ied electron-phonon model systems, and is widely used to investigate the physics of

polarons, superconductivity, and CDWs [26–34].

In the adiabatic limit, similar to the Born-Oppenheimer approximation widely

used in quantum or ab initio molecular dynamics [87], the electron relaxation is

assumed to be much faster than the lattice dynamics. To this end, we employ an

over-damped Langevin dynamics, or the Brownian dynamics (BD) to model the time

evolution of the lattice distortions [34, 326,327]

dQi

dt
= −1

γ
Fi + ζi(t), (6.3)

where γ is an effective friction constant, and ηi(t) denotes a stochastic force described

by a delta-correlated stationary Gaussian process. The driving force of a conserva-

tive system is given by the derivative of a potential energy: F = −∂E/∂Qi. For

electron forces in thermal equilibrium, the effective energy is given by E = ⟨ĤHols⟩ =

Tr
(
ρ̂eqĤHols

)
. However, for a driven electronic system, the energy is not well de-

fined, and the force in general is non-conservative. Nonetheless, the force can still be
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Figure 6.1: (a) Schematic diagram of the Gating-induced CDW to metal transition
in the adiabatic Holstein model. (b) Energy diagram of the two electrodes and the

center Holstein model. The CDW state is a band insulator with an energy gap
Eg = 2gQ0. Both the Fermi level ϵF at the bulk and the chemical potential µR of

the right electrode are set at the middle of the energy gap, while the chemical
potential of the left-electrode is lowered from the Fermi level by the gating voltage:

µL = ϵF − eV .
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obtained from a generalized Hellmann-Feynman theorem [328–332]

Fi = −
〈
∂ĤHols

∂Qi

〉
= g⟨n̂i⟩ (6.4)

where the expectation value ⟨· · · ⟩ is evaluated with respect to the quasi-steady-state,

yet out-of-equilibrium, electron subsystem.

6.3 Nonequilibrium Green’s Function

We next employ the nonequilibrium Green’s function (NEGF) method [333–336] to

compute these expectation values. To this end, we consider the following explicit

Hamiltonian for the electrodes and reservoir

Hres =
∑

ξ,i

εξ d
†
i,ξdi,ξ −

∑

i,ξ

Vξ,i
(
d†i,ξci + h.c.

)
. (6.5)

Here di,ξ represents non-interacting fermions from the bath (i inside the bulk) or the

leads (for i on the two open boundaries), and ξ is a continuous quantum number.

For example, ξ can be used to represent the band-structure of the two leads. After

integrating out the reservoir fermions in both leads and bath, the retarded Green’s

function matrix for the central region is given by Gr(ϵ) = (ϵI − H − Σr)−1, where

Hij = tij − gδijQi is the tight-binding matrix of the Holstein model Eq. (6.1) and

Σr
ij(ϵ) = δij

∑

ξ

|Vi,ξ|2/(ϵ− ϵξ + i0+) (6.6)

is the dissipation-induced self-energy. The resultant level-broadening matrix given by

Γ = i(Σr−Σa) is diagonal with Γii = π
∑

ξ |Vi,ξ|2δ(ϵ− ϵξ). For simplicity, we assume
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flat wide-band spectrum for the reservoirs, which leads to a frequency-independent

broadening factor. Next, using the Keldysh formula, the lesser Green’s function is

obtained from the retarded/advanced Green’s functions: G<(ϵ) = Gr(ϵ)Σ<(ϵ)Ga(ϵ),

and the lesser self-energy is related to the Σr/a through dissipation-fluctuation the-

orem: Σ<
ij(ϵ) = 2i δij Γi fFD(ϵ − µi). Here Γi = Γlead or Γbath depending on whether

site-i is at the boundaries or in the bulk. The local chemical potential µi = ϵF for

the bath, and µi = µL/R for the two electrodes. Finally, the nonequilibrium force in

Eq. (6.4) is proportional to the on-site electron density ⟨n̂i⟩ = ⟨c†i (t)cj(t)⟩, which is

the diagonal element of the equal-time lesser Green’s function

Fi(t) = g G<
ii(t, t) = g

∫ +∞

−∞
G<
ii(ϵ; t) dϵ. (6.7)

In our implementation, the integral is replaced by a Riemann summation with an

∆ϵ = 0.003, i.e. with up to 4000 energy values in the summation.

6.4 Results

We apply the NEGF-BD method outline above to simulate the gating-induced IMT

of the Holstein model on a 40 × 30 lattice. The initial state of the simulations was

obtained first using the equilibrium Brownian dynamics simulations with half-filled

electrons n ≡ ∑
i n̂i/N = 0.5 per site. This results in an initial state with CDW

order on the square lattice; see Fig. 6.2(a). The band structure a perfect CDW order

is given by E±(k) = ±
√
ϵ2k + g2Q2

0, where ϵk is the energy dispersion of the square-

lattice tight-binding Hamiltonian, and Q0 is the amplitude of the lattice distortion in
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Figure 6.2: NEGF-BD simulations of a driven Holstein model on a 40× 30 square
lattice. The driven voltage is applied along the longitudinal x direction. Panels

(a)–(c) show the snapshots of the system local electron density ni = ⟨ĉ†i ĉi⟩ at various
simulation times. The following parameters are used: electron-phonon coupling
constant g = 1.5tnn, the effective spring constant k1 = 0.67g, nearest-neighbor

elastic coupling κ = 0.12g, damping constant λ = 0.2g, Γlead = 1.0, Γbath = 0.001,
kBT = 0.1, and the bias voltage eV = 2.5tnn.

the CDW state. Importantly, an energy gap ∆ = 2g Q0 is opened in the spectrum.

At half-filling, the valance band E−(k) is completely filled, and the Holstein model is

in a band-insulator state.

Next we turn on the voltage bias V . As illustrated in Fig. 6.1(b), the chemical

potential of both the substrate (the right electrode) and the center square lattice is

kept at the zero ϵF = µR = 0, which is set at the middle of the energy gap, while

that of the left electrode is µL = −eV . Fig. 6.2 shows an example of the phase

transformation of the Holstein system driven by a gating voltage eV = 2.5. The color

gradient shows the expectation value of the on-site density ⟨n̂i⟩. Other simulation

parameters are: electron-phonon coupling constant g = 1.5tnn, local displacement Qi

string constant k1 = 0.67g, nearest-neighbor coefficient κ = 0.12g, damping constant

λ = 0.2g, Γlead = 1.0, Γbath = 0.001, and the temperature is kBT = 0.1.

As shown in Fig. 6.2, the gating voltage induces an instability of the CDW, which
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(b)

(a)

I

�

time

to↵

Figure 6.3: Time dependence of (a) the transmission current I and (b) the CDW
order parameter Φ at zero temperature. A constant voltage eV = 2.5tnn is applied

to the Holstein system during the interval 0 ≤ t ≤ toff = 400.
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results in the formation of a metallic domain as the electrons are drained from the

gating electrode with a lower chemical potential. The resultant CDW-metallic domain

wall is then driven to the substrate. To further characterize the phase transformation

process, we compute the transmission current of the driven electron state [333–336]

I =

∫
Tr(ΓRGr ΓLG

a)[fL(ϵ)− fR(ϵ)]dϵ, (6.8)

where ΓL,R are the diagonal broadening matrices, and fL,R(ϵ) = fFD(ϵ − µL,R) are

the Fermi-Dirac functions. Fig. 6.3(a) shows the transmission current I as a function

of time under a bias voltage eV = 2.5 at a temperature T → 0. The roughly

linear segment in the semi-log plot indicates an exponential growth of the current:

I ∼ exp(c t), where c is a numerical constant. We note that the phase transformation

at such low temperatures is essentially a downhill process, with energy dissipated

away both through the effective damping γ of the lattice, and the electron reservoir.

Interestingly, as the CDW-metal interface moves across the sample one layer at a

time, this discrete procession gives rise to the small spikes on top of the exponential

increase in the figure. Fig. 6.3(b) shows the time dependence of the CDW order

parameter, which is defined as

Φ =
∑

i

⟨n̂i⟩ exp(iQ · ri), (6.9)

where Qi = (π/a, π/a) is the wave vector characterizing the checkerboard pattern on

the square lattice. The almost linear decrease of Φ during the phase transformation

indicates an almost linear propagation of the CDW-metal domain wall.
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Our simulations also show that the metallic state is stable only in the presence of

the bias voltage, which means that the insulator-metal transition is reversible. This is

demonstrated in Fig. 6.3 which shows that the CDW order returns to its initial value

when the gating voltage is turned off. Interestingly, contrary to the voltage-driven

transition which proceeds through intermediate states with propagating domain-wall,

the recovery to the CDW state is almost immediate, indicating a bulk instability. It

is worth noting that the fact that the CDW order resumes to its initial maximum

value in our simulation is a finite-size effect. For large lattices, the reverse transition

is likely to result in the formation of multiple CDW domains of opposite signs.

We next investigate the effects of the gate voltage on the phase transformation

rate. Fig. 6.4(a) shows the average position ξ of the CDW-metal interface as a function

of time at different bias voltage. As expected, a larger gate voltage results in faster

domain-wall motion. The average velocity of the interface, obtained through a linear

fitting of the domain-wall trajectory ξ(t), is plotted in Fig. 6.4(b) as a function of the

bias voltage. Importantly, one can identify three different dynamical regimes from

this result. For gate voltage smaller than a threshold eVth ∼ 2.4, the CDW remains

a stable state. In regime-II, a voltage-induced instability results in the formation of

CDW-metal interface whose propagation velocity increases with larger voltage. And

finally, for V greater than a second critical value, the transition to the metallic phase

takes place instantly through a process similar to a dielectric breakdown.

This dynamical phase diagram can be understand from the energy diagram shown
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Figure 6.4: (a) average position ξ of the CDW-metal domain-wall as a function of
time for different gating voltages at zero temperature. (b) CDW-metal domain-wall
velocity v as a function of the gate voltage eV . The velocity is computed from the

average slope of the ξ(t) curve in panel (a).
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in Fig. 6.1(b), which also provides an explanation of the phase transition mechanisms.

For a small bias voltage the chemical potential of the gating electrode µL lies in the

energy gap of the CDW state and, as a result, is ineffective in inducing the phase

transition. As the voltage is increased to a point that µL overlaps with the energy

levels of the in-gap states that are localized at the left edge, the resonant coupling

leads to an instability of the CDW. As electrons are drained from the gate due to

a smaller chemical potential, a metallic layer is nucleated near the left edge. The

phase transformation then proceeds through the expansion of the metallic domain.

This corresponds to the dynamical regime-II in Fig. 6.4(b). As the applied voltage

is further increased such that the chemical potential µL is lower than the valance

band-edge, the gate electrode now directly couples to the energy states in the bulk,

thus allowing efficient current flow through the bulk and an instant instability toward

the metallic phase.

The domain-wall propagation at T → 0 discussed above is governed by a relaxation

dynamics dominated by the dissipation of energy. It is worth noting that the effective

potential of the local lattice distortion is similar to a double-well potential, with one

minimum at Qi = ±Q0 (depending on the sublattice) and the other one at Qi ∼ 0

corresponding to the metallic phase. The energy surface of the whole system is more

complicated than this simple picture. The layer-by-layer progression the metallic

domain indicates that each domain-wall position is a quasi-stable state in the high

dimensional configuration space. As more energy is drained from the gate, the decay
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Figure 6.5: Average position ξ of the CDW-metal interface as a function of time for
different temperatures with constant driven voltage eV = 2.5tnn. The inset shows

the CDW-metal domain-wall velocity as a function of temperature.
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of a local minimum leads to the advance of the domain-wall by one layer. In the

presence of thermal fluctuations, the system can jump from one local minimum to the

next one through thermal tunneling, instead of waiting for the decay of the present

minimum. It is thus expected that the domain-wall mobility is enhanced at finite

temperatures. This is indeed confirmed in our simulations, as shown in Fig. 6.5.

Except for the point at very low temperature, we find an approximate linear increase

of the domain-wall velocity with temperature.

6.5 Conclusion and Outlook

To sum up, we’ve executed extensive NEGF-BD simulations to investigate the gating-

induced CDW to metal transition in a well-studied electron-phonon system. Besides

the familiar electrical breakdown seen at high bias voltages, we reveal a shift marked

by meta-stable states featuring moving metal-insulator domain-walls at moderate

voltages. This shift originates from an initial CDW instability when a metallic layer

forms at the gate electrode. The resulting metal-CDW boundary moves through the

system at a nearly steady speed that rises with both voltage bias and temperature.

Furthermore, this voltage-driven transition is reversible; the system rapidly returns

to the CDW state once the voltage gate is removed.

Our work focuses on the interplay between atomic lattice dynamics and the out-

of-equilibrium electrons. Importantly, our study uncovers the instability mechanisms

for the CDW states. Nonetheless, the CDW phase transition in real materials, such

as the quasi-2D van der Waals materials, is a highly complex process which is beyond
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the present work. In particular, by focusing on the solvable Holstein model in the

adiabatic limit, our simulations neglect the electron correlation effect, which is likely

to be important in compounds such as 1T-TaS2 that is intensively studied exper-

imentally. Many-body techniques such as Hartree-Fock or Gutzwiller are required

to properly model the collective electron behaviors in CDW described by, e.g. the

Holstein-Hubbard model [337, 338]. For example, self-consistent Hartree-Fock equa-

tion combined with NEGF was used to investigate the complex spin-density wave

patterns in voltage-driven Hubbard model [126, 339, 340]. However, a full dynami-

cal modeling of CDW transitions requires further integration with real-space lattice

dynamics, which is computationally highly demanding. Machine-learning methods

could provide a promising solution for the multi-scale modeling of the complex CDW

dynamics.



Chapter 7

Descriptors for Lattice Models

7.1 Introduction

ML is increasingly becoming a powerful paradigm in scientific research and engi-

neering [43–56], particularly in quantum chemistry and materials science [218, 219,

341–347]. In recent years, ML methods have been employed to significantly accelerate

computational tasks that are otherwise highly time-consuming, such as first-principles

electronic structure calculations based on DFT. Among various ML approaches, deep

NNs [348,349] have proven to be especially versatile and effective, capable of approx-

imating complex high-dimensional functions with remarkable accuracy [280,281,350].

This advancement has enabled the development of ML-based interatomic potentials,

allowing large-scale MD simulations with the precision of DFT, significantly expand-

ing the scope of computational modeling in materials science [91–97,125–130].

Traditionally, large-scale simulations of magnetic systems or phase transitions have

relied on empirical or effective energy models, such as classical spin Hamiltonians or

Ginzburg-Landau energy functionals [70, 72]. While these models incorporate key

167
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symmetries of the original quantum systems, they inherently lack predictive power

and fail to account for the intricate interplay between electrons and classical fields

during dynamic evolution. In contrast, a quantum approach would require solving

the electron Hamiltonian at every time step, analogous to quantum MD simulations

where atomic forces are obtained by solving the self-consistent Kohn-Sham equation

at each step [87,351]. However, the computational expense associated with repeated

electronic structure calculations severely limits the applicability of this approach to

large systems.

Modern ML methods offer a promising solution to this challenge, as demonstrated

by recent studies [98,99] employing ML-based models to simulate quantum LLG dy-

namics and other complex phenomena in correlated electron systems. These studies

have showcased the potential of deep-learning NNs to enable large-scale simulations

of systems with strong electron-electron interactions, such as double-exchange mod-

els [204, 352–354] or Falicov-Kimball models [59]. In these cases, ML models can

emulate the behavior of the electronic subsystem [57, 76] and provide accurate pre-

dictions for effective forces or torques acting on classical fields, thereby allowing the

exploration of much larger system sizes and longer timescales than would be feasible

with conventional methods.

Despite the versatility of ML models, ensuring that the symmetries of the un-

derlying quantum system are preserved remains a crucial challenge. To accurately

simulate the dynamics of classical fields coupled to electrons, a proper represen-
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tation of the field configuration must be constructed to serve as input to the ML

model. This representation, often referred to as a descriptor [104, 182, 184], should

be invariant under symmetry transformations of both the classical fields and the lat-

tice [41, 91–93, 104, 104, 105, 175, 181, 181–185, 341, 355, 356]. Similar challenges have

been encountered in the context of ML interatomic potentials, where atomic descrip-

tors must be invariant under rotational and permutational symmetries. Over the

years, a variety of descriptors have been developed, such as ACSF [91, 181], bond-

order parameters [355], and group-theoretical methods based on bispectrum coeffi-

cients [92,104].

In this chapter, we develop a general theory of descriptors for classical fields in

condensed matter systems, with a particular focus on lattice models. We explore

several approaches, including those generalized from atomic descriptors, to construct

faithful representations of local classical fields. The primary focus, however, is on

the group-theoretical method, which provides a rigorous representation based on ir-

reducible representations (IRs) of the lattice point group. While this approach is

powerful, it is often over-complete and cumbersome to implement in practice. To

address these challenges, we propose the concept of reference IRs, which significantly

simplify the implementation of bispectrum descriptors. The proposed descriptors are

then applied to various lattice models, demonstrating their ability to capture the

symmetries and complexity of different classical field configurations.
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7.2 Descriptor

The ML energy model provides an effective energy model in terms of the classical

fields

E
(
{Φi}

)
=
∑

i

ε(Ci) (7.1)

where {Φi} denote a configuration of the emergent classical fields, Ci, defined as

Ci =
{
Φj

∣∣Rij = |rj − ri| ≤ Rc

}
, denotes the local configuration of the classical vari-

ables with a given cutoff radius Rc, and ϵ denotes the local site-energy. This energy

model naturally needs to preserve the symmetry of the original Hamiltonian, which

includes both the symmetry of the dynamical variables and that of the underlying

lattice. Nonetheless, despite the universal approximation capability of ML models,

the symmetry of the original electron Hamiltonian is not automatically captured.

Since the training of ML model is essentially an optimization process with randomly

chosen datasets, the symmetry of the model can only be statistically approximated

even with a large amount of training data. As discussed above, a proper represen-

tation of the classical fields is required to ensure that the symmetry of the electron

Hamiltonian is built into the ML model. A good representation, or descriptor, of the

local environment must be invariant with respect to symmetry transformations of the

system.

For condensed matter systems defined on a lattice, the ML energy model ε(Ci)

must be invariant under the discrete transformations of the point group, denoted as
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GL, associated with the center site-i. Moreover, for classical fields with a complex

structure, one also needs to take into account the symmetry associated with transfor-

mations among the multiple components Φi,1,Φi,2, · · · at the same site. We classify

the classical fields into two types depending on whether these two symmetries are en-

tangled to each other or not. Examples of these two types are illustrated in Fig. 7.1.

For models of the first type, the internal symmetry of the classical variables is cou-

pled to the lattice symmetry. Examples of type-I classical variables include on-site

displacement vector fields ui = (uxi , u
y
i , u

z
i ) [357–359], where the transformation of

the 3 components of the displacement vector is coupled to the discrete rotations of

the point group, such as Chap. 5. Another example is the Jahn-Teller (JT) doublet

Qi = (Qx2−y2
i , Q3z2−r2

i ) characterizing local structural distortion [360, 361]. The only

relevant symmetry group for such type-I models is the on-site point group GL. Under

the symmetry operation ĝ ∈ GL, the rearrangement of the classical fields at different

lattice sites coincides with the transformation of the various components. Noting that

Φj,α = Φα(rj) with α = 1, 2, · · · ,M being the index of the various components, the

transformation of the classical fields is described by

Φ̃α

(
O(ĝ) ·Rij

)
= Mαβ(ĝ)Φβ(Rij), (7.2)

where Rij = rj − ri is the relative position vector of site-j, Mαβ(g) is the M -

dimensional matrix representation of the symmetry operation ĝ, and O(ĝ) is the

3-dimensional orthogonal matrix transforming site-i to site-k, i.e. Rik = O(ĝ) ·Rij.
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Figure 7.1: Classical fields with different symmetry properties. An example of
type-I case is the local JT distortion Qj as shown in panel (a). The lattice

rotation/reflection is accompanied by a simultaneous transformation of the JT
phonons. Panel (b) shows the type-II case exemplified by local spins Sj. The global
rotation symmetry of spins is independent of the discrete point-group symmetry of

the lattice.



Chapter 7. Descriptors for Lattice Models 173

For type-II models, the classical fields are characterized by an independent internal

symmetry group, which will be denoted as GΦ. The most representative example,

perhaps, is the models with local classical spins Si as illustrated in Fig. 7.1(b). For

spins with n-component, the symmetry group of the system is a direct product of the

lattice group GL and the internal symmetry group GΦ = O(n) describing the global

rotation symmetry of the spins. The most general symmetry operation consists of

the lattice rotation/reflection ĝ ∈ GL, and the transformation ĥ ∈ GΦ:

Φ̃α

(
O(ĝ) ·Rij

)
= Mαβ(ĥ)Φβ(Rij), (7.3)

Note that Mαβ(ĥ) is the matrix representation of the group GΦ, which is independent

of the lattice point group. It is important to note that, for type-II models, the

ML potential energy ε(Ci) must be invariant under the general combined symmetry

transformation ĥ⊗ ĝ.

It is worth noting that while our focus is on the lattice models which are prevalent

in condensed matter physics, most of the analysis presented in this work can be

generalized to the off-lattice models or disordered systems if the point group GL is

replaced by the continuous 3-dimensional rotation group O(3), of course, assuming

the system possesses such a global rotation symmetry. This means that our analysis

can also be applied to electron models defined on an amorphous system or an atomic

liquid state. In fact, the latter case can be viewed as a molecular dynamics system

with an array of classical variables Φi associated with every atom. A particular
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interesting application would be the Gutzwiller MD method where the classical fields

Φi corresponds to the slave-boson amplitudes [362].

Having discussed the general symmetry transformations for the two types of clas-

sical fields, we next describe a concise vector representation of the neighborhood Ci

with its center at site-i. We first consider the type-I models; the case of the type-

II model will be discussed in Sec. 7.2.2. For convenience, the site-indices of lattice

points within Ci are labeled as jr, where r = 1, 2, · · · , L = |Ci|. Essentially, the inte-

ger r offers an ordered list of lattice sites in the neighborhood. Under the symmetry

operation ĝ of the point group, the lattice point jr is mapped to js if and only if

(rjs − ri) = O(ĝ) · (rjr − ri). Consequently, ĝ can be represented by a L × L permu-

tation matrix P , which means the nonzero matrix elements are Psr(ĝ) = 1 if the two

sites jr and js are related by ĝ. Next we introduce a vector U⃗ whose components are

given by the classical fields in the neighborhood:

Ur,α = Φα(rjr), (7.4)

It is easy to see that U⃗ offers a vector representation of dimension L ×M for the

point group GL. And the corresponding matrix representation T of the symmetry

operation ĝ ∈ GL is given by

Ũr,α = Trα,sβ(ĝ)Us,β = Prs(ĝ)Mαβ(ĝ)Us,β. (7.5)

Also importantly, the matrix T provides an orthogonal matrix representation of the

point group, i.e. T †T = T T † = I, where I is the L × M -dimensional identity
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matrix. Next we present two descriptors based on this vector representation of the

neighborhood.

7.2.1 Bispectrum Coefficients

In this Section, we present a systematic method for constructing a descriptor based on

the group-theoretical method. Specifically, the feature variables are given by the so-

called bispectrum coefficients computed from the expansion coefficients of irreducible

representations of the point group [103,363,364]. The bispectrum coefficients, which

are invariant under the symmetry operations of the point group, are in a sense similar

to the scalar triple product of three vectors which is invariant under arbitrary rota-

tions. It is also worth noting that similar group-theoretical methods, with important

modifications to simplify the implementation, have been proposed as descriptor for

ML interatomic potentials in quantum MD simulations [92,104].

In order to compute the bispectrum coefficients, the first step is to obtain the

irreducible representations of the neighborhood. As discussed above, the vector U⃗ ,

defined in Eq. (7.4) provides a L × M -dimensional representation of the local en-

vironment Ci. This high-dimensional representation can then be decomposed into

irreducible representations (IRs) of the point group GL following the standard proce-

dures [102,365]. Specifically, we use Γ to label the different IRs in the decomposition,

and denote the corresponding basis vector of IR-Γ as

Υ⃗Γ =
(
Υ⃗Γ

1 , Υ⃗
Γ
2 , · · · , Υ⃗Γ

nΓ

)
, (7.6)
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where nΓ is the dimension of corresponding IR. Note that each "component" Υ⃗Γ
µ =

{ΥΓ
µ;r,α} is itself a (L × M)-dimensional vector. The neighborhood vector is then

decomposed as

Ur,α =
∑

Γ

nΓ∑

µ=1

fΓ
µ ΥΓ

µ; r,α. (7.7)

The expansion coefficients fΓ
µ of the IR, play a role similar to the Fourier coefficients

for the translation group. Using the orthogonality of the basis vectors of different

IRs, the expansion coefficients are given by

fΓ
µ = Υ⃗Γ†

µ · U⃗ =
L∑

r=1

M∑

α=1

ΥΓ∗
µ, rα Urα. (7.8)

For convenience, we can group the expansion coefficients of a given IR into a vector:

fΓ =
(
fΓ
1 , f

Γ
2 , · · · , fΓ

nΓ

)
. (7.9)

In terms of the classical fields, see e.g. Eq. (7.4), the expansion coefficients are

fΓ
µ =

L∑

r=1

M∑

α=1

ΥΓ∗
µ; rαΦα(rjr). (7.10)

Under symmetry operations ĝ of the point group GL, different IRs transform inde-

pendently of each other. Consequently, the transformation of the vector fΓ of a given

IR is described by an nΓ × nΓ unitary matrix DΓ as

f̃ Γ
µ =

∑

µ′

DΓ
µµ′(ĝ) f

Γ
µ′ , (7.11)

or the more concise vector equation: f̃ Γ = DΓ ·fΓ. From the transformation relation
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Eq. (7.5) for the vector U⃗ , the transformation matrix DΓ can be explicitly computed.

DΓ
µµ′(ĝ) = Υ⃗Γ†

µ · T (ĝ) · Υ⃗Γ
µ′ . (7.12)

It is worth noting that the transformation matrices of a given IR have been tabulated

for most point and double groups. Similar to the ordinary Fourier analysis, we define

the power spectrum for a given IR as

pΓ ≡ fΓ† · fΓ =

nΓ∑

µ=1

∣∣fΓ
µ

∣∣2 (7.13)

Since the transformation matrices are unitary D†D = 1, it is easy to see that the

power spectrum is invariant under symmetry operations:

p̃Γ = f̃ Γ† · f̃ Γ = fΓ†DΓ†DΓfΓ = fΓ†fΓ = pΓ, (7.14)

This indicates that the amplitude of each IR can be used as the descriptor for the

local environment Ci. However, the power spectrum pΓ is not a complete descriptor of

the neighborhood function, since it neglects the weight distribution within each IR.

Neither does it account for the relative phases between different IRs.

A more complete description, which consists of a larger set of invariants, is given

by the bispectrum of the IRs. To this end, we first consider the tensor product of

coefficient vectors fΓ1 ⊗ fΓ2 , which can be viewed as the expansion coefficients of

the tensor-product U⃗ ⊗ U⃗ of the vector representation with a tensor-product basis

Υ⃗Γ1
µ ⊗ Υ⃗Γ2

ν . Under a symmetry operation, according to Eq. (7.11), the tensor-product



Chapter 7. Descriptors for Lattice Models 178

transforms as

fΓ1 ⊗ fΓ2 →
(
DΓ1 · fΓ1

)
⊗
(
DΓ2 · fΓ2

)

=
(
DΓ1 ⊗DΓ2

)
·
(
fΓ1 ⊗ fΓ2

)
. (7.15)

As is well established in the representation theory of finite groups, the direct product

of two IRs can be decomposed into a direct sum of IRs. This indicates the following

decomposition of the direct-product matrices:

DΓ1 ⊗DΓ2 =
(
CΓ1,Γ2

)†
[⊕

Γ

DΓ

]
CΓ1,Γ2 , (7.16)

where ⊕ means direct sum over the IRs of the direct product. We note that IR of the

same dimension and symmetry could appear more than once in the direct sum. The

CΓ1,Γ2 is a unitary matrix of dimension nΓ1×nΓ2 ; its matrix elements are known as the

Clebsch-Gordan coefficients of the symmetry group under consideration. Explicitly,

we have

DΓ1

µµ′(ĝ)D
Γ2

νν′(ĝ) (7.17)

=
∑

Γ

∑

κ,κ′

(
CΓ;Γ1,Γ2
κ,µν

)∗
DΓ
κκ′(ĝ)C

Γ;Γ1,Γ2

κ′,µ′ν′

As mentioned above, the sum over Γ could include multiple IRs of the same trans-

formation properties. To construct the bispectrum coefficients, we first consider the

following vector:

vΓ1,Γ2 = CΓ1,Γ2 · (fΓ1 ⊗ fΓ2) (7.18)
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Since the Clebsch-Gordan matrix is essentially a transformation of basis, vector v is

thus the expansion coefficients of the irreducible basis for the tensor-product U⃗ ⊗ U⃗ .

This can also be seen from the transformation of the v vector. Substitute Eq. (7.16)

into (7.15), and multiply the resultant expression by the CΓ1,Γ2 matrix from the left,

we see that under symmetry operation ĝ, the vector vΓ1,Γ2 transforms according to

ṽΓ1,Γ2 =

[⊕

Γ

DΓ(ĝ)

]
· vΓ1,Γ2 (7.19)

This result thus also indicates we can decompose v into a direct sum of vectors each

of which corresponds to an irreducible representation:

vΓ1,Γ2 =
⊕

Γ

uΓ;Γ1,Γ2 (7.20)

Each vector transforms under symmetry operation as

ũΓ;Γ1,Γ2 = DΓ(ĝ) · uΓ;Γ1,Γ2 . (7.21)

From this equation and Eq. (7.11) for the transformation of the vector f belong to

the same IR-Γ, it is straightforward to see that the following "inner product" is a

scalar invariant under any symmetry operation:

bΓ,Γ1,Γ2 = fΓ † · uΓ;Γ1,Γ2 , (7.22)

These coefficients are called the bispectrum of the expansion coefficients of the IRs.

Using Eq. (7.18) to express the u vectors, we obtain the following explicit formula
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for the bispectrum coefficients

bΓ,Γ1,Γ2 =
∑

κ,µ,ν

CΓ;Γ1,Γ2
κ,µν fΓ∗

κ fΓ1
µ fΓ2

ν . (7.23)

The above expression shows the similarity of the b coefficients with the scalar triple of

three O(3) vectors. It should also be noted that the power spectrum pΓ is part of the

bispectrum coefficients. In fact, while formally the bispectrum coefficients are built

from product of three IR-amplitudes, they can also be used to describe invariants

consisting of two IR-coefficients. This corresponds to the case when the decomposi-

tion of the direct product representation Γ1 ⊗Γ2 includes the trivial one-dimensional

representation, denoted as Γ0 for convenience. By setting the corresponding coeffi-

cient to be a constant, e.g. fΓ0 = 1, we see that the resultant bispectrum coefficient

bΓ0,Γ1,Γ2 is nonzero only if the two IRs Γ1 and Γ2 transform in exactly the same way

under symmetry operations, hence have the same dimension. Consequently, we can

define the following generalization of power spectrum

pΓ1,Γ2 = fΓ1† · fΓ2 =
∑

µ

fΓ1∗
µ fΓ2

µ . (7.24)

The standard power spectrum Eq. (7.13) of a given IR-Γ corresponds to the case

Γ1 = Γ2 = Γ.

Importantly, since the bispectrum coefficients are invariant under symmetry op-

erations of the point group, they serve as proper descriptor to be combined with

the ML models. Moreover, it can be shown that the bispectrum provides a faithful

representation of the original configuration in the sense that the vector U can be



Chapter 7. Descriptors for Lattice Models 181

rigorously reconstructed from all bispectrum coefficients [103,363,364]. For practical

applications, however, there are a large number of the bispectrum coefficients for most

models and point groups. For example, let N be the number of IRs from the decom-

position of U⃗ , which is roughly of the order of N ∼ (L×M), the number of bispectrum

is of the order of N3, which in general is a rather large number. Moreover, as will

be demonstrated in explicit examples in Chap. 5, the bispectrum is an over-complete

representation with redundant information. Consequently, further simplification is

often required for practical implementations.

As an application of the bispectrum method, here we briefly review its application

to represent the atomic environment for ML interatomic potentials. The bispectrum

method is often combined with the Gaussian kernel potential learning model and the

so-called smooth overlap of atomic positions (SOAP) technique, which approximates

atoms in the neighborhood by Gaussian functions of a finite width [92, 104]. For

MD simulations, the local atomic configuration is described by the charge density

ρ(r) with the origin r = 0 corresponding to the center atom. The symmetry group

of three-dimensional free space is GL = SO(3), and the corresponding irreducible

representations are labeled by an integer ℓ = 0, 1, 2, · · · , which is essentially the

angular momentum quantum numbers [366]. Indeed, the basis function ΥΓ
µ for the

SO(3) group is simply the spherical harmonics Yℓ,m. Choosing a proper radial basis

gn(r), the atomic neighborhood density is expanded as

ρ(r) =
∞∑

n=0

∞∑

ℓ=0

ℓ∑

m=−ℓ

fnℓm gn(r)Yℓm(θ, ϕ), (7.25)
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Note that there is an additional integer index n for the expansion coefficients due

to the radial dependence. The bispectrum coefficients are then labeled by six inte-

gers [104]:

bℓ;ℓ1,ℓ2n;n1,n2
=

∑

m,m1,m2

f ∗nℓmC
ℓ;ℓ1,ℓ2
m;m1,m2

fn1ℓ1m1
fn2ℓ2m2

, (7.26)

where Cℓ;ℓ1,ℓ2
m;m1,m2

are Clebsch-Gordan coefficients of the SO(3) group [366]. For a given

set of radial indices (n, n1, n2), the bispectrum coefficients are nonzero only when ℓ =

ℓ1+ ℓ2 due to conservation of angular momentum. However, there are still an infinite

number of the b coefficients, and some cutoff ℓmax has to be introduced for practical

implementation. To further simplify the calculation, one can consider only coefficients

with n1 = n2 = n. This, however, implies that rotations of different radial basis are

decoupled, thus introducing a spurious symmetry. Nonetheless, some simplifications

can be achieved through special designs of the radial basis functions [104].

Instead of dealing with the natural SO(3) group for the three-dimensional space,

an alternative approach is to project the atomic environment within a cutoff Rc onto

the surface of the four-dimensional sphere S3 [92, 104]. Specifically, this means that

the center-atom is at the north pole, while the cutoff radius, i.e. the 3-sphere specified

by |r| = Rc, is mapped to the south pole of the S3. Next assuming an approximate

SO(4) symmetry for the projected atomic density, one can then use the resultant

bispectrum coefficients as the descriptor. As the IR of the SO(4) group is again

labeled by an integer j, the bispectrum coefficients are indexed by three integers
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bj,j1,j2 . It should be noted that although the projection to S3 implicitly assumes a

spurious SO(4) symmetry, a most crucial advantage of this approach is the absence

of the need for radial basis.

7.2.2 Internal Symmetry

As discussed above, the type-II models are characterized by an internal symmetry

group GΦ, independent of the lattice point group, that governs the transformation of

the classical fields Φi. The feature variables for the ML models need to be invariant

with respect to transformations of both symmetry groups. As the multiple compo-

nents of the local classical vector Φi do not transform simultaneously with the lattice

symmetry operations, the method described in Sec. 7.2.1 cannot be directly applied

to the type-II models.

One solution is to treat each of the M components of the classical fields Φi =

{Φi,α} (α = 1, 2, · · · ,M) as independent. We then view the neighborhood configura-

tion U⃗α = (U1,α,U2,α, · · · ,UL,α) as M independent L-dimensional representations of

the neighborhood Ci. Each component is then decomposed into the IRs of the lattice

group (c.f. Eq. (7.7) for the type-I case)

Ur,α =
∑

Γ

nΓ∑

µ=1

fΓ
µ,αΥ

Γ
µ;r, (7.27)

Note the basis function Υ of the IR now only depends on the site-index r. The

coefficients of the IRs are similarly obtained based on the orthogonality of the basis
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functions

fΓ
µ,α =

L∑

r=1

ΥΓ∗
µ;r Ur,α =

L∑

r=1

ΥΓ∗
µ;r Φα(rjr). (7.28)

For each of the IR Γ in the decomposition (with respect to point group), there are M

components indexed by α. As each can be viewed as a M -dimensional representation

of the internal symmetry group, it can be decomposed into the IR of GΦ labeled by

K:

fΓ
µ,α =

∑

K

nK∑

m=1

F Γ,K
µ,m YK

m,α. (7.29)

Here YK
m is the basis function of the K-th IR whose dimension is nK. Using the

orthogonality of the basis functions, the expansion coefficients are given by

F Γ,K
µ,m =

M∑

α=1

YK∗
m,α f

Γ
µ,α =

M∑

α=1

L∑

r=1

YK∗
m,αΥ

Γ∗
µ;r Φα(rjr). (7.30)

Here we have used Eq. (7.28) in the second equality to express F Γ,K
µ,m in terms of the

classical fields. It is worth noting that this mixed expansion coefficients, expressed as a

special combination of the classical fields, have well defined transformation properties,

indicated by the IR indices Γ and K, under both the point group of the site-symmetry

and the internal symmetry group. However, since the two set of symmetry transfor-

mations are independent of each other, one cannot obtain simultaneous bispectrum

coefficients with respect to both symmetry groups. To proceed, we can first "trace

out" the point group indices µ by forming the bispectrum coefficients of the point
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group first

BΓ,Γ1,Γ2

K1,l;K2,m;K3,n =
∑

κ,µ,ν

CΓ;Γ1,Γ2
κ,µν F Γ,K1∗

κ,l F Γ1,K2
µ,m F Γ2,K3

ν,n . (7.31)

These coefficients with three indices l, m, n can be viewed as a tensor-product repre-

sentation K ⊗ K1 ⊗ K2 of the internal symmetry group GΦ. Next we decompose this

tensor-product representation into a direct sum of IRs of the group GΦ. For conve-

nience of the discussion, we denote the coefficients of the IR in the direct sum as FK
q .

Then invariants with respect to the internal symmetry are given by the bispectrum

coefficients from the "triple" product of these FK
q coefficients. Importantly, these bis-

pectrum coefficients are now invariant with respect to both the lattice and internal

symmetry groups. Since the FK
q coefficients themselves are already triple product of

the field variables, the final invariants in general are composed of 9 classical vari-

ables; although some of them can be reduced. Since the number of the coefficients

increases even more dramatically with the cutoff radius Rc for type-II models, further

approximations are necessary to simplify the implementation of the descriptor.

A second approach, which is physically more intuitive and transparent, is to start

from the symmetry of the classical fields and first construct building blocks that are

already invariant under the transformations of the internal symmetry group. The

group-theoretical method discussed in Sec. 7.2.1 is then applied to these building

blocks for the lattice symmetry. To this end, we again note that the classical fields

Φj = {Φj,α} at every sites in the neighborhood Ci is obviously an M -dimensional
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representation of the internal symmetry group, and can be decomposed into IRs of

the GΦ group:

Φj,α =
∑

K

nK∑

m=1

fK
j,m YK

m, α, (7.32)

It is worth noting that the expansion coefficients fK
j,m acquires a site index j. Again,

using the orthogonality of Y , we have

fK
j,m =

M∑

α=1

YK ∗
m, αΦj,α. (7.33)

If the decomposition in Eq. (7.32) includes the trivial representation K0 which is by

definition a one-dimensional IR, then the coefficients fK0
j are automatically invariant

with respect to the internal symmetry group and are part of the building blocks for

the lattice group.

Other invariants of the internal symmetry group are provided by the generalized

power spectrum Eq. (7.24) and the bispectrum coefficients. The crucial difference

here is that these invariants are to be built from different sites, thus also serving as

many-body correlation functions. First, we consider the generalized power spectrum

obtained from a pair of sites (jk)

pK1,K2

jk =
∑

m

fK1 ∗
j,m fK2

k,m, (7.34)

Again, the generalized power spectrum coefficient is nonzero only if the two IRs K1

and K2 have the same transformation properties. Similarly, one can build invariants

of internal symmetry from a triplet (jkl) of lattice sites based on the bispectrum
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coefficients

bK,K1,K2

jkl =
∑

l,m,n

CK;K1,K2

l;m,n fK ∗
j,l fK1

k,mfK2
l,n . (7.35)

where CK;K1,K2

l,m,n are the Clebsch-Gordan coefficients of the internal symmetry group

GΦ. Fig. 7.2 shows examples of the atomic pairs (jk) and triplets (jkl) related by the

lattice rotation and reflection in the neighborhood of the center site. As mentioned

above, these quantities p and b also encode the two-body and three-body correlations,

respectively, of the neighborhood. Also importantly, they remain unchanged under

operations of the internal symmetry group and can be used as building blocks for

constructing the invariants of the lattice point group. To this end, we arrange them,

including the single-site trivial IR, into a vector of dimension N :

U⃗ = (U1,U2, · · · ,UN ) =
(
fK0
j , pK1,K2

jk , bK,K1,K2

jkl

)
. (7.36)

Here we use UJ to denote the components of this vector, where the index J is used

to label either a site j, a pair (jk), or a triplet (jkl). The dimension N is dominated

by the number of atomic pairs and triplets in the neighborhood. For a neighborhood

consisting of L sites, these two number scale as L2 and L3, respectively. Moreover,

one also needs to take into account the number of different IRs. As the total classical

degrees of freedom is L × M , the set of all f, p, and b invariants obviously is an

over-complete representation of the neighborhood. Practically, one needs to intro-

duce further constraints in order to reduce this number, for example, by restricting

distances between the pairs or triplets to be smaller than another cutoff, or to avoid
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Figure 7.2: Examples showing the atomic pair (jk) and triplet (jkl), which are
related by the lattice rotation and reflection symmetries, in the neighborhood of the

center site on a square lattice.

too many overlaps of the pairs and triples.

Irrespective of the approximations, by keeping all symmetry related pairs and

triples, as shown in Fig. 7.2, in Eq. (7.36), the vector U⃗ forms an N -dimensional rep-

resentation of the lattice point group GL. We next apply the same group-theoretical

method discussed in Sec. 7.2.1 to obtain the bispectrum coefficients of the point group.

We again decompose U⃗ into the IRs

UJ =
∑

Γ

nΓ∑

µ=1

fΓ
µΥ

Γ
µ;J . (7.37)

where ΥΓ
µ;J are the appropriate basis functions. It is worth noting that the IRs of

the single sites, pairs, and triplets are decoupled from each other. The expansion
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coefficients are then obtained separately as

fΓ
µ =





∑
j ΥΓ∗

µ;j f
K0
j

∑
(jk) Υ

Γ∗
µ;jk p

K1,K2

jk

∑
(jkl)Υ

Γ∗
µ;jkl b

K,K1,K2

jkl

(7.38)

Given these IR coefficients, Eqs. (7.23) and (7.24) can then be used to compute

the generalized power spectrum and bispectrum coefficients, respectively, which are

invariant with respect to both the internal and the lattice symmetry groups of the

type-II systems.

7.2.3 Atom-Centered Symmetry Functions

The building blocks introduced in Eqs. (7.34) and (7.35) above also offer the basis for

a descriptor which can be viewed as the generalization of the atom-centered symmetry

function (ACSF) originally proposed to describe the atomic configurations [91, 127].

Unlike the group-theoretic methods, the ACSF approach is physically more intuitive

and relatively simple to implement. On the other hand, it is more difficult to control

the errors due to the ad hoc parameterizations of the symmetry functions. Nonethe-

less, ACSF has been successfully applied to the ML interatomic potential for a wide

range of materials. We first briefly review the basic features of ACSF using the ex-

ample of mono-atomic systems. For a given atomic configuration {rj} in the vicinity

of a center atom-i, the fundamental invariants that are invariant under rotations and
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reflections of the O(3) group are the distances Rij = |rj − ri| from the center atom,

and the angles θijk = arccos[(rj−ri) ·(rk−ri)/RijRik]. Based on these quantities, two

kinds of symmetry functions are introduced. The first type is the two-body (between

atoms j and the center atom-i) symmetry function

G2({ξm}) =
∑

j ̸=i

F2(Rij; {ξm}), (7.39)

where F2(R; ξm) is a user-defined function, parameterized by {ξm} to extract atomic

structures at certain distances from the center atom. One popular choice, proposed

in the original work [91], is a Gaussian with a soft cutoff at radius Rc

F2(R; {ξm}) = e−(R−ξ1)
2/ξ22 fc(R). (7.40)

Here fc(r) = 1
2

[
cos( πr

Rc
) + 1

]
for R ≤ Rc and zero otherwise. The two parameters

ξ1 and ξ2 speficiy the center and width, respectively, of the Gaussian function. The

3-body symmetry functions are defined as

G3({ξm}) =
∑

j,k ̸=i

F3(Rij, Rik, Rjk, θijk; {ξm}), (7.41)

An example of the three-body envelop function characterized by three parameters

is [91, 127]

F3(R1, R2, R3, θ; {ξm}) = 21−ξ1(1 + ξ2 cos θ)
ξ1 (7.42)

× exp
[
−(R2

1 +R2
1 +R2

3)/ξ
2
3

]
fc(R1)fc(R2)fc(R3).
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We note that generalizations to take into account the different atom species have also

been made [184]. Moreover, depending on the problems at hand, it might be more

convenient to use different F2 and F3 functions, and several variants of these functions

have been proposed [184].

Next we present a generalization of the ACSF for condensed-matter systems, where

each atom is now associated with a dynamical classical field Φj. We emphasize that

the formulation presented here can also be used for disordered systems, where the

"lattice" point group is replaced by the 3D rotation group SO(3). Moreover, for

applications to MD simulation of liquid systems with a dynamical classical fields, the

generalized ACSF provides a convenient descriptor for ML energy models for both

the atomic dynamics and the classical fields. In order to incorporate the internal

symmetry, our approach is to define a set of symmetry functions based on the building

blocks in Eq. (7.36). We start with the two-body symmetry functions that include

the coefficients of the trivial IR at every sites:

G2a({ξm}) =
∑

j ̸=i

fK0
j F2(Rij; {ξm}), (7.43)

This is the direct generalization of the original two-body symmetry functions that

incorporates the on-site classical fields. Another way to build the 2-body symmetry

functions is to use the invariants pK1,K2

ij between the center site-i and a neighboring

site-j:

GK1,K2

2b ({ξm}) =
∑

j ̸=i

pK1,K2

jk F ′2(Rij; {ξm}), (7.44)
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The envelope function F ′2(R) is not necessarily the same as the one for G2a. A three-

body symmetry function based on single-site invariants is

GK1,K2

3a ({ξm}) =
∑

jk ̸=i

fK1
j fK2

k

×F3(Rij, Rik, Rjk, θijk; {ξm}), (7.45)

The pair-wise invariants can also be combined with the center atom to define a three-

body symmetry function:

GK1,K2

3b ({ξm}) =
∑

jk ̸=i

pK1,K2

jk

×F ′3(Rij, Rik, Rjk, θijk; {ξm}), (7.46)

A second type of 3-body symmetry functions is obtained from the invariants bK,K1,K2

ijk

that involves the center atom

GK,K1,K2

3c ({ξm}) =
∑

jk ̸=i

bK,K1,K2

ijk

×F ′′3 (Rij, Rik, Rjk, θijk; {ξm}), (7.47)

Finally, several four-body symmetry functions can be defined based on the fundamen-

tal invariants of the internal symmetry group. For example, combining the triplet

(jkl) with the center site, we have

GK,K1,K2

4 ({ξm}) =
∑

jkl ̸=i

bK,K1,K2

jkl

×F4(Rij, Rik, Ril, · · · ; θijk, θikl, · · · ). (7.48)

It is worth noting that most of the symmetry functions also depend on the IR indices
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K of the internal symmetry group. We also note that since the relative angles θijk

are pre-defined constants for models on a regular lattice, the dependence of the F

functions on these angles is trivial. More importantly, these F functions are used to

select the more relevant pairs or triplets to be included in the symmetry functions.

In particular, the symmetry functions can be simplified to a sum over the symmetric-

IR for lattice models. Take G3b as an example, we first divide all atomic pairs (jk)

in the neighborhood into inequivalent classes such that pairs within the same class

are related by the point group symmetry. Moreover, since pairs belong to the same

class are related by rotations or reflections that preserve the distance from the center

site, they share the same value of the F3 function; see Fig. 7.2(a) for an example of

the symmetry-related pairs on a square lattice. Using π to denote the inequivalent

classes of pairs, we then have

GK1,K2

3b ({ξm}) =
∑

π

F ′3(π; {ξm})
∑

ĝ

pK1,K2

π(ĝ) . (7.49)

Here π(ĝ) denotes atomic pairs (jk) related to a reference pair in the class π by the

symmetry operation ĝ. The sum over ĝ, which is the symmetric sum of the pair-wise

invariants p, corresponds to the 1D trivial IR of the lattice point group. Consequently,

the symmetry function G3b is manifestly an invariant of both the internal and lattice

symmetry groups.

To briefly conclude this Section, we have formulated a general theory of descriptors

for characterizing dynamical classical fields in condensed matter systems, and pre-
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sented various different, yet related, approaches for computing the invariant feature

variables. The group-theoretical method offers a rigorous and systematic approach

to derive a descriptor based on the bispectrum coefficients. Finally, we discuss a de-

scriptor that incorporates the symmetry of the classical fields into the atom-centered

symmetry functions. Explicit implementations of these descriptors are demonstrated

for well-studied correlated electron systems in the following sections and previous

chapters.

7.3 Example: Dynamics of Cooperative Jahn-Teller
Coupling

As a second example of the type-I models, we consider a model of itinerant eg electrons

interacting with the vibrational modes of MO6 octahedra on a square lattice. Since

our main interest here is the orbital ordering, we will neglect the electron spin degrees

of freedom and the t2g core spins. In LaMnO3, the orbital ordering (accompanied

by a JT transition) takes place at TOO = 750 K, which is much higher than the

magnetic transition at TM = 120 K, below which an A-type antiferromagnetic order

develops. In the paramagnetic phase above TM , the spin degrees of freedom form

a homogeneous, fluctuating background and we only consider the orbital degrees of

freedom in this work. Although orbital orders in manganites are three-dimensional, as

a first step towards large-scale simulations, in this work we focus on a two-dimensional

version of the cooperative JT systems, which exhibits the same K = (π, π) C-type

order/JT order in the ground state.
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The Hamiltonian of the cooperative JT model on a square lattice is given by

Ĥ = ĤK + ĤJT + EL. (7.50)

The three terms correspond to the electron kinetic energy, the electron-phonon cou-

pling, and the lattice elastic energy, respectively. The Hamiltonian ĤK describes the

nearest-neighbor hopping of eg electrons

ĤK =
∑

γ=x,y

∑

⟨ij⟩∥γ

∑

µν=a,b

(
tγµν ĉ

†
iµcjν + h.c.

)
, (7.51)

where ĉ†i,µ and ĉi,µ represent the creation and annihilation operators, respectively, of an

electron with orbital flavor µ at the i-th site, a and b denote the two basis dx2−y2 and

d3z2−r2 of eg orbitals, tγµν denotes the orbital-dependent anisotropic hopping between

nearest-neighbor pairs ⟨ij⟩ parallel to the direction γ = x, y on the square lattice.

The following hopping coefficients are used in our model calculations [204,367]: taaij =

−
√
3tabij = −

√
3tbaij = 3tbbij = tnn for hopping along the x-direction, and taaij =

√
3tabij =

√
3tbaij = 3tbbij = tnn along the y-direction.

The second term in Ĥ describes the JT coupling:

ĤJT = −λ
∑

i

(
QA1
i n̂i +QE

i · τ̂
)
, (7.52)

where QA1
i = Q1

i denotes the breathing mode of the MO6 octahedron at site-i, which

couples to the electron number operator

n̂i = ĉ†iaĉia + ĉ†ibĉib. (7.53)
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Figure 7.3: Schematic diagram of the vibronic modes for the MnO6 octahedron: (a)
the symmetry-preserving breathing mode, (b) and (c) the symmetry-breaking JT
modes. In terms of oxygen displacements, the coordinates of these normal modes

are: QA1 = (−X1 +X2 −X3 +X4 −X5 +X6)/
√
6, Qx = (−X1 +X2 +X3 −X4)/2,

and Qz = (−X1 +X2 −X3 +X4 + 2X5 − 2X6)/
√
12, where Xi denotes the x

coordinates of the i-th oxygen, and so on.

The doublet QE
i = (Qx

i , Q
z
i ) = (Q2

i , Q
3
i ) describes the JT modes that break the cubic

symmetry of the octahedron. Schematic diagrams of these three lattice modes are

shown in Fig. 7.3. The JT doublet couples to the pseudo-spin operator τ̂i = (τ̂xi , τ̂
z
i )

representing the electron orbital degrees of freedom:

τ̂xi = ĉ†iaĉib + ĉ†ibĉia, τ̂ zi = ĉ†iaĉia − ĉ†ibĉib. (7.54)

The third term in Eq. (7.50) is the classical elastic energy of the lattice distortions

EL =
K

2

∑

i

[
β
(
QA1
i

)2
+
∣∣QE

i

∣∣2
]
, (7.55)

where K denotes an effective elastic coefficient. The parameter β is defined as β =

(ωA1/ωE)
2, where ωA1 and ωE are the vibration energies for the breathing and doublet

JT modes, respectively, assuming that the reduced masses for these two modes are
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the same. Following previous works [367, 368], this parameter is set to β = 2 in the

following calculations.

It is worth noting that the breathing and JT modes of each octahedra are indepen-

dent of each other in this elastic model. More realistic approach naturally needs to

include couplings between neighboring octahedra, for example: E ′L =
∑

ijK
mn
ij Qm

i Q
n
j ,

where the indices m,n = 1, x, z. The equilibrium structural distortion is thus deter-

mined by both such direct elastic interactions as well as the effective electron-mediated

interaction through the cooperative JT effect discussed above. In general, as same

oxygen atoms are shared by two neighboring octahedra, nearest-neighbor couplings

between these Q modes are antiferromagnetic, i.e. K > 0, which are compatible with

both the C-type orbital order and the meta-stable CDW order to be discussed later.

For simplicity, in this work we neglect the direct elastic couplings and focus on the

intrinsic cooperative JT mechanism.

The ground state of the cooperative JT model in Eq. (7.50) at half-filling exhibits

a C-type orbital ordering, characterized by a wave vector K = (π, π), accompanied

by a structural distortion of the antiferro-distortive order with a predominate Qx

mode [367,369–372]. A schematic diagram of the orbital/JT order is shown in Fig. 7.4.

The orbital order can be described by the expectation values of the pseudo-spins. To

this end, minimization of the total energy with respect to the JT distortions yields

the relation

⟨τ̂i⟩ =
K

λ
QE
i , (7.56)
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(b)

Figure 7.4: Schematic diagram of (a) C-type orbital order, and (b) the concomitant
antiferro-distortive JT order. Also shown in panel (b) is the vector representation of

the orbital/JT order. The arrows represent either the doublet vector QE or the
expectation value of the orbital pseudo-spin ⟨τ̂ ⟩. These two vectors are related to

each other via Eq. (7.56) in the ground state.

It is worth noting that the linear JT coupling in Eq. (7.52) of a single octahedron is

given by the inner product (τ̂ ·QE), which implies that the interaction is invariant

under simultaneous rotation of the orbital pseudo-spin and JT doublet vector. In-

clusion of quadratic JT couplings of the form QQτ reduces this O(2) symmetry to a

3-fold degeneracy already at the single-octahedron level. On the other hand, in the

cooperative JT scenario, the determination of the lattice distortions needs to include

the kinetic energy of itinerant electrons on a lattice. Since the electron hopping in

Eq. (7.51) is anisotropic with a strong orbital-dependence, the O(2) symmetry of the

doublet vector is reduced to a two-fold mirror symmetry Qx → −Qx for the half-filled

cooperative JT system [360]. The resultant minima are found to be along the Qx
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direction QE
∗ = ±(Q∗, 0), and the checkerboard arrangement of these two symmetry-

related minima QE
∗ in the C-type order comes from a dominant electron-mediated

nearest-neighbor interaction of antiferro-distortive sign [367].

The Z2 mirror symmetry discussed above corresponds to a tetragonal lattice sym-

metry. As shown in Fig. 7.3(b), changing the sign of Qx sends a tetrahedron elongated

in the x-direction to one along the y-direction. The eigenstates of τ̂x with eigenvalue

+1 and −1 are dominated by d3x2−r2 and d3y2−r2 , respectively. The breaking of the

global Z2 symmetry of the cooperative JT system leads to the C-type orbital order

which can be described viewed as a Néel type order of Ising variable Qx. On symmetry

ground, the orbital JT phase transition is expected to belong to the Ising universality

class. A detailed thermodynamic study of the orbital/JT phase transition by, e.g.

Monte Carlo simulations, remain to be done.

Also of interest is the transition dynamics of the simultaneous JT distortion and

orbital ordering. Of particular interest is the coarsening behaviors of orbital domains

and whether the resultant domain-growth law falls into well-established universality

classes of phase-ordering dynamics. To this end, we consider the dynamical evolution

of the JT systems based on the approximation that electron relaxations are much

faster than the dynamics of JT distortions. This adiabatic approximation is similar to

the Born-Oppenheimer approximation widely used in the ab initio molecular dynamics

methods [87]. In particular, this means that the electronic contribution to the driving

forces are computed from an equilibrium Fermi liquid of the instantaneous lattice
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distortion. As both breathing and JT distortions are vibronic normal modes, their

dynamics are governed by an effective Newton equation of motion

µA1

d2QA1
i

dt2
+ γA1

dQA1
i

dt
= − ∂EL

∂QA1
i

− ∂⟨HJT⟩
∂QA1

i

+ ηA1
i (t),

µE
d2QE

i

dt2
+ γE

dQE
i

dt
= − ∂EL

∂QE
i

− ∂⟨HJT⟩
∂QE

i

+ ηEi (t). (7.57)

Here µα is the effective mass of the octahedral normal modes α = A1 and E, the

corresponding damping coefficients and Langevin noises are denoted by γα and ηα, re-

spectively. For simplicity, we shall assume the same parameters for the breathing and

JT modes. In particular, as discussed above, the difference in effective mass can be

accounted for by the ratio β of the elastic constants. As in standard Langevin method,

the thermal forces are Gaussian random variables with zero mean and variance con-

sistently related to the damping coefficients γ through the dissipation-fluctuation

theorem.

The deterministic forces have two contributions, corresponding to the first two

terms on the right-hand side: the elastic restoring forces and the electronic forces

via JT coupling. The calculation of forces can be simplified using the Hellmann-

Feynman theorem: ∂⟨Ĥ⟩/∂Q = ⟨∂Ĥ/∂Q⟩. Using Eq. (7.52) and (7.55), one obtains

the following expressions for the driving forces

FA1
i = −βKQA1

i + λ⟨n̂i⟩,

F E
i = −KQE

i + λ⟨τ̂i⟩. (7.58)
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The equilibrium condition F E
i = 0 gives the relation in Eq. (7.56). As discussed

above, expectation values ⟨· · · ⟩ are computed based on an equilibrium electron liquid

corresponding to the instantaneous lattice configuration {QA1
i ,QE

i }. Explicitly, for

example, the expectation values of orbital pseudo-spins are given by

⟨τ̂i⟩ =
1

Ze
Tr
[
τ̂i e

−βĤe(QA1
i ,QE

i )
]

(7.59)

where Ĥe = ĤK+ĤJT is the electron Hamiltonian, β = 1/kBT is the inverse tempera-

ture, and Ze = Tre−βĤe is the electron partition function. As the electron Hamiltonian

He is quadratic in the fermion creation/annihilation operators, it can be solved by

the ED in real space. Yet, since the electronic forces have to be computed at every

time-step of the Langevin dynamics simulation, the O(N3) time complexity of ED

can be overwhelmingly time-consuming for large-scale simulations.

7.3.1 Machine Learning Force-Field Models

Here we present a ML framework for computing the electronic forces in cooperative

JT systems with a linear-scaling complexity. Fundamentally, as pointed out by W.

Kohn, linear-scaling electronic structure methods are possible mainly because of the

locality nature or "nearsightedness" principle of many-electron systems [100, 101].

Importantly, modern ML techniques provide an explicit and efficient approach to

incorporate the locality principle into the implementation of O(N) methods. Perhaps

the most prominent and successful demonstration of this approach is the ML force-

field methods developed in quantum chemistry to enable large-scale ab initio MD
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Figure 7.5: Schematic diagram of the ML force-field model for the cooperative JT
models. A lattice descriptor transforms the neighborhood distortion configuration Ci
into effective coordinates {Gm} which are then fed into a fully connected NN. The
output node of the NN corresponds to the local site-energy ϵi. The combination of

the descriptor and the NN provides an approximation for the universal function ε(·).
The corresponding total potential energy E is obtained from the summation of the
local energies. Automatic differentiation is employed to compute the derivatives

∂EML/∂Qi for the effective forces acting on the breathing and JT modes.

simulations [91–94, 96, 97, 125, 127–129, 175–178]. Similar to the Langevin dynamics

for cooperative JT systems described above, the atomic forces in ab initio MD are

computed by solving, for example, the Kohn-Sham equation, which has to be repeated

at every time-step [87]. The central idea behind the linear scalability of ML force-

field methods is the divide-and-conquer approach proposed in the pioneering works

of Behler and Parrinello [91] and Bartók et al. [92]. The ML model is trained to

produce a local atomic energy from a finite neighborhood. The atomic forces are

obtained indirectly from the total energy, which is the sum of all atomic energies.

Similar ML frameworks have recently been developed to enable large-scale dynam-

ical simulations in several condensed-matter lattice systems [58,59,98,99,132,179,180].

In particular, the ML force-field approach was applied to the ferromagnetic Kondo-
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lattice or s-d models [98, 99]. The strong-coupling regime of this model corresponds

to the DE mechanism which is another important component of colossal magnetore-

sistance physics. The spin dynamics in the DE system is driven by itinerant elec-

trons, similar to the cooperative JT models. Based on a generalized Behler-Parrinello

scheme, a neural network model was trained to predict local effective fields induced

by propagating electrons. The ML force-field methods have also been applied to the

semiclassical Holstein model on a square lattice [179], a canonical system for study-

ing the physics of electron-phonon coupling and phonon-assisted charge-density wave

orders. The scalar Einstein phonons in the standard Holstein model can be viewed

as a simplified model for the breathing mode QA1 . Large-scale dynamical simulations

enabled by the ML methods unveiled intriguing anomalous coarsening behavior of

charge-density waves in the Holstein model [179].

7.3.2 Behler-Parrinello Machine-Learning Framework

The Langevin dynamics can be viewed as a MD method for the octahedral normal

modes. This prompts a generalization of the BP approach for the adiabatic dynamics

of JT systems. However, there are two major differences between the two systems.

First, both breathing and JT modes are defined on a lattice, in contrast to coordi-

nates of atoms in free space. Second, the symmetry of the JT modes is tied to the

symmetry of the underlying lattice, while MD systems are characterized by continu-

ous translational and rotational symmetries. The BP scheme is modified to account

for these two important issues; see FIG. 7.5 for a schematic diagram of the ML force-
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field model for the JT systems. First, the total energy of the system in the adiabatic

approximation is given by the expectation value of the Hamiltonian in Eq. (7.50),

which is to be approximated by a ML energy EML. As in the BP scheme, this system

energy is partitioned into local energies, each associated with a lattice site:

⟨Ĥ⟩ ≈ EML =
∑

i

ϵi =
∑

i

ε(Ci). (7.60)

Here we have invoked the locality assumption and express the site-energy ϵi as a

function of lattice distortions in a local neighborhood, denoted as Ci. Explicitly, we

define the local distortion configuration as

Ci =
{
Qj

∣∣ |rj − ri| < rc
}
, (7.61)

where rc is a cutoff distance which is determined by the locality of the forces, and

we have grouped the breathing and JT modes into a three-component vector Q =

(Q1, Q2, Q3) = (QA1 , Qx, Qz) for convenience. It should be noted that the vector

notation here does not imply an underlying O(3) rotation symmetry. The complex

dependence of the site-energy on local environment is encoded in the function ε(·)

which is universal for a given JT electronic Hamiltonian and electron filling fraction.

Importantly, this universal function is to be approximated by a ML model in the BP

approach.

As shown in FIG. 7.5, there are two central components in the BP-type ML model:

a descriptor and a learning model. The former is to transform the neighborhood

configuration into a proper feature variables, while the latter is to approximate the
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universal function ε(·). In this work a feedforward neural network (NN) is employed

as the learning model which, according to universal approximation theorem [280,

281], offers the capability of accurately representing complex functions to the desired

accuracy. The total energy is given by the sum of all site-energies in the system,

which are obtained by applying the same ML model to all lattice sites. The fact

that the same ML model is used for all lattice sites simply reflects the translational

symmetry of the original Hamiltonian. The effective forces acting on the octahedral

normal modes are given by the derivatives of the total energy

F i = −∂EML

∂Qi

, (7.62)

which can be efficiently computed using automatic differentiation [211, 373]. This

expression also indicates that the ML predicted forces are conservative, which is an

appealing feature of the PB-type ML models.

7.3.3 Descriptors for Lattice Distortions

The BP scheme also allows for a systematic approach to incorporate symmetry re-

quirements into ML models through feature engineering. Since the local energy ϵi

at the output of the NN is a scalar, it is invariant under symmetry operations of

the system. However, despite the powerful approximation capability of NNs, such

symmetry constraints can only be learnt statistically, sometimes with the help of

techniques such as data augmentation. However, the symmetry constraints cannot

be exactly implemented based on deep-learning alone. A descriptor is introduced
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here to provide a proper representation of the neighborhood configuration in such a

way that the representation is itself invariant under transformations of the relevant

symmetry group. The resultant feature variables are input to the NN model. As a

result, symmetry-related configurations Ci are described by exactly the same feature

variables, which in turn produces exactly the same local energy at the output.

The importance of descriptors in the implementation of ML force field models

for quantum MD was also emphasized in the original works of Behler and Par-

rinello [91]. A set of feature variables called the atom-centered symmetry functions

(ACSFs) are introduced to represent local atomic configurations such that the ro-

tation and reflection symmetries are exactly incorporated into the atomic energy

function [91, 127]. The building blocks of ACSFs are relative distances and angles of

atomic position vectors, which are manifestly invariant under rotations of the SO(3)

symmetry group [127]. The ACSF descriptor is physically intuitive, yet to some ex-

tent ad hoc, approach to ML force-field models for MD systems. Since then many

atomic descriptors have been proposed and implemented [92,96,104,175,181–185].

Since the JT models are defined on a lattice, the relevant symmetry group is re-

duced from the SO(3) rotation group of free space to the point group associated with

the underlying lattice. Moreover, the JT modes are also characterized by well-defined

transformation rules of the same point group. To describe the combined symmetry

transformations, consider the neighborhood Ci centered at site-i, and a discrete rota-

tion or reflection ĝ of the point group that sends site-j to k, i.e. Rki = O(ĝ) · Rji,
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where O(ĝ) is the orthogonal matrix representation of ĝ. The transformation of the

octahedral distortions is described by

Q̃
(γ,m)
k =M (γ)

mn(ĝ)Q
(γ,n)
j . (7.63)

Here γ indicates the irreducible representation (IR) of the vibronic modes, and M (γ)

is the orthogonal transformation matrix of IR-γ, the indices m,n = 1, 2, · · ·nγ la-

bel the different components in this IR. For example, for the double QE, a matrix

corresponding to a 90◦-rotation is ME(Cπ/4) = diag(−1, 1).

Importantly, a proper representation of the neighborhood Ci needs to be invariant

under these coupled symmetry transformations. A systematic approach to derive

invariants of a symmetry group is the group-theoretical bispectrum method [103].

Atomic descriptors based on bispectrum coefficients have been used in conjunction

with Gaussian processing learning models for quantum MD simulations [92, 104].

The group-theoretical method has also been employed to develop a general theory of

descriptors for electronic lattice models in condensed-matter systems [58,105,131,283].

In particular, a descriptor based on the idea of reference IRs was developed for the

Holstein model [179], which is essentially an electron-phonon model with the breathing

modes.

Here we outline the group-theoretical derivation of invariant feature variables for

the JT models. First, the octahedral distortions as represented by the set Ci essentially

form a high-dimensional representation of the point group. They can then be decom-
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posed into fundamental IRs of the point group. This decomposition can be highly

simplified as the original representation matrix is automatically block-diagonalized,

with each block corresponding to a fixed distance from the center-site. Standard

methods can then be applied to the decomposition of each block [102].

For the square-lattice JT system described by the D4 point-group symmetry, there

are three types of blocks with a dimension of either 4 or 8. The derivation of the

relevant IRs for each block can be further simplified. This is because while the JT

modes QE transform as a doublet in the octahedral group Oh, they are reduced to the

direct sum of two 1D IRs when restricted to theD4 group. Explicitly, under symmetry

operations of D4, both QA1 and Qz transform as A1 IR, while Qx transforms according

to IR B1, acquiring a −1 under reflections about the y = ±x diagonals. Take the

vibronic modes {QA,QB,QC ,QD} at the four nearest-neighbor sites as an example,

the four Qz modes can be decomposed as 4Qz = 1A1 + 1B1 + 1E, with the following

IR coefficients:

fA1 = Qz
A +Qz

B +Qz
C +Qz

D,

fB1 = Qz
A −Qz

B +Qz
C −Qz

D, (7.64)

fE = (Qz
A −Qz

C , Q
z
B −Qz

D).

The decomposition of the breathing QA1 modes is described by the same formulas.

On the other hand, while the four JT Qx modes are also decomposed as 4Qx =



Chapter 7. Descriptors for Lattice Models 209

1A1 + 1B1 + 1E, the B1 symmetry of Qx gives rise to different IR coefficients:

fA1 = Qx
A −Qx

B +Qx
C −Qx

D,

fB1 = Qx
A +Qx

B +Qx
C +Qx

D, (7.65)

fE = (Qx
A −Qx

C ,−Qx
B +Qx

D).

For convenience, we arrange the coefficients of the r-th IR of type Γ in the overall

decomposition of Ci into a vector fΓ
r = (f

(Γ,r)
1 , f

(Γ,r)
2 , · · · , f (Γ,r)

nΓ ). As the sum of the

squared coefficients of an IR, pΓr =
∣∣fΓ
r

∣∣2, is manifestly invariant under the point

group, the set of all amplitudes {pΓr }, known as the power spectrum, offers a set of

invariant feature variables. The power spectrum is a subset of more general invariant

variables called the bispectrum coefficients [103, 104]. A bispectrum coefficient is a

product of three IR coefficients and the Clebsch-Gordon coefficients which account

for the different transformation properties of the three IRs. Importantly, the relative

phases between different IRs are encoded in these coefficients, which provide a faithful

invariant representation of the neighborhood.

For most point groups, the dimensions nΓ of individual IRs are small, which means

there is a large multiplicity (indexed by r) for each IR. This in turn results in a large

number of possible bispectrum coefficients, often with considerable redundancy. A

more economic approach to encode the phase information is the idea of reference IR

coefficients fΓ
ref, one for each IR type of the point group [99]. These reference IR

coefficients are derived using the same decomposition formulas, but based on distor-
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tions Q obtained by averaging large blocks of bond and chirality variables in the local

neighborhood in order to reduce sensitivity to small variations. Importantly, the ref-

erence IR allows one to introduce a "phase" variable for each IR in the decomposition

exp(ϕΓ
r ) ≡ fΓ

r ·fΓ
ref/|fΓ

r | |fΓ
ref | = ±1. The relative phase between IRs of the same type

can then be inferred from their respective phases relative to the reference. Finally,

the relative phases between IRs of different types are provided by the bispectrum

coefficients from reference IR alone.

The power spectrum can be combined with the phases to form invariant feature

variables GΓ
r = pΓr exp(iϕΓ

r ). These are to be supplemented by the bispectrum coef-

ficients BΓ1,Γ2,Γ3

ref obtained from the reference IR. The descriptor can be summarized

by the following sequence of representations of the neighborhood

{
Qj

}
→

{
fΓ
r

}
→

{
GΓ
r , B

Γ1,Γ2,Γ3

ref

}
. (7.66)

As symmetry-related configurations are represented by exactly the same feature vari-

ables, the site-energy ϵi at the output of the NN is guaranteed to be the same, thus

ensuring that the symmetry is preserved in the ML model.

7.3.4 Implementation Details and Benchmarks

Here we used PyTorch [374] to construct fully connected neural networks with six

hidden layers. The number of neurons in successive hidden layers are: 1024× 512×

256× 128× 64× 64. With a cutoff radius of rc = 7a, where a is the lattice constant,

for defining the size of the neighborhood, the number of neurons at the input layer



Chapter 7. Descriptors for Lattice Models 211

is determined by the number of feature variables and is fixed at 450. The ReLU

function is used as the activation function between layers [139, 210]. The NN model

is trained based on a loss function including the MSE of both the effective field and

total energy:

L = µF
1

N

N∑

i=1

∣∣∣FED
i −FML

i

∣∣∣
2

+ µE

∣∣∣EED − EML

∣∣∣
2

, (7.67)

where µH and µE determine the relative weights of the force and energy constraints

in the loss function. Different combinations of these two weights have been experi-

mented. Overall, a better performance was obtained by putting more emphasis on

the force accuracy. As shown in Eq. (7.62), the effective forces are obtained from the

derivative of the sum of local energies. This can be efficiently done using automatic

differentiation in PyTorch [211]. Trainable parameters of the NN are optimized by

the Adam stochastic optimizer [212] with a learning rate of 0.001. A 5-fold cross-

validation and early stopping regularization are performed to prevent overfitting.

The above ML framework was applied to the JT model at exactly half-filling and

for a filling fraction of f = 0.49. The nearest-neighbor hopping parameter tnn served

as the energy unit. The competition between JT coupling and elastic energy gives

a distortion scale of Q0 ∼ λ/K, indicating an energy scale EJT ∼ λ2/K. Compar-

ing this with the electron bandwidth, this suggests a dimensionless coupling constant

λ̃ = EJT/W ∼ λ2/Ktnn, which is set to 1.35 throughout the simulations. The effective

masses µ and the elastic constant determine a the time-scale for the classical vibronic
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dynamics: τ0 = Ω−1, where the characteristic frequency Ω =
√
K/µ. Given this time-

scale, an effective damping coefficient γ = 0.25τ−10 and a time-step ∆t = 0.05τ0 were

used in our Langevin simulations. The training dataset was obtained from ED cal-

culations of random distortions as well as ED-based Langevin dynamics simulations,

both on a 30× 30 lattice. It included 1700 random configurations, 1300 intermediate

states during the relaxations, and 800 nearly equilibrium states, a total of ∼ 3.4×106

force data.

Although the ML method is originally designed to model the time-consuming

electronic structure calculations, the electronic contribution to the forces, i.e. the ⟨τ̂i⟩

term in Eq. (7.58), exhibits a strong bimodal distribution as the system approaches

the ground-state C-type orbital order. The two centers of the bimodal distribution

correspond to the d3x2−r2 and d3y2−r2 orbitals in the checkerboard pattern. Since

the net forces approach zero in such quasi-equilibrium states, the electronic force

nearly cancels the classical part. The bimodal distribution can thus be attributed

to a dominant leading-order dependence of the electronic force on the on-site JT

distortion through the classical force, i.e. ⟨τ̂i⟩ = (K/λ)QE
i + h(Ci); the second term

here encodes the weaker yet subtle dependence on the neighborhood distortions. To

avoid difficulty due to this bimodal distribution, it is more efficient to remove the

dominant on-site classical term and focus the ML training on the second term. On

the other hand, Eq. (7.58) shows that this function is simply proportional to the

total force: h(Ci) = F E
i /λ. Indeed, our ED-Langevin simulations show that the total



Chapter 7. Descriptors for Lattice Models 213

<latexit sha1_base64="MDpp1V6+/9oLDeUtCQr3MThMEGY=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4MSRi1WPRi8cK9gPaUDbbTbt0dxN2N0IJ/QtePCji1T/kzX/jps1BWx8MPN6bYWZemHCmjed9Oyura+sbm6Wt8vbO7t5+5eCwpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsv99hNVmsXy0UwSGgg8lCxiBJtcOvfdWr9S9VxvBrRM/IJUoUCjX/nqDWKSCioN4Vjrru8lJsiwMoxwOi33Uk0TTMZ4SLuWSiyoDrLZrVN0apUBimJlSxo0U39PZFhoPRGh7RTYjPSil4v/ed3URDdBxmSSGirJfFGUcmRilD+OBkxRYvjEEkwUs7ciMsIKE2PjKdsQ/MWXl0nrwvWv3NrDZbV+W8RRgmM4gTPw4RrqcA8NaAKBETzDK7w5wnlx3p2PeeuKU8wcwR84nz/H9Y1t</latexit>�1.5
<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0
<latexit sha1_base64="k7mlb91SRIREMaapENbYQNK+V6o=">AAAB63icbVBNS8NAEJ34WetX1aOXxSIIQkjEqseiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dlZW19Y3Nktb5e2d3b39ysFhS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfJf77SeqNIvlo5kkNBB4KFnECDa5dO67tX6l6rneDGiZ+AWpQoFGv/LVG8QkFVQawrHWXd9LTJBhZRjhdFrupZommIzxkHYtlVhQHWSzW6fo1CoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpiW6CjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Yh+IsvL5PWhetfubWHy2r9toijBMdwAmfgwzXU4R4a0AQCI3iGV3hzhPPivDsf89YVp5g5gj9wPn8AxOeNaw==</latexit>

+1.5

<latexit sha1_base64="MDpp1V6+/9oLDeUtCQr3MThMEGY=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4MSRi1WPRi8cK9gPaUDbbTbt0dxN2N0IJ/QtePCji1T/kzX/jps1BWx8MPN6bYWZemHCmjed9Oyura+sbm6Wt8vbO7t5+5eCwpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsv99hNVmsXy0UwSGgg8lCxiBJtcOvfdWr9S9VxvBrRM/IJUoUCjX/nqDWKSCioN4Vjrru8lJsiwMoxwOi33Uk0TTMZ4SLuWSiyoDrLZrVN0apUBimJlSxo0U39PZFhoPRGh7RTYjPSil4v/ed3URDdBxmSSGirJfFGUcmRilD+OBkxRYvjEEkwUs7ciMsIKE2PjKdsQ/MWXl0nrwvWv3NrDZbV+W8RRgmM4gTPw4RrqcA8NaAKBETzDK7w5wnlx3p2PeeuKU8wcwR84nz/H9Y1t</latexit>�1.5

<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0

<latexit sha1_base64="k7mlb91SRIREMaapENbYQNK+V6o=">AAAB63icbVBNS8NAEJ34WetX1aOXxSIIQkjEqseiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dlZW19Y3Nktb5e2d3b39ysFhS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfJf77SeqNIvlo5kkNBB4KFnECDa5dO67tX6l6rneDGiZ+AWpQoFGv/LVG8QkFVQawrHWXd9LTJBhZRjhdFrupZommIzxkHYtlVhQHWSzW6fo1CoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpiW6CjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Yh+IsvL5PWhetfubWHy2r9toijBMdwAmfgwzXU4R4a0AQCI3iGV3hzhPPivDsf89YVp5g5gj9wPn8AxOeNaw==</latexit>

+1.5

<latexit sha1_base64="oRkYueWBGMxMseenRW5SRSzK3pY=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4MSRi1WPRi8cK9gPaUDbbTbt0dxN2N0IJ/QtePCji1T/kzX/jps1BWx8MPN6bYWZemHCmjed9Oyura+sbm6Wt8vbO7t5+5eCwpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsv99hNVmsXy0UwSGgg8lCxiBJtcOvfcWr9S9VxvBrRM/IJUoUCjX/nqDWKSCioN4Vjrru8lJsiwMoxwOi33Uk0TTMZ4SLuWSiyoDrLZrVN0apUBimJlSxo0U39PZFhoPRGh7RTYjPSil4v/ed3URDdBxmSSGirJfFGUcmRilD+OBkxRYvjEEkwUs7ciMsIKE2PjKdsQ/MWXl0nrwvWv3NrDZbV+W8RRgmM4gTPw4RrqcA8NaAKBETzDK7w5wnlx3p2PeeuKU8wcwR84nz/Gb41s</latexit>�0.5
<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0
<latexit sha1_base64="L54srzHL3VsjhGg6A0waycEBlW0=">AAAB63icbVBNS8NAEJ34WetX1aOXxSIIQkjEqseiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dlZW19Y3Nktb5e2d3b39ysFhS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfJf77SeqNIvlo5kkNBB4KFnECDa5dO65tX6l6rneDGiZ+AWpQoFGv/LVG8QkFVQawrHWXd9LTJBhZRjhdFrupZommIzxkHYtlVhQHWSzW6fo1CoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpiW6CjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Yh+IsvL5PWhetfubWHy2r9toijBMdwAmfgwzXU4R4a0AQCI3iGV3hzhPPivDsf89YVp5g5gj9wPn8Aw2GNag==</latexit>

+0.5

<latexit sha1_base64="oRkYueWBGMxMseenRW5SRSzK3pY=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4MSRi1WPRi8cK9gPaUDbbTbt0dxN2N0IJ/QtePCji1T/kzX/jps1BWx8MPN6bYWZemHCmjed9Oyura+sbm6Wt8vbO7t5+5eCwpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsv99hNVmsXy0UwSGgg8lCxiBJtcOvfcWr9S9VxvBrRM/IJUoUCjX/nqDWKSCioN4Vjrru8lJsiwMoxwOi33Uk0TTMZ4SLuWSiyoDrLZrVN0apUBimJlSxo0U39PZFhoPRGh7RTYjPSil4v/ed3URDdBxmSSGirJfFGUcmRilD+OBkxRYvjEEkwUs7ciMsIKE2PjKdsQ/MWXl0nrwvWv3NrDZbV+W8RRgmM4gTPw4RrqcA8NaAKBETzDK7w5wnlx3p2PeeuKU8wcwR84nz/Gb41s</latexit>�0.5
<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0
<latexit sha1_base64="L54srzHL3VsjhGg6A0waycEBlW0=">AAAB63icbVBNS8NAEJ34WetX1aOXxSIIQkjEqseiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dlZW19Y3Nktb5e2d3b39ysFhS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfJf77SeqNIvlo5kkNBB4KFnECDa5dO65tX6l6rneDGiZ+AWpQoFGv/LVG8QkFVQawrHWXd9LTJBhZRjhdFrupZommIzxkHYtlVhQHWSzW6fo1CoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpiW6CjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Yh+IsvL5PWhetfubWHy2r9toijBMdwAmfgwzXU4R4a0AQCI3iGV3hzhPPivDsf89YVp5g5gj9wPn8Aw2GNag==</latexit>

+0.5

<latexit sha1_base64="oRkYueWBGMxMseenRW5SRSzK3pY=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4MSRi1WPRi8cK9gPaUDbbTbt0dxN2N0IJ/QtePCji1T/kzX/jps1BWx8MPN6bYWZemHCmjed9Oyura+sbm6Wt8vbO7t5+5eCwpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsv99hNVmsXy0UwSGgg8lCxiBJtcOvfcWr9S9VxvBrRM/IJUoUCjX/nqDWKSCioN4Vjrru8lJsiwMoxwOi33Uk0TTMZ4SLuWSiyoDrLZrVN0apUBimJlSxo0U39PZFhoPRGh7RTYjPSil4v/ed3URDdBxmSSGirJfFGUcmRilD+OBkxRYvjEEkwUs7ciMsIKE2PjKdsQ/MWXl0nrwvWv3NrDZbV+W8RRgmM4gTPw4RrqcA8NaAKBETzDK7w5wnlx3p2PeeuKU8wcwR84nz/Gb41s</latexit>�0.5

<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0

<latexit sha1_base64="L54srzHL3VsjhGg6A0waycEBlW0=">AAAB63icbVBNS8NAEJ34WetX1aOXxSIIQkjEqseiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dlZW19Y3Nktb5e2d3b39ysFhS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfJf77SeqNIvlo5kkNBB4KFnECDa5dO65tX6l6rneDGiZ+AWpQoFGv/LVG8QkFVQawrHWXd9LTJBhZRjhdFrupZommIzxkHYtlVhQHWSzW6fo1CoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpiW6CjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Yh+IsvL5PWhetfubWHy2r9toijBMdwAmfgwzXU4R4a0AQCI3iGV3hzhPPivDsf89YVp5g5gj9wPn8Aw2GNag==</latexit>

+0.5

<latexit sha1_base64="oRkYueWBGMxMseenRW5SRSzK3pY=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4MSRi1WPRi8cK9gPaUDbbTbt0dxN2N0IJ/QtePCji1T/kzX/jps1BWx8MPN6bYWZemHCmjed9Oyura+sbm6Wt8vbO7t5+5eCwpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsv99hNVmsXy0UwSGgg8lCxiBJtcOvfcWr9S9VxvBrRM/IJUoUCjX/nqDWKSCioN4Vjrru8lJsiwMoxwOi33Uk0TTMZ4SLuWSiyoDrLZrVN0apUBimJlSxo0U39PZFhoPRGh7RTYjPSil4v/ed3URDdBxmSSGirJfFGUcmRilD+OBkxRYvjEEkwUs7ciMsIKE2PjKdsQ/MWXl0nrwvWv3NrDZbV+W8RRgmM4gTPw4RrqcA8NaAKBETzDK7w5wnlx3p2PeeuKU8wcwR84nz/Gb41s</latexit>�0.5

<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0

<latexit sha1_base64="L54srzHL3VsjhGg6A0waycEBlW0=">AAAB63icbVBNS8NAEJ34WetX1aOXxSIIQkjEqseiF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dlZW19Y3Nktb5e2d3b39ysFhS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfJf77SeqNIvlo5kkNBB4KFnECDa5dO65tX6l6rneDGiZ+AWpQoFGv/LVG8QkFVQawrHWXd9LTJBhZRjhdFrupZommIzxkHYtlVhQHWSzW6fo1CoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpiW6CjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Yh+IsvL5PWhetfubWHy2r9toijBMdwAmfgwzXU4R4a0AQCI3iGV3hzhPPivDsf89YVp5g5gj9wPn8Aw2GNag==</latexit>

+0.5

<latexit sha1_base64="cnUV9uxSLKXLD4NxqgYIpY+1aTw=">AAAB7HicbVBNTwIxEJ31E/EL9eilkZh4kewaUY9ELx4xcYEENqRbZqGh2920XRNC+A1ePGiMV3+QN/+NBfag4Euavrw3k5l5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPh3dRvPqHSPJGPZpRiENO+5BFn1FjJP3crbrVbKttvBrJMvJyUIUe9W/rq9BKWxSgNE1TrtuemJhhTZTgTOCl2Mo0pZUPax7alksaog/Fs2Qk5tUqPRImyTxoyU393jGms9SgObWVMzUAvelPxP6+dmegmGHOZZgYlmw+KMkFMQqaXkx5XyIwYWUKZ4nZXwgZUUWZsPkUbgrd48jJpXFS8q0r14bJcu83jKMAxnMAZeHANNbiHOvjAgMMzvMKbI50X5935mJeuOHnPEfyB8/kDNOONpg==</latexit>�0.05
<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0
<latexit sha1_base64="i1l/pYSup75c5N/rLKDaTKrrTRo=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSIIQtkVqx6LXjxWcNtCu5RsOtuGZrNLkhVK6W/w4kERr/4gb/4b03YP2vog5PHeDDPzwlRwbVz321lZXVvf2CxsFbd3dvf2SweHDZ1kiqHPEpGoVkg1Ci7RN9wIbKUKaRwKbIbDu6nffEKleSIfzSjFIKZ9ySPOqLGSf+5W3Gq3VLbfDGSZeDkpQ456t/TV6SUsi1EaJqjWbc9NTTCmynAmcFLsZBpTyoa0j21LJY1RB+PZshNyapUeiRJlnzRkpv7uGNNY61Ec2sqYmoFe9Kbif147M9FNMOYyzQxKNh8UZYKYhEwvJz2ukBkxsoQyxe2uhA2ooszYfIo2BG/x5GXSuKh4V5Xqw2W5dpvHUYBjOIEz8OAaanAPdfCBAYdneIU3RzovzrvzMS9dcfKeI/gD5/MHMdONpA==</latexit>

+0.05

<latexit sha1_base64="cnUV9uxSLKXLD4NxqgYIpY+1aTw=">AAAB7HicbVBNTwIxEJ31E/EL9eilkZh4kewaUY9ELx4xcYEENqRbZqGh2920XRNC+A1ePGiMV3+QN/+NBfag4Euavrw3k5l5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPh3dRvPqHSPJGPZpRiENO+5BFn1FjJP3crbrVbKttvBrJMvJyUIUe9W/rq9BKWxSgNE1TrtuemJhhTZTgTOCl2Mo0pZUPax7alksaog/Fs2Qk5tUqPRImyTxoyU393jGms9SgObWVMzUAvelPxP6+dmegmGHOZZgYlmw+KMkFMQqaXkx5XyIwYWUKZ4nZXwgZUUWZsPkUbgrd48jJpXFS8q0r14bJcu83jKMAxnMAZeHANNbiHOvjAgMMzvMKbI50X5935mJeuOHnPEfyB8/kDNOONpg==</latexit>�0.05
<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0
<latexit sha1_base64="i1l/pYSup75c5N/rLKDaTKrrTRo=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSIIQtkVqx6LXjxWcNtCu5RsOtuGZrNLkhVK6W/w4kERr/4gb/4b03YP2vog5PHeDDPzwlRwbVz321lZXVvf2CxsFbd3dvf2SweHDZ1kiqHPEpGoVkg1Ci7RN9wIbKUKaRwKbIbDu6nffEKleSIfzSjFIKZ9ySPOqLGSf+5W3Gq3VLbfDGSZeDkpQ456t/TV6SUsi1EaJqjWbc9NTTCmynAmcFLsZBpTyoa0j21LJY1RB+PZshNyapUeiRJlnzRkpv7uGNNY61Ec2sqYmoFe9Kbif147M9FNMOYyzQxKNh8UZYKYhEwvJz2ukBkxsoQyxe2uhA2ooszYfIo2BG/x5GXSuKh4V5Xqw2W5dpvHUYBjOIEz8OAaanAPdfCBAYdneIU3RzovzrvzMS9dcfKeI/gD5/MHMdONpA==</latexit>

+0.05

<latexit sha1_base64="cnUV9uxSLKXLD4NxqgYIpY+1aTw=">AAAB7HicbVBNTwIxEJ31E/EL9eilkZh4kewaUY9ELx4xcYEENqRbZqGh2920XRNC+A1ePGiMV3+QN/+NBfag4Euavrw3k5l5YSq4Nq777aysrq1vbBa2its7u3v7pYPDhk4yxdBniUhUK6QaBZfoG24EtlKFNA4FNsPh3dRvPqHSPJGPZpRiENO+5BFn1FjJP3crbrVbKttvBrJMvJyUIUe9W/rq9BKWxSgNE1TrtuemJhhTZTgTOCl2Mo0pZUPax7alksaog/Fs2Qk5tUqPRImyTxoyU393jGms9SgObWVMzUAvelPxP6+dmegmGHOZZgYlmw+KMkFMQqaXkx5XyIwYWUKZ4nZXwgZUUWZsPkUbgrd48jJpXFS8q0r14bJcu83jKMAxnMAZeHANNbiHOvjAgMMzvMKbI50X5935mJeuOHnPEfyB8/kDNOONpg==</latexit>�0.05
<latexit sha1_base64="GQuMYZhMmwPAndQ0tTFN44pZFYg=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfFmMvg==</latexit>

0
<latexit sha1_base64="i1l/pYSup75c5N/rLKDaTKrrTRo=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSIIQtkVqx6LXjxWcNtCu5RsOtuGZrNLkhVK6W/w4kERr/4gb/4b03YP2vog5PHeDDPzwlRwbVz321lZXVvf2CxsFbd3dvf2SweHDZ1kiqHPEpGoVkg1Ci7RN9wIbKUKaRwKbIbDu6nffEKleSIfzSjFIKZ9ySPOqLGSf+5W3Gq3VLbfDGSZeDkpQ456t/TV6SUsi1EaJqjWbc9NTTCmynAmcFLsZBpTyoa0j21LJY1RB+PZshNyapUeiRJlnzRkpv7uGNNY61Ec2sqYmoFe9Kbif147M9FNMOYyzQxKNh8UZYKYhEwvJz2ukBkxsoQyxe2uhA2ooszYfIo2BG/x5GXSuKh4V5Xqw2W5dpvHUYBjOIEz8OAaanAPdfCBAYdneIU3RzovzrvzMS9dcfKeI/gD5/MHMdONpA==</latexit>

+0.05

<latexit sha1_base64="wxdzRQQgz8aOjmxlbWSz7XsOLvw=">AAAB9HicbVDJSgNBEK2JW4xb1KOXxiB4CjPux6AXjxHMAskYejo9SZOenrG7JhCGfIcXD4p49WO8+Td2loNGHxQ83quiql6QSGHQdb+c3NLyyupafr2wsbm1vVPc3aubONWM11gsY90MqOFSKF5DgZI3E81pFEjeCAY3E78x5NqIWN3jKOF+RHtKhIJRtJLfRhFxQzz3ITsdd4olt+xOQf4Sb05KMEe1U/xsd2OWRlwhk9SYlucm6GdUo2CSjwvt1PCEsgHt8ZalitpdfjY9ekyOrNIlYaxtKSRT9edERiNjRlFgOyOKfbPoTcT/vFaK4ZWfCZWkyBWbLQpTSTAmkwRIV2jOUI4soUwLeythfaopQ5tTwYbgLb78l9RPyt5F+fzurFS5nseRhwM4hGPw4BIqcAtVqAGDR3iCF3h1hs6z8+a8z1pzznxmH37B+fgG6aWRjg==</latexit>

⇥103

<latexit sha1_base64="m09bwKVdUn6TbxFN6dJ1bF2LFWc=">AAAB9HicbVDLTgJBEOz1ifhCPXqZSEw8kV3i60j04hETeSSwktlhgAmzs+tMLwnZ8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e4KYikMuu63s7K6tr6xmdvKb+/s7u0XDg7rJko04zUWyUg3A2q4FIrXUKDkzVhzGgaSN4Lh7dRvjLg2IlIPOI65H9K+Ej3BKFrJb6MIuSGe+5iWJ51C0S25M5Bl4mWkCBmqncJXuxuxJOQKmaTGtDw3Rj+lGgWTfJJvJ4bHlA1pn7csVdTu8tPZ0RNyapUu6UXalkIyU39PpDQ0ZhwGtjOkODCL3lT8z2sl2Lv2U6HiBLli80W9RBKMyDQB0hWaM5RjSyjTwt5K2IBqytDmlLcheIsvL5N6ueRdli7uz4uVmyyOHBzDCZyBB1dQgTuoQg0YPMEzvMKbM3JenHfnY9664mQzR/AHzucP6CCRjQ==</latexit>

⇥102

<latexit sha1_base64="xTnVU9LIIvMUIutHcVm1RgxoeJo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVvV6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmsX5Srt3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDfd2Mvw==</latexit>

1

<latexit sha1_base64="htDuQjORXNou1hfoTFX09yID8ig=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJryPRi0dI5JHAhswOvTAyO7uZmTUhhC/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXkAiujet+O7m19Y3Nrfx2YWd3b/+geHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHssHM07Qj+hA8pAzaqxUr/SKJbfszkFWiZeREmSo9Ypf3X7M0gilYYJq3fHcxPgTqgxnAqeFbqoxoWxEB9ixVNIItT+ZHzolZ1bpkzBWtqQhc/X3xIRGWo+jwHZG1Az1sjcT//M6qQlv/AmXSWpQssWiMBXExGT2NelzhcyIsSWUKW5vJWxIFWXGZlOwIXjLL6+SZqXsXZUv6xel6m0WRx5O4BTOwYNrqMI91KABDBCe4RXenEfnxXl3PhatOSebOYY/cD5/AH9hjMA=</latexit>

2

<latexit sha1_base64="weoL8WmA1iDu0bFMSrtSLdtU9Sg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePEIijwQ2ZHZoYGR2djMza0I2fIEXDxrj1U/y5t84wB4UrKSTSlV3uruCWHBtXPfbya2srq1v5DcLW9s7u3vF/YOGjhLFsM4iEalWQDUKLrFuuBHYihXSMBDYDEZ3U7/5hErzSD6YcYx+SAeS9zmjxkq1826x5JbdGcgy8TJSggzVbvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns0Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/GT7mME4OSzRf1E0FMRKZfkx5XyIwYW0KZ4vZWwoZUUWZsNgUbgrf48jJpnJW9q/Jl7aJUuc3iyMMRHMMpeHANFbiHKtSBAcIzvMKb8+i8OO/Ox7w152Qzh/AHzucPgOWMwQ==</latexit>

3

<latexit sha1_base64="weoL8WmA1iDu0bFMSrtSLdtU9Sg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHZ9H4lePEIijwQ2ZHZoYGR2djMza0I2fIEXDxrj1U/y5t84wB4UrKSTSlV3uruCWHBtXPfbya2srq1v5DcLW9s7u3vF/YOGjhLFsM4iEalWQDUKLrFuuBHYihXSMBDYDEZ3U7/5hErzSD6YcYx+SAeS9zmjxkq1826x5JbdGcgy8TJSggzVbvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns0Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/GT7mME4OSzRf1E0FMRKZfkx5XyIwYW0KZ4vZWwoZUUWZsNgUbgrf48jJpnJW9q/Jl7aJUuc3iyMMRHMMpeHANFbiHKtSBAcIzvMKb8+i8OO/Ox7w152Qzh/AHzucPgOWMwQ==</latexit>

3

<latexit sha1_base64="HG1k8xjZ7LaHsYp6pYNnL7yqLms=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNokeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipXukVS27ZnYOsEi8jJchQ6xW/uv2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3RKzqzSJ2GsbElD5urviQmNtB5Hge2MqBnqZW8m/ud1UhPe+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzYuyVylf1S9L1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIVxjMQ=</latexit>

6

<latexit sha1_base64="oor9C4oy+Pq9Iucd03d30/S+nTM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKz1vQi8cEzAOSJcxOOsmY2dllZlYIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsriAXXxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6ChRDOssEpFqBVSj4BLrhhuBrVghDQOBzWB0N/WbT6g0j+SDGcfoh3QgeZ8zaqxUu+kWS27ZnYEsEy8jJchQ7Ra/Or2IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ/ODp2QE6v0SD9StqQhM/X3REpDrcdhYDtDaoZ60ZuK/3ntxPSv/ZTLODEo2XxRPxHERGT6NelxhcyIsSWUKW5vJWxIFWXGZlOwIXiLLy+TxlnZuyxf1M5LldssjjwcwTGcggdXUIF7qEIdGCA8wyu8OY/Oi/PufMxbc042cwh/4Hz+AIn9jMc=</latexit>

9

<latexit sha1_base64="m09bwKVdUn6TbxFN6dJ1bF2LFWc=">AAAB9HicbVDLTgJBEOz1ifhCPXqZSEw8kV3i60j04hETeSSwktlhgAmzs+tMLwnZ8B1ePGiMVz/Gm3/jAHtQsJJOKlXd6e4KYikMuu63s7K6tr6xmdvKb+/s7u0XDg7rJko04zUWyUg3A2q4FIrXUKDkzVhzGgaSN4Lh7dRvjLg2IlIPOI65H9K+Ej3BKFrJb6MIuSGe+5iWJ51C0S25M5Bl4mWkCBmqncJXuxuxJOQKmaTGtDw3Rj+lGgWTfJJvJ4bHlA1pn7csVdTu8tPZ0RNyapUu6UXalkIyU39PpDQ0ZhwGtjOkODCL3lT8z2sl2Lv2U6HiBLli80W9RBKMyDQB0hWaM5RjSyjTwt5K2IBqytDmlLcheIsvL5N6ueRdli7uz4uVmyyOHBzDCZyBB1dQgTuoQg0YPMEzvMKbM3JenHfnY9664mQzR/AHzucP6CCRjQ==</latexit>

⇥102

<latexit sha1_base64="VFuKpcP2szKC8d4watpjz6oE7OE=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBLx61j04rGC/YA2lM120q7dbMLuRiihv8CLB8Wrv8mb/8Ztm4O2Phh4vDfDzLwwFVwbz/t2SmvrG5tb5W13Z3dv/6DiHrZ0kimGTZaIRHVCqlFwiU3DjcBOqpDGocB2OL6b+e1nVJon8tFMUgxiOpQ84owaKz1c9CtVr+bNQVaJX5AqFGj0K1+9QcKyGKVhgmrd9b3UBDlVhjOBU7eXaUwpG9Mhdi2VNEYd5PNDp+TUKgMSJcqWNGSu/p7Iaaz1JA5tZ0zNSC97M/E/r5uZ6CbIuUwzg5ItFkWZICYhs6/JgCtkRkwsoUxxeythI6ooMzYb14bgL7+8SlrnNf+qdlmt3xZhlOEYTuAMfLiGOtxDA5rAAOEF3uDdeXJenY9FY8kpJo7gD5zPHxfri5g=</latexit>

4

<latexit sha1_base64="Yw0Mj6tn6CcLMe603jCDiidDBjc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaND45ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfekKleSwfzDhBP6IDyUPOqLFSvdIrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCas+BMuk9SgZItFYSqIicnsa9LnCpkRY0soU9zeStiQKsqMzaZgQ/CWX14lzYuyd12+ql+WqrdZHHk4gVM4Bw9uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AYh5jMY=</latexit>

8

<latexit sha1_base64="m3Yc9PtJi9WHyhkgmuhfQeAwVj4=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGKeUCyhNnJbDJkdnaZ6RXCkj/w4kERr/6RN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwav2SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/m106IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xw2s+ESlLkis0XhakkGJPp26QvNGcox5ZQpoW9lbAh1ZShDadoQ/AWX14mzWrFu6xc3J+Xazd5HAU4hhM4Aw+uoAZ3UIcGMAjhGV7hzRk5L8678zFvXXHymSP4A+fzB+66jPs=</latexit>

12

<latexit sha1_base64="gCSJx9uyKPtG/96876VmHmFtb9A=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0VwY0nE10YovnChUME+oIllMp20QyeTMDMRSsjWjb/ixoUibv0Dd/6N0zaCth64cOace5l7jxcxKpVlfRm5qemZ2bn8fGFhcWl5xVxdq8kwFphUcchC0fCQJIxyUlVUMdKIBEGBx0jd650O/Po9EZKG/Fb1I+IGqMOpTzFSWmqZ0GkTphA8hhd3iSMCeH2Vwp2fx/lZ2jKLVskaAk4SOyNFkKHSMj+ddojjgHCFGZKyaVuRchMkFMWMpAUnliRCuIc6pKkpRwGRbjK8JIVbWmlDPxS6uIJD9fdEggIp+4GnOwOkunLcG4j/ec1Y+UduQnkUK8Lx6CM/ZlCFcBALbFNBsGJ9TRAWVO8KcRcJhJUOr6BDsMdPniS13ZJ9UNq/2SuWT7I48mADbIJtYINDUAaXoAKqAIMH8ARewKvxaDwbb8b7qDVnZDPr4A+Mj2+GZphV</latexit>

� = FML � FED
<latexit sha1_base64="SBn991EUMfAYuq55VIsAx7j04mA=">AAAB8XicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgxueIxgFkzG0NPpSZp09wzdPUIY8hdePCji1b/x5t/YSeagiQ8KHu9VUVUviDnTxnW/ndzC4tLySn61sLa+sblV3N6p6yhRhNZIxCPVDLCmnElaM8xw2owVxSLgtBEMLsd+44kqzSJ5b4Yx9QXuSRYygo2VHm4e07YS6Ppq1CmW3LI7AZonXkZKkKHaKX61uxFJBJWGcKx1y3Nj46dYGUY4HRXaiaYxJgPcoy1LJRZU++nk4hE6sEoXhZGyJQ2aqL8nUiy0HorAdgps+nrWG4v/ea3EhOd+ymScGCrJdFGYcGQiNH4fdZmixPChJZgoZm9FpI8VJsaGVLAheLMvz5P6Udk7LZ/cHZcqF1kcediDfTgED86gArdQhRoQkPAMr/DmaOfFeXc+pq05J5vZhT9wPn8A3kaQaA==</latexit>

FED

<latexit sha1_base64="f1g+EFzPavSf1VL4mX82VWaRciw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2NQEA8KEcwDkzXMTmaTITOzy8ysEJb8hRcPinj1b7z5N06SPWhiQUNR1U13VxBzpo3rfju5hcWl5ZX8amFtfWNzq7i9U9dRogitkYhHqhlgTTmTtGaY4bQZK4pFwGkjGFyO/cYTVZpF8t4MY+oL3JMsZAQbKz1cPaZtJdDtzahTLLlldwI0T7yMlCBDtVP8ancjkggqDeFY65bnxsZPsTKMcDoqtBNNY0wGuEdblkosqPbTycUjdGCVLgojZUsaNFF/T6RYaD0Uge0U2PT1rDcW//NaiQnP/ZTJODFUkumiMOHIRGj8PuoyRYnhQ0swUczeikgfK0yMDalgQ/BmX54n9aOyd1o+uTsuVS6yOPKwB/twCB6cQQWuoQo1ICDhGV7hzdHOi/PufExbc042swt/4Hz+APaekHg=</latexit>

FML

<latexit sha1_base64="f1g+EFzPavSf1VL4mX82VWaRciw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2NQEA8KEcwDkzXMTmaTITOzy8ysEJb8hRcPinj1b7z5N06SPWhiQUNR1U13VxBzpo3rfju5hcWl5ZX8amFtfWNzq7i9U9dRogitkYhHqhlgTTmTtGaY4bQZK4pFwGkjGFyO/cYTVZpF8t4MY+oL3JMsZAQbKz1cPaZtJdDtzahTLLlldwI0T7yMlCBDtVP8ancjkggqDeFY65bnxsZPsTKMcDoqtBNNY0wGuEdblkosqPbTycUjdGCVLgojZUsaNFF/T6RYaD0Uge0U2PT1rDcW//NaiQnP/ZTJODFUkumiMOHIRGj8PuoyRYnhQ0swUczeikgfK0yMDalgQ/BmX54n9aOyd1o+uTsuVS6yOPKwB/twCB6cQQWuoQo1ICDhGV7hzdHOi/PufExbc042swt/4Hz+APaekHg=</latexit>

FML

<latexit sha1_base64="f1g+EFzPavSf1VL4mX82VWaRciw=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2NQEA8KEcwDkzXMTmaTITOzy8ysEJb8hRcPinj1b7z5N06SPWhiQUNR1U13VxBzpo3rfju5hcWl5ZX8amFtfWNzq7i9U9dRogitkYhHqhlgTTmTtGaY4bQZK4pFwGkjGFyO/cYTVZpF8t4MY+oL3JMsZAQbKz1cPaZtJdDtzahTLLlldwI0T7yMlCBDtVP8ancjkggqDeFY65bnxsZPsTKMcDoqtBNNY0wGuEdblkosqPbTycUjdGCVLgojZUsaNFF/T6RYaD0Uge0U2PT1rDcW//NaiQnP/ZTJODFUkumiMOHIRGj8PuoyRYnhQ0swUczeikgfK0yMDalgQ/BmX54n9aOyd1o+uTsuVS6yOPKwB/twCB6cQQWuoQo1ICDhGV7hzdHOi/PufExbc042swt/4Hz+APaekHg=</latexit>

FML
<latexit sha1_base64="4XaL0A1MP/rwFd4ruFarjhJ/G/Q=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGMA9JljA7O5sMmZldZmaFsOQrvHhQxKuf482/cZLsQRMLGoqqbrq7goQzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo5TRWiTxDxWnQBrypmkTcMMp51EUSwCTtvB6Hbqt5+o0iyWD2acUF/ggWQRI9hY6bFR7YWUG3zaL1fcmjsDWiZeTiqQo9Evf/XCmKSCSkM41rrruYnxM6wMI5xOSr1U0wSTER7QrqUSC6r9bHbwBJ1YJURRrGxJg2bq74kMC63HIrCdApuhXvSm4n9eNzXRtZ8xmaSGSjJfFKUcmRhNv0chU5QYPrYEE8XsrYgMscLE2IxKNgRv8eVl0jqreZe1i/vzSv0mj6MIR3AMVfDgCupwBw1oAgEBz/AKb45yXpx352PeWnDymUP4A+fzB/2tj+U=</latexit>

P (�)

<latexit sha1_base64="4XaL0A1MP/rwFd4ruFarjhJ/G/Q=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGMA9JljA7O5sMmZldZmaFsOQrvHhQxKuf482/cZLsQRMLGoqqbrq7goQzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo5TRWiTxDxWnQBrypmkTcMMp51EUSwCTtvB6Hbqt5+o0iyWD2acUF/ggWQRI9hY6bFR7YWUG3zaL1fcmjsDWiZeTiqQo9Evf/XCmKSCSkM41rrruYnxM6wMI5xOSr1U0wSTER7QrqUSC6r9bHbwBJ1YJURRrGxJg2bq74kMC63HIrCdApuhXvSm4n9eNzXRtZ8xmaSGSjJfFKUcmRhNv0chU5QYPrYEE8XsrYgMscLE2IxKNgRv8eVl0jqreZe1i/vzSv0mj6MIR3AMVfDgCupwBw1oAgEBz/AKb45yXpx352PeWnDymUP4A+fzB/2tj+U=</latexit>

P (�)

<latexit sha1_base64="4XaL0A1MP/rwFd4ruFarjhJ/G/Q=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGMA9JljA7O5sMmZldZmaFsOQrvHhQxKuf482/cZLsQRMLGoqqbrq7goQzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo5TRWiTxDxWnQBrypmkTcMMp51EUSwCTtvB6Hbqt5+o0iyWD2acUF/ggWQRI9hY6bFR7YWUG3zaL1fcmjsDWiZeTiqQo9Evf/XCmKSCSkM41rrruYnxM6wMI5xOSr1U0wSTER7QrqUSC6r9bHbwBJ1YJURRrGxJg2bq74kMC63HIrCdApuhXvSm4n9eNzXRtZ8xmaSGSjJfFKUcmRhNv0chU5QYPrYEE8XsrYgMscLE2IxKNgRv8eVl0jqreZe1i/vzSv0mj6MIR3AMVfDgCupwBw1oAgEBz/AKb45yXpx352PeWnDymUP4A+fzB/2tj+U=</latexit>

P (�)

<latexit sha1_base64="vnpuEJhyvGUfIxTRTXNBzsota5I=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY0IPHiOYByRJ6J7PJkNnZZWZWCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKsoaNBaxageomeCSNQw3grUTxTAKBGsFo5uZ33piSvNYPppxwvwIB5KHnKKx0kMZz3vFkltx5yCrxMtICTLUe8Wvbj+macSkoQK17nhuYvwJKsOpYNNCN9UsQTrCAetYKjFi2p/MT52SM6v0SRgrW9KQufp7YoKR1uMosJ0RmqFe9mbif14nNeG1P+EySQ2TdLEoTAUxMZn9TfpcMWrE2BKkittbCR2iQmpsOgUbgrf88ippViveZeXivlqq3WZx5OEETqEMHlxBDe6gDg2gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDi+WNVA==</latexit>

(a)

<latexit sha1_base64="bhoLUskbp4Nm43MUVOngWv1AZRU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY0IPHiOYByRJmJ7PJkNnZZaZXCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSRSGHTdbye3tr6xuZXfLuzs7u0fFA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Mbz1xbUSsHnGccD+iAyVCwSha6aEcnPeKJbfizkFWiZeREmSo94pf3X7M0ogrZJIa0/HcBP0J1SiY5NNCNzU8oWxEB7xjqaIRN/5kfuqUnFmlT8JY21JI5urviQmNjBlHge2MKA7NsjcT//M6KYbX/kSoJEWu2GJRmEqCMZn9TfpCc4ZybAllWthbCRtSTRnadAo2BG/55VXSrFa8y8rFfbVUu83iyMMJnEIZPLiCGtxBHRrAYADP8ApvjnRenHfnY9Gac7KZY/gD5/MHjWqNVQ==</latexit>

(b)

<latexit sha1_base64="dV1gHiHZdsly8aR8bnxOFN0cLbs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY0IPHiOYByRJmJ73JkNnZZWZWCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupn5rSdUmsfy0YwT9CM6kDzkjBorPZTZea9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDan3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippViveZeXivlqq3WZx5OEETqEMHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDju+NVg==</latexit>

(c)

<latexit sha1_base64="gjgVGwqd5KnzT45P2rPxiJSVN0g=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY0IPHiOYByRJmZ2eTIbMzy8ysEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13V5Bwpo3rfjuFtfWNza3idmlnd2//oHx41NYyVYS2iORSdQOsKWeCtgwznHYTRXEccNoJxjczv/NElWZSPJpJQv0YDwWLGMHGSg/V8HxQrrg1dw60SrycVCBHc1D+6oeSpDEVhnCsdc9zE+NnWBlGOJ2W+qmmCSZjPKQ9SwWOqfaz+alTdGaVEEVS2RIGzdXfExmOtZ7Ege2MsRnpZW8m/uf1UhNd+xkTSWqoIItFUcqRkWj2NwqZosTwiSWYKGZvRWSEFSbGplOyIXjLL6+Sdr3mXdYu7uuVxm0eRxFO4BSq4MEVNOAOmtACAkN4hld4c7jz4rw7H4vWgpPPHMMfOJ8/kHSNVw==</latexit>

(d)

<latexit sha1_base64="j/MAwnqzjXr9ZyjI+1yJsu841mY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY0IPHiOYByRJmJ73JkNnZZWZWCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupn5rSdUmsfy0YwT9CM6kDzkjBorPZTxvFcsuRV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjtT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0qxXvsnJxXy3VbrM48nACp1AGD66gBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBkfmNWA==</latexit>

(e)

<latexit sha1_base64="p6MmmHPtqDHrhj/C5DjSpvgOcoE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY0IPHiOYByRJmJ7PJkNnZZaZXCCGf4MWDIl79Im/+jZNkD5pY0FBUddPdFSRSGHTdbye3tr6xuZXfLuzs7u0fFA+PmiZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Mbz1xbUSsHnGccD+iAyVCwSha6aEcnveKJbfizkFWiZeREmSo94pf3X7M0ogrZJIa0/HcBP0J1SiY5NNCNzU8oWxEB7xjqaIRN/5kfuqUnFmlT8JY21JI5urviQmNjBlHge2MKA7NsjcT//M6KYbX/kSoJEWu2GJRmEqCMZn9TfpCc4ZybAllWthbCRtSTRnadAo2BG/55VXSrFa8y8rFfbVUu83iyMMJnEIZPLiCGtxBHRrAYADP8ApvjnRenHfnY9Gac7KZY/gD5/MHk36NWQ==</latexit>

(f)

<latexit sha1_base64="rPffBPd/dzVxG+fbFQxKQAkf/hM=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9RQTxGMA9I1jA76SRDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPRzdRvPqHSPJIPZhyjH9KB5H3OqLFS8/Yxvep6k26x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns3Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/ST7mME4OSzRf1E0FMRKa/kx5XyIwYW0KZ4vZWwoZUUWZsQgUbgrf48jJpnJW9Srlyf16qXmdx5OEIjuEUPLiAKtxBDerAYATP8ApvTuy8OO/Ox7w152Qzh/AHzucPxemPOA==</latexit>

FA1

<latexit sha1_base64="W7Q2rZ+3GhWyBiG//CjVRX6Z/vg=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKVI9FQTxWcNtCu5Zsmm1Ds9klyYpl6W/w4kERr/4gb/4b03YP2vpg4PHeDDPzgkRwbRznGxVWVtfWN4qbpa3tnd298v5BU8eposyjsYhVOyCaCS6ZZ7gRrJ0oRqJAsFYwup76rUemNI/lvRknzI/IQPKQU2Ks5N08ZE+TXrniVJ0Z8DJxc1KBHI1e+avbj2kaMWmoIFp3XCcxfkaU4VSwSambapYQOiID1rFUkohpP5sdO8EnVunjMFa2pMEz9fdERiKtx1FgOyNihnrRm4r/eZ3UhJd+xmWSGibpfFGYCmxiPP0c97li1IixJYQqbm/FdEgUocbmU7IhuIsvL5PmWdWtVWt355X6VR5HEY7gGE7BhQuowy00wAMKHJ7hFd6QRC/oHX3MWwsonzmEP0CfP/Gkjss=</latexit>

F x
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Figure 7.6: Benchmark of the ML force-field models for JT model with a filling
fraction f = 0.49. Panels (a)–(c) on the left show the ML predicted forces FML

versus the ground truth FED obtained from exact diagonalization method for the
three vibronic modes of the octahedron. These forces are normalized by the

electron-phonon coupling constant, which is set to λ = 1.25. The corresponding
histograms of the prediction errors are shown in panels (d)–(f). Similar results are

also obtained for the ML models for the half-filling case.
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<latexit sha1_base64="Z9AuYZ8Zvh90D0Z6xug4YESEGrI=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6yQBLx6jmAckS5idzCZDZmeXmV4hLPkDLx4U8eofefNvnCR70MSChqKqm+6uIJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqEccJ9yM6UCIUjKKVHrxqr1R2K+4MZJl4OSlDjnqv9NXtxyyNuEImqTEdz03Qz6hGwSSfFLup4QllIzrgHUsVjbjxs9mlE3JqlT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/1MqCRFrth8UZhKgjGZvk36QnOGcmwJZVrYWwkbUk0Z2nCKNgRv8eVl0qxWvMvKxf15uXaTx1GAYziBM/DgCmpwB3VoAIMQnuEV3pyR8+K8Ox/z1hUnnzmCP3A+fwDthoz3</latexit>

12

<latexit sha1_base64="quNfpY+8ZHurAXg6Kd2fI9ofhhk=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKr5MEcvEYwTwkWcLsZDYZMjO7zMxKwpKv8OJBEa9+jjf/xkmyB00saCiquunuCmLOtHHdb2dldW19YzO3ld/e2d3bLxwcNnSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtWp33yiSrNIPphxTH2B+5KFjGBjpcdqNx2NJiV11i0U3bI7A1omXkaKkKHWLXx1ehFJBJWGcKx123Nj46dYGUY4neQ7iaYxJkPcp21LJRZU++ns4Ak6tUoPhZGyJQ2aqb8nUiy0HovAdgpsBnrRm4r/ee3EhDd+ymScGCrJfFGYcGQiNP0e9ZiixPCxJZgoZm9FZIAVJsZmlLcheIsvL5PGedm7Kl/eXxQrt1kcOTiGEyiBB9dQgTuoQR0ICHiGV3hzlPPivDsf89YVJ5s5gj9wPn8AaM+QJw==</latexit> C
x
x
(r

)
<latexit sha1_base64="quNfpY+8ZHurAXg6Kd2fI9ofhhk=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKr5MEcvEYwTwkWcLsZDYZMjO7zMxKwpKv8OJBEa9+jjf/xkmyB00saCiquunuCmLOtHHdb2dldW19YzO3ld/e2d3bLxwcNnSUKELrJOKRagVYU84krRtmOG3FimIRcNoMhtWp33yiSrNIPphxTH2B+5KFjGBjpcdqNx2NJiV11i0U3bI7A1omXkaKkKHWLXx1ehFJBJWGcKx123Nj46dYGUY4neQ7iaYxJkPcp21LJRZU++ns4Ak6tUoPhZGyJQ2aqb8nUiy0HovAdgpsBnrRm4r/ee3EhDd+ymScGCrJfFGYcGQiNP0e9ZiixPCxJZgoZm9FZIAVJsZmlLcheIsvL5PGedm7Kl/eXxQrt1kcOTiGEyiBB9dQgTuoQR0ICHiGV3hzlPPivDsf89YVJ5s5gj9wPn8AaM+QJw==</latexit> C

x
x
(r

)

<latexit sha1_base64="u5cu56tsil48yphRichFEGVKMOc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdZKAF48JmAckS5id9CZjZmeXmVkhLPkCLx4U8eonefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju6nfekKleSwfzDhBP6IDyUPOqLFSXfVKZbfizkCWiZeTMuSo9Upf3X7M0gilYYJq3fHcxPgZVYYzgZNiN9WYUDaiA+xYKmmE2s9mh07IqVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGNn3GZpAYlmy8KU0FMTKZfkz5XyIwYW0KZ4vZWwoZUUWZsNkUbgrf48jJpnle8q8pl/aJcvc3jKMAxnMAZeHANVbiHGjSAAcIzvMKb8+i8OO/Ox7x1xclnjuAPnM8f3y2M/A==</latexit>r <latexit sha1_base64="u5cu56tsil48yphRichFEGVKMOc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdZKAF48JmAckS5id9CZjZmeXmVkhLPkCLx4U8eonefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju6nfekKleSwfzDhBP6IDyUPOqLFSXfVKZbfizkCWiZeTMuSo9Upf3X7M0gilYYJq3fHcxPgZVYYzgZNiN9WYUDaiA+xYKmmE2s9mh07IqVX6JIyVLWnITP09kdFI63EU2M6ImqFe9Kbif14nNeGNn3GZpAYlmy8KU0FMTKZfkz5XyIwYW0KZ4vZWwoZUUWZsNkUbgrf48jJpnle8q8pl/aJcvc3jKMAxnMAZeHANVbiHGjSAAcIzvMKb8+i8OO/Ox7x1xclnjuAPnM8f3y2M/A==</latexit>r

<latexit sha1_base64="7LzQaspLLT4DPpl+z4W7qxAhkiI=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwkoILHKOYBSQizk9lkyOzsMtMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90fXUbz5xbUSkHnEc825IB0oEglG00sPtTa9YcsvuDGSZeBkpQYZar/jV6UcsCblCJqkxbc+NsZtSjYJJPil0EsNjykZ0wNuWKhpy001nl07IiVX6JIi0LYVkpv6eSGlozDj0bWdIcWgWvan4n9dOMLjspkLFCXLF5ouCRBKMyPRt0heaM5RjSyjTwt5K2JBqytCGU7AheIsvL5NGpeydl8/uK6XqVRZHHo7gGE7Bgwuowh3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4AJqGNGw==</latexit>

ED
<latexit sha1_base64="77Lwg9vgg7v/8ZkEP4SmskxSWWQ=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwk4MWDQhTzgCSE2clsMmR2dpnpFcKSP/DiQRGv/pE3/8ZJsgdNLGgoqrrp7vJjKQy67reTW1ldW9/Ibxa2tnd294r7Bw0TJZrxOotkpFs+NVwKxesoUPJWrDkNfcmb/uh66jefuDYiUo84jnk3pAMlAsEoWunh7rZXLLlldwayTLyMlCBDrVf86vQjloRcIZPUmLbnxthNqUbBJJ8UOonhMWUjOuBtSxUNuemms0sn5MQqfRJE2pZCMlN/T6Q0NGYc+rYzpDg0i95U/M9rJxhcdlOh4gS5YvNFQSIJRmT6NukLzRnKsSWUaWFvJWxINWVowynYELzFl5dJo1L2zstn95VS9SqLIw9HcAyn4MEFVOEGalAHBgE8wyu8OSPnxXl3PuatOSebOYQ/cD5/AD7pjSs=</latexit>

ML

<latexit sha1_base64="7LzQaspLLT4DPpl+z4W7qxAhkiI=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwkoILHKOYBSQizk9lkyOzsMtMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90fXUbz5xbUSkHnEc825IB0oEglG00sPtTa9YcsvuDGSZeBkpQYZar/jV6UcsCblCJqkxbc+NsZtSjYJJPil0EsNjykZ0wNuWKhpy001nl07IiVX6JIi0LYVkpv6eSGlozDj0bWdIcWgWvan4n9dOMLjspkLFCXLF5ouCRBKMyPRt0heaM5RjSyjTwt5K2JBqytCGU7AheIsvL5NGpeydl8/uK6XqVRZHHo7gGE7Bgwuowh3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4AJqGNGw==</latexit>

ED
<latexit sha1_base64="77Lwg9vgg7v/8ZkEP4SmskxSWWQ=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwk4MWDQhTzgCSE2clsMmR2dpnpFcKSP/DiQRGv/pE3/8ZJsgdNLGgoqrrp7vJjKQy67reTW1ldW9/Ibxa2tnd294r7Bw0TJZrxOotkpFs+NVwKxesoUPJWrDkNfcmb/uh66jefuDYiUo84jnk3pAMlAsEoWunh7rZXLLlldwayTLyMlCBDrVf86vQjloRcIZPUmLbnxthNqUbBJJ8UOonhMWUjOuBtSxUNuemms0sn5MQqfRJE2pZCMlN/T6Q0NGYc+rYzpDg0i95U/M9rJxhcdlOh4gS5YvNFQSIJRmT6NukLzRnKsSWUaWFvJWxINWVowynYELzFl5dJo1L2zstn95VS9SqLIw9HcAyn4MEFVOEGalAHBgE8wyu8OSPnxXl3PuatOSebOYQ/cD5/AD7pjSs=</latexit>

ML

<latexit sha1_base64="7LzQaspLLT4DPpl+z4W7qxAhkiI=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwkoILHKOYBSQizk9lkyOzsMtMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90fXUbz5xbUSkHnEc825IB0oEglG00sPtTa9YcsvuDGSZeBkpQYZar/jV6UcsCblCJqkxbc+NsZtSjYJJPil0EsNjykZ0wNuWKhpy001nl07IiVX6JIi0LYVkpv6eSGlozDj0bWdIcWgWvan4n9dOMLjspkLFCXLF5ouCRBKMyPRt0heaM5RjSyjTwt5K2JBqytCGU7AheIsvL5NGpeydl8/uK6XqVRZHHo7gGE7Bgwuowh3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4AJqGNGw==</latexit>

ED
<latexit sha1_base64="77Lwg9vgg7v/8ZkEP4SmskxSWWQ=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwk4MWDQhTzgCSE2clsMmR2dpnpFcKSP/DiQRGv/pE3/8ZJsgdNLGgoqrrp7vJjKQy67reTW1ldW9/Ibxa2tnd294r7Bw0TJZrxOotkpFs+NVwKxesoUPJWrDkNfcmb/uh66jefuDYiUo84jnk3pAMlAsEoWunh7rZXLLlldwayTLyMlCBDrVf86vQjloRcIZPUmLbnxthNqUbBJJ8UOonhMWUjOuBtSxUNuemms0sn5MQqfRJE2pZCMlN/T6Q0NGYc+rYzpDg0i95U/M9rJxhcdlOh4gS5YvNFQSIJRmT6NukLzRnKsSWUaWFvJWxINWVowynYELzFl5dJo1L2zstn95VS9SqLIw9HcAyn4MEFVOEGalAHBgE8wyu8OSPnxXl3PuatOSebOYQ/cD5/AD7pjSs=</latexit>

ML

<latexit sha1_base64="7LzQaspLLT4DPpl+z4W7qxAhkiI=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwkoILHKOYBSQizk9lkyOzsMtMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90fXUbz5xbUSkHnEc825IB0oEglG00sPtTa9YcsvuDGSZeBkpQYZar/jV6UcsCblCJqkxbc+NsZtSjYJJPil0EsNjykZ0wNuWKhpy001nl07IiVX6JIi0LYVkpv6eSGlozDj0bWdIcWgWvan4n9dOMLjspkLFCXLF5ouCRBKMyPRt0heaM5RjSyjTwt5K2JBqytCGU7AheIsvL5NGpeydl8/uK6XqVRZHHo7gGE7Bgwuowh3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4AJqGNGw==</latexit>

ED
<latexit sha1_base64="77Lwg9vgg7v/8ZkEP4SmskxSWWQ=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwk4MWDQhTzgCSE2clsMmR2dpnpFcKSP/DiQRGv/pE3/8ZJsgdNLGgoqrrp7vJjKQy67reTW1ldW9/Ibxa2tnd294r7Bw0TJZrxOotkpFs+NVwKxesoUPJWrDkNfcmb/uh66jefuDYiUo84jnk3pAMlAsEoWunh7rZXLLlldwayTLyMlCBDrVf86vQjloRcIZPUmLbnxthNqUbBJJ8UOonhMWUjOuBtSxUNuemms0sn5MQqfRJE2pZCMlN/T6Q0NGYc+rYzpDg0i95U/M9rJxhcdlOh4gS5YvNFQSIJRmT6NukLzRnKsSWUaWFvJWxINWVowynYELzFl5dJo1L2zstn95VS9SqLIw9HcAyn4MEFVOEGalAHBgE8wyu8OSPnxXl3PuatOSebOYQ/cD5/AD7pjSs=</latexit>

ML

<latexit sha1_base64="VWw25Nws3pyl5rx1RgFP+ZgDiqk=">AAACAnicbVDLSsNAFL3xWesr6krcDLZC3ZSk4GMjFN24rGAf0IYwmU7boZNJmJkIJRQ3/oobF4q49Svc+TdO2yy09cCFwzn3cu89QcyZ0o7zbS0tr6yurec28ptb2zu79t5+Q0WJJLROIh7JVoAV5UzQumaa01YsKQ4DTpvB8GbiNx+oVCwS93oUUy/EfcF6jGBtJN8+LOFTVBR+2pEhUprGaoyukOs4Rd8uOGVnCrRI3IwUIEPNt7863YgkIRWacKxU23Vi7aVYakY4Hec7iaIxJkPcp21DBQ6p8tLpC2N0YpQu6kXSlNBoqv6eSHGo1CgMTGeI9UDNexPxP6+d6N6llzIRJ5oKMlvUSzjSEZrkgbpMUqL5yBBMJDO3IjLAEhNtUsubENz5lxdJo1J2z8tnd5VC9TqLIwdHcAwlcOECqnALNagDgUd4hld4s56sF+vd+pi1LlnZzAH8gfX5A9H2lSQ=</latexit>

(a) nsteps = 100
<latexit sha1_base64="gjnRP0PZjdeLfpJ1EaflMczuR8Q=">AAACAnicbVDLSsNAFL3xWesr6krcDLZC3ZSk4GMjFN24rGAf0IYwmU7boZNJmJkIJRQ3/oobF4q49Svc+TdO2yy09cCFwzn3cu89QcyZ0o7zbS0tr6yurec28ptb2zu79t5+Q0WJJLROIh7JVoAV5UzQumaa01YsKQ4DTpvB8GbiNx+oVCwS93oUUy/EfcF6jGBtJN8+LAWnqCj8tCNDpDSN1RhdoYrjFH274JSdKdAicTNSgAw13/7qdCOShFRowrFSbdeJtZdiqRnhdJzvJIrGmAxxn7YNFTikykunL4zRiVG6qBdJU0Kjqfp7IsWhUqMwMJ0h1gM1703E/7x2onuXXspEnGgqyGxRL+FIR2iSB+oySYnmI0MwkczcisgAS0y0SS1vQnDnX14kjUrZPS+f3VUK1essjhwcwTGUwIULqMIt1KAOBB7hGV7hzXqyXqx362PWumRlMwfwB9bnD9UYlSY=</latexit>

(b) nsteps = 200

<latexit sha1_base64="auiHS3OGztVsrUyGjsKq0HQmHIk=">AAACAnicbVDLSgMxFM3UV62vUVfiJtgKdVNmiq+NUHTjsoJ9QDsMmTTThiaZIckIZShu/BU3LhRx61e4829M21lo64ELh3Pu5d57gphRpR3n28otLa+sruXXCxubW9s79u5eU0WJxKSBIxbJdoAUYVSQhqaakXYsCeIBI61geDPxWw9EKhqJez2KicdRX9CQYqSN5NsHZXwCS8JPu5JDpUmsxvAKnjpOybeLTsWZAi4SNyNFkKHu21/dXoQTToTGDCnVcZ1YeymSmmJGxoVuokiM8BD1ScdQgThRXjp9YQyPjdKDYSRNCQ2n6u+JFHGlRjwwnRzpgZr3JuJ/XifR4aWXUhEnmgg8WxQmDOoITvKAPSoJ1mxkCMKSmlshHiCJsDapFUwI7vzLi6RZrbjnlbO7arF2ncWRB4fgCJSBCy5ADdyCOmgADB7BM3gFb9aT9WK9Wx+z1pyVzeyDP7A+fwDZwZUp</latexit>

(c) nsteps = 400
<latexit sha1_base64="JbmWg2TTkqeZsI7n1zz+O3EX22Y=">AAACA3icbVDLSsNAFJ34rPUVdaebwVaomzIp+NgIRTcuK9gHtCFMJpN26GQSZiZCCQU3/oobF4q49Sfc+TdO2yy09cCFwzn3cu89fsKZ0gh9W0vLK6tr64WN4ubW9s6uvbffUnEqCW2SmMey42NFORO0qZnmtJNIiiOf07Y/vJn47QcqFYvFvR4l1I1wX7CQEayN5NmHleAUloWX9WQElaaJGsMr6CCEyp5dQlU0BVwkTk5KIEfDs796QUzSiApNOFaq66BEuxmWmhFOx8VeqmiCyRD3addQgSOq3Gz6wxieGCWAYSxNCQ2n6u+JDEdKjSLfdEZYD9S8NxH/87qpDi/djIkk1VSQ2aIw5VDHcBIIDJikRPORIZhIZm6FZIAlJtrEVjQhOPMvL5JWreqcV8/uaqX6dR5HARyBY1ABDrgAdXALGqAJCHgEz+AVvFlP1ov1bn3MWpesfOYA/IH1+QNMT5Vh</latexit>

(d) nsteps = 1000

Figure 7.7: Comparison of time-dependent correlation functions Cxx(r, t) defined in
Eq. (7.68) obtained from Langevin simulations with the ML force-field model and

the ED method. The correlation functions were obtained from 40 independent
thermal quench simulations on a 30× 30 lattice with a filling fraction f = 0.49.

forces on the JT modes are well described by a Gaussian-like distribution.

In addition to the generalized BP approach described above, we also implemented

a modified ML scheme in which a separate NN is used to predict the forces acting on

the breathing modes QA1 . From the symmetry viewpoint, this is feasible since the

breathing mode as well as its corresponding force FA1 are scalars, They are invariant

under the point-group symmetry transformations, and the same descriptor can be also

used for the corresponding NN model. The fact that no automatic differentiation is
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required for the breathing modes also enhances the efficiency. But more importantly,

we found that the prediction accuracy of the FA1 forces is significantly improved.

With this hybrid approach, rather accurate force predictions were achieved for all

three vibronic modes, as shown in FIG. 7.6. The histogram of prediction errors

(δ = FML − FED), shown on the right panels of FIG. 7.6, are characterized by a

small MSE of σF ∼ 0.005 for the force predictions.

It is worth noting that both the electron density and the local orbital configuration

can be directly obtained from the ML model, thanks to the local and linear coupling

between electrons and octahedral modes. As shown in Eq. (7.58), for example, the

expectation value of orbital pseudo-spin can be obtained as: ⟨τ̂i⟩ = (F̂ E
i +KQE

i )/λ,

where F̂ E
i = h(Ci) is the total doublet force predicted by the ML model. Similarly,

the on-site electron number can also be obtained from the predicted forces F̂A1
i for

the breathing mode: ⟨n̂i⟩ = (F̂A1
i + βKQA1

i )/λ.

Next we integrated the trained ML models into the Langevin dynamics method

and conducted thermal quench simulations of the JT model. We initiated the simu-

lations with a random initial state, which was suddenly quenched to a temperature

of T = 0.01 at t = 0. The results from the ML-Langevin simulations were then

compared with those from ED simulations. As the ground-state is characterized by a

checkerboard pattern of the Qx JT distortions, we computed the correlation function

Cxx(rij) = ⟨Qx
iQ

x
j ⟩ (7.68)
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<latexit sha1_base64="mORKjj+qPGo0yiSztaOIscmha2s=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4KknxtRGKblxWsA9oQ5hMJ+3QySTMTIQQ6q+4caGIWz/EnX/jtM1CWw9cOJxzL/feEyScKe0439bK6tr6xmZpq7y9s7u3bx8ctlWcSkJbJOax7AZYUc4EbWmmOe0mkuIo4LQTjG+nfueRSsVi8aCzhHoRHgoWMoK1kXy7Ivy8LyOkNE3UBF2juuP4dtWpOTOgZeIWpAoFmr791R/EJI2o0IRjpXquk2gvx1Izwumk3E8VTTAZ4yHtGSpwRJWXz46foBOjDFAYS1NCo5n6eyLHkVJZFJjOCOuRWvSm4n9eL9XhlZczkaSaCjJfFKYc6RhNk0ADJinRPDMEE8nMrYiMsMREm7zKJgR38eVl0q7X3Iva+f1ZtXFTxFGCIziGU3DhEhpwB01oAYEMnuEV3qwn68V6tz7mrStWMVOBP7A+fwAtxJPR</latexit>

nsteps = 200
<latexit sha1_base64="3M1p+iIzHWgJ/QL7Npgc1n1vir8=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUnE10YounFZwT6gDWEynbRDJ5MwMxFCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5BwprTjfFulldW19Y3yZmVre2d3z94/aKs4lYS2SMxj2Q2wopwJ2tJMc9pNJMVRwGknGN9O/c4jlYrF4kFnCfUiPBQsZARrI/l2Vfh5X0ZIaZqoCbpGZ47j2zWn7syAlolbkBoUaPr2V38QkzSiQhOOleq5TqK9HEvNCKeTSj9VNMFkjIe0Z6jAEVVePjt+go6NMkBhLE0JjWbq74kcR0plUWA6I6xHatGbiv95vVSHV17ORJJqKsh8UZhypGM0TQINmKRE88wQTCQztyIywhITbfKqmBDcxZeXSfu07l7Uz+/Pao2bIo4yHMIRnIALl9CAO2hCCwhk8Ayv8GY9WS/Wu/Uxby1ZxUwV/sD6/AEw0JPT</latexit>

nsteps = 400
<latexit sha1_base64="18aJ0wutqPiQ1WtKPK9P9PIQsfM=">AAAB/XicbVDJSgNBEO1xjXEbl5uXxiB4Cj3idhGCXjxGMAskQ+jp9CRNenqG7hohDsFf8eJBEa/+hzf/xk4yB018UPB4r4qqekEihQFCvp2FxaXlldXCWnF9Y3Nr293ZrZs41YzXWCxj3Qyo4VIoXgMBkjcTzWkUSN4IBjdjv/HAtRGxuodhwv2I9pQIBaNgpY67rzpZW0fYAE/MCF9hjxDScUukTCbA88TLSQnlqHbcr3Y3ZmnEFTBJjWl5JAE/oxoEk3xUbKeGJ5QNaI+3LFU04sbPJteP8JFVujiMtS0FeKL+nshoZMwwCmxnRKFvZr2x+J/XSiG89DOhkhS4YtNFYSoxxHgcBe4KzRnIoSWUaWFvxaxPNWVgAyvaELzZl+dJ/aTsnZfP7k5Lles8jgI6QIfoGHnoAlXQLaqiGmLoET2jV/TmPDkvzrvzMW1dcPKZPfQHzucPoIKUCg==</latexit>

nsteps = 1000

<latexit sha1_base64="4L2mL2JfiTA5AgAlR3No1wibb1Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr5MEvHiMaB6QLGF2MpsMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLZiiquunuChIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWjzhOuB/RgRKhYBSt9OBW3V65Yv8ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NVJ+TEKn0Sxto+hWSm/u7IaGTMOApsZURxaBa9qfif10kxvPYzoZIUuWLzQWEqCcZkejfpC80ZyrEllGlhdyVsSDVlaNMp2RC8xZOXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMSwtO3nMIf+B8/gBUBI0s</latexit>

0.0

<latexit sha1_base64="fLjlgPHVAqVtXKdaYRKwR+R74s4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEqicpePFY0X5AG8pmu2mXbjZhdyKU0p/gxYMiXv1F3vw3btsctPpg4PHeDDPzwlQKg5735RRWVtfWN4qbpa3tnd298v5B0ySZZrzBEpnodkgNl0LxBgqUvJ1qTuNQ8lY4upn5rUeujUjUA45THsR0oEQkGEUr3XtutVeueK43B/lL/JxUIEe9V/7s9hOWxVwhk9SYju+lGEyoRsEkn5a6meEpZSM64B1LFY25CSbzU6fkxCp9EiXalkIyV39OTGhszDgObWdMcWiWvZn4n9fJMLoKJkKlGXLFFouiTBJMyOxv0heaM5RjSyjTwt5K2JBqytCmU7Ih+Msv/yXNM9e/cKt355XadR5HEY7gGE7Bh0uowS3UoQEMBvAEL/DqSOfZeXPeF60FJ585hF9wPr4BW5iNMQ==</latexit>

0.5

<latexit sha1_base64="9wYp3rc/hWaHQzcZvMi0TMVar7g=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVXycJePEY0TwgWcLsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7wkQKg5737RRWVtfWN4qbpa3tnd298v5Bw8SpZrzOYhnrVkgNl0LxOgqUvJVoTqNQ8mY4up36zSeujYjVI44THkR0oERfMIpWevBdr1uueK43A1kmfk4qkKPWLX91ejFLI66QSWpM2/cSDDKqUTDJJ6VOanhC2YgOeNtSRSNugmx26oScWKVH+rG2pZDM1N8TGY2MGUeh7YwoDs2iNxX/89op9q+DTKgkRa7YfFE/lQRjMv2b9ITmDOXYEsq0sLcSNqSaMrTplGwI/uLLy6Rx5vqX7sX9eaV6k8dRhCM4hlPw4QqqcAc1qAODATzDK7w50nlx3p2PeWvByWcO4Q+czx9Vio0t</latexit>

1.0

<latexit sha1_base64="53CGPiEvci3pxBSm7MATztEWbpY=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBC8GHbF10kCXjxGMQ9IljA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSKFQdf9dpaWV1bX1gsbxc2t7Z3d0t5+w8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ34zSeujYjVI44S7ke0r0QoGEUrPZx63VLZrbhTkEXi5aQMOWrd0lenF7M04gqZpMa0PTdBP6MaBZN8XOykhieUDWmfty1VNOLGz6aXjsmxVXokjLUthWSq/p7IaGTMKApsZ0RxYOa9ifif104xvPYzoZIUuWKzRWEqCcZk8jbpCc0ZypEllGlhbyVsQDVlaMMp2hC8+ZcXSeOs4l1WLu7Py9WbPI4CHMIRnIAHV1CFO6hBHRiE8Ayv8OYMnRfn3fmYtS45+cwB/IHz+QPl7ozy</latexit>�1

<latexit sha1_base64="W0iIUZmhfr8V0kmAzgQ2xSMk2F8=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKr5MEvHiMYh6QLGF2MpsMmZ1dZnqFsOQPvHhQxKt/5M2/cZLsQRMLGoqqbrq7gkQKg6777Swtr6yurRc2iptb2zu7pb39holTzXidxTLWrYAaLoXidRQoeSvRnEaB5M1geDvxm09cGxGrRxwl3I9oX4lQMIpWejj1uqWyW3GnIIvEy0kZctS6pa9OL2ZpxBUySY1pe26CfkY1Cib5uNhJDU8oG9I+b1uqaMSNn00vHZNjq/RIGGtbCslU/T2R0ciYURTYzojiwMx7E/E/r51ieO1nQiUpcsVmi8JUEozJ5G3SE5ozlCNLKNPC3krYgGrK0IZTtCF48y8vksZZxbusXNyfl6s3eRwFOIQjOAEPrqAKd1CDOjAI4Rle4c0ZOi/Ou/Mxa11y8pkD+APn8wfi5Izw</latexit>

+1

<latexit sha1_base64="1f2eBdG+0wR2gOH23rYQimy/sGc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdZKAF48JmAckS5id9CZjZmeXmVkhLPkCLx4U8eonefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju6nfekKleSwfzDhBP6IDyUPOqLFS3e2Vym7FnYEsEy8nZchR65W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NDp2QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasIbP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbIo2BG/x5WXSPK94V5XL+kW5epvHUYBjOIEz8OAaqnAPNWgAA4RneIU359F5cd6dj3nripPPHMEfOJ8/eyWMug==</latexit>

0

<latexit sha1_base64="afMWX+FGYz1/j8QosP0oHPEZlLQ=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCq5LxvRGKblxWsA9ohyGTZtrQJDMkGaEOxV9x40IRt/6HO//GtJ2Fth64cDjnXu69J0w40wahb6ewsLi0vFJcLa2tb2xuuds7DR2nitA6iXmsWiHWlDNJ64YZTluJoliEnDbDwc3Ybz5QpVks780wob7APckiRrCxUuDuySDrKAG1oYkewSt4ghAK3DKqoAngPPFyUgY5aoH71enGJBVUGsKx1m0PJcbPsDKMcDoqdVJNE0wGuEfblkosqPazyfUjeGiVLoxiZUsaOFF/T2RYaD0Uoe0U2PT1rDcW//PaqYku/YzJJDVUkumiKOXQxHAcBewyRYnhQ0swUczeCkkfK0yMDaxkQ/BmX54njeOKd145uzstV6/zOIpgHxyAI+CBC1AFt6AG6oCAR/AMXsGb8+S8OO/Ox7S14OQzu+APnM8fo5CUDA==</latexit>

nsteps = 3000

<latexit sha1_base64="GtGs7tjQx7SOfw/h9kpR+7cM8Z4=">AAAB7nicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY+oF4+QyCOBlcwOA0yYnd3M9JqQDR/hxYPGePV7vPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpVC8gQIlb8ea0zCQvBWM72Z+64lrIyL1gJOY+yEdKjEQjKKVWvXH9KbnTXvFklt25yCrxMtICTLUesWvbj9iScgVMkmN6XhujH5KNQom+bTQTQyPKRvTIe9YqmjIjZ/Oz52SM6v0ySDSthSSufp7IqWhMZMwsJ0hxZFZ9mbif14nwcG1nwoVJ8gVWywaJJJgRGa/k77QnKGcWEKZFvZWwkZUU4Y2oYINwVt+eZU0L8pepVypX5aqt1kceTiBUzgHD66gCvdQgwYwGMMzvMKbEzsvzrvzsWjNOdnMMfyB8/kD1tePQw==</latexit>

QA1

<latexit sha1_base64="TDZ5kXVcRihTN/44IH5FtXDuleA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEWo9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOule1b1GvfFwXWvdFnGU4QzO4RI8aEIL7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEXGo5K</latexit>

�

Figure 7.8: Snapshots of local breathing mode QA1 and orbital Ising order
parameter ϕi at various time steps after a thermal quench of a half-filled f = 0.5 JT

model. An initially random configuration is suddenly quenched to a temperature
T = 0.001 at time t = 0 (nstep = 0). The ML-Langevin dynamics was used to

simulate the relaxation of the system toward equilibrium. The red and blue regions
correspond to orbital domains with order parameters ϕ = +1 and −1, respectively.

A time step ∆t = 0.05τ0 is used in the simulations.
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between the Qx modes at two octahedra separated by a distance rij along either

the x- or the y-direction. FIG. 7.7 displays the time-dependent correlation func-

tions obtained from both ML and ED Langevin simulations, demonstrating excellent

agreement. The relaxation process is characterized by a gradual built-up of staggered

correlations of the Qx distortion, characteristic of the C-type orbital/JT oder. This

dynamical benchmark shows that the ML model not only accurately predicts the

forces, but also captures the dynamical evolution of the JT system.

7.3.5 Coarsening of Orbital Order in Cooperative Jahn-Teller
Model

The ML force-field model is applied to study the large-scale coarsening dynamics of

orbital order in the JT model. In addition to the linear scalability of ML method,

the efficiency is further enhanced by running the simulations on GPU machines. We

performed the thermal quench simulations on a 100×100 lattice where an initial state

with random local distortions was suddenly cooled to a low temperature T = 0.01

at time t = 0. As discussed above, the low-temperature C-type orbital/JT order

exhibits a broken Z2 symmetry, which is physically related to both the sublattice and

mirror transformation about the diagonals. For the case of half-filling, this ground

state is also characterized by a uniform electron density of ⟨n̂i⟩ = 1. The lattice

distortions in the ground state can be described by two parameters:

QA1
i = η, QE

i = (δ, 0) exp(iK · ri). (7.69)
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<latexit sha1_base64="mORKjj+qPGo0yiSztaOIscmha2s=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4KknxtRGKblxWsA9oQ5hMJ+3QySTMTIQQ6q+4caGIWz/EnX/jtM1CWw9cOJxzL/feEyScKe0439bK6tr6xmZpq7y9s7u3bx8ctlWcSkJbJOax7AZYUc4EbWmmOe0mkuIo4LQTjG+nfueRSsVi8aCzhHoRHgoWMoK1kXy7Ivy8LyOkNE3UBF2juuP4dtWpOTOgZeIWpAoFmr791R/EJI2o0IRjpXquk2gvx1Izwumk3E8VTTAZ4yHtGSpwRJWXz46foBOjDFAYS1NCo5n6eyLHkVJZFJjOCOuRWvSm4n9eL9XhlZczkaSaCjJfFKYc6RhNk0ADJinRPDMEE8nMrYiMsMREm7zKJgR38eVl0q7X3Iva+f1ZtXFTxFGCIziGU3DhEhpwB01oAYEMnuEV3qwn68V6tz7mrStWMVOBP7A+fwAtxJPR</latexit>

nsteps = 200
<latexit sha1_base64="3M1p+iIzHWgJ/QL7Npgc1n1vir8=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUnE10YounFZwT6gDWEynbRDJ5MwMxFCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5BwprTjfFulldW19Y3yZmVre2d3z94/aKs4lYS2SMxj2Q2wopwJ2tJMc9pNJMVRwGknGN9O/c4jlYrF4kFnCfUiPBQsZARrI/l2Vfh5X0ZIaZqoCbpGZ47j2zWn7syAlolbkBoUaPr2V38QkzSiQhOOleq5TqK9HEvNCKeTSj9VNMFkjIe0Z6jAEVVePjt+go6NMkBhLE0JjWbq74kcR0plUWA6I6xHatGbiv95vVSHV17ORJJqKsh8UZhypGM0TQINmKRE88wQTCQztyIywhITbfKqmBDcxZeXSfu07l7Uz+/Pao2bIo4yHMIRnIALl9CAO2hCCwhk8Ayv8GY9WS/Wu/Uxby1ZxUwV/sD6/AEw0JPT</latexit>

nsteps = 400
<latexit sha1_base64="18aJ0wutqPiQ1WtKPK9P9PIQsfM=">AAAB/XicbVDJSgNBEO1xjXEbl5uXxiB4Cj3idhGCXjxGMAskQ+jp9CRNenqG7hohDsFf8eJBEa/+hzf/xk4yB018UPB4r4qqekEihQFCvp2FxaXlldXCWnF9Y3Nr293ZrZs41YzXWCxj3Qyo4VIoXgMBkjcTzWkUSN4IBjdjv/HAtRGxuodhwv2I9pQIBaNgpY67rzpZW0fYAE/MCF9hjxDScUukTCbA88TLSQnlqHbcr3Y3ZmnEFTBJjWl5JAE/oxoEk3xUbKeGJ5QNaI+3LFU04sbPJteP8JFVujiMtS0FeKL+nshoZMwwCmxnRKFvZr2x+J/XSiG89DOhkhS4YtNFYSoxxHgcBe4KzRnIoSWUaWFvxaxPNWVgAyvaELzZl+dJ/aTsnZfP7k5Lles8jgI6QIfoGHnoAlXQLaqiGmLoET2jV/TmPDkvzrvzMW1dcPKZPfQHzucPoIKUCg==</latexit>

nsteps = 1000

<latexit sha1_base64="4L2mL2JfiTA5AgAlR3No1wibb1Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr5MEvHiMaB6QLGF2MpsMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLZiiquunuChIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWjzhOuB/RgRKhYBSt9OBW3V65Yv8ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NVJ+TEKn0Sxto+hWSm/u7IaGTMOApsZURxaBa9qfif10kxvPYzoZIUuWLzQWEqCcZkejfpC80ZyrEllGlhdyVsSDVlaNMp2RC8xZOXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMSwtO3nMIf+B8/gBUBI0s</latexit>

0.0

<latexit sha1_base64="fLjlgPHVAqVtXKdaYRKwR+R74s4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEqicpePFY0X5AG8pmu2mXbjZhdyKU0p/gxYMiXv1F3vw3btsctPpg4PHeDDPzwlQKg5735RRWVtfWN4qbpa3tnd298v5B0ySZZrzBEpnodkgNl0LxBgqUvJ1qTuNQ8lY4upn5rUeujUjUA45THsR0oEQkGEUr3XtutVeueK43B/lL/JxUIEe9V/7s9hOWxVwhk9SYju+lGEyoRsEkn5a6meEpZSM64B1LFY25CSbzU6fkxCp9EiXalkIyV39OTGhszDgObWdMcWiWvZn4n9fJMLoKJkKlGXLFFouiTBJMyOxv0heaM5RjSyjTwt5K2JBqytCmU7Ih+Msv/yXNM9e/cKt355XadR5HEY7gGE7Bh0uowS3UoQEMBvAEL/DqSOfZeXPeF60FJ585hF9wPr4BW5iNMQ==</latexit>

0.5

<latexit sha1_base64="9wYp3rc/hWaHQzcZvMi0TMVar7g=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVXycJePEY0TwgWcLsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7wkQKg5737RRWVtfWN4qbpa3tnd298v5Bw8SpZrzOYhnrVkgNl0LxOgqUvJVoTqNQ8mY4up36zSeujYjVI44THkR0oERfMIpWevBdr1uueK43A1kmfk4qkKPWLX91ejFLI66QSWpM2/cSDDKqUTDJJ6VOanhC2YgOeNtSRSNugmx26oScWKVH+rG2pZDM1N8TGY2MGUeh7YwoDs2iNxX/89op9q+DTKgkRa7YfFE/lQRjMv2b9ITmDOXYEsq0sLcSNqSaMrTplGwI/uLLy6Rx5vqX7sX9eaV6k8dRhCM4hlPw4QqqcAc1qAODATzDK7w50nlx3p2PeWvByWcO4Q+czx9Vio0t</latexit>

1.0

<latexit sha1_base64="53CGPiEvci3pxBSm7MATztEWbpY=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBC8GHbF10kCXjxGMQ9IljA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSKFQdf9dpaWV1bX1gsbxc2t7Z3d0t5+w8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ34zSeujYjVI44S7ke0r0QoGEUrPZx63VLZrbhTkEXi5aQMOWrd0lenF7M04gqZpMa0PTdBP6MaBZN8XOykhieUDWmfty1VNOLGz6aXjsmxVXokjLUthWSq/p7IaGTMKApsZ0RxYOa9ifif104xvPYzoZIUuWKzRWEqCcZk8jbpCc0ZypEllGlhbyVsQDVlaMMp2hC8+ZcXSeOs4l1WLu7Py9WbPI4CHMIRnIAHV1CFO6hBHRiE8Ayv8OYMnRfn3fmYtS45+cwB/IHz+QPl7ozy</latexit>�1

<latexit sha1_base64="W0iIUZmhfr8V0kmAzgQ2xSMk2F8=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKr5MEvHiMYh6QLGF2MpsMmZ1dZnqFsOQPvHhQxKt/5M2/cZLsQRMLGoqqbrq7gkQKg6777Swtr6yurRc2iptb2zu7pb39holTzXidxTLWrYAaLoXidRQoeSvRnEaB5M1geDvxm09cGxGrRxwl3I9oX4lQMIpWejj1uqWyW3GnIIvEy0kZctS6pa9OL2ZpxBUySY1pe26CfkY1Cib5uNhJDU8oG9I+b1uqaMSNn00vHZNjq/RIGGtbCslU/T2R0ciYURTYzojiwMx7E/E/r51ieO1nQiUpcsVmi8JUEozJ5G3SE5ozlCNLKNPC3krYgGrK0IZTtCF48y8vksZZxbusXNyfl6s3eRwFOIQjOAEPrqAKd1CDOjAI4Rle4c0ZOi/Ou/Mxa11y8pkD+APn8wfi5Izw</latexit>

+1

<latexit sha1_base64="1f2eBdG+0wR2gOH23rYQimy/sGc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdZKAF48JmAckS5id9CZjZmeXmVkhLPkCLx4U8eonefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju6nfekKleSwfzDhBP6IDyUPOqLFS3e2Vym7FnYEsEy8nZchR65W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NDp2QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasIbP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbIo2BG/x5WXSPK94V5XL+kW5epvHUYBjOIEz8OAaqnAPNWgAA4RneIU359F5cd6dj3nripPPHMEfOJ8/eyWMug==</latexit>

0

<latexit sha1_base64="afMWX+FGYz1/j8QosP0oHPEZlLQ=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCq5LxvRGKblxWsA9ohyGTZtrQJDMkGaEOxV9x40IRt/6HO//GtJ2Fth64cDjnXu69J0w40wahb6ewsLi0vFJcLa2tb2xuuds7DR2nitA6iXmsWiHWlDNJ64YZTluJoliEnDbDwc3Ybz5QpVks780wob7APckiRrCxUuDuySDrKAG1oYkewSt4ghAK3DKqoAngPPFyUgY5aoH71enGJBVUGsKx1m0PJcbPsDKMcDoqdVJNE0wGuEfblkosqPazyfUjeGiVLoxiZUsaOFF/T2RYaD0Uoe0U2PT1rDcW//PaqYku/YzJJDVUkumiKOXQxHAcBewyRYnhQ0swUczeCkkfK0yMDaxkQ/BmX54njeOKd145uzstV6/zOIpgHxyAI+CBC1AFt6AG6oCAR/AMXsGb8+S8OO/Ox7S14OQzu+APnM8fo5CUDA==</latexit>

nsteps = 3000
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Figure 7.9: Snapshots of local breathing mode QA1 and orbital Ising order
parameter ϕi at various time steps after a thermal quench for a JT model with

f = 0.49 electron filling.

where K = (π, π) is the ordering wave vector, and the phase factor exp(iK · ri) = ±1

for lattice sites at the two sublattices. The parameter η = λ/βK is the amplitude of

the uniform expansion of octahedra, while δ = λ⟨τ̂x⟩/K can be viewed as a global Z2

order parameter for the staggered JT distortions. To characterize the inhomogeneous

states with multiple orbital domains after a thermal quench, we define a scalar order

parameter that measures the local staggered JT distortion

ϕi =
(
Qx
i − ⟨Qx

nn⟩i
)
exp(iK · ri). (7.70)

where ⟨Qx
nn⟩i ≡ (Qx

i+x̂ + Qx
i−x̂ + Qx

i+ŷ + Qx
i−ŷ)/4 denotes the average JT distortion

at the four nearest neighbors of site-i. A nonzero ϕi thus indicates the presence of a

local difference in JT distortion. Indeed, this Ising order parameter is ϕi = δ in the

long-range staggered JT order described in Eq. (7.69).
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FIG. 7.8 show the snapshots of the breathing-mode amplitude QA1
i and the local

Ising order parameter ϕi at different times after a thermal quench of a half-filled JT

model. The red and blue regions, corresponding to ϕi = +1 and −1, respectively,

are C-type orbital orders related by the Z2 sublattice symmetry. The two types of

orbital domains are separated by interfaces of vanishing ϕi, corresponding to the white

regions. On the other hand, a rather uniform ordering of QA1 is quickly developed

throughout the system, except at the interfaces of the two orbital domains. The nearly

constant amplitude QA1 corresponds to the uniform charge distribution ⟨n̂i⟩ ≈ 1 in

the ground state as discussed above. At the interfaces that separate Ising domains

of opposite signs, there are segments with an electron density both above and below

the average value of one electron per site.

The snapshots during the relaxation of a JT system with an electron filling of

f = 0.49 are shown in FIG. 7.9. Overall, a relaxation behavior similar to that of

the half-filled case was obtained. However, there is a major difference regarding the

breathing mode and the electron density. In contrast to the milder inhomogeneity for

the half-filling case, the amplitude of the QA1 mode as well as the electron density are

significantly reduced at the interfaces, as shown in the top panels of FIG. 7.9. As the

C-type orbital/JT order is stabilized in the half-filling limit, this result is consistent

with the phase separation scenario where nearly all of the doped holes go into the

interfaces between orbital domains.

Another intriguing feature of the QA1 configurations is the localized checkerboard



Chapter 7. Descriptors for Lattice Models 220

<latexit sha1_base64="VDE2OyMgUEgUMKfAuAgjRVmZx0Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cEzQOSJcxOepMhs7PLzKwQlnyCFw+KePWLvPk3TpI9aLSgoajqprsrSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/Pbj6g0j+WDmSToR3QoecgZNVa6b/TdfrniVt05yF/i5aQCOer98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb/8l7TOqt5l9aJxXqnd5HEU4QiO4RQ8uIIa3EEdmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xvR842C</latexit>

Q0

<latexit sha1_base64="o6cKXNNEy+FZHv8bm8RBORY/vMo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8egF48RzQOSJcxOepMhs7PLzKwQQj7BiwdFvPpF3vwbJ8keNLGgoajqprsrTAXXxvO+ncLK6tr6RnGztLW9s7tX3j9o6CRTDOssEYlqhVSj4BLrhhuBrVQhjUOBzXB4O/WbT6g0T+SjGaUYxLQvecQZNVZ68Nzzbrniud4MZJn4OalAjlq3/NXpJSyLURomqNZt30tNMKbKcCZwUupkGlPKhrSPbUsljVEH49mpE3JilR6JEmVLGjJTf0+Maaz1KA5tZ0zNQC96U/E/r52Z6DoYc5lmBiWbL4oyQUxCpn+THlfIjBhZQpni9lbCBlRRZmw6JRuCv/jyMmmcuf6le3F/Xqne5HEU4QiO4RR8uIIq3EEN6sCgD8/wCm+OcF6cd+dj3lpw8plD+APn8wdbSI00</latexit>

0.4

<latexit sha1_base64="2vvzfSXPt1ZplalgWYL42IvMlXk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEq8eiF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvTAXXxvO+nMLK6tr6RnGztLW9s7tX3j9o6iRTDBssEYlqh1Sj4BIbhhuB7VQhjUOBrXB0M/Nbj6g0T+SDGacYxHQgecQZNVa699xqr1zxXG8O8pf4OalAjnqv/NntJyyLURomqNYd30tNMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JilT6JEmVLGjJXf05MaKz1OA5tZ0zNUC97M/E/r5OZ6CqYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCv/zyX9I8c/2qe3F3Xqld53EU4QiO4RR8uIQa3EIdGsBgAE/wAq+OcJ6dN+d90Vpw8plD+AXn4xteUI02</latexit>

0.6

<latexit sha1_base64="T+9roozo5A7d3qS1aKtbdsmzgtM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVHzkGvXiMaB6QLGF2MpsMmZ1dZnqFEPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uMJXCoOd9OYWV1bX1jeJmaWt7Z3evvH/QNEmmGW+wRCa6HVLDpVC8gQIlb6ea0ziUvBWObmZ+65FrIxL1gOOUBzEdKBEJRtFK955b7ZUrnuvNQf4SPycVyFHvlT+7/YRlMVfIJDWm43spBhOqUTDJp6VuZnhK2YgOeMdSRWNugsn81Ck5sUqfRIm2pZDM1Z8TExobM45D2xlTHJplbyb+53UyjKrBRKg0Q67YYlGUSYIJmf1N+kJzhnJsCWVa2FsJG1JNGdp0SjYEf/nlv6R55vqX7sXdeaV2ncdRhCM4hlPw4QpqcAt1aACDATzBC7w60nl23pz3RWvByWcO4Recj29hWI04</latexit>

0.8

<latexit sha1_base64="R4kPNc2aOb05e2iYVjsHcTPfDnI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY9OIxonlAsoTeyWwyZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nirIGjUWs2gFqJrhkDcONYO1EMYwCwVrB6Hbmt56Y0jyWj2acMD/CgeQhp2is9FDG816x5FbcOcgq8TJSggz1XvGr249pGjFpqECtO56bGH+CynAq2LTQTTVLkI5wwDqWSoyY9ifzU6fkzCp9EsbKljRkrv6emGCk9TgKbGeEZqiXvZn4n9dJTXjtT7hMUsMkXSwKU0FMTGZ/kz5XjBoxtgSp4vZWQoeokBqbTsGG4C2/vEqa1Yp3Wbm4r5ZqN1kceTiBUyiDB1dQgzuoQwMoDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4Ai0uNUg==</latexit>

(a)
<latexit sha1_base64="nM2JpBQPFmvzsYRr6HARFtutP74=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY9OIxonlAsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDvzW09cGxGrRxwn3I/oQIlQMIpWeigH571iya24c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzolZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuG1PxEqSZErtlgUppJgTGZ/k77QnKEcW0KZFvZWwoZUU4Y2nYINwVt+eZU0qxXvsnJxXy3VbrI48nACp1AGD66gBndQhwYwGMAzvMKbI50X5935WLTmnGzmGP7A+fwBjNCNUw==</latexit>

(b)

<latexit sha1_base64="29iSbtz63xC3Ud3Q0VGMtlyNxNk=">AAAB6HicdZDJSgNBEIZr4hbjFvXopTEInoaZBDW5Bb14TMAskAyhp1NJ2vQsdPcIYcgTePGgiFcfyZtvY2fBDf2hofj+Krrq92PBlXacdyuzsrq2vpHdzG1t7+zu5fcPmipKJMMGi0Qk2z5VKHiIDc21wHYskQa+wJY/vpr5rTuUikfhjZ7E6AV0GPIBZ1QbVKe9fMGxKyW3VCkR13bmIoaUK0X3ixRgqVov/9btRywJMNRMUKU6rhNrL6VScyZwmusmCmPKxnSIHVOGNEDlpfNFp+TEkD4ZRNK8UJM5/T6R0kCpSeCbzoDqkfrtzeBfXifRg7KX8jBONIZs8dEgEURHZHY16XOJTIuJKSiT3OxK2IhKyrTJJmdC+Lz9/6JZtN1z+6xeLFQvl3Fk4QiO4RRcuIAqXEMNGsAA4R4e4cm6tR6sZ+tl0ZqxljOH8EPW6wceV40q</latexit>a

<latexit sha1_base64="njV83NngvJvUZjiJeLaT+tN/QYY=">AAAB7XicbVDJSgNBEK1xjXGLevTSGARPYUbcThLw4jGCWSAZQk+nJ2nTy9DdI4Yh/+DFgyJe/R9v/o2dZA6a+KDg8V4VVfWihDNjff/bW1peWV1bL2wUN7e2d3ZLe/sNo1JNaJ0ornQrwoZyJmndMstpK9EUi4jTZjS8mfjNR6oNU/LejhIaCtyXLGYEWyc1OsmAdZ+6pbJf8adAiyTISRly1Lqlr05PkVRQaQnHxrQDP7FhhrVlhNNxsZMammAyxH3adlRiQU2YTa8do2On9FCstCtp0VT9PZFhYcxIRK5TYDsw895E/M9rpza+CjMmk9RSSWaL4pQjq9DkddRjmhLLR45gopm7FZEB1phYF1DRhRDMv7xIGqeV4KJyfndWrl7ncRTgEI7gBAK4hCrcQg3qQOABnuEV3jzlvXjv3sesdcnLZw7gD7zPH6jujzA=</latexit>

�x

<latexit sha1_base64="53CGPiEvci3pxBSm7MATztEWbpY=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBC8GHbF10kCXjxGMQ9IljA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dQSKFQdf9dpaWV1bX1gsbxc2t7Z3d0t5+w8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ34zSeujYjVI44S7ke0r0QoGEUrPZx63VLZrbhTkEXi5aQMOWrd0lenF7M04gqZpMa0PTdBP6MaBZN8XOykhieUDWmfty1VNOLGz6aXjsmxVXokjLUthWSq/p7IaGTMKApsZ0RxYOa9ifif104xvPYzoZIUuWKzRWEqCcZk8jbpCc0ZypEllGlhbyVsQDVlaMMp2hC8+ZcXSeOs4l1WLu7Py9WbPI4CHMIRnIAHV1CFO6hBHRiE8Ayv8OYMnRfn3fmYtS45+cwB/IHz+QPl7ozy</latexit>�1

<latexit sha1_base64="W0iIUZmhfr8V0kmAzgQ2xSMk2F8=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBAEIeyKr5MEvHiMYh6QLGF2MpsMmZ1dZnqFsOQPvHhQxKt/5M2/cZLsQRMLGoqqbrq7gkQKg6777Swtr6yurRc2iptb2zu7pb39holTzXidxTLWrYAaLoXidRQoeSvRnEaB5M1geDvxm09cGxGrRxwl3I9oX4lQMIpWejj1uqWyW3GnIIvEy0kZctS6pa9OL2ZpxBUySY1pe26CfkY1Cib5uNhJDU8oG9I+b1uqaMSNn00vHZNjq/RIGGtbCslU/T2R0ciYURTYzojiwMx7E/E/r51ieO1nQiUpcsVmi8JUEozJ5G3SE5ozlCNLKNPC3krYgGrK0IZTtCF48y8vksZZxbusXNyfl6s3eRwFOIQjOAEPrqAKd1CDOjAI4Rle4c0ZOi/Ou/Mxa11y8pkD+APn8wfi5Izw</latexit>

+1

<latexit sha1_base64="1f2eBdG+0wR2gOH23rYQimy/sGc=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdZKAF48JmAckS5id9CZjZmeXmVkhLPkCLx4U8eonefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju6nfekKleSwfzDhBP6IDyUPOqLFS3e2Vym7FnYEsEy8nZchR65W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NDp2QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasIbP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbIo2BG/x5WXSPK94V5XL+kW5epvHUYBjOIEz8OAaqnAPNWgAA4RneIU359F5cd6dj3nripPPHMEfOJ8/eyWMug==</latexit>

0

Figure 7.10: Localized checkerboard modulation of breathing mode QA1 and
electron density. An example of such local structures is displayed in terms of (a) the

amplitude of breathing mode as well as the QE vector and (b) the orbital Ising
order parameter.

modulations of the breathing-mode amplitudes. Such localized checkerboard modu-

lations can be seen in both filling fractions, but more pronounced in the f = 0.49

case. A close-up view of this localized structure is shown in FIG. 7.10(a). A region

of checkerboard modulation of the QA1 amplitudes is enclosed in orbital domains

represented by a Néel-type order of the doublet QE vectors predominantly in the

Qx direction. As the electron number n̂i directly couples to the breathing mode, this

checkerboard structure also indicates a concomitant charge density wave (CDW) char-

acterized by the wave vector K = (π, π). It is worth noting that these CDW states are

essentially the same as the CDW state of the Holstein model at half-filling [375–377].

In terms of the orbital Ising parameter ϕ, shown in FIG. 7.10(b), the checkerboard

pattern is accompanied by a vanishing orbital order, similar to the interface that sep-

arates different orbital domains. However, the average electron density of the CDW



Chapter 7. Descriptors for Lattice Models 221

is found to be exactly one electron per site, which means that the doped holes are

not accommodated in such local structures.

It is worth noting that these localized CDW structures are also obtained in the

ED-based Langevin simulations on smaller systems, indicating that they are not an

artifact of ML models. However, such charge modulation patterns are mostly meta-

stable during the relaxation process. Our ED simulations on a 30× 30 lattice found

that a state initialized to a homogeneous CDW order is unstable and will decay into

the C-type order. Yet, as shown in the snapshots from large-scale ML-Langevin

simulations, e.g. FIG. 7.9, such local CDW order persists even at late stage of the

phase-ordering where large domains of orbital order have been established. It is likely

that the local CDW order is stabilized as an intermediate structure in a multi-domain

state during relaxation.

Next we discuss the coarsening of the orbital domains. As discussed above, the

C-type orbital order is described by an Ising order parameter. And since the orbital

order and JT distortion are not subject to a conservation law, the coarsening of

the orbital/JT order is expected to be described by the universality class of the

phase ordering of a non-conserved Ising order. It is worth noting that the coarsening

dynamics of Ising order has been thoroughly characterized and classified into several

super-universal classes which depend on whether the Ising order is conserved and the

presence of quenched disorder. For non-conserved Ising order, which is also the case

for the C-type orbital order here, the coarsening dynamics is described by a curvature-
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driven mechanism summarized in the Allen-Cahn equation [378]. This results in a

specific power-law growth L ∼ t1/2 of Ising domains applicable to two and higher

dimensions [70–72]. A natural question is to see whether the coarsening of the orbital

domains falls into this Allen-Cahn universality class.

To quantify the coarsening dynamics, we consider the time-dependent correlation

length of the orbital/JT order. To this end, we first compute the time-dependent

structural factor of the staggered distortion defined as S(k, t) = |Qx(k, t)|2, where

Qx(k, t) is the Fourier transform the JT Qx configuration

Qx(k, t) =
1

N

∑

i

Qx
i e

ik·ri . (7.71)

In FIG. 7.11 the structure factor is plotted at various time steps after a sudden quench

to a low temperature T = 0.01. The emergence of the C-type order corresponds to

a structure-factor peak at the wave vector K = (π, π). However, instead of a delta

peak which is characteristic of a long-range order, a diffusive peak was observed even

at late times of the phase ordering. The finite width of the diffusive peak is due

to the presence of multiple orbital domains of opposite Ising orders. As the system

progresses towards equilibrium, the coarsening of these ordered domains results in

a stronger and sharper peak at K, as can be seen in FIG. 7.11. The inverse of the

width can thus provide a quantitative estimate for the characteristic length scale of

ordered domains

L−1(t) = ∆k =
∑

k

S(k, t)|k−K|
/∑

k

S(k, t), (7.72)
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1.0

<latexit sha1_base64="4L2mL2JfiTA5AgAlR3No1wibb1Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr5MEvHiMaB6QLGF2MpsMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLZiiquunuChIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWjzhOuB/RgRKhYBSt9OBW3V65Yv8ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NVJ+TEKn0Sxto+hWSm/u7IaGTMOApsZURxaBa9qfif10kxvPYzoZIUuWLzQWEqCcZkejfpC80ZyrEllGlhdyVsSDVlaNMp2RC8xZOXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMSwtO3nMIf+B8/gBUBI0s</latexit>

0.0

<latexit sha1_base64="fLjlgPHVAqVtXKdaYRKwR+R74s4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEqicpePFY0X5AG8pmu2mXbjZhdyKU0p/gxYMiXv1F3vw3btsctPpg4PHeDDPzwlQKg5735RRWVtfWN4qbpa3tnd298v5B0ySZZrzBEpnodkgNl0LxBgqUvJ1qTuNQ8lY4upn5rUeujUjUA45THsR0oEQkGEUr3XtutVeueK43B/lL/JxUIEe9V/7s9hOWxVwhk9SYju+lGEyoRsEkn5a6meEpZSM64B1LFY25CSbzU6fkxCp9EiXalkIyV39OTGhszDgObWdMcWiWvZn4n9fJMLoKJkKlGXLFFouiTBJMyOxv0heaM5RjSyjTwt5K2JBqytCmU7Ih+Msv/yXNM9e/cKt355XadR5HEY7gGE7Bh0uowS3UoQEMBvAEL/DqSOfZeXPeF60FJ585hF9wPr4BW5iNMQ==</latexit>

0.5

<latexit sha1_base64="9wYp3rc/hWaHQzcZvMi0TMVar7g=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadkVXycJePEY0TwgWcLsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7wkQKg5737RRWVtfWN4qbpa3tnd298v5Bw8SpZrzOYhnrVkgNl0LxOgqUvJVoTqNQ8mY4up36zSeujYjVI44THkR0oERfMIpWevBdr1uueK43A1kmfk4qkKPWLX91ejFLI66QSWpM2/cSDDKqUTDJJ6VOanhC2YgOeNtSRSNugmx26oScWKVH+rG2pZDM1N8TGY2MGUeh7YwoDs2iNxX/89op9q+DTKgkRa7YfFE/lQRjMv2b9ITmDOXYEsq0sLcSNqSaMrTplGwI/uLLy6Rx5vqX7sX9eaV6k8dRhCM4hlPw4QqqcAc1qAODATzDK7w50nlx3p2PeWvByWcO4Q+czx9Vio0t</latexit>

1.0
<latexit sha1_base64="KPa716XH9f5n4iTILETvumKovhw=">AAAB+3icdVDLSsNAFJ34rPUV69LNYBFchaS21i6UghuXFewD2hAm00k7dDIJMxOxhPyKGxeKuPVH3Pk3TtoKVfTAhcM593IPx48Zlcq2P42V1bX1jc3CVnF7Z3dv3zwodWSUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6TrT65zv3tPhKQRv1PTmLghGnEaUIyUljyzxL10IEIoFYkzeAkrtu2ZZceyZ4C21Wg0amf1nFQrtaoDv60yWKDlmR+DYYSTkHCFGZKy79ixclMkFMWMZMVBIkmM8ASNSF9TjkIi3XSWPYMnWhnCIBJ6uIIzdfkiRaGU09DXmyFSY/nby8W/vH6iggs3pTxOFOF4/ihIGFQRzIuAQyoIVmyqCcKC6qwQj5FAWOm6issl/E86Fcs5t2q31XLzalFHARyBY3AKHFAHTXADWqANMHgAj+AZvBiZ8WS8Gm/z1RVjcXMIfsB4/wKzRZOU</latexit>

nstep = 200
<latexit sha1_base64="vWpqq3I3VssMX5CdDhu0ZOntIRU=">AAAB+3icdVDLSsNAFJ34rPUV69LNYBFchaSm1i6UghuXFewD2hAm00k7dGYSZiZiCf0VNy4UceuPuPNvTNoKVfTAhcM593IPJ4gZVdq2P42V1bX1jc3CVnF7Z3dv3zwotVWUSExaOGKR7AZIEUYFaWmqGenGkiAeMNIJxte537knUtFI3OlJTDyOhoKGFCOdSb5ZEn7alxwqTeIpvISubftm2bHsGaBt1ev16lktJ26l6jrw2yqDBZq++dEfRDjhRGjMkFI9x461lyKpKWZkWuwnisQIj9GQ9DIqECfKS2fZp/AkUwYwjGQ2QsOZunyRIq7UhAfZJkd6pH57ufiX10t0eOGlVMSJJgLPH4UJgzqCeRFwQCXBmk0ygrCkWVaIR0girLO6issl/E/aFcs5t6q3brlxtaijAI7AMTgFDqiBBrgBTdACGDyAR/AMXoyp8WS8Gm/z1RVjcXMIfsB4/wK2UZOW</latexit>

nstep = 400

<latexit sha1_base64="hlFIH96CrHS76Kbuwya8TByeq3s=">AAAB/HicdVDLSsNAFJ34rPUV7dLNYBFchUltrV0oBTcuK9gHtCFMppN26GQSZiZCCPVX3LhQxK0f4s6/MWkrVNEDFw7n3Ms9HC/iTGmEPo2V1bX1jc3CVnF7Z3dv3zw47KgwloS2SchD2fOwopwJ2tZMc9qLJMWBx2nXm1znfveeSsVCcaeTiDoBHgnmM4J1JrlmSbjpQAZQaRpN4SW0EUKuWbYtNANEVqPRqJ3Vc1Kt1Ko2/LbKYIGWa34MhiGJAyo04Vipvo0i7aRYakY4nRYHsaIRJhM8ov2MChxQ5aSz8FN4kilD6IcyG6HhTF2+SHGgVBJ42WaA9Vj99nLxL68fa//CSZmIYk0FmT/yYw51CPMm4JBJSjRPMoKJZFlWSMZYYqKzvorLJfxPOhXLPrdqt9Vy82pRRwEcgWNwCmxQB01wA1qgDQhIwCN4Bi/Gg/FkvBpv89UVY3FTAj9gvH8BJZ2TzQ==</latexit>

nstep = 1000
<latexit sha1_base64="yToM4RfoMCiBGmpFUMCQKHppyJs=">AAAB/XicdZDLSsNAFIYnXmu9xcvOzWARXIXEXlIXQtGNywr2Am0Ik+mkHTqZhJmJUEPxVdy4UMSt7+HOt3F6oajoDwOH7z+Hc+YPEkalsu1PY2l5ZXVtPbeR39za3tk19/abMk4FJg0cs1i0AyQJo5w0FFWMtBNBUBQw0gqGVxO/dUeEpDG/VaOEeBHqcxpSjJRGvnnI/awrIigVSeQYXsCibdu+WbCt86pbKlagY9lTQU1ct1ouLUgBzFX3zY9uL8ZpRLjCDEnZcexEeRkSimJGxvluKkmC8BD1SUeXHEVEetn0+jE80aQHw1joxxWc0u8TGYqkHEWB7oyQGsjf3gT+5XVSFVa9jPIkVYTj2aIwZVDFcBIF7FFBsGIjXSAsqL4V4gESCCsdWF6HsPj7/0XzzHIqVvmmVKhdzuPIgSNwDE6BA1xQA9egDhoAg3vwCJ7Bi/FgPBmvxtusdcmYzxyAHzLevwAUi5Ra</latexit>

nsteps = 3000

Figure 7.11: Structure factor S(k, t) of the JT Qx distortion mode at different time
steps after suddenly cooled to a temperature T = 0.001, starting from a random

state. The system size is 100× 100 with filling fraction f = 0.49, and averaged over
40 independent configurations.
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This characteristic size of orbital domains also provides a measure of the orbital

correlation, i.e.

Cxx(r, t) ∼ e−|r|/ξ(t)eiK·r, (7.73)

where the correlation length is proportional to the characteristic domain size, ξ ∼ L.

FIG. 7.12 shows the characteristic length as a function of time for two filling

fractions, f = 0.5 (one electron per site) and f = 0.49, both obtained by averaging

over 40 independent ML-Langevin simulations on a 100×100 system. The L(t) curves

of the f = 0.49 case are also shown for two different temperatures. For all cases, the

coarsening of the orbital domains shows a clear two-stage behavior: there is an initial

rapid domain growth, which is followed by a much slower coarsening dynamics. This

is also consistent with the snapshots shown in both FIG. 7.8 and 7.9. The initial

fast stage, as represented by the two nsteps = 200 configurations, is characterized by

emerging orbital domains accompanied by a featureless random distribution of QA1

and electron density. However, once the orbital orders are well developed in each

domain at nsteps ≳ 400, or for times t ≳ 20τ0, the coarsening rate is significantly

decreased.

By fitting the initial relatively fast growth with the Allen-Cahn law, as shown as

dashed lines in FIG. 7.12(a), one can see that the L(t) from simulations starts to

deviate from the
√
t behavior for t ≳ 15. On the other hand, the snapshots shown in

FIG. 7.8 and 7.9 clearly show that there is still coarsening going on even at late times
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<latexit sha1_base64="ZulQnuAxajCQqeGX0rA170utLio=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQiwcPCZgHJEuYnXSSMbOzy8ysEJZ8gRcPinj1k7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6HbqN59QaR7JBzOO0Q/pQPI+Z9RYqXbfLZbcsjsDWSZeRkqQodotfnV6EUtClIYJqnXbc2Pjp1QZzgROCp1EY0zZiA6wbamkIWo/nR06ISdW6ZF+pGxJQ2bq74mUhlqPw8B2htQM9aI3Ff/z2onpX/spl3FiULL5on4iiInI9GvS4wqZEWNLKFPc3krYkCrKjM2mYEPwFl9eJo2zsndZvqidlyo3WRx5OIJjOAUPrqACd1CFOjBAeIZXeHMenRfn3fmYt+acbOYQ/sD5/AGmyYza</latexit>

L

<latexit sha1_base64="2TyYox69prPZKG28G7NCoWz8v3M=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNnJbDJmdnaZ6RXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR3dRvPXFtRKwecJxwP6IDJULBKFqpjr1S2a24M5Bl4uWkDDlqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9mh07IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzxM6GSFLli80VhKgnGZPo16QvNGcqxJZRpYW8lbEg1ZWizKdoQvMWXl0nzvOJdVS7rF+XqbR5HAY7hBM7Ag2uowj3UoAEMODzDK7w5j86L8+58zFtXnHzmCP7A+fwB42mNAg==</latexit>

t

<latexit sha1_base64="Wl4SUJIOsqhGktNmg4JBDdwv1uE=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr4sQ9OIxQl6QLGF20kmGzM6uM7NCWPITXjwo4tXf8ebfOEn2oIkFwxRV3XR3BbHg2rjut5NbWV1b38hvFra2d3b3ivsHDR0limGdRSJSrYBqFFxi3XAjsBUrpGEgsBmM7qZ+8wmV5pGsmXGMfkgHkvc5o8ZKrRq5IW7Z9brFkv1mIMvEy0gJMlS7xa9OL2JJiNIwQbVue25s/JQqw5nASaGTaIwpG9EBti2VNETtp7N9J+TEKj3Sj5R90pCZ+rsjpaHW4zCwlSE1Q73oTcX/vHZi+td+ymWcGJRsPqifCGIiMj2e9LhCZsTYEsoUt7sSNqSKMmMjKtgQvMWTl0njrOxdli8ezkuV2yyOPBzBMZyCB1dQgXuoQh0YCHiGV3hzHp0X5935mJfmnKznEP7A+fwBmkWOZA==</latexit>

T = 0.01
<latexit sha1_base64="PlFKIEgZDzG1VZblah2VogF1uvk=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4Krti1YtQ9OKxQr+gXUo2nbah2eyaZIWy9E948aCIV/+ON/+NabsHbX0Q8nhvhpl5QSy4Nq777aysrq1vbOa28ts7u3v7hYPDho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGd1O/+YRK80jWzDhGP6QDyfucUWOlVo3cELfklruFov1mIMvEy0gRMlS7ha9OL2JJiNIwQbVue25s/JQqw5nASb6TaIwpG9EBti2VNETtp7N9J+TUKj3Sj5R90pCZ+rsjpaHW4zCwlSE1Q73oTcX/vHZi+td+ymWcGJRsPqifCGIiMj2e9LhCZsTYEsoUt7sSNqSKMmMjytsQvMWTl0njvORdlsoPF8XKbRZHDo7hBM7AgyuowD1UoQ4MBDzDK7w5j86L8+58zEtXnKznCP7A+fwBoFWOaA==</latexit>

T = 0.05

<latexit sha1_base64="R4kPNc2aOb05e2iYVjsHcTPfDnI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY9OIxonlAsoTeyWwyZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nirIGjUWs2gFqJrhkDcONYO1EMYwCwVrB6Hbmt56Y0jyWj2acMD/CgeQhp2is9FDG816x5FbcOcgq8TJSggz1XvGr249pGjFpqECtO56bGH+CynAq2LTQTTVLkI5wwDqWSoyY9ifzU6fkzCp9EsbKljRkrv6emGCk9TgKbGeEZqiXvZn4n9dJTXjtT7hMUsMkXSwKU0FMTGZ/kz5XjBoxtgSp4vZWQoeokBqbTsGG4C2/vEqa1Yp3Wbm4r5ZqN1kceTiBUyiDB1dQgzuoQwMoDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4Ai0uNUg==</latexit>

(a)

<latexit sha1_base64="nM2JpBQPFmvzsYRr6HARFtutP74=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY9OIxonlAsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDvzW09cGxGrRxwn3I/oQIlQMIpWeigH571iya24c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzolZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuG1PxEqSZErtlgUppJgTGZ/k77QnKEcW0KZFvZWwoZUU4Y2nYINwVt+eZU0qxXvsnJxXy3VbrI48nACp1AGD66gBndQhwYwGMAzvMKbI50X5935WLTmnGzmGP7A+fwBjNCNUw==</latexit>

(b)

<latexit sha1_base64="ZulQnuAxajCQqeGX0rA170utLio=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQiwcPCZgHJEuYnXSSMbOzy8ysEJZ8gRcPinj1k7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6HbqN59QaR7JBzOO0Q/pQPI+Z9RYqXbfLZbcsjsDWSZeRkqQodotfnV6EUtClIYJqnXbc2Pjp1QZzgROCp1EY0zZiA6wbamkIWo/nR06ISdW6ZF+pGxJQ2bq74mUhlqPw8B2htQM9aI3Ff/z2onpX/spl3FiULL5on4iiInI9GvS4wqZEWNLKFPc3krYkCrKjM2mYEPwFl9eJo2zsndZvqidlyo3WRx5OIJjOAUPrqACd1CFOjBAeIZXeHMenRfn3fmYt+acbOYQ/sD5/AGmyYza</latexit>

L

<latexit sha1_base64="2TyYox69prPZKG28G7NCoWz8v3M=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNnJbDJmdnaZ6RXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR3dRvPXFtRKwecJxwP6IDJULBKFqpjr1S2a24M5Bl4uWkDDlqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9mh07IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzxM6GSFLli80VhKgnGZPo16QvNGcqxJZRpYW8lbEg1ZWizKdoQvMWXl0nzvOJdVS7rF+XqbR5HAY7hBM7Ag2uowj3UoAEMODzDK7w5j86L8+58zFtXnHzmCP7A+fwB42mNAg==</latexit>

t

<latexit sha1_base64="XvIcU6+IWYLSzsZLctE9WsMa1jI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgadkVnwch6MVjBPOAZAmzk9lkyMzsOjMrhCU/4cWDIl79HW/+jZNkD5pY0FBUddPdFSacaeN5305haXllda24XtrY3NreKe/uNXScKkLrJOaxaoVYU84krRtmOG0limIRctoMh7cTv/lElWaxfDCjhAYC9yWLGMHGSq0IXSPPPb3qliue602BFomfkwrkqHXLX51eTFJBpSEca932vcQEGVaGEU7HpU6qaYLJEPdp21KJBdVBNr13jI6s0kNRrGxJg6bq74kMC61HIrSdApuBnvcm4n9eOzXRZZAxmaSGSjJbFKUcmRhNnkc9pigxfGQJJorZWxEZYIWJsRGVbAj+/MuLpHHi+ufu2f1ppXqTx1GEAziEY/DhAqpwBzWoAwEOz/AKb86j8+K8Ox+z1oKTz+zDHzifP8g/joI=</latexit>

f = 0.49
<latexit sha1_base64="AhS71XfFUN0zChbZZ5c8lLTVVWo=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4ColY9SIUvXisYD+gDWWz3bRLN5uwOxFK6Y/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlQKg5737aysrq1vbBa2its7u3v7pYPDhkkyzXidJTLRrZAaLoXidRQoeSvVnMah5M1weDf1m09cG5GoRxylPIhpX4lIMIpWakbkhnhupVsqe643A1kmfk7KkKPWLX11egnLYq6QSWpM2/dSDMZUo2CST4qdzPCUsiHt87alisbcBOPZuRNyapUeiRJtSyGZqb8nxjQ2ZhSHtjOmODCL3lT8z2tnGF0HY6HSDLli80VRJgkmZPo76QnNGcqRJZRpYW8lbEA1ZWgTKtoQ/MWXl0nj3PUv3crDRbl6m8dRgGM4gTPw4QqqcA81qAODITzDK7w5qfPivDsf89YVJ585gj9wPn8ATPqOQA==</latexit>

f = 0.5
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<latexit sha1_base64="8EAJDZbnjDtJlq6r81vJb3h7FKg=">AAAB/nicbVDJSgNBEO2JW4zbqHjy0hiEiBhngtsx6MWDhwhmgWQcejo9SZOehe4aIQwBf8WLB0W8+h3e/Bs7yRzU+KDg8V4VVfW8WHAFlvVl5ObmFxaX8suFldW19Q1zc6uhokRSVqeRiGTLI4oJHrI6cBCsFUtGAk+wpje4GvvNByYVj8I7GMbMCUgv5D6nBLTkmjs3roUPMcElOALXOrhP7ePKyDWLVtmaAM8SOyNFlKHmmp+dbkSTgIVABVGqbVsxOCmRwKlgo0InUSwmdEB6rK1pSAKmnHRy/gjva6WL/UjqCgFP1J8TKQmUGgae7gwI9NVfbyz+57UT8C+clIdxAiyk00V+IjBEeJwF7nLJKIihJoRKrm/FtE8koaATK+gQ7L8vz5JGpWyflU9vT4rVyyyOPNpFe6iEbHSOquga1VAdUZSiJ/SCXo1H49l4M96nrTkjm9lGv2B8fANRaJMr</latexit>

L0 + a(t � t0)
1/2

<latexit sha1_base64="cLQivWeqZO4f7Lgkr8FxahHpZLU=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ66Ga9csWtujOQZeLlpAI56r3yV7cfszRCaZigWnc8NzF+RpXhTOCk1E01JpSN6AA7lkoaofaz2aUTcmKVPgljZUsaMlN/T2Q00nocBbYzomaoF72p+J/XSU147WdcJqlByeaLwlQQE5Pp26TPFTIjxpZQpri9lbAhVZQZG07JhuAtvrxMmmdV77J6cX9eqd3kcRThCI7hFDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8teDkM4fwB87nD57EjW8=</latexit>{

<latexit sha1_base64="LMyQbhNiSIjj1yNPsup8BJBrdaw=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBC8GHZFosegF48RzAOSNcxOZpMhs7PrTK8SlvyHFw+KePVfvPk3Th4HTSxoKKq66e4KEikMuu63s7S8srq2ntvIb25t7+wW9vbrJk414zUWy1g3A2q4FIrXUKDkzURzGgWSN4LB9dhvPHJtRKzucJhwP6I9JULBKFrpvm0eNGZITgl23FGnUHRL7gRkkXgzUoQZqp3CV7sbszTiCpmkxrQ8N0E/oxoFk3yUb6eGJ5QNaI+3LFU04sbPJlePyLFVuiSMtS2FZKL+nshoZMwwCmxnRLFv5r2x+J/XSjG89DOhkhS5YtNFYSoJxmQcAekKzRnKoSWUaWFvJaxPNWVog8rbELz5lxdJ/azklUvl2/Ni5WoWRw4O4QhOwIMLqMANVKEGDDQ8wyu8OU/Oi/PufExbl5zZzAH8gfP5A86MkhM=</latexit>p
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Figure 7.12: The characteristic length L(t) of orbital domains as a function of time,
averaging over 40 independent ML-Langevin simulations. Panel (a) shows L(t)

curves for the case of half-filling and a filling fraction f = 0.49. Panel (b) shows the
L(t) curves at two different temperatures for the case of f = 0.49 electron filling.

The two dashed lines in (a) and the two solid lines in (b) are fit using the
Allen-Cahn growth law with a shifted time t0 and an initial length L0. The fitted

expansion coefficients are a = 8.1× 10−5 and a = 9.1× 10−5 for temperature
T = 0.001 and T = 0.005, respectively.
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of the relaxation. If we attempt to fit this late-stage coarsening using the equation

L(t) = L0 + a(t − t0)
1/2, the extracted expansion coefficient a ∼ 10−4 is extremely

small. This corresponds to a relative domain growth of the order of ∆L/L0 ∼ 10−3

over a time span of 30 oscillation cycles t0 of the JT modes. This indicates a freezing

behavior at the late stage of the phase ordering regardless of whether the phase-

ordering can be described by the Allen-Cahn domain growth.

It is worth noting that the Allen-Cahn domain growth law is intimately related

to the domain morphologies of the inhomogeneous states. Fundamentally, the Allen-

Cahn equation for the domain-wall motion describes a curvature-driven coarsening

process. Mathematically, the domain-wall velocity is given by v = −rκ, where κ is the

curvature, and r is a proportional constant. Indeed, this equation implies a power-law

domain growth. For inhomogeneous states characterized by a characteristic length

L, the domain-wall velocity can be approximated by v ∼ dL/dt, while the curvature

is on average given by κ ∼ 1/L. The Allen-Cahn equation indicates a differential

equation dL/dt ∼ −1/L, which can be readily integrated to give the growth behavior

L ∼ t1/2.

Within the framework of curvature-driven domain growth, the late-stage freezing

observed in our simulations could be attributed to the rather straight interfaces that

separate orbital Ising domains of opposite signs; see FIG. 7.8 and 7.9. Moreover, the

nearly straight interfaces tend to run parallel along the x or y-directions. Since the

effective orbital interactions originate from the electrons through a mechanism similar
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to RKKY interactions, this interfacial anisotropy can be attributed to the highly

directional hopping of eg electrons. The nearly zero curvature of such straight domain

boundaries indicate a vanishing velocity for the domain-wall motion. Consequently,

the coarsening is mostly driven by the corner regions of orbital domains, where a

finite interfacial curvature remains. Let κc be a characteristic curvature of the corner

regions, the corresponding length scales of curved interfaces is ℓ ∼ 1/κc. It should

be noted that this curvature κc is determined by the competition of the electron and

elastic energies of the JT model. When typical domain size L is greater than this

length scale, curvature driven domain-wall motion is suppressed by the interfacial

stiffness. This indicates a threshold length scale Lth ∼ ℓ ∼ 1/κc such that orbital

domains with a linear size L ≳ Lth start to show freezing behavior. The L(t) curves

shown in FIG. 7.12 seem to be consistent with this threshold scenario.

7.4 Summary and Discussion

In this work, we present a numerical framework of utilizing machine learning meth-

ods for multi-scale dynamical modeling of condensed matter systems with emergent

dynamical classical fields. These classical degrees of freedom could arise from the cou-

pling to lattice dynamics, or magnetic moments of localized d or f electrons. They

could also represent the collective electron behaviors, as exemplified by the order-

parameter field in a symmetry breaking phase, of interacting electrons. The slow adi-

abatic dynamics of the emergent classical fields is often dominated by the electrons

or quasi-particles, which are assumed to be in quasi-equilibrium of the instantaneous
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Hamiltonian parameterized by the classical variables. As in the quantum or ab initio

molecular dynamics methods, accurate simulation of the dynamical classical fields

requires solving the electronic structure problem at every time-step. Motivated by

the success of ML-enabled large scale quantum MD simulations, we propose a similar

approach for condensed matter systems in which the complex dependence of the local

energy on the neighborhood classical field is encoded in a ML energy model.

The two important components of the ML energy model are the descriptor for

characterizing the local classical field configuration, and the learning model used to

encoded the dependence on the local environment. Several learning models devel-

oped in the context of quantum MD can also be used for the effective energy model

of the condensed-matter systems. Among the various ML models, the deep-learning

NN is perhaps the most versatile and accurate. The descriptor is crucial for properly

incorporating symmetry of the system into the ML energy model. The so-called fea-

ture variables, which are input to the learning model, must be invariant with respect

to symmetry transformations of the electron Hamiltonian. While a large number of

descriptors have been proposed for ML-MD methods, the theory of descriptor for

classical fields of condensed matter models has yet to be developed.

We discuss common features of the descriptor of classical fields of electronic lattice

models, and formulate a general theory by first distinguishing two types of models

depending on the absence or presence of an internal symmetry for the classical fields.

Several specific approaches to derive a descriptor have been discussed. For example,
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the approach, motivated by ML-models for quantum MD simulation, is the general-

ization of the ACSF which incorporates the internal symmetry of the classical fields.

The majority of our effort focuses on the group theoretical method which offers

systematic and controlled approach to build fundamental invariants of the symmetry

group. In this approach, the local classical fields, which form a high-dimensional

representation of the site-symmetry point group, is first decomposed into the IRs.

Fundamental invariants are given by the bispectrum coefficients of three IRs, which

are similar to the scalar or triple product of three vectors. To cope with the issue

due to the large number of the over-complete bispectrum invariants, we propose a

simplification method based on the concept of the reference IRs. Instead of keeping

all the bispectrum coefficients, both the amplitude and the relative "phase" of each

IR can be faithfully retained via an inner product with the reference IR.

Finally, we demonstrate the implementation of the various descriptors on well-

known lattice models including the JT model and the s-d Hamiltonian for itinerant

magnets. The classical field in the former case corresponds to local structural distor-

tions. In particular, the scalar field in the Holstein-type models offers the simplest

example to illustrate the working of the lattice descriptor. On the other hand, the s-d

model characterized by a vector classical field is used to demonstrate the construction

of a descriptor with an independent internal symmetry.

Our work laid the foundation for applying ML methods to multi-scale dynamical

modeling in condensed matter systems. Contrary to ML-based MD methods which



Chapter 7. Descriptors for Lattice Models 230

is an ongoing active research field by itself, the goal here is to model the adiabatic

dynamics of classical fields under the influence of quasi-equilibrium electrons. The

capability of going beyond empirical methods for large-scale dynamical simulations

of such classical fields has numerous implications in condensed matter physics. For

example, one particularly important application is the accurate dynamical modeling

of topological defects of multi-component classical fields, which are prevalent in con-

densed matter systems. Notable examples include vortices in superconductivity and

skyrmions in itinerant magnetism.

Moreover, complex inhomogeneous electronic states are ubiquitous in correlated

electron systems. Not only are these mesoscopic textures of fundamental importance

in correlated electron physics, they also play a crucial role in the emergence of novel

macroscopic functionalities. For example, complex mixed-phase states are prevalent

in colossal magnetoresistant materials and several high-Tc superconductors also ex-

hibit intriguing stripe or checkerboard patterns. Accurate modeling of these complex

nanoscale textures is thus of paramount importance in the engineering of these novel

material functionalities. However, large-scale simulations of such electronic textures

so far are based on empirical or phenomenological models, mostly because of the

extreme difficulty for the multi-scale dynamical modeling of such systems. We be-

lieve that the ML force field approach along with the proper descriptor outlined in

this work will be an indispensable tool to enable large-scale dynamical simulations of

complex patterns in correlated electron materials.
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Appendix A

Details of the Descriptor for
displacements on a diamond lattice

The silicon atoms around a centered atom form into four different cases: four points

group, six points group, twelve points group, and twenty-four points group. Only

former three cases occurred in our case of 2 × 2 × 2-supercell. Four points case

displacement vectors (corner points of the cube) can be decomposed into 4 × 3 =

A1

⊕
E
⊕

T1
⊕

2T2 with the following basis:

fA1 = ax + ay + az − bx − by + bz + cx − cy − cz − dx + dy − dz

fEx = ax + ay − 2az − bx − by − 2bz + cx − cy + 2cz − dx + dy + 2dz

fEy =
√
3(−ax + ay + bx − by − cx − cy + dx + dy)

fT1x = ay − az + by + bz − cy + cz − dy − dz

fT1y = ax − az + bx + bz − cx − cz − dx + dz

fT1z = −ax + ay + bx − by + cx + cy − dx − dy

fT2,1x = ax + bx + cx + dx
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fT2,1y = ay + by + cy + dy

fT2,1z = az + bz + cz + dz

fT2,2x = ay + az + by − bz − cy − cz − dy + dz

fT2,2y = ax + az + bx − bz − cx + cz − dx − dz

fT2,2z = ax + ay − bx − by − cx + cy + dx − dy

where the Cartesian coordinates of those points are a(0.5, 0.5, 0.5), b(−0.5,−0.5, 0.5),

c(0.5,−0.5,−0.5), and d(−0.5, 0.5,−0.5), or {−a,−b,−c,−d}. The six points case

displacement vectors (face-centered points of the cube) can be decomposed into 6×3 =

A1

⊕
E
⊕

2T1
⊕

3T2 with the following basis:

fA1 = ax + by + cz − dz − ey − fx

fEx = ax + by − 2cz + 2dz − ey − fx

fEy =
√
3(−ax + by − ey + fx)

fT1,1x = bx − cx − dx + ex

fT1,1y = ay − cy − dy + fy

fT1,1z = −az + bz + ez − fz

fT1,2x = −bz + cy − dy + ez

fT1,2y = −az + cx − dx + fz

fT1,2z = ay − bx + ex − fy

fT2,1x = ax + fx
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fT2,1y = by + ey

fT2,1z = cz + dz

fT2,2x = bz + cy − dy − ez

fT2,2y = az + cx − dx − fz

fT2,2z = ay + bx − ex − fy

fT2,3x = bx + cx + dx + ex

fT2,3y = ay + cy + dy + fy

fT2,3z = az + bz + ez + fz

where the Cartesian coordinates of those points are a(2, 0, 0), b(0, 2, 0), c(0, 0, 2),

d(0, 0,−2), e(0,−2, 0), and f(−2, 0, 0). The twelve points case displacement vectors

(edge-centered points of the cube) can be decomposed into 12×3 = 2A1

⊕
A2

⊕
3E
⊕

4T1
⊕

5T2

with the following basis:

fA1,1 = ax + ay + by + bz + cx + cz + dy − dz + ex − ez − fy + fz

− gx − gz − hy − hz − ix + iz + jx − jy − kx + ky − lx − ly

fA1,2 = az + bx + cy − dx − ey − fx + gy + hx − iy − jz − kz + lz

fA2 = ax − ay + by − bz − cx + cz + dy + dz − ex − ez − fy − fz

+ gx − gz − hy + hz + ix + iz + jx + jy − kx − ky − lx + ly

fE,1x = 2ax + 2ay − by − bz − cx − cz − dy + dz − ex + ez + fy − fz
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+ gx + gz + hy + hz + ix − iz + 2jx − 2jy − 2kx + 2ky − 2lx − 2ly

fE,1y =
√
3(by + bz − cx − cz + dy − dz − ex + ez

− fy + fz + gx + gz − hy − hz + ix − iz)

fE,2x = −by + bz − cx + cz − dy − dz − ex − ez

+ fy + fz + gx − gz + hy − hz + ix + iz

fE,2y =
1√
3
(2ax − 2ay − by + bz + cx − cz − dy − dz + ex + ez + fy + fz

− gx + gz + hy − hz − ix − iz + 2jx + 2jy − 2kx − 2ky − 2lx + 2ly)

fE,3x = 2az − bx − cy + dx + ey + fx

− gy − hx + iy − 2jz − 2kz + 2lz

fE,3y =
√
3(bx − cy − dx + ey − fx − gy + hx + iy)

fT1,1x = ax − cx − ex − gx − ix + jx + kx + lx

fT1,1y = ay − by − dy − fy − hy + jy + ky + ly

fT1,1z = bz − cz + dz − ez + fz − gz + hz − iz

fT1,2x = ay − cz + ez − gz + iz − jy − ky + ly

fT1,2y = ax − bz + dz + fz − hz − jx − kx + lx

fT1,2z = by − cx − dy + ex − fy − gx + hy + ix

fT1,3x = −by + bz + dy + dz − fy − fz + hy − hz

fT1,3y = −cx + cz + ex + ez + gx − gz − ix − iz

fT1,3z = ax − ay − jx − jy + kx + ky − lx + ly
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fT1,4x = az − cy + ey + gy − iy − jz + kz − lz

fT1,4y = az − bx + dx − fx + hx + jz − kz − lz

fT1,4z = bx − cy + dx − ey − fx + gy − hx + iy

fT2,1x = ax + cx + ex + gx + ix + jx + kx + lx

fT2,1y = ay + by + dy + fy + hy + jy + ky + ly

fT2,1z = bz + cz + dz + ez + fz + gz + hz + iz

fT2,2x = ay + cz − ez + gz − iz − jy − ky + ly

fT2,2y = ax + bz − dz − fz + hz − jx − kx + lx

fT2,2z = by + cx − dy − ex − fy + gx + hy − ix

fT2,3x = by + bz − dy + dz + fy − fz − hy − hz

fT2,3y = cx + cz − ex + ez − gx − gz + ix − iz

fT2,3z = ax + ay − jx + jy + kx − ky − lx − ly

fT2,4x = az + cy − ey − gy + iy − jz + kz − lz

fT2,4y = az + bx − dx + fx − hx + jz − kz − lz

fT2,4z = bx + cy + dx + ey − fx − gy − hx − iy

fT2,5x = bx + dx + fx + hx

fT2,5y = cy + ey + gy + iy

fT2,5z = az + jz + kz + lz
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where the Cartesian coordinates of those points are a(1, 1, 0), b(0, 1, 1), c(1, 0, 1),

d(0, 1,−1), e(1, 0,−1), f(0,−1, 1), g(−1, 0,−1), h(0,−1,−1), i(−1, 0, 1), j(1,−1, 0),

k(−1, 1, 0), and l(−1,−1, 0).

The feature variables which are invariant under symmetry operations of the point-

group Td are given by the following invariants:

GA1 = fA1

GA2 = fA2fA2
ref

GE
1 = ⟨fE,fE⟩

GE
2 = ⟨fE,fEref⟩

GT1
1 = ⟨fT1 ,fT1⟩

GT1
2 = ⟨fT1 ,fT1ref⟩

GT1
3 = fA2

ref (f
T1
x f

T1
ref,yf

T1
ref,z + fT1y f

T1
ref,xf

T1
ref,z + fT1z f

T1
ref,xf

T1
ref,y)

GT2
1 = ⟨fT2 ,fT2⟩

GT2
2 = ⟨fT2 ,fT2ref⟩

GT2
3 = fT2x f

T2
ref,yf

T2
ref,z + fT2y f

T2
ref,xf

T2
ref,z + fT2z f

T2
ref,xf

T2
ref,y



Appendix B

Tests of Gravity with
Gravitational-Wave through Machine
Learning

B.1 introduction

The rapid advancements in gravitational-wave astronomy have enabled the devel-

opment of sophisticated and efficient models for gravitational waveforms, particu-

larly in exploring modifications to General Relativity (GR), such as Einstein-dilation

Gauss-Bonnet (EdGB) gravity [379]. One promising approach for efficiently predict-

ing gravitational-wave signals is the Deep INference for Gravitational-wave Obser-

vations (DINGO) model [380], which employs machine learning techniques to expe-

dite parameter estimation for gravitational-wave signals. This chapter examines how

DINGO can be utilized to accurately predict gravitational-wave signals under EdGB

modifications.

The DINGO model leverages a neural posterior estimation approach that employs

deep learning techniques to predict the posterior distributions of gravitational-wave

238
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events. Traditional Bayesian parameter inference methods, such as Markov Chain

Monte Carlo (MCMC), are computationally expensive due to the extensive number

of likelihood evaluations required [381]. In contrast, DINGO utilizes neural networks

to bypass this computational bottleneck by using simulated data to train a model ca-

pable of generating posterior samples in real time once a gravitational-wave detection

occurs. This results in a significant reduction in inference time, from several hours or

even days to just a few seconds per event.

The primary innovation of DINGO lies in its ability to use neural networks to

learn the mapping between gravitational-wave data and source parameters, making

it a powerful tool for rapid parameter estimation. This enables real-time data anal-

ysis and detailed investigation of gravitational-wave events with exceptional speed

and accuracy. DINGO is trained on a comprehensive dataset comprising both simu-

lated gravitational-wave signals and detector noise, allowing the model to generalize

effectively across different noise profiles. The main advantage of this approach is a

substantial reduction in computational costs without compromising accuracy.

The model architecture of DINGO is based on normalizing flows, a form of deep

generative model that allows efficient sampling from complex posterior distributions.

By using normalizing flows, the DINGO model can produce highly accurate estimates

of gravitational-wave source parameters, and it can do so orders of magnitude faster

than conventional techniques. The underlying neural network is trained on a large

number of simulated gravitational waveforms, which include variations in detector



Appendix B. Tests of Gravity with Gravitational-Wave through Machine Learning 240

noise and system parameters. The process of neural posterior estimation effectively

turns the problem of posterior sampling into a problem of supervised learning, where

the model is trained to learn the mapping from input gravitational-wave data to the

posterior over source parameters.

The implementation of DINGO further incorporates several advanced deep learn-

ing techniques, including residual connections and batch normalization, which help

stabilize training and improve the model’s ability to capture intricate dependencies

within the data. By training the model on a diverse set of simulated waveforms,

DINGO can accurately account for various features of the gravitational waveforms,

including spin precession and eccentricity, which are crucial for realistic gravitational-

wave parameter inference.

EdGB gravity is an extension of GR that incorporates additional scalar fields cou-

pled to the Gauss-Bonnet term in the action. This modification introduces higher-

order curvature corrections, which become particularly significant in high-curvature

regimes, such as those encountered during compact binary mergers. The primary

effect of EdGB corrections is the introduction of additional phase terms in the inspi-

ral phase of gravitational waveforms. These corrections are most prominent during

the inspiral phase of compact binaries, making gravitational-wave signals a valuable

observational tool for probing these modifications to gravity.
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B.2 Einstein-dilation Gauss-Bonnet Gravity

B.2.1 Theory

We begin by presenting the action for scalar Gauss-Bonnet (sGB) gravity [382–385]:

S =

∫
d4x

√−g
[ R
16π

− 1

2
(∇ϕ)2 + αGBf(ϕ)R2

GB

]
+ Sm . (B.1)

Here g is the determinant for the metric gµν , R is the Ricci scalar, ϕ is a scalar field,

αGB is the coupling constant between the scalar field and the metric, Sm is the matter

action, and

R2
GB = RµνσρR

µνσρ − 4RµνR
µν +R2 , (B.2)

is the GB invariant. f(ϕ) is an arbitrary function of the scalar field that determines

how it is coupled to the metric. EdGB gravity is realized by choosing f(ϕ) = e−γϕ

for a constant γ. As shown in [386,387], this theory can be written in a second-order,

hyperbolic form that is well-posed for numerical relativity evolution within a range

of parameter space.

String theory predicts even higher-order curvature terms in the action that we

do not include in the analysis. To justify this and treat the theory as an effective

field theory, we work in the small coupling approximation scheme (or reduced-order

scheme) where we assume that the GR contribution is dominant and handle EdGB

corrections as small perturbations. In particular, we define a dimensionless coupling

constant

ζ ≡ 16πα2
GB

L4
, (B.3)
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where L is the characteristic length of the system and assume ζ ≪ 1. This technique

has been used to find scalar charges of compact objects [388–390], corrections to

the gravitational-wave phase at the inspiral stage [388], and to carry out numerical

simulations of binary black hole (BBH) mergers [391].

Let us study the theory within the small coupling approximation scheme in more

detail. We perturb field equations in αGB and solve them order by order. Then,

ϕ = O(αGB) and one can expand f(ϕ) in small ϕ as:

f(ϕ) = f(0) + f ′(0)ϕ+O(ϕ2) . (B.4)

The first term is a constant and this does not change the field equations from the

GR ones as the GB invariant is a topological term and can be rewritten as a total

derivative. Thus, the leading effect comes from the second term where the scalar field

is linearly coupled to the GB invariant. For this reason, we consider the following

action in this work:

S =

∫
d4x

√−g
[ R
16π

− 1

2
(∇ϕ)2 + αGBϕR2

GB

]
+ Sm , (B.5)

where we have absorbed f ′(0) into αGB. In this theory, BHs can have non-vanishing

scalar charges [388, 389] while neutron stars (NS) do not [390] within the small cou-

pling approximation.
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B.2.2 Gravitational Waveforms

We next find EdGB corrections to the gravitational waveform phase. Given that most

of the signal-to-noise ratios (SNRs) for gravitational-waves from NSBHs and BBHs

come from the inspiral portion, we focus on the inspiral stage in our analysis. The

leading correction to the phase at the inspiral stage enters at −1 post-Newtonian

(PN) order due to the scalar dipole radiation and was derived in [383]. Some of the

higher PN corrections were recently derived in [392,393].

Within the stationary phase approximation [394,395], the waveform in the Fourier

space is given by:

h(f) = A(f) exp [iΨ(f)] , Ψ(f) = ΨGR(f) + δΨ(f) . (B.6)

Here A(f) is the amplitude, ΨGR is the GR phase, and the EdGB correction to the

phase δΨ (up to O(α2
GB)) is given in a form

δΨ =
∑

i

δΨ iPN =
α2

GB

M4

∑

i

ci v
−5+2i . (B.7)

Here v = (πMf)1/3 is the relative velocity of the binary constituents with gravitational-

wave frequency f and the total mass M = m1+m2, where m1 and m2 are the masses

of the primary and secondary objects of the system. The coefficients ci up to 2PN

order can be found in the reference paper [381].
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Figure B.1: A diagram showing how normalizing flow works [396].

B.3 Normalizing Flow

Normalizing flows are a type of deep generative model that have proven highly ef-

fective in a range of applications involving complex probability distributions. They

work by transforming a simple base distribution, such as a standard Gaussian, into a

more complicated target distribution through a series of invertible and differentiable

transformations, shown in Fig B.1. This framework allows for efficient sampling and

density evaluation, making it particularly suitable for tasks requiring posterior infer-

ence in high-dimensional parameter spaces.

In the context of gravitational-wave parameter estimation, normalizing flows are

used to approximate the posterior distribution of source parameters given the ob-
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served data. This is achieved by training the model to learn a sequence of trans-

formations that maps the latent space of base distributions to the target posterior

distribution. By leveraging this powerful technique, the DINGO model can perform

accurate and rapid inference of gravitational-wave signals, even in scenarios involving

modifications to GR like EdGB gravity. Normalizing flows thus provide the founda-

tional generative modeling capabilities that underpin the efficiency and scalability of

the DINGO framework.

The neural posterior estimation framework of DINGO can be applied to investi-

gate deviations in gravitational-wave signals from GR due to EdGB modifications.

Specifically, the inclusion of EdGB gravity introduces higher PN corrections to the

gravitational wave phase, including a – 1PN dipole term and additional higher-order

terms. The DINGO model is trained on waveform simulations that incorporate these

EdGB terms, thereby enabling it to detect deviations in waveform morphology re-

sulting from EdGB effects.

Incorporating EdGB modifications into the DINGO model involves adjusting the

training set to include waveform simulations that reflect the presence of EdGB cor-

rections. These corrections manifest as deviations in the gravitational waveform’s

phase evolution, particularly during the inspiral phase, which can be used to infer the

presence of EdGB contributions. The EdGB coupling constant, denoted as
√
αEdGB,

plays a key role in quantifying the strength of these modifications, and its value can

be constrained by analyzing the observed gravitational-wave signals.
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Figure B.2: Overall structure of the normalizing flow [2] from the base space (u) to
the parameter space (θ), with optimal hyperparameter choices indicated. Red
connections are invertible. The residual network is made up of nblocks residual

blocks, each with two fully-connected hidden layers of nhidden units. Prior to each
linear transformation [3], we inserted batch normalization layers to speed

training [4] and Exponential Linear Units for nonlinearity [5]. Each block is also
conditioned on the strain data s.
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By using the DINGO model, we expect that posterior distributions for the coupling

constant
√
αEdGB can be efficiently computed for different gravitational-wave events

involving NSBH and BBH mergers. Unlike traditional methods, DINGO allows for

rapid computations, which are crucial for analyzing large datasets and evaluating

EdGB modifications across multiple events simultaneously. This ability to provide

real-time estimates of modified gravity parameters is especially valuable for follow-up

observations and multi-messenger astronomy, where rapid response times are essen-

tial.

Following 500 epochs of training—comprising 200 epochs focused on fiducial ASD

noise and an additional 300 epochs encompassing all ASD noise for observing run

O1—the loss function for the DINGO model, which utilizes 200 SVD components,

has been reduced to 4.18. Importance sampling for GW150914 is depicted in Fig B.3.
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Figure B.3: Marginalized one-dimensional posterior distributions over a subset of
parameters, comparing the normalizing flow (red) and bilby dynesty (green).

Contours represent 50% and 90% credible regions. Neural network posteriors are
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