
A Digital System Design Methodology for
Efficiency-Quality Tradeoffs Using Imprecise Hardware

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

by

Jiawei Huang

May 2012

Approval Sheet

The dissertation is submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Engineering

Jiawei Huang (AUTHOR)

This dissertation has been read and approved by the examining committee:

Dr. John Lach (Advisor)

Dr. Gabriel Robins (Committee chair)

Dr. Scott Acton (Committee member)

Dr. Benton Calhoun (Committee member)

Dr. Joanne Dugan (Committee member)

Dr. Sudhanva Gurumurthi (Committee member)

Accepted for the School of Engineering and Applied Science:

Dean, School of Engineering and Applied Science

(May, 2012)

jarvis
Aylor

jarvis
Huang

jarvis
Lach_sig

jarvis
Calhoun

jarvis
Dugan

jarvis
Robins

jarvis
Acton

jarvis
Gurumurthi

jarvis
white

jarvis
white

Not the quarry but the chase; not the laurel but the race.

— Gelett Burgess 1885

Research advisor Author

John Lach Jiawei Huang

A Digital System Design Methodology for

Efficiency-Quality Tradeoffs Using Imprecise Hardware

Abstract

High power consumption has become a major barrier in the design of modern application-

specific integrated circuits (ASICs). Recent studies have demonstrated the potential for

significant power reduction in ICs by allowing errors to occur during computation. While

most existing techniques for achieving this rely on voltage-overscaling (VOS), it is only

one example in the vast design space of Imprecise Hardware (IHW), which is capable of

converting relaxed quality requirements into higher implementation efficiency.

First we present the generalized concept of IHW, of which VOS is an example. A math-

ematical approach to IHW characterization is introduced to quantify error characteristics.

We also present several novel IHW examples, including fidelity-compromising transfor-

mations at the algorithm level, imprecise adders and multipliers at the RTL level and the

combined use of IHW and VOS.

Since IHW expands the design space of traditional HW by one dimension (quality), it

is imperative to develop a fast and accurate quality evaluation method to efficiently explore

Abstract v

this space. We propose a static error estimation method that propagates the statistical dis-

tribution of data and errors through a network of arithmetic operations. It can be used to

estimate the quality metrics of an IHW implementation without the need for simulation.

Finally, two methodologies for exploring efficiency-quality tradeoffs using IHW are

presented. The first methodology is for applying fidelity-compromising transformations at

the algorithmic level. The second methodology is for choosing IHW ALUs at the RTL

level. They are fundamentally different from traditional circuit optimization methodolo-

gies in that they possess quality awareness and are capable of sacrificing quality for higher

efficiency. Both methodologies can solve constraint-based and cost-function-based opti-

mization problems. Experiments on real-world applications have shown that the proposed

methodologies can achieve comparable results to exhaustive search but are orders of mag-

nitude faster.

Acknowledgments

First of all, I would like to thank my adviser Prof. John Lach. It was under his years of

teaching, training and guidance that I gradually became a more competent and independent

researcher. During the lowest ebb of my research, when my conference submissions were

rejected three times and I increasingly saw my project as hopeless, he allowed me to con-

duct an entirely different project of my choice for one semester. That semester witnessed

my first publication and I returned to the original project with fully-regained confidence.

After that I started to develop my own ideas around the original project and gradually

formed the topic I wanted to pursue for my Ph.D.. In the meantime, I was awarded with an

increasing number of conference publications as well as an increasing quality of those pa-

pers. During this period, John kept helping me distinguish my work from existing ones and

focus my attention on the most original and significant contributions of my work. Without

his help, I couldn’t have completed this dissertation.

Secondly, I want to extend my gratitude to Prof. Gabriel Robins. To this day I still

clearly remember our encounter on a flight from DC to Charlottesville. At the time I was

yet to propose my Ph.D. topic and only had isolated ideas about what to pursue. Gabe

listened to me talking about those ideas with absorption. When I was finished, he provided

his vision about “Imprecise Hardware” and encouraged me to pursue it as my topic. Our

conversation has since become a continuous source of inspiration to me.

Thirdly, I want to thank my other committee members Prof. Scott Acton, Prof. Benton

Calhoun, Prof. Joanne Dugan, and Prof. Sudhanva Gurumurthi. Their constant interest and

helpful feedback were important factors to maintain the quality of my work.

My colleagues and friends such as Michael Boyer, Jonathan Bolus, Shuai Che, Yu

(Randolph) Yao, Jiajing Wang, Zhenyu (Jerry) Qi, Jiayuan Meng, Jeff Brantley, Shanshan

Acknowledgments vii

Chen and Curby Alexander have given me great support through the years both at work and

at play. I really appreciate our friendship.

Finally, I want to thank my parents for their unconditional love. When I am down and

weary, you are always there to comfort me and be on my side. I will always love you, mom

and dad.

Contents

Title Page . i

Approval Sheet . ii

Abstract . iv

Acknowledgments . vi

Table of Contents . viii

List of Figures . xi

List of Tables . xiv

List of Acronyms . xvi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Related Work on IHW . 4

1.3 The Scope of This Dissertation . 10

1.4 Major Contributions of This Dissertation 13

1.4.1 Design of Novel IHW . 14

1.4.2 A Static Error Estimation Method 14

1.4.3 A Quality-Aware Efficiency Optimization Methodology 14

1.4.4 IHW Taxonomy . 15

1.5 Organization . 15

2 Imprecise Hardware (IHW) 17

2.1 Introduction . 18

2.2 IHW Behavior . 21

2.2.1 Based on I/O Mapping . 21

viii

Contents ix

2.2.2 Based on Error Characteristics . 23

2.3 IHW Systems . 26

2.4 Applications of IHW . 28

2.5 IHW Taxonomy . 30

2.6 Selected IHW Designs . 31

2.6.1 Fidelity-Compromising Transformations [30] 32

2.6.2 Imprecise Adders and Multipliers 33

2.6.3 Implementing other elementary functions with CORDIC 45

2.6.4 Combining structural IHW and VOS 46

2.7 Conclusions . 50

3 Static Error Estimation 51

3.1 Error as a Distribution . 52

3.2 Interval Arithmetic and Affine Arithmetic 52

3.3 Modified Interval Arithmetic . 55

3.4 Modified Affine Arithmetic . 63

3.5 Error Propagation Model . 66

3.6 Experimental Results . 69

3.7 Conclusions . 71

4 A Methodology for Efficiency-Quality Co-Optimization 73

4.1 For Fidelity-Compromising Transformations 73

4.1.1 Latency Evaluation in HDGs . 78

4.1.2 Fidelity Evaluation in HDGs . 80

4.1.3 Case Study on SRAD . 80

4.2 For Imprecise Adders and Multipliers . 87

4.2.1 Kernel-level Experimental Results 91

4.2.2 Application-level Experimental Results 97

4.3 Conclusions . 101

5 Conclusion 102

5.1 Summary of Contributions . 103

Contents x

5.1.1 Imprecise Hardware . 103

5.1.2 Static Error Estimation . 104

5.1.3 A Methodology for Efficiency-Quality Optimization 104

5.2 Suggested Adoption of IHW . 105

5.3 Future Work . 106

5.3.1 Imprecise Hardware . 106

5.3.2 Static Error Estimation . 107

5.3.3 A Methodology for Efficiency-Quality Optimization 108

5.4 Concluding Remarks . 109

A Experimental Data 118

A.1 Raw data for building energy models . 118

B Publications related to this dissertation 124

List of Figures

2.1 Qualitative quality-efficiency curve of IHW. Both quality and efficiency

metrics are normalized against the error-free operating point (quality=1,

efficiency=1), which gives the highest quality and lowest efficiency. 19

2.2 Conceptual diagram of efficiency-quality tradeoff. IHW can convert re-

laxed quality requirements (e.g., error tolerance) into improved efficiency

(e.g., power savings). 20

2.3 Probability Mass Function (PMF) examples. 24

2.4 IHW taxonomy. 30

2.5 16-bit Almost-Correct Adder structure with K = 6. 36

2.6 Energy-delay space of ACA adder and KSA adder. 36

2.7 16-bit Modified Error-Tolerant Adder Type II structure withBPB = 4, L =

3. 38

2.8 Energy-delay space of METAII adder and RCA adder. 39

2.9 Timing slack histograms of RCA and KSA. 40

2.10 Error frequency of various imprecise adders. 42

2.11 Error magnitude of various imprecise adders. 42

2.12 Comparison of energy-delay product (EDP) of CORDIC implemented with

different IHW adders. 47

2.13 Structural IHW can be operated under deeper VOS than traditional HW,

reducing power even further. 47

xi

List of Figures xii

2.14 Quality-power curves of the IHW-VOS combination designs. The three

numbers following the names of IHW adders refer to their design parame-

ters. The format is BPB-L-K. When a parameter is not in use, it is set to

zero. 49

3.1 Probability distribution of the sum of two uniformly-distributed variables. . 59

3.2 Estimated MIA of the sum of two independent uniform variables in [−1, 1]

using IA, MIA methods, and the theoretical MIA. 62

3.3 Error propagation model of an imprecise 2-operand operation. 66

3.4 Characterization of an IHW adder. 68

3.5 Error MIAs of DOT-PRODUCT and L2-NORM. 70

4.1 Hierarchical dependency graph. 74

4.2 Design flow with fidelity-compromising transformations. 76

4.3 Ultrasound images: (a) Perfect edges (b) Noisy image (c) SRAD output (d)

Detected edges from SRAD output. 81

4.4 2D plots of various cost functions with two conditional transformation

thresholds as variables. Representing cost function: (a) latency/fidelity0.5

(b) latency/fidelity (c) latency/fidelity2. Letter “N” on the axes de-

notes the scenario of “never applying the transformation”, and Letter “A”

means “always applying the transformation”. The circled squares denote

the optimal design points that minimize the cost function. 85

4.5 Latency vs. fidelity curve of SRAD (with 90% fidelity point located). . . . 86

4.6 Fidelity vs. latency curve of SRAD. 87

4.7 Quality-constrained energy minimization flow. 89

4.8 Curve fitting for IHW energy models: (a) 64-bit ACA with variable K (b)

64-bit ACA-based multiplier with variable K (c) 64-bit METAII with vari-

able L (BPB = 4, 8) (d) 64-bit METAII-based multiplier with variable L

(BPB = 4) (e) 64-bit METAII-based multiplier with variable L (BPB =

8) (f) 64-bit METAII-based multiplier with variable L (BPB = 16). 93

4.9 Block diagram of our DOT-PRODUCT implementation. 94

List of Figures xiii

4.10 Block diagram of our L2-NORM implementation. 94

4.11 Kernel-level energy-quality tradeoffs. Energy is calculated as the average

energy consumed during one kernel operation. The design points for the

precise designs are located far above all the imprecise design points, there-

fore are not shown on the plot. The energy of the precise design for the

DOT-PRODUCT is 136.44pJ, and the energy of the precise design for the

L2-NORM is 140.4pJ. 97

4.12 Application-level energy-quality tradeoffs. Energy is calculated as the av-

erage energy consumed during one kernel operation. The design points for

the precise designs are located far to the right of all the imprecise design

points, therefore are not shown on the plot. The energy of the precise de-

sign for the Leukocyte is 136.44pJ, and the energy of the precise designs

for the K-means and SVM is 140.4pJ. 100

List of Tables

2.1 IHW examples by behavior. 23

2.2 IHW examples by error types. 25

2.3 An example of fidelity-compromising transformation based on mathemati-

cal approximation. 33

2.4 Probability of a random propagate chain exceeding K bits. 35

2.5 Average E/op and worst-case delay of 64-bit KSA and 64-bit ACA adders

with K = 16. 35

2.6 Average E/op and worst-case delay of 64-bit RCA and 64-bit METAII

adders with BPB = 4 and L = 4. 39

2.7 Common imprecise adders and their error classifications. 43

2.8 Impact of anti-biasing on the error rate and magnitude of a METAII adder. . 44

2.9 Average energy per operation, critical path delay, and energy-delay product

(EDP) of precise and imprecise ALUs. 45

2.10 Units tested under combined use of IHW and VOS (with critical path delays

in brackets). 48

3.1 Percentage application runtime spent in computation kernels. 70

3.2 Speed and accuracy comparison between simulation and static estimation. . 71

3.3 Overview of error estimation methods. 72

4.1 Principle component latencies in the SRAD algorithm [55]. 82

4.2 Transformation library for SRAD case study. 83

4.3 Critical path latencies for different transformation combinations. 84

xiv

List of Tables xv

4.4 Tradeoff between quality of result and exploration effort for different neigh-

borhood sizes. 85

4.5 Impact of transformations on system metrics (fidelity, latency, and cost

function). 88

4.6 Kernel-level energy and quality (error rate) results. 95

4.7 Kernel-level energy and quality (mean error magnitude) results. 96

4.8 Number of designs points simulated. 100

A.1 Raw delay and power data of various adders for building energy models . . 118

A.2 Raw delay and power data of various multipliers for building energy models 120

List of Acronyms

AA affine arithmetic

ACA Almost-correct adder

ASIC application specific integrated circuit

ALU arithmetic logic unit

ANT Algorithmic noise-tolerance

BPB bits per block

BTWC better-than-worst-case

BTI bias temperature instability

CHW classic hardware

CMOS complementary metaloxidesemiconductor

CORDIC Coordinate Rotation Digital Computer

CDFG control-data flow graph

DSP digital signal processing

DVFS dynamic voltage-and-frequency scaling

DVS dynamic voltage scaling

EDP energy-delay product

xvi

List of Acronyms xvii

ERSA Error Resilient System Architecture

EPMF error probability mass function

EIC efficiency contribution

EAC efficacy contribution

FID fidelity

FPGA field-programmable gate array

FSM frequent small-magnitude (error)

GA genetic algorithm

GUI graphical user interface

HTI hot carrier injection

HDG Hierarchical Dependency Graph

IA interval arithmetic

IHW imprecise hardware

ITRS International Technology Roadmap for Semiconductors

IC integrated circuit

ILM infrequent large-magnitude (error)

JPEG Joint Photographic Experts Group

KSA Kogge-stone adder

LAT latency

LSB least significant bit

MAA Modified affine arithmetic

List of Acronyms xviii

METAII Modified Type II Error-Tolerant Adder

MIA Modified interval arithmetic

MSB most significant bit

MSE mean squared error

MPEG Moving Picture Experts Group

NMR N-modular redundancy

PLAT path latency/delay

PVT process, voltage, and temperature

PCMOS Probabilistic CMOS

PMF probability mass function

PDF probability density function

PPG partial product generation

RCA ripple-carry adder

RTL register-transfer level

RMSE root mean squared error

SNA symbolic noise analysis

SNR signal-to-noise ratio

SNC Stochastic networked computation

SPICE Simulation Program with Integrated Circuit Emphasis

SQRT square root

SRAD Speckle Reducing Anisotropic Diffusion

List of Acronyms xix

SEU single event upset

SVM support vector machine

TH threshold

TDDB time dependent dielectric breakdown

UI user interface

ULP unit in the last place

VHDL very-high-speed integrated circuits hardware description language

VOS voltage-overscaling

Chapter 1

Introduction

1.1 Background and Motivation

According to the 2009 ITRS report [1], with fabrication technology scaling into the

nanometer region, CMOS devices will inevitably become more susceptible to variations

and errors. Process, voltage and temperature (PVT) variations, soft errors, and aging ef-

fects will have a more dramatic impact on circuit behavior, and the task of making a reliable

circuit is more challenging than ever before. Meanwhile, device density grows as transistor

sizes shrink. The power consumption of an individual transistor is not expected to decrease

because of increasing leakage power, so the power density grows even faster. Indeed, there

are two major challenges facing circuit designers in this deep-submicron era: energy effi-

ciency and reliability [2]. The typical strategy to meet the increasingly stringent energy and

reliability requirements is to introduce design margins and dynamic voltage and frequency

scaling (DVFS), both of which incur additional cost and design complexity, sometimes

prohibitive. Designers are seeking alternative methods to improve energy efficiency and

1

Chapter 1: Introduction 2

reliability without having to pay the price of additional die area or multiple power supplies.

To solve this dilemma, we should first look at the root cause of the problems. The merit

of any IC design is ultimately determined by how well it meets the functional and non-

functional requirements. Functional requirements stipulate the intended system behavior

(what output should result from a certain input). For example, a circuit performing digital

signal processing algorithms usually requires the signal-to-noise ratio (SNR) of the output

signal be above a certain level and a circuit performing arithmetic operations may require

some minimum precision. In these cases, SNR and precision are used to measure how well

the system produces a desired output, so we denote them as quality metrics. Non-functional

requirements specify the maximum resource consumption from implementing the function.

For example, clock frequency, power consumption and die area are usually part of the

non-functional requirements of any IC design. We use efficiency metrics to measure how

well an implementation fulfills its non-functional requirements. Area, power and delay

are all examples of efficiency metrics. Typically the quality metrics are extracted from the

circuit output while efficiency metrics are associated with the actual circuit implementation.

When following a traditional circuit design methodology, functional correctness must be

guaranteed. That is, given an input vector I , there is only one acceptable output vector O.

If the circuit under design produces a different output O′, the design is considered faulty

and must be corrected. During the algorithm development stage, only those algorithms

that meet the target quality requirement will be chosen. Once the algorithm becomes fixed,

the hardware implementation must faithfully execute the specified functionality without

compromise. Unfortunately, this stringent requirement hampers the optimization of the

efficiency metrics and makes it difficult to meet non-functional requirements (such as power

Chapter 1: Introduction 3

consumption).

In recent years, a new design philosophy has emerged that relaxes the absolute correct-

ness requirement to enable improvements in efficiency metrics. In other words, erroneous

output O′ is deemed acceptable provided that it leads to a more efficient implementation.

Consider an N-bit adder. The quality metric is the Mean Squared Error (MSE) and the effi-

ciency metric is the Energy-delay Product (EDP). The reliable adder with the lowest EDP

is a Carry-Lookahead Adder (e.g., the Kogge-Stone Adder [KSA]), whose delay is pro-

portional to logN . However, this delay and the EDP can be further improved if we allow

errors to occur. For example, voltage-overscaling (VOS) is a technique to operate a circuit

at voltages below the critical operating voltage. The EDP of a voltage-overscaled KSA is

even lower than a traditional KSA, but timing violations may cause errors in the output of

the former. In general, however, the critical path is not triggered frequently and thus the

majority of the output from the voltage-overscaled KSA will be correct. By adjusting the

supply voltage, we can trade off the efficiency and quality of this adder. Later, in Section

2.6.2, we will see that the KSA does not provide the best efficiency-quality tradeoffs under

VOS compared to other IHW adders. Similar efficiency-quality tradeoffs exist at various

levels of granularity: from a transistor at the device level all the way to algorithmic tasks

at the system level. Imprecise Hardware (IHW) is thus defined as any circuit component

designed to exhibit improved efficiency metrics relative to a traditional, precise circuit

by sacrificing output quality.

Many applications can benefit from IHW. For example, the aforementioned voltage-

overscaled KSA is suitable for arithmetic computation in wireless sensors. Infrequent er-

rors may be acceptable if information is gathered from multiple sensors and a majority

Chapter 1: Introduction 4

voting system can be used to filter out the erroneous results. And the improved energy

efficiency of such an adder is highly desirable for extending the battery life of the sensors.

Applications which process noisy data collected from the environment are also generally

tolerant of computation errors. Section 2.4 gives an in-depth discussion of the extensive

applications of IHW.

One might argue that IHW is not relevant to applications with no error tolerance, such

as cryptographic algorithms, microprocessors and safety-critical applications. However, it

must be noted that these applications must eventually be implemented on finite-precision

hardware and therefore there is an intrinsic loss of accuracy just by representing a number

in finite-precision. In general, any digital IC interacting with the analog world is error-

tolerant due to the quantization error introduced at the analog-to-digital interface. Even

for applications strictly intolerant of errors or impreciseness, there are still opportunities to

correct errors at a later stage so that the overall design remains error-free. A processor is

typically considered to be error-intolerant, but some of its components such as the branch

predictor are error-tolerant. ALUs can also be error-tolerant while the processor is running

multimedia applications. Therefore we believe that opportunities for correctness relaxation

are ample, as long as the impact on quality can be quantitatively evaluated and guaranteed.

1.2 Related Work on IHW

One of the earliest pioneers in IHW was John Von Neumann, who studied the prob-

lem of reliable computation in the presence of unreliable components [3]. Unfortunately,

his conclusion suggested that enormous complexity overhead via redundancy is required

to achieve system-reliability higher than component-reliability [2]. Computation with un-

Chapter 1: Introduction 5

reliable components did not gain much attention for many years since technology scaling

in the meantime was able to double circuit performance about every two years. Only in

the last decade have circuit errors again raised interest, due to the slowing of technology

scaling and the process variation problem associated with sub-90nm technologies. Under

current technologies, it is very difficult to increase circuit performance without any side

effects. The first side effect is increased power consumption. As computation is increas-

ingly carried out on mobile platforms such as smartphones and tablets, power reduction

has become an imperative task for circuit designers. The second side effect is reduced re-

liability. CMOS devices in advanced technologies are more susceptible to PVT variations

and soft errors, because of their smaller feature sizes. The insertion of large design margins

has become a norm in the VLSI design process in order to ensure correct operation of the

circuit in the worst-case scenario. However, this method results in overdesign for normal

conditions and causes significant waste of power and energy.

Existing Work on IHW

A number of power reduction techniques have been widely adopted in circuit design.

One example is dynamic voltage scaling (DVS) [4, 5]. Based on the fact that the peak

performance of a circuit is not continuously required, DVS operates a circuit at the low-

est supply voltage that meets the timing constraints. However, the power savings offered

by DVS are limited by the timing constraints of the circuit. DVS is also less effective in

applications that constantly require high throughput, such as a DSP ASIC. Razor [6] is a

design that pushes the limits of DVS. It uses aggressive DVS to dramatically reduce power

while initially allowing timing errors. It then accompanies each flip-flop on the critical path

Chapter 1: Introduction 6

with a shadow register to detect timing errors due to VOS. The shadow register is clocked

at a fixed delay behind the main flip-flop. Whenever a difference is detected between the

main flip-flop content and the shadow register content, the shadow register’s value is used

to overwrite the value inside the main register. A Razor-based system ensures correct func-

tionality while operating at a much lower voltage than a traditional performance-driven

system, leading to lower power consumption. Although Razor still assumes that computa-

tion must always be performed correctly, it suggests that temporarily allowing timing errors

can open up opportunities for power reduction. It is a very influential design which inspired

many ensuing projects.

To reduce power further, the supply voltage must be lowered below the critical op-

erating voltage (VOS), while leaving any timing errors uncorrected. A large number of

IHW techniques use VOS to achieve power-quality tradeoffs. For example, algorithmic

noise-tolerance (ANT) [7] supplements a voltage-overscaled DSP system with a reduced

precision replica which limits the magnitude of the resulting error. The combined system

consumes significantly less power with no impact on reliability, and a 20% increase in area.

Stochastic processors [2, 8] and slack redistribution [9–11] suggest that carefully-designed

processor modules can exhibit graceful accuracy-power tradeoff characteristics. Graceful

degradation of the error rate under VOS is a desirable property to achieve the lowest possi-

ble power given a target error rate. Significance-driven computation [12, 13] applies VOS

to functionally noncritical parts of an algorithm in order to save power. Mohapatra et al.

[14] identify three computational kernels commonly used in multimedia, recognition and

data mining applications and suggest a few design techniques to improve their reliability

under VOS.

Chapter 1: Introduction 7

Structural simplification is another way of implementing IHW. A number of imprecise

adders have been proposed using this technique. The Almost-correct adder [15] is an adder

which speculates on the longest propagate sequence and simplifies the tree structure of a

KSA based on this speculation. The METAII adder [16] divides the propagate sequence

of a ripple-carry adder (RCA) into segments and selectively truncates the carry bits across

segments in order to accelerate addition. The IMPACT adder [17] removes transistors from

a mirror adder one by one while introducing minimal errors in the truth table. Instead of

adjusting the operating condition (Vdd), these IHW designs use structural modification to

achieve better efficiency than traditional HW. However, there is a lack of understanding

of how one type of imprecise adder compares to another. When using imprecise adders

in a system, the settings of such adders are usually determined in an ad hoc fashion, e.g.,

through trial and error. Furthermore, it is unknown how more complex arithmetic opera-

tions, such as multiplication, division, and square root can be implemented imprecisely.

At the architecture level, apart from the aforementioned ANT, Bau et al. [18, 19] pro-

pose using a combination of strict-reliability and relaxed-reliability cores to design low-

cost, error-resilient systems. Soft NMR [20] uses several duplicates of the same compu-

tation with known independent error statistics and votes on the output using optimal esti-

mation theory. BTWC (better-than-worst-case) design [21] converts a traditional compu-

tational task into a “ performance-power-optimized core followed by a reliability checker”

form. This results in better efficiency than worst-case designs in the typical case. The

checker is used to ensure correctness in the worst case. If the typical case occurs fre-

quently, the efficiency benefit will outweigh the overhead from the checker. However,

many human-interacting applications do not need exactly correct numerical outputs, since

Chapter 1: Introduction 8

the human sensory system is inherently not perfect. Therefore, error correction can be

safely removed if the error is bounded.

At the physical level, Probabilistic CMOS (PCMOS) [22–25] is a highly scaled CMOS

device with intrinsic random behavior. For example, PVT variations and SEU (single error

upset) events can cause the transistor’s output to assume a random distribution. Some prob-

abilistic algorithms can benefit from a PCMOS implementation due to faster probabilistic

calculations and lower power consumption. Jeong et al. [26] look into the impact of reduc-

ing the guardband of library models on output design quality. They find that circuit metric

improvement can sometimes justify guardband reduction.

Limitations of Existing Work

The existing IHW components and techniques are not without limitations. First of

all, with so many IHW components and techniques spanning multiple design abstraction

levels, from high-level algorithmic blocks to low-level CMOS devices, each developed to

benefit a specific class of applications, a circuit designer can be overwhelmed by the sheer

number of choices. How can we compare one technique with another? If the goal is to

design the lowest-power system subject to a quality requirement, how do we choose what

IHW techniques and components to use and what parameter values to set? The lack of

a framework for automated exploration of the efficiency-quality design space has become

a hurdle to the usability and adoption of IHW. This dissertation is dedicated to providing

such a framework.

Secondly, many existing IHW techniques use error-correction circuits to compensate

for the errors introduced by IHW. But the correctness requirement in error-tolerant appli-

Chapter 1: Introduction 9

cations can be further relaxed, leaving errors uncorrected. For example, users are unlikely

to notice small or rare degradations in multimedia quality, and computation errors often

do not affect the results of recognition or data mining analyses. Therefore it is possible

to eliminate the high-energy circuit structures within certain traditional hardware to realize

IHW.

Thirdly, VOS and structural IHW are two very different types of IHW techniques. Cur-

rently VOS is still the dominant IHW technique used in ASIC designs while the use of

structural IHW has been neglected. It is possible that structural-IHW-based systems can

achieve better efficiency than VOS-based systems at the same quality level. Combining

VOS and structural IHW is another way to improve the efficiency-quality tradeoffs.

Finally, the traditional method to evaluate the quality of an IHW-based system is re-

peated random testing (i.e., Monte Carlo simulations). With increasing system complexity,

Monte Carlo simulations are becoming less practical due to their long runtime and unreli-

able corner-covering capability (i.e., rare error events could be missed if not simulated with

enough samples). A faster and more accurate method to estimate system quality is needed.

Problem statement

Many IHW techniques have been proposed to improve the efficiency of a circuit at a

small cost of output quality, but the choice of IHW techniques and their settings is made

in an ad hoc fashion without considering other alternative implementations. Therefore, the

final design is likely to be suboptimal. A methodology is needed to effectively explore the

design space created by IHW and produce optimized designs.

This dissertation is devoted to the development of a methodology for trading off ef-

Chapter 1: Introduction 10

ficiency and quality in ASIC designs using IHW arithmetic units. Such a methodology

first requires a library of IHW arithmetic units. They must exhibit higher efficiencies than

their precise counterparts, and their quality must be controllable by design parameters. Sec-

ond, we need a way to rapidly compare the quality of two IHW implementations without

simulation. Statically propagating the error distribution from the input to the output is one

potential solution. Finally, the library, the efficiency estimator and the quality estimator

must be tied into a unified framework. This framework should leverage an existing or new

optimization algorithm to solve various optimization problems. Signal processing and data

mining applications are good candidates to evaluate the effectiveness of our methodology.

We expect the designs produced by our methodology to have significantly higher efficien-

cies than those of traditional precise designs. The quality of the IHW designs should be at

an acceptable level from a system perspective. And the time to obtain such designs should

be much shorter than exhaustively searching the design space.

1.3 The Scope of This Dissertation

Implementation Platform: ASIC. There are many implementation platforms on which

to perform computation. In this work, we target Application-Specific Integrated Circuits

(ASICs). An ASIC is a custom circuit that implements a single algorithm or applica-

tion. It is the preferred implementation to achieve high performance or low power at the

cost of limited design flexibility. Another popular implementation platform is a general-

purpose processor. This platform provides good flexibility because of the programmability

of the software running on top of the processor, but usually is less efficient in terms of

power and performance relative to an ASIC. Most of the IHW techniques mentioned in

Chapter 1: Introduction 11

this dissertation are only applicable to ASICs. One exception is fidelity-compromising

transformations (Section 2.6.1). This technique is widely adopted in both ASIC and soft-

ware development processes when an algorithm designer fine-tunes an algorithm to balance

quality metrics with efficiency metrics. An approximate algorithm running on a processor

is simply another way of performing imprecise computation with the aim of improving

efficiency. However, the delay and power analysis of software running on a processor is

fundamentally different from the analysis of an ASIC. The analysis is further complicated

by the compilation process and the presence of operating systems and other programs run-

ning on the processor. Due to our inadequate knowledge in computer architecture, we do

not consider software approaches to IHW, but they are still valuable to algorithms that are

traditionally implemented in software.

Types of HW components: arithmetic units. Arithmetic Logic Units (ALUs) such as

adders and multipliers are the basic building blocks of datapaths in many error-tolerant

applications. For example, an FIR filter is primarily composed of repeated multiply-

accumulate (MAC) operations [27]. In image compression, Discrete Cosine Transform

(DCT) and Inverse Discrete Cosine Transform (IDCT) are integral components of the JPEG

image compression standard [28]. Both DCT and IDCT also consist of MAC operations. In

video compression, Motion Estimation (ME) accounts for 70% of the total power consump-

tion of an MPEG encoder [29]. The basic computation kernel of ME is Sum of Absolute

Differences (SAD) [29], which is purely composed of adders and subtractors. Since ALUs

are the dominant factor in the timing and power of data-intensive systems, we focus on

imprecise implementation of ALUs to maximize the efficiency impact. Control logic units

such as comparators and multiplexers are usually used for decision making in an algorithm

Chapter 1: Introduction 12

and the correct functionality of such units is crucial to obtaining meaningful outputs. We

do not consider imprecise implementation of such circuits. Sequential logic circuits (such

as latches and registers) and memory elements (such as SRAM, DRAM and NVRAM) are

other classes of circuit components outside our scope. As a matter of fact, memory ele-

ments are becoming a major power sink of many digital systems, and they are also one

of the most unreliable circuit structures under PVT variation. Most research in memory

design is a balancing act among reliability, performance, area, and power. It is possible to

slightly sacrifice the reliability of a memory element to gain improvements in efficiency.

IHW Behavior: deterministic. In Section 2.2 we classify IHW into three categories:

deterministic IHW, spatially-varying IHW, and temporally-varying IHW. The focus of this

dissertation is on deterministic IHW, whose error is a deterministic function of the input.

For deterministic IHW, certain input patterns will always produce error-free outputs while

others will always produce incorrect outputs. For our target applications, the error from

a single computation is insignificant; what matters most are the statistical error properties

of the system under representative inputs. The error distribution of deterministic IHW

should not be confused with that of temporally-varying IHW. The former is really an error

histogram when the input is drawn from a dataset. If the input is a single value, the error

also becomes a single value. The latter is a real distribution—even when the input is a

single value, the output is still a random variable. Spatially varying IHW can be analyzed

in a manner similar to deterministic IHW, while errors from temporally varying IHW can

be modeled as stochastic processes.

Target Application: errors can be tolerated; error correction not necessary. If

errors resulting from IHW must be corrected to maintain application quality, the efficiency

Chapter 1: Introduction 13

benefit gained by an imprecise implementation might be offset by the overhead from the

correction circuit. Therefore we are particularly interested in applications or algorithms that

can tolerate errors and do not require error correction. Most DSP algorithms, multimedia

applications, and classification and data mining algorithms fall into this category.

1.4 Major Contributions of This Dissertation

This dissertation is devoted to the development of a methodology for trading off

efficiency and quality in ASIC designs using IHW arithmetic units. It can be used

to produce more efficient designs for error-tolerant applications than traditional IC

design methodologies. The methodology incorporates a library of parameterized IHW

components and routines to evaluate efficiency and quality metrics. The quality evalua-

tion routine is simulation-free and achieves higher speed than and comparable accuracy

to Monte Carlo simulations. The following is list of essential components that must be

developed or identified to fulfill this task:

• A library of parameterized IHW components and techniques that exhibit superior

efficiency metrics than their traditional counterparts.

• Fast and accurate estimation methods for both efficiency and quality metrics.

• A framework that explores the IHW design space and generates a final design ac-

cording to user-specified efficiency and quality requirements.

• A number of target applications and algorithms to inform the development and verify

the effectiveness of the methodology.

Chapter 1: Introduction 14

1.4.1 Design of Novel IHW

At the algorithm level, we propose fidelity-compromising transformations to realize

performance-quality tradeoffs. At the RTL level, we design imprecise multipliers based on

imprecise adders and improve the error characteristics of IHW adders and multipliers. We

also suggest using CORDIC to implement a wide variety of elementary functions impre-

cisely. Finally, we present a hybrid IHW combining two IHW techniques. It exhibits supe-

rior efficiency-quality tradeoff characteristics than each individual IHW technique alone.

1.4.2 A Static Error Estimation Method

Quality metrics are traditionally measured by running Monte Carlo simulations and

comparing the imprecise output with the precise output, but when the design space is large

this is a time-consuming process. Assuming IHW is an error source in the system, chapter

3 presents a novel error estimation method which is almost simulation-free. It leverages

statistical analysis to propagate the error distribution from the input to the output, pro-

vided that we know in advance the input data distribution and the error characteristics of

the IHW components. This static method is orders of magnitude faster than Monte Carlo

simulations.

1.4.3 A Quality-Aware Efficiency Optimization Methodology

The introduction of IHW expands the design space with several degrees of freedom: the

freedom to choose different IHW components and techniques for implementation; the free-

dom to choose parameters that define the IHW components and techniques, and finally the

freedom to connect those IHW components to each other in different ways. Such a complex

Chapter 1: Introduction 15

design space cannot be efficiently explored without a systematic methodology. This dis-

sertation presents a methodology designed to solve many versions of the efficiency-quality

optimization problem. It can solve constraint-based optimization problem (e.g., energy

minimization subject to a minimum quality constraint); it can solve a cost-function-based

problem (e.g., minimization of the energy-delay-error-rate product); and it can generate

Pareto optimal curves. The methodology has been encapsulated into a released tool.

1.4.4 IHW Taxonomy

To better understand the relationships of various IHW techniques and components, we

build an IHW taxonomy. Existing IHW techniques and components are classified accord-

ing to where in the design hierarchy they are implemented, their error behavior, and their

system-level impact.

1.5 Organization

This dissertation is divided into 5 chapters. Following the motivation and background

provided in this chapter, Chapter 2 introduces the concept of IHW and the working mech-

anisms of various IHW designs. An IHW taxonomy is developed to classify all IHW

components and techniques. We elaborate on the design of two IHW examples: fidelity-

compromising transformations and imprecise arithmetic units (i.e., adders and multipliers)

and their error characteristics. In Chapter 3, we present the static error estimation method.

Mathematical models of error distributions are first introduced and rules for error propaga-

tion are then derived. We compare its speed and accuracy with classical Monte Carlo sim-

Chapter 1: Introduction 16

ulations and show its advantage. The efficiency-quality tradeoff methodology is described

in Chapter 4. Case studies on medical imaging, classification and arithmetic calculation are

presented to demonstrate the usage and effectiveness of the proposed methodology. In the

final chapter, we summarize the contributions as well as the limitations of this study. We

also highlight potential areas of further research.

Chapter 2

Imprecise Hardware (IHW)

Contrary to traditional hardware which always produces correct results, IHW only pro-

duces correct results probabilistically or conditionally, as determined by its structure, pa-

rameters, environment, and input patterns. IHW takes advantage of relaxed quality require-

ments to improve efficiency beyond the level achievable by traditional hardware. Before

we use it to implement real applications, it is important to understand how IHW achieves

efficiency-quality tradeoffs and how various IHW instances differ from or resemble each

other. In this chapter, we study the principles of IHW and build an IHW taxonomy. We

also give an in-depth analysis of two selected IHW designs—fidelity-compromising trans-

formations and IHW arithmetic units, both of which will be used in the case studies in

Chapter 4.

17

Chapter 2: Imprecise Hardware (IHW) 18

2.1 Introduction

Imprecise hardware is a natural product of computation with limited resources. When

HW resources such as power, area and computation time do not allow for sufficiently pre-

cise computation, the simplest strategy is to report failure, but sometimes it is better to

attempt to compute an inexact result which is still acceptable—ideally any increase of HW

resources should contribute to the generation of a higher-quality result. Nevertheless, tra-

ditional HW is not designed in this manner; once the operating frequency exceeds or the

supply voltage drops below the normal level, a large percentage of results will be incorrect

and the output quality becomes unacceptable. Admittedly, many applications fit into this

category which distinguish only between correct and incorrect results: processor modules

such as the program counter and the writeback logic cannot tolerate even the slightest er-

ror. However, there is another large class of applications where correctness is not a boolean

value, but can be measured with a continuous quality metric (soft-correctness). The exact

definition of quality is application dependent. For example, signal-to-noise ratio (SNR) can

be used as a quality metric for many DSP circuits, and root mean square error (RMSE) can

be adopted for arithmetic logic blocks. A lower-quality but efficient implementation may

be more valuable than a high-quality but inefficient implementation. IHW is unique in its

capability to adjust efficiency and quality simultaneously, making it an ideal building block

for implementing soft-correctness applications.

Traditional correctness-centric hardware has a convex efficiency-quality curve (Fig-

ure 2.1), which does not allow efficiency-quality tradeoffs. The quality metric remains

high at low efficiency regions. Once we start to improve the efficiency metric beyond a

certain critical threshold, quality drops sharply. IHW, however, exhibits a concave curve

Chapter 2: Imprecise Hardware (IHW) 19

Figure 2.1: Qualitative quality-efficiency curve of IHW. Both quality and efficiency metrics
are normalized against the error-free operating point (quality=1, efficiency=1), which gives
the highest quality and lowest efficiency.

and can achieve orders-of-magnitude improvement in efficiency with a small but non-zero

impact on system quality. Examples include voltage overscaling (VOS) to achieve higher

performance and lower power, simpler approximations to complex math functions, and

deeply scaled CMOS devices with probabilistic behavior. Compared to their traditional

counterparts, their quality degradation occurs more gradually as we increase efficiency,

causing complete failure at a much higher implementation efficiency.

IHW has a broader meaning than imprecise arithmetic units such as adders or multipli-

ers. It is a generalized circuit implementation that carries out its intended operation with the

possibility of error. Examples of IHW include arithmetic units, control units, and memory

units. IHW can be as large as a processor core that is prone to error during program execu-

tion or as small as a logic gate which exhibits probabilistic behavior due to PVT variation.

They all share a similar trait: improved HW efficiency as a result of allowing the presence

of errors.

IHW guarantees an efficiency improvement, provided that there is room for quality

Chapter 2: Imprecise Hardware (IHW) 20

relaxation. During the efficiency optimization stage, all metrics are bounded by a multi-

dimensional Pareto surface defining the set of optimal design points that provide correct

functionality. Points on the Pareto surface (called Pareto-optimal points) have the following

property: any improvement on one metric will necessarily deteriorate some other metrics.

Since the Pareto surface is determined by a circuit’s functional requirements, adding an

extra metric of quality to the design space adds another dimension to the optimal Pareto

surface, the cross-sections of which reveal different tradeoff surfaces in the original design

space. IHW is capable of translating quality slack into efficiency improvement (Figure 2.2),

so it guarantees that new cross-sections strictly dominate the old one and thus efficiency

can be improved beyond previous bounds.

Figure 2.2: Conceptual diagram of efficiency-quality tradeoff. IHW can convert relaxed
quality requirements (e.g., error tolerance) into improved efficiency (e.g., power savings).

The magnitude of the efficiency-quality tradeoff from IHW can be controlled through

design-time and run-time parameters. For example, by changing the Vdd of VOS tech-

niques or the RTL structural parameters of IHW adders and multipliers, we can shift the

balance between high-quality-low-efficiency and low-quality-high-efficiency designs. If

we can further derive or model the relationship between efficiency and quality and those

parameters, it is possible to quantitatively perform certain optimization tasks.

Applications with stringent correctness requirements can benefit from IHW as well.

Chapter 2: Imprecise Hardware (IHW) 21

Better-than-worst-case designs (BTWC) [21] indicate that any system can be implemented

as a performance-optimized core plus a correctness checker. Since the task of ensuring

correctness is delegated to the checker, the performance-optimized core is free to adopt any

IHW design. The overall system is error-free while the efficiency of the IHW and checker

combined may still be higher than that of a traditional correctness-driven design. Razor [6]

is a perfect example of error-free design with IHW.

2.2 IHW Behavior

2.2.1 Based on I/O Mapping

We can classify IHW into several categories based on the method of mapping the input

to the output.

(i) Classical hardware (CHW) maps any specific input to its corresponding output faith-

fully.

CHW : I ⇒ O

O is a deterministic function of I and the mapping CHW remains the same tempo-

rally and spatially; i.e., different copies of the same hardware always have the same

mapping and every copy always has the same mapping at any given time.

(ii) Deterministic IHW relaxes the CHW in terms of the mapping function.

IHWdeterministic : I ⇒ O′

Here O′ is not equal to O at all input values, but the mapping remains stable across

time and space. The output error (given by O′−O) is also a deterministic function of

Chapter 2: Imprecise Hardware (IHW) 22

the input I—certain inputs will always produce incorrect outputs while other inputs

will always produce error-free outputs. For example, trimming the propagate chain

of an adder will cause an output error only if the input triggers a longer propagate

path. Deterministic IHW is incorrect by design. Producing O′ usually requires less

resources than producing O.

(iii) Spatial IHW not only has a different mapping than the CHW, but different copies

of the same circuit have different I/O mappings. These mappings are all temporally

stable. Spatial IHW shares the features of both deterministic and probabilistic IHW

(see below). Given the limited knowledge about process variation at design time,

spatial IHW exhibits probabilistic behavior because process variation is treated as a

random variable at design time. At runtime, however, each copy of spatial IHW is

deterministic. So a design strategy for spatial IHW combines the strategies for both

deterministic and probabilistic IHW.

IHWspatial1 : I ⇒ O′1

IHWspatial2 : I ⇒ O′2

IHWspatial3 : I ⇒ O′3

The main source of spatial difference of these circuits is process variation. Modern

design methods insert significant margins to ensure that a large percentage of fabri-

cated circuits produce O. These margins can be reduced or eliminated if most O′ are

acceptable.

(iv) Probabilistic IHW has the most chaotic behavior of all IHW. For a given probabilistic

IHW, it can produce different outputs every time it evaluates a given input. The

Chapter 2: Imprecise Hardware (IHW) 23

output is really a random process controlled by the input vectors and the surrounding

environment.

IHWprobabilistic1 : I ⇒ O′1 at t1, O′2 at t2, O′3 at t3, · · ·

IHWprobabilistic2 : I ⇒ O′′1 at t1, O′′2 at t2, O′′3 at t3, · · ·

IHWprobabilistic3 : I ⇒ O′′′1 at t1, O′′′2 at t2, O′′′3 at t3, · · ·

The main sources of the temporal difference of these circuits are temperature and

voltage variations, soft errors, and aging effects. As with process variation, consid-

erable design margins can be reclaimed if most of the O′, O′′ and O′′′ are acceptable.

Throughout this dissertation, we will only focus our discussion on deterministic IHW.

Table 2.1 lists examples of each category of IHW.

Table 2.1: IHW examples by behavior.

Deterministic Spatial Probabilistic

round-up multiplier,

reducing process

variation guardband

probabilistic CMOS [22],

approximation, reducing VT variation,

VOS adder aging, soft error guardband

2.2.2 Based on Error Characteristics

IHW can also be classified based on the characteristics of the errors it produces. If an

IHW design is fed a large number of random inputs, statistically the output error histogram

will resemble a discrete random distribution. This distribution can be quantified by its error

magnitude and error probability. The error magnitude is defined as the difference between

Chapter 2: Imprecise Hardware (IHW) 24

the actual and the accurate output (O′ − O), and the error probability is the probability

of getting an error of a particular magnitude. We can use the Probability Mass Function

(PMF) to describe the distribution of the error. It can be visualized as a bar chart on the

frequency vs. magnitude plane, as shown in Figure 2.3.

Figure 2.3: Probability Mass Function (PMF) examples.

The PMF is a type of histogram. Each bar of a PMF indicates the percentage of the

error falling in a particular magnitude range. The location of the bar on the x-axis indicates

the magnitude range of the error and the height indicates its frequency of occurrence. The

taller a bar is, the more frequent the error occurs. Both the x-axis and y-axis are base

2 logarithmic scaled in order to cover a wider frequency-magnitude range. To give an

example, a bar bounded by marker -8 and -7 with a height -10 means the frequency of

observing the error between magnitude 2−8 and 2−7 is 2−10 . The e symbol in the middle

of the x-axis represents zero error; thus bars to the left have negative error magnitudes and

those to the right have positive. The sum of the heights of all of the bars in a PMF is equal

to the total error probability (Pe); therefore the probability of no error is implicitly obtained

by 1 − Pe. Within each bar, the error is assumed to be equally likely to take on any value

Chapter 2: Imprecise Hardware (IHW) 25

in that magnitude range. Since the PMF provides higher resolution near zero magnitude,

a distribution not centered at zero should have its mean subtracted from it to achieve zero-

mean so that it can be represented with higher accuracy. The mean will participate in the

PMF propagation (Chapter 3) as a separate constant.

Figure 2.3 shows two different types of error distributions. Errors in the upper PMF

have a wide magnitude range, but their frequency of occurrence is small; the lower PMF

has smaller error magnitude but those errors occur more frequently. We denote the former

type of error Infrequent-large Magnitude (ILM) error and the latter Frequent-small Magni-

tude (FSM) error. The type of errors produced by an IHW component is dependent on its

structures (Table 2.2).

Table 2.2: IHW examples by error types.

IHW producing ILM errors IHW producing FSM errors

ACA adder and multiplier METAII adder and multiplier

voltage-overscaled circuits reduced-precision circuits

guardband reduced circuits [26] fidelity-compromising transformations [30]

There is no widely accepted rule on which type of error will lead to higher output qual-

ity because different applications and even different operations within one application have

different sensitivities to error frequency and error magnitude. For example, if multiplica-

tion is implemented with repeated addition, FSM errors may be more detrimental than ILM

errors because error magnitude tends to accumulate with repeated operations. ILM errors,

however, may not produce a single error during the entire multiplication if the error fre-

quency is sufficiently low. In another example, many image processing algorithms require

Chapter 2: Imprecise Hardware (IHW) 26

iterating over a loop until a condition is met, such as convergence testing. If addition is

needed for the condition evaluation, imprecise adders with FSM errors are the preferred

choice. A big error in the condition evaluation can cause a false early exit of the loop,

significantly affecting the result quality. FSM errors are much safer because they are less

likely to change the decision made by the condition evaluation. Many massively parallel

applications are equally sensitive to error frequency and error magnitude. The key is that

errors must be considered within the context of the application. Therefore it is necessary to

develop a method to quantitatively estimate the error distribution of an IHW-based system.

Error PMFs of IHW provide a mathematical representation that makes quantitative analysis

possible. A static error propagation method will be proposed in Chapter 3.

2.3 IHW Systems

While a single IHW component or technique can effectively trade off efficiency and

quality, most applications and algorithms are so complex that the benefits from a single

tradeoff point have little impact at the system level. Also, using one type of IHW usually

has obvious drawbacks (such as unbounded error magnitude or error frequency) that limit

its use. Constructing a system of various types of IHW can effectively solve these two

problems, although at the cost of some area and power overhead. Careful strategies are

needed for applying IHW components and techniques to a system so as not to accumulate

errors excessively. Several possible interconnections of IHW are listed below:

• ANT [7]: VOS-circuit in parallel with a reduced precision circuit (combining “infre-

quent large magnitude error” and “frequent small magnitude error”, we get “infre-

Chapter 2: Imprecise Hardware (IHW) 27

quent small magnitude error”).

• Soft NMR [20]: Several duplicates of the same computation with known independent

error statistics that vote on the output using optimal estimation theory.

• ERSA [18, 19]: One reliable core paired with many unreliable cores, for RMS appli-

cations.

• BTWC (better-than-worst-case) design [21]: performance and power optimized core

followed by a reliability checker. BTWC designs have better efficiency than worst-

case designs when the typical case is encountered. A checker is used to ensure cor-

rectness when the worst case is encountered. If the typical case occurs frequently,

the whole system is more efficient than the worst-case design.

• Stochastic Networked Computation (SNC) [31]: multiple sensor outputs fused to gen-

erate the final corrected output.

• reverse BTWC: error condition checker followed by a reliable core in parallel with

an IHW core. The checker first detects if the input can induce large errors if run on

the IHW core. If the condition is true, it feeds the input to the IHW core and turns

off the reliable core to save power. If the condition is positive, it feeds the input to

the reliable core and turns off the IHW core to maintain quality. If the IHW core is

executed most of the time, the average power consumption of the whole system will

be close to that of the IHW core.

Notice that BTWC and reverse BTWC both appear error free to the outside, so they

can be used to implement error-intolerant applications. Actually, the error-free situation

Chapter 2: Imprecise Hardware (IHW) 28

is merely a special case of a generic IHW system. The error distribution of the system is

a function of IHW parameters and certain parameter settings happen to entirely eliminate

errors to produce an error-free system.

2.4 Applications of IHW

We have identified several groups of target applications that can benefit from IHW

implementations:

Signal processing, multimedia, and communication. Data being processed by these

applications are intrinsically contaminated with noise, so they usually incorporate a noise

removal algorithm. Furthermore, the output from these applications is usually for consump-

tion by the human sensory system, which is known to be error tolerant. That means that

absolute correctness is not required for these applications. In recent years, more and more

multimedia applications are running on mobile devices such as smartphones and tablets.

Wearable medical devices are also equipped with signal processing capabilities to help di-

agnose patients’conditions. Employing IHW in these scenarios can significantly extend

battery life with unnoticeable impact on quality of service.

Statistical analysis, data mining, clustering, and classification. These algorithms ex-

tract global knowledge from a large dataset. Since the calculation on a single data point

contributes a negligible amount to the final output, imprecise implementations are not pe-

nalized if errors occur only for a small fraction of the data points, or if consecutive errors

cancel each other out so that no significant error accumulation is present in the final output.

In other words, isolated errors are acceptable as long as the final Error Probability Mass

Function (EPMF) has a desirable distribution. Although these algorithms typically run on

Chapter 2: Imprecise Hardware (IHW) 29

server machines with sufficient power, IHW can significantly reduce the runtime of these

algorithms by slightly sacrificing the result quality.

Nonfunctional and performance-enhancing units [32] within any application. Micro-

processors are generally not tolerant of any error because they are meant to run a wide

variety of applications, including those with stringent correctness requirements. However,

within a microprocessor, there are many structures designed just for performance enhance-

ment purposes; a fault in those units will only cause performance degradation. For ex-

ample, an error in a branch predictor has no impact on the correctness of the processor.

The only error it causes is a misprediction, which merely results in wasted clock cycles.

These performance-enhancing structures are present in ASIC designs as well. Many im-

age recognition algorithms begin with an optional noise removal step which helps the later

recognition step. Implementing these structures with IHW improves their efficiency while

reduces the efficiency of the following stages.

Probabilistic and stochastic applications. These algorithms all involve a probabilistic

step to generate random results. They can benefit from probabilistic CMOS [22], which

exhibits probabilistic behavior at the logic level.

For error-intolerant applications, a mapping I ⇒ O′ different from I ⇒ O is not

acceptable, but we can construct a correction circuit with a functional mapping O′ ⇒

O. The correction circuit cleans up the errors in the faulty circuit so that their combined

function is equivalent to the original ((I ⇒ O′) + (O′ ⇒ O) ≡ I ⇒ O). To have an

overall gain, the efficiency of the IHW circuit combined with the correction circuit needs

to be higher than that of the tradition precise circuit.

• (IHW + correction) efficiency > classical hardware efficiency

Chapter 2: Imprecise Hardware (IHW) 30

In summary, an application can benefit from IHW if it has one of the following prop-

erties: (i) output errors are tolerated up to certain magnitude and frequency levels; (ii)

the system quality is not affected by individual output error, but rather is determined by

aggregate output statistics; (iii) it contains performance-enhancing units; (iv) it involves a

probabilistic step; or (v) it can be converted to a more efficient “IHW plus correction” style.

2.5 IHW Taxonomy

Figure 2.4: IHW taxonomy.

At the advent of any new field of research, a taxonomy is an effective tool to study

the explored and unexplored space in detail. For IHW, it is useful for two reasons. First,

it groups similar IHW components and techniques together. This allows synthesis algo-

Chapter 2: Imprecise Hardware (IHW) 31

rithms to be developed for each class of IHW, rather than each individual technique and

component. Second, it exposes open areas for future research. Figure 2.4 shows a tree-like

taxonomy of all known IHW instances. They are first distinguished by whether their be-

havior is deterministic, spatial or probabilistic (refer to Section 2.2). Then they are further

divided according to the design abstraction level where errors are introduced. Deterministic

IHW can be constructed at the algorithmic, architectural, and circuit level; while the only

known spatial and probabilistic IHW is realized through device physics. The last branch of

the taxonomy represents the four principle constituents of a digital system: computation,

dataflow, control flow, and memory. IHW components and techniques are classified by the

digital system component being impacted. Many error detection and correction techniques

have been designed for each category.

2.6 Selected IHW Designs

In this Section, three examples of IHW are introduced: fidelity-compromising transfor-

mations, imprecise adders, and imprecise multipliers. Fidelity-compromising transforma-

tions are novel algorithmic-level techniques that we propose. At the logic level, we will

review two imprecise adders in the literature, improve their error distributions, and use

them to build imprecise multipliers. These imprecise adders and multipliers will be used in

the case studies in Chapter 4.

Chapter 2: Imprecise Hardware (IHW) 32

2.6.1 Fidelity-Compromising Transformations [30]

Fidelity-compromising transformations are designed to replace an implementation of

an algorithm routine (e.g., a function) with a simpler approximation. For example, when

variable x is in the range of (−1, 1), replacing
1

1 + x
with 1 − x reduces computation

time, because division usually takes longer to compute than addition, but the result is not

completely accurate. Fidelity-compromising transformations can be parameterized by a

threshold to control the level of inaccuracy being introduced. They can be derived from

two major sources. The general source is mathematical approximation theory. A more

application-specific source is an alternative algorithm designed to solve the same problem

in a different way (such as Roberts edge detector [33] versus Canny edge detector [34]).

Table 2.3 shows an example of a fidelity-compromising transformation based on a math-

ematical approximation. This transformation has two parameters: p1 is the order of the

approximation, and p2 is the threshold that controls how often the transformation is ap-

plied. The precise operation is replaced with the approximation whenever the condition is

met. The last two rows of the table show the change in latency and fidelity as a result of

the transformation. The latency is calculated using the data from Table 4.1. The change in

fidelity is calculated as the percentage difference between the approximate value and the

precise value.

Taylor series representations are popular mathematical approximations:

(1± x)m ≈ 1±mx± m(m− 1)

2
x2 + · · ·

sinx ≈ x− x3

6
+

x5

120
+ · · ·

log(1 + x) ≈ x− x2

2
+
x3

3
+ · · ·

Chapter 2: Imprecise Hardware (IHW) 33

Table 2.3: An example of fidelity-compromising transformation based on mathematical
approximation.

precise operation
1

1 + x

approximation 1 1− x 1− x+ x2 1− x+ x2 − x3

p1 0 1 2 3

p2 A

condition |x| < A,A ∈ (0, 1)

∆latency (control step) −11 −10 −9 −8

∆fidelity% x −x2 x3 −x4

The efficiency-quality tradeoff can be controlled by the number of terms in the approxi-

mation as well as the threshold of x for applying approximation. According to Taylor’s

theorem, the remainder of a Taylor series approximation is bounded by the order of the

approximation (i.e., the number of terms). Therefore, fidelity-compromising transforma-

tions produce FSM-type errors—the error magnitude can be made arbitrarily small with

more approximation terms, but the approximated value is almost always different from the

precise value. In fact the approximated value is equal to the precise value only at special

data points.

2.6.2 Imprecise Adders and Multipliers

Among all arithmetic logic units (ALUs), adders and multipliers are used most exten-

sively in the data paths of multimedia and data mining applications. It is also relatively easy

to establish quality metrics for ALUs. Imprecise implementations of adders and multipli-

ers have the most direct impact on system efficiency and output quality. Here we present

Chapter 2: Imprecise Hardware (IHW) 34

two imprecise adder designs from the literature. They are based on two types of traditional

adders and exhibit distinctive error characteristics. We then modify the adders to improve

their error distributions. Finally, we use them to build imprecise multipliers.

Almost-Correct Adder (ACA) [15]

The ACA is a modified version of the traditional logarithmic-delay adders, such as

the Kogge-Stone Adder (KSA). ACA leverages the fact that for random inputs, the vast

majority of the actual critical paths are much shorter than the worst-case critical path. Ta-

ble 2.4 gives the probability of two random 64-bit inputs (A and B) triggering a critical

path longer than K. Even with K much smaller than 64, the probability of a critical path

violation is quite small and that probability decreases rapidly with larger K. ACA then

uses a tree structure to compute the propagate and generate signals similar to KSA but

assuming the longest run of propagate never exceeds K; i.e., Sumi is computed using only

Ai · · ·Ai−K+1 and Bi · · ·Bi−K+1. Its worst case delay is proportional to logK. ACA’s

structure is essentially a trimmed KSA tree which grows short of the full height. A smaller

tree translates to lower delay, smaller area, and less energy per addition. Figure 2.5 shows

the structure of a 16-bit ACA with K = 6. The definitions of the operators are as follows:

P, G generation: G = AiBi

P = Ai ⊕Bi

dot operator: (G,P) · (G′, P ′) = (G+ PG′, PP ′)

sum generation: Ci = Gi

Si = Pi ⊕ Ci−1

Chapter 2: Imprecise Hardware (IHW) 35

Each dot operator produces a propagate and a generate bit. The culminating generate

bits (the carries) are produced in the last level, and these bits are XOR’d with the initial

propagate from P, G generation to produce the sum bits.

Table 2.4: Probability of a random propagate chain exceeding K bits.

K 12 16 24 32

Probability 0.0024 1.22× 10−4 2.4× 10−7 < 2.06× 10−10

Compared to a KSA which requires 4 levels and 49 dot operators, ACA only has 3 levels

and 41 dot operators. We synthesized both KSA and ACA in a 130nm technology to obtain

their critical path delays and performed SPICE simulations of 1,000 random additions to

obtain their average energy per operation. The energy and delay data are shown in Table

2.5. As can be seen in the table, while the delay of the ACA adder is only slightly smaller

than KSA due to the logarithmic effect, its energy per operation is almost 22% lower than

KSA due to the simplified logic structures. During the simulation, the supply voltage is

fixed at a nominal level (1.2V) for both adders. But since ACA has a lower delay than

KSA, it can potentially reduce Energy per operation further via voltage scaling.

Table 2.5: Average E/op and worst-case delay of 64-bit KSA and 64-bit ACA adders with
K = 16.

Adder Average E/op (pJ) Worst-case Delay (ns)

KSA64 8.47 0.8

ACA64 (K=16) 6.58 0.7

Errors occur in ACA when its assumption of maximum propagate length is violated,

i.e., when the inputs trigger a propagate chain longer than K. For example, when A and

Chapter 2: Imprecise Hardware (IHW) 36

Figure 2.5: 16-bit Almost-Correct Adder structure with K = 6.

Figure 2.6: Energy-delay space of ACA adder and KSA adder.

Chapter 2: Imprecise Hardware (IHW) 37

B are exactly complementary, the propagate chain will span the full adder’s length. To

produce the correct Sumi, all the bits from both inputs will be needed, but ACA makes

a speculation and approximates it with the propagate chain from bit i down to i − K + 1

with the carry-in set to constant 0. When the speculation is wrong, a large error will appear

in Sumi. The largest error occurs when bit i is the MSB. Since the error magnitude of

ACA can potentially be very large, but its error frequency decreases exponentially with

parameterK, it belongs to the ILM error category. Certain applications are quite tolerant of

ILM errors. For example, in image and video codec applications, ILM errors can manifest

as single pixel errors which are usually not appreciable by human vision. However, ILM

errors can cause catastrophic failure in other applications. Fortunately, ILM errors can be

easily detected by inspecting the first few MSBs of the result.

Energy-quality tradeoffs can be achieved by tuning the design parameter K. Setting K

equal to the adder width reduces the adder to KSA, which is a precise adder. Changing K

can also directly affect the delay and energy of an adder. Figure 2.6 shows the energy-delay

space of 64-bit ACA adders with different K settings. The delay refers to the worst-case

critical path delay and the energy refers to the average energy per addition. The adders are

synthesized to their respective critical path delays. The design point of a 64-bit KSA is also

shown for comparison.

Modified Error-tolerant Type II (METAII) adder [16]

The METAII is another type of imprecise adder based on the Ripple-Carry Adder

(RCA). RCA has a simple linear propagate chain (Figure 2.7). METAII works by parti-

tioning the propagate chain into segments of variable widths. The carry bits across two

Chapter 2: Imprecise Hardware (IHW) 38

segments are truncated to zero. In order to provide better protection for higher bits, seg-

ments are wider (include more bits) on the MSB side than on the LSB side. METAII has

two parameters: BPB (bits per block) and L (the number of blocks used for generating

the MSB). A block refers to the smallest segment, which is usually located at the LSB.

The maximum error is limited by the longest segment width (given by BPB × L). How-

ever, carry generation across blocks is common; therefore errors occur quite frequently in

METAII. Errors of METAII belong to the FSM error category because their magnitudes are

bounded by the design parameters and are usually small compared to ILM errors.

Figure 2.7: 16-bit Modified Error-Tolerant Adder Type II structure with BPB = 4, L = 3.

Table 2.6 compares the average energy per operation and worst-case delay of a RCA

adder and a METAII adder. METAII exhibits much lower delay and energy consumption

than RCA. We can achieve energy-quality and energy-delay tradeoffs by changing the de-

sign parameters BPB and L. Figure 2.8 shows the energy-delay space of a 64-bit METAII

adder obtained by changing L while BPB is fixed at 4. The design point of a 64-bit RCA

is also shown for comparison. Similar to the ACA adder, the delay is defined as the worst-

case critical path delay and the energy is the average energy per addition. The adders are

synthesized to their respective critical path delays.

Chapter 2: Imprecise Hardware (IHW) 39

Table 2.6: Average E/op and worst-case delay of 64-bit RCA and 64-bit METAII adders
with BPB = 4 and L = 4.

Adder Average E/op (pJ) Worst-case Delay (ns)

RCA64 5.48 5.3

METAII (BPB=4, L=4) 3.07 0.8

Figure 2.8: Energy-delay space of METAII adder and RCA adder.

Voltage-overscaled adder

Voltage and frequency scaling is a useful run-time technique for power reduction. It

has been shown that RCA based circuits can continue to function at a clock period well

below their critical path delays [8]. Scaling past the critical path delay using VOS results in

a gradual increase in error rate, rather than a complete system failure. If the incurred error

rate is within an acceptable level, VOS can be regarded as an efficiency-quality tradeoff

technique. This run-time technique produces ILM errors, because the errors only occur

Chapter 2: Imprecise Hardware (IHW) 40

when the worst-case delay is triggered, which is a rare event. But once an error occurs, it

typically affects the MSB first, resulting in a large magnitude error.

Not all circuits are well suited for VOS. For speed-optimized circuits such as KSAs,

most of their timing paths have timing slacks very close to the critical path so that they can

operate at high-speed. If we plot the timing slacks of all timing paths on a histogram, we

will see a very narrow band of timing slacks just above zero (Figure 2.9). Therefore even if

the voltage is lowered by a small amount, a large number of timing paths will be affected,

resulting in intolerable errors. On the other hand, RCA has a much wider timing histogram

due to its linear structure. As a result, when we lower Vdd, only a small number of paths

will fail to meet their setup time and the result may still be sufficiently accurate.

Figure 2.9: Timing slack histograms of RCA and KSA.

Chapter 2: Imprecise Hardware (IHW) 41

Reduced-precision adder

The numerical precision of a system is commonly used to adjust the efficiency-quality

balance of that system. When we reduce the precision of a system (e.g., from 32-bit to 24-

bit), we are effectively truncating the lower bits of the output. A reduced-precision adder is

an adder that truncates the lower bits of the inputs in order to process higher-precision data.

For example, a 24-bit adder used to process 32-bit data can still function by truncating the

bottom 8 bits of the data. Therefore the errors resulting from a reduced-precision adder

bear FSM characteristics: higher bits are correct while lower bits are truncated.

Analysis of imprecise adders

We pick the four aforementioned IHW adders and list them in Table 2.7. Figure 2.10

and Figure 2.11 show the error characteristics of those adders. All four types of adders

are tested with 2 million random inputs drawn from a uniform distribution on the interval

(−0.5,+0.5). The number format is 2 bits (including the sign bit) before the decimal point

and 30 bits after. Delay and error data are collected by tuning the appropriate parameters

of the adder (Table 2.7). The delays are normalized to the delay of each adder in its precise

form (i.e., no errors). In Figure 2.10, for the ILM error adders (ACA and VOS adder),

error frequency drops exponentially as adder delay increases (approaching the delay of

the precise adder), while the worst observed error magnitude remains nearly constant (Fig-

ure 2.11). The abrupt drop of ACA’s error magnitude near delay = 1 is due to the extremely

low error frequency; two million inputs are insufficient to induce a single error. For FSM

error adders (METAII and reduced-precision adder), both error frequency and error magni-

tude decrease with increasing delay, but their error frequency decreases much more slowly

Chapter 2: Imprecise Hardware (IHW) 42

(linearly) than ILM error adders. A special case is the reduced-precision adder, whose error

frequency remains constant, because it is almost always incorrect.

Figure 2.10: Error frequency of various imprecise adders.

Figure 2.11: Error magnitude of various imprecise adders.

Notice that the error frequency and the worst case magnitude can be derived mathe-

matically or extracted experimentally from Monte Carlo simulations. The error statistics

Chapter 2: Imprecise Hardware (IHW) 43

Table 2.7: Common imprecise adders and their error classifications.

Adder Parameters Error Classification

ACA K ILM

METAII BPB,L FSM

reduced-precision adder data width (W) FSM

VOS adder Vdd ILM

in Figure 2.10 and 2.11 are obtained from Monte Carlo simulations. They do not represent

the theoretical bounds on error frequency or error magnitude, as some errors are so rare

that they may not occur in a simulation with a small number of random samples. The the-

oretical bounds, however, can be derived using classical range analysis methods, such as

Interval Arithmetic [35] and Affine Arithmetic [36]. Development of efficient and accurate

error estimation method will be presented in Chapter 3.

Improving imprecise adders

The original ACA and METAII designs do exhibit a weakness. For simplicity, both

designs use a constant zero as the carry-in at the cut-off point of the critical path, but this

leads to negatively-biased errors because zero is an underestimation of the carry-in bit.

Similarly, constant one will produce positively-biased errors. One possible improvement

is to take the carry-in from the bit immediately before the propagate chain. For ACA, that

means the propagate chain formed by Ai · · ·Ai−K+1 and Bi · · ·Bi−K+1 will take Ai−K (or

Bi−K) as the carry-in. For METAII, it means the carry bit across blocks will be taken from

the highest bit in the previous block. If the inputs are random during the computation,

Chapter 2: Imprecise Hardware (IHW) 44

those carry-in bits have a equal probability of being zero or one. This will eventually

produce an unbiased error distribution in the sum. Table 2.8 is obtained from simulating

the summation of 20 numbers randomly drawn from [−0.5, 0.5] using the METAII adder

(BPB = 8, L = 4). This anti-biasing technique notably reduces both the error rate and

the mean error magnitude of the adder.

Table 2.8: Impact of anti-biasing on the error rate and magnitude of a METAII adder.

Metrics without anti-biasing with anti-biasing

Error rate 12.3% 6.9%

Mean error magnitude 6.3× 10−8 3.3× 10−8

Imprecise multipliers

Despite the lack of imprecise multipliers in the literature, it is possible to build impre-

cise multipliers based on imprecise adders. A typical multiplier consists of three stages:

partial product generation, partial product accumulation, and a final stage adder [37]. The

idea of building an imprecise multiplier is simple: replace the final stage adder with an im-

precise adder. Therefore the ACA and METAII adders will yield corresponding ACA and

METAII multipliers. For the other two stages, we adopt the popular simple partial product

generation (shifted versions of the multiplicand without recoding) [37] and Wallace-tree

partial product accumulator (3:2 compressor tree) [38]. These choices will influence the

actual energy of the produced multiplier but they do not affect the ability to perform energy-

quality tradeoffs.

Table 2.9 compares the average energy per operation (E/op), critical path delays, and

Chapter 2: Imprecise Hardware (IHW) 45

energy-delay products of various precise and imprecise adders and multipliers. They are

all synthesized to their respective critical path delays. Average energy is obtained by per-

forming 1,000 random additions for adders and 100 random multiplications for multipliers.

As can be seen in the table, imprecise ALUs consume significantly less energy than their

precise counterparts due to their simplified logic structures. At runtime this translates to

less switching activity and lower leakage. Imprecise ALUs also have lower delays. There-

fore, they can achieve even greater energy savings through voltage scaling (data not shown

in the table).

Table 2.9: Average energy per operation, critical path delay, and energy-delay product
(EDP) of precise and imprecise ALUs.

ALU E/op (pJ) Delay (ns) EDP (pJ·ns)

KSA64 8.47 0.8 6.776

ACA64 (K=16) 6.58 0.7 4.606

RCA64 5.48 5.3 29.044

METAII (BPB=4, L=4) 3.07 0.8 2.456

MULT64 KSA 413.18 2.6 1,074.268

MULT64 ACA (K=32) 401.57 2.5 1,003.925

MULT64 RCA 174.8 11.1 1,940.28

MULT64 METAII (BPB=4, L=4) 384.96 2.3 885.408

2.6.3 Implementing other elementary functions with CORDIC

CORDIC (Coordinate Rotation Digital Computer) [39] is an algorithm for computing

many elementary functions with repeated shifts and additions. Realizable functions include

Chapter 2: Imprecise Hardware (IHW) 46

multiplication, division, square root, trigonometric, logarithmic, and exponential functions.

It is widely used in portable electronics due to its small hardware footprint. By replacing

the adder inside a CORDIC core with an imprecise adder, CORDIC can effectively serve

as an imprecise arithmetic core in larger systems. Since the adder in a CORDIC system

accounts for the vast majority of the computation, this replacement also has the biggest im-

pact on quality and energy. We implemented the sine and sqrt functions with IHW-based

CORDIC algorithm and achieved an 11%∼19% energy-delay product (EDP) reduction

when the output precision was relaxed from 32-bit to 24-bit [40]. Figure 2.12 compares

the energy-delay product of CORDIC implementation using different IHW adders. We ob-

served that simply reducing the precision of a CORDIC system actually yields lower energy

at the same quality level, compared to replacing the precise adder with an ACA or METAII

adder. The reason is that the number of iteration performed by a CORDIC system is propor-

tional to the system precision, and energy is linearly related to iteration count. Therefore a

lower-precision CORDIC has a significant energy advantage over higher-precision ones, in-

cluding other IHW-based CORDIC implementations. Also, the converging-operands prop-

erty of the CORDIC algorithm causes the ACA adder to produce large-magnitude errors

[40]. One potential solution is to forcibly reduce the number of iterations of an ACA-based

CORDIC system so that large-magnitude errors are not introduced.

2.6.4 Combining structural IHW and VOS

While structural IHW offers some power savings over traditional HW, the savings are

quite modest (around 10%) compared to those obtained from VOS (around 30%). It is

expected that if VOS techniques are applied to structural IHW components, the power sav-

Chapter 2: Imprecise Hardware (IHW) 47

Figure 2.12: Comparison of energy-delay product (EDP) of CORDIC implemented with
different IHW adders.

ings could increase significantly. Structural IHW has shorter critical paths than traditional

HW, thus allowing VOS to be performed at lower voltages without causing serious errors

(Figure 2.13). This section will demonstrate the benefits of the combined use of IHW and

VOS on adders and multipliers.

Figure 2.13: Structural IHW can be operated under deeper VOS than traditional HW, re-
ducing power even further.

We tested various types of precise and imprecise arithmetic circuits under VOS (Table

2.10) and recorded their power consumption and result quality. To measure power, we first

Chapter 2: Imprecise Hardware (IHW) 48

Table 2.10: Units tested under combined use of IHW and VOS (with critical path delays in
brackets).

Adder Adder Delay (ns) Multiplier Multiplier Delay (ns)

KSA64 0.8 MUL-KSA 2.6

ACA64 0.7 MUL-ACA 2.5

RCA64 5.3 MUL-RCA 11.1

METAII64 0.8 MUL-METAII 2.3

synthesize each circuit according to its critical path delay under nominal Vdd (1.2V). Then

SPICE simulation is performed on the netlist over a range of Vdd values (0.45V∼1.2V)

with random inputs. In each imprecise and precise hardware pair, since the IHW usually

has smaller delay than the precise HW, it is simulated at the frequency that matches the

precise HW to take advantage of the voltage-frequency scaling effect. Power is calculated

as the product of the average current and Vdd. The error rate is calculated by comparing the

actual circuit outputs with the accurate outputs, and we take (1 − error rate) as the quality

metric, although it can be substituted with other expressions. Figure 2.14 compares the

quality-power (Q-P) curves of IHW+VOS designs and simple VOS designs (applying VOS

directly on precise HW).

Each data point is obtained at a different Vdd, starting from nominal Vdd on the right

to near-threshold Vdd on the left. As can be seen, simple VOS designs are superior to the

IHW-VOS combination at high-power, high-quality region. This is because the IHW-VOS

combination cannot produce error-free outputs at nominal Vdd while precise HW can. But

as Vdd is lowered (to meet tighter power requirements), the quality of simple VOS designs

starts to deteriorate earlier than the combination designs. The shaded area in each graph is

Chapter 2: Imprecise Hardware (IHW) 49

Figure 2.14: Quality-power curves of the IHW-VOS combination designs. The three num-
bers following the names of IHW adders refer to their design parameters. The format is
BPB-L-K. When a parameter is not in use, it is set to zero.

where the combination outperforms simple VOS (i.e., consuming less power at the same

quality level). For example, METAII64 consumes up to 46% less power than RCA64 at the

iso-quality level of error rate = 69%. With the exception of the METAII-based multiplier

(MULT64 METAII), the IHW-VOS combination has a clear advantage over VOS in the

low-power, low-quality region. This is due to the fact that IHW has a smaller delay which

allows VOS to scale to an even lower Vdd.

The optimal Q-P curve of an arbitrary IHW design is thus the supremum1 of the two

curves. It is a piecewise function—it follows the simple VOS curve at high power regions

and switches to the curve of the IHW-VOS combination when the power constraint is below

a certain knee point. That knee point (where the combination curve and the pure VOS curve

intersect) is influenced by the structural parameters of IHW (Figure 2.14). By changing

1The supremum of curve A and curve B is the lowest possible curve that is above both A and B.
More formally, the supremum (sup) of two functions f(x) and g(x) is defined as sup(f(x), g(x)) =
max(f(x), g(x)).

Chapter 2: Imprecise Hardware (IHW) 50

those parameters, designers can fine tune the balance between quality and efficiency.

2.7 Conclusions

In this chapter, we introduced the concept of IHW and studied the behavior of various

IHW designs. Most IHW designs produce one of two types of errors: infrequent-large

magnitude errors or frequent-small magnitude errors. We focused on two types of IHW

designs, fidelity-compromising transformations and imprecise adders and multipliers. They

represent IHW at the algorithmic level and the circuit level and exhibit both ILM and FSM

errors. They will be used in the case studies in Chapter 4.

Chapter 3

Static Error Estimation

The benefit of IHW compared to conventional HW is determined by (1) the increased

efficiency offered by the imprecise computation, and (2) the amount of error introduced

in the output. Many CAD tools can evaluate common efficiency metrics of an integrated

circuit, such as area, power and performance. However, choices are scarce when it comes

to quality evaluation i.e., determining how much the imprecise output differs from the

precise output. Typically a system with IHW components is simulated with random inputs

in order to obtain an output profile, which is then compared to the output profile of a

precise implementation to produce the quality metric. There is a fundamental drawback to

this approach: the simulation time grows exponentially with data width and computation

length. For example, a length-10 DOT-PRODUCT1 with 32-bit numbers would require

3220 ≈ 1.3 × 1030 different input vectors to cover the entire input space. Due to the

relaxed accuracy requirement, the IHW design space is much larger than the traditional

precise hardware design space, thus fast error estimation is crucial to the exploration of

1DOT − PRODUCT (X,Y) =
∑n

i=1 xi · yi

51

Chapter 3: Static Error Estimation 52

the space. This chapter presents two methods for simulation-free analytic modeling of the

statistical error distributions and error bounds introduced by IHW. These methods are based

on Interval Arithmetic and Affine Arithmetic and are modified to handle the characteristics

of IHW errors. Compared to simulations, they provide orders-of-magnitude speedup and

comparable accuracy.

3.1 Error as a Distribution

The IHW components described in Section 2.6 all belong to the class of deterministic

IHW. Although in deterministic IHW the output error is a deterministic function of the in-

put, many applications are concerned not with individual error values, but with the global

error statistics (e.g., error rate) under typical workloads. For this purpose, such errors can

be modeled as a random signal added to the output. This error signal follows a certain dis-

tribution, and can be considered independent of the input because we are only concerned

with error statistics. Section 2.2.2 has already presented a model (PMF) to represent the

distribution of discrete errors. Errors in a floating-point system can be similarly charac-

terized by a probability density function (PDF). In addition to errors, PMFs and PDFs can

also model the distribution of any data during computation.

3.2 Interval Arithmetic and Affine Arithmetic

Two classic methods of estimating variable ranges during numerical computations are

Interval Arithmetic (IA) [35] and Affine Arithmetic (AA) [36]. IA uses a single interval

[x] = [xl, xr] to represent any variable. This range is guaranteed to contain the extreme

Chapter 3: Static Error Estimation 53

values of that variable during computation. The basic operation of IA is simply a mapping

from the input interval(s) to the output interval: [z] = f([x]) or [z] = f([x], [y]). For

example, addition and multiplication between IA forms should obey the following rules:

[xl1, xr1] + [xl2, xr2] =[xl1 + xl2, xr1 + xr2]

[xl1, xr1] · [xl2, xr2] =[min(xl1xl2, xl1xr2, xr1xl2, xr1xr2),

max(xl1xl2, xl1xr2, xr1xl2, xr1xr2)]

(3.1)

These operations are easy to compute and are pessimistic (the actual range may be

smaller). For example, assume x, y ∈ [−1, 1] and we want to compute the range of A+B

using IA, where A = 2x+ y, and B = x− 2y:

[A] = [2x+ y] = [−3, 3]

[B] = [x− 2y] = [−3, 3]

[A+B] = [−3, 3] + [−3, 3] = [−6, 6]

But the actual range should be [A+B] = [2x+y+x−2y] = [3x−y] = [−4, 4]. Since

IA does not consider correlations between variables, the computed range can be larger than

the actual range if variable correlation is present, causing overestimation.

AA uses an affine form: x̂ = x0+x1ε1+x2ε2+· · ·+xnεn, where x0 is the central (mean)

value of the distribution, εi are independent uniformly-distributed variables in the range

[−1, 1] and x1 · · ·xn are coefficients. AA improves on the accuracy of IA by considering

the first-order correlation of error signals. By sharing error symbols (εi) between affine

forms, AA allows the compounding and cancellation of common error symbols so that

the first-order variable correlation is properly handled. AA generally produces smaller

ranges than IA but requires more complex computations. In the previous example, if AA

Chapter 3: Static Error Estimation 54

method is chosen instead of IA, the result would be A + B = (2x + y) + (x − 2y) =

(2ε1 + ε2) + (ε1 − 2ε2) = 3ε1 − ε2 = [−4, 4], which is accurate.

Multiplication between AA forms is calculated as follows. If

x̂ = x0 +
n∑

i=1

xiεi, ŷ = y0 +
n∑

i=1

yiεi

then

ẑ = x̂y = x0y0 +
n∑

i=1

(x0yi + y0xi)εi + (
n∑

i=1

|xi|
n∑

i=1

|yi|)εk (3.2)

where εk is a newly introduced error symbol.

Among AA operations, only linear operations (e.g., addition, subtraction, and scaling

by a constant) are affine operations which result in a perfect affine form. Multiplication and

division are non-affine operations whose results cannot be exactly represented in an affine

form. Approximations must be performed to convert the result into a closest affine form,

but overestimation and underestimation can occur. In certain situations, the range estimates

of AA can be worse than those of IA. For example, for two variables A and B uniformly

distributed in the interval of [−1, 0] and [0, 1] respectively, their product in affine form is

represented by the form (−0.5 + 0.5ε1)(0.5 + 0.5ε2) = −0.25 + 0.25ε1 − 0.25ε2 + 0.25ε3

which spans the range [−1, 0.5], but the actual range of the product is [−1, 0]. Kolev [41]

proposed a modification to the AA multiplication rule. If

x̂ = x0 +
n∑

i=1

xiεi, ŷ = y0 +
n∑

i=1

yiεi

then

ẑ = x̂y = z0 +
n+1∑
i=1

ziεi,

Chapter 3: Static Error Estimation 55

where

c = 0.5
n∑

i=1

xiyi

z0 = x0y0 + c

zi = x0yi + y0xi (i = 1 · · ·n)

zn+1 = (
n∑

i=1

|xi|
n∑

i=1

|yi|)− |c|

(3.3)

This modification leads to smaller overestimation compared to the original method (Eq.

3.2). Take the same example above (−0.5 + 0.5ε1)(0.5 + 0.5ε2), using Kolev’s method

the result will be −0.125 + 0.125ε3, which translates to [−0.25, 0]. While it is still not the

accurate range [−1, 0], its overestimation is much smaller compared to [−1, 0.5].

However, both IA and AA forms are only capable of representing symmetric distribu-

tions. Highly asymmetric distributions, such as the errors produced by IHW (Figure 2.3),

are not representable by either IA or AA forms. In order to solve this problem, we propose

some extensions to IA and AA. Instead of representing the entire distribution with a single

interval or affine form, we use multiple intervals or affine forms.

3.3 Modified Interval Arithmetic

Modified Interval Arithmetic (MIA) [42] extends IA by using multiple intervals to rep-

resent a distribution to enhance accuracy. MIA can be easily mapped to the PMF: each

PMF bar corresponds to one interval in MIA form. Thus, the MIA representation of a

variable with a distribution between [−2p, 2q] can be expressed as:

Chapter 3: Static Error Estimation 56

MIAX(n) =

P (−2p−n+1 ≤ X ≤ −2p−n), if 1 ≤ n ≤ p− ε

P (−2ε ≤ X ≤ 0), if n = p− ε+ 1

P (0 ≤ X ≤ 2ε), if n = p− ε+ 2

P (22ε+n−p−3 ≤ X ≤ 22ε+n−p−2), if p− ε+ 3 ≤ n ≤ p+ q − 2ε+ 2

,

where n ∈ [1, p+ q − 2ε+ 2], p, q, ε ∈ Z

In the above notation, 2ε represents the maximum resolution of this particular MIA

form because any implementation of the MIA form can only contain a finite number of

terms. There are a total of p + q − 2ε + 2 terms in the above MIA form. In practice 2ε

can be set to an error magnitude level that has a negligible effect on output quality. Unit

in the last place (ULP) is usually a good choice for 2ε. The upper bound 2q and the lower

bound−2p should be set to match the maximum and minimum value in the number system

of choice, e.g., a 32-bit signed 2’s complement number with 7-bit integer part and 24-bit

fractional part (denoted as 1 7 24) should have p = q = 7 and ε = −24.

When we use an MIA form to represent an error distribution, the total error probability

is given by
∑
MIA(n).

For operations between two MIA forms MIAa and MIAb, we need to perform pair-

wise IA operation from both MIAs: every interval from the MIAa must perform that

operation with every interval from MIAb. This is based on the assumption that the two

input MIAs are uncorrelated. Variables a and b can be independently chosen from intervals

of their respective MIA and the joint probability should be the product of the probabilities

of both intervals. Based on the rules of IA operations (Eq. 3.1), each resulting IA interval

will be wider than both input IA intervals and may not align exactly to the 2ε MIA bound-

Chapter 3: Static Error Estimation 57

aries. Therefore an IA-to-MIA conversion will be needed. The process is described below

(Algorithm 1): every MIA interval fully or partially contained in the IA interval will get

the probability of di/d where di is the width of the overlapping interval and d is the width

of the IA interval.

Algorithm 1 IA-to-MIA conversion: IAx →MIAx

IAx = [xl, xr]

for MIAx(i) = [xi,l, xi,r] ∈MIAx, where xi,l, xi,r are integer powers of 2 do

if xi,l ≤ xl and xl ≤ xi,r ≤ xr then

P (i) =
xi,r − xl
xr − xl

else if xl ≤ xi,l ≤ xi,r ≤ xr then

P (i) =
xi,r − xi,l
xr − xl

else if xl ≤ xi,l ≤ xr and xi,r ≤ xr then

P (i) =
xr − xi,l
xr − xl

else

P (i) = 0

end if

end for

After conversion, a new MIA form is produced for every pair of IA intervals in the

original operands. These intermediate MIA forms are merged to form the final result

MIA. While merging, the probabilities of the same intervals will be summed to produce

the final probability. The following pseudo-code (Algorithm 2) describes the calculation

of MIAc = MIAa + MIAb. MIA multiplication is similar to MIA addition—the only

difference is the replacement of pair-wise IA additions with pair-wise IA multiplications.

Chapter 3: Static Error Estimation 58

Algorithm 2 Calculate MIAc ←MIAa +MIAb

for MIAa(i) ∈MIAa do

for MIAb(j) ∈MIAb do

MIAc,i,j ←MIAa(i) +MIAb(j) (IA addition)

end for

end for

for all n do

MIAc(n)← 0

for all i do

for all j do

MIAc(n)←MIAc(n) +MIAc,i,j(n) (MIA merging)

end for

end for

end for

When performing pair-wise IA operations, we suggest making some modifications to

the original rules to improve modeling accuracy. These modifications are based on the fact

that the sum or product of two uniformly-distributed variables is usually not a uniformly-

distributed variable. For example, the sum of two uniform intervals on [−2,−1] and [0.5, 1]

has a trapezoid-shaped distribution (Figure 3.1).

Using a single [−1.5, 0] interval to describe the result leads to loss of information. A

more accurate way is to calculate the areas between any two consecutive 2k markers and

convert that area, which is also a probability, to a new MIA term. For example, if the above

trapezoid-shaped distribution is to be represented in MIA with a maximum resolution of

Chapter 3: Static Error Estimation 59

Figure 3.1: Probability distribution of the sum of two uniformly-distributed variables.

0.25, then

MIAsum(x) =

0.3, −2 ≤ x ≤ −1

0.4, −1 ≤ x ≤ −0.5

0.2, −0.5 ≤ x ≤ −0.25

0.1, −0.25 ≤ x ≤ 0

A more compact notation is

MIAsum(x) = [0.3 0.4 0.2 0.1 ε]

where ε denotes the position of zero. The key is to first derive the output distribution

as a function of the input distribution and then convert it to MIA format. Since format

conversion is a lossy process, it is more accurate to delay the conversion for as long as

possible.

Obtaining the relationship between input and output distributions is a well-studied prob-

lem in probability theory. Assuming both inputs are independently distributed, the results

of the four basic precise arithmetic operations (addition, subtraction, multiplication and

Chapter 3: Static Error Estimation 60

division) are listed below:

Precise addition: Z = A+B

PMFZ = PMFA ∗ PMFB (convolution)
(3.4)

Precise subtraction: Z = A−B

PMFZ = PMFA xcorr PMFB (cross-correlation)
(3.5)

Precise multiplication: Z = A×B

PMFZ = PMFA ∗ ∗PMFB (multiplication-correlation)
(3.6)

Precise division: Z =A/B

PMFZ =PMFA//PMFB (division-correlation)
(3.7)

Define multiplication-convolution: f ∗ ∗g(t) ≡
∫ ∞
−∞

f(τ)g(
t

τ
) dτ

Define division-convolution: f//g(t) ≡
∫ ∞
−∞

f(τ)g(tτ) dτ

Consider the addition operation as an example. In digital signal processing, convolution

is defined as

f ∗ g(t) ≡
∫ ∞
−∞

f(τ)g(t− τ) dτ

Here f(x) and g(x) are PMFs of two independent variables to be added. The PMF of their

sum h = f + g therefore has the following property:

h(a+ b) = f(a)g(b)

The convolution between f and g precisely aggregates all possible cases where both inputs

sum to the same value. To confirm this result, we notice that the convolution of two square

Chapter 3: Static Error Estimation 61

waves of equal widths results in a triangle wave, and the distribution of the sum of two

standard uniform random variables also has a triangle distribution. Eq. 3.4 simply means

that the probability distribution of the sum of two independent random variables is the

convolution of their individual distributions [43].

These rules allow us to perform MIA operations with higher accuracy. For example,

assuming the maximum resolution (2ε) is 2−4, we want to estimate the sum of two inde-

pendent uniformly-distributed variables (a and b), both in [−1, 1]. First, their MIAs can be

represented as:

MIAa(x) = MIAb(x) = [0.25 0.125 0.0625 0.03125 0.03125 ε

0.03125 0.03125 0.0625 0.125 0.25]

Using the MIA addition rules described above, we can obtain the sum distribution as

MIAa+b,MIA(x) = [0.1250 0.1594 0.0961 0.0556 0.0318 0.0321 ε

0.0321 0.0318 0.0556 0.0961 0.1594 0.1250]

while the theoretical (triangle) distribution is

MIAa+b,theoretical(x) = [0.1250 0.1563 0.1016 0.0566 0.0295 0.0305 ε

0.0305 0.0295 0.0566 0.1016 0.1563 0.1250]

But a simple IA addition will produce a uniform interval on [−2, 2] which translates to

MIAa+b,IA(x) = [0.2500 0.1250 0.0625 0.0313 0.0156 0.0156 ε

0.0156 0.0156 0.0313 0.0625 0.1250 0.2500]

A plot of these MIAs on a PMF bar chart (Figure 3.2) shows that the MIA-based es-

timation is much more accurate than IA-based estimation. This higher accuracy is due to

Chapter 3: Static Error Estimation 62

two reasons. First, MIA is a finer-grained representation of a distribution than IA. The

shape of a non-uniform distribution is better preserved with MIA. Second, the pair-wise IA

operations also use accurate rules derived from probability theory to preserve the shape of

the final distribution.

Figure 3.2: Estimated MIA of the sum of two independent uniform variables in [−1, 1]
using IA, MIA methods, and the theoretical MIA.

Chapter 3: Static Error Estimation 63

3.4 Modified Affine Arithmetic

Similar to MIA, Modified Affine Arithmetic (MAA) extends AA by using multiple AA

forms to represent a given distribution. The mathematical representation of MAA form is:

MAAX =

p1 : x1,0 + x1,1α0 + x1,2β0 + · · ·

p2 : x2,0 + x2,1α1 + x2,2β1 + · · ·

p3 : x3,0 + x3,1α2 + x3,2β2 + · · ·

· · ·

where xi,0 are central values, xi,j are scaling coefficients and α, β, · · · are error symbols.

Each affine form occurs with probability pi.

When two MAA forms operate together, every AA form of the first operates with every

AA form of the second. In order to preserve the property of
∑
pi = 1 for every MAA

form, we introduce the concept of an exclusive set: a group of error symbols that originate

from the same distribution. Any variable which appears for the first time will produce a

new exclusive set. Any two different symbols from the same exclusive set are mutually

exclusive, and they are called conflicting symbols. Conflicting symbols are denoted by the

same symbol with unique subscripts, for example, α0, α1, α2, · · · belong to one exclusive

set and β0, β1, β2, · · · belong to another. Through repeated and cross computations, these

symbols will occur in many derived MAA forms. When two MAA forms operate, only

those affine forms with no conflicting symbols are allowed to operate with each other. The

reason is that symbols in the same exclusive set are originally an integral part of the same

distribution (denoted as D). If a certain affine form of a derived variable contains a symbol

in the exclusive set, it means this interval is the result of taking a value in that original part

Chapter 3: Static Error Estimation 64

of D. Having two conflicting symbols in the same affine form is thus an impossible event.

For example, consider two MAA forms:

MAAA =

 0.5 : 1 + 0.25ε1

0.5 : −1 + 0.5ε2

MAAB =

 0.8 : 0.5 + 0.5α1

0.2 : −0.25 + α2

We want to calculate the MAA for (A+B)(A−B). First we express A+B and A−B

in MAA form:

MAAA+B =

0.4 : 1.5 + 0.25ε1 + 0.5α1 (a)

0.1 : 0.75 + 0.25ε1 + α2 (b)

0.4 : −0.5 + 0.5ε2 + 0.5α1 (c)

0.1 : −1.25 + 0.5ε2 + α2 (d)

(3.8)

MAAA−B =

0.4 : 0.5 + 0.25ε1 − 0.5α1 (a)

0.1 : 1.25 + 0.25ε1 − α2 (b)

0.4 : −1.5 + 0.5ε2 − 0.5α1 (c)

0.1 : −0.75 + 0.5ε2 − α2 (d)

(3.9)

The multiplication procedure is as follows:

MAA(A+B)(A−B) =

0.4 : 3.8(a)× 3.9(a)

0.1 : 3.8(b)× 3.9(b)

0.4 : 3.8(c)× 3.9(c)

0.1 : 3.8(d)× 3.9(d)

(3.10)

Chapter 3: Static Error Estimation 65

3.8(a)× 3.9(b) is not allowed because it contains conflicting symbols α1 and α2. Sim-

ilarly 3.8(a)× 3.9(c) and 3.8(a)× 3.9(d) are not allowed because they contain conflicting

symbols ε1 and ε2. Since conflicting symbols can cause impossible events, their proba-

bilities are instead added to the remaining non-conflicting operations. For example, be-

tween 3.8(a) and 3.9 (a–d), only 3.8(a) × 3.9(a) is permitted, so it has the probability

0.4 × 1 = 0.4, rather than 0.4 × 0.4 = 0.16, because the probabilities of those prohibited

operations are transfered to valid operations. This is because there are correlated variables

in this operation. The four AA forms of MIAA+B are not independent of the four AA

forms of MIAA−B. The choice of an AA form in MIAA+B will influence the probabil-

ity of the four AA forms of MIAA−B. In this case, the choice of a specific AA form of

MIAA+B will uniquely determine the choice of an AA form within MIAA−B.

MAA has a practical issue of storage explosion. When we want to operate two MAA

forms each containingN andM AA forms, in general the resulting MAA form will contain

N ×M AA forms. The exponential growth of required storage limits the practical value

of the MAA technique, but this problem can be can be addressed in several ways. First,

we can use a larger scaling factor between neighboring intervals while constructing the

MAA. For example, choosing 4 instead of 2 as the scaling factor can effectively reduce the

number of AA forms by half. Second, AA forms with low frequency (small p values) or

low magnitude (small coefficients) can be merged into their neighboring AA forms. Both

techniques carry the side effect of reduced estimation accuracy.

Chapter 3: Static Error Estimation 66

3.5 Error Propagation Model

In the previous section we discussed the operations of PMF under error-free conditions

(with precise hardware). This section presents a primitive model for error propagation

across a single IHW operation. The goal is to derive the output PMF using the input PMF

and the IHW parameters.

The first step is to use a common data structure (PMFd, PMFe) to represent the dis-

tribution of any data during an imprecise operation. PMFd is the error-free data PMF

obtained assuming all operators are precise while PMFe is the pure error MIA introduced

by imprecise operators. The sum of PMFd and PMFe gives the actual (error-present) data

PMF. The PMF can be realized in either MIA form or MAA form.

Next it is necessary to build a model to obtain the output (PMFd out, PMFe out) from

the input (PMFd in, PMFe in), see Figure 3.3. The imprecise operator (marked with ∗)

will also introduce PMFe op, which can be regarded as additive noise to the system.

Figure 3.3: Error propagation model of an imprecise 2-operand operation.

The principal task of error propagation is to derive the relationships between these

quantities for common operations (ADD, SUB, MUL, and DIV). More complex operations

can be studied by decomposing them into the four basic operations. Assuming we use MIA

Chapter 3: Static Error Estimation 67

as the PMF implementation, the derivation results are as follows:

ADD : MIAd out =MIAd in1 +MIAd in2

MIAe out =(MIAd in1 +MIAe in1) + (MIAd in2 +MIAe in2)

+MIAe add −MIAd out

=MIAe in1 +MIAe in2 +MIAe add

MUL : MIAd out =MIAd in1 ×MIAd in2

MIAe out =(MIAd in1 +MIAe in1)× (MIAd in2 +MIAe in2)

+MIAe mul −MIAd out

=MIAd in1 ×MIAe in2 +MIAd in2 ×MIAe in1

+MIAe in1 ×MIAe in2 +MIAe mul

SQUARE : MIAd out =MIA2
d in

MIAe out =(MIAd in +MIAe in)2 +MIAe squared −MIAd out

=MIA2
e in + 2MIAd in ×MIAe in +MIAe squared

(3.11)

In Eq. 3.11, operations between MIAs should follow the rules set forth in Section 3.3.

Notice that SQUARE is separated from MUL because it cannot be obtained by simple MIA

addition and multiplication. Even if X and Y have the same distribution, the distribution

of X2 will be quite different from that of X · Y . The modeling of SQUARE relies on

characterization (see the next paragraph).

MIAe add, MIAe mul and MIAe square are attributes of the imprecise operator deter-

mined by the design parameters. They can be obtained by simulation. The process of

obtaining MIAe op through simulation is called characterization of IHW. To character-

ize ADD (Figure 3.4), we randomly draw data from intervals of both inputs’MIAs (i.e.,

Chapter 3: Static Error Estimation 68

draw first operand from [2i, 2i+1] and draw second operand from [2j, 2j+1]) and perform

the imprecise operation. Simulation is made possible by creating functional models of the

imprecise adders and multipliers written in Matlab. The MIAd and MIAe of the result are

then stored into a matrix at index (i, j). When the whole matrix is populated, we can later

use it to quickly retrieve MIAe op during MIA propagation. All binary (two-input) oper-

ators can be characterized in this way. For unary operator SQUARE, the result is stored

in a vector instead of a matrix and we produce two vectors for SQUARE: one for storing

the error (MIAe square) and the other for storing the squared data (MIA2
d in and MIA2

e in).

IHW can be characterized a piori and each IHW configuration (a unique setting of BPB,

L, K, and Vdd) needs to be characterized only once. The characterization data can then be

reused many times for different input workloads.

Figure 3.4: Characterization of an IHW adder.

In summary, static MIA propagation follows three steps:

(1) Construct the characterization vector or matrix by simulating the IHW with inputs

drawn from various [±2i,±2i+1] intervals.

Chapter 3: Static Error Estimation 69

(2) During propagation, use the input MIAs to look up the characterization vector or

matrix to obtain MIAe op.

(3) Apply rules in Eq. 3.11 to obtain output MIA.

Step 2 and step 3 may need to be repeated because the output MIA normally becomes

the input MIA in the next round of computation. The final MIAd and MIAe accurately

describe the data and error distribution of the kernel output and they can be used to evaluate

output quality. Common quality metrics such as “error rate” and “mean error magnitude”

are computed as follows:

error rate =

∫
MIAe(x)

mean error magnitude =

∫
|x ·MIAe(x)|

Static MIA propagation is much faster than Monte Carlo simulations because no actual

computation is performed. It is the distributions of the data (in the form of MIA) that are

being propagated, rather than the actual data.

3.6 Experimental Results

For the purpose of evaluating the proposed error estimation methods, we selected two

kernel functions common in multimedia, recognition and mining applications [14]. Ta-

ble 3.1 summarizes the two kernels and three applications that use these kernels. The

errors from imprecise implementations of the two kernels will be evaluated using both

the proposed static methods and Monte Carlo simulations, after which the results will be

compared. The applications will be used to evaluate the efficiency-quality co-optimization

framework in Chapter 4.

Chapter 3: Static Error Estimation 70

Table 3.1: Percentage application runtime spent in computation kernels.

Kernel Application Runtime%

DOT − PRODUCT (X, Y) =
∑n

i=1 xi · yi Leukocyte Tracker [44] 22%

L2−NORM (X, Y) =
∑n

i=1(xi − yi)2
SVM 98%

K-means 49%

Figure 3.5: Error MIAs of DOT-PRODUCT and L2-NORM.

Figure 3.5 shows the final error MIAs after performing a size-25 DOT-PRODUCT and

a size-49 L2-NORM using both Monte Carlo simulations and static estimation. DOT-

PRODUCT contains an ACA adder with K=16 and an METAII multiplier with BPB=8 and

L=4; L2-NORM contains an ACA adder with K=16 and an ACA multiplier with K=24.

Table 3.2 compares the speed and accuracy of simulated and estimated error MIAs. All

experiments are run on a dual-core Xeon 2.4GHz with 32GB memory. The simulation size

is 500,000 and is used as the basis of comparison. As seen in the table, the speed improve-

ment is dramatic and the simulated and estimated error distributions are very close. For

Chapter 3: Static Error Estimation 71

example, a Hellinger distance2 of 0.05 is comparable to 1 million random samples from

two uniform distributions between [−1, 1] generated by the Mersenne Twister algorithm

[46]. The Hellinger distance is calculated by integrating the difference of two distribu-

tion functions over the entire distribution range; therefore small-magnitude errors are not

weighted as heavily as large-magnitude errors. However, from a system perspective, large-

magnitude errors should be weighted more heavily because they have a greater impact

on the output quality. Thus we believe the Hellinger distance is an accurate measure of

similarity between two distributions functions. If one is more interested in comparing the

small-magnitude range of two distributions, he or she just needs to confine the integration

interval to the region of interest. For example, integrating over a narrow region around zero

will reveal the difference in small-magnitude range more clearly than the original Hellinger

distance.

Table 3.2: Speed and accuracy comparison between simulation and static estimation.

Kernel Simulation time Estimation time Hellinger distance

DOT-PRODUCT 565 hr 13 s 0.07

L2-NORM 620 hr 6 s 0.04

3.7 Conclusions

In order to safely deploy IHW in a system, we need to quantitatively evaluate the errors

induced by IHW implementations. This chapter proposes two analytic error estimation

2A statistical measure of similarity between two distributions—smaller values indicate higher similarity
[45]

Chapter 3: Static Error Estimation 72

methods that offer significant speedup over simulation with reasonable estimation accuracy.

The pros and cons of the related methods are summarized in Table 3.3.

Table 3.3: Overview of error estimation methods.

Method Simulation MIA MAA

Pros Statistically Fastest, Fast if low complexity,

accurate reasonably accurate tight bounds

Cons Slow, Loose bounds if Storage explosion if

bounds too tight variables correlate high complexity

Chapter 4

A Methodology for Efficiency-Quality

Co-Optimization

What circuit and system designers are ultimately interested in is how to use IHW to

obtain a design that better meets their design objectives. In this chapter we will present two

different methodologies, one at the algorithmic level using fidelity-compromising transfor-

mations, the other at the RTL level using structural IHW adders and multipliers and variable

Vdd. Both methodologies can solve constraint-based and cost function-based optimization

problems. These optimization methodologies are fundamentally different from traditional

circuit optimization methodologies in that output quality is taken into account.

4.1 For Fidelity-Compromising Transformations

As discussed in Section 2.6.1, fidelity-compromising transformation can be extremely

powerful in reducing the latency of a design, but a methodology is needed to use them to

73

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 74

achieve design objectives, similar to a synthesis algorithm for applying delay and power

optimizations. This section introduces a design optimization methodology through HDG

manipulations that include fidelity-compromising transformations. A hierarchical depen-

Figure 4.1: Hierarchical dependency graph.

dency graph (HDG) [30] (Figure 4.1) is a data structure used to represent both the algorithm

and its hardware implementation, enabling bi-directional communication between the algo-

rithm and hardware designers during design space exploration. It shares some similarities

with traditional task graphs [47–49] but is structured hierarchically to manage design com-

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 75

plexity. At the top level of the graph, each node represents an algorithmic task (e.g., edge

detection, noise removal, etc.). Subsequent levels are similar, with nodes representing sub-

tasks, all the way down to the most basic operations, such as addition and multiplication.

At the bottom level, circuit designers can annotate every functional block with its HW met-

rics such as power, delay, and area. These metrics are automatically aggregated at higher

levels. At the algorithm level, system designers can experiment with alternative algorithms

and find the best tradeoff between quality and efficiency. We implemented HDG in a tool

called ColSpace. It comes with some common library tasks and blocks pre-loaded to ease

HDG development, and the library can be extended by adding custom components. The

tool is available for download [50] - the current version supports only latency and through-

put as efficiency metrics, with area and power to be added soon.

Suppose an image processing algorithm is already provided in HDG form, and we want

to minimize latency metric under a minimum fidelity constraint. The problem can be stated

as follows. Given the following:

1. an HDG describing an algorithm and its lowest latency implementation and a runnable

source code,

2. a library containing applicable fidelity-compromising transformations (in the same

format as Table 2.3), Tn : (∆FIDn,∆LATn, p1, p2, · · · , pHn) where Hn denotes the

number of thresholds that can be tuned for transformation Tn,

3. a latency evaluation routine that gives total latency LATtotal and a fidelity evaluation

routine that gives global fidelity FIDtotal, and

4. minimum acceptable fidelity FIDmin.

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 76

the goal of the design space exploration algorithm is to determine:

1. which transformations to apply,

2. the proper settings for each transformation, and

3. the order in which to apply those transformations so as to minimize LATtotal.

Figure 4.2: Design flow with fidelity-compromising transformations.

Figure 4.2 shows the procedure to solve this problem. To obtain the initial lowest

latency implementation, an HDG is set up to represent the dependency information of the

algorithm. If the original system is implemented in C, we provide a tool c2colspace to

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 77

convert the C source into an HDG project. Then an optimization algorithm is chosen to

solve the problem. The algorithm will call a fidelity estimator and a latency estimator to

determine whether a particular design point is a good candidate to direct the search. Design

points are chosen by picking IHW designs from the component library. Also, the user is

expected to provide a target constraint. Here a greedy algorithm is presented to showcase

a typical search procedure:

• For every fidelity-compromising transformation Tn, adjust its threshold

Pn = (pn,1, pn,2, · · · , pn,Hn) so that the global fidelity FIDtotal = FIDmin.

• While Pn is set, calculate resultant global latency LATtotal using profiling informa-

tion.

• Find the transformation Tk that gives minimum latency, which will be returned as

LATmin.

If multiple threshold settings Pn can result in FIDtotal = FIDmin, all of them will be

tried for calculation. Only the lowest LATtotal is recorded.

For cases where the objective is to minimize a global cost function, such as
LATtotal
FIDtotal

(again,

a greedy algorithm is used for demonstration), the procedure is as follows:

• For every fidelity-compromising transformation Tn, adjust its threshold

Pn = (pn,1, pn,2, · · · , pn,Hn) so as to minimize d
LATtotal
FIDtotal

. If calculating d
LATtotal
FIDtotal

is hard, we can apply l′H ôpital′s rule using d(LATtotal) and d(FIDtotal).

• Find the transformation Tk with minimum d
LATtotal
FIDtotal

. If that value is still positive,

end algorithm, return current P settings.

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 78

• Apply Tk with corresponding Pk.

• Re-evaluate FIDtotal and LATtotal for every transformation.

The derivatives can be calculated against a discretized domain (to be demonstrated in

Section 4.1.3). As long as the step size chosen is small enough that the the cost function is

monotonic in this range, global optimal point can still be properly located.

There are two ways to reduce the simulation time, but both can cause inaccuracies.

One is to apply only uncorrelated transformations. Transformations that are uncorrelated

can be applied separately and their combined effect on LAT and FID will be the same as

applying them simultaneously. Another way is to calculate a local disturbance error of the

fidelity from the transformation and propagate that error across the entire design to obtain

a global error estimate. Symbolic Noise Analysis (SNA) [51] can accomplish this task

without simulation.

4.1.1 Latency Evaluation in HDGs

There are two types of latencies in an HDG. First, every node in the HDG is assigned a

delay value (LAT). This value is defined in the library for basic nodes such as adders and

multipliers; it reflects the relative speed of execution of every functional unit at the logic

level. Its unit is control step, or c-step, which is a multiple of the clock period. Second,

a path delay (PLAT) is the accumulative delay along a data path formed by nodes and

edges. The path is specified by a pair of nodes (Nstart, Nfinish), where Nstart and Nfinish

are the beginning and end nodes of the path, respectively. The latency of a composite node

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 79

N (a node with sub-structures) is computed as:

LATN = max (PLAT (Ninput, Noutput)) (4.1)

which is the length of the critical path from N’s inputs to its outputs.

Fidelity-compromising transformations allow a node to have multiple LAT values cor-

responding to different alternative implementations. If the pertinent transformation is con-

trolled by a threshold, then each alternative implementation receives a percentage of exe-

cution. The aggregate latency for that node is given by:

LATtotal =
∑
n

LATnWn (4.2)

where Wn is the percentage of execution of transformation n. For correlated transforma-

tions, a node with multiple alternative designs cannot be substituted by an aggregate node.

Each combination of alternative designs for all correlated transformations must be con-

sidered. For instance, if transformation Tk has Ak alternative designs, there are a total

of M =
∏

k Ak execution paths, each with latency LATm and corresponding execution

percentage Wm. The aggregate latency for these nodes is given by:

LATtotal =
M∑

m=1

LATmWm (4.3)

It can be easily shown that this formula reduces to simple aggregate node formula 4.2 when

all transformations are uncorrelated:

LATT1T2 = LATT1 + LATT2

WT1T2 = WT1WT2

For nodes involving control flows, since the number of iterations of a loop may not be

known at design-time, the application can be profiled to determine the mean or worst-case

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 80

number of iterations. The number of iterations can also be modeled as a variable. In the

latter case, a latency analysis will prompt the user to enter a value for each variable in the

HDG (which can again be estimated via profiling). In the case of a branch, both paths are

represented, with the longer path defining the latency.

4.1.2 Fidelity Evaluation in HDGs

In most applications, fidelity can only be obtained by simulating an actual implemen-

tation of the algorithm and evaluating its output. A pure software approach is usually

preferred due to its ease of development. Fidelity-compromising transformations will

be implemented in the target programming language. Wherever one or more fidelity-

compromising transformations are applicable, a switch statement is inserted so that a sim-

ulator can easily run the simulation with different transformations turned on and off. For

transformations with thresholds, a profiling counter should be kept to record the percentage

of executions along each path.

The fidelity evaluation routine can be automated by including replacement code seg-

ments as part of the transformation library. Whenever a transformation is applied in the

HDG, the corresponding code segment will be looked up in the library and enabled in the

source code.

4.1.3 Case Study on SRAD

SRAD (Speckle Reducing Anisotropic Diffusion) [52] is a moderately complicated im-

age processing algorithm tailored to ultrasonic and radar imaging applications. It aims

to remove multiplicative noise in imagery. The images in Figure 4.3 illustrate the SRAD

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 81

process. The fidelity metric compares the reconstructed image (d) to the original (a). Real-

time processing requires a minimum frame-per-second throughput [53], thus defining a

frame latency constraint. The Matlab implementation of SRAD is significantly slower

than real-time [53], so latency reduction is the focus of this algorithm-implementation co-

optimization.

Figure 4.3: Ultrasound images: (a) Perfect edges (b) Noisy image (c) SRAD output (d)
Detected edges from SRAD output.

The initial HDG based on the Matlab code is annotated with the component-level la-

tency values listed in Table 4.1. The latency of the HDG is then lowered by duplicat-

ing hardware units to create parallelism and applying fidelity-preserving transformations.

Fidelity-preserving transformations are standard logic synthesis optimizations, including

dead code elimination, loop unrolling and term rewriting [54]. The resulting HDG has 9

levels in the hierarchy and consists of a total of 950 nodes. Given this initial architecture,

each pixel requires 48 clock cycles to finish one iteration of its update workload, and each

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 82

pixel in the frame is processed serially. An improved Jacobian update removes inter-pixel

dependency so that all pixels can be processed in parallel. The latency of processing one

frame is 100 iterations/frame × 48 cycles/iteration = 4,800 cycles/frame, or a throughput

of 208K frames/second (fps) with a circuit running at 1GHz. Such a high throughput can

be difficult to achieve due to the tremendous cost of building a circuit that supports such

parallelism. While massive parallelism is expensive, we can still meet the real-time con-

straint by reducing the latency of processing each pixel. Applying fidelity-compromising

transformations is an effective method.

Table 4.1: Principle component latencies in the SRAD algorithm [55].

Principle Component Latency (unit=1 clk cycles)

Addition/Subtraction 1

Multiplication/Squaring(ˆ2) 1

Division/Inversion 10

Square Root 10

Shift 1

Memory Access 1

Table 4.2 contains relevant entries from the fidelity-compromising transformation li-

brary. Both entries are mathematical approximations with thresholds.

Now consider how these two transformations are obtained. As discussed in the previ-

ous section, the ColSpace tool automatically finds the critical path and bottlenecks, which

then become targets for additional fidelity-compromising transformations. For example,

the bottleneck of the SRAD algorithm comes down to two DIVs and one SQRT opera-

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 83

Table 4.2: Transformation library for SRAD case study.

Transformation (a) (b)

Before
1

(1 +
1

4
x)2

1

1 + y

After 1− x

2
1− y

p1 (threshold) TH(x) TH(y)

Condition |x| < TH(x), TH(x) ∈ (0, 2) |y| < TH(y), TH(y) ∈ (0, 1)

∆lat 11 10

∆fid
3TH(x)2

16
+
TH(x)3

32
TH(y)2

tion. Then appropriate transformations can be easily developed to specifically attack the

bottleneck operations. Transformations (a) and (b) have been developed to replace the two

expensive DIVs. Both transformations are applied when x or y is smaller than their respec-

tive threshold. Since the values of x and y are not known until runtime, the transformations

can be made conditional based on a pre-determined thresholds (TH(x) and TH(y)). The

transformation is enabled only when the variable x or y drops below the corresponding

threshold.

During actual runtime, a transformation can be either applied (Yes) or not applied (No)

based on whether or not the threshold condition is met. Therefore there are a total of 22 = 4

execution paths for each candidate transformation. The latency evaluation routine considers

each path that could be taken through the conditional transformations, as shown in Table

4.3. The percentage of times each of these eight paths is taken is threshold-dependent and

is determined by profiled executions.

Fidelity is evaluated in terms of Pratts figure of merit [56], which is a value between 0

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 84

Table 4.3: Critical path latencies for different transformation combinations.

Case A B C D

Apply(a) No Yes No Yes

Apply(b) No No Yes Yes

Latency 4.8K 3.7K 3.8K 2.7K

(worst) and 1 (best), generated by comparing the SRAD output with the output of a perfect

edge detector. The original SRAD algorithm, free of any alterations, produces an average

fidelity of 0.3678. Parameterizing the transformations using thresholds enables quantitative

analysis. Figure 4.4 shows threshold exploration results for transformations (a) and (b)

using three different cost functions:
LAT

FID
,
LAT√
FID

, and
LAT

FID2
. The two axes denote

discretized threshold settings, and each square denotes a certain combination of TH(x) and

TH(y), with the two extremes being “never apply the transformation” (denoted by N) and

“always apply the transformation” (denoted byA). So the upper right corner corresponds to

the scenario in which both transformations are always applied while the lower left corner

corresponds to the scenario in which both transformations are never applied. A lighter

color signifies a higher cost function value, so darker colors are better design points. The

derivative is calculated by taking the difference between adjacent squares. The plots shown

are the average results from running ten different ultrasound images.

Since there is a possibility for greedy algorithms to converge to a local minimum on a

2D design space, we allow the greedy algorithms to use different neighborhood sizes during

the search process. The neighborhood size determines the region within which d(
LAT

FID
)

will be evaluated. The one with the lowest cost function in the neighborhood will become

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 85

Figure 4.4: 2D plots of various cost functions with two conditional transformation thresh-
olds as variables. Representing cost function: (a) latency/fidelity0.5 (b) latency/fidelity
(c) latency/fidelity2. Letter “N” on the axes denotes the scenario of “never applying the
transformation”, and Letter “A” means “always applying the transformation”. The circled
squares denote the optimal design points that minimize the cost function.

the design point in the next iteration. Larger neighborhoods are more likely to escape local

minima, but they require more processing time. Table 4.4 compares results using different

neighborhood sizes (i.e., number of squares away from the initial point).

Table 4.4: Tradeoff between quality of result and exploration effort for different neighbor-
hood sizes.

Neighborhood Size Average Space Explored Average Result Quality

(compared to optimal point)

1 20% 98.15%

2 36.11% 100%

3 42.00% 100%

4 49.78% 100%

The tradeoff between the two transformations is more subtle. Observation shows that

the optimal design point (the circled square) never apply transformation (a). This suggests

that the system is more sensitive to transformation (a) than transformation (b). Thus, a

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 86

good strategy is to apply transformation (a) conservatively (with a small threshold) and

transformation (b) aggressively (with a larger threshold). Furthermore, the location of the

optimal design point can change based on the definition of the cost function.

This cost function-based approach can also be used to solve a constraint-based problem,

where one metric is optimized while another is subject to a constraint (such as the real-time

requirements of SRAD). The latency vs. fidelity and fidelity vs. latency Pareto curves in

Figure 4.5 and Figure 4.6 enable a designer to identify the design points where one metric is

constrained and the other is minimized. These curves are derived from the mesh grid plot

by searching the entire design space using the proposed algorithm and finding all points

with equal fidelity (to construct Figure 4.5) or equal latency (to construct Figure 4.6). Then

from this group of points, the one with lowest latency or highest fidelity is chosen.

Figure 4.5: Latency vs. fidelity curve of SRAD (with 90% fidelity point located).

Assume that our constraint is to allow no more than 10% degradation of fidelity, we

will first calculate 90% best fidelity = 0.3310. We then look up the latency vs. fidelity plot

to find the corresponding lowest latency, which is 4305, a 10.31% latency reduction from

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 87

Figure 4.6: Fidelity vs. latency curve of SRAD.

the original design. In addition to meeting metric constraints, these curves also allow de-

signers to identify breaking points at which big savings in system metrics can be achieved.

For example, fidelity=0.3 and latency=3,800 are turning points where the slopes change

abruptly.

Table 4.5 is a summary of improvements resulting from fidelity-compromising trans-

formations (based on the optimal points selected in Figure 4.4). It is clear that the benefit

of applying fidelity-compromising transformations is highly dependent on the type of cost

function. If the cost function puts greater weight on latency (
latency√
fidelity

), our methodology

can lower the cost function by up to 13%. As the emphasis shifts to fidelity (
latency

fidelity2
),

the reduction on cost function that can be achieved is significantly smaller.

4.2 For Imprecise Adders and Multipliers

In this section, we will take E/op as the efficiency metric and present an efficiency-

quality optimization framework at the RTL level. At the RTL level, efficiency metrics such

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 88

Table 4.5: Impact of transformations on system metrics (fidelity, latency, and cost function).

∆fid ∆lat ∆cost

latency√
fidelity

-16.73% -20.74% -12.99%

latency

fidelity
-16.73% -20.74% -4.36%

latency

fidelity2
+0.05% -0.72% -0.82%

as power, energy and delay can be more accurately estimated via logic synthesis and SPICE

simulations. This methodology will primarily focus on imprecise ALUs, i.e., adders and

multipliers, but is extensible to other logic units. Figure 4.7 shows the proposed design flow

with IHW. In the beginning, the designer implements the initial target algorithm in RTL.

ALUs in the RTL are identified and can potentially be replaced with IHW components

from the library. The optimization algorithm requires two metric estimation routines: one

for efficiency (energy estimator) and one for quality (error estimator). If it is a constraint-

based optimization problem, a quality or efficiency constraint is expected from the user.

The optimization is an iterative process, each iteration of which involves selecting a subset

of IHW components from the library to apply to the RTL and evaluating the subsequent

efficiency and quality metrics. The final output is an optimized RTL with suggested set-

tings for IHW components. In this section, we will focus on quality-energy optimization

problems. Other efficiency metrics such power, area, and delay can use the same flow with

a different efficiency estimator.

The quality-energy optimization problem can be formulated in many different ways,

such as energya/qualityb cost minimization or quality maximization subject to an energy

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 89

Figure 4.7: Quality-constrained energy minimization flow.

constraint. Our focus is on solving the quality-constrained energy minimization problem:

minimize: E(x0, x1, · · · , xn)

subject to: Q(x0, x1, · · · , xn) ≥ Q0

E denotes the energy consumed performing a kernel computation; Q denotes the result

quality. x0, x1, · · · , xn are circuit structural parameters such as BPB, L and K or circuit

operating conditions such as Vdd and frequency. Suppose an IHW system consists of one

adder and one multiplier, both of which are restricted to 64-bit. The x vector for this system

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 90

is as follows:

[addmode BPBadd Ladd Kadd mulmode BPBmul Lmul Kmul]

addmode and mulmode are integers representing IHW type: 0=KSA, 1=ACA, 2=METAII,

3=RCA. There are certain restrictions on each parameter, such as the adder width (64) must

be divisible by BPB and BPB × L cannot exceed 64. Energy savings also diminish once

Kadd exceeds 32 or Kmul exceeds 64 due to the trimmed tree having the same height as

the original tree. Parameters will be swept in their valid ranges only. Including precise

(KSA and ACA) designs, there are a total of 39 adder designs and 101 multiplier designs

to choose from.

Since all the parameters must be integers, this is an integer programming problem.

Matlab offers a genetic algorithm function (ga) to solve these types of problems. It requires

two routines to calculate E and Q respectively. For energy calculation, parameterized RTL

models were developed for ACA and METAII adders and multipliers and the RTL for

KSA and RCA was obtained online [57]. We then synthesized the models into netlists

using Cadence RC Compiler in ST 130nm CMOS technology and simulated 1,000 random

additions and 100 random multiplications using Cadence Ultrasim. Energy per operation

can be extracted from the simulation waveforms. An energy model is subsequently built

using curve-fitting to extrapolate to the entire parameter space. For simplicity, the energy

consumed in the control logic is ignored and the sum of ALU energies is used to represent

the energy of the kernel.

For calculation of quality, MIA propagation was implemented in C++ as an extension

to the libaffa project [58]. The workload is written into a text file with each line in the

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 91

following format:

MUL METAII 8 4 0 4 60 − 1 1 − 1 1

This specifies the operator’s parameters (METAII multiplier with BPB=8, L=4), input

format (4 60) and input data ranges ([−1, 1]). A program parses this file and the character-

ization vector and matrix files, performs the MIA propagation, and writes the output data

and error MIA into a result file. A final Matlab script extracts the error rate and mean error

magnitude from the result file.

4.2.1 Kernel-level Experimental Results

Before running the optimization algorithm, we first need to build energy models for all

IHW components in the library as well as precise ALUs. Table A.1 and A.2 in the Appendix

lists the raw data used to build the models. The same type of adders and multipliers are

synthesized to the longest delay in each class using Cadence RC Compiler. We then use

Cadence’s Ultrasim to perform SPICE simulations on them to extract average power. The

average is taken over 1,000 additions for adders and 100 multiplications for multipliers,

due to longer runtime. The product of average power and delay gives the average energy

per operation.

Next we fit curves to the obtained data points. The following models are adopted for

ACA and METAII-based adders and multipliers:

EACA = A1dlog2Ke+ A2(K − 2dlog2 Ke) + A3K + A4

EMETAII = B1 ·BPB +B22
L +B3 ·BPB · L+B4

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 92

The basic reasoning is as follows: the E/op of the ACA adder should be roughly propor-

tional to the size of the adder tree, thus it should be a function of both the tree height

(dlog2Ke) and the tree span (K) as well as the last level breadth (K − 2dlog2 Ke). The

E/op of the METAII adder should be mostly determined by BPB × L, but should also be

affected by BPB and L individually. The fitting results are shown in Figure 4.8. Even

though the fitting results are not very good for METAII-based ALUs, the relative error is

still quite small (<4%).

The two kernels from Table 3.1 consist only of additions and multiplications. Figure 4.9

and 4.10 show the direct implementation of both kernels. DOT-PRODUCT requires one

adder and one multiplier, thus its x vector is:

[addmode BPBadd Ladd Kadd mulmode BPBmul Lmul Kmul]

L2-NORM needs an additional subtractor, which can be implemented with an adder. The

squaring operation is implemented with a multiplier. Its x vector is:

[submode BPBsub Lsub Ksub addmode BPBadd Ladd Kadd

mulmode BPBmul Lmul Kmul]

The energy for both kernels can thus be calculated as:

EDOTPRODUCT = EADD + EMUL

EL2NORM = ESUB + EADD + EMUL

where the subtractor can be implemented with an adder.

DOT-PRODUCT needs 1 adder and 1 multiplier, forming a space of 8 variables and

3939 design points. L2-NORM needs 2 adders and 1 multiplier, forming a space of 12

variables and 154K points.

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 93

Figure 4.8: Curve fitting for IHW energy models: (a) 64-bit ACA with variableK (b) 64-bit
ACA-based multiplier with variable K (c) 64-bit METAII with variable L (BPB = 4, 8)
(d) 64-bit METAII-based multiplier with variable L (BPB = 4) (e) 64-bit METAII-based
multiplier with variable L (BPB = 8) (f) 64-bit METAII-based multiplier with variable L
(BPB = 16).

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 94

Figure 4.9: Block diagram of our DOT-PRODUCT implementation.

Figure 4.10: Block diagram of our L2-NORM implementation.

The methodology is tested on the two kernels with the following setup: size-8 DOT-

PRODUCT with inputs in [−1, 1] and size-10 L2-NORM with inputs in [−0.25, 0.25].

Their sizes and dynamic ranges are based on the actual computation and data range pro-

filed while running their corresponding applications. Two quality metrics are evaluated:

error rate and mean error magnitude. By setting the quality constraint at different values

between [2−10, 2−1], the optimizer is able to produce optimized designs shown in Table

4.6 and Table 4.7. The energy-quality tradeoff curves formed by imprecise designs are

shown in Figure 4.11. As a comparison, we also show curves obtained by running an

exhaustive search on all possible design points. In all four figures, the optimizer curves

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 95

follow the exhaustive-search curves with a maximum deviation of 2%. Both kernels enjoy

a region of about 10% energy reduction with graceful quality degradation. All the curves

are significantly lower than the lowest energy achievable by precise designs (136.44pJ for

DOT-PRODUCT and 140.4pJ for L2-NORM).

Table 4.6: Kernel-level energy and quality (error rate) results.

Kernel Optimized Design Error Rate Energy per op (pJ)

METAII 8 2 METAII 8 2 0.107 102.18

METAII 8 4 METAII 8 2 0.095057 102.24

DOT-PRODUCT METAII 8 7 METAII 16 2 0.0068907 104.8

METAII 16 2 METAII 16 2 0.00023205 104.79

METAII 16 2 METAII 32 2 5.41E-05 109.73

RCA RCA (precise) 0 136.44

METAII 8 3 METAII 8 2 METAII 8 2 0.21904 103.87

METAII 8 2 METAII 8 2 METAII 8 2 0.23454 103.84

METAII 8 4 METAII 8 3 METAII 8 2 0.19698 103.93

L2-NORM METAII 16 3 METAII 16 2 METAII 8 2 0.093217 104.18

RCA METAII 8 7 METAII 16 2 0.0083431 108.76

RCA METAII 16 2 METAII 16 2 0.0002702 108.75

METAII 16 3 RCA METAII 32 2 7.85E-05 113.75

RCA RCA RCA (precise) 0 140.4

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 96

Table 4.7: Kernel-level energy and quality (mean error magnitude) results.

Kernel Optimized Design Mean Error Energy

Magnitude per op (pJ)

METAII 4 4 METAII 8 2 0.00038244 102.14

METAII 4 5 METAII 8 2 5.76E-05 102.16

METAII 4 6 METAII 16 2 1.70E-06 104.64

DOT-PRODUCT METAII 8 4 METAII 8 4 1.67E-07 105.33

METAII 8 4 METAII 8 5 3.78E-08 106.88

METAII 8 5 METAII 16 3 9.74E-09 107.79

METAII 16 3 METAII 16 3 6.41E-11 107.68

RCA RCA (precise) 0 136.44

METAII 4 4 METAII 4 4 METAII 8 2 0.0006583 103.76

METAII 4 5 METAII 4 5 METAII 8 2 7.82E-05 103.79

METAII 4 6 METAII 4 6 METAII 16 2 3.46E-06 106.3

L2-NORM METAII 8 3 METAII 8 4 METAII 8 4 9.63E-07 107.03

METAII 8 4 METAII 8 5 METAII 8 5 9.85E-08 108.63

METAII 16 2 METAII 8 7 METAII 16 3 7.09E-09 109.54

METAII 16 3 METAII 16 3 METAII 16 3 1.53E-10 109.64

RCA RCA RCA (precise) 0 140.4

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 97

Figure 4.11: Kernel-level energy-quality tradeoffs. Energy is calculated as the average
energy consumed during one kernel operation. The design points for the precise designs
are located far above all the imprecise design points, therefore are not shown on the plot.
The energy of the precise design for the DOT-PRODUCT is 136.44pJ, and the energy of
the precise design for the L2-NORM is 140.4pJ.

4.2.2 Application-level Experimental Results

Since the application-level quality can only be obtained through simulation, it is diffi-

cult to extend the kernel-level methodology to the application level. Simulating the appli-

cation with IHW is usually 2–3 orders of magnitude slower than with traditional hardware,

because the host machine cannot use a single ALU instruction to perform an imprecise

operation. However, kernel-level solutions can facilitate the application-level exploration

process. The first step is to solve the kernel-level problem multiple times using static anal-

ysis, each time with a different quality constraint. Then, assuming application-level quality

is a monotonic function of kernel-level quality, the application can be simulated using only

the points identified during the kernel-level exploration. If enough application quality and

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 98

parameter pairs are collected, we can build an application-level quality model and apply the

same genetic algorithm (GA) to obtain the minimum-energy point, given an application-

level quality requirement. This section presents experimental results at the application level

assisted by kernel-level exploration. The goal of these experiments is to demonstrate the

energy-quality behavior of different applications under IHW implementation and the ben-

efit of the proposed methodology.

The three applications chosen to evaluate the proposed methodology are shown in Ta-

ble 3.1. Leukocyte Tracker [44] implements an object tracking algorithm, in which an

important step is to compute the sum of gradients on the 8 neighboring pixels. SVM is a

classification algorithm that consists of a training stage and a prediction stage. The train-

ing stage involves computing the Euclidean distance of two data points (called radial basis

function) in order to map them into a higher dimensional space. K-means is a data cluster-

ing algorithm; the basic operation is calculating the distance between two data points. The

Euclidean distance is commonly used. Both K- means and SVM use the L2-NORM kernel

and Leukocyte Tracker uses the DOT-PRODUCT kernel. In each application, the corre-

sponding kernel represents a significant percentage of the runtime (Table 3.1). The source

code for Leukocyte and K-means is obtained from the Rodinia benchmark suite [59] and

SVM from libsvm [60]. All benchmarks provide sample input data. In Leukocyte Tracker

we tracked 36 cells in 5 frames; in SVM we attempted to classify 683 breast cancer data

points with 10 features into 2 classes; in K-means, we tried to cluster 100 data points with

34 features into 5 clusters.

Quality metrics for the three applications are defined as follows. For Leukocyte, the

center locations of the centers of the tracked cells are compared with the locations returned

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 99

by the precise implementation. The average cell-center deviation serves as a good nega-

tive quality metric. Classification accuracy is a well-established quality metric for SVM.

Finally for K-means, mean centroid distance [14] is used.

Before simulation, the programs are first profiled to determine the dynamic range of

data during kernel computation. If the dynamic range is greater than the characterized data

range, it is necessary to perform scaling on the input and output data. Certain applications,

such as SVM and Leukocyte, already incorporate data normalization into their algorithm,

so no scaling is necessary. Then, the design points returned during kernel-level optimiza-

tion are used to rewrite the kernel portions of the three applications using those imprecise

designs.

The final application-level energy-quality tradeoff curves are shown in Figure 4.12.

Since running a SPICE simulation of the entire application to obtain its energy is pro-

hibitively slow, the kernel’s energy is used to represent the entire application’s energy.

Among the three applications, Leukocyte has a smooth quality-energy transition region. At

its lowest-energy point (102.24pJ), the mean deviation from precise outputs is merely 0.1

pixels. Its energy is 25% lower than that of the precise design (136.44pJ). For K-means,

the mean centroid distance remains unchanged (1,429.22) above the 103.8pJ energy point

(26% reduction over precise design’s 140.4pJ). Any design below that energy point fails

to converge during simulation. A similar situation is observed in SVM where the critical

energy point is 103.76pJ. Such convergence failures can be attributed to the lack of watch-

dog logic in the K-means and SVM algorithms. In the Leukocyte Tracker, the iteration is

guaranteed to finish if the iteration count exceeds a certain threshold. However, K-means

and SVM do not have such safeguarding mechanism, and the convergence is purely based

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 100

on the relative stability of the obtained solution. If the IHW causes substantial fluctuations

in the solution between consecutive iterations, those algorithms may never converge and

iterate indefinitely.

Figure 4.12: Application-level energy-quality tradeoffs. Energy is calculated as the average
energy consumed during one kernel operation. The design points for the precise designs
are located far to the right of all the imprecise design points, therefore are not shown on the
plot. The energy of the precise design for the Leukocyte is 136.44pJ, and the energy of the
precise designs for the K-means and SVM is 140.4pJ.

Table 4.8: Number of designs points simulated.

Search method Leukocyte Tracker SVM K-means

Exhaustive search 3,939 153,621 153,621

GA (app-level) 887 1,343 1,343

Proposed methodology 15 17 17

Table 4.8 compares the number of design points that need to be simulated in order to

generate the application-level energy-quality tradeoff curves in Figure 4.12. Exhaustive

search simulates all the design points once, while applying GA at the application-level

simulates only a subset. The proposed methodology simulates the least number of de-

sign points because it only chooses those points on the kernel-level optimal energy-quality

curve.

Chapter 4: A Methodology for Efficiency-Quality Co-Optimization 101

4.3 Conclusions

In this chapter, we proposed two quality-aware optimization methodologies on the al-

gorithmic level and RTL level. Both methodologies employ a similar framework: a central

optimization algorithm facilitated by an efficiency estimator, a quality estimator and a li-

brary of IHW components. The input to the flow is an initial design and the output is an

optimized design. Depending on whether the objective is to optimize a cost function or

to optimize one metric with other metrics subject to constraints, the user shall supply the

definition of the cost function or the metric constraints.

Since the algorithmic IHW (fidelity-compromising transformations) and RTL IHW (im-

precise adders and multipliers) are orthogonal IHW techniques, both methodologies de-

scribed here can potentially be merged into a unified methodology. The resultant IHW li-

brary will contain IHW components on both levels and the initial design shall be described

in HDG with RTL code associated with the bottom level ALUs. Merging the algorithmic

and RTL flows is a promising future project.

Chapter 5

Conclusion

In this dissertation, we introduced the concept of IHW, explored existing IHW compo-

nents and techniques, and presented some new IHW designs such as fidelity-compromising

transformations, IHW adders, and IHW multipliers. We proposed a novel static error es-

timation method to facilitate the evaluation of output quality as a result of IHW imple-

mentation. It is then incorporated into a methodology for exploring the efficiency-quality

tradeoffs using IHW. This methodology is able to explore different IHW designs and solve

both cost-function based and constraint-based optimization problems.

During the process of conducting this research, empirical and experimental data strongly

suggest the existence of an efficiency-quality tradeoff space of many error-tolerant appli-

cations. There are many techniques to explore this space, ranging from algorithmic-level

techniques to logic and circuit-level techniques. Since there is no consensus on which

technique is the most effective in achieving the best efficiency-quality tradeoffs, all of the

potential techniques must be considered. This necessitates exploration methodologies that

compare and determine the best technique for a particular application and efficiency and

102

Chapter 5: Conclusion 103

quality requirements. For those methodologies to be effective, we need to know the rela-

tionship between IHW parameters and efficiency and quality. While many CAD tools can

be used to derive the relationship between circuit parameters and efficiency metrics, qual-

ity is typically measured by running Monte Carlo simulations. Static error estimation is an

attractive alternative to simulation due to its fast speed and good coverage of rare cases.

The best places to apply IHW techniques are the datapaths of an algorithm because they

are implemented with energy-intensive ALU circuits and their quality impact is predictable

(compared to control logics). We also found that structural (such as ACA and METAII

adders) and operational (such as VOS) IHW techniques are orthogonal and can be com-

bined in a design to significantly boost the energy savings. Finally, IHW are not limited to

error-tolerant applications. By placing a wrapper around IHW components, we can make

them appear error-free and can be used in any application to take advantage of the benefits

of IHW.

The following is a list of major contributions, organized in the order of the chapters

they are related to. Then a similar list of potential future work is provided. We briefly

summarize this dissertation in the concluding remarks section.

5.1 Summary of Contributions

5.1.1 Imprecise Hardware

1. IHW classification: We classified IHW techniques based on their I/O mappings and

error characteristics.

2. IHW error characterization: We proposed using Probability Mass Function as the

Chapter 5: Conclusion 104

mathematical representation of errors produced by IHW.

3. IHW application: We identified classes of applications that can benefit from IHW

implementation.

4. Novel IHW designs: We suggested fidelity-compromising transformation as an al-

gorithmic IHW example. On the RTL level, we improved the implementation of

ACA and METAII adders and developed IHW multipliers. We proposed using the

CORDIC algorithm to develop new IHW arithmetic circuits.

5. Combined use of IHW and VOS: We experimented with applying VOS on top of

structural IHW adders and IHW multipliers and achieved greater energy reduction

than VOS or IHW alone.

5.1.2 Static Error Estimation

1. MIA and MAA: We extended classical Interval Arithmetic and Affine Arithmetic

methods to support asymmetric distributions and provide improved accuracy.

2. Static error propagation: We developed a simulation-free error propagation model

that can be used to estimate the quality of any pure-arithmetic computation kernels

implemented with IHW.

5.1.3 A Methodology for Efficiency-Quality Optimization

1. Methodology for fidelity-compromising transformation: We developed a method-

ology for reducing the latency of an algorithm by replacing long-latency computa-

tions with faster approximate computations.

Chapter 5: Conclusion 105

2. Methodology for structurally imprecise ALUs: We developed a methodology for

improving the efficiency of an algorithm by replacing traditional ALUs with impre-

cise ALUs.

3. Functional models of imprecise adders and multipliers: These functional models

are written in C++, thus can be easily plugged into any application for fast functional

simulation of an IHW implementation.

5.2 Suggested Adoption of IHW

The most straightforward way to adopt the IHW components and methodologies pro-

posed in this work follows this procedure. First we need to identify the algorithm and

application to be implemented. We need to understand the algorithm and application to the

level where we know what portions of the computation are error-tolerant. In addition, the

computation identified in the previous step must heavily utilize arithmetic operations. Then

we can apply the methodologies on the kernel level and finally extended to the application

level to obtain the energy-quality tradeoff curves. The cost of running the methodolo-

gies mostly comes from two processes. The first process is IHW characterization for each

imprecise operator we want to use as a candidate implementation. This process can be by-

passed if the characterization is performed before hand on a large cluster and the results are

saved in files. The second process is the application-level simulation with IHW which is

usually an order of magnitude slower than simulation with precise HW. Our kernel-assisted

methodology (Section 4.2.2) can help reduce the number of simulation runs at the applica-

tion level.

Chapter 5: Conclusion 106

For error-intolerant applications, we can still employ IHW by leading it with a condition

checker. This condition checker should be matched to the IHW, and it will detect all the

conditions that will trigger an error in the IHW output. When the error condition is detected,

the computation will be forwarded to a precise HW, otherwise IHW will be used. Another

approach is to develop IHW which also produces a correctness bit to indicate whether the

result is error-free. This correctness bit can be used by a subsequent precise HW or SW for

necessary re-computation.

5.3 Future Work

Imprecise Hardware is an emerging field with many unanswered questions and this

dissertation is merely a small step toward solving those problems. As with any scholarly

work, this work has its limitations which should be addressed by me or other prospective

researchers (I appeal to you) in the future. Here I will document the ideas for future work

that occurred to me while conducting this research in the hope that they can serve as a

source of inspiration to future researchers.

5.3.1 Imprecise Hardware

1. Runtime reconfigurable IHW: We can develop IHW that dynamically adjusts its

efficiency-quality tradeoff characteristics at runtime to adapt to changing system re-

quirements.

2. Repurposing IHW for error-intolerant applications: There are two ways we can

present an IHW component as error-free: “IHW + correction circuit” and “detection

Chapter 5: Conclusion 107

circuit + IHW”. The correction circuit in the first form detects erroneous outputs

from IHW and corrects those outputs. It is important to keep the overhead of the

correction circuit low while still presenting an error-free functionality. In the second

form, the detection circuit should detect the conditions which might cause an error

in the following IHW (such as long propagate sequence triggered by the inputs).

Similarly, the detection circuit has to be low-cost.

3. Imprecise architecture: Processors are typically not error-tolerant, but compilers

can detect error-tolerant workloads and issue corresponding imprecise instructions

that can be implemented with IHW. Development of such compilers and supporting

architecture has the potential to influence a much broader audience.

4. Floating-point IHW: The IHW ALUs described in this work are all fixed-point. To

represent a dynamic range of representable values, a floating-point unit is needed.

Since a floating-point adder will always contain a fixed-point adder, the easiest way

to construct an IHW FPU is simply to replace the fixed-point adder with an IHW

adder, although the accuracy impact must be studied.

5.3.2 Static Error Estimation

1. Bounding peak error: Even though many applications can tolerate errors in a statis-

tical sense, they may be very sensitive to worst-case errors. For example, a rare but

large magnitude error can destabilize the entire algorithm and cause the application

to fail unexpectedly. Although MIA and MAA can roughly estimate the shape of the

error distribution, we need stronger guarantees for the peak error, such as maximum

error magnitude and its frequency of occurrence.

Chapter 5: Conclusion 108

2. Application vulnerability factor: Static error estimation can speed up the qual-

ity evaluation on the kernel level, but the bottleneck still lies in the evaluation of

application-level quality since simulation is still required. In order to promote the

static error estimation one level higher to the application level, we need to know

how a kernel-level error will impact application-level quality. Mukherjee et al. in-

troduced the concept of application vulnerability factor [61], which is the probability

that a fault in a processor structure will result in a visible error in the final output of

a program. If we can develop a similar concept to facilitate the PMF propagation at

the application level, then the quality evaluation time can be significantly reduced.

3. Improving MAA: Although Modified Affine Arithmetic (MAA) can accurately model

correlated variables in an expression, it suffers from storage explosion problem. It

would be much more useful if this problem could be avoided or mitigated to some

extent.

4. Modeling control logic: Most applications contain more than just dataflow opera-

tors. Control logic such as MUX must also be considered while propagating data and

error distributions.

5.3.3 A Methodology for Efficiency-Quality Optimization

1. Minimum energy theory: If we consider arithmetic operations to be a special case

of transmitting information (e.g., obtaining the sum signal of two input signals), there

must exist a theoretical minimum energy cost to accurately obtain that information.

Mathematically deriving the function Emin = fop(quality) could be as important as

Shannon’s Theorem in information theory.

Chapter 5: Conclusion 109

2. Including Vdd in the RTL flow: Due to the long runtime of SPICE simulations,

we were unable to complete the IHW characterization under various Vdd. Once it is

complete, the methodology will have one more variable and could potentially achieve

better results.

3. Merging the algorithmic and RTL flows: Currently the algorithmic flow to apply

fidelity-compromising transformations and the RTL flow to select imprecise ALUs

are separated. Combining both flows can simultaneously consider IHW techniques

on both design levels, and can lead to a better final design. To enable such a cross-

level design flow, we need to design generic IHW library components which have

parameterized efficiency and quality models. These components should be able to

represent both fidelity-compromising transformations and imprecise ALUs.

5.4 Concluding Remarks

Traditional hardware is an inefficient building block for error-tolerant applications: it is

not designed to take advantage of the relaxed quality requirements and further improve its

efficiency. IHW is an attractive alternative that gracefully trades off quality for improved

efficiency. In this work we reviewed the existing IHW techniques and components, summa-

rized them based on their characteristics and proposed several novel IHW techniques and

components. In addition, we developed two quality-aware circuit optimization methodolo-

gies using IHW components. A key component of the methodology, a static error esti-

mation method, is proposed to enable rapid and accurate evaluation of the quality impact

of an IHW implementation. The methodology can be used to solve cost-function based

Chapter 5: Conclusion 110

optimization problems (e.g., energy-delay product minimization) or constraint-based op-

timization problems (e.g., energy minimization subject to a minimum quality constraint).

Experiments suggest that the utilization of IHW can reduce energy per operation for up

to 10% in computation kernels and up to 26% in certain applications without significant

impact on output quality.

IHW is still in the early stages of study. Not only do we need more IHW techniques

and components in the inventory, but we should continue to refine the methodology that

utilizes IHW to design more efficient circuits. The best is yet to come!

Bibliography

[1] ITRS, “International technology roadmap for semiconductors 2009 edition,” ITRS,

Tech. Rep., 2009.

[2] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Stochastic computa-

tion,” in 47th ACM/IEEE Design Automation Conference (DAC), 2010, jun. 2010, pp.

859 –864.

[3] J. von Neumann, “Probabilistic logics and synthesis of reliable organisms from unreli-

able components,” in Automata Studies, C. Shannon and J. McCarthy, Eds. Princeton

University Press, 1956, pp. 43–98.

[4] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage scaled mi-

croprocessor system,” in Solid-State Circuits Conference, 2000. Digest of Technical

Papers. ISSCC. 2000 IEEE International, 2000, pp. 294 –295, 466.

[5] V. Gutnik and A. Chandrakasan, “Embedded power supply for low-power dsp,” Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 5, no. 4, pp. 425

–435, dec. 1997.

[6] D. E. et al., “Razor: A low-power pipeline based on circuit-level timing speculation,”

in Proc. 36th IEEE/ACM Intl. Symp. on Microarchitecture, 2003, pp. 7–18.

[7] B. Shim, S. Sridhara, and N. Shanbhag, “Reliable low-power digital signal processing

via reduced precision redundancy,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 12, no. 5, pp. 497 – 510, may. 2004.

111

Bibliography 112

[8] S. Narayanan, J. Sartori, R. Kumar, and D. Jones, “Scalable stochastic processors,” in

Design, Automation and Test in Europe (DATE), March 2010.

[9] A. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution for graceful degra-

dation under voltage overscaling,” in 15th Asia and South Pacific Design Automation

Conference (ASP-DAC), 2010, 18-21 2010, pp. 825 –831.

[10] A. Kahng, S. Kang, R. Kumar, and J. Sartori, “Designing a processor from the ground

up to allow voltage/reliability tradeoffs,” in IEEE 16th International Symposium on

High Performance Computer Architecture (HPCA), 2010, 9-14 2010, pp. 1 –11.

[11] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Recovery-driven design: A power

minimization methodology for error-tolerant processor modules,” in 47th ACM/IEEE

Design Automation Conference (DAC), 2010, 13-18 2010, pp. 825 –830.

[12] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven computation: a

voltage-scalable, variation-aware, quality-tuning motion estimator,” in Proceedings of

the 14th ACM/IEEE international symposium on Low power electronics and design,

ser. ISLPED ’09, 2009, pp. 195–200.

[13] G. Karakonstantis, N. Banerjee, K. Roy, and C. Chakrabarti, “Design methodology to

trade off power, output quality and error resiliency: application to color interpolation

filtering,” in IEEE/ACM International Conference on Computer-Aided Design, 2007.

(ICCAD 2007), 4-8 2007, pp. 199 –204.

[14] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy, “Design of voltage-scalable

meta-functions for approximate computing,” in Design, Automation Test in Europe

Conference Exhibition (DATE), 2011, march 2011, pp. 1 –6.

[15] A. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition: A new

paradigm for arithmetic circuit design,” in Design, Automation and Test in Europe,

2008. (DATE ’08), mar. 2008, pp. 1250 –1255.

[16] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed adder for

Bibliography 113

error-tolerant application,” in Proceedings of the 2009 12th International Symposium

on Integrated Circuits, (ISIC ’09), dec. 2009, pp. 69 –72.

[17] V. Gupta, D. Mohapatra, S. Park, A. Raghunathan, and K. Roy, “Impact: Imprecise

adders for low-power approximate computing,” in Low Power Electronics and Design

(ISLPED) 2011 International Symposium on, aug. 2011, pp. 409 –414.

[18] J. Bau, R. Hankins, Q. Jacobson, S. Mitra, B. Saha, and A. A. Tabatabai., “Error

resilient system architecture (ersa) for probabilistic applications,” in Workshop on

System Effects of Logic Soft Errors (SELSE), April 2007.

[19] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra, “Ersa: Error resilient system ar-

chitecture for probabilistic applications,” in Design, Automation Test in Europe Con-

ference Exhibition (DATE), 2010, mar. 2010, pp. 1560 –1565.

[20] E. Kim, R. Abdallah, and N. Shanbhag, “Soft nmr: Exploiting statistics for energy-

efficiency,” in International Symposium on System-on-Chip, 2009. (SOC 2009), oct.

2009, pp. 052 –055.

[21] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and challenges for

better than worst-case design,” in Proceedings of the 2005 Asia and South Pacific

Design Automation Conference (ASP-DAC), vol. 1, jan. 2005, pp. I/2 – I/7 Vol. 1.

[22] B. E. S. Akgul, L. N. Chakrapani, P. Korkmaz, and K. V. Palem, “Probabilistic cmos

technology: A survey and future directions,” in Proceedings of 2006 IFIP Interna-

tional Conference on Very Large Scale Integration, October 2006, pp. 1–6, 16–18.

[23] L. Chakrapani, B. Akgul, S. Cheemalavagu, P. Korkmaz, K. Palem, and B. Se-

shasayee, “Ultra-efficient (embedded) soc architectures based on probabilistic cmos

(pcmos) technology,” in Proceedings of Design, Automation and Test in Europe

(DATE ’06.), vol. 1, mar. 2006, pp. 1 –6.

[24] P. Korkmaz, B. Akgul, and K. Palem, “Ultra-low energy computing with noise: en-

ergy performance probability,” in IEEE Computer Society Annual Symposium on

Emerging VLSI Technologies and Architectures, vol. 00, mar. 2006, p. 6 pp.

Bibliography 114

[25] L. N. Chakrapani, P. Korkmaz, B. E. S. Akgul, and K. V. Palem, “Probabilistic system-

on-a-chip architectures,” ACM Transactions on Design Automation of Electronic Sys-

tems, vol. 12, no. 3, pp. 1–28, 2007.

[26] K. Jeong, A. Kahng, and K. Samadi, “Quantified impacts of guardband reduction

on design process outcomes,” in Quality Electronic Design, 2008. ISQED 2008. 9th

International Symposium on, march 2008, pp. 790 –797.

[27] A. Oppenheim, Discrete-time signal processing. Upper Saddle River, N.J: Prentice

Hall, 1999.

[28] G. K. Wallace, “The jpeg still picture compression standard,” Commun. ACM, vol. 34,

no. 4, pp. 30–44, Apr. 1991.

[29] P. Kuhn, Algorithms, complexity analysis, and VLSI architectures for MPEG-4 motion

estimation. Dordrecht Boston: Kluwer, 1999.

[30] J. Huang and J. Lach, “Colspace: Towards algorithm/implementation co-

optimization,” in Computer Design, 2009. ICCD 2009. IEEE International Confer-

ence on, oct. 2009, pp. 404 –411.

[31] G. V. Varatkar, S. Narayanan, N. R. Shanbhag, and D. L. Jones, “Stochastic networked

computation,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. PP, no. 99, pp. 1 –1, 2009.

[32] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A sys-

tematic methodology to compute the architectural vulnerability factors for a high-

performance microprocessor,” in MICRO 36: Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture. Washington, DC, USA:

IEEE Computer Society, 2003, p. 29.

[33] L. Roberts, Machine Perception of Three-Dimensional Solids. Massachusetts Insti-

tute of Technology, Lexington Lincoln Lab, 1963.

[34] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 8, no. 6, pp. 679–698, Jun. 1986.

Bibliography 115

[35] R. E. Moore, Interval Analysis. Prentice-Hall, 1966.

[36] J. Stolfi and L. H. D. Figueiredo, “Self-validated numerical methods and applica-

tions,” Brazilian Mathematics Colloquium, 1997.

[37] M. D. Ercegovac and T. Lang, Digital Arithmetic. San Francisco, CA: Morgan

Kaufmann Publishers, 2004.

[38] C. S. Wallace, “A suggestion for a fast multiplier,” Electronic Computers, IEEE Trans-

actions on, vol. EC-13, no. 1, pp. 14 –17, feb. 1964.

[39] J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings of the

May 18-20, 1971, Spring Joint Computer Conference, ser. AFIPS ’71 (Spring). New

York, NY, USA: ACM, 1971, pp. 379–385.

[40] J. Huang and J. Lach, “Exploring the fidelity-efficiency design space using imprecise

arithmetic,” in Design Automation Conference (ASP-DAC), 2011 16th Asia and South

Pacific, jan. 2011, pp. 579 –584.

[41] L. V. Kolev, “An improved interval linearization for solving nonlinear problems,” Nu-

merical Algorithms, vol. 37, pp. 213–224, 2004.

[42] G. R. J. Huang and J. Lach, “Analytic error modeling for imprecise arithmetic cir-

cuits,” in 7th IEEE Workshop on Silicon Errors in Logic - System Effects (SELSE),

March 2011.

[43] C. M. Grinstead and L. J. Snell, Grinstead and Snell’s Introduction to

Probability, version dated 4 july 2006 ed. American Mathematical Society,

2006. [Online]. Available: http://www.dartmouth.edu/∼{}chance/teaching aids/

books articles/probability book/book.html

[44] N. Ray and S. Acton, “Motion gradient vector flow: an external force for tracking

rolling leukocytes with shape and size constrained active contours,” Medical Imaging,

IEEE Transactions on, vol. 23, no. 12, pp. 1466 –1478, dec. 2004.

http://www.dartmouth.edu/~{}chance/teaching_aids/books_articles/probability_book/book.html
http://www.dartmouth.edu/~{}chance/teaching_aids/books_articles/probability_book/book.html

Bibliography 116

[45] M. Hazewinkel, Hellinger distance. Springer, 2001. [Online]. Available:

http://www.encyclopediaofmath.org/index.php/H/h046890

[46] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator,” ACM Trans. Model. Comput.

Simul., vol. 8, no. 1, pp. 3–30, Jan. 1998.

[47] K. Vallerio and N. Jha, “Task graph extraction for embedded system synthesis,” in

VLSI Design, 2003. Proceedings. 16th International Conference on, jan. 2003, pp.

480 – 486.

[48] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprette, “System design

using khan process networks: the compaan/laura approach,” in Design, Automation

and Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 1, feb. 2004,

pp. 340 – 345 Vol.1.

[49] F. Balmas, “Displaying dependence graphs: a hierarchical approach,” in Reverse En-

gineering, 2001. Proceedings. Eighth Working Conference on, 2001, pp. 261 –270.

[50] J. Huang. (2012) Colspace. [Online]. Available: http://www.cs.virginia.edu/∼jh3wn/

downloads.html

[51] A. Ahmadi and M. Zwolinski, “Symbolic noise analysis approach to computational

hardware optimization,” in Design Automation Conference (DAC). IEEE, June 2008,

pp. 391–396.

[52] Y. Yu and S. Acton, “Speckle reducing anisotropic diffusion,” IEEE Transactions on

Image Processing, vol. 11, no. 11, pp. 1260 – 1270, Nov. 2002.

[53] W. Wu, S. Acton, and J. Lack, “Real-time processing of ultrasound images with

speckle reducing anisotropic diffusion,” in Signals, Systems and Computers, 2006.

ACSSC ’06. Fortieth Asilomar Conference on, 29 2006-nov. 1 2006, pp. 1458 –1464.

[54] S. Gupta, R. Gupta, and N. Dutt, SPARK: a parallelizing approach to the high-level

synthesis of digital circuits. Kluwer Academic Publishers, 2004, no. v. 1.

http://www.encyclopediaofmath.org/index.php/H/h046890
http://www.cs.virginia.edu/~jh3wn/downloads.html
http://www.cs.virginia.edu/~jh3wn/downloads.html

Bibliography 117

[55] P. Soderquist and M. Leeser, “Division and square root: choosing the right implemen-

tation,” Micro, IEEE, vol. 17, no. 4, pp. 56 –66, jul/aug 1997.

[56] A. Pinho and L. Almeida, “Figures of merit for quality assessment of binary edge

maps,” in Image Processing, 1996. Proceedings., International Conference on, vol. 3,

sep 1996, pp. 591 –594 vol.3.

[57] T. University. (2012) Arithmetic module generator based on arith. [Online].

Available: http://www.aoki.ecei.tohoku.ac.jp/arith/mg/index.html

[58] G. Project. (2012) C++ affine arithmetic library. [Online]. Available: http:

//savannah.nongnu.org/projects/libaffa

[59] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron, “Ro-

dinia: A benchmark suite for heterogeneous computing,” in Workload Characteriza-

tion, 2009. IISWC 2009. IEEE International Symposium on, oct. 2009, pp. 44 –54.

[60] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011,

software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[61] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A systematic method-

ology to compute the architectural vulnerability factors for a high-performance mi-

croprocessor,” in Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual

IEEE/ACM International Symposium on, dec. 2003, pp. 29 – 40.

http://www.aoki.ecei.tohoku.ac.jp/arith/mg/index.html
http://savannah.nongnu.org/projects/libaffa
http://savannah.nongnu.org/projects/libaffa
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Appendix A

Experimental Data

A.1 Raw data for building energy models

Table A.1: Raw delay and power data of various adders for

building energy models

Unit Delay Simulated Energy / op (pJ)

constraint (ns) Average Power (mW)

KSA64 6.12 5.51

ACA64 (K=12) 4.39 3.95

ACA64 (K=16) 4.36 3.92

ACA64 (K=20) 5.85 5.27

ACA64 (K=24) 0.9 5.89 5.30

ACA64 (K=32) 5.69 5.12

continued on the next page

118

Appendix A: Experimental Data 119

Table A.1 – continued from previous page

Unit Delay Simulated Energy / op (pJ)

constraint (ns) Average Power (mW)

ACA64 (K=36) 7.48 6.73

ACA64 (K=48) 7.12 6.41

ACA64 (K=56) 6.59 5.93

ACA64 (K=60) 6.46 5.81

RCA64 0.72 3.96

METAII64 (BPB=4,L=1) 0.289 1.5895

METAII64 (BPB=4,L=2) 0.289 1.5895

METAII64 (BPB=4,L=3) 0.291 1.6005

METAII64 (BPB=4,L=4) 0.293 1.6115

METAII64 (BPB=4,L=5) 0.293 1.6115

METAII64 (BPB=4,L=6) 0.295 1.6225

METAII64 (BPB=4,L=7) 0.297 1.6335

METAII64 (BPB=4,L=8) 5.5 0.3 1.65

METAII64 (BPB=4,L=9) 0.301 1.6555

METAII64 (BPB=4,L=10) 0.303 1.6665

METAII64 (BPB=4,L=11) 0.307 1.6885

METAII64 (BPB=4,L=12) 0.308 1.694

METAII64 (BPB=4,L=13) 0.321 1.7655

METAII64 (BPB=4,L=14) 0.334 1.837

continued on the next page

Appendix A: Experimental Data 120

Table A.1 – continued from previous page

Unit Delay Simulated Energy / op (pJ)

constraint (ns) Average Power (mW)

METAII64 (BPB=4,L=15) 0.342 1.881

METAII64 (BPB=8,L=1) 0.312 1.716

METAII64 (BPB=8,L=2) 0.312 1.716

METAII64 (BPB=8,L=3) 0.314 1.727

METAII64 (BPB=8,L=4) 0.316 1.738

METAII64 (BPB=8,L=5) 0.318 1.749

METAII64 (BPB=8,L=6) 0.318 1.749

METAII64 (BPB=8,L=7) 0.343 1.8865

METAII64 (BPB=16,L=1) 0.320 1.76

METAII64 (BPB=16,L=2) 0.320 1.76

METAII64 (BPB=16,L=3) 0.328 1.804

Table A.2: Raw delay and power data of various multipliers

for building energy models

Unit Delay Simulated Energy / op (pJ)

constraint (ns) Average Power (mW)

MULT64 KSA 97.55 273.14

continued on the next page

Appendix A: Experimental Data 121

Table A.2 – continued from previous page

Unit Delay Simulated Energy / op (pJ)

constraint (ns) Average Power (mW)

MULT64 ACA (K=12) 78.68 220.304

MULT64 ACA (K=16) 78.86 220.808

MULT64 ACA (K=20) 88.15 246.82

MULT64 ACA (K=24) 87.63 245.364

MULT64 ACA (K=32) 2.8 90.35 252.98

MULT64 ACA (K=36) 100.24 280.672

MULT64 ACA (K=48) 98.25 275.1

MULT64 ACA (K=56) 99.70 279.16

MULT64 ACA (K=64) 97.71 273.588

MULT64 RCA 11.04 132.48

MULT64 METAII (BPB=4,L=4) 8.08 96.96

MULT64 METAII (BPB=4,L=5) 8.17 98.04

MULT64 METAII (BPB=4,L=6) 7.98 95.76

MULT64 METAII (BPB=4,L=7) 8.61 103.32

MULT64 METAII (BPB=4,L=8) 8.91 106.92

MULT64 METAII (BPB=4,L=9) 9.15 109.8

MULT64 METAII (BPB=4,L=10) 9.42 113.04

MULT64 METAII (BPB=4,L=11) 9.57 114.84

MULT64 METAII (BPB=4,L=12) 9.67 116.04

continued on the next page

Appendix A: Experimental Data 122

Table A.2 – continued from previous page

Unit Delay Simulated Energy / op (pJ)

constraint (ns) Average Power (mW)

MULT64 METAII (BPB=4,L=13) 9.54 114.48

MULT64 METAII (BPB=4,L=14) 9.46 113.52

MULT64 METAII (BPB=4,L=15) 9.33 111.96

MULT64 METAII (BPB=4,L=16) 9.20 110.4

MULT64 METAII (BPB=4,L=17) 9.25 111

MULT64 METAII (BPB=4,L=20) 8.72 104.64

MULT64 METAII (BPB=4,L=24) 9.72 116.64

MULT64 METAII (BPB=4,L=28) 9.94 119.28

MULT64 METAII (BPB=4,L=31) 10.21 122.52

MULT64 METAII (BPB=8,L=2) 8.29 99.48

MULT64 METAII (BPB=8,L=3) 8.29 99.48

MULT64 METAII (BPB=8,L=4) 8.23 98.76

MULT64 METAII (BPB=8,L=5) 12.0 9.15 109.8

MULT64 METAII (BPB=8,L=6) 9.51 114.12

MULT64 METAII (BPB=8,L=7) 9.54 114.48

MULT64 METAII (BPB=8,L=8) 9.33 111.96

MULT64 METAII (BPB=8,L=9) 8.95 107.4

MULT64 METAII (BPB=8,L=10) 8.72 104.64

MULT64 METAII (BPB=8,L=11) 9.10 109.2

continued on the next page

Appendix A: Experimental Data 123

Table A.2 – continued from previous page

Unit Delay Simulated Energy / op (pJ)

constraint (ns) Average Power (mW)

MULT64 METAII (BPB=8,L=12) 9.02 108.24

MULT64 METAII (BPB=8,L=13) 10.15 121.8

MULT64 METAII (BPB=8,L=14) 10.31 123.72

MULT64 METAII (BPB=8,L=15) 10.31 123.72

MULT64 METAII (BPB=16,L=1) 8.23 98.76

MULT64 METAII (BPB=16,L=2) 8.23 98.76

MULT64 METAII (BPB=16,L=3) 8.20 98.4

MULT64 METAII (BPB=16,L=4) 9.11 109.32

MULT64 METAII (BPB=16,L=5) 8.89 106.68

MULT64 METAII (BPB=16,L=6) 9.27 111.24

MULT64 METAII (BPB=16,L=7) 10.33 123.96

MULT64 METAII (BPB=32,L=1) 8.82 105.84

MULT64 METAII (BPB=32,L=2) 8.82 105.84

MULT64 METAII (BPB=32,L=3) 9.89 118.68

Appendix B

Publications related to this dissertation

The following is the list of publications related to this thesis work.

1. J. Huang and J. Lach, ”ColSpace: Towards Algorithm/Implementation Co-Optimization,”

International Conference on Computer Design (ICCD), 2009

2. J. Huang and J. Lach, ”Exploring the Fidelity-Efficiency Design Space using Inexact

Arithmetic”, Asia and South Pacific Design Automation Conference (ASP-DAC),

2011

3. J. Huang, G. Robins and J. Lach, ”Analytic Error Modeling for Imprecise Arithmetic

Circuits”, Silicon Errors in Logic - System Effects (SELSE), 2011

4. J. Huang, G. Robins and J. Lach, ”A Methodology for Energy-Quality Tradeoffs

Using Imprecise Hardware”, Design Automation Conference (DAC), 2012

5. J. Huang, G. Robins and J. Lach, ”A Circuit Design Methodology for Efficiency-

Quality Tradeoffs Using Imprecise Hardware”, IEEE Transactions on Computer-

Aided Design (TCAD), 2012 (submitted for review)

124

