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Abstract 

In critical domains from air traffic control to health care, humans make judgments by using 

informational cues to assess the true state of the environment. How humans judge environmental 

conditions is now ubiquitously supported by automation. While prior modeling and analysis has defined 

levels of automated decision support and methods to evaluate independent human and automated 

judges, we have yet to develop ways to both support and evaluate human judgment. 

To address this gap, this research develops a conceptual design and evaluation framework, titled 

the Expanded Lens Model with Automation (ELMA). To provide design support, ELMA accounts for 

discrepancies between how cues in the environment are transformed into operator displays via 

automated processes. The transformation is based upon the desired, hierarchical level of cognitive 

judgment support, from cue perception, to cue comprehension, to an automated assessment, to 

explanation of the automated assessment. In addition to design support, ELMA includes quantitative 

evaluation measures, using multiple linear regression and correlation analysis to characterize the 

achievement, consistency, and task knowledge of the human judge; potential and accuracy of 

automation; and predictability of the environment. 

ELMA’s utility is demonstrated through the investigation of two tasks: 1) judging the probability 

of an air traffic conflict using heading and speed cues and 2) judging the quality of population-based 

hypertension care using cues on patient outcomes (e.g., blood pressure) and processes (e.g., 

medications prescribed). Across both tasks, ELMA revealed that when participants were supported at 

the cognitive level of cue comprehension they achieved significantly higher judgment achievement 

compared to those supported at the lower level of cue perception. Decomposition of achievement 

indicated that these differences were predominantly due to the consistency of individuals in executing 

judgments rather than task knowledge. Additionally, reliability across participants was significantly 
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higher for participants with cue perception and cue comprehension support compared to participants 

with automated assessment support in the quality of hypertension care task.  

ELMA is a useful tool for systems engineers as it provides both a systematic framework to 

inform automation design choices and a quantitative method to evaluate human-automation judgment 

systems. 
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1. Overview and objectives 

In critical domains from air traffic control to health care, humans make critical judgments. To inform a 

judgment, one uses available information (or cues) with the goal of formulating an assessment about 

the true state of the environment before making a decision. For example, an air traffic controller uses 

aircraft position, speed, and heading cues to judge the likelihood of a collision before deciding to 

reroute an aircraft. A clinician uses cues indicating the proportion of patients up to date on 

recommended cancer screenings (e.g., mammography) to judge the quality of preventative health care 

provided to a group of patients before deciding to allocate resources to a quality improvement initiative.  

How humans judge environmental conditions is now ubiquitously supported by automation. We 

need to understand the interaction of human and automation to inform automation design choices.  

One approach to studying this interaction is using qualitative frameworks to distinguish types and levels 

of automation. However, the focus of this approach has been to support decision making and 

supervisory tasks, instead of supporting cue perception, cue comprehension, and assessment [1–6]. 

Another approach, which unlike the former that includes subjective evaluation measures, is the use of 

judgment analysis to decompose achievement into other quantitative measures that reflect consistency, 

task knowledge, and environmental predictability. However, this approach has focused on evaluating 

independent human and automated judges or in characterizing how a human adapts to an automated 

judgment [7–13].  

To summarize, we have yet to define levels of automated judgment support and quantitative 

evaluation measures for human-automation judgment systems. The central hypothesis of the work 

herein is that we can develop a conceptual design and evaluation framework for automation that 

supports cognitive functions involved in judgment. This central hypothesis is supported by three aims. 

The first aim is to develop the framework, titled the Expanded Lens Model with Automation 

(ELMA). To provide design support, ELMA accounts for discrepancies between how cues in the 
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environment are transformed into displays to operators via automated processes. The transformation is 

based upon the desired, hierarchical level of cognitive judgment support, from cue perception, to cue 

comprehension, to an automated assessment, to explanation of the automated assessment. In addition 

to design support, ELMA also includes quantitative measures to evaluate the human-automation system 

with an idiographic-statistical1 approach. Multiple linear regression and correlation analysis are 

employed to characterize achievement, consistency, and knowledge of the human judge, potential and 

accuracy of automation support, and predictability of the environment. Nomothetic analysis can then be 

applied to investigate the effect of automation design choices on general judgment performance. 

The second aim is to demonstrate ELMA’s utility and address domain-specific objectives, by 

evaluating an existing system that supports air traffic controllers in judging the probability of an air 

traffic conflict using heading and speed cues. This effort is significant because the Federal Aviation 

Administration (FAA) predicts that air traffic will more than double in the next twenty years [14]. This 

growth emphasizes the need to systematically and quantitatively evaluate the impact of automation 

design choices on conflict judgments prior to incurring the high costs of full-scale development, 

deployment, training, and maintenance. Specifically, the objectives of this aim were to investigate the 

effect of providing additional levels of support, in tandem with an automated judgment, on operator 

achievement and consistency. ELMA revealed that participants provided with cue comprehension 

support had significantly higher judgment achievement compared to those provided with only 

automated assessment support. This was predominantly due to improved consistency, in that 

participants may have been able to better understand the environmental context and were thus able to 

more consistently apply their judgment strategies. 

 The third aim is to demonstrate ELMA’s utility and to understand and inform the design of 

automation to support physicians in judging the quality of population-based hypertension care using 

                                                           
1
 An idiographic-statistical approach investigates individuals before general (nomothetic) trends.   
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cues on patient outcomes (e.g., blood pressure) and processes (e.g., medications prescribed). This effort 

is significant because resident physicians are now required to demonstrate the ability to evaluate the 

quality of their care as a core learning requirement instituted by the Accreditation Council for Graduate 

Medical Education (ACGME) [15]. Yet, physicians have shown a limited ability to accurately make such 

judgments [16] and few automated tools are available to support them [17]. Specifically, the objectives 

of this aim were: 1) to identify cues needed to judge hypertension care quality, 2) to understand how 

these cues differentially influence judgment, and 3) to evaluate the impact of level of automated 

support on achievement, consistency within individual physicians, and reliability across physicians. ELMA 

revealed that the percentage of patients at goal blood pressure had the greatest impact on quality 

judgments compared to the percentage of patients on recommended medications and with 

recommended laboratory tests checked. Further, resident physicians supported with cue perception and 

cue comprehension had significantly better achievement, consistency, and reliability compared to those 

supported with an automated assessment.  
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2. Conceptual background  

This chapter begins by defining human judgment. This is followed by a description of frameworks used 

to design and evaluate automation systems, which has motivated the need for the ELMA framework to 

guide design to specifically support human judgment. A discussion of conceptual, quantitative models to 

investigate human judgment, predominantly those arising from the lens model-based approach are also 

included. These models have inspired the conceptualization of ELMA. Prior empirical findings related to 

automation-supported judgment performance are also included. This chapter concludes with a 

summary of the conceptual gaps in the literature and outlines the research objectives of this 

dissertation. 

 

2.1. Human judgment 

To make a judgment, a judge considers one or more cues. Cues represent any information elements 

available to the judge and they can be gathered from any sensory input (e.g., visual, aural, haptic). The 

judge perceives, comprehends, and integrates the cues to formulate a judgment regarding the true state 

of the environment, where the true state is known as the environmental criterion. This process is also 

referred to as the “front-end judgment process.” This is differentiated from the “back-end decision 

process” that, based on the judgment, involves generating possible courses of action, weighing one’s 

options, and mentally simulating a possible response [18]. 

 For example, a naval officer uses multiple cues to make a judgment about the identity of an 

aircraft approaching the officer’s ship [19]. The cues might include the speed, altitude, and range of the 

approaching aircraft, informed by a visual user interface. The environmental criterion would be the true 

identity of the aircraft (e.g., hostile or friendly). Each of the cues used to make the judgment also have a 

direct relationship to the environmental criterion. For example, aircraft that fly at speeds less than 600 

knots are typically friendly (e.g., commercial). Once the officer makes a judgment about the identity of 
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the aircraft, he or she may then decide whether or not to make contact with the aircraft. This research 

focuses on the front-end judgment process, rather than the back-end decision process that may follow 

or be based on a judgment. 

 

2.2. Frameworks for automation design and evaluation 

Automated systems are increasingly being designed to assist humans in making judgments in domains 

such as defense [19], weather [20], aviation [21], and health care [17], [22], [23]. In the domain of health 

care, for example, such systems are expected to proliferate given the Institute of Medicine’s promotion 

of health information technology [24] and the push for widespread adoption of information technology 

through the Health Information Technology for Economic and Clinical Health Act (HITECH) [25].  

 Automation may gather and present cues from the environment, provide an evaluation of cues, 

integrate cues to formulate an automated judgment, or explain its own cue integration strategy for the 

human to draw on. When designing automation to support human judgment, both the functionality 

(i.e., content of information presented) and the representation of information must be considered. This 

section will review existing frameworks related to automation functionality (the focus of this 

dissertation). For reviews on designing the representation of information, see [26–28]. 

 

2.2.1. Function allocation frameworks 

Traditionally, automation designers made decisions about what cognitive functions to automate in a 

qualitative manner by simply automating whatever was possible from a technical and/or cost 

perspective. As technical developments improved, the main automation design question became: what 

system (i.e., cognitive) functions should be automated and to what extent [1]? 

 Fitts et al. [29] were the first to suggest a framework to guide decisions on what to automate 

based on function allocation methods. Designers were encouraged to automate all tasks where 
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machines perform better than humans. For example, it was thought that men were better at perceiving 

patterns of light or sound and machines were better at storing information briefly and then erasing it 

completely [30].  Similar MABA-MABA lists, or ‘Men are Better At-Machines are Better At,’ have been 

proposed in different domains (e.g., [31][32]). Others have attempted to use these function allocation 

methods in order to guide automation design [29], [33], [34], but they have been found to be difficult to 

use [32], [35]. Further, function allocation does not necessarily mean allocation of a whole task to either 

human or machine, exclusive of the other [30]. This concept has inspired the development of 

frameworks that incorporate taxonomies to describe levels or degrees of automation for a particular 

function [2–5], [36]. One commonly cited taxonomy was developed by Sheridan and Verplank [36]. It 

consists of ten levels of automation as depicted in Table 1.  
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Table 1. Sheridan and Verplank’s levels of automation [36]. 

Level of Automation 

1.  Human does the whole job up to the point of turning it over to the computer to 

implement. 

2.  Computer helps by determining the options. 

3.  Computer helps to determine options and suggests one, which the human need 

not follow. 

4.  Computer selects an action and the human may or may not do it. 

5.  Computer selects an action and implements it if the human approves. 

6.  Computer selects an action and informs the human in plenty of time to stop it.  

7.  Computer does the whole job and necessarily tells the human what it did. 

8.  Computer does the whole job and tells human what it did only if the human 

explicitly asks. 

9.  Computer does the whole job and decides what the human should be told. 

10. Computer does the whole job if it decides it should be done, and if so, tells the 

human, if it decides that the human should be told. 

  

  

 While this taxonomy can guide design in some contexts, it is limited to situations involving the 

sharing of functions related to determining options, selecting options, and implementing options. 

Others have expanded this work to address a wider array of cognitive and psychomotor tasks. In another 

framework, ten levels of automation were formulated by assigning four different cognitive functions 

(monitoring, generating, selecting, and implementing) to the human, the automation or both [2–5]. This 

taxonomy provides a systematic way to examine the effect of automation applied to support more 

cognitive functions, as implemented incrementally. However, it was developed for the design of 
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automation to support supervisory control tasks and would be difficult to apply to the design of 

automation to support judgment tasks where the goal is to make an accurate assessment of the 

environment.  

 

2.2.2. Parasuraman, Sheridan, and Wickens (PSW) framework for “types” and “levels” of automation  

Parasuraman et al. [1] suggest that to guide the design of automation functionality to support an array 

of cognitive tasks, a simple four-stage view of human information processing is first derived from a more 

detailed model [37] (Figure 1). 

 

 

Figure 1. Simple four-stage model of human information processing [1].  

  

 The first stage of information processing refers to the acquisition of information (or cues) from 

the environment. The second stage represents conscious perception and manipulation of retrieved 

information in working memory to form an assessment, or to make a judgment regarding the state of 

the environment. The third stage is where alternative decisions are generated and one is selected and 

the fourth stage involves implementation of a response or action consistent with the decision [1]. 

Although, the authors acknowledge that this is a gross simplification of human information processing, 

similar conceptual models have been found useful for design decisions for other systems [38].  

 This four stage model then has an equivalent in system functions that can be automated to 

support the human’s information processing stages. Four “types” of automation are defined as indicated 

in Figure 2. Information acquisition automation includes functionality to sense and register input data 

from the environment. This could include automation designed to gather and organize incoming cues for 
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the human judge. Information analysis automation includes functions related to working memory, 

integration, or inferential processing to make an assessment or judgment about the environment. This 

type of automation could include algorithms applied to categorize or evaluate cues or algorithms used 

to integrate cues to automatically judge the current state of the environment.  

 Together, the first two types of automation are often referred to as Information Automation (IA) 

and they most directly support the cognitive functions involved in human judgment. The first two types 

of automation have also been suggested as possible interventions to benefit situation awareness (SA) 

[8], [10]. The SA construct, which was postulated by Endsley [39], includes the perception of cues in the 

environment, comprehension of the current situation, and the projection of the current situation into 

the near future.  

 Decision and action selection automation (the third type) includes functions such as augmenting 

or replacing the way a human generates and selects between decision alternatives. The final type of 

automation, action implementation, is designed to execute the decision or choice of action. 

 

 

Figure 2. Four-stage model of automation types.  

  

 Each automation “type” can then be designed to provide a different “level” of support, creating 

a two-dimensional framework of types and levels to guide the design of automation. However, 

Parasuraman et al. [1] only suggest “levels” for one of the three “types” of automation: the decision and 

action selection type (Table 2). 
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Table 2. Levels of automation for the decision and action selection type. 

 Level of Automation 

High 

10. 

The automation decides everything, acts autonomously, ignoring the 

human.  

9. The automation informs the human only if it decides to.  

8. The automation informs the human only if asked.  

7. 
The automation executes automatically and then necessarily informs 

the human. 

6. 
The automation allows the human a restricted time to veto before 

automatic execution.  

5. The automation executes the suggestion if the human approves.  

4. The automation suggests one alternative.  

3. The automation narrows the selection down to a few alternatives.  

2. The automation offers a complete set of alternatives.  

Low 

1. 

The automation offers no assistance; human must make all decisions 

and actions.  

 

   

 Given the types and levels of automation suggested by Parasuraman et al. [1], [6] a series of 

iterative steps is prescribed for their integration into a conceptual framework for making automation 

design choices and then evaluating the human-automation system. The first step is to pick the type(s) of 

automation. The second step is to choose the desired level of automation per type. (However, no 

guidance is provided for this step and it is even suggested that there is “no simple answer.”) The authors 
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propose that any type/level combination should then be evaluated by examining the associated human 

performance consequences. These include investigating mental workload, situation awareness, 

complacency, and skill degradation [1].  

 The objective of this framework is to support automation design decisions on the basis of 

empirical evaluation of various combinations of the types and levels. This framework provides the most 

comprehensive guide for automation design to support human information processing to date 

(particularly in the design of automation to support human decision making). However, it can essentially 

only be used as a starting point in the design of automation to support human judgment (i.e., IA) 

because no levels of IA have been defined. 

 Further, while quantitative models of human performance have been suggested to supplement 

this qualitative framework, no model has been suggested to support the design of IA (specifically at the 

analysis stage) [6]. Quantitative models of human judgment may aid in the analysis of benefits and costs 

associated with different levels of IA. The following section will review conceptual, quantitative models 

of human judgment (corresponding with the first two stages of human information processing as 

indicated in Figure 1) that may fit this need.  

 

2.3. Conceptual models to investigate human judgment  

While many different conceptual models have been developed to investigate human judgment, few 

specifically address the relationships between the cues, the human judge, and the environmental 

criterion. For example, of the fourteen judgment and decision making approaches analyzed by Cooksey 

[40], only signal detection theory (SDT) and judgment analysis (JA) consider these relationships. The 

focus of SDT is on discrimination (i.e., a judge’s ability to detect a signal against noise), only one aspect 

of the judgment process. The focus of JA is wider, including the cue integration strategies that result in 
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judgment. The following section will review the theoretical foundations and applications of JA as a 

research paradigm to study human judgment. 

 

2.3.1. Brunswik’s probabilistic functionalism and the lens model 

In the 1940s and 1950s, psychologist Egon Brunswik proposed a sweeping reform to the direction of 

psychological research [41]. Contemporary psychologists were readily adopting analysis of variance as a 

statistical methodology to conduct systematic and controlled factorial designs to study human behavior 

while disentangling task and environmental variables. However, Brunswik viewed this trend as a means 

to describe the average organism, performing unrealistic tasks, under atypical laboratory conditions that 

were not representative of the organism’s natural environment. Thus, results could be generalized to 

other average organisms not participating in the study, but could conclude little about other conditions 

or contexts for the behavior in question [40], [41]. 

 Brunswik’s novel approach away from mainstream psychology was coined probabilistic 

functionalism. His primary focus was to investigate the relationships between the organism and its 

environment, which is based on probabilistic relations among environmental variables (i.e., cues). 

Brunswik theorized that cues in the environment could never be perfect indicators of a distal state of 

the environment (i.e., criterion). Thus the probabilistic relationship between cues and criterion was 

termed ecological validity, which indicates the potential utility of cues (i.e., for an organism to use). 

Similarly, the cues are also only probabilistically related to the organism’s response and the application 

of cues was termed functional validity. In Brunswik’s view, the degree of success (or achievement) 

indicates the extent of which an organism’s utilization of the cues matches the ecological validity of the 

cues.  

 Another key aspect to Brunswik’s theory is the presence of intra-ecological correlations among 

cues, indicating environmental redundancy. The presence of these correlations implies that if an 
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organism integrates the cues differently on successive occasions, that there can still be a high degree of 

achievement permitted by trade-offs in emphasis among correlated cues. Brunswik referred to this 

concept as vicarious functioning [40].  

 Brunswik created the lens model as a tool for representing and summarizing the concepts 

involved in probabilistic functioning. The model provides symmetric descriptions of the environmental 

criterion and the organism, as both are related to cues (Figure 3).  

 

 

Figure 3. Brunswik's lens model. 

  

 The relationships between the cues and the criterion (ecological validities) and the cues and the 

organism’s response (cue utilizations) are depicted. There may be correlations among the cues and a 

subset of these is shown. Achievement is indicated by the correlation between the organism’s response 

and the environmental criterion. Again, this is maximized when the cue utilizations match ecological 

validities.  

 A methodological consequence of Brunswik’s theory was the use of representative design. This 

requires that both representative samples of the environment (cues and criterion) and representative 
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samples of the organism be used in experimental designs. Statistical analysis must then support 

inferences with respect to situations in the ecology and to organisms.  

 To analyze the relationships between the organism and its environment, Brunswik advocated for 

an idiographic-statistical approach. He maintained that “individuals should be examined and statistically 

tested before attempting to generalize behavioral trends” [42] across organisms. Although Brunswik 

never specified a precise statistical methodology to accomplish this idiographic-statistical analysis, it is 

reported that he made indirect references to the possibility of multiple regression methods in his 1956 

book [40], [41], [43]. 

 Brunswik limited the application of his theories to human perception; however, his work has 

influenced research in a variety of areas, most notably human judgment. Kenneth Hammond was the 

psychologist primarily responsible for applying Brunswik’s concepts to investigate human judgment. 

 

2.3.2. Hammond’s Social Judgment Theory 

Hammond first applied Brunswik’s theories to investigate clinical judgment [44]. He employed the lens 

model representation to summarize correlational results of a study investigating clinical judgments of 

patient IQs based on four cues (characterizing the patients). These judgments were compared to a 

criterion derived from statistical predictions using the Wechsler-Bellevue (W-B) IQ test scores. This first 

application demonstrated the utility of the lens model to explore three aspects of human judgment: 

understanding how the clinicians’ judgments correlated with the W-B scores (the criterion), exploring 

the use of multiple regression to quantify how well clinicians could combine cue information to make a 

clinical judgment, and identifying cue correlations indicating the possibility of vicarious functioning.   

 This work laid the foundation for expanding the application of the lens model to other 

paradigms, including multiple-cue probability learning (MCPL) [45], interpersonal conflict (IPC) [46] and 

interpersonal learning (IPL) [47]. The latter two paradigms gave rise to the idea that Brunswik’s theories 
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could be applied to the social domain of human judgment, and thus Social Judgment Theory (SJT) was 

formed [48]. This opened the door to use Brunswik’s lens model to investigate and compare multiple 

judges, even when no environmental criterion is available (e.g., correspondence between judges, 

differences in cue utilizations, etc.).   

 Hammond’s work in SJT particularly drew attention to the possible forms of relationships 

between the cues and the criterion, and the cues and the human judgment. He showed how the 

functional form and the cue weights could be separated using multiple regression procedures2 [48]. 

Around the same time, Goldberg [50] also described how linear models sufficiently predicted clinical 

judgments even when the human judges reported using more complex, non-linear strategies. Simple 

linear models have also out-performed judgment strategies based on logical rules [51], even when 

human judges verbalize their strategies in terms of logical rules and insist they are using a more 

complicated strategy than a linear additive model would suggest. Linear models have also replicated 

process-tracing models of judgment that were thought to be more cognitively representative [52] and 

even non-optimal linear models have accurately predicted human judgments[53].  

 Human judgment research with a  Brunswikian focus using regression tools has been applied in 

many domains, including education [54–56], health care [57–59], accounting [60], [61], risk [62], social 

welfare [63], meteorological forecasting [64], and public project evaluations [65]. Because not all of 

these applications investigated the social aspect of judgment (between judges), the research paradigm 

became more generally known as judgment analysis (JA).  

 

                                                           
2
 Bottenberg and Christal [49] are generally credited with the first use of multiple regression to analyze human 

judgment [40]. 
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2.3.3. Judgment analysis 

Judgment analysis (JA), as a modern research paradigm, is particularly well suited for investigating the 

relationships between cues, the human judge, and the environmental criterion. It is also appropriate for 

judgments that fall in the quasi-rational region of the cognitive continuum theory of judgment [42]. 

These judgments are defined by possessing some analytical features that are defensible and some 

intuitive features that are not completely traceable. Judgments of this nature could include judging the 

quality of hypertension care based on patient population measures that possess both analytical (e.g., 

average blood pressure reading) and intuitive features (e.g., expecting that many patients are not 

compliant with recommended medications). 

 JA can be characterized by the design of the system under investigation and represented with 

different versions of the lens model. These include the single, double, triple, and n-systems designs. 

 

2.3.3.1. Single system lens model 

 The single system design constitutes a methodology for investigating human judgment when no 

environmental criterion is available [40]. It is represented using the lens model framework as shown 

below where the criterion (E) is grayed out.  
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Figure 4. Single system lens model. 

  

 Cooksey [40] defines three valid reasons why a criterion may not be available. First, it may be 

impossible to define or measure a criterion. This may occur under simulated judgment cases, cases 

representing future judgment situations that are not currently performed, or cases regarding future 

environmental states where it is unrealistic to wait for the criterion to be measured. Second, there may 

be confidentiality, ethical, or legal reasons for the unavailability of the criterion. For example, Brady and 

Rappoport [66] studied judgments related to nuclear fuel theft potential from nuclear power plants. It 

would have been unsafe to use actual criterion measures of theft potential in their study in the event of 

misuse or theft of their data. Last, criterion measures may not be incorporated into judgment studies in 

circumstances where the criterion is irrelevant to the research goals. For example, research that is 

conducted explicitly to examine the cognitive systems of judges may not incorporate criterion measures.  

Under these circumstances, the environmental predictability may not be characterized.   

 Although judgment achievement cannot be measured under these circumstances, at the 

individual judge (idiographic) level, one can still investigate different aspects of human judgment (H) 

after a human has judged a sample of cue profiles. These aspects include cue utilization (e.g., the linear 
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model relating cues to judgments), the weighting applied to each cue to make a judgment, and the 

degree of cognitive control the judge uses in applying his or her judgment strategy (RH). Using linear 

regression techniques, RH is the coefficient of multiple correlation of the regression on the human’s 

judgments with the cue values, or the correlation of judgments and predictions of judgments based on 

the model. Cue correlations (rij) in the environment can also be investigated. 

 There are occasions when idiographic analysis is insufficient to answer research objectives. For 

example, if specific experimental groups of judges have been constructed (i.e., when treatment groups 

have been constructed to systematically vary an independent variable of interest), then idiographic 

analysis is only the first step. Nomothetic comparisons between the various idiographic measures may 

be performed to investigate the impact of different treatment groups. This is typically accomplished 

using univariate or multivariate analysis of variance (ANOVA) techniques [40].  

 

2.3.3.2. Double system lens model 

The double system design constitutes the classic Brunswik representation. This common form of the 

lens model provides symmetric descriptions of the environmental criterion and the human judge as both 

are related to cues (Figure 5). 
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Figure 5. Double system lens model. 

  

 Similar to the single system design, the double system allows one to investigate the cue 

utilization of the judge, the weighting applied to each cue, the cognitive control (RH), and cue 

correlations (rij). With the criterion available, one can similarly investigate the ecological validity of the 

cues (function relating cues to criterion) and the ecological predictability (RE). Using linear regression 

techniques, RE is the coefficient of multiple correlation of the regression on the criterion with the cue 

values, or the correlation of criterion values and predictions of the criterion based on the environmental 

model. 

 The double system lens model also provides a framework to calculate other judgment 

performance measures. Correlations representing achievement (ra), linear knowledge (G) and un-

modeled agreement (C) can also be determined. Achievement is the correlation between the human’s 

judgment and the environmental criterion and is maximized when the cue utilizations match ecological 
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validities. Linear knowledge (G) is the correlation between predictions from the criterion model and the 

human judgment model. This represents the extent of a judge’s understanding of the task properties 

with the cues in the model. Un-modeled agreement (C) is the correlation between the residuals of the 

two models. A non-zero value of C could indicate common reliance on cues not included in the model, 

non-linearity of cue function forms, common cue interactions, or chance agreement between random 

model errors for both the criterion and the human judgment.   

 Both idiographic and nomothetic analyses can be performed with a double system design as 

mentioned in the single system design section above.  

 

2.3.3.3. Triple and n-system lens model 

The triple system lens model (Figure 6) is typically used to investigate the social aspects of human 

judgment. In this design there are two independent judges, which could be human or automated judges. 

All measures possible in the single and double system design are also possible in this design for each 

independent judge. Further, comparisons can be made between the judges [40]. The agreement 

between judgments made by Judge A and Judge B is indicated in the figure. This lens model 

representation has been primarily used in studies to investigate interpersonal conflict (IPC) [46], 

interpersonal learning (IPL) [47], and human-automation interaction [7], [11].  

 The n-systems lens model is a logical extension to the triple system to account for more than 

two independent judges.  
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Figure 6. Triple system lens model. 

 

2.3.4. The lens model equation 

The lens model with its associated statistical parameters provides a conceptual and a methodological 

tool to study human judgment in many contexts. Taking advantage of regression statistics derived from 

the lens model concepts, the Lens Model Equation (LME) was developed by Hursch, Hammond, & 

Hursch [67] and Tucker [68]. It provides a mathematical basis for partitioning judgment achievement 

into the lower-level correspondences that account for the contributions of the environment and of the 

human judge. The LME assumes that the human and the criterion have been modeled with multiple 

linear regression using the cues as inputs to both models. 

 The LME (equation 2.1) separates achievement into two multiplicative components: the linear 

component that represents achievement attributed to the linear modeling of the judge and the ecology 

and the configural component that represents un-modeled aspects of achievement (i.e., the 
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unpredictability of both the criterion and the human judge and the degree of which un-modeled aspects 

of the two models correspond). The variables in the equation are the correlations between components 

of the lens model as depicted in Figure 5. Again, because achievement is a correlation, the highest 

possible value is one. 

               
      

        (2.1) 

 If there is little un-modeled agreement (C approximately equal to zero), the LME can be 

simplified to the product of three correlations: linear knowledge (G), ecological predictability (RE), and 

cognitive control (RH).  

                  (2.2) 

 If achievement is less than one, it can then be decomposed to understand why judgment 

performance is not perfect. For example, a judge may demonstrate an achievement of 0.80 on judging 

the identity of an approaching aircraft. As equation 2.2 above indicates, it could be that the judge’s 

knowledge of the environment is limited (G = 0.80) but the environment is fully predictable (RE = 1.0) 

and the judge is perfectly consistent in executing his or her judgment strategy (RH = 1.0) based on the 

cues. On the other hand, the judge might have perfect linear knowledge and cognitive control but be 

working in an environment that is less than fully predictable given the cues (RE = 0.80). Finally, it could 

be the case that the environment is fully predictable and the judge has perfect knowledge but makes 

judgments inconsistently (RH = 0.80). Typically it is a combination of these effects in actual judgment 

analysis studies.  

 Table 3 summarizes the components of the lens model that can be derived and investigated 

within the judgment analysis framework and the lens model representation.  
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Table 3. Lens Model Equation parameters. 

Component Name Description 

ra Achievement 
Correlation between the human’s judgments and 

environmental criterion  

G Linear knowledge 
Correlation between predictions from the models of 

the human judge and the environmental criterion 

RE 
Ecological 

Predictability 

Coefficient of multiple correlation of the regression on 

the criterion with the cue values 

RH Cognitive Control 
Coefficient of multiple correlation of the regression on 

the human’s judgments with the cue values 

C 
Un-modeled 

Agreement 

Correlation between the residuals (or errors) of the 

criterion model and the human judgment model 

 

 

2.3.5. The expanded lens model (ELM) 

In an attempt to better understand and investigate forecasting judgments, Stewart and Lusk [69] 

expanded the basic lens model framework by inserting two additional sets of cues (Figure 7). First, they 

inserted “true descriptors” between the cues and the criterion. Second, they inserted “subjective cues” 

between the cues and the human judgment. 
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Figure 7. Expanded lens model (ELM). 

 

 The “true descriptors” are meant to model the true cues in the environment, possibly different 

from those available to the judge. For example, the true speed of an approaching air craft might be 608 

mph (the “true descriptor” or true cue), but because radars are imperfect in sampling the atmosphere 

and processing data, the cue might be 591 mph. This expansion acknowledges that true descriptors are 

not always directly available to the judge as cues. Using this model, the environmental criterion can be 

correlated with predictions from either a model of the criterion using the true descriptors (REt) or a 

model of the criterion using the cues (REx). 

 The “subjective cues” are meant to model subjective interpretation of the cues, which may be 

different from the cues. For example, the approaching air craft speed on a display might be 591 mph, 

yet a person may read the display as 600 mph. This expansion acknowledges that different human 

judges may process cues differently based on their subjective interpretation. Similar to above, they 

point out that the human’s judgments can be correlated with either predictions from a model of 

judgment using subjective cues (RHs) or a model of judgment using the cues (RHx). 
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 Based on the LME, we know that judgment achievement (correlation between environmental 

criterion and human judgment) will be degraded if environmental predictability or cognitive control is 

low. With the expanded lens model, Stewart and Lusk [69] suggest that low environmental predictability 

(traditionally characterized by REx) could be due to either an inadequate relationship between the 

environmental criterion and the true descriptors or between the true descriptors and the cues. Thus, 

they decompose REx into the product of REt and the ratio of REt to REx. They term this ratio “fidelity of the 

information system,” or Vtx, to characterize the relationship between true descriptors and cues.  

       
   

   
                (2.3) 

 Similarly, low cognitive control (traditionally characterized by RHx) could be due to either 

inadequate relationships between the cues and subjective cues or between subjective cues and the 

human judgment [69]. Thus, they also show that RHx can be decomposed into the product of RHs and the 

ratio of RHx to RHs. They term this ratio “reliability of information acquisition,” or Vsx), to characterize the 

relationship between cues and subjective cues.  

       
   

   
                 (2.4) 

 This expansion to the lens model has conceptual and theoretical value. However, the ELM does 

not explicitly consider the role of information automation to support the human in their judgment task. 

Also, to our knowledge, the ELM has only been empirically tested in two contexts [10], [9], [70]. In the 

first application [10], [9], the authors used a reduced version of the ELM (i.e., no true descriptors). They 

modeled human judgment under two conditions and found that the (reduced) ELM was useful in 

indicating differences in judgment performance between the two conditions due to environmental 

predictability that would not have been uncovered with using only the standard judgment performance 

measures of achievement or skill score [71].  

 In the second application [70], the authors replaced the criterion and the true descriptors with 

another human judge and another set of subjective cues (i.e., making the model symmetric, with the 
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cues in the center). They found this application useful to identify differences in how individual judges 

used the cues (poor correlation between judge models or low value of G).  

 

2.4. Judgment analysis as a method to inform automation design 

Judgment analysis and the lens model conceptualization have been used specifically to support 

automation design under limited contexts. Primarily, judgment analysis has been used as a framework 

to investigate IA systems acting as independent judges. It has also been used to compare IA judgment 

strategies to those of human judges and to subsequently examine the interaction between human judge 

and automated judge [7], [8], [11–13].  

 For example, HAJL (Human Automated Judge Learning) is one quantitative, methodological 

framework that builds directly on the triple lens system design from judgment analysis and the concepts 

from interpersonal learning (IPL) [7]. Its goal is to study human interaction with an automated judge, 

rather than another human judge as was traditionally investigated in IPL experiments. Specifically, HAJL 

includes three experimental phases and measures to capture relevant features of the human’s judgment 

processes in conjunction with an automated judge in order to inform IA design.  

 In the training phase, HAJL focuses on modeling the human judge with no interaction with the 

automated judge. In the interactive learning (IL) phase, the human and automation first make 

independent judgments. The human can then view the automation’s judgment and make a subsequent 

“joint” judgment. The correlation between their independent judgments measures their (lack of) 

conflict. The correlation between the human’s independent and joint judgments provides a measure of 

(lack of) compromise and the correlation between the automation’s judgment and the joint judgment 

measures the extent to which the human adapts to the automation’s judgment (Figure 8). This phase 

supports quantitatively measuring use of an IA judgment through the compromise and adaptation 
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measures, which is different from others who have used subjective techniques to measure automation 

use [72]. 

 

 

Figure 8. Lens model used in IL phase of HAJL. 

 

   In the prediction phase, the human has no interaction with the automated judge. The human 

makes an independent judgment and a judgment of what the automated judge would have predicted 

had it been available. This phase supports quantitatively measuring the human’s understanding of the 

automation through measures of predictive accuracy (correlation between the automation’s judgment 

and the human’s prediction of it) and similarity (correlation between the human’s judgment and the 

human’s prediction of the automation or the automation’s actual judgment). 

 HAJL measures in combination can help one understand the human-IA judge interaction [7]. For 

example, patterns in the unaided judgments and compromise/adaptation measures can identify over-, 

under-, or appropriate reliance on the IA judge. In one experiment employing HAJL, unaided judgment 

achievement in the IL phase was much lower than the automation’s judgment achievement. This may 

indicate an appropriate context for the human to adapt their judgment to an IA judgment.  
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 The HAJL framework has only been employed to investigate human-automation interaction 

where the human and IA act as independent judges [7], [73]. While useful in such contexts, it forces a 

certain experimental procedure where IA supports the human judge in only one phase and the IA always 

provides an algorithmically-generated judgment for the human to consider. IA could also be designed to 

support lower-level cognitive processes involved in the judgment process, such as gathering cues, 

presenting cues in various ways, and/or providing interpretation of cues. Further, HAJL does not take 

into consideration the different cue sets in the expanded lens model suggested by Stewart and Lusk [69] 

to account for discrepancy between true descriptors, available cues, and subjective cues. 

 

2.5. Empirical findings of human interaction with information automation 

Several studies have investigated the effects of automation “ type” (as defined in [1]) on human 

performance [2–5], [74–76]. Favorable results have been found for using information automation 

compared to decision automation, particularly with imperfect automation [77–80]. However, very few 

studies have investigated judgment performance when different cognitive judgment functions are 

supported by IA (i.e., varying the level of IA support or the content of information presented to the 

human judge). 

 IA could be designed to support perception of cues using graphical or numerical displays. This 

level of IA has obvious benefits over not providing IA for tasks where it is impractical for an unaided 

human to perceive cues, such as in health care, aviation, and process control  [81–83]. IA designed to 

support perception of cues using highlighting of a sub-set of cues has led to both improved judgment 

achievement [84–86] and degraded judgment performance in terms of regression bias (i.e., 

inappropriate narrowing of the judgment range) [8] and slower response times when the IA failed to 

highlight compared to conditions that never used IA cue highlighting [87].   
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 An approach to supporting comprehension of cues has been advocated by a growing group of 

researchers in human-automation system design [81], [82], [88–90]. The notion here is that instead of 

having the automation provide a judgment, it will instead aid the human in understanding the important 

relationships in the task environment. However, this ecological approach has mainly been applied in the 

design of complex process and supervisory control systems and not with IA to support human judgment.  

 There may also be benefits from IA that provides an automated assessment [7], [8], [91]. Bass 

and Pritchett [7] found that judgment performance improved for an air traffic conflict prediction task 

when humans were provided with an automated assessment compared to when they were not provided 

with an automation assessment. This result was replicated by Horrey et al. [8] in a threat assessment 

task. However, they also found that half of the participants overused the IA support by not recognizing 

that the IA provided a poor judgment on one trial. Similar acceptance of an incorrect automated 

judgment was also observed by Layton et al. [91]. 

 Judgment performance may also benefit from IA providing information explaining how it 

integrates cues to derive its automated assessment. Seong and Bisantz [12], [13] found that even IA that 

does not consistently apply its judgment strategy and is not consistently accurate can enhance human 

judgment performance over unreliable IA that does not explain its strategy in air traffic identification 

tasks. However, Bass and Pritchett [7] did not replicate this result of finding any added benefit when 

explanation of IA strategy was provided to support air traffic conflict judgments. Conversely, they 

observed that participants who were not provided with an explanation of IA strategy could better 

predict the IA’s judgments. The same group of participants also had higher judgment achievement when 

no longer provided with an IA judgment compared to other participants who had previously been 

provided with both an IA judgment and explanation of the IA strategy.  

 Thus, while some studies suggest that providing an IA judgment and insight into the IA’s 

judgment strategy may improve human judgment performance, there may also be situations where 
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supporting perception and comprehension of the cues in the environment without providing a judgment 

improves human judgment performance. We also must consider that the usefulness of increasing 

information may stop at a limited amount and that additional information may actually hinder the 

judgment process [92], [93]. Thus, tradeoffs in what functionality the IA employs (and what information 

it displays to the human) is critical. 

 

2.6. Summary of conceptual gaps in the literature and research aims 

Given that IA systems to support human judgment will continue to proliferate and we know that the 

design of automated systems impacts human behavior (often in unanticipated ways), we need 

frameworks to understand human judgment supported by IA to inform automation design choices.   

 However, the approach of using frameworks of types and levels of automation to guide design 

and evaluation are only useful as a starting point because they have focused on automation to support 

human decision making and supervisory tasks. No taxonomies exist to describe how the level of 

automation to support judgment may vary. Parasuraman et al. [1] even point out that the development 

of a taxonomy to describe levels of IA support is a major challenge for the human factors community. 

Additionally, while the evaluation measures suggested by such frameworks are important for human-

automation systems in general, these measures are often subjective (e.g., workload, situation 

awareness, and trust) and do not reflect human judgment performance as comprehensively as 

described in the judgment analysis paradigm where judgment achievement can be decomposed into 

other quantitative measures that reflect consistency, task knowledge, and environmental predictability. 

 Further, the approach of using judgment analysis and the lens model to characterize human 

judgment does not explicitly consider IA that aids the human in the cognitive processes involved in 

judgment. Rather, the focus has been with automation acting as an independent judge. No quantitative 

model has yet been developed to investigate IA supporting different cognitive functions of human 
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judgment (e.g., perceiving cues, comprehending cues, and integrating cues to form a judgment). 

Further, no model has accounted for discrepancies between how true cues (in the environment) are 

transformed to available cues (used by IA) to displayed cues (presented by the IA and used by the 

human judge) to subjective cues (interpreted by the human judge). 

 Last, there is little empirical work (none conclusive) explicitly comparing the effects on human 

judgment performance under varying conditions of IA support. Some studies suggest that providing an 

IA judgment and insight into the IA’s judgment strategy may improve human judgment performance. 

However, there may also be situations where supporting perception and comprehension of the cues in 

the environment improves judgment performance. 

 Thus, this research has three aims. The first aim is to develop a new framework for the design 

and evaluation of information automation to support judgment, titled the Expanded Lens Model with 

Automation (ELMA). To provide design support, ELMA accounts for discrepancies between how cues in 

the environment are transformed into displays to operators via automated processes. The 

transformation is based upon the desired, hierarchical level of cognitive support (i.e., from cue 

perception, to comprehension, to assessment). In addition to design support, ELMA also includes 

quantitative measures to evaluate the human-automation system with an idiographic-statistical 

approach. Multiple linear regression and correlation analysis are employed to characterize achievement, 

consistency, and knowledge of the human judge; potential and accuracy of the automation; and 

predictability of the environment. Nomothetic analysis can then be applied to investigate the effect of 

automation design choices on general judgment performance. 

 The second aim is to demonstrate ELMA’s utility and address domain-specific objectives, by 

evaluating an existing system that supports air traffic controllers in judging the probability of an air 

traffic conflict using heading and speed cues. Specifically, the objectives were to investigate the effect of 
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providing additional levels of support, in tandem with an automated judgment, on achievement and 

consistency.  

 The third aim is to demonstrate ELMA’s utility to understand and inform the design of 

automation to support physicians in judging the quality of population-based hypertension care using 

cues on patient outcomes (e.g., blood pressure) and processes (e.g., medications prescribed). 

Specifically, the objectives of this aim were: 1) to identify cues needed to judge hypertension care 

quality, 2) to understand how these cues differentially influence judgment, and 3) to evaluate the effect 

of level support on judgment achievement, consistency within individual physicians, and reliability 

across physicians.  

 Results will provide further empirical data regarding the impact of automated support on 

judgment performance, inform the design of IA for multiple domains, and ultimately aid in enhanced 

human-automation judgment performance.   
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3. Introducing the Expanded Lens Model with Automation (ELMA) 

 

3.1. Context for using ELMA 

In some settings unaided human judgment is inadequate or even impossible. For example, it would be 

unrealistic for an unaided physician to make a judgment regarding the proportion of patients up to date 

on mammography screenings in a large clinic. To make such a judgment, the physician might need to 

access each individual patient’s medical record, mentally note the date of her last mammogram, 

determine if this date was within the recommended guidelines for frequency of screening, and then 

subsequently integrate all patient records to arrive at a total proportion of patients up to date. Thus, 

utilizing automation to acquire and/or integrate cues is beneficial (or even necessary) in contexts where 

unaided human judgment is unrealistic.  

 However, no automated system can be designed to be perfectly reliable under all 

circumstances. For example, there are many sources of uncertainty in cues used to make health care 

quality judgments. Cues may be missing (e.g., due to having a mammograms at another facility), 

erroneous (e.g., due to inaccurate input to medical records), or confounded by variables outside of the 

physicians’ control (e.g., mammograms were recommended, but patients failed to go to appointments 

because of lack of financial resources). Compounding these issues, if the automation is thought to be 

reliable by the human user, the user may misuse or inappropriately trust the automation [94]. 

 The ELMA framework and methodology is developed with these circumstances in mind - where 

the automation supports the human judgment process in some way, but the human judge makes the 

final judgment. Most often these judgments can be defined as quasi-rational in that they possess some 

analytical features that are defensible and some intuitive features that are not completely traceable 

[40], [42]. 
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 When designing automation to support the human judge under such contexts, one important 

system design question to ensure accurate and coherent judgments is: 

What level of support should the automation provide the human in the judgment process (e.g., 

should the automation only acquire and present information, or should it integrate information 

and present an algorithmically-generated judgment for the human to accept or veto)? 

 Conceptual frameworks for defining levels of automated judgment support and quantitative 

methodologies for analyzing human-automation systems are needed to answer these questions and 

guide the system design and evaluation process. Because no commonly accepted frameworks or 

systematic procedures have been developed to respond to this need, ELMA has been developed to fill 

this gap. The effectiveness of the joint human-automation judgment system is determined by the 

interplay of the automation, the human judge, and the environmental context. Thus, ELMA provides: 

1. A representation of the judgment task environment 

2. A representation of the human’s judgment process 

3. A representation of the automation’s role in supporting the human judge 

4. A means to conceptualize an experimental design space from where one can derive and test 

hypotheses regarding automation design choices related to the level of automated support (in 

terms of information presented on the human-automation interface)  

5. A procedure to guide the design of automation to support human judgment 

6. Quantitative measures to evaluate the human-automation system 

 

 ELMA is a useful tool for systems engineers because the framework unifies the sensor designer, 

the algorithm designer, the display designer and the judgment trainers responsible for the complete 

design and evaluation of human-automation judgment systems. 
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3.2. ELMA model to conceptualize human judgment supported by automation 

The ELMA model to guide automation design and evaluation expands on the judgment analysis 

paradigm [40] and the lens model [41] and expanded lens model representations [69] of human 

judgment.  A generic representation of the ELMA extension to the expanded lens model is shown in 

Figure 9. “Cues” from Stewart and Lusk’s expanded model [69] have been decomposed into three 

components interposed between the “true cues” and the “subjective cues”: the “available cues,” 

“information automation” and the “displayed cues.” 

 

 

Figure 9. ELMA extension to the lens model. 

 

 The ELMA lens model depicts lines that represent the relationships between the environmental 

criterion, different types of cues, information automation, and the human judgment. Recall that the 

environmental criterion on the far left of the figure is defined as the true state of the environment that 

the human is attempting to judge. In a perfect setting, the human’s judgments on the far right of the 

figure (supported by IA) would always match the environmental criterion. This correlation between 
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environmental criteria (E) and human judgments (H) is defined as the achievement of the human-

automation system.  

                      (3.1) 

 In a perfect setting the human-IA achievement would equal one. However, if this is not the case, 

we can assume that the breakdown in performance is due to one of the transformations from 

environmental criterion to human judgment, how the human uses the cues to arrive at a judgment, or 

how predictable the criterion is based on the cues. The next sections will discuss these transformations 

and contributions to judgment achievement. 

 

3.2.1. Environmental criterion, true cues, and available cues 

Starting at the left side of Figure 9, we define the true cues to be directly related to the environmental 

criterion, E, as 

                              (3.2) 

where ti are the true cues and ME.t is a linear model that describes the relationship between the true 

cues and the criterion. In this definition, it is assumed that ME.t captures all of the relationships between 

the true cues and the criterion. The correlation between actual criterion values and predictions from the 

model of the criterion using the true cues represents the true environmental predictability. 

Theoretically, we would expect this correlation to be equal to one. 

                           (3.3) 

 However, not all true cues will be readily available in the environment and there will be 

imperfect relations between the true cues and cues that are actually available, the available cues. Thus, 

equations 3.2 and 3.3 are more useful conceptually than analytically and the available cues can be 

expressed as a function of the true cues where n is the number of true cues. 

                             (3.4) 
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 Consequently, there is a probabilistic relationship between the available cues and the criterion, 

E, represented by 

                                   (3.5) 

where ai are the available cues, ME.a is a linear model that describes the relationship between the 

available cues and the criterion, and EE.a represents the residuals of the model. The correlation of the 

actual criterion values with predictions from model of the criterion using the available cues is defined as 

the available environmental predictability and is useful for characterizing the context in which the 

automation system is able to support the human’s judgments.  

                           (3.6) 

 The ratio of RE.a to RE.t will theoretically be between 0.0 and 1.0 because the available cues will 

never be better predictors of the environmental criterion than the true cues. Stewart and Lusk define 

this measure as the fidelity in the measurement system [69], but in our case we define this ratio as the 

automation potential (ranging from 0 to 1) in that it represents the potential of the automation to 

support the human judge through the accurate transformation of true cues to available cues. If we 

assume that the true cues can be used to perfectly model the criterion, then this ratio is reduced to RE.a.  

     
    

    
              (3.7) 

 The measure of automation potential, Va.t, characterizes the transformation between true cues 

and available cues, which could be addressed with sensor design or data acquisition techniques. 

 

3.2.2. A taxonomy of automated judgment support 

Moving to the right of the available cues in Figure 9, the information automation (IA), depicted by the 

arrow and triangles, uses the available cues to support the human judgment process. The level of IA 

support varies in terms of how the available cues are transformed into displayed cues that the human 

judge can use. To discuss, design, and analyze IA employing different levels of support, it is useful to 
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have a taxonomy. A taxonomy characterizes the automation’s role in supporting the human judge. For 

ELMA, this is represented through four levels of judgment support: perceive, comprehend, assess, and 

explain. These levels represent a means to systematically examine the effect of IA judgment support on 

human judgment performance. Further, we also suggest that the levels need not be implemented 

exclusively and that combinations of levels may be used to support human judgment.  

 The “perceive” level of IA support aids the human judge in perceiving the available cue(s) from 

the environment, or in directly transforming the available cue(s) (ai) to displayed cue(s) (di) for the 

human judge to consider when making a judgment. At the “perceive” level, the displayed cues can be 

expressed as a function of the available cues where n is the number of available cues. 

                             (3.8) 

 The transformation from available to displayed cue(s) could be a direct transformation in that 

the available cue(s) are displayed to the precision that they are available to the automation, using a 

particular display representation. However, the automation could also modify the available cue value in 

some way (e.g., round to the nearest whole number). With more than one available cue, the automation 

could also choose to present the displayed cues simultaneously or with a particular temporal 

sequencing.  Automation support at this level is particularly beneficial for tasks where it is not feasible 

for the human to gather available cues on their own and this has been applied in domains such as health 

care, aviation, and process control [81–83].  

 The “comprehend” level of IA support goes beyond simple perception of available cue(s) and 

supports comprehending meaning by comparing the current available cue(s) with either a pre-set 

standard or threshold value (c) or to descriptive information about the available cue(s) under 

consideration. For example, support at this level could include presenting the relationship between an 

available cue (ai, t) and the value of available cues one time epoch prior (ai, t-1). Automation support at 

this level also supports working memory (i.e., it requires working memory to compare a cue value to a 
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threshold value or to previous value of the cue under consideration) and also provides context-

dependent information to the human judge [95]. 

                                                     (3.9) 

 The “assess” level of IA support aids the human judge by combining available cues to make an 

automated assessment or judgment (defined as A) of the environmental criterion based on the available 

cues and presents this to the human judge. Such automated judgment systems have been found to be 

valuable, particularly as alerting systems [96], [97].  

                                    (3.10) 

 If an IA system provides this level of judgment support, we can specifically characterize the 

automation’s judgment performance by calculating its achievement (correspondence with the 

environmental criterion).  

                         (3.11) 

 We can also model the automation’s judgment using multiple linear regression with the 

available cues as inputs to the model (equation 3.12). Using this model, we can characterize the 

automaton’s cognitive control (equation 3.13) by correlating the automation’s judgments with 

predictions from the model of the automation’s judgments. Also, if we model the environmental 

criterion using available cues, we can also measure the automation’s linear knowledge (equation 3.14) 

and un-modeled agreement (equation 3.15).  

 These measures are useful to characterize judgment performance specifically of the automation 

at this level of support. Although the performance of the automation may affect the performance of the 

human judge, we subsequently focus more on the human’s judgment performance to characterize the 

human-automation system, as it is the human who makes the final judgment.  

                                   (3.12) 

                           (3.13) 
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                             (3.14) 

                              (3.15) 

 The “explain” level of judgment support provides the highest level of automated support to the 

human judge by presenting the cue combination strategy of how the automation arrived at the 

judgment of the environmental criterion, or the specific relationship between available cues (ai) and 

automated judgment (A). This could be in the form of the linear regression weights for each available 

cue that the automation uses in arriving at its judgment, with a particular display representation. This 

level of automation support has been used in air traffic control and air traffic identification judgment 

tasks (e.g., [12], [13], [96], [98–101]). This level of support could also include comparing the automated 

judgment with either a pre-set standard or threshold value(c) or to descriptive information about the 

automated judgment. 

                    

                      

                                            (3.16) 

 In some judgment contexts, the IA will support the human at least at the “perceive” level. There 

could be contexts where the human is supported solely by higher levels, particularly the “assess” level. 

However, for this dissertation we focus on tasks where the human works with the IA to arrive at a 

judgment, which will likely include also having access to the available cues (through the IA “perceive” 

level). Table 4 summarizes the taxonomy of information automation support to human judgment as 

defined by four levels.  
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Table 4. Taxonomy of information automation (IA) support to human judgment. 

Level of 

information 

automation (IA) 

judgment support 

Functionality of IA 
Functional description of 

displayed cues presented by IA 

PERCEIVE  

(P) 

 Display current value(s) of 

available cues 

simultaneously 

 Display current value(s) of 

available cues with 

temporal sequencing 

 

                      

(simultaneously) 

 

                      

(sequentially) 

 

 

COMPREHEND 

(C) 

 

 Display the comparison of 

an available cue(s) to a pre-

set standard value(s) 

 Display the comparison of 

an available cue(s) to a 

descriptive statistic(s) of 

itself 

 

 

            

            

 

                      

              

 

 

ASSESS 

(A) 

 

 Display an automated 

judgment as a result of 

combining current available 

cue values 

 

 

                  

               

EXPLAIN 

(X) 

 

 Display available cue 

combination strategy 

 Display the comparison of 

the automated judgment 

value to pre-set standard 

value 

 Display the comparison of 

an  automated judgment 

value to descriptive 

statistics of itself 
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3.2.3. Displayed cues, subjective cues, and the human judgment 

After transforming the available cues through one or more levels of judgment support, the IA then 

presents displayed cues to the human judge. The displayed cues are the specific representations of the 

available cues as described above in Table 4. We can model the environmental criterion using the 

displayed cues as follows. 

                                   (3.17) 

  Above, ME.d is a linear model that describes the relationship between the displayed cues and the 

criterion, and EE.d represents the residuals of the model. The correlation of criterion values with 

predictions from the model of the criterion using the displayed cues can be defined as the displayed 

environmental predictability and is useful for characterizing the context in which the human makes 

judgments.  

                           (3.18) 

 Recall from equation 3.3 that RE.t is the true environmental predictability. Thus, we know that 

the ratio of RE.d to RE.t will theoretically be between 0.0 and 1.0 because the displayed cues will never be 

better predictors of the environmental criterion compared to the true cues. We define this ratio as the 

true accuracy of the automation. 

     
    

    
            (3.19) 

 Because the true cues may not be available (and equation 3.19 not useful), we can also define 

the ratio of RE.d to RE.a as the displayed accuracy of the automation (equation 3.20). This also ranges from 

0 to 1 because we can assume that the displayed cues will never be better predictors of the 

environmental criterion compared to the available cues. The displayed accuracy of the automation 

characterizes the transformation from available cues to displayed cues. We might expect this 

relationship to be close to 1. However, there could be circumstances where this is not the case, such as 

if the algorithms used to transform available cues to displayed cues are extracting data at a rate less 
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than the update rate of the available cues. This could be addressed with algorithms to process the 

available cues into displays for the human judge. 

     
    

    
            (3.20) 

 Similar to our model of the environmental criterion, we can model the human’s judgments using 

the displayed cues. This describes the correspondence between the human’s judgments and the 

displayed cues. 

                                   (3.21) 

 MH.d is a linear model that describes the relationship between the displayed cues and the 

human’s judgment and EH.d represents the residuals of the model. The correlation of the human’s 

judgments with predictions from the model of the human judgments using the displayed cues can be 

defined as the displayed cognitive control and is useful for characterizing the consistency with which the 

human judge employs his or her judgment strategy based on the displayed cues.  

                           (3.22) 

 The human judge will see the displayed cues, yet may interpret these in different ways, due to 

factors such as displayed cue representation, prior experience, bias, motivation, or training. The 

subjective cues are meant to represent this subjective interpretation and inherent transformation of the 

displayed cues and can be expressed as a function of the displayed cues. 

                             (3.23) 

 We can also model the human’s judgments using the subjective cues where MH.s is a linear 

model that describes the relationship between the subjective cues and the human’s judgment and EH.s 

represents the residuals of the model. 

                                   (3.24) 

 Gathering the subjective cue values would require asking the human judge to report their 

perception of each displayed cue. To our knowledge, this has been only been done in two experiments 
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using judgment analysis [9], [70] as it is a cumbersome and unintuitive task for the human judge. 

Further, the above definition of subjective cues (equation 3.23) assumes that all subjective cues are a 

function of displayed cues. However, there may also be subjective cues that the human uses that are not 

provided by the automation (i.e., not via displayed cues). If known, these additional subjective cues can 

also be incorporated into the model. This may be useful for both informing the design of the automation 

(i.e., update to include the additional cues, if possible) or to inform training (i.e., investigating how the 

operator is using the additional subjective cues).    

 We define the correlation of the human’s judgments with predictions from the model of the 

human judgments using the subjective cues as the subjective cognitive control. 

                           (3.25) 

 Similar to how we characterized the accuracy of the automation, we can also characterize the 

accuracy of the human judge in transforming displayed cues to subjective cues. The ratio of displayed to 

subjective cognitive control (RH.d to RH.s) is defined as the displayed accuracy of the human judge. 

Theoretically, this ratio will be between 0.0 and 1.0 because the displayed cues will never be better 

predictors of the human’s judgment compared to the subjective cues. 

     
    

    
            (3.26) 

The transformation between displayed cues and subjective cues could be addressed with display 

representations, training, or motivation for the human judge. 

 We can also model the environmental criterion using the subjective cues, as follows where ME.s 

is a linear model that describes the relationship between the subjective cues and the criterion and EE.s 

represents the residuals of the model. 

                                   (3.27) 

 The correlation of criterion values with predictions from the model of the criterion using the 

subjective cues can be defined as the subjective environmental predictability and is useful for 
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characterizing the predictability of the environment based on the human judge’s subjective 

interpretation of the environment. 

                           (3.28) 

 

3.2.4. The lens model equation using displayed cues 

With the ELMA extension to the expanded lens model representation, we can consider two other 

correlations to characterize the human-automation system. These correlations use displayed cues 

because we are particularly interested in investigating the impact of IA support, manifested as displayed 

cues, on judgment performance in order to inform IA design choices. However, it should be noted that 

one could also measure the following correlations with other cue sets (i.e., true, available, or subjective 

cues).  

 The first correlation is between predictions from the environmental criterion model using the 

displayed cues and the human judgment model using the displayed cues (equations 3.17 and 3.21). We 

define this as the displayed linear knowledge (GH.d) and it represents the extent to which the criterion 

values and judgment values would agree if both models using the displayed cues were perfect (i.e., RE.d = 

RH.d = 1). This can also be thought of as the extent that a judge understands the judgment task ecology 

based on the automation’s level of support (through displayed cues) to ensure correspondence of their 

judgment strategy with the displayed predictability in the environment.  

                             (3.29) 

 The second additional correlation is the displayed un-modeled agreement, CH.d. This is the 

correlation between the residuals of the two models using displayed cues. A non-zero value of CH.d could 

indicate common reliance on cues not included in either model, non-linearity of cue function forms, 

common displayed cue interactions, or chance agreement between random model errors for both the 

criterion and the human judgment.   



46 
 

                             (3.30) 

 In some judgment contexts, the human factors engineer will only have access to the displayed 

cues. If this is the case, we can still make use of the lens model equation (LME). Recall that achievement 

is defined as the correlation between environmental criterion (E) and human judgment (H). This can 

then be decomposed using the correlations defined in the previous section involving the displayed cues.  

                           
        

        (3.31) 

 If the displayed un-modeled agreement (CH.d) is low, the LME can be simplified to the product of 

three correlations: displayed linear knowledge (GH.d), displayed ecological predictability (RE.d), and 

displayed cognitive control (RH.d).  

                        (3.32) 

This decomposition provides insight in understanding why judgment performance is not perfect. For 

example, a judge may demonstrate an achievement of 0.80 on judging the proportion of patients up to 

date on mammography screenings. As equation 3.32 above indicates, it could be that the judge’s 

knowledge of the environment based on the displayed cues is limited (GH.d = 0.80) but the environment 

is fully predictable with the displayed cues (RE.d = 1.0) and there is perfect transformation between true 

cues, to available cues, to displayed cues. Also, the judge is perfectly consistent in executing his or her 

judgment strategy based on the displayed cues (RH.d = 1.0) and there is perfect transformation between 

displayed and subjective cues.  

 On the other hand, the judge might have perfect displayed linear knowledge and displayed 

cognitive control but be making a judgment based on displayed cues that are not fully predictable of the 

criterion (RE.d = 0.80). This could be due to an inadequate relationship between the true cues and the 

environmental criterion (characterized by RE.d) or to a weak transformation between either true and 

available cues (characterized by Va.t) or available and displayed cues (characterized by Vd.a). Thus, we can 

decompose the displayed environmental predictability into these three components as follows. 
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       (3.33) 

 Finally, it could be the case that the environment is fully predictable with the displayed cues and 

the judge has perfect displayed linear knowledge but makes judgments inconsistently (RH.d = 0.80). This 

could be due to an inadequate relationship between the subjective cues and the human’s judgment 

(characterized by RH.s) or to a weak transformation between the displayed cues and the subjective cues 

(characterized by Vd.s). Thus, we can decompose the displayed cognitive control into these components 

as follows. 

                  
    

    
        (3.34) 

 We can include these decompositions, based on the ELMA framework, into the LME to obtain 

the following equation to understand the lower level contributions to human-IA judgment achievement. 

           
    

    

    

    

    

    
                                 (3.35) 

  

3.2.5. Summary of ELMA measures 

Table 5 summarizes the quantitative measures of the ELMA expansion to the extended lens model that 

can be derived and investigated within the ELMA framework. While all measures are useful to 

characterize the environment, the automation, and the human judge, the table also includes a column 

to indicate various implications for specific IA design choices. As mentioned previously, the ELMA 

framework and associated measures provide structure to investigate human judgment supported by 

automation. ELMA also unifies the sensor designer, the algorithm designer, the display designer and the 

judgment trainers responsible for the complete design of human-automation judgment systems. 
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Table 5. ELMA parameters. 

 ELMA measure Description Cue set 

needed 

Specific implication for 

automation design 

ra human-IA 

judgment 

achievement 

correlation between 

environmental criteria (E) and 

human judgments (H) 

none  

RE.t true 

environmental 

predictability 

correlation between 

environmental criteria (E) and 

predictions from the model of 

the criterion based on true cues 

(ME.t) 

true  

RE.a available 

environmental 

predictability 

correlation between 

environmental criteria (E) and 

predictions from the model of 

the criterion based on available 

cues (ME.a) 

available data acquisition or sensor 

design 

Va.t automation 

potential  

ratio of RE.a to RE.t true and 

available 

data acquisition or sensor 

design 

RE.d displayed 

environmental 

predictability  

correlation between 

environmental criteria (E) and 

predictions from the model of 

the criterion based on displayed 

cues (ME.d) 

displayed algorithms to process 

available cues 
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Vd.t true accuracy of 

the automation  

ratio of RE.d to RE.t true and 

displayed 

algorithms to process 

available cues 

Vd.a displayed accuracy 

of the automation  

ratio of RE.d to RE.a available 

and 

displayed 

algorithms to process 

available cues 

RH.d displayed 

cognitive control 

correlation between human 

judgments (H) and predictions 

from the model of the human 

judgment based on displayed 

cues (MH.d) 

displayed level of IA support, display 

representations, training to 

improve consistency of 

judgments 

RH.s subjective 

cognitive control  

correlation between human 

judgments (H) and predictions 

from the model of the human 

judgment based on subjective 

cues (MH.s) 

subjective training to improve 

consistency of judgments 

RE.s subjective 

environmental 

predictability  

correlation between 

environmental criteria (E) and 

predictions from the model of 

the criterion based on 

subjective cues (ME.s) 

subjective training to understand the 

judgment task context 

Vd.s subjective 

accuracy of the 

human judge 

ratio of RH.d to RH.s displayed 

and 

subjective 

display representations, 

training to interpret the 

displayed cues 
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GH.d displayed linear 

knowledge of 

human judge 

correlation between predictions 

from the environmental 

criterion model and the human 

judgment model using the 

displayed cues 

displayed training to better 

understand the judgment 

task 

CH.d displayed un-

modeled 

agreement 

correlation between the 

residuals of the environmental 

criterion model and the human 

judgment model using 

displayed cues 

displayed  

 

  

 Implications for IA design mentioned in the fourth column of Table 5 have been evaluated in the 

literature to some extent regarding their impact on human judgment performance. For example, better 

sensors or data acquisition techniques impact the available predictability of the environmental criterion 

and thus the automation potential measure. Decreased environmental predictability has shown to be 

associated with decreased consistency in judgment [102].  

 Specific display designs (in terms of both the content and representation of information) have 

been shown to impact judgment achievement in numerous applications (e.g.,  [19], [91], [103]). More 

generally, the amount of information on displays has shown to impact judgment performance in that 

judgment performance may actually deteriorate beyond a certain amount of information [92], [93]. 

Training, particularly using cognitive feedback methods [104] has also been shown to be beneficial to 

improving judgment performance [105–107].  
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 However, few studies have explicitly investigated the impact that the level of IA support has on 

human judgment [7], [8], [13]. Thus, this research is particularly interested in this aspect of automation 

design. 

 

3.3. ELMA method to design and evaluate information automation 

The ELMA framework of human judgment is combined with a series of steps and an iterative procedure 

to guide the design and evaluation of information automation. This component of ELMA extends the 

work of Parasuraman et al. [1] as an empirical method to address the system design question of 

choosing the level of IA judgment support to provide while also maintaining Brunswik’s requirements for 

a representative and systematic methodology in order to generalize results to the judgment context. 

The ELMA methodology (in the context of the PSW framework for types of automation, Figure 2) is 

presented in Figure 10. Step 3 of the method is not the focus of this dissertation and is therefore grayed 

out in the figure.  
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Figure 10. ELMA method to guide design and evaluation of information automation. 

  

 The first step of the ELMA method involves identifying the available cues pertinent to the 

judgment task. Cooksey [40] identified four methods to identify cues for a given judgment task that have 

been used in lens model-based experiments: interviews and surveys, document analysis, objective 

analysis of the ecology, and verbal protocol analysis. These methods are also suggested as viable 

methods to identify available cues as defined in the ELMA framework. 

 Given a set of available cues, the IA support level is then designed to transform the available 

cues into displayed cues for the human judge to use in his or her judgment process. As discussed in the 

previous sections, automation can support the human at one or more levels described in the taxonomy 

presented in Table 4. Because there is little to no empirical data suggesting what level of judgment 

support results in better human-automation judgment performance, it is difficult to suggest guidelines 

for this step. Further, there is probably no simple answer as there will likely be tradeoffs between costs 

and benefits, depending on the judgment context. Thus, the automation designer may select a level or 
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combination of levels based on their understanding of the judgment task ecology. However, any 

particular combination of levels should be evaluated using the ELMA measures as discussed below. The 

best performing combination of levels could then be selecting for further refinement and evaluation.  

 The display representations are likely to be specific to the judgment task of interest as well. 

There have been many empirical studies suggesting different display principles based on task 

characteristics and we do not go into detail regarding these as this is not the focus of this dissertation 

(hence the grayed out step 3). For a review, see [26–28] or the artful books by Tufte [108], [109]. Display 

representations may be specifically evaluated with surveys, heuristic evaluations, and usability studies 

[110]. However, in the context of ELMA, we evaluate the human-automation system as encompassing 

both the content and representation of displayed cues, which allows us to test different displays. 

 The methodological consequences of this procedure include the ability to derive hypotheses 

regarding design choices, particularly related to the level of IA judgment support. To test such 

hypotheses or to evaluate the human-automation system as represented by the ELMA framework (step 

4), a judgment analysis experiment is required. Cooksey [40] provides thorough guidelines for 

conducting such an experiment. We review only the most relevant aspects here and modify them to 

appropriately fit within the ELMA framework.  

 The first step in evaluating the human-automation system is to create judgment profiles. This 

involves obtaining sets of available cue values. For example, if we were evaluating the human-

automation system that judges the probability that a patient has influenza, we would need to create 

multiple judgment profiles (or patient profiles) for this task. This could be profiles of multiple patients 

presenting with influenza symptoms (or cues) at a single clinic. Cooksey recommends a ratio of 10 

judgment profiles to every one available cue needed for the judgment task due to the desire to use 

multiple linear regression to model both the criterion and the human judgment. Thus, if three available 
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patient cues were needed to judge the likelihood that a patient has influenza (e.g., body temperature, 

presence of body ache, and presence of congestion), 30 patient profiles should be created.  

 The second step is to obtain criterion values for each judgment profile so that cue-criterion 

relationships may be modeled and achievement of the human-automation system (equation 3.1) can 

later be calculated. For our influenza example, the criterion values could be the actual diagnoses that 

the patients were given (e.g., influenza or not). 

 The third step is to instantiate the judgment profiles in the IA system or a prototype of the IA 

system (with the level of IA support under investigation). Some commercially available software is also 

available to conduct judgment analysis experiments (e.g., POLICY PC) [40]. Most importantly, an 

accurate method to collect the human judge’s responses to the judgment profiles is necessary. 

Representative participants to participate must then be recruited. Time constraints and availability of 

participants (e.g., physicians) may create a challenge to maintaining an acceptable judgment profile 

number, depending on the average amount of time that is required for each judgment. 

 Once the judgment analysis experiment is completed, the ELMA measures presented in Table 5 

can be calculated. As mentioned, true cues and subjective cues may not be readily available or 

convenient to obtain. However, insight into the human-automation system can still be gained using only 

the available and displayed cues.  

 Idiographic analysis may be conducted for specific human judges. This may involve analyzing the 

judgment performance of the best and worst judge (based on judgment achievement) in terms of how 

their cue weights, cognitive control, and linear knowledge vary. If a nomothetic evaluation is of interest 

(e.g., to investigate the effect of IA support on groups of participants), this can be conducted using 

standard analysis of variance techniques with the ELMA measures.   
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3.4. Conceptualizing a single cue judgment task example using the ELMA framework 

To further explain the ELMA conceptualization of human judgment supported by automation, consider 

the example judgment task of assessing core body temperature. The IA used in this judgment task might 

be an oral digital thermometer. This task is represented with the ELMA lens model as shown in Figure 

11. From left to right in the figure, the environmental criterion represents the actual state of the 

environment, or the actual core body temperature. For this task, there is one true cue that directly 

results from the environmental criterion, which is simply the true core temperature. However, this true 

cue may be different than what is available to the IA, represented by a transformation from true cue to 

available cue. In our example, the available temperature might be different than the true core 

temperature because we only have access to the oral temperature. This difference is depicted in the 

figure.    

 

Figure 11. ELMA lens model representation of judgment task of assessing body temperature with IA 

providing “perceive” level of judgment support. 

  

 The IA (digital thermometer) can transform the available cue at the “perceive” level of judgment 

support, as shown in the figure. The IA then presents the available body temperature on a digital display 
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for a human to perceive. In this example, there is a direct transformation from available to displayed 

cue. The human judge then subjectively interprets the cue (perhaps rounds to the nearest decimal 

place) and makes a judgment regarding body temperature.  

 The IA could further support the human judge in comprehending the cue value. This is depicted 

in Figure 12 by showing the available cue also passes through the “comprehend” level of judgment 

support. The digital thermometer compares the available body temperature to the known standard of 

normal, healthy body temperature and adds this to the display.  

 

 

Figure 12. ELMA lens model representation of judgment task of assessing body temperature with IA 

providing “perceive” and “comprehend” levels of judgment support. 

  

 To evaluate this human-automation system, consider that a judgment analysis experiment was 

conducted. Because only one cue is required to judge body temperature, 10 judgment profiles were 

created, instantiated in a prototype thermometer, and presented to a single human to judge. For this 

example, we can imagine that we have access to every component of the ELMA framework.  The data 

from this experiment are presented in Table 6. 
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Table 6. Profiles for a single cue judgment task example. 

criterion true cues available displayed subjective judgment 

38.54562 38.54562 37.911 37.91 38.0 38.0 

40.26941 40.26941 35.513 35.51 35.5 35.5 

35.87664 35.87664 32.759 32.76 32.7 32.7 

32.66984 32.66984 25.607 25.61 25.6 25.6 

28.12587 28.12587 25.867 25.87 26.0 26.0 

34.56541 34.56541 32.149 32.15 32.0 32.0 

41.54213 41.54213 38.823 38.82 39.0 39.0 

31.00254 31.00254 25.589 25.59 25.6 25.6 

36.48369 36.48369 35.124 35.12 35.0 35.0 

37.54562 37.54562 33.741 33.74 33.7 33.7 

 

  

 With these data, we can apply equations 3.1-3.35 to investigate human-automation system 

performance. First, we can correlate the human’s judgments with the environmental criterion to obtain 

the human-automation judgment achievement.  

                    (3.36) 

 Recall, that in a perfect setting, this result would be equal to one. Because our example does not 

have perfect human-automation judgment achievement we can investigate the components of the 

ELMA framework that may be influencing judgment achievement. 

 Our models of the environmental criterion and human judge are done with linear regression. 

We can model the environmental criterion using the true cues. Correlating the criterion with predictions 
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from the model of the criterion gives us the true environmental predictability (or how predictable the 

criterion is based on true cues).  

                  (3.37) 

 Similarly, we can model the criterion using the available cues and correlate the criterion with 

predictions of the criterion with the model using available cues to obtain the available environmental 

criterion.  

                      (3.38) 

 The automation potential characterizes the transformation between true cues to available cues.  

                      (3.39) 

However, because Va.t is the ratio of two correlations, we may not notice any systematic differences in 

magnitude of the true cue set compared to the available cue set. If we look closely at the model of the 

criterion using available cues, we can see a magnitude shift in the model with an intercept, or constant 

regression parameter of ~10 (compared to zero with the true cues). Thus, the available cues are 

systematically lower than the true cues, which may be due to the sensors used to measures true cues. 

This shows value of modeling the criterion using the available cues.  

 We can also model the criterion using the displayed cues to obtain the displayed environmental 

predictability (RE.d) and the true (Vd.t) and displayed accuracy (Vd.a) of the automation. Displayed 

accuracy of the automation characterizes the algorithms used to transform available to displayed cues.   

                      (3.40) 

                      (3.41) 

                  (3.42) 

 We can model the human’s judgments using the displayed cues and correlate the human’s 

judgment to predictions of the human’s judgment to obtain the displayed cognitive control of the 

human judge.  
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                  (3.43) 

 The human’s judgments can also be modeled using the subjective cues to obtain the subjective 

cognitive control of the human judge and the subjective accuracy of the human judge. This characterizes 

the transformation from displayed to subjective cues. 

                  (3.44) 

                  (3.45) 

 To further investigate the human-automation performance for this task, we can also calculate 

the displayed linear knowledge (GH.d) and un-modeled agreement (CH.d).  

                  (3.46) 

                      (3.47) 

We can interpret this to mean that the human judge has a perfect knowledge of the task (i.e., with only 

one cue, that is the cue used to make a judgment and thus, G is 1.0) and there is little un-modeled 

agreement between the criterion and human models. 

 In summary, using the lens model equation (as written in equation 3.35, which we can assume 

due to a value of CH.d close to zero), we know that judgment achievement is impacted by the 

transformation of true cues to available cues (Va.t). The imperfect predictability of the criterion due to 

available cues could be due to imperfect measurement of core temperature using the oral thermometer 

and could be improved with a better sensing device. 

 

3.5. Conceptualizing a multi-cue judgment task example using the ELMA framework 

We can also consider a second judgment task example involving more than one cue to further explain 

the ELMA framework. A clinician may need to judge the number of daily calories that a patient in the 

intensive care unit needs. The IA used in this judgment task might be an electronic health record (EHR) 
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with a calorie calculator module. This example is represented using the ELMA lens model as shown in 

Figure 13.  

 The environmental criterion is the actual daily calories needed, using indirect calorimetry (i.e., 

exact measurement of the number of calories needed at rest). In our example, this environmental 

criterion of 1529 is related to three true cues - exact measures of weight, height, and age of the patient. 

However, again, these exact measurements might not be available and there is a transformation from 

true to available cues. The IA then transforms these available cues through one or more levels of 

judgment support to present the human judge with displayed cues. 

 At the “perceive” level of judgment support (as shown in the figure) the IA supports the human 

in perception of the available cues by displaying the values of the available cues. With more than one 

cue available, the IA may also present the cue values in a specific temporal sequence in order to support 

perception.  

 

 

Figure 13. ELMA lens model representation of judgment task of assessing daily calories needed with IA 

providing “perceive” level of judgment support. 
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 The IA may also support the human judge at the “comprehend” level of judgment support in our 

example as shown in Figure 14. At this level, the IA aids the human judge in comprehending the 

available cue through comparisons. These comparisons could include comparing the available cue values 

to pre-set standard values or to descriptive statistics of the available cues under consideration (such as 

average over the past year, as shown in the figure for two cues).  

 

 

Figure 14. ELMA lens model representation of judgment task of assessing daily calories needed with IA 

providing “perceive” and “comprehend” levels of judgment support. 

 

 With more than one cue available, the IA may also support the human judge at both the 

“perceive” and “assess” levels of judgment support. This representation for our calorie assessment 

example is shown in Figure 15. At the “assess” level of judgment support, the IA aids the human judge in 

combining the available cue values to form automated assessment of the environmental criterion. 
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Figure 15. ELMA lens model representation of judgment task of assessing daily calories needed with IA 

providing “perceive” and “assess” levels of judgment support. 

 

 To evaluate this human-automation system, let us again consider that a judgment analysis 

experiment was conducted. Because three cues are required to judge calories needed, 30 judgment 

profiles were created, instantiated in a prototype IA system, and presented to a single human to judge. 

For this example, we can also imagine that we have access to every component of the ELMA framework.  

An excerpt of the data from this experiment is presented in Table 7. 
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Table 7. Profiles for a multi-cue judgment task example. 

criterion true 

weight 

true 

height 

true 

age 

avail 

weight 

avail 

height 

avail 

age 

disp 

weight 

disp 

height 

disp 

age 

sub 

weight 

sub 

height 

sub 

age 

judge auto 

1529 63.24 165.2 40.7 67 166 40 67 166 40 70 165 40 1700 1548 

1413 45.78 150.8 34.6 41 149 34 41 149 34 40 150 34 1550 1146 

1350 50.09 155.4 56.7 45 156 56 45 156 56 45 160 56 1300 1087 

1708 90.87 180.8 43.8 93 177 43 93 177 43 90 180 43 1500 1940 

1762 85.43 175.3 21.6 78 173 21 78 173 21 80 170 21 1740 1863 

1542 75.08 164.2 47.1 81 165 47 81 165 47 80 165 47 1770 1688 

1547 65.11 158.3 31.8 68 159 31 68 159 31 70 160 31 1750 1588 

1604 82.58 179.3 56.7 88 176 56 88 176 56 90 180 56 1700 1779 

1551 54.01 164.5 26.7 51 162 26 51 162 26 50 160 26 1700 1403 

1329 50.99 161.1 67.2 52 164 67 52 164 67 50 160 67 1200 1149 

 

  

 We can correlate the human’s judgments with the environmental criterion (shown below). 

Recall, that in a perfect setting, this result would be equal to one. Because our example does not have 

perfect human-automation judgment achievement we can investigate the transformation(s) that may be 

inaccurate. 

                    (3.48) 

 Again, our models of the environmental criterion and human judge are done with multiple linear 

regression. We model the environmental criterion using the true cues. Correlating the criterion with 

predictions from the model of the criterion gives us the true environmental predictability (or how 

predictable the criterion is based on true cues).  

                  (3.49) 



64 
 

 Similarly, we can model the criterion using the available cues to obtain the available 

environmental criterion. In this example, RE.a is close to one. Thus, the automation potential, Va.t, is also 

close to one and this characterizes the transformation between true cues to available cues.  

                     (3.50) 

                     (3.51) 

 We can also model the criterion using the displayed cues to obtain the displayed environmental 

predictability. In this example, RE.d is also close to one, thus the true accuracy of the automation, Vd.t, is 

close to one and the displayed accuracy of the automation, Vd.a, is one.  

                     (3.52) 

                     (3.53) 

                  (3.54) 

 We can also model the human’s judgments using the displayed cues to obtain the displayed 

cognitive control of the human judge, RH.d, as equal to 0.676. The human’s judgments can also be 

modeled using the subjective cues to obtain the subjective cognitive control of the human judge, RH.s, as 

equal 0.684. Thus, the subjective accuracy of the human judge, Vd.s is equal to 0.988. This value 

characterizes the transformation from displayed to subjective cues.  

                      (3.55) 

                      (3.56) 

                      (3.57) 

 To further investigate the human-automation performance for this task, we can calculate the 

displayed linear knowledge, GH.d, and un-modeled agreement, CH.d. These are 0.997 and -0.259 

respectively. We can interpret this to mean that the human judge has a good knowledge of the task 

based on the displayed cues and the un-modeled agreement between the criterion and human models 

is fairly low. 
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 Because the automation is also providing judgment support at the “assess” level, it is providing 

the human with an automated judgment of the criterion. We can also use lens model parameters to 

characterize the specific judgment performance of the automation (equations 3.11-3.15). In particular, 

we can calculate the automation’s achievement, cognitive control, and linear knowledge based on the 

available cues. These calculations show that in our example, the automation’s achievement, raA is equal 

to 0.937. Thus, the automation is providing the human with automated judgments well correlated to the 

criterion. 

 In summary, we know that the automation potential is nearly perfect. The displayed accuracy of 

the automation is also nearly perfect. Based on our calculations of displayed cognitive control, 

subjective cognitive control, and subjective accuracy of the human judge, we know that the 

transformation from displayed cues to subjective cues is the transformation contributing to less than 

perfect judgment achievement. We also know that the human judge is not perfectly consistent in 

applying their judgment strategy using their subjective cues. This inability of the human to consistently 

apply their judgment strategy could be due to imperfection in how the human interprets the displayed 

cues, or to other factors such as poor display representations, training, fatigue, use of other non-

modeled cues such as physical exam findings, or bias. 

 

3.6. Summary of the ELMA model and methodology 

ELMA is a conceptual design and evaluation framework for automation that supports cognitive functions 

involved in judgment. It provides structure to understand and represent human-automation judgment 

systems and further enables the conceptualization of an experimental design space from where one can 

derive hypotheses regarding automation design decisions.  

 One advantage of ELMA is that it accounts for discrepancies between how cues in the 

environment are transformed into displays to operators via automated processes. The transformation is 
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based upon the desired, hierarchical level of cognitive judgment support, from cue perception, to cue 

comprehension, to an automated assessment, to explanation of the automated assessment. This 

taxonomy complements the PSW framework for types and levels of automation to include levels 

specifically for information automation (IA), which have not yet been suggested. The idea that 

automation can be designed to support the human judge at different levels of support allows for a more 

explicit description about the role of the human and the role of the automation during the design and 

operation of human-automation judgment systems. 

 A second advantage is that ELMA includes quantitative measures to evaluate the human-

automation system with an idiographic-statistical approach. Multiple linear regression and correlation 

analysis are employed to characterize achievement, consistency, and knowledge of the human judge, 

potential and accuracy of automation support, and predictability of the environment. Nomothetic 

analysis can then be applied to investigate the effect of automation design choices on general judgment 

performance. This also allows us to discuss quantitative, empirical judgment analysis-based results 

across different tasks and domains. More generally, our framework allows one to diagnose any positive 

or negative effects of different automation interventions on various objective measures of judgment 

performance. 

 ELMA makes several explicit claims about what features affect human-automation judgment 

performance: 

1. Uncertainty in the judgment task (predictability of the criterion based on true cues, available 

cues, or displayed cues, and the potential the automation has to support the human judge) 

2. Uncertainty in the ability of the automation to support the human judge (true and displayed 

accuracy of the automation) 

3. Uncertainty in the strategy the human employs to combine cues to make judgments (displayed 

or subjective cognitive control and subjective accuracy of the human judge) 
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4. Uncertainty in the ability of the human to apply task knowledge (displayed linear knowledge) 

 We are particularly interested in the uncertainty related to the human judge (3 and 4 above). 

From this perspective, judgment performance could be influenced by the functionality of the 

automation (i.e., the level of IA support to aid in cognitive processes involved in judgment) or the design 

of the human-automation interface (i.e., displays). The former is of particular focus for this work. 

 The limitations of ELMA are that it requires the judgment task to be analyzed in accordance with 

the structure of the ELMA lens model (Figure 9). The judgment task must be defined as a known (or 

estimated) criterion to be judged, based on a set of cues. Further to implement the multiple regression 

procedure, judgments and criterion must be assigned quantitative values and numerical cues must be 

identified. The framework also makes high demands on the data that must be collected (i.e., 10:1 ratio 

of judgments to cues).  

 However, without the ELMA framework, analysis of judgment performance might only include 

measuring judgment accuracy or subjective appraisal of automated systems across groups of 

participants [1], [85], [96], [111]) or in comparing one design to another (e.g., [112], [113]). ELMA 

provides greater insight into human-automation system performance, such as how cues are used by 

individual judges, how consistently judgment policies are employed, and how well the human 

understands the task environment. This is important for the design of automated systems and to inform 

training interventions for human judges.   
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4. Applying ELMA to an air traffic control judgment task 

This chapter discusses how the ELMA framework was applied to investigate an air traffic control 

judgment task to inform the design of IA to support air traffic control judgments. The ELMA model was 

used to characterize and analyze human-automation judgment performance under different conditions 

of IA judgment support. This involved re-analyzing data collected in a prior human subject experiment 

where participants made judgments about the probability of air traffic conflicts under different 

conditions of automated support [73].  

 

4.1. Introduction 

Air traffic controllers and pilots make judgments about the probability that two aircraft will “conflict” – 

get too close horizontally or vertically. In the enroute environment, conflicts are defined as 5 nautical 

miles (nm) or less of horizontal separation. To make conflict judgments, pilots monitor the progress of 

their own aircraft (the “ownship”) and another aircraft (the “traffic”) using an egocentric traffic display. 

This task is difficult because it requires predicting future aircraft positions given uncertain cues from an 

IA system about the aircrafts’ current positions, speeds, and headings and then making predictions 

about their distance of separation. 

 IA designed to assist this task could provide varying levels of support to help the human make 

this judgment. Support at the “comprehend” level could include descriptive statistics about position, 

speed, and heading values over a certain time window. The IA could also integrate these cues and make 

its own assessment about the probability of a conflict, support at the “assess” level. Further, it could 

provide additional information to the human about the process it used to calculate its judgment, 

support at the “explain” level. 

 When considering the cost of development and deployment of IA to support air traffic control 

tasks, it would be useful to have a detailed framework to characterize this judgment task and enable 
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investigating different design issues. The specific objective of this study was to implement the ELMA 

framework to investigate the effect of providing additional levels of IA support, in tandem with an 

automated judgment, on human judgment achievement and consistency. This research was useful as 

the first empirical use of the ELMA framework (including the taxonomy of judgment support) and to 

gather empirical data regarding the impact of IA support on judgment performance. 

 

4.2. Methods 

Results from a part-task, desktop air traffic control simulator experiment were analyzed. The primary 

objective was to assess whether the ELMA model could provide useful insight into human-automation 

judgment performance. We predicted there would be variance in judgment performance due to 

providing participants with different combinations of IA support levels. By analyzing this variance, we 

could determine to what degree the ELMA framework could be used to investigate automation design 

hypotheses. 

 

4.2.1. ELMA conceptualization of the judgment task 

Participants were asked to monitor the progress of the ownship and the traffic using a simulated 

egocentric traffic display. The ownship was flown by an autopilot, so the participants did not need to fly 

the aircraft. The ownship’s speed, altitude, and heading remained constant while uncertainty (sensor 

noise) was introduced into the speed, lateral position, and heading of the traffic aircraft. The air traffic 

simulation used for the task was adapted from Bass and Pritchett [7]. 

 To make a probability of conflict judgment one must predict the distance between two aircraft 

at their point of closest approach, which is a function of the position of the aircraft, the relative heading, 

and the speed of the aircraft at the time of judgment. Because this was a simulated environment, the 

environmental criterion and true cues were known. The available cues were simulated to be different 
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than the true cues due to sensor noise. The displayed cues directly resulted from available cues with no 

added noise as described below. 

 The IA (Traffic Conflict Prediction System) was instantiated to support the human judge at 

various combinations of support levels. One instantiation was at the “perceive” only level. The IA 

transformed the available cues to displayed cues using an egocentric display (see Figure 16 with 

“perceive” level, “P”, descriptions on the left). The display contained a green aircraft icon representing 

the position of ownship in the center and a yellow triangle representing position of the traffic. 

Concentric circles around the ownship represented distances of 5, 10, 20, 30, 40 and 50 nm. A compass 

was displayed at the 40 nm circle. The heading of ownship was displayed on the compass and its speed 

was displayed under the green aircraft icon. The traffic triangle pointed in the direction of traffic 

heading and this was also displayed on the compass with a yellow hash mark. The traffic speed was 

displayed next to the traffic icon. The ownship and traffic were always at the same altitude. Traffic data 

were updated once a second. The speed and heading of the ownship remained constant. We can use 

the ELMA extension to the lens model to represent this judgment task at the “perceive” level of IA 

judgment support. This is depicted in Figure 17.   
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Figure 16. IA display for air traffic conflict task showing “perceive, P” (left) and “explain, X” (right) 

support levels. 

 

 

Figure 17. ELMA lens model representation of probability of an air traffic conflict judgment task with IA 

providing “perceive” (P) level of judgment support. 
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 The IA was also instantiated to support the human judge at both the “perceive” (as described 

above) and “assess” levels of judgment support. To support the human at the “assess” level, the IA 

calculated probability of conflict judgments by first projecting both ownship and traffic positions to the 

predicted point of closest approach and then calculating the predicted horizontal miss distance. This was 

calculated using the available locations, heading, and speed of the ownship and traffic at the time the 

calculation was made. The probability of conflict was then determined from the cumulative distribution 

function of the predicted horizontal miss distance with the distance as the mean and its variance 

calculated as a function of the uncertainty in the lateral position, speed, and heading (see [103] for more 

details). A slide bar above the display in Figure 16 (not shown in the figure) was used to indicate the IA’s 

judgment. The ELMA extension to the lens model to represent this judgment task at the “perceive” and 

“assess” level of IA judgment support is depicted in Figure 19.   

 

 

Figure 18. ELMA lens model representation of probability of an air traffic conflict judgment task with IA 

providing “perceive” and “assess” (PA) levels of judgment support. 
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 The IA was also instantiated to support the human judge at the “perceive” (as described above) 

“comprehend” and “assess” (as described above) levels of judgment support. To support the human 

judge at the “comprehend” level, the IA used an additional display (Figure 19) that contained 

representations of descriptive statistics of the cues of relative heading and traffic speed. Traffic speed 

information (top of Figure 19) included a speed ruler which contained a grey hash mark for every traffic 

speed during a judgment trial (displayed traffic speeds). The speed of the traffic at the time a judgment 

was required was a yellow hash mark on the speed ruler. The average and standard deviation of the 

displayed traffic speeds were represented with three red hash marks. The middle hash mark 

represented the average, and the outer red hash marks represented one standard deviation above and 

below the average speed. The final speed, average, and standard deviation were also displayed 

numerically below the speed ruler.  

 Relative heading information (bottom of Figure 19) contained a compass that had a grey hash 

mark for every displayed traffic heading during a judgment trial. The ownship heading remained 

constant and this was indicated at the top of the compass. A yellow hash mark on the compass indicated 

the final heading of the traffic. The average and standard deviation of the displayed traffic headings 

were calculated and shown using red hash marks as with the average and standard deviation of the 

speed (average in the middle, standard deviation marks to the left and right of the average). The 

heading when the trial ended, along with the average and standard deviation of the displayed traffic 

headings, were also displayed numerically in the center of the compass. We can use the ELMA extension 

to the lens model to represent this judgment task at the “perceive,” “comprehend,” and “assess” levels 

of IA judgment support. This is depicted in Figure 20.   
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Figure 19. IA display for air traffic conflict task showing “comprehend” support level. 

 

 

Figure 20. ELMA lens model representation of probability of an air traffic conflict judgment task with IA 

providing “perceive,” “comprehend,” and “assess” (PCA) levels of judgment support. 



75 
 

 The IA was also instantiated to support the human judge at all levels of judgment support. To 

support the human at the “explain” level, the IA also displayed automation strategy information related 

to how it made its probability judgment: the projected positions of the ownship and traffic. Ownship 

was represented with a green airplane icon surrounded by a circular green 5 nm protected zone. 

Projected traffic was represented with a yellow dot surrounded by a yellow two standard deviation 

position error ellipse representing how the noisy input data (lateral position, speed, and heading) 

affected the projected location of the traffic at the point of closest approach and thus the automation’s 

probability of conflict judgment. This level of judgment support is shown in Figure 16, indicated by the 

annotations to the right of the figure.  The ELMA extension to the lens model to represent this judgment 

task at all levels (including “explain”) of IA judgment support is depicted in Figure 21.   

 

 

Figure 21. ELMA lens model representation of probability of an air traffic conflict judgment task with IA 

providing “perceive,” “comprehend,” “assess,” and “explain” levels (PCAX) of judgment support. 
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4.2.2. Judgment profiles 

180 judgment profiles were used in the experiment. They were grouped into 6 sessions of 30 profiles 

each. Each judgment profile consisted of the ownship in the center of the display and one traffic aircraft 

which flew at one of six possible headings (+/- 45, +/- 90, and +/- 135 degrees from ownship’s heading) 

and five possible speeds (at the same IAS as ownship, +/- 50 knots, +/- 100 knots). The lateral position, 

airspeed, and heading errors for the traffic aircraft were normally distributed and had standard 

deviations of 500 meters, 15 knots, and 3 degrees respectively. Every second, new position, speed, and 

heading errors were added to the actual position, speed, and heading of the traffic aircraft and then 

displayed, resulting in noisy input data for the human and automation to make judgments.  

 

4.2.3. Participants 

Thirty-two male undergraduate engineering students ranging in age from 20 to 23 participated in the 

experiment. All participants were familiar with the use of computers and had no previous experience 

with the judgment task. 

 

4.2.4. Procedure used in data collection 

Prior to the start of data collection, each participant completed 180 practice profiles (not included in this 

analysis). Then, each participant completed two days of three sessions each day with thirty profiles in 

each session. For each profile, participants made two judgments. First, they were provided with IA 

support at the “perceive” level (Figure 16 and Figure 17) to monitor the ownship and traffic. After a 

random amount of time (uniformly distributed between 15 and 30 seconds), the screen froze and 

participants made a probability of traffic conflict judgment at this level of support. Once they made their 

first judgment, they were then provided with additional judgment support from the IA (with the screen 
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remaining frozen). They then provided a second probability judgment. The trial then continued in faster 

than real-time so the participant could view the point of closest approach.  

 

4.2.5. Independent variables 

All participants were supported at the “perceive” level for their first judgment of every profile (the 

egocentric display). After making this judgment, each participant was provided with additional IA 

support in only one of four conditions: 

 

Table 8. Conditions of IA support. 

IA level combination Description 

A An automated judgment of probability of conflict 

CA Descriptive statistics of traffic speed and heading over time and 

an automated judgment of probability of conflict 

AX An automated judgment of the probability of conflict and an 

explanation of automation strategy information (prediction of 

ownship and traffic at point of closest approach) 

CAX Descriptive statistics of traffic speed and heading over time, an 

automated judgment of the probability of conflict, and an 

explanation of automation strategy information (prediction of 

ownship and traffic at point of closest approach) 

 

 

Session (group of thirty trials) was also treated as an independent variable in this study.  
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4.2.6. Dependent variables 

For every judgment profile, the following data were collected: the environmental criterion, true cues, 

available cues, the human’s initial judgment, the human’s judgment with additional IA support, and the 

IA’s judgment.  

 Since all criteria and judgment values were probability estimates, they ranged from 0 to 1. The 

following transformation was used to stabilize the variance since the tails tended to fall off sharply 

[114]. This transformation was applied to all criteria and judgments values and used for all subsequent 

analysis.  

                      (4.1) 

 From these data, derived measures based on the ELMA framework were calculated (see Table 

5). The following ELMA measures were derived to characterize the context in which the human made 

judgments: 

 True environmental predictability, RE.t 

 Available environmental predictability, RE.a 

 Automation potential, Va.t 

 In this experiment, the displayed environmental predictability, RE.d, is equal to the available 

environmental predictability. Similarly, the true accuracy of the automation, Vd.t, is equal to the 

automation potential and the displayed accuracy of the automation, Vd.a is subsequently equal to one. 

Thus, these three ELMA measures are not discussed and we assume that the algorithms used to 

transform the available cues into displayed cues are an insignificant factor in the performance of the 

overall human-automation judgment system. 

 Because in this experiment, every participant was also provided with IA support at the “assess” 

level, automation’s judgment performance (based on available cues) was also characterized using ELMA 

measures: 
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 Automation achievement, raA 

 Automation cognitive control, RA.t 

 Automation linear knowledge, GA.t 

 To characterize the human judge (and thus, the human-automation system) the following ELMA 

measures were calculated. (Note that participants were not asked for their interpretation of the 

displayed cues, to collect subjective cues. Thus, we cannot calculate the human’s subjective cognitive 

control, RH.s or the subjective accuracy of the human judge, Vd.s.) 

 Initial human-automation judgment achievement, ra1 

 Initial displayed cognitive control, RH.d1 

 Initial displayed linear knowledge, GH.d1  

 Additional support human-automation judgment achievement, ra2 

 Additional support displayed cognitive control, RH.d2 

 Additional support displayed linear knowledge, GH.d2  

 

4.2.7. Data analysis 

Four steps were followed using the ELMA framework. First, the environmental context was 

characterized (for each session) by modeling the criterion using the true and available cues and then 

computing the relevant ELMA measures. Second, the IA’s performance at the “assess” level was 

evaluated (for each session) by modeling the automated judgment using the true and available cues and 

then computing the relevant ELMA measures. Third, linear models were created for each participant, for 

each session, using the displayed cues and then computing the relevant ELMA measures. Last, 

nomothetic analysis of the ELMA measures for IA support and session effects was conducted.   

 The experimental design for nomothetic analysis was a repeated measures, mixed model design. 

IA support condition, session, and the session-IA support interaction were fixed effects. Participants 
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were nested within IA support condition and were treated as a random effect in the model. Post hoc 

analysis was conducted using Tukey’s Honestly Significant Difference (HSD). Wilcoxon Signed Rank tests 

were also used to determine if differences existed between initial human judgment achievement and 

achievement with increased IA support. 

 All derived measures from the ELMA framework are correlations. Therefore, before performing 

the nomothetic data analysis described above, the correlations were transformed using Fisher’s r to zr 

transformation (equation 4.2) to obtain normally distributed variables as suggested by Cooksey [40]. 

However, the measures are reported and graphed prior to transformation. 

   
 

 
     

   

   
          (4.2) 

 

4.3. Results 

The results of this experiment are presented using α = 0.05 for significance and α = 0.1 for a trend. The 

environmental context and automation performance are described first. This is followed by an 

investigation of effects of IA support and session on human-automation judgment performance. The 

session-IA support interaction was never significant and is therefore not reported. 

 

4.3.1. Environmental context and automation performance 

To characterize the context in which the human must make judgments, we can start by deriving the true 

and available environmental predictability for each session of the experiment. These measures indicate 

how predictable the criterion is based on the cues, which essentially represents an upper bound on the 

judgment performance of the human judge.  
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Figure 22. True and available environmental predictability over sessions.  

 

 As defined by ELMA, the ratio of true and available environmental predictability is defined as 

the automation potential. For this experiment, the automation potential ranged from 0.91 to 0.98, 

characterizing the transformation from true to available cues. The true cues are not perfect predictors of 

the criterion (as we would theoretically expect). This is because the judgment task is a prediction of a 

future environmental state and the true cues used to model the criterion are from the time when the 

judgment is made.  

 For each session, we can also characterize the performance of the IA in its ability to provide 

judgment support at the “assess” level (i.e., provide its own judgment about the probability of conflict). 

In all conditions, the participants were provided with more support than just the “assess” level. 
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However, when characterizing the judgment context that the human had, it is also useful to understand 

how the automation is performing and contributing to the context. For example, if the automation was 

not a good judge of the criterion and it was presenting the human with this information, this may 

negatively influence the human’s performance. From Figure 23 we can see that the automation was not 

a perfect judge of the criterion. Its judgment achievement ranged from 0.92 to 0.97, with an average 

judgment achievement of 0.94. However, because we know that the environmental criterion is not 

perfectly predictable with the true cues, the automation’s judgment performance may still be 

acceptable. 

 

Figure 23. Automation performance at the “assess” level of judgment support. 
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4.3.2. Nomothetic results of judgment performance 

Six linear models were created for each participant (one for each session) and ELMA measures were 

subsequently calculated using each model. Figure 24 and Figure 25 contain the initial average human-

automation judgment achievement (ra1) grouped by session and IA support condition respectively. There 

was no significant difference between the participants assigned to the four IA support conditions in their 

initial judgment achievement (as we would expect). However, session was significant (F5, 168 = 4.8635, p < 

0.001) (see Figure 24).  

 Post hoc analysis using Tukey’s HSD indicates the only significant difference between sessions 

for initial judgment achievement was between sessions 3 and 4 (p < 0.001) and between sessions 3 and 

6 (p < 0.001). The decrease from 3 to 4 may be explained by the fact that after session 3, the 

participants had a break before starting session 4 the next day. Participants may have needed a session 

to become re-familiarized with the task and the output from the automation.  

 Overall, the participants’ second judgment achievement with additional support from the IA was 

better than their initial judgments at the “perceive” level only. A Wilcoxon Signed Rank test indicates 

that average second judgment achievement, ra2 (μ = 0.91, σ = 0.06) was significantly higher than the 

average initial judgment achievement (V = 0, p < 0.001) and much closer to the automation’s judgment 

achievement (μ = 0.94, σ = 0.02). Additionally, using Levene’s test, the variance of second judgments 

across all conditions was significantly smaller compared to the variance of initial judgments (F191, 191 = 

10.251, p < 0.001) and the floor of judgment achievement was raised from -0.16 (initial) to 0.66 

(increased IA support) across all participants. Thus, we can conclude that adding any combination of 

support levels above “perceive” enhanced human-automation judgment performance in terms of 

judgment achievement (or correlation with the environmental criterion). 

 Further, IA support condition (F3, 168 = 5.979, p = 0.001) and session (F5, 168 = 9.5782, p < 0.001) 

both had a significant impact on participants’ second judgment achievement. Figure 24 and Figure 25 
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also contain the second judgment achievement (ra2) by session and IA support condition. Tukey’s HSD 

post hoc analysis for the session effect on judgment with additional IA support indicates that sessions 2, 

3, 5, and 6 were significantly higher than session 1 and also that session 4 had a trend to be higher than 

session 1. This could indicate that participants needed a session (session 1) before they fully understood 

how to use the support from the IA to improve their judgments. 

 More interestingly, Tukey’s HSD analysis also indicates that the added A level had significantly 

lower achievement than both the added CA (p = 0.003) and CAX (p = 0.02) conditions (see Figure 25). 

There was also a trend for the AX condition to be lower than the CAX condition (p = 0.08). There was no 

significant difference between the CA and CAX conditions implying that for this particular study, 

judgment support at the “explain” level did not significantly improve judgment achievement compared 

to when participants were already provided with support at the “comprehend” level. These results may 

indicate that the “comprehend” level is primarily responsible for the enhanced human-automation 

judgment achievement. 
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Figure 24. Initial achievement with “perceive” support and achievement with additional IA support by 

session (n = 32 for each session). 
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Figure 25. Initial achievement with “perceive” support and achievement with additional IA support by IA 

support condition (n = 8 for each support condition). 

 

 Figure 26 and Figure 27 contain initial and second displayed cognitive control (RHd) grouped by 

session and IA support condition respectively. Overall, the participants’ cognitive control of their second 

judgments with additional support from the IA was better than their initial judgments at the “perceive” 

level. A Wilcoxon Signed Rank test indicates that average second judgment cognitive control, rH.d2 (μ = 

0.86, σ = 0.05) was significantly higher than the average initial cognitive control, rH.d1, (μ = 0.46, σ = 0.18) 

(V = 0, p < 0.001).  

 There was no significant difference between the participants assigned to the four IA support 

conditions in their initial cognitive control (as we might expect). However, their cognitive control with 

increased IA support was trending to be impacted by IA support condition (F3, 168 = 3.25, p < 0.1). Session 
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was also significant for both initial judgments (F5, 168 = 3.69, p < 0.01) and judgments with increased IA 

support (F5, 168 = 35.82, p < 0.0001).  

 Post hoc analysis using Tukey’s HSD indicates a trend for the CA and CAX conditions to be higher 

than the A condition (p = 0.08 and p = 0.09 respectively) (see Figure 27). This may imply that the added 

support at the comprehend level may have aided participants in more consistently applying their 

judgment strategies across judgment profiles.  

 Post hoc analysis using Tukey’s HSD also indicates the only significant differences between 

sessions for initial cognitive control was that session 6 was significantly lower than sessions 5 (p < 

0.002), 3 (p < 0.02), and 2 (p < 0.04). This decrease in cognitive control could have been due to 

participant fatigue with the experiment by the last session.  Post hoc analysis on the second judgment 

cognitive control measure indicates that sessions 6 and 1 were significantly lower than the other 

sessions and session 5 was significantly greater than sessions 2, 3, and 4. Again, the decrease in the last 

session may have been due to participant fatigue. The low cognitive control in the first session may be 

the result of participants still getting used to the increased automation support and they had not yet 

adapted their judgment policies to reflect this added aid.  
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Figure 26. Initial displayed cognitive control with “perceive” support and displayed cognitive control 

with additional IA support by session. 
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Figure 27. Initial displayed cognitive control with “perceive” support and displayed cognitive control 

with additional IA support by IA support condition. 

 

 There were no significant effects on displayed linear knowledge due to either session or IA 

support condition for either initial judgments at the P level or for second judgments with increased IA 

support. There was also no difference in un-modeled agreement between participants’ initial judgments 

and their judgments with additional IA support. 

 Recall from the ELMA lens model equation (equation 3.32) that human-automation judgment 

achievement is dependent on displayed linear knowledge (GH.d), displayed environmental predictability 

(RE.d), and displayed cognitive control (RH.d). From our analyses, we know that the low judgment 

achievement (μ = 0.49, σ = 0.19) for participants’ initial judgments was primarily impacted by low 

displayed cognitive control (μ = 0.46, σ = 0.18). However, their second judgment achievement (μ = 0.91, 

σ = 0.06) was driven by both displayed cognitive control (μ = 0.86, σ = 0.05) and available (and displayed) 
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environmental predictability (μ = 0.87, σ = 0.01). This implies that the additional IA support improved 

displayed cognitive control to a level that was similar to the predictability of the environmental criterion.   

 

4.4. Discussion  

This was the first instantiation of the ELMA framework. We used ELMA to represent and describe the 

judgment task and the levels of IA support under which design hypotheses were derived and tested. 

ELMA also guided the analysis of judgment context and performance. This analysis demonstrated that 

the ELMA framework, using multiple linear regression models, were sufficient to investigate the effects 

of varying conditions of IA support on judgment performance.  

 

4.4.1. Effect of automated support on human-automation judgment performance 

This research sought to investigate the impact of IA support on human judgment performance. When 

provided with IA support above the “perceive” level, judgment achievement significantly improved for 

all participants across all sessions and all added IA support conditions. This shows the value of added 

automation support on the human’s judgment for this task. Additionally, the variance of the 

participants’ second judgment was reduced compared to the initial judgment indicating that the 

increased support reduced variability and allowed for a range of operators with varying capabilities to 

maintain similar performance ranges. The increased IA support also raised the overall floor of judgment 

achievement to support absolute levels of performance (see Figure 25) and increased participants’ 

overall cognitive control (see Figure 27). 

 Participants provided with additional support at the “comprehend” level (CA or CAX) had 

significantly higher joint judgment achievement compared to those provided with only the added 

“assess” level (A). There was no significant difference between judgment achievement by participants in 

the CA and CAX support groups. This implies that adding automation strategy information did not 



91 
 

significantly help when participants were also provided with aid in comprehending the cues for this 

judgment task. A similar pattern of performance enhancement with the CA and CAX groups was also 

seen in the participants’ cognitive control. The added support at the comprehend level may have 

contributed to enhanced cognitive control in that participants were able to better understand the 

environmental context (i.e., the cues) and were thus able to more consistently apply their judgment 

strategies, resulting in greater judgment achievement. Similar results were found by Bisantz et al. [19] 

when they found that individual differences in judgment performance were most attributed to 

differences in cognitive control. 

 In some cases, total system performance (as measured by second judgment achievement with 

increased IA support) was greater than either the human’s initial judgment achievement or the 

automation’s judgment achievement alone. One participant in the CA condition and one participant in 

the AX condition had greater judgment achievement than the automation’s judgment achievement for 

five of the six sessions. These participants developed a sophisticated strategy in which they were 

incorporating the IA support at both the “comprehend” or the “explain” level into their judgments, 

rather than simply adapting to the automation’s output at the “assess” level. This is similar to behavior 

described in Bass and Pritchett [7] where a participant was able to use the automation’s output in his 

judgment when it was of more value and to ignore the automation otherwise.  

 

4.4.2. Implications for the design of automation 

These results have implications for automation design. In this experiment, the displayed cues’ 

uncertainty was tied directly to the uncertainty between the true cues and the available cues in the 

environment (imperfect sensors providing information regarding the traffic speed and heading). 

Although providing participants with support regarding the automation’s judgment strategy may 

improve performance compared to those receiving only an automated judgment (A vs. AX), this level of 
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support does not appear as beneficial to participants as automation support pertaining to 

comprehending the cues (A vs. CA). 

 It is possible that automation support comprehending the cues allowed the participants to 

exploit the automation more effectively as they understood how the automation’s judgment 

achievement varied based on factors in the environment. This result supports the human judgment 

literature related to the impact of cognitive feedback on judgment performance.  In a review of over 20 

human judgment experiments involving cognitive feedback, Balzer et al., [105] found that environment 

information is the component of feedback with the greatest effect on human judgment performance. 

Environment information (graphical and statistical information related to the predictability of the 

environmental criterion, cue weights, and the function form relating the cues to the criterion) also 

increased human judgment performance in a baseball prediction task over other forms of cognitive 

feedback [106]. Further, both trained and untrained judges also performed better with environment 

information during a medical diagnosis task [115]. Thus, for some judgment tasks, it may be that 

humans may not necessarily need to understand the underlying algorithm(s) used by the automation if 

they understand how the automation performs under different conditions, similar to results found in 

[72]. It is likely that when designing information analysis automation to be used in noisy environments 

where the automation’s judgment achievement is correlated with noisy input data, it is better to show 

additional environment information than the automation’s judgment strategy. However, research 

should investigate where this pattern no longer holds (i.e. where environmental noise increases, 

reducing the automation's judgment achievement as well as placing a ceiling on human judgment 

performance given the provided cues, regardless of the environmental information provided). 

 In this experiment, the automation’s judgment achievement at the “assess” level was high 

(which was provided to all participants) compared to the participant’s initial judgment achievement 

when only provided with support at the “perceive” level. However, if this were not the case, the amount 
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of IA support could have had a different effect on judgment performance. For example, in a different 

study, when participants could observe explanations of why automation was making errors, they tended 

to increase adaptation to the automation, even when unwarranted [116] and particularly when trust of 

the automation exceeded self-confidence [117]. High automation error rates have also resulted in lower 

subjective measures of trust in automation in numerous studies [118], particularly when participants are 

aware of conditions affecting the automation’s reliability [72]. Trust, in turn, could impact how the 

human interacts with the automation at different support levels.  

 There are numerous ways to represent the displayed cues and the support of the automation. 

Thus, in order to fully generalize the results found here, further research using different representations 

in different domains should be conducted. Additionally, it would be interesting to investigate the benefit 

of providing added support at the “comprehend” level, without including an automated judgment (the 

“assess” level) for the participants to consider. Another limitation of this study is that the participants 

were undergraduate students performing a simplified air traffic conflict prediction task with no 

secondary tasks to perform. Automation support conditions should also be tested with trained 

operators in more naturalistic environments. In particular, it is unclear if the benefit of additional 

support from the automation would hold in settings where conflict detection is only one of many tasks 

to perform. Also, it may be that experienced participants may have been better able to understand the 

strategy information, or alternatively, have produced better independent judgments and therefore 

relied less on the automation.  
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5. Applying ELMA to a healthcare quality judgment task 

The chapter discusses how the ELMA framework was used to understand the health care judgment task 

of assessing population-based quality of care and to inform the design of an automation system to 

support such judgment tasks. This application of ELMA also includes an empirical investigation of the 

impact of automated judgment support levels on performance for quality judgments.  

 

5.1. Introduction 

Judgments made to assess the quality of health care based on actual practice data have gained 

increased attention and have been the focus of many health care initiatives and medical education 

curriculum efforts. For example, the 2006 Tax Relief and Health Care Act (TRHCA) required the 

establishment of a physician quality reporting system, including an incentive payment for eligible 

professionals who satisfactorily report data on certain quality measures [119]. Also, the Accreditation 

Council for Graduate Medical Education (ACGME) recently specified practice-based learning and 

improvement (PBLI) as one of the core learning requirements for residency programs in the United 

States [15]. Residents (physicians who have completed medical school and are undergoing required 

training in their medical specialty) must demonstrate the ability to investigate and evaluate the quality 

of their practice behavior in order to identify strengths, weaknesses, and areas for improvement. 

Further, the American Board of Medical Specialties states that physicians must investigate and evaluate 

their patient care practices as one of six key elements in its Maintenance of Certification program [120] 

and the American Board of Internal Medicine mandates that physicians must assess clinical performance 

with practice reviews to determine compliance with accepted standards and guidelines in order to 

complete recertification [121]. 

 Despite its importance, physicians are not trained to do this task and have actually shown a 

limited ability to accurately judge their quality of care based on actual practice data [16]. A number of 
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approaches have been implemented to address the need for supporting quality assessment in health 

care. These include web-based applications [122], participation in quality improvement projects [123], 

[124], video-taped review of encounters with standardized patients (actors) [125], and peer chart audits 

[126]. However, most efforts have focused on walking physicians through the steps of quality 

improvement initiatives and few have focused on building skills to investigate and evaluate practice data 

as drivers for quality improvement. Further, in most of the implementations mentioned above, clinical 

outcome measures were used to indirectly evaluate practice investigation efforts (e.g., how clinical 

outcomes improved after the quality improvement projects were completed [124]). Although improving 

clinical outcomes is the overarching goal of quality assessment, it is not clear if the current efforts are 

improving care based on direct investigation and judgments of practice behaviors. 

 One strategy for addressing the need to support judgments of quality of care is to use 

information automation that presents population-based information (i.e., aggregated data, not 

individual patient data). Such population-based information can facilitate physicians’ judgments through 

analysis of their practice and also by enabling comparisons between other populations, such as those of 

their peers or to an entire clinic. Investigating populations of patients may also aid in evaluating resident 

physicians, understanding where to direct quality improvement initiatives or limited resources, and 

monitoring adherence to guideline recommendations. 

 Studying and supporting quality of care judgments with population-based information is 

difficult. First, it is difficult to define an environmental criterion. There is not a consistent and precise 

definition of how to make judgments regarding quality of care [127] and the judgments vary depending 

on the specific type of care you are assessing (e.g., preventative medicine, hypertension control, etc.). 

Second, there are many sources of uncertainty in available cues used to make quality of care judgments 

to evaluate practice behaviors. For example, patient data may be missing (e.g., due to receiving care at 

other facilities), erroneous (e.g., due to inaccurate medical records), unavailable (e.g., the pharmacy 
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database does not communicate with a clinical data repository), or confounded by variables outside of 

the physicians’ control (e.g., they recommended a mammography, but the patient failed to go to her 

appointment because she did not have insurance). Third, few tools currently exist to support quality of 

care assessments at a population-level and there are limited guidelines for the design of such tools, 

including what data (or cues) to include and what level of judgment support to provide. 

 At the University of Virginia (UVa), an IA judgment support tool is currently under development 

to present population-based patient data to health care providers. The Systems and Practice Analysis for 

Resident Competencies (SPARC) tool presents population-based reports of various demographic data, 

outcomes, and process measures to enable resident physicians to investigate their practice behaviors in 

an exploratory way [17], [23]. For example, residents can view a report of different breast cancer 

screening up-to-date rates as in Figure 28. Rates for six different populations associated with the 

resident physician are shown (from top to bottom): “Your Panel” (the population of patients assigned 

directly to the resident), “Your Firm” (the population of patients assigned to a small group of peer 

residents that is overseen by one attending physician), “All Firms” (the population of patients assigned 

to all resident firms at the clinic), “All PGY-X” (the population of patients assigned to all residents at year 

X in their training), “UMA” (the population of patients assigned to the entire clinic, including those seen 

by residents and attending physicians), “UMA, UPC, UPO” (the population of patients assigned to three 

different clinics combined). 
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Figure 28. SPARC report of breast cancer screening up-to-date rates for six populations of patients. 

 

 The current version of SPARC allows for exploratory investigation into the quality of different 

aspects of care. We previously evaluated residents’ perceptions of the utility and usefulness of SPARC, 

including the usability of the graphs and the filtering functionality [128]. Of 30 first year residents and 63 

second and third year residents, 21 and 42 completed a questionnaire (70% and 67%, respectively). 98% 

of respondents agreed or strongly agreed that the graphical comparisons were easy to interpret and 

94% agreed or strongly agreed that the graphical comparison helped them understand differences 

between their patients and others. 

 However, there are still concerns about the acceptance of SPARC due the lack of structure to 

support more efficient means of making quality judgments (i.e., moving away from an exploratory tool 

and providing more directed automated support). Thus, the objective of this research is to apply the 
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ELMA framework to understand and support quality judgment tasks directed at specific areas of interest 

(e.g., common diseases). For this application, we have chosen to focus on one major health care quality 

area: assessing quality of hypertension care provided by physicians. This specific quality judgment was 

chosen because in 2010, high blood pressure cost the United States $76.6 billion in health care services, 

medications, and missed days of work [129] and more than 50 million people in the United States were 

diagnosed with hypertension [130]. Although, hypertension is a major health care concern, it is unclear 

how to assess the quality of hypertension care provided by physicians. Further, few tools allow 

physicians to investigate different aspects of population-level hypertension care simultaneously, such as 

blood pressure control and adherence to medication guidelines. We will demonstrate that the ELMA 

framework and methodology can be applied to understand this novel health care judgment task and to 

inform the design of future versions of SPARC to support direct quality judgment tasks. 

 

5.2. Methods 

Our primary goal of this work was to apply the ELMA framework and demonstrate its usefulness in 

understanding health care quality judgments supported by automation. Following the ELMA 

methodology, there were three main objectives. The first objective was to identify the appropriate cues 

necessary to make judgments of population-level hypertension care. This involved a two-phased 

approach consisting of a document analysis followed by a focus group.  

 The second objective was to understand how these cues differentially influence judgment and 

the third objective was to evaluate the effect of level support on judgment achievement, consistency 

within individual physicians, and reliability across physicians. These objectives involved developing an 

apparatus to test design hypotheses. This consisted of creating both judgment profiles and a prototype 

information automation system to support the judgment task. Three versions of the prototype were 

instantiated under three conditions of judgment support based on the ELMA framework. A human-
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subject experiment was then conducted with twenty-four internal medicine resident physicians. Our 

logic for the third objective was that by analyzing variance in judgment performance induced by the 

amount of IA support, we could demonstrate the degree to which ELMA is useful to test IA design 

hypotheses.  

 Further, we conducted post-hoc analysis of variance in judgment performance between best 

and worst performing individuals. Our logic for this analysis was that by analyzing human judge-specific 

variance, we could demonstrate the degree to which ELMA is useful to investigate sources of individual 

differences in judgment performance. This could have implications for the design of training 

interventions targeting specific aspects of the human-automation judgment process.   

 

5.2.1. Identifying available cues needed for judgment task 

We employed a two-phased method to identify the available cues needed to judge the quality of 

hypertension care: first a document analysis and then a focus group with internal medicine attending 

physicians. Because this particular judgment task does not currently take place in most health care 

systems (including UVa), an objective analysis of the ecology and a verbal protocol analysis were not 

possible.  

 We consulted the following clinical guidelines to identify clinical measures (or cues) used to 

assess hypertension care at a population-level (i.e., beyond the quality of care received by a single 

patient). 
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Table 9. Documents analyzed to identify cues for quality of hypertension care judgment. 

Name of clinical guideline documents Organization that 

authored guidelines 

Seventh Report of the Joint National Committee on Prevention, 

Detection, Evaluation, and Treatment of High Blood Pressure 

The National Heart, Lung, 

and Blood Institute 

National Voluntary Consensus Standards For Clinically Enriched 

Administrative Data 

National Quality Forum 

Physician Quality Reporting Initiative Centers for Medicare and 

Medicaid Services 

National Quality Measures Clearing House Agency for Healthcare 

Research and Quality 

The Healthcare Effectiveness Data and Information Set (HEDIS)  National Committee for 

Quality Assurance 

 

  

 Based on the document analysis, we narrowed down the hypertension quality cues to six, based 

on availability (i.e., if these measures were captured electronically at UVa). We also only considered 

those measures applicable to patients between the ages of 18 and 74 and who had a recorded diagnosis 

of hypertension: 

1. Percent of patients without diabetes with most recent blood pressure (BP) at or below 140/90 

mmHg 

2. Percent of patients with diabetes with most recent BP at or below at 135/85 mmHg 

3. Percent of patients with diabetes and a positive microalbumum test on either angiotensin 

converting enzyme (ACE) or angiotensin receptor blockers (ARB) medications 
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4. Percent of patients on more than two anti-hypertensive medications, with at least one being a 

diuretic  

5. Percent of patients on ACE, ARB, or diuretic with potassium checked within last 15 months 

6. Percent of patients with creatinine checked within last 15 months 

 Seven internal medicine attending physicians at UVa subsequently participated in a focus group 

to discuss the cues. Each cue was presented one at a time, including the documented source of the cue. 

Physicians were given the opportunity to discuss the validity of the cue (based on evidence in the 

literature) as indicators of quality of hypertension care.  The focus group unanimously decided to delete 

cues 4 and 5 due to opinions of there not being clear evidence in the literature that the cues adequately 

represented the quality of hypertension care. Cues 1 and 2 were also combined to be: Percent of 

patients at or below “goal” BP (where goal BP is defined differently for patients with and without 

diabetes based on 1 and 2 above). Thus, the three cues (one outcome measure and two process 

measures) needed to judge the quality of hypertension care were determined to be: 

1. Percent of patients at or below goal BP (where goal is 140/90 mmHg for patients with a 

diagnosis of diabetes and is 135/85 mmHg for all other patients) 

2. Percent of patients with diabetes and a positive microalbumum test on either ACE or ARB 

medications (the recommended medications) 

3. Percent of patients with creatinine checked within last 15 months 

 

5.2.2. ELMA conceptualization of the judgment task 

For a physician to make a quality of hypertension care judgment regarding a specific physician’s (e.g., a 

resident physician’s) panel of patients, one must consider the three cues (percent of patients at goal BP, 

percent of diabetes patients on recommended medications, and percent of patients with creatinine 

checked) related to the panel and then combine the cues to assess the quality of care. The 
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environmental criterion related to this judgment would be the actual quality of care that that physician 

is providing. This criterion would be related to the three true cues. However, these true cues would be 

very difficult to access. For example, to know the true percentage of patients at goal BP, one would need 

to simultaneously measure each patients’ exact BP right at the moment the judgment of quality of care 

was to take place. Available cues related to the true cues are those that can be acquired from an 

electronic medical record (EMR) database. For example, a query can be run on the EMR database at UVa 

to obtain the percentage of patients at goal BP based on the recording of their last BP measurement 

taken at UVa.  

 IA can be designed to transform the available cues to displayed cues in any combination of the 

support levels. For example, IA could be developed at the “perceive” level where the three available 

cues are obtained from the EMR database and then transformed to displayed cues (possibly as dot plots, 

similar to Figure 28) for the physician to interpret and make judgment regarding the quality of care. The 

ELMA representation for this task for this level of IA support is shown below.  
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Figure 29. ELMA lens model representation of hypertension quality of care judgment task with IA 

providing “perceive” (P) level of judgment support. 

 

 IA could also be developed to support the physician at the “comprehend” level of support. This 

could include presenting descriptive statistics of the available cues, such as displaying the percentile 

rank for each cue compared to a set of cues (i.e., the percentile rank for one physician’s panel of 

patients compared to all other physicians in the clinic). The ELMA representation for this is shown 

below. 



104 
 

 

Figure 30. ELMA lens model representation of hypertension quality of care judgment task with IA 

providing “perceive” (P) and “comprehend” (C) levels of judgment support. 

 

 IA could also be developed at the “assess” level where the automation uses an algorithm to 

combine the three cues and present an automated quality of care judgment to the human judge. For 

example, the IA could judge the quality of hypertension care by first computing a weighted average on 

the three available cues and then comparing that average to other physicians’ averages and assign a 

judgment regarding the quality of care. The ELMA representation for the “assess” level is shown in 

Figure 31.The IA could also provide support at the “explain” level by indicating its strategy for 

assessment (as described above).  
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Figure 31. ELMA lens model representation of hypertension quality of care judgment task with IA 

providing “perceive” (P) and “assess” (A) levels of judgment support. 

 

5.2.3. Hypotheses regarding level of automated judgment support 

Results of the first application of ELMA and empirical analysis of the impact of IA judgment support 

(Chapter 4 of this dissertation) found that human-automation judgment performance was enhanced 

when IA support included the “comprehend” (C) level (i.e., either PCA or PCAX compared to PA or PAX). 

However, the benefit of C support was not evaluated without also including support at the “assess” (A) 

level (i.e., we did not test C, PC, CX, or PCX). For this task it would not make sense to exclude support at 

a minimum of the P level. The previous study also found no added benefits to providing IA support at 

the “explain” (X) level. Thus, we have two hypotheses regarding the level of IA support for this judgment 

task based on these prior results: 

1) Support at PC levels will yield the highest level of judgment achievement compared to P only or 

PA. 

2) Support at PC levels will yield the highest level of cognitive control compared to P only or PA. 

We also have two additional hypotheses: 
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3) Support at PA levels will yield the highest confidence in performing the judgment task compared 

to P only or PC. 

4) Support at PA levels will yield the highest reliability across participants compared to P only or 

PC. 

 

5.2.4. Apparatus to test judgment support hypotheses 

An apparatus to investigate these hypotheses consisted of both judgment profiles with criterion values 

for each profile and a prototype tool to present the judgment profiles and record human judgments.  

 

5.2.4.1. Judgment profiles 

Thirty judgment profiles, or thirty sets of available cues specific to thirty different physicians, were 

created based on Cooksey’s suggestion of a 10:1 profile to cue ratio. Profile creation consisted of two 

steps. Because data are managed in the EMR database at the patient-level, we had to first aggregate 

patient data to form populations of patients based on the primary care physician. We then had to derive 

the three available cues specific to each population.  

 We first obtained a report from the EMR database at UVa that included de-identified patient 

data that met the following inclusion criteria: 

 Patients seen at the University Medical Associates (UMA) general medicine clinic within the 

last year  

 Diagnosis of hypertension 

 Between the ages of 18 and 74 

The report contained the following for over 3,000 patients that met the criteria above: 

1. Random number representing patient ID 

2. Coded number to indicate primary care physician 
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3. Year of residency of provider – 1 (first year residency), 2 (second), 3 (third), 99 (attending 

physician) 

4. Coded number to indicate resident firm (group of 5-6 residents assigned to a single attending 

physician) (if applicable) 

5. Diagnosis of diabetes – 1 (for diabetes), 0 (no diabetes) 

6. Blood pressure measure – 1 (<135/85 mmHg for patients with diabetes and <140/90mmHg 

without), 0 (systolic or diastolic above these goals) 

7. Recommended laboratory tests check – 1 (creatinine checked within last 15 months), 0 

(creatinine not checked within 15 months) 

8. Recommended medication – 1 (medication list includes ACE or ARB), 0 (medication list does not 

include ACE or ARB) 

 The patients were then grouped by primary care physician and the following metrics were 

calculated for each physician’s panel population: percentage of patients at goal blood pressure, 

percentage of patients with diabetes on either ACE or ARB, and percentage of patients with creatinine 

checked within the last 15 months. These metrics represented the three available cues needed to judge 

the quality of hypertension care provided by that physician. 

 The thirty second and third year residents with the largest panel sizes (i.e., largest number of 

patients) were chosen as the thirty judgment profiles. The same three metrics were also calculated for 

three other populations of patients: the firm (specific to the resident, or profile, under consideration), all 

residents, and the entire clinic (which also included attending physicians’ panels). Confidence intervals 

were then calculated for all populations. This was done using the Pearson-Klopper method for 

confidence intervals. However, to make the confidence intervals easier to interpret, we scaled the 

population percentages by a factor of ten. Without this scaling, the confidence intervals were so large 
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that we thought the participants might disregard the data altogether. This scaling did not affect the 

displayed cues in any way as the displayed cues were already expressed as percentages.  

 Criterion values for each judgment profile were determined by averaging five internal medicine 

attending physicians’ judgments for the thirty profiles. These attending physicians are considered 

subject matter experts in hypertension care. They had an average of 19.7 years of clinical experience 

(range 9-27 years) and an average of 17.8 years of academic medicine experience (range 9-24 years). 

 

5.2.4.2. Prototype IA tool 

In order to present the available cues, an IA prototype similar to the existing SPARC tool [23] was built. 

The tool was built in Microsoft PowerPoint and used Visual Basic and ActiveX controls to provide 

function for users to view the thirty judgment profiles at their own pace and to collect the user’s 

judgments for each profile via a slider bar. 

 This prototype was instantiated to provide IA judgment support to the human at three level 

combinations based on our hypotheses presented above: “perceive” only, “perceive” plus 

“comprehend,” and “perceive” plus “assess.” At the “perceive” level, the IA transformed the three 

available cues to displayed cues using three dot plots, similar to how the current version of SPARC 

displays population-based data. Each dot plot consisted of three things: 1) the displayed cue 

represented by a black dot and a numerical indication of its value located at the bottom of the graph, 2) 

the confidence interval for each displayed cue represented by the width of a grey bar extending the 

height of the graph, and 3) other population values represented with orange dots, orange numerical 

values, and orange lines of length equal to that population’s 95% confidence interval. An example dot 

plot is shown below.  
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Figure 32. Dot plot used to represent displayed cues for health care quality judgments. 

 

 At the “perceive” level of judgment support, the displayed cues (dot plots) were presented 

simultaneously. The IA also provided filtering functionality similar to the current SPARC tool. Participants 

could view two filtered versions of the three displayed cues. One filter button changed the displayed 

cues from all patients with hypertension to patients with both hypertension and diabetes. The other 

filter button changed the displayed cues from all patients with hypertension to patients with both 

hypertension and low income. This instantiation of the IA prototype is shown in Figure 33. 
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Figure 33. IA display for hypertension quality of care judgment task showing “perceive” (P) support level. 
 
 
 
 The IA prototype was also instantiated to provide judgment support at the “perceive” and 

“comprehend” levels. Added support to help comprehend the available cues involved providing an 

indication of the percentile rank for each available cue for that resident relative to all residents in the 

clinic. This percentile rank was expressed in one of five groups. The bottom percentile (0-20%) was 

represented with “very weak,” 20-40% was represented with “weak,” 40-60% was represented with 

“acceptable,” 60-80% was represented with “strong,” and 80-100% was represented with “very strong.” 

The percentile ranks were displayed below each dot plot. This version of the IA prototype is depicted in 

Figure 34. 
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Figure 34. IA display for hypertension quality of care judgment task showing “perceive” and 

“comprehend” (PC) support levels. 

 

 The prototype was also instantiated to provide judgment support at the “perceive” and “assess” 

levels. For the “assess” level of support, the IA provided an overall quality of care score for the resident 

under consideration on a 5-point scale: “very weak,” “weak,” “acceptable,” “strong,” and “very strong”. 

The strategy the IA employed to derive the overall quality of care score was to first calculate a weighted 

average for the three available cues for every resident in the clinic. The weighting scheme for this 

average was 2:1:1 and was determined by a focus group of six internal medicine attending physicians 

who agreed that the goal BP cue was twice as important as the other two cues. After calculating the 

weighted average for each resident, the resident was then grouped into percentile rank groups. The 

same percentile rank groups that were used at the “comprehend” level for each individual cue was used 
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for the overall assessment. The percentile rank group was indicated with a tick mark at the appropriate 

percentile rank category. This version of the IA prototype is depicted in Figure 35. 

 

 

Figure 35. IA display for hypertension quality of care judgment task showing “perceive” and “assess” 

(PA) support levels. 

 

5.2.5. Experimental design  

 

5.2.5.1. Participants 

Twenty-four resident physicians currently enrolled in the internal medicine program at UVa participated 

in the experiment. Participants ranged in age from 26 to 36 and included three females and twenty-one 

males. All participants were familiar with population-based patient data in that they all had previously 
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participated in at least six, one-hour SPARC-related seminars where they were asked to investigate their 

panel of patients by viewing population-based dot plots similar to the ones used in this study. 

 

5.2.5.2. Procedure used in data collection 

Participants were first provided with a brief introduction to the study. They then stepped through a self-

paced training session explaining how to use the automation’s interface. This training also included 

three judgment practice trials to allow participants to gain familiarity with the task of judging quality of 

hypertension care provided by resident physicians. 

 During the experimental session, participants made thirty judgments about the quality of 

hypertension care provided by thirty resident physicians. Following their thirty judgments, they were 

also asked to rate their confidence in performing the task. The IA software recorded all responses.  

 

5.2.5.3. Independent variables 

Participants were grouped into one of three conditions of IA support for the duration of their thirty 

judgments. These groups are described in the following table and are correlated to the three 

instantiations of the prototype IA tool described in Figure 33 - Figure 35.  
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Table 10. Conditions of IA support. 

IA level combination Description 

P Displayed cues represented with dot plots 

PC Displayed cues represented with dot plots plus the percentile 

rank group for each displayed cue 

PA Displayed cues represented with dot plots plus an automated 

assessment regarding the overall percentile rank based on a 

weighted average of the three displayed cues 

 

  

 We used a simple blocked randomization scheme where three participants were randomized at 

a time. Thus, each participant was equally likely to be assigned to one of the three groups and each 

group was equal in size. There are six ways that one can randomize three participants equally into three 

groups. We used statistical software to randomly pick one of the six combinations before assigning the 

first participant for each group. No participant characteristics were considered in treatment allocation. 

 

5.2.5.4. Dependent variables 

For every judgment profile, the following data were collected: the environmental criterion, available 

cues, displayed cues, and the human’s judgment. An overall confidence in the judgment task was also 

collected for each participant. 

 From these data, derived measures based on the ELMA framework were calculated (see Table 

5). The following ELMA measures were derived to characterize the context in which the human made 

judgments: 

 Available environmental predictability, RE.a 
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 Displayed environmental predictability, RE.d 

 Displayed accuracy of the automation, Vd.a 

 To characterize the human judge (and thus, the human-automation system) the following ELMA 

measures were calculated. (Note that we did not ask participants for their interpretation of the 

displayed cues, to collect subjective cues. Thus, we cannot calculate the human’s subjective cognitive 

control, RH.s or the subjective accuracy of the human judge, Vd.s.) 

 Human-automation judgment achievement, ra 

 Displayed cognitive control, RH.d 

 Displayed linear knowledge, GH.d 

 

5.2.5.5. Data analysis 

Four main steps were followed using the ELMA framework. First, the environmental context was 

characterized by modeling the criterion using the available and displayed cues and then computing the 

relevant ELMA measures. Second, linear models were created for each participant using the displayed 

cues and then computing the relevant ELMA measures to characterize their judgment performance. 

Third, nomothetic analysis of the ELMA measures for IA support effects was conducted. Last, post-hoc 

analysis of variance in judgment performance between the best and worst participants (in terms of 

human-automation judgment achievement) was conducted. 

 The experimental design for nomothetic analysis was a fixed effects model design, with IA 

support condition as the fixed effect. Multiple Analysis of Variance (MANOVA) was used to test for 

effect of level of support on the ELMA measures with adjusted alpha levels. Univariate ANOVAs were 

subsequently conducted for all significantly impacted ELMA measures. Post hoc analysis was also 

conducted using Tukey’s Honestly Significant Difference (HSD).  
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 All derived measures from the ELMA framework are correlations. Therefore, before performing 

the nomothetic data analysis described above, the correlations were transformed using Fisher’s r to zr 

transformation (equation 4.2) to obtain normally distributed variables as suggested by Cooksey [40]. 

However, descriptive statistics of the untransformed measures are reported and graphed.  

 

5.3. Results 

The results of this experiment are presented using α = 0.05 for significance and α = 0.1 for a trend. The 

environmental context is discussed first. This is followed by a discussion of the nomothetic analyses 

investigating the impact of IA support on human-automation judgment performance. An idiographic 

investigation of judgment performance of two participants is then discussed. 

 

5.3.1. Environmental context 

To characterize the context in which the human must make judgments, we can start by modeling the 

environmental criterion using both available cues and displayed cues. This multiple regression modeling 

results in the following models where ai and di are the available and displayed cues respectively of 

percentage of patients at goal blood pressure, percentage of diabetes patients on recommended 

medications, and percentage of patients with their creatinine checked within the last 15 months. 

                                                     (5.1) 

                                                     (5.2) 

 Both models of the criterion were checked to ensure proper assumptions of normality, linearity, 

homoscedasticity, and independence of residuals. Also, both sets of available cues and displayed cues 

are expressed as percentages of patients, so the cue values would not influence the regression weights 

in the models. All parameters in both models were found to be significant at p < 0.001, indicating that all 

three cues have a significant effect on the criterion of quality of care.  
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 These models indicate that the first cue of percentage of patients at goal blood pressure has the 

greatest impact on the quality of hypertension care provided by a physician (more than twice the impact 

that the other cues have). This relative impact of cues on quality of care could be indicative of the 

clinical focus of the attending physicians in that they are more concerned with patient outcomes 

(maintaining goal blood pressure) compared to process measures (patients on recommended 

medications and with recommended laboratory tests checked). 

 From the models of the criterion, we are able to derive the available and displayed 

environmental predictability for the judgment task in this experiment. These measures indicate how 

predictable the criterion is based on the cues, which essentially represents an upper bound on the 

judgment performance of the human judge.  

 Correlating the environmental criterion and the model of the criterion based on available cues 

resulted in an available environmental predictability of 0.97. Similarly, correlating the environmental 

criterion and the model of the criterion based on displayed cues resulted in a displayed environmental 

predictability of 0.97. Thus, the displayed accuracy, Vd.a, of the automation is equal to 1, which is a 

characterization of the transformation of available to displayed cues. 

                             (5.3) 

                             (5.4) 

     
    

    
            (5.5) 

 

5.3.2. Nomothetic results of judgment performance 

The impact of IA support on human-automation judgment performance across groups of participants is 

presented in this section, beginning with an examination of the participant judgment models using the 

displayed cues. This is followed by an analysis of the ELMA measures and an investigation into the 
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impact of IA support on reliability of judgments across participant groups. Results related to confidence 

in judgment are also presented.  

 

5.3.2.1. Examination of participant linear models 

The first step in examining judgment performance of the participants is to create one linear model for 

each participant. Figure 36 indicates the computed cue weights for all participant models. The criterion 

cue weights (based on the model using displayed cues) are also depicted with the star and dotted line. 

The extent to which the participants’ cue weights mirror the cue weights of the criterion model is 

indicative of how well participants used the displayed cues to make their quality of care judgments. The 

first and second cues tended to have less of an effect on the quality of care judgments for the residents 

compared to their effect on the criterion. There is also more variance in the cue weights for the first and 

third cues compared to the second cue, indicating that across participants the second cue had a more 

consistent degree of effect on the residents’ judgments. In general, the patient outcome measure 

(percent of patients at goal BP) had less of an effect on resident judgment of quality of care compared to 

attending judgments (criterion). Further, the process measure of percent of patients with recommended 

laboratory tests checked had a greater impact on five residents’ judgments of quality of care compared 

to the criterion. This could indicate that such residents may be more concerned with process measures, 

which they have more control over and less concerned with outcome measures that may be difficult to 

control in short periods of time (i.e., their residency program).  
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Figure 36.Cue weights for all participant models. 

 

 To further explore the participant models, we can examine cue weights for each group of IA 

support independently. These cue weights are shown in the following figures. Observations of these 

plots indicate the participants in the PC group may have used the displayed cues more closely related to 

the criterion’s model. However, the PC group had more variance in the effect of the third cue compared 

to the other two participant groups. For participants in the P group, all cues had less impact on 

judgment compared to the criterion model, particularly for the first cue of percentage of patients at goal 

blood pressure.  
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Figure 37. Cue weights for participants in the perceive (P) condition of IA judgment support.  
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Figure 38. Cue weights for participants in the perceive and comprehend (PC) condition of IA judgment 

support. 
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Figure 39. Cue weights for participants in the perceive and assess (PA) condition of IA judgment support. 

 

5.3.2.2. ELMA measures 

Given the similarities and inconsistent conclusions based on observing the models, it is still not clear 

how the amount of IA support impacted judgment performance. Thus, the next step of analysis is to 

compute the ELMA measures to characterize each participant’s judgment performance using the 

criterion-participant model pair as illustrated in Figure 29, Figure 30, and Figure 31. The predicted 

criterion and predicted human judgment values, the actual criterion and human judgment values, and 

the residuals were obtained from the regression analysis and used to derive the ELMA measures of 

human-automation judgment achievement (ra), displayed cognitive control (RH.d), displayed linear 

knowledge (GH.d), and displayed un-modeled agreement (CH.d).  
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 The average for each ELMA measure was calculated for all participants and for each of the three 

groups of participants by condition of IA support. These results are shown in Figure 40. The ELMA 

measures from left to right are achievement, displayed cognitive control, displayed linear knowledge, 

displayed un-modeled agreement, and displayed environmental predictability. From this graph, we can 

see that the PC condition of IA support yielded better human-automation judgment achievement and 

displayed cognitive control. This is consistent with the above investigation of cue weights where it 

appeared that the PC group more closely matched the cue weights of the criterion model.  

 

 

Figure 40. Average ELMA measures for all participants and for each IA support group of participants.  

 

 Considering all of the ELMA measures, except REd that did not vary between IA support 

conditions, there is a statistically significant impact of IA support on judgment performance overall (F (8, 

36) = 4.05; p < .005; Wilk's λ = 0.277). (To confirm appropriate assumptions, Levene's Test of equality of 

error variances showed that all measures had homogeneity of variances (p < .05).)  
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 Subsequent univariate analyses showed that condition of IA support had a statistically 

significant effect on both human-automation judgment achievement (ra) (F (2, 21) = 7.05; p < .005) and 

displayed cognitive control (RH.d) (F (2, 21) = 9.61; p < .002) (the first two ELMA measures represented in 

Figure 40. All ANOVA results are presented in the following table. 

 

Table 11. ANOVA results of ELMA parameters across IA support condition.  

Effect Human-automation 

judgment achievement, 

ra 

Displayed 

cognitive control, 

RH.d 

Displayed linear 

knowledge, 

GH.d 

Un-modeled 

agreement, 

CH.d 

IA 

support 

F (2, 21) = 6.52 

p < .007 * 

F (2, 21) = 9.61 

p < .002 * 

F (2, 21) = 0.60 

p = 0.56 

F (2, 21) = 1.56 

p = 0.23 

 

 

 Figure 41 depicts human-automation achievement, ra, for each IA support condition in more 

detail. Tukey’s post hoc analysis indicates that the mean of human-automation achievement was 

significantly higher for the PC condition compared to the P condition (p < .005).  
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Figure 41. Human-automation judgment achievement by IA support condition.  

 

 Based on the ELMA lens model (equation 3.23), we know that human-automation judgment 

achievement is dependent on displayed cognitive control, displayed linear knowledge, displayed 

environmental predictability, and un-modeled agreement. Displayed environmental predictability (RE.d) 

did not vary across participants in this experiment. Thus, we can investigate the other ELMA measures in 

more detail to further understand the differences in judgment achievement between the IA support 

conditions.  

 Figure 42 depicts displayed cognitive control, RH.d, for each IA support condition in more detail. 

The graph also includes a dotted line representing the displayed environmental predictability, RE.d. The 

PC group exhibited displayed cognitive control closest to the environmental predictability. This implies 

that the PC group was as consistent in applying their models almost as much as the criterion was linearly 
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predictable, while the P and PA groups were less consistent. Tukey’s post hoc analysis indicates that the 

mean of displayed cognitive control was significantly higher for the PC condition compared to the P 

condition (p < 0.001). There were also trends for the PC condition to be higher than the PA condition (p 

= 0.1) and the PA condition to be higher than the P condition (p = .08).  

 

Figure 42. Displayed cognitive control by IA support condition. 

 

 Human-automation judgment achievement and displayed cognitive control appear to improve 

simultaneously as IA support increases from the P to PC conditions. There is some improvement from P 

to PA conditions, although it seems that judgment achievement and displayed cognitive control actually 

decrease as the amount of IA support increases from PC to PA.  

 One hypothesis for this decrease in judgment performance when participants are provided with 

support at the “assess” level is that the participants with the automated assessment are correlating their 
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judgments to the IA’s judgments, which may be different than the criterion. However, the following plot 

shows that this is not the case. Participants in the PC condition are actually more correlated with the 

automation’s assessment compared to the PA condition, even though the PC group did not see the 

automation’s assessment during any part of the experiment. Further, the dotted line on the graph 

shows the correlation between the criterion and the automation to be 0.92. So even if participants were 

more correlated with the automation, this should not result in a decrease in judgment achievement 

because the automated judgment was more correlated than even the best participant (in any IA 

condition) with the criterion.  

 

Figure 43. Participant judgments correlated with IA judgment across conditions of IA support. 

 

 There were no significant differences in displayed linear knowledge or un-modeled agreement 

across the groups of IA support. This indicates that participants in each group could be modeled with 
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policies that accurately reflected the linear relationships between the criterion and the displayed cues. 

Boxplots depicting these measures are shown in Figure 44 and Figure 45. Thus the difference in human-

automation judgment achievement based on the decomposition of the ELMA lens model equation can 

primarily be attributed to participants’ differences in cognitive control in that with IA support at the 

“comprehend” level they were able to more consistently apply their judgment policies and were better 

correlated with the criterion. 

 

Figure 44. Displayed linear knowledge by IA support condition. 
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Figure 45. Un-modeled agreement by IA support condition. 

 

5.3.2.3. Reliability across participants within IA support conditions 

The amount of IA support also had an impact on reliability across participants. Interestingly, reliability 

was found to be significantly better at a lower level of IA judgment support. To measure reliability across 

participants as a function of IA judgment support condition, we investigated the standard deviation for 

each judgment profile across participants within IA support condition. The following plot shows that the 

P condition of judgment support results in the smallest average standard deviation of participant 

judgments. A repeated measures ANOVA with IA support condition nested within profile (i.e., we can 

see the “IA support” effect within each and every “judgment profile”) shows that IA support significantly 

impacts the standard deviation of the judgment profiles across participants. Post-hoc pair-wise t-tests 
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with adjusted p-values show that the PA (µ = 17.2) condition results in significantly higher standard 

deviations compared to both the P (µ = 10.2) (p < 0.0005) and the PC (µ = 11.2) (p < 0.0005) conditions.  

 

Figure 46. Standard deviation of all profiles across participants grouped by IA support condition.  

 

 One hypothesis as to why the PA condition appears to impact judgment performance in terms of 

increased standard deviation (reduced reliability) across participants is that dissonance between the 

automated assessment and the displayed cue of percentage of patients at goal blood pressure (the cue 

with the highest average weight (β1 = 0.85) caused the participants to distrust the automated 

assessment and then bias their judgments further from the criterion (and the automation’s assessment). 

To examine this hypothesis, we first split the judgment profiles into two groups: 10 profiles where the 

automated assessment deviated by more than two categories that the “comprehend” level of support 

would have shown the participants for that cue had they been provided with that level of support (they 
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were not) and 20 profiles where the automation assessment deviated by one or zero categories of 

“comprehend” level support for that cue. We then recalculated human-automation judgment 

achievement for participants in the PA group under both conditions (dissonance and no dissonance). 

However, we found that only two of the eight participants had better judgment achievement in 

conditions of no dissonance compared to conditions of dissonance. We also calculated Murphy’s skill 

score [71] for participants under both conditions and found that four out of eight participants had better 

skill scores under no dissonance. Thus, this specific bias does not appear to be a contributor to poor 

reliability across the PA group of participants for this task.  

 Another way to investigate reliability across participants is to correlate all pairs of judges in each 

IA support condition (28 pairs of 8 judges in each of the three IA conditions). The average correlation in 

the P group of participants was 0.52, the average in the PC group was 0.67, and the average in the PA 

group was 0.64. This analysis does not yield the results that the PA group was worse than the P group in 

terms of reliability; however, this provides more evidence that providing residents with IA support at the 

“comprehend” level may help judgment performance in terms of increasing reliability among judges.  

 

5.3.2.4. Confidence in judgment performance  

Overall, participants were not very confident in their ability to judge the quality of hypertension care 

provided by the residents in this study (μ = 44/100, σ = 19). Despite the differences in the amount of IA 

support between participant groups, we found no significant effect on participant’s confidence in their 

judgments. This could be due to participants having not yet spent much time with the tool. These results 

are shown in Figure 47. 



132 
 

 

Figure 47. Confidence of participants in their judgments by IA support condition.  

 

5.3.3. Idiographic results of judgment performance 

In addition to investigating judgment performance across participants grouped into IA support 

conditions, the highest and lowest achieving (based on human-automation judgment achievement) 

participants were explored in greater detail. The following analysis demonstrates how the ELMA 

framework can provide insight into individual judges. The lowest achieving participant was assigned to 

the P group of IA support and had judgment achievement equal to 0.41. The highest achieving 

participant was assigned to the PC group of IA support and had judgment achievement equal to 0.91. 

 First it is useful to compare the cue weights between the two participant models and the cue 

weights used in the criterion model based on the displayed cues. Figure 48 and Figure 49 show how the 

cue weights of the two participant models compared to the criterion model. From these figures we can 
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see that the highest achieving participant used cue weights that more closely matched those of the 

criterion model. Further, the cues had less impact on the lowest achieving participant compared to the 

impact the cues had on the criterion. The intercept values for both participant models were also 

drastically different (β0 = -113 for the highest achieving participant; β0 = 27 for the lowest achieving 

participant; β0 = -133 for the criterion model). However, the first cue of percentage of patients at goal 

blood pressure had the largest effect on both participants’ judgments. It is important to note that 

neither participant was told the relative importance of the cues. 

 

 

Figure 48. Criterion and highest achieving participant cue weights. 

 



134 
 

 

Figure 49. Criterion and lowest achieving participant cue weights. 

 

 From the ELMA lens model equation based on displayed cues (equation 3.32), human-

automation judgment achievement (ra) is dependent on displayed cognitive control (RH.d), displayed 

linear knowledge (GH.d), un-modeled agreement (CH.d), and displayed environmental predictability (RE.d). 

We know both participants made judgments under the same environmental predictability. However, we 

can investigate the other ELMA parameters to uncover differences in judgment achievement.  Figure 50 

depicts the ELMA parameters for the two participants and the average of all participants.  

 The two participants greatly differed in their displayed cognitive control (RH.d = 0.91 vs. 0.42). 

The highest achieving participant exhibited cognitive control close to the displayed environmental 

predictability (RE.d = 0.97). This indicates that this participant’s judgments were as consistent with a 

linear model as the environment was linearly predictable, while the other participant was much less 
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consistent. The higher achieving participant also exhibited better displayed linear knowledge (GH.d). This 

indicates that the higher achieving participant could be modeled with a judgment policy which 

accurately reflected the linear relationship between the cues and the criterion. Participants had similar 

values of un-modeled agreement (CH.d), indicating that both were appropriately influenced by nonlinear 

relationships between cue values and the criterion.  

 

 

Figure 50. ELMA measures for the highest and lowest achieving participants and the average of all 

participants. 

 

 Thus, the ELMA lens model analysis indicated that differences in human-automation judgment 

achievement in this task can be attributed primarily to differences in the participants’ ability to 

consistently apply their judgment policies. The structure of their policies also contributed to the 

differences in judgment achievement.  
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 Despite having the highest human-automation judgment achievement, the participant reported 

their confidence in performing quality of hypertension care judgments (confhigh = 21) to be more than 

one standard deviation below the average confidence ratings across all participants (μ = 43.7, σ = 19.1). 

The lowest achieving participant reported their confidence to be greater than the average confidence 

rating (conflow = 50).  

 

5.4. Discussion 

This was the second instantiation of the ELMA framework. We used ELMA to understand the judgment 

task of assessing population-based quality of hypertension care. ELMA guided the identification of the 

available cues needed for the judgment task and helped to conceptualize the task in order to derive 

hypotheses regarding the effect of automation support on judgment performance. ELMA also guided 

the analysis of the environmental context and human-automation performance at both a nomothetic 

and idiographic level. These analyses demonstrated the usefulness of the ELMA framework, particularly 

to investigate the effects of varying conditions of IA judgment support on judgment performance and to 

investigate sources of individual differences in judgment performance. The results have implications for 

both the design of IA tools and training interventions targeting specific aspects of the human-

automation judgment process.   

 

5.4.1. Effect of automated support on human-automation judgment performance 

One main objective of this research was to investigate the effect of automation support on judgment 

performance. Resident physicians provided with IA support at the “perceive” and “comprehend” (PC) 

levels, had significantly better human-automation judgment achievement and displayed cognitive 

control compared to residents provided with only “perceive” IA support. Further, there was a trend for 

better cognitive control for residents provided with PC support compared to those provided with 
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“perceive” and “assess” support. This partially confirms our first and second automation design 

hypotheses that PC support would yield better judgment achievement and cognitive control compared 

to P or PA conditions. At the individual judge level, we also found that differences in judgment 

achievement were predominantly due to differences in participants’ ability to consistently apply their 

judgment policies. This could be a result of there being no generally accepted standard for quality of 

hypertension care, including a general acceptance for the relative importance of each cue. 

 Similar results were found in the first application of the ELMA framework presented in Chapter 4 

of this dissertation. In both studies, added support at the comprehend level may have contributed to 

enhanced cognitive control in that participants were able to better understand the environmental 

context (i.e., the cues) and were thus able to more consistently apply their judgment strategies, 

resulting in greater judgment achievement. Similar results were also found by Bisantz et al. [19] and by 

Strauss and Kirlik [9] when they determined that individual differences in judgment achievement were 

most attributed to differences in participants’ ability to consistently apply their judgment strategies, 

rather than differences in task knowledge. 

 Confidence in ability to judge the quality of hypertension care was not affected by the condition 

of IA support. In general, participants rated their confidence fairly low no matter what amount of IA 

support they had to make their judgments. This is most likely due to the judgment task itself. We know 

that physicians are not good at making self-assessments regarding quality of care [16], which may be 

similar to rating other peer physicians. Further, many of the attending physicians we interacted with 

throughout this study expressed their discomfort in assigning a resident a quality of care score.    

 The amount of IA support did have a significant impact on the reliability of judgment 

performance across participants. Participants provided with PA support exhibited significantly less 

reliability in their judgments compared to the other two conditions of judgment support. This result is 

not in agreement with our fourth hypothesis. In fact, we found the opposite effect in that PA support 
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resulted in reduced reliability across participants. This could have significant implications for judgment 

contexts in which multiple judges are expected to make similar assessments when given the same cue 

context. For example, insurance companies may use quality of care judgments made by different judges 

to make decisions regarding reimbursements. In this context, reliability across judges would be 

essential. It is unclear why the PA condition hindered reliability of residents’ judgments and future work 

should address this issue. 

 One limitation to this study was that attending physicians’ judgments were used as the criterion 

for quality of care. Thus, the criterion values could have been biased to the focus of the clinic in which 

they work or to the individual pressure or interest they each have related to the three available cues. 

For example, it could be that the attending physicians are more interested in maintaining goal blood 

pressure among their hypertensive patients because that outcome is under more scrutiny by insurance 

companies or hospital administrators. These biases could have impacted the ELMA measures of human-

automation judgment achievement and displayed linear knowledge. Despite this limitation, we were still 

able to uncover effects of IA support on displayed cognitive control and reliability across participants, 

which were measured independent of the criterion.  

 

5.4.2. Implications for the design of automation 

These results have implications for the design of automation to support human judgment. For this 

judgment task, the true cues are unknown and impossible to practically measure. Thus, the displayed 

cues’ uncertainty is tied directly to the uncertainty between the true cues and the available cues in the 

environment. Although providing residents with an automated judgment of the quality of hypertension 

care may improve judgment achievement compare to those provided with only the cues (at the 

“perceive” level), the added “assess” support may decrease the reliability across resident judges or the 

consistency within an individual judge. Thus, it may be more beneficial to focus design efforts on 
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providing “comprehend” level support, or support on how to interpret and understand the available 

cues needed to judge quality of care. Residents provided with an IA prototype of this level of support 

were able to make quality of care judgments similar to those of attending physicians. The residents were 

also able to more consistently apply their judgment strategies to the level of predictability of the 

attending judgments. 

 Because differences in judgment achievement were due to participants’ inability to consistently 

execute judgment strategies rather than their knowledge of the task environment, automation design 

and training should potentially be focused on how to support consistent execution of judgment 

strategies. This could be implemented in the form of cognitive feedback based on the lens model 

framework. Balzer et al. [105] suggest that task information feedback during training could provide the 

greatest improvement on human judgment performance. In the cognitive feedback context, task 

information includes the environmental predictability, cues-criterion relationships, and inter-cue 

relationships. However, providing participants with cognitive information (measures of their own 

cognitive control and cue-judgment relationships) during a medical diagnosis task improved overall 

cognitive control [115]. The authors concluded that this information enabled participants to understand 

their own judgment policies, and thus make judgments more consistently. 

 There are numerous ways to represent the displayed cues and the support of the automation. 

Thus, in order to fully generalize the results found here, further research using different representations 

should be conducted. It may also be worthwhile to investigate the impact of display representations on 

the interpretation of the displayed cues (in the form of subjective cues). This issue was outside of the 

scope of this dissertation; however, the ELMA framework provides a platform to investigate the 

displayed to subjective cue transformation in different judgment contexts. We also found no differences 

in the confidence residents had in judging quality of care. It may be useful to explore different display 

representations that may increase confidence.  
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 From an application perspective, it is important to understand the impact that automation 

design has on quality of care judgments. However, it is unclear if clinicians who are better able to judge 

the quality of care will actually improve their practice behaviors, resulting in better outcomes for the 

patients. Thus, it would be necessary to investigate any effects of either the judgment process or 

outcomes of the judgment process on practice behaviors, particularly with resident physicians who must 

demonstrate their ability to investigate and evaluate their practice.  
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6. Conclusions and future directions 

This dissertation presented the Expanded Lens Model with Automation (ELMA) framework. ELMA is a 

useful tool for systems engineers as it provides a systematic framework to inform automation design 

choices and a quantitative method to evaluate human-automation judgment systems. ELMA accounts 

for discrepancies between how cues in the environment are transformed into displays to operators via 

automated processes. The transformation is based upon the desired, hierarchical level of cognitive 

judgment support. ELMA also includes quantitative measures to evaluate the human-automation system 

with an idiographic-statistical approach.  

 Two judgment tasks were investigated to demonstrate the utility of ELMA. Across both tasks, 

ELMA revealed that automated cue comprehension support improved judgment achievement. ELMA 

also revealed that the differences in achievement were predominantly due to the consistency with 

which participants used the displayed cues to make their judgments. This has implications for potential 

training interventions and may be further explored with different display representations. Results also 

suggest that reliability may be affected by providing automated assessment support in quality of health 

care judgment tasks. This could impact contexts where multiple judges are expected to make the similar 

judgments using the same cue sets.  

 However, it is challenging to disentangle the effects of the level of automated judgment support 

(i.e., the functionality of the automation) resulting in the content of information (via displayed cues) and 

the specific representations of the information (i.e., the display design). Thus, to draw stronger 

conclusions regarding the impact of level of automated support on different judgment tasks, additional 

display representations must be investigated. ELMA provides a systematic method for this investigation 

and can be used to guide iterative automation design choices. 

 Another limitation of ELMA is that it requires the judgment task to be defined and analyzed in 

accordance with the structure of the ELMA lens model. The task must be defined as a known (or 



142 
 

estimated) criterion to be judged, based on a set of cues. This does not comprise the task of selecting 

among decision alternatives that may result from the judgment task, which in some contexts may be of 

more importance than the judgment. Further, there may be tasks where decomposing judgment from 

decision making is difficult. However, the ELMA framework could be used in conjunction with the PSW 

model of types and levels of automation that does account for both judgment and decision making [1] 

or with other decision modeling and analysis techniques, such as rule-based models [131], fuzzy rule-

based models [132], operator function models [133], or naturalistic decision making methods [134].  

 Future extensions of ELMA could also include scaling the ELMA lens model to allow for 

hierarchical judgment tasks. This has been done using the traditional double system lens model (e.g., 

[135], [136]). A similar extension to demonstrate the scalability of the ELMA model would be useful to 

investigate hierarchical judgment tasks supported by information automation. 

 Additional future work could also involve refinement of the definitions (and potentially 

additions) to the levels of information automation support. The current definitions of the levels could be 

enhanced to reduce the ambiguity between adjacent levels and to better account for instantiations of 

automated support that could be argued to fall into one level or another. For example, one could argue 

that the perceive level of support instantiated in the quality of care study presented in Chapter 5 was 

actually comprehend support. However, regardless of the nuances in the taxonomy and the difficulty in 

designing automation that clearly falls into one category of support, ELMA still provides the most 

systematic framework to date to investigate automation specifically designed to support the cognitive 

functions involved in human judgment.  

 One application area that may particularly benefit from the ELMA framework is the design and 

evaluation of electronic medical records (EMRs). Many judgment tasks are performed by perceiving, 

comprehending, and integrating cues in order to arrive at a judgment regarding the true state of a 

patient. A systematic and quantitative approach to informing and investigating the functionality of EMRs 
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that support such tasks is imperative, particularly given the recent widespread adoption of such 

information automation systems.   
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