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ABSTRACT

A major (~95%) part of the world solar photovoltaic power is generated using silicon-based solar
cells. Further reduction in the manufacturing cost of silicon solar cell fabrication is required to
compete with alternative sources of energy generation. To achieve high-efficiency and low-cost
silicon solar cell devices, a low-temperature, non-vacuum, high-throughput fabrication process is
required. A high-power laser process can overcome some of these challenges by significantly
reducing the fabrication complexity, avoiding multiple patterning steps, and potentially replacing
high-temperature, high-vacuum processes. Currently, laser processing of silicon solar cells has
been investigated for laser doping, laser direct writing, laser microtexturing, and laser ablation.

However, the main challenge with the application of high-power lasers for Si solar cell
fabrication lies in the ability to eliminate the generation of induced crystal defects and formation
of amorphous phases due to fast thermal processes. The laser-induced damage could increase
carrier recombination and will result in the deterioration of photovoltaic device performance. For
a wider acceptance of laser-based silicon solar cell fabrication, three research goals are set: (1)
gain a fundamental understanding of defect generation mechanisms and identify the damage-
limiting laser-processing conditions; (2) demonstrate the mitigation of laser-induced defects
using post laser surface annealing; and (3) demonstrate the defect-controlled and annealing
processes in laser-based silicon solar cell devices.

Various types of laser-induced defects were extensively investigated, including grain
boundaries, microtwins, dislocations, point defects, and oxygen incorporation. The formation of
amorphous phases and internal strain were also examined. We find that the single-crystalline
phase can be retained through a laser-ablation process. Laser-induced dislocation density and
strain are found to increase exponentially with laser fluence, while a maximum in point-defect

concentration is observed with increasing laser fluence. These experimental results are in good


https://www.sciencedirect.com/topics/chemistry/solar-cell
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agreement with the simulation work done by Miao He in Prof. Leonid V. Zhigilei's research
group. It is concluded that laser-induced defects can be minimized by tailoring laser-processing
conditions.

Through the measurement of carrier lifetime, leakage current, drift mobility, and electrical
conductivity at various laser fluences and defect densities, we find that the laser-defect induced
degradation of surface electrical properties are governed by an exponential relationship. This
suggests that laser-processing fluences near the silicon melting threshold should be carefully
chosen for minimizing the induced defects and electrical property degradation.

Moreover, a post laser annealing technique was investigated to remove the laser-processing-
induced defects, and this technique was integrated with the laser-based solar cell fabrication
process. We find that a low-power long-pulse-width laser annealing process can eliminate
dislocations and point defects induced by high-power laser processing.

Furthermore, we developed a laser-based method for passivating silicon surface defects by
laser processing of a sol-gel TiOx thin film. We find that laser processing can produce chemical
bonding at the TiOx/Si interface and lead to excellent surface passivation with a low surface
recombination velocity of 6.25 cm/s.

Lastly, we demonstrated the minimization of laser-induced defects in laser-based solar cell
fabrication, including laser transfer doping, laser-transferred metal contacts, and laser ablation of
metals for contact isolation. Through incorporating these laser-based processes with laser
annealing, we fabricated all-laser-based interdigitated back contact silicon solar cells and
demonstrated that post laser annealing can considerably improve the conversion efficiency.

In summary, a fundamental understanding of laser-induced defects in Si has been provided,
and a novel and viable concept of high-power laser processing with low-power laser annealing
has been demonstrated for high-efficiency and low-cost silicon solar cell fabrication.
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CHAPTER I: INTRODUCTION AND MOTIVATION

1.1. Silicon Solar Cell Overview and Laser Processing

Renewable energy is crucial for managing the challenges of climate change, growing energy
requirement, and air pollution. The current major energy sources are oil, coal, natural gas,
bioenergy, and nuclear, together with very small share (~1 %) of solar and wind energies (Figure
1.1, [1]). Among many possible sources, solar energy will play a significant role in the future of
renewable energy due to its sustainable, clean, easily accessible, and potentially low-cost nature
[2,3]. According to Shell Analysis (Figure 1.1, [1]), the market share of solar energy would
increase to 32% by 2070 and becomes the largest energy source. To increase the solar energy
share, the conversion efficiency needs to be increased further while the manufacturing cost must

be decreased.
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Figure 1.1: Different energy sources and their future outlook. Source: Shell analysis [1].



Photovoltaic devices convert solar radiant energy to electricity and have made dramatic
progress in recent years [4-7]. Currently, silicon-based solar cells, with their highest conversion
efficiency of 26.7% [7], are dominating the photovoltaic market and account for around 95% of
global annual production [4]. Silicon material is favored as a result of its cost-effectiveness,
abundant availability, and non-toxic composition. Additionally, silicon photovoltaic modules
have shown great technology maturity and lifetime reliability over decades of testing [3,4].

Currently, heterojunction back contact silicon solar cells show the best device performance
with a record efficiency of 26.7% [7]. In heterojunction, a very thin hydrogenated intrinsic
amorphous silicon film is used, which greatly reduces the c-Si surface recombination [7-9].
Without the heterojunction, silicon solar cells with an interdigitated back contact (IBC) structure
also exhibit high efficiency of 25% [10,11]. The back-contact design removes front contacts and
eliminates optical shading, which contributes to 3% - 8% higher current density; also, this design
saves efforts in the optimization of front contact resistance and simultaneously facilitates better
front surface passivation, which contributes to higher generated voltage [7-12]. These features
mark the IBC structure as the future path toward commercial high-efficiency silicon solar cells
[13,14].

Solar cell production has risen rapidly with an annual growth rate of 24% in the last decade
[3], and the global cumulative solar-generated power has shown an exponential growth (Figure
1.2.a, [15]). However, the 1% photovoltaic market share among global electricity demands is still
undeniably low [1]. Also, according to the BP statistical review of world energy (Figure 1.2.b,
[16]), the current increase of solar-generated power worldwide is still much lower than that of

fossil energy. In order to obtain a wider acceptance of photovoltaic technology, research should



focus not only on high conversion efficiencies but also on the reduction of manufacturing costs

[17].
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Figure 1.2: (a) Global cumulative solar-generated power in gigawatts from 1992 to 2017,
showing the exponential growth. Source: Reference [15]. (b) World energy consumption of
different energy sources from 1965 to 2017, showing the undeniably low market share of
solar-generated power. Source: Reference [16].

As summarized in Figure 1.3, the manufacturing costs of solar systems include material cost,
fabrication cost, and system cost. The high fabrication cost mainly comes from the high-
temperature (~1000 °C) processes for the doping, passivation and annealing steps, the high-
vacuum processes for thin film deposition, and the multiple patterning steps required for

selective doping and contact formation.
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Figure 1.3: Typical solar system cost breakdown, showing the high fabrication cost from
high-temperature, high-vacuum, and multiple patterning processes.



To achieve low-cost and high-efficiency solar cells, high-power laser processing attracts much
attention [17-20], since it provides a low-temperature, non-vacuum, high-throughput fabrication
process. Owing to the non-contact, localized, and surface processing features as summarized in
Figure 1.4, a high-power laser process can significantly reduce the fabrication complexity, avoid
multiple patterning steps, and potentially replace high-temperature or high-vacuum processes.
The advantage of laser processing is especially valuable for back contact solar cell fabrication
because the current fabrication process requires extremely complicated patterning steps, multiple

etching procedures, and heavy dependence on high-temperature furnaces [11].
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Figure 1.4: Advantages of laser processing in silicon photovoltaic fabrication.

The laser applications for solar cell fabrication [21] have been investigated in areas of laser
doping [20,22-27], laser-transferred contacts [26-30], laser-fired contacts [31-34], laser ablation
[35-38], laser surface microtexturing [39,40], laser edge isolation [41], and laser cutting [42] as
summarized in Figure 1.5. Recently, the laser-based IBC solar cells have demonstrated high
efficiency of 26.1% [18]. The high-efficiency, low-cost potential of laser-based fabrication has
motivated to further investigate this research topic and continue to enable efficient, cost-effective,

and high-throughput cells.
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Figure 1.5: Applications of lasers for silicon photovoltaic fabrication.

1.2. Crystal Defects and Characterization

In the crystals, the arrangement of atoms is hardly perfect, and the crystal defects can disrupt the
periodical lattice. According to the dimensions, crystal defects are mainly classified into point-
defects (zero-dimensional defects), dislocations (one-dimensional defects), and grain boundaries
(two-dimensional defects).

Point defects are either extra atoms (interstitials) or missing atoms (vacancies) in the atomic
lattice. The schematics of point defect formation are shown in Figure 1.6. In a single-component
material, such as Si, vacancies (Figure 1.6.a) can be generated through moving a Si atom to the
surface, interfaces, or dislocations. The interstitials include the self interstitial atoms (Figure
1.6.b), interstitial impurity atoms (Figure 1.6.c), and substitutional impurity atoms (Figure 1.6.d).
Self interstitial atoms are the extra atoms that exist in the tetrahedral or octahedral interstitial
positions in the crystal structure, and interstitial impurity atoms are foreign atoms such as oxygen
atoms that occupy the interstices. Substitutional impurity atoms are foreign atoms that replace
the atoms in the crystal structure. The point defects can move through long-range diffusion to the
free surfaces and dislocations, and the diffusion is strong under high temperature.

Dislocations are the one-dimensional defects which distort a large portion of the crystal.
There are two major types of dislocations, the edge dislocations and the screw dislocations. The

Volterra model describes the process of dislocation generation. For edge dislocations, as shown



in Figure 1.7, the top half of the crystal is exposed to the stress in one direction, while the bottom
half is exposed to the stress in the opposite direction. In this process, an extra half-plane atoms

appears, and the dislocation line is the edge of the half-plane.
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Figure 1.6: Schematics showing point defect formation: (a) vacancies, (b) self interstitial
atoms, (c) interstitial impurity atoms, and (d) substitutional impurity atoms. Source:
Reference [43].

The movement of dislocations relies on two mechanisms, either gliding or climbing. In the
gliding, the dislocations can slip along a glide plane which usually is the close packed plane. In
contrast, the climbing requires the assistance of point-defect diffusion. The atoms in the extra
half-plane can diffuse to the vacancy positions in the neighbor plane achieving the "climbing™ of
the half-plane and the movement of dislocations.

Dislocations can interact with dislocations, free surfaces, and point defects. Dislocations with
opposite Burgers vectors can attract each other and annihilate, while with the same Burgers
vector repel each other. The free surface can modify the stress field around the dislocation and
induce the tendency of dislocations to move out of the surface. The supersaturated vacancies lead
the chemical force and assist the dislocation climbing, while the substitutional or interstitial

atoms can obstruct the dislocation gliding and "pin™ the dislocations.
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Figure 1.7: Schematics showing dislocation formation based on the Volterra model: (a) edge
dislocation, (b) screw dislocation. Source: Reference [43].

Grain boundaries exist due to the atomic mismatch when grains meet. The boundaries include
the low-angle grain boundaries and high-angle grain boundaries. The low-angle (misorientation
< 15°) grain boundaries can be represented by an array of dislocations. The distance between
grain boundary dislocations is inversely proportional to the misorientation angle. When the
misorientation angle is larger than 15°, the distance between grain boundary dislocations
becomes so small that the grain boundary structure cannot be constructed by dislocations. For
constructing high-angle grain boundaries, the interface energy at the grain boundary is required
to be the minimum, and the coincidence site lattice (CSL) is one of special cases. In the CSL,

two grain boundary lattices are rotated, and at the certain angle, the resulting superlattice can



perfectly match with the two grain lattices. Since the grain boundary can go through the close
packed planes of the CSL, the interface energy can be reduced for the high-angle grain
boundaries.

The characterization of crystal defects can be achieved through electron microscopies, X-ray
crystallography, chemical spectroscopies, and chemical etch pits. Grains and grain boundaries
can be directly observed under transmission electron microscopy (TEM), and the grain
orientation can be determined by the TEM diffraction pattern. The X-ray diffraction (XRD) can
also determine the grain orientation. Both diffractions follow the Bragg's law, 2dsinf = n\, where
d is the spacing of crystal planes, 0 is the angle of the diffracted wave, X is the wavelength of
electrons or X-rays, and n is an integer representing different orders of the diffraction.

Dislocations can be observed under TEM through tilting the sample relative to the electron
beam. The maximum contrast for imaging dislocations can be achieved when the reciprocal
lattice vector is parallel with the Burgers vector. Also, the extra spots or streaks in the TEM
diffraction pattern can indicate the presence of dislocations, twin structures, or stacking fault.
Moreover, the dislocation forms the energy state within the Si band gap, thus the excited carriers
would recombine at the dislocation energy state. Through measuring the dislocation-induced
photoluminescence, both the intensity and energy state of dislocations can be obtained.
Furthermore, the dislocations can be visualized by chemical etch pits due to preferential etching
at the dislocation sites. By calculating the etch pit density, the dislocation density can be
obtained. In addition, the broadening of XRD crystal Si peak can determine the internal strain
which is an important indicator of dislocations.

Point defects are hardly observed under transmission electron microscopy (TEM) due to the

small contrast with the background. The current techniques for identifying point defects are



limited to unique spectroscop