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ABSTRACT 

The management of invasive plants is a prevalent area of study and is relevant today 

in many ecosystems. Vegetation indices from remotely sensed hyperspectral data are useful 

for identifying invasive plants, as these indices are determined by the different physical 

and chemical features of plants. Drone-based hyperspectral images collected from a field 

in northwestern Virginia four individual times during 2020 were used to identify certain 

invasive plant species. From these images, reflectance spectra were sampled from 15 pixels 

representative of target individuals and transformed into vegetation indices using the R 

package hsdar. A partial least squares-discriminatory analysis (PLS-DA) was conducted 

with the vegetation indices to differentiate individual species and determine indices most 

useful in differentiation. Two invasive shrub species, autumn olive and Dahurian buckthorn, 

were each compared to all other plants in the field. The greatest variance explained by 

components 1 and 2 occurred in November for autumn olive, and June for buckthorn. The 

components explained a combined 49% of variance for autumn olive in November, and a 

combined 58% of variance for buckthorn in June. Both species separate particularly 

strongly across component 1 for both of these months. Buckthorn was particularly well-

separated by vegetation indices related to chlorophyll and leaf area index, while autumn 

olive was most well-separated by vegetation indices related to chlorophyll and stress. 

However, vegetation indices relating to all physiological factors were useful for both 

species. Furthermore, buckthorn is particularly differentiable in later months, likely due to 

it losing its leaves very late. The greatest variance explained by the PLS-DA, paired with 

the degree of separation among the different plant species, leads me to conclude that June 

and November are the best times of year to identify autumn olive and buckthorn. 
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INTRODUCTION 

 
1.1 Background 

Globally, invasive plants pose significant threats to natural ecosystems (Gurevitch 

& Padilla, 2004) and biodiversity (Gaertner et al., 2009; Kimothi & Dasari, 2010; Peerbhay 

et al., 2016). Across the state of Virginia, invasive, non-native plants are radically altering 

natural environments by inhibiting the growth of native species upon which native wildlife 

and insects depend. These widespread changes in species composition also have broader 

impacts on soil chemistry and vegetation canopies, with effects on dynamics of carbon, 

nutrients, water, and energy. Invasive plant species monitoring and removal has become 

an increasingly extensive area of focus in environmental work in recent years, and is 

relevant and valuable in almost all natural ecosystems. However, there is a lack of capacity 

to identify invasive species across broad extents of land. The goal of my research is to 

determine whether filtering hyperspectral data taken by drones through vegetation indices 

is a reliable method for identifying invasive plant species found in Virginia, and 

determining what time of year is the best to perform this analysis. Although there are many 

invasive species of interest in Virginia with negative effects on native populations, I have 

chosen to focus my research on autumn olive (Elaeagnus umbellata) and Dahurian 

buckthorn (Rhamnus davurica) due to their prevalence and relative abundance. They are 

also representative of many of the factors that contribute to the harmfulness of invasive 

plant species, such as outcompeting native plants in nutrient-poor environments (Malinich 

et al., 2017), and changing factors such as soil moisture (Heneghan et al., 2006) and 

decomposition rates (Heneghan et al., 2006; Mascaro & Schnitzer, 2007). 
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1.2 Rationale 

Monitoring Invasive Plants 

Controlling the spread of invasive plant species demands extensive ecosystem 

monitoring. Unmanned aerial vehicles (UAVs, or drones) overcome the spatial and 

temporal limitations of traditional ground-based and satellite-based approaches and are 

therefore becoming an increasingly popular method of ecosystem observation, including 

invasive plant species monitoring. In addition to improvements in spatial and temporal 

resolution made by UAVs, hyperspectral imaging, which provides detailed spectral 

information using a large number of narrow, contiguous bands (Chance et al., 2016; 

Kaufmann et al., 2008), is becoming more common.  

Identifying Plants Using Hyperspectral Imaging and Vegetation Indices  

Spectral reflectance signatures from hyperspectral imaging are influenced by 

differences in biophysical and biochemical characteristics of plants (Matongera et al., 

2016; Wang et al., 2019; Yang et al., 2016), including: pigments (Mahlein et al., 2010; 

Xiao et al., 2014), such as chlorophyll (Asner & Martin, 2008; Chance et al., 2016; 

Thenkabail et al., 2014), anthocyanins, and carotenoids (Blackburn, 2007); plant water and 

vegetation stress (Thenkabail et al., 2014); and leaf N, P, and K (Asner & Martin, 2008; 

Chance et al., 2016; Mutanga et al., 2004; Thenkabail et al., 2014). Because UAV flights 

can take place readily at multiple times during the year, phenological differences in these 

features among species can aid in differentiation (Castro-Esau et al., 2006). 

Thus, hyperspectral data, which serve as an indication of plant chemical and structural 

properties, vary within and across ecosystems (Martin & Aber, 1997; Ustin et al., 2004). 

With current understanding of plant chemical and structural properties, hyperspectral data 
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can be used not only to detect general assemblages of plants (Hochberg et al., 2015; 

Sanchez-Azofeifa et al., 2013; Schmidt & Skidmore, 2003) but also to differentiate among 

species (Clark et al., 2005; Cochrane, 2000). Imaging spectroscopy is currently the most 

used approach for studies of invasive plant species (Huang & Asner, 2009) and has been 

used to identify invasive plant species with both airborne (Aneece & Epstein, 2015; Asner 

& Martin, 2008; Asner & Vitousek, 2005; Castro et al., 2004; Chance et al., 2016; 

Kganyago et al., 2017; Skowronek et al., 2017) and handheld (Aneece & Epstein, 2015; 

Castro et al., 2004; Kganyago et al., 2017) spectrometers. 

Though the benefits of analyzing hyperspectral imagery in classification of plant 

communities are clear, the “big data” provided by hyperspectral imagery can be 

computationally demanding. Vegetation indices, which are a combination of just a few 

bands, may be an approach to dimensionality reduction, especially as they can minimize 

spectral variability caused by solar radiation and viewing angles (Royimani et al., 2019). 

Wilfong et al. (2009) successfully utilized six vegetation indices in conjunction with 

Landsat TM satellite imagery to predict Lonicera maackii (Amur honeysuckle) invasion in 

the Midwestern U.S. Using hyperspectral AVIRIS images, Underwood et al. (2007) 

compared different spatial and spectral resolution combinations to map three invasive 

species in coastal California. Their most accurate results were derived from images with 

high spectral resolution. The benefits of high spectral resolution are also supported by Ustin 

and Jacquemoud’s (2020) conclusion that hyperspectral data best capture the subtle 

responses of reflectance to plant chemical and structural characteristics, which often have 

overlapping regions within spectra. 
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Differentiating E. umbellata and R. davurica from other plant species 

This study examines two invasive shrub species, Rhamnus davurica (Dahurian 

buckthorn) and Elaeagnus umbellata (autumn olive). R. davurica is a prevalent invasive 

shrub in northwestern Virginia. It strongly impacts soil chemistry in communities where it 

is found, increasing nutrient cycling rates (Mascaro & Schnitzer, 2007); increasing soil C, 

N, Ca, K, and Mg (Heneghan et al., 2006; Knight et al., 2007); increasing soil moisture 

(Heneghan et al., 2006); and increasing litter decomposition rates (Heneghan et al., 2006; 

Mascaro & Schnitzer, 2007). E. umbellata is a common invasive shrub; as of 2017 it was 

found on 39,000 ha in the U.S. (Oliphant et al., 2017). Autumn olive has a relationship 

with N-fixing endosymbionts and affects nitrifying (ammonium-oxidizing) 

microorganisms (Malinich et al., 2017; Naumann et al., 2010), and therefore is especially 

competitive in disturbed areas with N-poor soils (Malinich et al., 2017). In addition to its 

tolerance of nutrient-poor conditions, E. umbellata is also drought resistant and able to 

survive in a wide range of soil moisture conditions (Malinich et al., 2017; Naumann et al., 

2010). Last, it can outcompete native plants after establishment due to its dense shading 

(Oliphant et al., 2017), a physical property it shares with Dahurian buckthorn. 

1.3 Objectives 

Inspired by the gaps in understanding that might be addressed with UAV-based 

hyperspectral imaging to differentiate species, my research aims to answer the following 

questions: 
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1.) What vegetation indices capture the most spectral variability between E. umbellata 

and other species in the field, to allow for differentiation? How about for R. 

davurica? 

2.) When in the growing season are spectra within each species most differentiable 

using vegetation indices? 

3.) What biochemical and phenological characteristics of these species drive the 

differences in spectral signatures? 

By investigating these questions, I will endeavor to work towards a methodology that 

maximizes efficiency and accuracy for detecting invasive species in Virginia. Creating the 

final methodology itself is beyond the scope of this project, but I will strive to discover the 

plant characteristics and vegetation index information necessary to begin such a process. 

Hopefully, this research will be helpful to scientists working on the same issue and with 

the means to begin formulating a model to identify invasive species from hyperspectral 

imagery based on vegetation index data. 

 
METHODS 

 
2.1 Study Site & Hyperspectral Data Collection 

Blandy Experimental Farm (BEF), a biological field station owned by the 

University of Virginia, is located in the Shenandoah Valley in northwestern Virginia 

(39.06oN, 79.07oW). At 190 m elevation, BEF has a mean annual precipitation of 975 mm, 

a mean annual temperature of 12 °C and a mean July maximum temperature of 31.5 °C. It 

contains 80 ha of old fields in various stages of succession (Bowers, 1997). 
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Figure 1. Location of field within Blandy Experimental Farm from which hyperspectral data were 
collected in 2020. Field shown is in early secondary succession. 

 

Aerial hyperspectral data collection took place over a 1-ha field at BEF in early 

secondary succession (previously subject to disturbance via agriculture), approximately 20 

years in age (Figure 1). The field contains abundant invasive shrubs, including E. umbellata 

and R. davurica within a heterogeneous matrix of forbs, graminoids, shrubs, and trees.  

Spectroscopic images were collected using a DJI Matrice 600 drone equipped with 

a high-precision GPS system and an imaging spectrometer (Nano-Hyperspec, Headwall 

Photonics, Bolton, MA). The imaging spectrometer has a spectral range of 400 to 1000 nm 

(in the visible and NIR portions of the electromagnetic spectrum), with a spectral resolution 

of 2 to 3 nm over 270 spectral bands. Flight plans over the field were created using 

Universal Ground Control Software (UgCS), in which the UAV would fly in straight lines 
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at a consistent height of 48 m above the ground in order to obtain images with 3 cm pixels. 

The entire area of the field could not be captured at this resolution in one image, so multiple 

images were taken and later pieced together to form a larger image. The imaging 

spectrometer was programmed to capture images along the flight plan using HyperSpec III 

software (Headwall Photonics, Bolton, MA). Images were collected at multiple points 

during the growing season at midday between 10h and 15h in order to reduce bidirectional 

reflectance distribution function (BRDF) effects and maintain consistent sky conditions. In 

order to capture seasonal variability and phenological characteristics, images were 

collected at four times throughout 2020: April 15, June 8, September 6, and November 4 

(DOY 106, 160, 250, and 309 respectively) to include early season leaf-out and fall 

senescence conditions. 

Collected spectroscopic images were adjusted for incoming and scattered solar 

radiation using a sampled dark reference at the time of flight and a white reference tarp 

located in the flight scene. Using HyperSpec III software, terrain and perspective effects 

were removed with a digital elevation model provided by the US Geological Survey, and 

a mosaic of multiple images was created. 

 

2.2 Generating vegetation indices from hyperspectral images 

In order to answer the questions posed in the Introduction, spectral signatures were 

collected from 3-cm resolution hyperspectral images for a variety of tree, shrub, and forb 

species present in a neighboring field, also at Blandy Experimental Farm, used to develop 

detection algorithms, including Ailanthus altissima (tree of heaven), Rhamnus davurica 

(Dahurian buckthorn), Elaeagnus umbellata (autumn olive), Gleditsia triacanthos (honey 
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locust), Maclura pomifera (osage orange), Juniperus virginiana (eastern red cedar), Pinus 

virginiana (Virginia pine), Symphoricarpos orbiculatus (coralberry), Galium verum 

(yellow bedstraw), Rubus spp. (raspberry species), Catalpa bignonioides (catalpa), and 

Phytolacca americana (pokeweed). (Table 1) Individuals were identified in the field using 

a high-precision GPS. Fifteen well-lit and representative pixels were selected for spectral 

sampling from each individual in images from each collection date. 

Table 1. Common invasive and non-invasive tree, shrub, forb, and graminoid species that are 
visible in hyperspectral imagery within the test site. Fifteen spectral samples were taken from well-
lit and representative pixels from each individual at four points in the growing season.  

Plant species Growth form Number of 
Individuals 

Non-native / 
Invasive 

Elaeagnus umbellata Shrub 10 
Rhamnus davurica Shrub 23 
Ailanthus altissima Tree 2 
Galium verum Vine 2 

Native / 
Naturalized 

Gleditsia triacanthos Tree 9 
Maclura pomifera Tree 9 
Prunus virginiana Tree 2 
Rubus sp. Shrub 1 
Catalpa bignonioides Tree 1 
Phytolacca americana Shrub 1 
Symphoricarpos orbiculatus Shrub 2 
Juniperus virginiana Tree 3 

 

 

 Vegetation indices were calculated from extracted spectra using the hsdar package 

in R (Lehnert et al., 2019). The hsdar package is specifically designed to analyze 

spectroscopic datasets collected under field conditions with a focus on vegetation and 

ecosystem applications (Dechant et al., 2017; Große-Stoltenberg et al., 2018; Lehnert et al., 
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2014; Meyer et al., 2017). Any vegetation indices based on bands beyond 1000 nm were 

excluded, as the range of the HyperSpec imager does not extend beyond that wavelength.  

 

2.3 Differentiating plant species using vegetation indices 

 Using the dataset generated via hsdar, the spectral signatures were then analyzed 

using a partial least squares discriminatory analysis (PLS-DA; Barker & Rayens, 2003), 

which classifies individuals into different groups using the values of the vegetation indices. 

The data was recoded into each species of interest compared to all other species (i.e., E. 

umbellata compared to all other species; and R. davurica compared to all other species). In 

order to determine when in the growing season differentiating features of E. umbellata and 

R. davurica are most detectable via UAV, a separate PLS-DA was performed for each date 

in the growing season (DOY 106, 160, 250, and 309) with species as the variable of interest. 

The amount of separation between the two categories (species of interest vs. all other 

species) indicates times in the growing season when each species of interest is particularly 

detectable. After an initial PLS-DA, outliers were identified and removed from the dataset 

manually. Following this, loading factors were examined. Loading factors are indicative of 

the variables (in this case, vegetation indices) that are particularly useful in differentiating 

individual species of interest from all other species. 

 

2.4 Variability of vegetation indices over the course of a growing season 

In order to determine how vegetation indices vary within a single species over the 

course of the growing season, I analyzed the observations of E. umbellata and R. davurica 

individually. I used PLS-DA to classify observations into different groups using DOY 
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rather than species as the separating variable. Following the PLS-DA, loading factors were 

examined, which indicate which vegetation indices vary most over the course of the 

growing season. 

 

2.5 Biochemical and phenological characteristics  

 The hsdar documentation includes references for the vegetation indices calculated. 

I referred to the original work by each author to determine the biochemical relevance of 

each vegetation index.  Pairing this information with vegetation indices that load heavily, 

and where observations are in the PLS-DA component space, can provide information 

about which characteristics allow for separation among species throughout the growing 

season and phenological characteristics of these individual species of interest throughout 

the growing season.  

 
RESULTS 

3.1 Differentiating Autumn Olive 

 Autumn olive differentiated significantly in all months, but in some more strongly 

than others. An examination of Figure 2 reveals that the species of interest (Elaeagnus 

umbellata) separated into the negative component space in both component one and 

component two for all four months, relative to both the zero point and to the other species. 

This places autumn olive in the third quadrant of each graph, but to differing degrees. 

Furthermore, the species of interest separates more clearly along component 1 than 

component 2, and has less area of overlap in that direction, but interestingly the PLS-DA 

reveals that in all cases, component 2 explains more variance than component 1. 
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Figure 2. PLS-DA for autumn olive (E. elaeagnus) vs. all other plants in the field throughout four 
months. Panel A shows PLS-DA from April (DOY = 106), panel B from June (DOY = 160), 
panel C from September (DOY = 250), and panel D from November (DOY = 309). In all four 
analyses, the species of interest separates into the third quadrant of the graph (negative with 
respect to both components 1 and 2). With 49% of variance explained across components 1 and 2, 
November is the best month for differentiating this species, but June and September are also very 
useful, at 46% variance explained. The vegetation indices that load most heavily for either 
direction of both components can be seen in Table 2. 
 
 In April (DOY 106, panel A in Figure 2), component 1 explains 23% of variance, 

and component 2 explains 24% of variance. In June (DOY 160, panel B in Figure 2), 

component 1 explains 18% of variance, and component 2 explains 28% of variance. In 

September (DOY 250, panel C in Figure 2), component 1 explains 15% of variance, and 

component 2 explains 31% of variance. Finally, in November (DOY 309, panel D in Figure 

2), component 1 explains 22% of variance, and component 2 explains 27% of variance.  
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Although the most variance is explained in component 2 of the data from September, 

that is one of the months with the greatest degree over overlap between the target species 

and the rest of the field, and the data does not separate strongly in any direction along that 

axis. The most significant separation of the species of interest from the rest of the field 

occurs in component 1 of the data from June, and to a slightly lesser extent component 1 

of the data from September and November. The data from April are also useful for 

separating out this species of interest, as it shows a relatively small degree of overlap with 

the non-target species, and has the second-highest variance explained at 47%. 

 

3.2 Differentiating Dahurian Buckthorn 

Unlike autumn olive, Dahurian buckthorn (Rhamnus davurica) separated clearly 

from the rest of the field in fewer than all four months. An examination of Figure 3 reveals 

that this species tended towards the positive direction in component 1 in all cases, but for 

two of the months (April and June, panels A and B in Figure 3), there is no clear 

differentiation in any direction in component two. However, for September and November 

(panels C and D in Figure 3), it separates out in the positive direction, the opposite of what 

autumn olive did. For all months, buckthorn separates along component 1 in the positive 

direction compared to the rest of the field, but any separation in the component two 

direction is only present in September and November, and not particularly strong. 

Furthermore, the separation of the species of interest in April (DOY 106, panel A in Figure 

3) is so weak as to almost be negligible. The only apparent separation is a slight tendency 

to the positive direction in component one. 
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Figure 3. PLS-DA for Dahurian buckthorn (R. davurica) vs. all other plants in the field throughout 
four months. Panel A shows PLS-DA from April (DOY = 106), panel B from June (DOY = 160), 
panel C from September (DOY = 250), and panel D from November (DOY = 309). The species of 
interest separates poorly from the field in April (panel A) and to a lesser extent in September (panel 
C), and separates in the positive direction with respect to component 1 in June (panel B), and 
positively with respect to components 1 and 2 in November (panel D). With 58% variance 
explained across components 1 and 2, June is the best month for differentiating this species. The 
vegetation indices that load most heavily for either direction of both components can be seen in 
Table 2. 
 

In April (DOY 106, panel A in Figure 3), component 1 explains 24% of variance, 

and component 2 explains 24% of variance. In June (DOY 160, panel B in Figure 3), 

component 1 explains 28% of variance, and component 2 explains 30% of variance. In 

September (DOY 250, panel C in Figure 3), component 1 explains 18% of variance, and 

component 2 explains 21% of variance. Finally, in November (DOY 309, panel D in Figure 

3), component 1 explains 35% of variance, and component 2 explains 16% of variance.  
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The most helpful months for differentiating buckthorn from the rest of the field are 

June and November. June shows a strong differentiation in component 1, and November 

shows a strong differentiation in both components. The differentiation in component 1 for 

November is particularly strong, with 35% of the variation being explained, the highest of 

all the PLS-DAs. Although it is clear that there is a higher density of buckthorn in the 

positive x-direction for the April data, the separation is poor and this would be the worst 

month to use for this species. September is better, as buckthorn separates significantly in 

component 1 and slightly in component 2, but not as strongly as component 1 in June or 

both components in November. 

 

3.3 Differentiating between times in the growing season 

A PLS-DA comparing each species of interest against itself across the four different 

months is visible in Figure 4. The results for autumn olive, in panel A, show an extreme 

amount of overlap across the four months. The vast majority of the data from April, 

September, and November overlap with the data from at least one other month. The June 

data, however, separates out slightly better, and separates itself in the positive direction in 

component 1 and the negative direction in component 2. It is definitely the most strongly 

separated out of the four months for this species, but most of its data still overlap with at 

least one other month. This correlates with the observation in section 3.1 that June appeared 

to show the strongest separation of the species of interest from the rest of the field for 

autumn olive. In panel A of Figure 4, 43% of the variance is explained in component 1, 

and in component 2, 14% of the variance is explained. 
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Figure 4. PLS-DA for autumn olive (E. elaeagnus, panel A) and Dahurian buckthorn (R. davurica, 
panel B) comparing the species of interest across four months of study (April, DOY = 106; June, 
DOY = 160; September, DOY = 250; November, DOY = 309). Panels C and D list the vegetation 
indices that load heavily in each quadrant for the graph above it (panel C describes PLS-DA in 
panel A, panel D describes PLS-DA in panel B) based on the quadrants in which those vegetation 
indices load heavily. For example, Carter 2 loads heavily in the negative direction of component 1 
in the PLS-DA for both species. Therefore, it can be found in the lists on the left side of panels C 
and D, which correspond to heavy loading in the negative x-direction of both graphs.  
 

Panel B of Figure 4, showing the PLS-DA across four months for buckthorn, shows 

much more separation among months. This is not true for all four months; in fact, the April 

data for buckthorn are the most poorly separated across either species of interest. The June 

data for buckthorn separate out only modestly, showing significant overlap with the April 

data and some of the September data, but still roughly about as strongly differentiated as 

this month was for autumn olive. On the other hand, the September and November data 

separate very strongly in this graph for buckthorn. Both months show significant portions 

PLSDA, buckthorn, over 4 dates in 2020
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of their data not overlapping with any of the other months. This is particularly true of 

September, which appears to have more than 50% of its data almost entirely separated from 

data from other months. These observations correspond to the observations from section 

3.2, which suggested that buckthorn separates out very poorly in April, but much more 

strongly in other months. Based on the separation apparent in both Figures 3 and 4, it would 

appear that November is the most useful month for separating buckthorn from other species. 

For the graph in panel B of Figure 4, 43% of the variance in component 1 is explained, and 

22% of the variance in component 2 is explained. 

 

3.4 Identifying useful vegetation indices 

 After running a PLS-DA on each species of interest, both against the rest of the 

field and against itself across four months, the vegetation indices that contributed most 

strongly to the PLS-DA were identified. Panels C and D of Figure 4 are each divided into 

quadrants, showing the vegetation indices that loaded most strongly in those quadrants for 

the corresponding PLS-DA (panel C corresponds to panel A, panel D to panel B). Since 

the vegetation indices were used separately in components 1 and 2, they appear to repeat 

in the four quadrants of the panel. For example, for the PLS-DA of autumn olive across 

four months (panel A in Figure 4), the vegetation index SR5 loaded heavily in the positive 

direction of component 2, so it is listed in quadrants I and II of panel C. The vegetation 

index SR1 loaded heavily in the positive direction of component 1, so it is listed in 

quadrants I and IV of panel C. For each PLS-DA, the 2-5 vegetation indices that loaded 

the most heavily, and are therefore most important for the separation of the species of 

interest, were presented. 
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Table 2. Lists of vegetation indices that correspond most positively and negatively for each species 
in each PLS-DA for both components. Lists here are shown irrespective of where in the component 
space the vegetation indices loaded, only whether or not they are positively associated with the 
species of interest in the component space (as seen in Figures 2 & 3, above). Instances in which the 
species of interest did not separate significantly in either direction for a given component space are 
left blank. 

DOY Species Positively 
associated w/ 

species in 
component 1 

Negatively 
associated w/ 

species in 
component 1 

Positively 
associated 

w/ species in 
component 2 

Negatively 
associated w/ 

species in 
component 2 

106 
(Apr.) 

E. 
umbellata 

EVI, MPRI, R0, 
SR5 

CRI1, PSND, SR4 DD, 
mSR705, 
mND705 

PSRI, Carter4, 
Vogelmann4 

R. 
davurica 

DWSI4, GI, 
MCARI, 
MCARI/OSAVI 

Datt5, NDVI3 
 

160 
(Jun.) 

E. 
umbellata 

GMI1, mSR2, 
SR3, SR6 

Carter3, Carter4, 
TCARI2, 
TCARI2/OSAVI2 

TCARI, GI, 
MCARI, 
TGI 

Datt4, Datt5, 
NDVI3 

R. 
davurica 

TCARI, TGI, 
TCARI/OSAVI 

Datt4, MTCI, 
Maccioni 

 

250 
(Sep.) 

E. 
umbellata 

MPRI, R0, SR5, 
SR8 

DWSI4, GI, SR4 REP_Li, 
Datt2, MTCI 

Vogelmann2, 
Vogelmann4 

R. 
davurica 

MCARI, GI, 
MCARI/OSAVI 

SR5, PRI, SR8, 
MTCI 

DDn, 
Gittleson, 
PRI_norm, 
PSSR 

CIAInt, CARI 

309 
(Nov.) 

E. 
umbellata 

Carter6, MPRI, 
R0, SR5, SR7 

DDn, SR4 PRI_norm, 
SR5 

MCARI, SR4 

R. 
davurica 

Vogelmann2, 
Vogelmann4 

DD, MTCI, 
Maccioni 

GDVI_2, 
GDVI_3, 
NDVI 

PRI_norm, 
SIPI, SR5 

 

 Table 2 shows the vegetation indices that loaded most heavily in each component 

for the graphs in Figures 2 and 3. As above, the 2-5 vegetation indices that loaded most 

heavily were presented. However, instead of organizing the table by whether the VIs loaded 
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heavily in either the positive or negative direction of each component space, they were 

organized according to whether they were correlated positively or negatively with the 

species of interest in that component. For example, autumn olive separates in the negative 

direction for both components 1 and 2 for June (panel B of Figure 2), so vegetation indices 

listed as positively associated with the species of interest in Table 2 are those that loaded 

most negatively in components 1 and 2 for autumn olive in June. 

 
DISCUSSION 

4.1 Categorizing Vegetation Indices 

 Different vegetation indices are useful for indicating different plant characteristics. 

Most indices relate to the concentration of one or more pigments (e. g. chlorophyll a, 

chlorophyll b, carotenoids, etc.), but others are helpful for detecting stress levels in plants, 

are particularly sensitive to the leaf area index (LAI), or focus specifically on the red-edge 

region of the reflectance spectrum. In attempting to make sense of the data collected from 

the PLS-DAs, I sorted the relevant vegetation indices (all those that appear in Table 2) by 

the plant characteristics with which they are most heavily associated.  

Figure 5. This color-coded key applies to tables 3-5 and indicates which VIs are associated with 
which characteristics. For example, in Table 3, the vegetation index EVI has been printed in blue 
type, as it is associated with leaf area index (LAI), which is printed in blue type in this figure. 

 
Tables 3 – 5 are all derived from the data presented in Table 2. Table 3 associates 

vegetation indices with the characteristic they are most useful for observing by highlighting 
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each VI in a color that corresponds to a particular trait (vegetation indices useful for 

measuring chlorophyll concentration, for example, appear in green). Tables 4 and 5 

simplify these results, with Table 4 showing the categories of plant characteristics the 

vegetation indices measure instead of individual vegetation indices themselves. Table 5 

simplifies further by removing the distinction between components 1 and 2 from the PLS-

DAs. 
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Table 3. This table is a recreation of Table in 2 identical in every respect save for the 

coloring of the various vegetation indices. They are colored in accordance with the key presented 
in Figure 5, and each color corresponds to a physical parameter measured by or associated with 
that vegetation index. The purpose of this table is to make is easier to see physical parameter 
patterns in the vegetation indices presented in Table 2. 

DOY Species Positively 
associated in 
component 1 

Negatively 
associated in 
component 1 

Positively 
associated in 
component 2 

Negatively 
associated in 
component 2 

106  
(Apr.) 

E. 
umbellata 

EVI, MPRI, R0, 
SR5 

CRI1, PSND, SR4 DD, 
mSR705, 
mND705 

PSRI, Carter4, 
Vogelmann4 

R. 
davurica 

DWSI4, GI, 
MCARI, 
MCARI/OSAVI 

Datt5, NDVI3 
 

160  
(Jun.) 

E. 
umbellata 

GMI1, mSR2, 
SR3, SR6 

Carter3, Carter4, 
TCARI2, 
TCARI2/OSAVI2 

TCARI, GI, 
MCARI, 
TGI 

Datt4, Datt5, 
NDVI3 

R. 
davurica 

TCARI, TGI, 
TCARI/OSAVI 

Datt4, MTCI, 
Maccioni 

 

250 
(Sep.) 

E. 
umbellata 

MPRI, R0, SR5, 
SR8 

DWSI4, GI, SR4 REP_Li, 
Datt2, MTCI 

Vogelmann2, 
Vogelmann4 

R. 
davurica 

MCARI, GI, 
MCARI/OSAVI 

SR5, PRI, SR8, 
MTCI 

DDn, 
Gittleson, 
PRI_norm, 
PSSR 

CIAInt, CARI 

309 
(Nov.) 

E. 
umbellata 

Carter6, MPRI, 
R0, SR5, SR7 

DDn, SR4 PRI_norm, 
SR5 

MCARI, SR4 

R. 
davurica 

Vogelmann2, 
Vogelmann4 

DD, MTCI, 
Maccioni 

GDVI_2, 
GDVI_3, 
NDVI 

PRI_norm, 
SIPI, SR5 

 

4.2 Which vegetation indices are most helpful for separation  

The vegetation indices most useful for separating each species of interest are listed 

in Table 2, and sorted according to the plant characteristic they are most indicative of in 

Table 3. Several patterns can be observed from these tables. Since most vegetation indices 
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are related to chlorophyll content, it is not surprising that VIs in this category appear 

ubiquitously across this table. Chlorophyll content is the most direct plant characteristic to 

measure using this method. It is interesting, however, that indices related to red-edge 

characteristics are never positively associated with the species of interest in component 1, 

and are always positively associated with the species of interest in component 2, as seen in 

Table 4. This may be an indicator that red-edge is not a particularly useful factor in this 

type of analysis, as most PLS-DAs showed the species of interest separating along 

component 1 more than component 2. In contrast, LAI-related indices occur much more 

often when positively associated with the species of interest, and only rarely when 

negatively associated. This could indicate that LAI-related indices are particularly useful 

in this type of analysis. The only characteristic evenly distributed across components 1 and 

2 is indices related to chlorophyll concentration. It appears in every box of Table 4 but one, 

and is useful in its broad applicability, but is likely too ubiquitous to be particularly helpful 

for discrimination or dimensionality reduction of the data set. 

Patterns can also be seen by comparing plants instead of components. For example, 

as seen in Table 3, autumn olive (8 instances) is far more likely than buckthorn (3 instances) 

to have a strong association, positive or negative, with vegetation indices related to stress. 

It would follow from this observation that autumn olive exhibits stress in a way that makes 

it visibly different from other plants, while perhaps buckthorn exhibits stress in a similar 

way to other plants, making it less of a distinguishing factor from the rest of the field. 

Furthermore, autumn olive is strongly separated by indices associated with LAI mostly in 

the earlier months. In June in particular, LAI-related indices appear very often. June is the 

most useful month for separating olive from the rest of the field, so it seems LAI-focused 
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indices at this time of year would be the most effective way to differentiate autumn olive 

from a field. This is in contrast to buckthorn, which has LAI-related indices occurring 

evenly throughout the four months. This may not be the most useful category of VIs for 

differentiating buckthorn.  

 
Table 4. This is a further simplification of Tables 2 and 3. Instead of listing individual indices, this 
table lists only the physical parameter categories that make an appearance in Table 3. The purpose 
of this table is to make it easier to detect patterns in the categories, but it should be noted that no 
matter how many indices of each category appear in the corresponding cell in Table 3, each 
category will only be listed once per cell in this table when applicable. 

DOY Species Positively 
associated in 
component 1 

Negatively 
associated in 
component 1 

Positively 
associated in 
component 2 

Negatively 
associated in 
component 2 

106  
(Apr.) 

E. 
umbellata 

Chlorophyll 
LAI 
Stress 
Other 

Chlorophyll 
Other 

Chlorophyll 
Red-edge 

Chlorophyll 
Stress 
Other 

R. 
davurica 

Chlorophyll 
Stress 

Chlorophyll 
LAI 

 

160  
(Jun.) 

E. 
umbellata 

Chlorophyll 
LAI 

Chlorophyll 
Stress 

Chlorophyll 
LAI 

Chlorophyll 
LAI 

R. 
davurica 

Chlorophyll 
LAI 

Chlorophyll 
Red-edge 

 

250 
(Sep.) 

E. 
umbellata 

Chlorophyll 
Stress 
Other 

Chlorophyll 
Stress 

Chlorophyll 
LAI 
Other 

Chlorophyll 

R. 
davurica 

Chlorophyll Chlorophyll 
Red-edge 

Chlorophyll 
Red-edge 

Chlorophyll  

309 
(Nov.) 

E. 
umbellata 

Chlorophyll 
Stress 
Other 

Chlorophyll 
Red-edge 

Chlorophyll Chlorophyll 

R. 
davurica 

Chlorophyll Chlorophyll 
Red-edge 

LAI 
Stress 

Chlorophyll 
Stress 
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Perhaps the strongest pattern of all can be extracted from Table 3, looking at the 

autumn olive data for April, September, and November. For all three of these months, three 

vegetation indices in particular are strongly correlated with the species of interest in 

component 1. One is a red-edge associated index that measures reflectance at the red-edge 

minimum (R0), one is a chlorophyll-related index that estimates the concentration of 

chlorophylls a and b by gathering reflectance at 675 and 700 nm (SR5), and one is a stress-

related index that measures reflectance at 515 and 530 nm (MPRI). In all the data, this is 

the only time any individual indices show up consistently correlated with the same plant in 

the same way. This would indicate that these three indices are extremely useful for 

identifying autumn olive at most times of year. The only break from this pattern is June, 

which is also when autumn olive shows the strongest separation from the field in Figure 2. 

However, the separation is still present in the other months, and can be useful for 

differentiating this plant. These results would indicate that autumn olive behaves in a 

particularly different way from other plants in June (likely related to chlorophyll content 

and LAI, as seen in Table 4). But for the rest of the year, its innate differences from other 

plants are particularly noticeable with the vegetation indices MPRI, R0, and SR5. 
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Table 5. This table is a simplification of Table 4 that erases the distinction between components 1 
and 2. The “Positively associated in component 1” and “Positively associated in component 2” 
columns of Table 4 have been combined into a single column in this table. The same has been 
done for the “Negatively associated” columns. The purpose of this table is to present the physical 
categories of the relevant vegetation indices at the simplest level of organization, to allow for 
easier detection of patterns. 

DOY Species Positively associated  Negatively associated 

106 (Apr.) E. elaeagnus Chlorophyll 
LAI 
Stress 
Red-edge 
Other 

Chlorophyll 
Stress 
Other 

R. davurica Chlorophyll 
Stress 

Chlorophyll 
LAI 

160 (Jun.) E. elaeagnus Chlorophyll 
LAI 

Chlorophyll 
Stress 
LAI 

R. davurica Chlorophyll 
LAI 

Chlorophyll 
Red-edge 

250 (Sep.) E. elaeagnus Chlorophyll 
Stress 
LAI 
Other 

Chlorophyll 
Stress 

R. davurica Chlorophyll 
Red-edge 

Chlorophyll 
Red-edge 

309 (Nov.) E. elaeagnus Chlorophyll 
Stress 
Other 

Chlorophyll 
Red-edge 

R. davurica Chlorophyll 
LAI 
Stress 

Chlorophyll 
Red-edge 
Stress 

 

All of the patterns observed from this analysis are imperfect. They are useful for 

understanding possible relationships between these species and certain vegetation indices, 

but I would advise caution when attempting to extrapolate these patterns to autumn olive 
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or buckthorn in general, or about the entirety of the year instead of these four specific times. 

It is challenging to detect patterns, and I would not advise further dimensionality reduction 

without further research. It may be tempting and computationally easier to conduct an 

analysis based on only one type of vegetation index (for example, only using stress-related 

indices to analyze autumn olive), but I do not believe the patterns noted in this study are 

strong enough to justify that approach. I would advise almost the opposite – ruling out 

vegetation indices to use instead of narrowing down to one type; for example, it may not 

be very useful to use stress indices to analyze buckthorn, and it might be safe to ignore LAI 

indices for olive in the later part of the year. However, chlorophyll-related indices are so 

universal they cannot be discounted, and I would not feel confident about narrowing the 

filter more without further study. 

Vegetation index patterns present in Figure 4, comparing the species of interest to 

themselves across the four months, appear most obviously in component 2. Several 

vegetation indices show up in the same place for both autumn olive and buckthorn, 

including MCARI and MCARI/OSAVI in the negative direction of component 2. For both 

species, this direction in component 2 is associated with the data from April and June, the 

earlier months of this analysis, and both these indices are associated with chlorophyll 

content and levels of nitrogen in the leaves. It makes sense that chlorophyll-focused VIs 

would separate the early months from the later months, when leaves are beginning to 

senesce. Furthermore, Carter2, which appears in the negative direction of component 1 for 

both species, and is therefore associated with the data from November and April, is an 

index related to stress. It also makes sense that the very beginning and end of the growing 
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season would be periods where the plant is experiencing abnormal levels of stress, and this 

is measurable in that index for both species. 

Finally, it is of note that in many cases, component 2 explains more variance than 

component 1. This is abnormal in PLS-DAs in general, and is particularly pronounced in 

the data for autumn olive. It is further surprising that, even when component 2 explains 

more variance, the data separates more distinctly in the component 1 direction shows less 

overlap in that component, almost uniformly across all months and both species. This 

phenomenon does not change the validity of the data, but the abnormality should be noted. 

 

4.3 Separating Species by Growing Season 

I will now shift my attention from vegetation indices to the data separation visible 

in Figures 2 – 4, and the second research question of this paper: “When in the growing 

season are spectra within each species most differentiable using vegetation indices?” As 

discussed in section 3.1, autumn olive separates out best from the rest of the field in June. 

This, in combination with the information from Table 3 regarding autumn olive in June, 

tells us that this separation is likely detectable via vegetation indices through some 

difference in the chlorophyll content of autumn olive plants, and to a lesser extent LAI, 

with some influence from stress-related indices. However, as discussed in section 3.3, 

autumn olive separates out very poorly from itself across the four times in the year. This 

would suggest that its leaves do not change very much in terms of chlorophyll content and 

stress levels, and LAI throughout the year, and that the features that distinguish it from 

other plants in June should be similarly helpful in distinguishing it in other months. Indeed, 

as discussed in section 3.1 this plant separates reasonably from the rest of the field in all 
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months, although it is most noticeable in June. This also aligns with the life cycle of the 

plant – it grows its leaves in April, and maintains them until late in the fall, sometimes deep 

into winter (Warne, 2018). It is a hardy plant that outcompetes most native species. These 

factors contribute to a relative lack of change in phenotypes of this plant throughout the 

year, and explain the poor separation of this species in Fig. 3. 

Buckthorn does not separate as well from the field. Its strongest months for this are 

June and November, and to a lesser extent September, as seen in Figure 3. Figure 4 supports 

this information, with the best separation happening in the later months, and to a lesser 

extent June, but relatively poor separation in April. In November, buckthorn is most 

effectively differentiated (in component 2) by vegetation indices related to LAI and stress, 

and is only positively associated with those types of indices (Table 3). This is one of the 

very few instances in which VIs related to chlorophyll do not play an important role. This 

causes the separation in Figure 3 to be most pronounced in November, and for that month 

to be one of the strongest separators in Figure 4 for this species. As this is the latest month 

in the year from which I have data, it would make sense for this to be the case, if buckthorn 

leaves did not senesce for a long time. Chlorophyll content that differs from the field would 

indicate that the plants leaves were a different color, but LAI and stress in November may 

be more indicative of a plant that still has leaves when most of its neighbors are bare. 

Indeed, this is exactly what sources tell us (Minnesota Department of Agriculture, 2013). 

Buckthorn can be easily spotted in the late fall/early winter, because they retain their leaves 

longer than most native species, giving them a competitive edge and contributing to their 

status as invasive.  
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4.4 Areas for future research 

 The findings of this study constitute only a fraction of results achievable through 

this method of inquiry. Using vegetation indices to filter hyperspectral data in order to 

detect and identify invasive plants is applicable to a wide variety of locations, landscapes, 

and species (Asner & Martin, 2008; Chance et al., 2016). Even in the testing area used for 

this research, only two invasive species were investigated, while at least double that amount 

existed in the same field, and likely several more in nearby fields. The first and most 

obvious direction in which to study further is simply to increase the range of the project, 

whether that be in the plant(s) of interest, location, climate, or a combination of these. 

 There are also several ways in which the research presented here could have been 

more thorough. I looked at one field on four days throughout the year. This is not a very 

large sample size from which to draw conclusions, and although I feel confident my results 

are applicable to this field at these times of year, I would be cautious about extrapolating 

them to other locations or times. If environmental conditions were inconsistent across the 

data collection timeframe, it could introduce additional uncertainty to the analysis – 

different reflectance values may be recorded on sunny days and cloudy days, and 

particularly windy days may alter LAI and leaf distribution. Before generalizing my results 

to other locations, I would prefer to conduct further analysis with slightly less time between 

data sets, perhaps once per month, and with consistent environmental conditions across 

collection dates. A slightly higher temporal resolution may be useful in more thoroughly 

answering my second guiding research question – when is the best time to differentiate 

these species? 
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 For the third research question, aimed at exploring which biochemical and 

phenotypic characteristics were driving the differentiation in spectral signatures, it would 

be useful to have a source of independent verification. For example, certain vegetation 

indices are said to estimate stress levels of a plant, but a vegetation index is only reflectance 

data from different bands of light. If plant stress were directly measured, and those data 

supported the findings of this study, it would increase the confidence in vegetation index-

derived results. I would be able to say with more surety that increased stress leads to a 

certain plant differentiating itself from the rest of the field via a certain vegetation index. 

 
CONCLUSION 

 
 In summary, I was able to filter hyperspectral data through the lens of vegetation 

indices, and use a PLS-DA to individually differentiate two species of interest, autumn 

olive and Dahurian buckthorn, from the rest of the field at four times in the growing season. 

The species of interest did not always differentiate strongly from the rest of the field, but 

each species had at least one month of significant separation, and overall, June and 

November were the most useful months for differentiating these species. I further was able 

to analyze which vegetation indices were most useful for separating these species, and 

investigate patterns in the plant characteristics measured by these indices. Although they 

were not very strong, patterns nevertheless emerged, and in particular, the indices R0, 

MPRI, and SR5 showed a strong association with differentiating autumn olive in 

component 1. I also investigated the variance within each species of interest across the four 

months, and found that autumn olive is very consistent with itself, only differentiating 

slightly in June, but buckthorn separates from itself relatively well across time, with the 
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data from late in the growing season being the most distinct. I believe this research helps 

establish a groundwork upon which a method for automatic detection and classification of 

invasive species from hyperspectral drone imagery can be built. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

31 
REFERENCES 

 
Aneece, I., & Epstein, H. (2015). Distinguishing Early Successional Plant Communities 

Using Ground-Level Hyperspectral Data. Remote Sensing, 7, 16588–16606. 
https://doi.org/10.3390/rs71215850 

Asner, G. P., & Martin, R. E. (2008). Spectral and chemical analysis of tropical forests: 
Scaling from leaf to canopy levels. Remote Sensing of Environment, 112(10), 
3958–3970. https://doi.org/10.1016/j.rse.2008.07.003 

Asner, G. P., & Vitousek, P. M. (2005). Remote analysis of biological invasion and 
biogeochemical change. Proceedings of the National Academy of Sciences of the 
United States of America, 102(12), 4383–4386. 
https://doi.org/10.1073/pnas.0500823102 

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of 
Chemometrics, 17(3), 166–173. https://doi.org/10.1002/cem.785 

Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of 
Experimental Botany, 58(4), 855–867. https://doi.org/10.1093/jxb/erl123 

Bowers, M. A. (1997). University of Virginia’s Blandy Experimental Farm. 
https://doi.org/10.2307/20168167 

Castro, K. L., Sánchez-Azofeifa, G. A., & Caelli, T. (2004). Discrimination of lianas and 
trees with leaf-level hyperspectral data. Remote Sensing of Environment, 90(3), 
353–372. https://doi.org/10.1016/j.rse.2004.01.013 

Castro-Esau, K. L., Sánchez-Azofeifa, G. A., & Rivard, B. (2006). Comparison of 
spectral indices obtained using multiple spectroradiometers. Remote Sensing of 
Environment, 103(3), 276–288. https://doi.org/10.1016/j.rse.2005.01.019 

Chance, C. M., Coops, N. C., Plowright, A. A., Tooke, T. R., Christen, A., & Aven, N. 
(2016). Invasive Shrub Mapping in an Urban Environment from Hyperspectral 
and LiDAR-Derived Attributes. Frontiers in Plant Science, 7, 1528. 
https://doi.org/10.3389/fpls.2016.01528 

Clark, M. L., Roberts, D. A., & Clark, D. B. (2005). Hyperspectral discrimination of 
tropical rain forest tree species at leaf to crown scales. Remote Sensing of 
Environment, 96(3), 375–398. https://doi.org/10.1016/j.rse.2005.03.009 

Cochrane, M. (2000). Using vegetation reflectance variability for species level 
classification of hyperspectral data. International Journal of Remote Sensing - 
INT J REMOTE SENS, 21, 2075–2087. 
https://doi.org/10.1080/01431160050021303 

Dechant, B., Cuntz, M., Vohland, M., Schulz, E., & Doktor, D. (2017). Estimation of 
photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content 
as the dominant mechanism. Remote Sensing of Environment, 196, 279–292. 
https://doi.org/10.1016/j.rse.2017.05.019 

Gaertner, M., Den Breeyen, A., Hui, C., & Richardson, D. M. (2009). Impacts of alien 
plant invasions on species richness in Mediterranean-type ecosystems: A meta-
analysis. Progress in Physical Geography: Earth and Environment, 33(3), 319–
338. https://doi.org/10.1177/0309133309341607 

Große-Stoltenberg, A., Hellmann, C., Thiele, J., Werner, C., & Oldeland, J. (2018). Early 
detection of GPP-related regime shifts after plant invasion by integrating imaging 



 

 

32 
spectroscopy with airborne LiDAR. Remote Sensing of Environment, 209, 780–
792. https://doi.org/10.1016/j.rse.2018.02.038 

Gurevitch, J., & Padilla, D. (2004). Are invasive species a major cause of extinctions? 
Trends in Ecology & Evolution, 19(9), 470–474. 
https://doi.org/10.1016/j.tree.2004.07.005 

Heneghan, L., Fatemi, F., Umek, L., Grady, K., Fagen, K., & Workman, M. (2006). The 
invasive shrub European buckthorn (Rhamnus cathartica, L.) alters soil properties 
in Midwestern U.S. woodlands. Applied Soil Ecology, 32(1), 142–148. 
https://doi.org/10.1016/j.apsoil.2005.03.009 

Hochberg, E. J., Roberts, D. A., Dennison, P. E., & Hulley, G. C. (2015). Special issue on 
the Hyperspectral Infrared Imager (HyspIRI): Emerging science in terrestrial and 
aquatic ecology, radiation balance and hazards. Remote Sensing of Environment, 
167, 1–5. https://doi.org/10.1016/j.rse.2015.06.011 

Huang, C., & Asner, G. P. (2009). Applications of Remote Sensing to Alien Invasive 
Plant Studies. Sensors, 9(6), 4869–4889. https://doi.org/10.3390/s90604869 

Kaufmann, H., Segl, K., Guanter, L., Hofer, S., Foerster, K.-P., Stuffler, T., Mueller, A., 
Richter, R., Bach, H., Hostert, P., & Chlebek, C. (2008). Environmental Mapping 
and Analysis Program (EnMAP)—Recent Advances and Status. IGARSS 2008 - 
2008 IEEE International Geoscience and Remote Sensing Symposium, 4, IV-109-
IV–112. https://doi.org/10.1109/IGARSS.2008.4779668 

Kganyago, M., Odindi, J., Adjorlolo, C., & Mhangara, P. (2017). Selecting a subset of 
spectral bands for mapping invasive alien plants: A case of discriminating 
Parthenium hysterophorus using field spectroscopy data. International Journal of 
Remote Sensing, 38(20), 5608–5625. 
https://doi.org/10.1080/01431161.2017.1343510 

Kimothi, M., & Dasari, A. (2010). Methodology to map the spread of an invasive plant 
(Lantana camara L.) in forest ecosystems using Indian remote sensing satellite 
data. International Journal of Remote Sensing, 31, 3273–3289. 
https://doi.org/10.1080/01431160903121126 

Knight, K. S., Kurylo, J. S., Endress, A. G., Stewart, J. R., & Reich, P. B. (2007). 
Ecology and ecosystem impacts of common buckthorn (Rhamnus cathartica): A 
review. Biological Invasions, 9(8), 925–937. https://doi.org/10.1007/s10530-007-
9091-3 

Lehnert, L. W., Meyer, H., Meyer, N., Reudenbach, C., & Bendix, J. (2014). A 
hyperspectral indicator system for rangeland degradation on the Tibetan Plateau: 
A case study towards spaceborne monitoring. Ecological Indicators, 39, 54–64. 
https://doi.org/10.1016/j.ecolind.2013.12.005 

Lehnert, L. W., Meyer, H., Obermeier, W. A., Silva, B., Regeling, B., & Bendix, J. 
(2019). Hyperspectral Data Analysis in R: The hsdar Package. Journal of 
Statistical Software, 89, 1–23. https://doi.org/10.18637/jss.v089.i12 

Mahlein, A.-K., Steiner, U., Dehne, H.-W., & Oerke, E.-C. (2010). Spectral signatures of 
sugar beet leaves for the detection and differentiation of diseases. Precision 
Agriculture, 11(4), 413–431. https://doi.org/10.1007/s11119-010-9180-7 



 

 

33 
Malinich, E., Lynn-Bell, N., & Kourtev, P. S. (2017). The effect of the invasive 

Elaeagnus umbellata on soil microbial communities depends on proximity of soils 
to plants. Ecosphere, 8(5), e01827. https://doi.org/10.1002/ecs2.1827 

Martin, M. E., & Aber, J. D. (1997). High Spectral Resolution Remote Sensing of Forest 
Canopy Lignin, Nitrogen, and Ecosystem Processes. Ecological Applications, 
7(2), 431–443. https://doi.org/10.1890/1051-
0761(1997)007[0431:HSRRSO]2.0.CO;2 

Mascaro, J., & Schnitzer, S. A. (2007). Rhamnus cathartica L. (Common Buckthorn) as 
an Ecosystem Dominant in Southern Wisconsin Forests. Northeastern Naturalist, 
14(3), 387–402. 

Matongera, T., Mutanga, O., & Lottering, R. (2016). Detection and mapping of bracken 
fern weeds using multispectral remotely sensed data: A review of progress and 
challenges. Geocarto International. 
https://doi.org/10.1080/10106049.2016.1240719 

Meyer, H., Lehnert, L. W., Wang, Y., Reudenbach, C., Nauss, T., & Bendix, J. (2017). 
From local spectral measurements to maps of vegetation cover and biomass on the 
Qinghai-Tibet-Plateau: Do we need hyperspectral information? International 
Journal of Applied Earth Observation and Geoinformation, 55, 21–31. 
https://doi.org/10.1016/j.jag.2016.10.001 

Minnesota Department of Agriculture. Buckthorn: What You Should Know. What You 
Can Do., State of Minnesota, Saint Paul, MN, 2013 

Mutanga, O., Skidmore, A. K., & Prins, H. H. T. (2004). Predicting in situ pasture quality 
in the Kruger National Park, South Africa, using continuum-removed absorption 
features. Remote Sensing of Environment, 89(3), 393–408. 
https://doi.org/10.1016/j.rse.2003.11.001 

Naumann, J. C., Bissett, S. N., Young, D. R., Edwards, J., & Anderson, J. E. (2010). 
Diurnal patterns of photosynthesis, chlorophyll fluorescence, and PRI to evaluate 
water stress in the invasive species, Elaeagnus umbellata Thunb. Trees, 24(2), 
237–245. https://doi.org/10.1007/s00468-009-0394-0 

Oliphant, A. J., Wynne, R. H., Zipper, C. E., Ford, W. M., Donovan, P. F., & Li, J. 
(2017). Autumn olive (Elaeagnus umbellata) presence and proliferation on former 
surface coal mines in Eastern USA. Biological Invasions, 19(1), 179–195. 
https://doi.org/10.1007/s10530-016-1271-6 

Peerbhay, K., Mutanga, O., & Ismail, R. (2016). The identification and remote detection 
of alien invasive plants in commercial forests: An Overview. South African 
Journal of Geomatics, 5(1), 49–67. https://doi.org/10.4314/sajg.v5i1.4 

Royimani, L., Mutanga, O., Odindi, J., Dube, T., & Matongera, T. N. (2019). 
Advancements in satellite remote sensing for mapping and monitoring of alien 
invasive plant species (AIPs). Physics and Chemistry of the Earth, Parts A/B/C, 
112, 237–245. https://doi.org/10.1016/j.pce.2018.12.004 

Sanchez-Azofeifa, G. A., Calvo-Alvarado, J., Espírito-Santo, M., Fernandes, G., Powers, 
J., & Quesada, M. (2013). Tropical Dry Forests in the Americas: The Tropi-Dry 
Endeavor (pp. 1–16). 

Schmidt, K., & Skidmore, A. (2003). Spectral discrimination of vegetation types in a 
coastal wetland. https://doi.org/10.1016/S0034-4257(02)00196-7 



 

 

34 
Skowronek, S., Ewald, M., Isermann, M., Van De Kerchove, R., Lenoir, J., Aerts, R., 

Warrie, J., Hattab, T., Honnay, O., Schmidtlein, S., Rocchini, D., Somers, B., & 
Feilhauer, H. (2017). Mapping an invasive bryophyte species using hyperspectral 
remote sensing data. Biological Invasions, 19(1), 239–254. 
https://doi.org/10.1007/s10530-016-1276-1 

Thenkabail, P., Gumma, M. K., Pardhasaradhi Teluguntla, & Mohammed Irshad Ahmed. 
(2014). Hyperspectral Remote Sensing of Vegetation and Agricultural Crops. 
Photogrammetric Engineering & Remote Sensing (PE&RS);80,(2014) Pagination 
697,723. https://repo.mel.cgiar.org/handle/20.500.11766/5374 

Underwood, E. C., Ustin, S. L., & Ramirez, C. M. (2007). A comparison of spatial and 
spectral image resolution for mapping invasive plants in coastal california. 
Environmental Management, 39(1), 63–83. https://doi.org/10.1007/s00267-005-
0228-9 

Ustin, S. L., & Jacquemoud, S. (2020). How the Optical Properties of Leaves Modify the 
Absorption and Scattering of Energy and Enhance Leaf Functionality. In J. 
Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.), Remote Sensing of Plant 
Biodiversity (pp. 349–384). Springer International Publishing. 
https://doi.org/10.1007/978-3-030-33157-3_14 

Ustin, S. L., Roberts, D. A., Gamon, J. A., Asner, G. P., & Green, R. O. (2004). Using 
imaging spectroscopy to study ecosystem processes and properties. BioScience. 
https://scholar.google.com/scholar_lookup?title=Using+imaging+spectroscopy+to
+study+ecosystem+processes+and+properties&author=Ustin%2C+S.L.&publicati
on_year=2004 

Wang, A., Zhang, W., & Wei, X. (2019). A review on weed detection using ground-
based machine vision and image processing techniques. Computers and 
Electronics in Agriculture, 158, 226–240. 
https://doi.org/10.1016/j.compag.2019.02.005 

Warne, Amanda. 2018. Autumn olive (Elaeagnus umbellata) Best Management Practices 
in Ontario. Ontario Invasive Plant Council, Peterborough, ON. 

Wilfong, B. N., Gorchov, D. L., & Henry, M. C. (2009). Detecting an Invasive Shrub in 
Deciduous Forest Understories Using Remote Sensing. Weed Science, 57(5), 512–
520. https://doi.org/10.1614/WS-09-012.1 

Xiao, Y., Zhao, W., Zhou, D., & Gong, H. (2014). Sensitivity Analysis of Vegetation 
Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and 
Regional Scales. IEEE Transactions on Geoscience and Remote Sensing, 52(7), 
4014–4024. https://doi.org/10.1109/TGRS.2013.2278838 

Yang, M.-D., Huang, K.-S., Yang, Y. F., Lu, L.-Y., Feng, Z.-Y., & Tsai, H. P. (2016). 
Hyperspectral Image Classification Using Fast and Adaptive Bidimensional 
Empirical Mode Decomposition With Minimum Noise Fraction. IEEE 
Geoscience and Remote Sensing Letters, 13(12), 1950–1954. 
https://doi.org/10.1109/LGRS.2016.2618930 

 


