
AWS Cloud: How Web Applications Can Improve Product Usability

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Aidan Ricci

Spring, 2023

Technical Project Team Members

Aidan Ricci

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science



AWS Cloud: How Web Applications Can Improve Product Usability

CS4991 Capstone Report, 2022

Aidan Ricci
Computer Science

The University of Virginia
School of Engineering and Applied Science Charlottesville, Virginia USA

aiqr25@gmail.com

Abstract
A large cloud service provider

recognized that its genomics analysis
solution was difficult for less tech-savvy
genomics scientists to use. As a result, they
decided that a web application for their
command line interface (CLI) service could
reduce the learning curve of joining the
service, ultimately bringing in more
researchers. My team and I had to create an
application programming interface (API) to
convert the command lines to usable
responses which could be given to the visual
web application. We put the API and the
user interface into docker containers and
wrote cloud development kit (CDK) scripts
to automatically provision resources and
start the app on the cloud without any
manual setup work. By the end of the
summer, the web app and API had the
ability to run a genomics analysis workflow
from start to finish using the same
commands the CLI used on the backend.
Because a similar service was being
developed elsewhere in the company we
decided that our project was slightly
redundant. If the service continued to be
developed, next steps would include
improving the visuals and user experience of
the web application, adding functionality

with additional cloud services (e.g.
Uploading workflow files to an S3 bucket
for the user), and writing out the rest of the
genomics CLI commands into the API.
1. Introduction

How can a genomics researcher
conduct research without needing to buy and
set up high performance computing
hardware? The best solution to this problem
is cloud services, which can provide the
same functionality as on-premises hardware
without any of the upfront cost or set up
requirements. Despite services being
available in the cloud today, genomics
researchers do not widely use the cloud to
run their DNA/RNA sequencing workloads.
This happens for a number of reasons, but
one contributing factor is the usability and
technical knowledge requirements of some
of these services. Therefore, the purpose of
my summer project was to offer a service
which could bring new researchers into the
cloud for their genomics workloads by
reducing the amount of technical knowledge
needed in order to begin. This meant taking
the existing Genomics CLI, which required
a lot of technical knowledge (Writing
YAML files, using a command line tool,
knowing cloud services, etc.) and turning it
into a web app to be used as a management



console. This would allow users to jump
straight into genomics workloads in the
cloud, with little prior knowledge and set up.
2. Related Works

[1]Undated documentation for
Amazon’s Genomics CLI project provided
inspiration for my design of a similar
website. In particular, the Amazon project
informed the structure for the API that I had
to build out on the backend.

[2]September 2022 documentation
for Docker provided help in solving coding
issues for my project since Docker was used
for making the frontend and backend
containers in my project.

[3]The Nextflow website is the home
site for one of the DNA Sequencing
workflow engines which would be used in
the Genomics CLI. I used this site and the
documentation to better understand the
workflows I was developing my program for
to inform my development.

3. Project Design
This section covers the design of my

internship project. It starts with an overview
of my system architecture and what
technology was used to build the project,
followed by a section going over the
requirements for the project, and finishing
with the challenges I faced creating the
project.
3.1 Review of System Architecture

The project I created was essentially
a full stack web application developed with
Python and Javascript. The frontend used
Javascript's NextJS framework and
MaterialUI to bootstrap the User Interface
(UI). It connects to the backend using

Javascripts fetch method to grab information
from the backend’s Application
Programming Interface (API). The backend
of my application used Python’s Flask
framework to make an API out of the
Genomics Command Line Interface (CLI).
The Genomics CLI was installed on the
server and python code was used to call the
command line commands within the
program and then convert the responses into
usable JSON data for the API. The API
would then simply send the responses to the
frontend as requested.

I decided to put the frontend and
backend into separate Docker containers in
order to give them consistent environments
for development and production. It also
made it easy to set them up within
containers in the cloud as well. Finally, the
entire website had to be set up on the cloud
automatically, so cloud development kit
(CDK) scripts had to be made so that users
could simply run the script on the cloud and
have the entire website set up for them.
3.2 Website Requirements

The website created for this
internship project was intended to function
like a management console for the
Genomics CLI. As a result, by the end of my
internship the website had to run a DNA
sequencing workload on the AWS cloud
without the use of the command line. This
meant the majority of the CLI commands
would need to be implemented and there
would need to be ways to click through them
on the website. The website would also need
to be set and run from within the cloud
easily. This led to CDK scripts being
developed and the addition of Docker
containers for the front and backends. For



the sake of the proof of concept, logins,
organizational structure, and other useful
AWS services like S3 were removed. The UI
was allowed to be barebones for the MVP,
so there were little visual requirements.
3.3 Challenges

There were a number of major
challenges during the development of this
project. One of these obstacles was the use
of environment variables to store the API
keys and domain names. It worked locally,
but when the program went on the cloud my
environment variables would disappear. The
CDK script also had to add the location of
the domain of the API on build time of the
environment in the cloud which ended up
taking a week. Another challenge was the
time constraints on the project. Due to other
requirements of the internship, I did not get
to start the project until halfway through my
internship, and had to finish it two weeks
early. This gave me a little over a month to
write the website.

Finally, near the end of the project
the code pipeline used for updating the
project broke, breaking the CloudFormation
stacks which had existed for over a month.
As a result, I had to take a few days near the
deadline for the project to simply fix the
CloudFormation stacks and the code
pipeline so that I could test my code online.
4. Results

The outcome of my efforts on my
internship project was a completed website
which used the Genomics CLI to run an
example DNA sequencing workload from
the beginning to the end. This reduced the
learning curve of joining the genomics
service by removing the CLI knowledge,
YAML file writing, and much of the

required cloud knowledge. The goal was to
bring more researchers to the cloud
genomics service.

However, over the course of the
summer my team became aware of a full
new service in development within the
company which could fulfill the same goal.
This led support for my internship project to
stop, and it converted my project from a
potentially usable project into a learning
experience and a way of evaluating my
internship. As a result, the project scope was
reduced and an additional project
presentation and new service FAQ document
were added to my project as materials for
evaluation. This was done both to evaluate
me and to give me the experience of
working on a new project within the
company. The result of the new scope of my
project was extra experience in writing and
public speaking, which would be useful in
my role as a Solutions Architect. This
project helped me to secure a return offer
from the company for next year.
5. Conclusion:

My internship project from this past
summer made it easy for a larger number of
genomics researchers to pick up and use a
genomics tool in the cloud. The genomics
tool, which started as a command line
interface service for running DNA
sequencing workloads in the cloud.
Although already useful, that genomics tool
was improved through my work by
enhancing the usability of the tool. The
usability was boosted by providing the
genomics service a website as a graphical
interface in addition to reducing the required
cloud knowledge and removing the required
YAML file writing. Reducing the learning



curve helps to move genomics researchers to
the cloud, which in turn will provide them
the provisioning advantages of the cloud.
These advantages include not having to run
their own hardware or guess at the
computing capacity needed. Other
advantages included having a large amount
of built in security, along with the cost
benefits of massive economies of scale.
6. Future Work:

There is no planned next phase for
this project, which was scrapped because
development of a similar service within the
company created redundancy. However, if
one wanted to continue this project next
steps would include improving the visuals
and user experience of the web application,
adding functionality with additional cloud
services, and writing out the rest of the
genomics CLI commands into the API.
Adding functionality with other AWS
services could include uploading workflow
files to an S3 bucket for the user and adding
authentication, among other things.
7. UVA Evaluation:

The UVA CS program has been
extremely useful in preparing me for a
software development job; however it has
had a few noticeable weaknesses in my
experience. The first problem I had was that
I took the pilot program, which means I took
the major data structures and algorithms as a
first year, leading to some degradation in my
knowledge by the time I was being tested for
jobs and internships. DSA1 and 2 were both
extremely useful classes that taught me all
the concepts I needed to know for these
coding tests.

Although seemingly not necessary
for a basic Software engineering job, COA1

and 2 as well as Operating Systems taught
me a lot about computers at a basic level,
which has helped me to write better code
and understand the systems I work on.
However, I have found that SDE did not do
a great job teaching me the team and testing
concepts that could be useful on the job.
Also, discrete math and theory of
computation have not proved to be useful to
me in a CS career, although they did
marginally improve the way I think about
developing my programs.

Finally, electives have been
exceedingly useful in filling out my
knowledge of computer science, giving me
unique skills which have expanded my skill
set and opened up more options for careers.
As a whole the UVA CS program has been
stellar for preparing me for a basic software
engineering role, from interviewing for the
job up to writing my own code, leaving a bit
of a shortage on debugging and team work.
The UVA Computer Science electives have
also expanded my horizons and allowed me
to think about moving into other roles like
Machine Learning and Cybersecurity though
I did not gain enough knowledge in any of
these areas to get a job without a significant
effort on my own.
References:
[1]Anon. AWS Genomics CLI
Documentation. Retrieved September 23,
2022 from
https://aws.github.io/amazon-genomics-cli/d
ocs/
[2]Anon. 2022. Docker documentation.
(September 2022). Retrieved September 23,
2022 from https://docs.docker.com/



[3]Related Anon. Nextflow. Retrieved
September 23, 2022 from
https://www.nextflow.io/


