
1

WebAssembly: Constructing Versatile Programs with Multiple
Programming Languages

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia - Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Alan Li

Spring, 2023

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISORS

Joshua Earle, Department of Engineering and Society

Briana Morrison, Department of Computer Science



2

ABSTRACT
An Arlington, VA-based cloud computing
company required a web coding playground
for one of its new services enabling users to
input code and evaluate its validity and
output. However, some customers required a
local application for their confidential data. I
was tasked with designing and building a
React.js web app to serve as the frontend
user experience but required a backend code
evaluator without sending data to and from
the customer and developers. The solution
was to use WebAssembly to compile
backend Rust code to an assembly and
JavaScript package which was then used in
the React.js web app to evaluate code
locally.

With these two components connected, the
app was fully functioning locally, without a
need for any network calls. The result was a
much faster application as initial evaluation
calls were 50 times faster and subsequent
calls 100 times faster than a similar
playground using API calls. While the
application was complete, many user
interface designs were not fully
implemented, and an online hosted version
required for internal use had not yet been
completed.

1. INTRODUCTION
Traditionally, complex application logic is
evaluated through more robust languages
such as Java, C++, and Rust which then
exports its results to web applications built
mainly in JavaScript. This is typically built
with network calls (i.e. API or Application
Programming Interface calls) to a
developer-managed server that compiles
code and then returns data to the web app.

According to Akamai Staff (2019), API calls
have made up 83% of the web since 2018.
Amoroso (2020) points out that this
percentage continues to grow as cloud-based

applications continue growing, and with this
expansion comes a number of security
issues. These include injection attacks and
authentication errors as users can send data
to the servers that handle the API calls or
bypass the authentication tokens needed to
access the API network.

If API calls are so bad, then why not ship
applications with all the backend logic
baked in? The two issues with this are that
browsers are not built to support heavy-duty
languages such as Java or Rust and even if
possible, the web app would become much
too large to run in a browser. The
security/confidentiality and efficiency
benefits that come with using WebAssembly
have made it a very enticing tool for many
developers who use it for heavy-duty
operations on the web previously too
inefficient such as heavy asset games and
CAD.

2. RELATEDWORKS
My first encounter with WebAssembly was
during my project when I considered it as a
potential solution. I have since learned much
more about the potential problems that it has
been used to solve. Carey (2022) talks about
the history of WebAssembly and a few
examples of companies with large customer
bases using it for major products. Inspiration
came from the innovative technologies that
are being built with WebAssembly.

WebAssembly has had many other uses as
McCallum (2019) discusses in some detail.
He covers the growing list of applications it
is being used for, providing many use cases
and exploring how WebAssembly can be
used to benefit current and future web
development projects.

3. PROJECT DESIGN
As this was a new project being created for
numerous users, requirements elicitation



3

was crucial to ensure a good overall design.
Thus, I spent time talking to multiple teams
and product managers to ensure my
requirements met all customer needs and
that the design I created met company
standards.

3.1 Requirements
The main purpose of this project was to
create an easy-to-use web app that
customers can utilize to process their data
using the already-built Rust code developed
by the development team. Along with this is
the need for customer data to be confidential
as there were potential customers that would
not want to send their data to developers.

3.2 Design Overview
The two main components to this project
were a frontend web application and the
logic used to evaluate data which is written
in Rust. I built the frontend web app in
React.js, currently one of the most popular
web development frameworks (Stack
Overflow, 2022), as it was considered a
standard within the company and developers
were already familiar with the framework.
This enabled easier development as the team
was more familiar with the process and
would be able to maintain and debug issues
that came up in the future. Unlike the web
app, the data processing code was fully
developed and ready to use. As this code
was written in Rust, it could not be directly
run through the browser and thus required a
different solution to ensure the code was
usable in the web app.

3.3 Complications
Designing the web app was a
straightforward process but integrating the
data processing feature required a new
solution as Rust and most other high-level
programming languages are not natively
supported on most web browsers. This led to
discussions of setting up a cloud server to

handle data processing from the web app as
customers would be able to input their data
in the app which would send the data to the
developer-maintained cloud server.

However, this brought about two issues. The
first is cloud servers rest in a dormant state
to save processing costs and initial calls to it
would require the server to boot up with
each subsequent call taking a noticeable
amount of time to process. This process has
been used many times in the past so it has
been very well documented but can be a bit
slow for an app that should be fast and
simple to use. On top of that, this approach
would require customers to always send
their data to the developers which would
mean a portion of the customers with the
confidential information requirement would
not be able to use this app.

The second option would be to bake the
Rust code inside the app but this leads to the
second issue as most browsers do not
support Rust. An installable application
could be created for customers to download
but this would go against the “easy-to-use”
requirement as utilizing Rust would require
customers to install the language itself and
all the packages used which can be
overwhelming for someone who is not very
familiar with the language.

3.4 Solution
These complications led to my intern project
of researching how WebAssembly could be
used to meet both of these requirements. In
short, WebAssembly compiles code such as
Rust into low-level assembly-like code –
WebAssembly modules – which can then be
run alongside JavaScript which is used for
most of the internet’s functionalities
(Webassembly MDN., 2022). This process
requires installing the WebAssembly
package called wasm-pack and then
annotating lines of Rust code that will be



4

called directly in the web app through its
JavaScript code. While the rest of the Rust
code will be compiled into the
WebAssembly module, the lines of code that
are annotated will be converted into
JavaScript which can then be called directly
from the web app.

Finally, once the Rust code had been
compiled, I imported the WebAssembly
module into the React.js web app. I
accomplished this by directly moving the
created WebAssembly module into the web
app’s directory and calling the converted
JavaScript code to utilize the Rust code’s
functionality.

4. Results
The resulting web app was a lightweight app
that required no external server to utilize its
full functionality. Compared to a similar
data processing app, the new app was able to
process data approximately 50 times faster
on initial calls and 100 times faster on
subsequent calls. For customers, this meant
an app they can use just by navigating to a
website or downloading a small package of
JavaScript files and WebAssembly modules
to run and utilize on their own computers
without navigating to the website. Utilizing
WebAssembly enabled the project to meet
all customer needs without sacrificing speed
or project quality.

5. Conclusion
WebAssembly has been gaining popularity
since its inception and this project shows
how versatile it can be in building complex
software applications. Exploring the
applications of WebAssembly for my project
resulted in a much faster application and
enabled many more customers to use it. But
these benefits are only the beginning of the
potential WebAssembly can bring to web
development and as more developers begin
using it, its versatility as a tool enabling

developers to find new ways to solve
problems will only grow.

6. Future Work
While I was able to create a working web
app that could be sent out to customers, it
was not yet hosted for users to navigate to
on a browser. Thus, hosting the web app will
be the next major step in creating the
finalized product as a convenient-to-use web
app, but users who want to run everything
locally also need an option to download.
Another issue that required some more
thought was how to automatically compile
WebAssembly modules every time the Rust
code base was updated by developers as the
current module is manually compiled and
then imported directly into the web app.
Outside of my project, I hope my project
encourages more developers to explore how
they can use WebAssembly to improve their
current projects or help them create exciting
and innovative projects in the future.

References
Carey, S. (2022, February 28). The rise of
WebAssembly. InfoWorld. Retrieved
September 30, 2022, from
https://www.infoworld.com/article/3651503/
the-rise-of-webassembly.html

McCallum, T. (2019, November 28). The
Future of Web Assembly (WASM): The
hardware-execution revolution! Medium.
Retrieved September 30, 2022, from
https://medium.com/wasm/the-future-of-we
b-assembly-wasm-the-hardware-execution-r
evolution-4116eafa39a0

Stack Overflow. (July 1, 2022). Most used
web frameworks among developers
worldwide, as of 2022 [Graph]. In Statista.
Retrieved November 01, 2022, from
https://www.statista.com/statistics/1124699/
worldwide-developer-survey-most-used-fra
meworks-web/

https://www.infoworld.com/article/3651503/the-rise-of-webassembly.html
https://www.infoworld.com/article/3651503/the-rise-of-webassembly.html
https://medium.com/wasm/the-future-of-web-assembly-wasm-the-hardware-execution-revolution-4116eafa39a0
https://medium.com/wasm/the-future-of-web-assembly-wasm-the-hardware-execution-revolution-4116eafa39a0
https://medium.com/wasm/the-future-of-web-assembly-wasm-the-hardware-execution-revolution-4116eafa39a0
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/


5

Webassembly. MDN. (2022, October 12).
Retrieved October 27, 2022, from
https://developer.mozilla.org/en-US/docs/W
ebAssembly

https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly

