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Abstract 

The central goal of this dissertation is to illustrate some of the fundamental 

physics of efficient swimming. Specifically, physical explanations are provided for two 

significant observations:  

(a) Fish exhibit a tight range of Strouhal number, 0.2 < 𝑆𝑡 < 0.4, defined as tail-

beat frequency multiplied by wake width divided by swimming speed, 

(𝑆𝑡 = 𝑓𝐴/𝑈), and  

(b) Most fish (such as trout, dace, goldfish, cod and dolphins) maintain constant 

tail-beat amplitude during cruise, and their speed is correlated linearly with 

their tail-beat frequency. 

A computational and theoretical approach is undertaken to study the performance 

and wake patterns of a two-dimensional model of fish that consists of a virtual body 

(source of drag) connected to a pitching foil (source of thrust). The model helps elucidate 

the role of Strouhal number in free swimming in general, and it provides a framework for 

explaining the reasons behind observations (a) and (b) above.  

It is shown that the prevalent interpretation of St as a sufficient measure of 

efficiency is too broad, because Strouhal number is only a function of the shape (i.e. drag 

coefficient) and area of the body. In fact Strouhal number becomes effectively constant at 

higher speeds of swimming, and its value does not depend on the gait regardless of the 

speed. This conclusion follows from showing that the thrust coefficient for the pitching 

foils of this study is a function of only the Strouhal number for all gaits whose amplitude 

is less than a certain critical value. The finding is generalized by performing a 
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dimensional analysis, and it is shown that the variation of Strouhal number with cruising 

speed is simply related to the variation of the body drag coefficient with speed.  

Additionally, for pitching foils, a unique optimum point is identified in the 

dimensionless frequency vs. amplitude plane, where power efficiency is maximized. It is 

hypothesized that the better swimmers in nature are those whose body drag is matched 

perfectly to the thrust of their propulsor at the point of maximum efficiency of the 

propulsor. When so matched, the resulting swimmer will remain at its optimum power 

point and swim efficiently at all other speeds as well, so long as the swimmer controls its 

speed by maintaining fixed flap amplitude and modulating the frequency of the flap. 

A final goal of this work is to investigate some aspects of the hydrodynamics of 

batoids utilizing pectoral-fin-based propulsion. A computational study is conducted to 

investigate the effect of wing planform and kinematics on the performance of a three-

dimensional batoid fin. Full fluid-structure interaction analysis, as well as prescribed 

kinematics approaches are utilized. The computational results are validated against 

experimental measurements. 
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Chapter 1 
 

Motivations and Objectives  
 

While most Autonomous Underwater Vehicles (AUVs) are capable of performing 

complex missions, their performance remains limited when compared with solutions 

from nature. For instance, screw propellers [1] have a narrow window of efficiency, are 

noisy, and also lead to vibrations [2]. AUVs also have low maneuverability (e.g. large 

turning radius), and limited supply of power. These limitations continue to drive 

engineers to envision and design unconventional underwater propulsion platforms to 

overcome the current limits on efficiency and performance. 

Nature, through the benefit of evolution, is a great source of inspiration for the 

design of novel underwater propulsors. Propulsion in the form of flapping in which the 

animal imparts momentum into the fluid by flapping its pectoral or caudal fin [3] is the 

most common within the swimming species. There have been several efforts in designing 

and building bio-mimetic swimming robots. Examples are based on tuna ([4], [5], [6]), 

lamprey ([7], [8]), and dolphin [9]. Overall, flapping-based propulsion platforms are still 

far from mainstream, mainly due to a lack of detailed understanding of the underlying 

fluid physics underlying efficient self propulsion.  

Fish locomotion can generally be classified into two different categories: fish that 

swim by passing a traveling wave down the body and caudal fin (body/caudal fin 
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propulsion) or the ones that use a combination of pectoral, dorsal and anal fins for 

propulsion (median/paired fin propulsion). In either case, fish swimming gait lies on a 

spectrum between the two extremes of undulatory and oscillatory movements [10], [11], 

[12]. In the undulatory case, the fish uses its entire body to generate propulsive force 

whereas in the oscillatory movement, the fish incorporates part of its body for thrust 

generation and the other part is mainly associated with drag. Figure 1.1 summarizes 

different forms of swimming gaits (adopted from [11]). 

 

 

Figure 1.1: Comparison of different swimming gaits for Body/caudal fin and 
Median/paired fin type of locomotion. Adopted from [11]. 
 

Among the swimming species that utilize oscillatory flapping propulsion (in 

median/paired fin category) is the manta ray (Manta birostris) (Fig. 1.2c), a particular 

species of Batoidea (rays). Manta rays are characterized by the large deformations of 

their giant dorsoventrally flattened pectoral fins [13], which allows them to achieve high 

levels of agility in maneuvering and prey catching, as well as high propulsive efficiency 

(a)

(b)

Figure 2.6: Swimming modes associated with (a) BCF propulsion and (b) MPF
propulsion. Shaded areas contribute to thrust generation. Adapted from Lindsey
[1978].

toral, dorsal, and/or anal) as well as the undulatory component along the chord of

the fins (see figure 2.6b). Regardless of the type of locomotion preferred by a given

animal, aquatic propulsion is generally characterized by a posteriorly traveling wave

motion along the animal’s fins and/or body.

2.2.1 Batoid-inspired propulsion

Particular attention in this thesis is paid to the manta ray, a batoid fish that em-

ploys large dorsoventrally flattened pectoral fins for propulsion by utilizing rajiform

locomotion [Heine, 1992, Rosenberger, 2001, Schaefer and Summers, 2005]. Batoid

species – particularly the manta ray, the largest animal in the family with wing tip-

to-tip sizes up to 5-6 m – have the ability to keep station, develop bursts of high

acceleration, swim at speeds up to 10m/s, and are presumed to be efficient swimmers

due their long range capabilities and pectoral fin kinematics [Walker and Westneat,

2002]. Rays flap their pectoral fins much in the same way as birds flap their wings

11
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([14] and [15]). Little is known about how they utilize their fin flexibility to attain these 

superior performances. In particular, it is unknown to what extend the animal controls its 

fin deformation (active flexibility) and to what extend the fin deformation is the outcome 

of the interaction of the flexible fin with the fluid forces (passive flexibility). 

Additionally, the role of spanwise and chordwise flexibility in the overall performance of 

the fin remains an unresolved issue (see [16] and [17] for the discussions on the relation 

of flexibility and efficiency for pectoral fins). Given that manta rays achieve superior 

swimming performance by using a unified mechanical system for both propulsion and 

control (i.e. their pectoral fin), they remain an interesting complex biological model for 

scientists to study. According to [2], manta rays outperform the current AUV technology 

in the following areas: 

 

1 – Lower noise generation  

2 – Maneuverability  

3 – Station keeping ability 

4 – Burst swimming speed 

5 – Efficiency (or economy) 

Table 1.1 contrasts the performance data for manta rays and AUVs on the market today. 
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Figure 1.2: Snapshots of three species of ray family swimming at 2 body length per 
second at different times during the flapping cycle. The rays are classified based on 
swimming gait for (A) undulatory (B) intermediate (undulatory-oscillatory) (C) 
oscillatory locomotion. Adopted from [13]. 
 
 

Performance Metrics Glider MBARI Work Class Manta Ray 
Speed (BL/s) 0.22 0.25 0.25 1-2 
Length (m) 1.8 6 6.1 1.8 
Range (km) 1500 50 1.2 640 

(km/wk) 
Turn Radius (BL) 4 1.7 0 0.5 
Turn Rate (rad/s) 0.055 0.15 N/A 3.15 
Economy (BL/kJ) 100 0.36 N/A 3 
 
 
Table 1.1: Comparison of performance for manta rays with that of current AUV 
technology. Adopted from [18].   
 

386

The four Dasyatis species (D. americana, D. sabina, D. say
and D. violacea), Rhinoptera bonasus and Gymnura micrura
propel themselves through the water strictly with their pectoral
fins. Rhinobatos lentiginosus (Fig. 4A), D. sabina (Fig. 5A)
and D. say exhibit the most undulatory pectoral locomotion
among the eight species in this study, having the highest
number of waves on their fins (Fig. 2D). D. americana has just
over one wave on the fins, making it undulatory, but to a lesser
extent than D. sabina, D. say and Rhinobatos lengtiginosus.

The wave begins approximately at the level of the eye and
propagates posteriorly in the four Dasyatis species. D. violacea
exhibits a more oscillatory-based swimming behavior than the
other Dasyatis species and has 0.7 waves on the fin. Fin-beat
frequency is low (Fig. 2A) and fin amplitude is relatively high
(Fig. 2B) in D. violacea.

Gymnura micrura (Fig. 5B) uses fin movements that are
intermediate between undulatory and oscillatory locomotion.
Gymnura micrura was observed using two different swimming

L. J. ROSENBERGER

Fig. 5. Successive lateral video images of (A) Dasyatis sabina, (B) Gymnura micrura and (C) Rhinoptera bonasus swimming in a flow tank at
DL s−1=2. D. sabina swims by propagating waves down the pectoral fins from anterior to posterior. G. micrura is an intermediate species
between undulation and oscillation. R. bonasus swims by oscillating the pectoral fins up and down. Anterior is to the right.
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Designing an efficient underwater biomimetic robot is an iterative 

multidisciplinary collaboration among hydrodynamics, control engineering, structural 

design, and biology. The starting point in this iteration is to observe and quantify the 

kinematics of the animal. The resulting data is then used to analyze and develop the 

corresponding computational and experimental models. Common kinematic behaviors 

among swimming species are of great interest since they often (but not necessarily) 

correspond to a certain cost function that is being optimized by the animal for a specific 

purpose. Fish schooling and burst-and-coast swimming are two examples of such 

common behaviors that have been correlated to mechanical power minimization by fish 

([19] and [20]). Understanding the underlying energetic principles behind these kinematic 

observations has profound implications for design and developing highly efficient 

underwater robots. 

Taylor [21] suggested that although swimming (and flying) species differ in 

morphology and flapping mechanisms when cruising, they yet share a common aspect of 

locomotion characterized by a narrow range of Strouhal number, 𝑆𝑡 = 𝑓𝐴 𝑈, where 𝑈 is 

the swimming speed, 𝑓 is the frequency of flapping and 𝐴 is the width of the wake behind 

the flapping appendage, and is usually assumed to be tip-to-tip excursion of the trailing 

edge (Fig. 1.3). Moored et al. [22] conducted an experiment using an elliptical undulating 

wing that was set to swim freely, and showed that the 𝑆𝑡 corresponding to cruise for all 

the considered wavelengths converged to a tight range of 0.2-0.4 similar to that observed 

for manta rays (Fig. 1.3), thereby augmenting the observations of [21] to include ray 

species.  
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Figure 1.3. The observed cruising Strouhal number for various flying and swimming 
animals. The tight range of 𝑆𝑡 corresponding to the swimming animals (0.2-0.4) is the 
focus of this study. Adopted from [21]. 
 
 
 

 

                         (a)                      (b) 

Figure 1.4: Strouhal number as a function of swimming speed (cruise condition) for an 
experimental fin compared with biological data for manta ray. (b) the experimental fin 
used to calculate the Strouhal number for different wave number at (a). Adopted from 
[22]. 
 

operate at similar St. Does this reflect selection to constrain St, or is
it merely coincidental? To answer this, we first provide two inde-
pendent confirmations that St is tightly constrained in cruising
flight. The first confirmation comes from considering how St varies
when an animal is forced to fly other than at its preferred speed. St
varies more in four individual zebra finches (Taenopygia guttata)27

forced to fly between 4 and 14ms21 than across all 42 species flying
at their preferred speeds (Fig. 2). Even excluding the lowest forced
flight speeds (which are lower than any preferred flight speed), the
standard deviation (s.d.) of St for the zebra finch across speeds is
more than twice that for all 42 species flying at their preferred
speeds. Flight speed affects St so strongly because wingbeat fre-
quency and amplitude are tightly constrained, presumably by
physiology and morphology. This makes it even more notable
that, when only cruise performance is considered, a sample span-
ning five orders of body mass and three independent evolutionary
origins of flight shows less than half the variation in St found in four
individuals of a single species forced to fly at different speeds.

A Monte Carlo analysis provides a second confirmation that St is
tightly constrained in cruising flight (Fig. 3). As frequency, speed
and amplitude all scale with body mass (m), if wing kinematics are
indeed tuned to optimize St, their residual variation should co-vary
appropriately to constrain St. We therefore regressed log( f ), log(U)
and log(A) separately against log(m) and calculated the fitted values
for each species. We then randomly allocated 1 of the 42 residuals
from each of the regressions to each species without replacement
and calculated the s.d. of St in the resulting sample (n ¼ 42). We
repeated this procedure 50,000 times.

Figure 3 shows the distribution of the s.d. of resampled St.
Regressions and residual plots (Supplementary Fig. S1) showed
sufficient homoscedasticity for the procedure to be valid. Only 53 of
the 50,000 randomized combinations of residuals (,0.11%) had a
lower s.d. of St than the original sample. The actual s.d. of St (0.10)
was therefore significantly smaller than expected by chance

(P ¼ 0.001) from the allometry of f, U and A. This is very strong
evidence that St is tightly constrained during cruising flight. It
would not be unexpected to find St tightly constrained in similar
species, because similar morphological and physiological con-
straints usually produce dynamic similarity1; however, it is surpris-
ing to find St tightly constrained in this morphologically and
physiologically disparate sample, unless St is constrained by one
uniting factor—aerodynamics.
The propulsive efficiency of an isolated flapping foil usually peaks

at St < 0.3 (refs 3–7), therefore we used a two-tailed t-test to check
that actual mean St ¼ 0.29 did not differ significantly (P ¼ 0.136)
from this (after square-root transforming the data to remove skew
arising because St is a ratio). The data are not normally distributed
even after transformation (Supplementary Fig. S2), but the t-test is
robust to large deviations from normality and, as the 95% confi-
dence interval (0.25 , St , 0.31) fell comfortably inside the opti-
mal range 0.2 , St , 0.4, we can be reasonably sure that the lack of
any statistically significant difference is not merely an artefact of low
statistical power. Median St ¼ 0.25 (inter-quartile range 0.20–0.35)
was less than mean St because of the positive skew, but still did not
differ significantly from the expected optimum (sign test,
P ¼ 0.081). St therefore seems to have converged on the expected
optimum St < 0.3 in cruising flight, with about 75% of species
falling in the range 0.19 , St , 0.41. In addition, the fit is remark-
ably tight given the much larger variation in St found in a single
species forced to fly at different speeds.
Because the assumptions of parametric analysis of variance are

unlikely to hold for our data set, we used a Kruskal–Wallis test to
compare St among taxonomic classes. The test just failed to attain
statistical significance (P ¼ 0.054), mainly because the n ¼ 2
sample size for insects limited its efficiency. Using a Wilcoxon
rank sum test to compare directly birds and bats showed instead
that St is significantly lower in birds than in bats (two-tailed,
P ¼ 0.020). We then dropped all families of n ¼ 1 and used a

Figure 2 Strouhal number for 42 species of birds, bats and insects in unconfined, cruising
flight. Published ranges3,4 of St in cruising fish and dolphins are included for comparison.

Dotted lines mark the range 0.2 , St , 0.4, in which propulsive efficiency usually

peaks; dashed line marks the modal peak at St ¼ 0.3. Unbroken lines indicate the range

of variation in St across other non-zero flight speeds, where such data exist.
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Figure 11 also reveals the role of
passive flexibility. Here, the fin was ac-
tuated using only the two anterior
spars, leaving the posterior half of the
fin to respond passively to the forcing
by the actuators and the fluid forces.
The velocity of this fin still increases
with increasing frequency, but the
trend is no longer linear. Tests in still
water indicate that the passive fin has a
resonant frequency of about 2.4 Hz,
defined as the frequency at which the
trailing edge amplitude is maximized.

As resonance is approached, the ampli-
tude of the trailing edge motion in-
creases, resulting in the fin velocity
increasing at an enhanced rate (in com-
parison to a linear trend). It should be
noted that the swimming velocities for
the passive fin were approximately
80% of those of the active fin.

The free-swimming Strouhal num-
ber for the active fin, along with manta
ray field data (Fish, 2010), are dis-
played in Figure 12 (the Strouhal
number for the passive fin is not
shown since the trailing edge excursion
of the passive fin is unknown). The ex-

perimental data collapse onto a single
curve, indicating that the Strouhal
number for the freely swimming active
fin does not depend on the wave-
length. As the swimming velocity in-
creases, the Strouhal number begins
to enter the regime presumed to be ef-
ficient (St = 0.2-0.4; Taylor et al.,
2003). Hence, the optimal swimming
speed for the traveling wave fin, from
the perspective of efficiency, is likely
to be ≥2 CL/s. The biological and
experimental data display the same
trend, whereby an increase in swim-
ming velocity yields a decrease in
Strouhal number. Borazjani and
Sotiropoulos (2008, 2009) were able
to show, for carangiform and anguili-
form swimming, that the Strouhal
number for self-propulsion approaches
the efficient regime observed in nature
only with increasing swimming veloc-
ity. The current study supports this
conclusion for mobuliform swimming
as well.

The energy economy, ζ =Vc/Pf , for
the active and passive fins is shown in
Figure 13. In the case of the shortest
wavelength(λ* = 3), the active fin has
a higher energy economy than the pas-
sive fin, but for the longer wavelengths
the energy economy for the passive fin

FIGURE 10

(a) Thrust coefficient increasing with tip speed increase and (b) tip speed modulation compared
to frequency modulation. The parameter α is the ratio of maximum tip speed of the square wave
actuation compared to the maximum tip speed of a sine wave of the same frequency and am-
plitude, α ¼ U sqr

max=Usin
max .

FIGURE 11

Fin velocity in chord lengths per second as a
function of flapping frequency. The wavelength
λa refers to the active fin while λp refers to the
passive fin. (Color versions of figures available
online at: http://www.ingentaconnect.com/
content/mts/mtsj/2011/00000045/00000004.)

FIGURE 12

Strouhal number as a function of steady-state
swimming velocity for the active fin com-
pared with biological data of the manta ray
(Fish, 2010).

FIGURE 13

Energy economy as a function of flapping fre-
quency. The wavelength λa refers to the ac-
tive fin while λp refers to the passive fin.
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uses more power than the curvedmode
throughout the Strouhal range. This
results is not unexpected as the flat
mode of swimming sweeps out a larger
volume of fluid than the curved
mode of swimming, causing the over-
all increase in the thrust and power
coefficients.

Because the two modes of swim-
ming are dissimilar, comparing the
thrust or efficiency as a function of
Strouhal number may be misleading.
For a fixed Strouhal number, different
amounts of thrust and power are pro-
duced by each swimming mode. A
better comparison is the thrust or ef-
ficiency as a function of the power
coefficient because each swimming
mode can be compared at a fixed
power input.

Figure 7a shows this comparison.
For both modes of swimming the
power input increases as the thrust in-
creases, although at higher power
input the thrust increases at a slower
rate. For all power inputs, more thrust
is produced for the flat mode of swim-
ming than for the curved mode of
swimming, while the thrust tends to
the drag of the motionless fin as the
power input tends to zero. Interest-
ingly, observations of swimming
manta rays do not indicate that they
use this higher-performance flat
mode and instead use the curved
mode for swimming. This suggests
that the curved mode, coupled with
another mechanism (perhaps a chord-
wise traveling wave), more fully char-
acterizes the swimming mechanics of
manta rays.

Figure 7(b) shows the propulsive
efficiency as a function of Strouhal
number. The efficiency of the curved
mode first rises quickly rise with
increasing Strouhal number, and then
a peak in efficiency is attained, fol-
lowed by a slow decline in efficiency

FIGURE 4

Tank facility for the chordwise traveling wave experiments: (a) perspective view and (b) front
view. Drawings not to scale.

FIGURE 5

Traveling wave actuation system for (left) active fin and (right) passive fin.

FIGURE 6

Flat mode compared to curved mode: (a) thrust performance as a function of St and (b) power
coefficient as a function of St.
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In addition to the tight range of 𝑆𝑡, it has been observed that fish and cetaceans 

(for instance trout, dace, goldfish and dolphin) gain or reduce cruising speed mainly by 

altering the frequency of their tail beat while maintaining the tail-beat amplitude at a 

fairly constant level [23-24]. The same behavior has also been reported for cownose rays 

[25]. Figures 1.5-1.7 plot the variation of tail-beat frequency and amplitude as a function 

of swimming speed for various fish and cetaceans species. Considering the 

morphological difference between cetaceans and ray species, these common kinematic 

behaviors seem to be pointing to a fundamental principle that holds in free-swimming. 

  

                                    (a)                                     (b) 
Figure 1.5. Variation of tail-beat (a) frequency and (b) amplitude with respect to cruising 
speed for 248 captive odontocete cetaceans. Adopted from [24]. 
 

  

                                (a)                             (b) 
Figure 1.6. Variation of (a) tail-beat frequency with respect to swimming speed and (b) 
amplitude with respect to flapping frequency for captive dace, trout and goldfish. Note 
since frequency is linearly correlated with speed, swimming speed and frequency can 
interchangeably be used on the horizontal axis of (b). Adopted from [23]. 
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calculations were repeated for the same recordings but
by independent observers, swimming speed and tail
beat frequencies showed excellent agreement; for tail
beat amplitudes, differences of 10–20% were not
uncommon. This uncertainty resulted from
insufficient screen resolution, framing rate and the
proximity of the tail to the water surface. Overall St
uncertainty was estimated to be ~20%. This is 6% less
than the St uncertainty calculated for the worse case
scenario by propagating the independent uncertainties
estimated for high speeds (7%), high frequencies
(20%) and a fluke amplitude uncertainty of 15%.

To adjust for size differences between species, data
were analyzed with respect to length-specific velocity
(U/L) and length-specific amplitude (A/L). In some
analyses, f was non-dimensionalized by dividing
frequency by U/L. Means were calculated for values
that did not vary with L or U/L. Variation about means
was expressed as ±1 S.D. Linear relationships were
estimated by least-squares regression (Microsoft
Excel). Differences in slopes of the regressions were
analyzed by analysis of covariance (Zar, 1984). Means
of species were compared using analysis of variance
(ANOVA; Statistica Version 4.1, StatSoft). Results
were considered significant at the α=0.05 level.

Results
Kinematic data

A total of 267 swimming sequences were used for
kinematic analysis (S. frontalis, n=13; L. obliquidens,
n=17; T. truncatus, n=107; P. crassidens, n=69; G.
melaena, n=12; O. orca, n=30; D. leucas, n=19). The
animals maintained continuous propulsive motions by
vertical oscillations of the flukes, as has been described
previously (Fish, 1993, 1998; Rohr et al., 2002).
The fastest mean swimming speeds were
U=6.42±0.41·m·s–1 and U/L=2.90±0.19·L·s–1 for L.
obliquidens and the slowest mean speeds were
U=2.38±0.74·m·s–1 and U/L=0.68±0.22·L·s–1 for D.
leucas.

J. J. Rohr and F. E. Fish
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Fig.·1 (A) Non-dimensional fluke-beat amplitude, A/L, as a function of
length-specific swimming speed, U/L, where A is the peak-to-peak fluke-
beat amplitude, L is the body length and U is the swimming speed.
(B) Non-dimensional fluke-beat amplitude, A/L, as a function of fluke-
beat frequency f (Hz), where A is the peak-to-peak fluke-beat amplitude
and L is the body length. Symbols indicate particular cetacean species:
Tursiops truncatus (solid red circles), Pseudorca crassidens (open green
squares), Orcinus orca (solid blue triangles), Globicephala melaena (blue
crosses), Lagenorhynchus obliquidens (solid blue diamonds), Stenella
frontalis (open brown diamonds) and Delphinapterus leucas (solid black
triangles). 
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N=267). Symbols indicate particular cetacean
species: Tursiops truncatus (solid red
circles), Pseudorca crassidens (open green
squares), Orcinus orca (solid blue triangles),
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Lagenorhynchus obliquidens (solid blue
diamonds), Stenella frontalis (open brown
diamonds) and Delphinapterus leucas (solid
black triangles).
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at lower frequencies; and this confirms the interpretation just placed upon the
speed/frequency graphs. Inspection of the points for the individual fish, however,
shows a slight decrease for the 23-2 cm. specimen (open circles), which the wide
scatter of the other points conceals. This raises the possibility that the speed/
frequency graph is not linear at the very lowest frequencies. There is also an
indication of a slight decrease in amplitude at higher frequencies, especially with the
23-2 cm. fish, and this of course would have the effect of making the speed/frequency
graph 8igmoid.

These differences from the dace are, however, trivial compared with the close
resemblances. Not only are the mean amplitudes almost identical but also, in
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Fig. 10. Amplitude expressed non-dimensionally and plotted against frequency
for the three trout shown in Fig. 9.

consequence, the mean distances travelled per beat over body length (Table 3). This
means that, disregarding frequencies below 5 beats per second, both dace and trout
have speed/frequency relationships that are virtually identical. In view of their
similarity in body form some such finding might be expected, but the almost exact
identity revealed is surprising.

Finally, the maximum frequencies attained by the various specimens studied are
shown in Fig. 11. As with the dace a decrease in maximum frequency with
increasing length is apparent; but this decrease is by no means as marked, reflecting
the fact that the larger trout can reach relatively greater maximum speeds than the
larger dace. The uniform distribution of recorded frequencies throughout the
measured ranges in the speed/frequency graphs precludes any estimate of a maxi-
mum sustained frequency. (The disproportionate number of low measurements for
the 4-0 cm. specimen derives from a deliberate attempt to record speeds as low as
possible, and this graph differs in this respect from all the other records.) Indeed,
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                         (a)                      (b) 
Figure 1.7. Variation of tail-beat (a) frequency and (b) amplitude with respect to 
swimming speed for cownose ray. Adopted from [25]. 
 

One goal of this work is to understand the fundamentals behind ray swimming. 

The focus will be on the performance rather than the structure of the wake, but wake 

visualization will be performed also. To do so, first, a three-dimensional model of batoid 

wing is developed, replicating the experimental prototype built by Moored [18]. The 

computational results are validated against experimental data. Then, a parametric study is 

performed to investigate the effects of kinematics on the performance of the wing. Both 

fluid-structure interaction and prescribed-motion analyses are considered in this work. 

However, the main goal of this research is to provide physical explanations for the 

aforementioned common kinematics behaviors among swimming species (i.e. the tight 

range of Strouhal number as well as the maintenance of the flapping amplitude at 

cruise) through a computational and theoretical study. To achieve this goal, the 

following questions need to be addressed: 

 

1 – How does Strouhal number, 𝑆𝑡, vary in free-swimming?  

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.
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2 – How is propulsive efficiency (defined as 𝜂 = 𝑇𝑈! 𝑃, where 𝑈!  is free 

stream velocity, 𝑇 is cycle-averaged net streamwise force herein termed thrust, 

and 𝑃  is the cycle-averaged power inserted to the flow) interpreted in free-

swimming, where the net force is zero? 

3 – How do energy considerations lead to optimal gait or swimming speed? 

4 – What are the necessary and sufficient conditions for (energetically) efficient 

swimming? 

 

To answer the questions above, a simple two-dimensional model of a fish that 

consists of a generic body, as the source of drag, and a propulsor, as the source of thrust, 

is adopted. This model is intended to approximate the locomotion of thunniform 

vertebrates (cetaceans, tunas, sharks). Note that for the forms of fish locomotion on the 

far left side of undulatory-oscillatory spectrum (Fig. 1.1), thrust and drag cannot be 

distinguished, and the present model is only of qualitative value. A comprehensive set of 

numerical experiments (performed using the commercial Computational Fluid Dynamics 

(CFD) package ANSYS® CFX, release 14.0) in conjunction with theoretical modeling is 

conducted to study the hydrodynamics of pitching foils within the context of free-

swimming. The two-dimensional computational results are validated against the 

experimental data obtained by Dewey [90]. 

The remainder of this dissertation is organized as follow: chapter 2 provides a 

literature review for flapping propulsion. In particular, it highlights the unresolved issues 

for fish swimming within the context of free-swimming. In Chapter 3, a three-

dimensional batoid flapping wing model is developed based on the experimental 
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prototype built by Moored [18], with the intention of replicating the geometry and 

dynamic deformation of manta ray pectoral fin. Effects of planform taper ratio and other 

kinematic parameters on the performance and wake dynamics of the fin are studied by 

undertaking two approaches for the wing deformation: (a) fully-coupled fluid-structure 

interaction analysis, where the wing is modeled as a flexible skin that deforms by the 

oscillatory movement of a rigid inner structure, and its passive deformation is calculated 

by solving the coupled fluid and solid solvers and (b) prescribed motion, where the 

deformation of the wing surface is prescribed according to the mathematical model in 

[18], and replicates the movement of the manta ray fin. Chapter 4 introduces a simple fish 

model that consists of a generic body and a two-dimensional pitching foil to expand upon 

the findings of the earlier chapters and to provide physical explanation for the tight range 

of St, and for the constancy of the amplitude of the flapping among swimming species. 

The computational results are further supported by analytical solutions. Dimensional and 

scaling analyses are then utilized to generalize the findings further. Chapter 5 elucidates 

the numerical methodology that is used in the commercial software ANSYS CFX. Mesh 

study and code validation are further presented in this chapter. Chapter 6 concludes the 

findings of this dissertation and provides a roadmap for future work. 
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Chapter 2 
 

Background on flapping propulsion 
 

Knoller [26] and Betz [27] theorized that heaving airfoils could generate thrust in 

a uniform stream. They attributed the generated thrust to the effective angle of attack of 

the incoming flow, which causes the normal force to have a component in the streamwise 

direction (Fig. 2.1). Katzmayr [28] provided experimental verification of this finding and 

further noted the reduction of drag, now known as Katzmayr effect. Ober [29] offered a 

simple explanation of the cause of the Katzmayr effect. 

. 

 

 

Figure 2.1:  A schematic illustration of how thrust is generated by altering the effective 
angle of attack seen by an airfoil. Note that total circulatory force 𝑳𝟏 is perpendicular to 
effective velocity  𝑼𝒆𝒇𝒇. 
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The equations of ideal flow provided the first mathematical tool for explaining the 

mechanism of thrust generation by an airfoil undergoing small-amplitude heaving 

oscillations [30-32]. The linearized formulations predicted that all heaving motions 

generate thrust by shedding a vortex wake behind the airfoil. Moreover, it was noted that 

Froude efficiency increased monotonically as the frequency of flapping approached zero. 

Wang [33], among others, noted the paradoxical nature of the conclusion: a flying or 

swimming animal should flap at frequencies very close to zero to achieve the best 

propulsive efficiency. Even after extending the inviscid theory to include nonlinearities 

and large amplitude motions, Lighthill [34], Chopra and Kambe [35], Chopra et al. [36], 

Wu [37] and Phlips et al. [38] predicted the same monotonic dependence of efficiency on 

flapping frequency, i.e. that the efficiency is maximized as frequency goes to zero. This 

paradox is resolved upon introduction of viscous effects, as outlines later in the chapter. 

There have been efforts to extend the Prandtl lifting-line theory to unsteady flows.  

Ahmadi and Widnall [39] calculated the propulsive forces and energetics of an oscillating 

wing with finite span (for small amplitudes) using the linearized unsteady wing theory. 

Willmott [40] extended the method developed by Ahmadi and Widnall [39] using 

matched asymptotic expansions to investigate the forces acting on high-aspect ratio 

wings. The primary outcome of the model developed by [40] is an expression for 

downwash due to three-dimensional effects. Betteridge and Archer [41] and Archer et al. 

[42] introduced a method that included twisting of the wing but ignored the unsteady 

effects of the wake. Phlips et al. [38] improved the approach by modeling the unsteady 

wake using a vortex sheet as well as discrete vortices. However, the models were not able 

to account for the self-induced convection of the wake. It should be noted that lifting-line 
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methods are based on linearized equations and are not able to predict accurate results for 

high amplitude oscillations.  

As another extension from Prandtl lifting-line theory, Vortex Lattice Method was 

used by Hall and Hall [43] to examine the optimal circulation distribution of a flapping 

wing that is simultaneously generating thrust and lift in forward flight. Using the Betz 

criterion for optimal propellers, they determined the time-dependent optimal circulation 

along the span, which translates into the optimal wake configuration that minimizes the 

induced power loss. Hall et al. [44] added a viscous drag component to the method 

developed by Hall and Hall [43]. Using a variational principle that was essentially the 

viscous extension of Betz criterion, the necessary condition for the optimal circulation 

distribution was found. 

Another commonly used modeling tool in aerodynamics is the panel method. 

Modern variations of traditional Panel methods provide fast computational tools to 

analyze flows induced by flapping. Katz and Plotkin [45] developed a panel method, 

which was later used by Smith et al. [46] to model the flight of a tethered sphenoid moth. 

The apparent deviation of the horizontal force calculated by their code from experimental 

results can be attributed to inability of inviscid methods to predict leading edge 

separation [47]. Jones et al. [48] developed a panel code to investigate the propulsive 

forces and hydrodynamic efficiency of a two-dimensional airfoil undergoing heaving and 

pitching motion. Additionally, a boundary layer correction was devised to estimate the 

viscous drag of the airfoil. Detailed comparison of the results with experiments showed 

the evolution of the wake behind a flapping airfoil to be essentially an inviscid 

phenomenon. It was also observed that for Strouhal numbers greater than unity, the wake 
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loses its symmetry and deflects from the centerline. Also the hydrodynamic efficiency 

exhibited a monotonic decrease with Strouhal number, so that maximum efficiency 

occurred as frequency approached zero.  

Strouhal number has been considered as a dimensionless parameter with 

significant importance for studying flapping propulsion. St was initially introduced by 

Triantafyllou et al. [49] as a wake-based scaling parameter, which before then had been 

used to describe the wake behind stationary flow obstructions [50]. Since then, a vast 

body of literature has been devoted to characterizing the performance of oscillating foils 

with regard to St. For instance, Anderson et al. [51], Lewin and Haj-Hariri [47], Clark 

and Smits [16], Buchholz and Smits [52] and Godoy-Diana et al. [53] have shown that 

the streamwise force generated by the oscillating foils, has a threshold of thrust 

corresponding to some Strouhal number above which thrust is generated, and beyond the 

threshold, thrust increases with St. In an experimental study, Lai et al. [54] designated 

𝑆𝑡 ≈ 0.06 as the threshold of thrust in the drag-thrust spectrum for a purely heaving foil. 

They concluded foils that do not oscillate fast enough (𝑆𝑡 ≲ 0.06) , do not inject 

sufficient momentum into the flow to overcome the net drag. More recently, Schnipper et 

al. [55] and Godoy-Diana et al. [53] performed experiments to identify the vortex 

structures in the wake of a pitching foil. The results were presented in a phase diagram 

displaying vortex wakes as a function of frequency and amplitude. They showed that the 

transition between the von Karman wake - drag indicator - and the inverted von Karman 

wake - thrust indicator - occurs at 𝑆𝑡 = 0.18.  
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Contrary to the results obtained using inviscid models for flapping foils, in 

viscous flow, Froude efficiency peaks over the spectrum of 𝑆𝑡 somewhere in between the 

thrust threshold and infinity. For instance, Triantafyllou et al. [49] and Anderson et al. 

[51] conducted an experiment in which they isolated a two-dimensional oscillating foil 

and placed the model in a constant stream to measure the force and power produced by 

the foil. They confirmed the existence of a peak for propulsive efficiency when plotted 

against St. Further, by comparing the Froude efficiency for different modes of swimming 

(i.e. different combinations of frequency and amplitude), they showed that maximum 

propulsive efficiency falls within a narrow range of Strouhal numbers (0.2 < 𝑆𝑡 < 0.4), 

even though for half of the considered motions, the corresponding St fell outside of the 

reported range. They hypothesized that the observed tight range of St among swimming 

species is an indication of the hydrodynamic efficiency of the animal’s tail.  Anderson et 

al. [51] further attributed the peak in efficiency to the amalgamation of trailing edge 

vortices with the shed leading edge vortices. It was suggested that the phase difference 

between the heave and the pitch motion plays a critical role in determining the value of 

maximum efficiency since it controls the timing for shedding of the leading edge 

vortices.   

Similar results were obtained in three-dimensions by Clark and Smits [16], 

Buchholz and Smits [52] and Dong et al. [56] however with lower value for maximum 

efficiency than that for the two-dimensional foil. Also in some cases, for instance as 

reported by Dong et al. [56], the St corresponding to maximum efficiency (0.5 < 𝑆𝑡 <

0.9) fell outside of the range observed in nature. Although all the aforementioned 

experiments confirmed the existence of maxima in propulsive efficiency for flapping 
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foils, the predicted values for the corresponding 𝑆𝑡 had great variability among different 

experiments, and showed sensitive dependence on the details of the flapping motion, 

incoming flow speed and the shape of the foil cross-section.  

Wang [33] conducted a numerical study to investigate the unsteady forces acting 

on impulsively started airfoils for a fixed incoming flow speed, and various angles of 

attack. She suggested that the optimum frequency for a given Strouhal number relies 

upon two time scales, one for the growth of the trailing-edge vortex, and the other for the 

shedding of the leading-edge vortex. Using these two time scales, a “thrust window” was 

defined in which the leading edge vortex stayed attached just enough to generate thrust. 

She further correlated the preferred St with the angle of attack at dynamic stall for a given 

Reynolds number. In agreement with Wang [33], Lewin and Haj-Hariri [47] confirmed 

that timing of the leading edge separation is essential for propulsive efficiency in heaving 

airfoils. They noted that efficiency peaks when leading edge vortex remains attached for 

the duration of each stroke. They moreover showed that wake patterns behind an 

oscillating airfoil depend primarily on the evolution of the leading edge vortex: whether it 

is shed, and how it interacts with trailing edge vortex. It was observed that two vortices 

shed into the wake per flap when leading edge vortex merged with, and reinforced, the 

trailing edge vortex, and four vortices shed when the leading edge vortex paired up with 

the trailing edge vortex. In agreement with Anderson et al. [51], high propulsive 

efficiencies were obtained when leading edge vortex positively reinforced the trailing 

edge vortex. Negative reinforcement on the other hand, greatly reduced the measured 

thrust and efficiency of the motion.  
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Reynolds number, 𝑅𝑒 = 𝜌𝑈ℓ𝓁/𝜇 where 𝜌 and 𝜇 are the fluid density and dynamic 

viscosity, on the other hand is the prominent parameter characterizing the effects of 

viscosity in flapping propulsion. In particular, flow separation (or dynamic stall) is found 

to be highly dependent on Reynolds number. In fact, leading edge vortices that are 

byproducts of dynamic stall create low-pressure regions just above the leading edge of 

the wing [57] and thus play a major role in lift and thrust enhancement of flying insects 

[58-60]. As has been argued by Lewin and Haj-Hariri [47] and Buchholz and Smits [52] 

among many others, the effects of unsteadiness (characterized by St) dominate the force 

production of flapping wings as Reynolds number increases.  

The signature of the wake created behind the flapping foil is indicative of the 

ability of the foil to generate thrust. Particularly, the sense of rotation of vortices 

determines the existence of momentum deficit or jet flow in the wake behind the airfoil 

[47]. In the case of not enough streamwise momentum to overcome the drag, the well-

known Karman vortex street appears in the wake. The vortex street generated behind a 

stationary cylinder is a good example of drag-based wakes. Conversely, in the case of net 

thrust, the sense of rotation of the vortices is inverted compared to Karman Vortex Street 

[e.g. Fig. 2.2].  

 

                                  (a)                                          (b) 
Figure 2.2: Representative wake behind an oscillating foil when the generated axial force 
is (a) drag and (b) thrust. The number of vortices can vary. 
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Koochesfahani [61], Lai et al. [54], and Lewin and Haj-Hariri [47] further 

emphasized the dependence of wake structure behind the two-dimensional flapping foils 

on Strouhal number. They showed that for high enough St, the wake undergoes a 

deflection to one side of the symmetry line. More recently, Schnipper et al. [55] and 

Godoy-Diana et al. [53] performed experiments to identify the vortex structures in the 

wake of a pitching foil. By plotting the results in a dimensionless frequency versus 

amplitude space, they reported that the wake transition from von Karman to inverted von 

Karman wake occurs at St≈ 0.18. However, Godoy-Diana et al. [53] found the transition 

from drag to thrust to occur at slightly higher St than the one corresponding to the 

switching of the pattern in the trailing vortex array. In a similar experiment using pitching 

foil, Bohl and Koochesfahani [62] noted the dependence of the transverse alignment of 

the vortices on reduced frequency (defined as 𝑘 = 2𝜋𝑓𝑐 𝑈) for some fixed flapping 

amplitude. In agreement with Godoy-Diana et al. [53], they reported that drag-to-thrust 

transition does not coincide with the switch in the sense of rotation of the vortices. 

There is considerable literature pointing to the wake evolution behind the three-

dimensional flapping foils. However, owing to the complexity of the wake patterns, few 

have reported a concrete conclusion regarding the relation between these wake patterns 

and St. Von Ellenrieder et al. [63], Bolndeaux et al. 64], Dong et al. [56], Clark and Smits 

[16], Buchholz and Smits [52] and Dewey et al. [65] observed that the wake behind a 

finite aspect ratio flapping wing consists of horseshoe vortices of alternating sign that are 

fed from both the leading edge and the trailing edge. More specifically, in an experiment 

using a rigid rectangular pitching panel, Buchholz and Smits [52] observed two distinct 

three-dimensional wake patterns with regard to St. For small Strouhal numbers, 
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0.2 < 𝑆𝑡 < 0.25, two horseshoe vortices were shed per pitching cycle (known an 2-S 

according to the terminology of Williamson and Roshko [66]) which when viewed on a 

spanwise plane, they appeared as inverted von-Karman vortex street. For higher Strouhal 

numbers 𝑆𝑡 > 0.25, two pairs of oppositely signed vortices (2-P) shed per pitching cycle. 

Additionally, wake bifurcation was observed at 𝑆𝑡 > 0.25  where cycle-averaged 

streamwise velocity field behind the pitching panel showed two oblique jets with an 

angle with respect to streamwise direction. In another experimental study using an 

undulating flexible fin to mimic ray locomotion, Dewey et al. [65] found that the three-

dimensional wake structure behind the fin was a strong function of both wavelength and 

St. They further categorized the three-dimensional wake pattern into four different 

structures namely von Karman vortex street, 2P, 2S and bifurcating wake, with the 

selection being decided by the values of wavelength and St. Here, we show that for a 

given swimmer that is cruising while maintaining a constant flapping amplitude, the 

wake structure remains invariant and is independent of the speed or the frequency.  

According to Dewey et al. [65], a fundamental difference between two-

dimensional and three-dimensional wake structures arises from the bifurcating wake, 

which occurs at Strouhal numbers corresponding to high net thrust generation: In two-

dimensions, the bifurcating wake is deflected in one direction as observed by Lewin and 

Haj-Hariri [47] and Godoy-Diana et al. [53] whereas in three-dimensions, the wake splits 

into two symmetric jets at an angle to the line of symmetry. It should be noted that 

bifurcating wakes could potentially give rise to control and stability problems in 

swimming machines since an additional component of lift is generated as a result of 

deflected jet.  
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Wake bifurcation phenomenon can be explained using wake resonance theory. In 

a recent study, Moored et al. [67] used a linear spatial stability analysis to obtain the most 

unstable frequency of the time-averaged jet behind a three-dimensional flexible elliptical 

fin using the data provided by Clark and Smits [16] for a fixed incoming flow speed. By 

extending the work of Triantafyllou et al. [68] and Lewin and Haj-Hariri [47], they 

showed that when the driving frequency of the fin was tuned to the most unstable 

frequency of the jet (termed wake resonance), wake transition occurred and a peak 

appeared in Froude efficiency. It was further showed that there could be multiple wake 

resonant frequencies corresponding to multiple peaks in efficiency and multiple wake 

transitions.  

Estimating mechanical power requirements for flapping propulsion is a topic of 

significant interest and has been addressed by a number of researchers including 

Pennycuick [69], Rayner [70], Schultz and Webb [71], Spedding [72], Hall and Hall [43], 

Hall et al. [44]. In the case of flying birds, three-dimensional lifting surfaces suffer an 

additional contribution to drag because of the downwash resulting form the generation of 

lift, and the tilting back of the oncoming ‘wind’. This induced drag decreases 

quadratically with respect to the free stream speed, as opposed to the parasitic drag that 

increases as a quadratic function of speed. Therefore the required power to overcome 

both parasite and induced drag will assume a U shape in which the point of minimum 

power defines a characteristic speed corresponding to minimum mechanical work 

required per unit time, i.e. maximum endurance. On the other hand, the speed at which 

the power divided by speed assumes its minimum value is correlated with the minimum 
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mechanical work per unit distance, i.e. maximum range. Fig. 2.3 shows a typical power-

velocity curve for a flying bird adopted from Rayner [70]. 

 

Figure 2.3: A typical power curve for flying crafts/birds. Parasitic power varies as 𝑈!, 
and induced power varies as 𝑈!!. 𝑈! is the speed for minimum power, and 𝑈! is the 
speed for maximum range. 
 

Swimming animals are nearly neutrally buoyant. The force generated by their 

propulsors contributes mainly to the thrust, and not to any meaningful lift. Therefore, in 

the case of swimming animals, it is yet unknown if there is any optimum speed at which 

the mechanical consumed power is minimized. This issue is addressed in this work. 

On the relation of Strouhal number to free-swimming, Borazjani and Sotiropoulos 

[73] conducted a numerical investigation to study the hydrodynamics of carangiform 

locomotion for various fixed-incoming flow speeds. For each flow speed, they showed 

there existed a unique St at which the total streamwise force on the model returned zero. 

In agreement with the observations of Lauder and Tytell [3] for Pacific salmon 

(Oncorhynchus) swimming, Borazjani and Sotiropoulos [73] observed that the St 
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corresponding to cruise was a decreasing function of flow speed, although they did not 

determine the functional form of this dependence. They further suggested that fish might 

not be choosing the Strouhal number at which they swim solely based on efficiency 

considerations, but also with regard to free-swimming.  

Webb [74] reviewed the observation in fish locomotion reported by Bainbridge 

[23] that fish control their swimming speed mostly using tail-beat frequency (such that 

frequency and speed are linearly correlated) while keeping the amplitude constant, and 

noted that the principal mechanism behind this observation remains unknown. Webb [74] 

further raised the question as to why this observation does not seem to hold true when 

fish swim at speeds close to zero. The answer to this question is also provided in the 

present dissertation. 
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Chapter 3 
 

Three-Dimensional Propulsor 
	
  

Rays with pectoral-fin-based propulsion including manta rays (Manta birostris) 

and cownose rays (Rhinoptera bonasus), are considered to be highly efficient swimmers 

[34, 25]. They exhibit high endurance and maneuverability with seemingly little effort 

[1]. Rays swim using their long flattened pectoral fins, which gives them the ability to 

acquire large flapping amplitude [13, 25]. One difference between pectoral fin movement 

of ray species with that of other swimming and flying animals is the lack of a joint 

between the fin and the main body to allow anterior-posterior motion [25]. This unique 

feature requires a pectoral fin motion such that fin chord at each spanwise cross-section is 

fairly perpendicular to the rotating motion with little twisting or pitching [25], providing 

a possible explanation for the high amount of flexibility. Fin deformation is also observed 

to change with swimming speed [13], but the focus of this section is to study the effect of 

fin kinematics on the performance at a constant speed. 
 Although there is considerable amount of observed data for kinematic and 

performance of ray swimming, little is known about the hydrodynamic principles that 

give the animal its superior performance. One way to study the hydrodynamics of ray 

swimming is to isolate the pectoral fin and place it into a water tunnel with constant flow 

stream to measure the wing performance for various kinematics. The main challenge is to 
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replicate the exact kinematic motion exhibited by the animal. Specifically, it remains 

unknown to what extent the animal utilizes its muscles within the pectoral fin to deform 

its shape (active flexibility) and to what extend the animal leaves the deformation be an 

outcome of the interaction between the flow and the flexible skin (passive flexibility). 

Clark and Smits [16] and Dewey et al. [65] performed various experiments to investigate 

the (wake) conditions for efficient propulsion for an undulating batoid shaped wing.  

 One way to overcome the difficulty of generating natural fin deformation is to 

develop a mathematical kinematic model based on the deformation of biological fins and 

then use the model to study mechanics and hydrodynamics of batoids. The main idea 

behind this approach comes from the assumption that performance response of two 

different fins, one biological and one artificial, that undergo the exact same motion is 

identical without regard to how the motions were generated. Moored [18] developed an 

analytical three-dimensional model to describe the fin kinematics of Manta ray, where he 

calculated the fitting parameters by matching the model to the fin kinematics extracted 

from image processing of biological data. Later on, Russo [75] used the analytical model 

to study the hydrodynamics of batoid using panel method. 

 

 

 

Figure 3.1: Images of (from left to right) manta, eagle and cownose rays, all included in 
the family Myliobatidae. 
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 From computational perspective, two approaches can be undertaken to study the 

hydrodynamics of flexible batoid shaped fins: (a) Fluid-Structure Interaction (FSI) 

analysis, and (b) prescribed motion. In the first approach, the deformation of the flexible 

fin is calculated based on the interaction between the flexible material and the 

surrounding fluid. This approach is of great use when some part of the fin is actively 

deformed and it is required to calculate the response of the passively flexible part. In the 

second approach, it is assumed that the displacement of every point on the fin is known 

and therefore the fin movement is prescribed. In this approach, the presence of 

surrounding fluid does not affect the motion of the fin and is driven by it. FSI analyses 

are computationally much more expensive than the analyses where the motions of the fin 

is known. Moreover, having an analytical model for the motion of the fin allows the easy 

integration of the components of motion: for instance, chordwise vs. spanwise flexibility 

in FSI analyses in which such detailed integrations are harder to perform. 

 This chapter aims to provide more insight into the effects of kinematics and 

planform shape on the performance of batoid shaped fins that is often difficult or 

expensive to pursue otherwise experimentally. First, this chapter presents a computational 

model for a batoid shaped fin (Myliobatoid family) that is developed to replicate the 

experimental model built by Moored [18] and validate the computational results. Then, 

the analytical kinematic model of Moored [18] is used to study the hydrodynamic 

performance response to different kinematic features of the fin for prescribed motion.  
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3.1 Fluid-Structure Interaction Approach 
	
  
 Fluid Structure Interaction analysis addresses the set of problems where a fluid 

domain interacts with a solid domain. Examples include the motion of flexible flapping 

wings in air or fluid, aircraft wing flutter (aero-elasticity) and deformation of heart valve. 

FSI analyses are generally divided into two categories in terms of the fluid-solid 

coupling: (a) unidirectional (one-way) and (b) bidirectional (two-way) coupling. In one-

way FSI analysis, the equations for the fluid part are solved without exchanging any 

information with the equations for the solid part. The motion and deformation of the solid 

is then solved with the fluid forces as input. In two-way FSI analyses, the information is 

iteratively transferred between the solid and fluid domain through interface using the 

kinematic and dynamic boundary conditions. Further information is detailed in chapter 5 

regarding the available algorithms and procedures to perform FSI simulations. 
 The aim of this section is to develop a test case for the validation of the 

computational results. This validation then provides confidence in the computational 

method, which is used to further study the hydrodynamics of the rays.  A computational 

batoid shaped fin (Fig. 3.2b) is developed replicating the experimental model built by 

Moored [18] (Fig. 3.2a). The mechanical prototype was composed of three plates that 

were hinged at the top and bottom ends with pulleys. The fin motion was generated 

through pulling opposing cables over each pulley by an actuator. The mechanical setup 

only allowed motions normal to the surface of plates. The inner structure was embedded 

inside a flexible skin (made of PVC polymer) to mimic a natural batoid fin. Further 

details of the mechanical prototype are found in Moored [18]. 
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                       (a)                 (b) 

Figure 3.2: (a) Experimental batoid-shaped fin built by Moored [18], and (b) the 
computational counterpart. 
 

 The experimental inner structure is modeled as three computational rigid plates 

embedded inside the flexible skin with material properties of PVC polymer, having 

density 𝜌   =   1,000  𝐾𝑔/𝑚! , modulus of elasticity 𝐸 = 100  𝑀𝑃𝑎 , and Poisson ratio 

𝜈 =   0.4. A sinusoidal angular rotation is prescribed at each hinge such that the motion of 

the computational fin replicated that seen experimentally. Two modes of flapping are 

considered: (a) flat mode (Fig 3.3b), in which the same sinusoidal function is prescribed 

for all the hinges, and (b) curved mode (Fig. 3.3a), where maximum angular rotation 

increases towards the tip to create spanwise curvature. The fin has equilateral triangular 

planform with a root chord of c = 32 cm and aspect ratio of 𝐴𝑅   =   1.47. 
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                                              (a)                   (b) 

Figure 3.3: Photos of the (a) curved and (b) flat modes of spanwise flapping for the fin 
under study. The top photos are computational and the bottom photos are experimental. 
The flow direction is into the plane of view. 
 

 The computational fin model is placed inside a stationary computational domain 

(a rectangular box) with a fixed incoming flow speed (Fig. 3.4a). The fin root is fixed to 

the boundary. Swimming (cruise condition) is then simulated by imposing a constant 

flow speed into the domain. The boundary conditions are defined as follow:  

• Inlet: prescribed flow speed 

• Outlet: prescribed atmospheric pressure 

• Fin-root plane: symmetry  

• Side and bottom walls: free slip with zero shear  
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 The dynamic viscosity of the fluid is that of water in 20 degree Celsius, 𝜇 

=   0.0008899  𝐾𝑔/𝑚!!𝑠!!. A typical ray swims at 𝑅𝑒   =   10! [25]. However achieving 

this Reynolds number at laboratory is challenging due to mechanical limitations [18]. 

Following the experiment, the flow Reynolds number corresponding to the root chord of 

the fin is set to 𝑅𝑒   =   27,900. The Shear Stress Transport (SST) turbulence model [76] 

is used throughout the study. Details of the numerical procedure are presented in Chapter 

5. 

 

 

                                      (a)                                 (b) 

Figure 3.4: (a) The computational domain under study. The fin root is stationary and 
fixed to the symmetry plane. (b) Mesh volumes visualized on a plane passing through the 
mid-plane of the fin. 
 

 An unstructured mesh is created around the fin and within the domain. The mesh 

is refined around the fin and coarsened away from the fin. In particular, the mesh around 

the leading edge is more refined to capture the dynamic separated flow near the leading 

edge that is argued to be essential in producing most of the force in flapping propulsion 

[58]. Due to the excellent match between the computational and experimental results 
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(Fig. 3.5), no attempt is made to refine the regions that include wake behind the foil. For 

discussions on the mesh deformation technique, see chapter 5. 

 The commercial Computational Fluid Dynamics (CFD) package ANSYS® CFX, 

release 14.0 is used to solve the Navier-Stokes equations for the fluid part on the nodes 

around the fin and ANSYS® Mechanical is used to solve the continuum equations for the 

solid part inside the fin (For details regarding the numerical implementations see chapter 

5). Both one-way and two-way FSI simulations are performed to investigate the effect of 

each approach. By matching frequency, Reynolds number and the amplitude (taken as 

tip-to-tip excursion of the fin) to the experiments, four different St are chosen to perform 

the simulations. Both flapping modes (flat and curved) are considered. Figure 3.5 

compares the cycle-averaged thrust coefficients, 𝐶! = 𝑇 !
!
𝜌𝑈!𝑆  (where 𝑆  is the 

planform area), versus Strouhal number for the current computational model against its 

experimental counterpart. Thrust coefficients were averaged over multiple flapping 

cycles (at least 6 cycles) to ensure that the transient effects are dissipated. 
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Figure 3.5: Comparison of the computational thrust coefficient as a function of Strouhal 
number with those obtained experimentally by Moored [18]. 
 

 As seen in Fig. 3.5, the calculated thrust coefficients are in acceptable agreement 

with experiment when one-way FSI approach is chosen (less than 35% error) and in 

excellent agreement when two-way FSI is chosen. Note that the difference between the 

values for the thrust coefficients calculated by the two approaches magnifies as the fin 

material becomes more flexible and/or the fin includes more passive flexibility. 

 

3.2 Prescribed Motion Approach 
	
  
 This section presents the results and discussion for the hydrodynamics of the 

batoid shaped fins when the fin motion is prescribed. The validation of the numerical 

results against experiment presented in the previous section provides enough confidence 

in order to use the same mesh and fluid properties to conduct new studies on the fin. 

Although from computational perspective, two-way FSI analyses are the most accurate 
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Figure 4.5: Thrust performance as a function of St. (a) Original thrust measurements. (b)
Corrected thrust measurements.

by the flat mode of swimming even if it was not produced as e�ciently. From

this unintuitive result, a deeper look at the individual thrust signals that compose

these averaged results became critical and was performed (Fig. 4.6). It was found

that for both modes of swimming that the thrust signals gave some expected results:

during every cycle two peaks of net thrust were generated as the fin flapped through
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approach to study the fin hydrodynamics, they incur great computational cost and time. 

As previously discussed, prescribing a known motion on the fin provides more control 

over the kinematics with less computational cost. The key to minimizing the modeling 

error is to derive an analytical model that captures the major kinematic features exhibited 

by batoid shaped pectoral fins through matching the fitting parameters to the biological 

data.  
 There is infinite number of analytical forms to describe the deformation of a 

batoid shaped fin. An example is the model developed by Moored [18] to mimic the 

deformation of manta ray fins (Fig. 3.6). By mapping the coordinates of the fin at its 

neutral position to the coordinates of the deformed fin, they derived analytical 

expressions for the position of each point on the deformed fin as the product of the 

magnitude of the position vector radiating from the origin and its orientation. Their model 

captured two major kinematic features: (i) curved spanwise motion, and (ii) chordwise 

travelling wave. Two constraints were imposed to calculate the parameters: (a) due to the 

spanwise curl motion of the fin, the magnitude of the position vector, r, must be less than 

or equal to the initial neutral position, xf, at each time, and (b) the total strain in spanwise 

direction has to be zero. The final form of the equations derived by Moored [18] is shown 

in Fig. 3.6c. The fitting parameters (𝐾,𝑚,𝑛,𝜔)  were found by matching the resulting 

motion against biological data. 
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               (a)      (b)           (c) 

Figure 3.6: An analytical model was developed by Moored [18] to mimic the Manta ray 
fin deformation. (a) their fin schematic and dimensions, (b) the differential elements used 
to derive the equations and (c) the resulting Eulerian coordinates (𝑥,𝑦, 𝑧) as a function of 
the Lagrangian coordinates 𝑥! and 𝑦!. 

 

3.2.1 Planform effect 
	
  
 While the effects of fin geometric taper ratio, 𝑇𝑅, defined as the chord length of 

the tip divided by the chord length of the root (Fig. 3.7), on the aerodynamics of fixed-

wing vehicles is well understood, the effects of these geometric features on the 

hydrodynamics of the flapping wings remain an ongoing research topic. Given the 

observation that the batoid pectoral fins are highly tapered (with 𝑇𝑅 << 1), it is desired 

to understand how geometric taper ratio contributes to the swimming agility of the batoid. 

Here, the model developed by Moored [18] is applied to investigate the effects of 

planform taper ratio on the performance of a batoid shaped fin that is flapping about its 

root.  
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Chapter 3

Kinematic Modeling

This chapter develops an analytical model to describe the three-dimensional pec-

toral fin kinematics of the manta ray, Manta birostris. It captures the dominant

components of ray locomotion: curved spanwise (Fig. 3.1b) deformation coupled

with a chordwise traveling wave. Key features of locomotion are measured from

photographic images and are used to determine 4 fitting parameters. The model is

extended to quantify the kinematics of the entire batoid family with examples pre-

sented of two other species, the Atlantic stingray, Dasyatis sabina, and the cownose

ray, Rhinoptera bonasus. This model supplies a target deformation field for the de-

sign of an artificial pectoral fin, is used in CFD simulations and can be used as a

comparative tool among di↵erent swimming modes exhibited by rays.

y
x

z

LE
TE

Tip

Root
c

b

(a) (b)

Figure 3.1: (a) A manta ray and (b) the coordinate system for neutral plane of a ray fin where
LE is the leading edge and TE is the trailing edge. The root chord, c, is the length measured from
the leading edge to the trailing edge at the root of the fin while the span, b, is the length measured
from the root to the tip. These lengths also identify the chordwise and spanwise directions.
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This description of manta ray fin kinematics references the coordinate system in

Figure 3.1. In this formulation, a set of points (x
f

, y

f

) defines the neutral plane of a

ray fin in a flat configuration. The model solves for the deformed coordinates (x, y, z)

of the fin at a time, t. The time variation is represented as a sinusoidal signal with

an angular frequency, !. This signal can be replaced with another waveform (e.g. a

square wave, sawtooth, etc.) as long as the magnitude of the signal does not exceed

1. The non-dimensional wavenumber, K , is defined as K = 2⇡b/�, where � is the

wavelength of the traveling undulatory wave. The model has four fitting parameters

(K,m, n,!). Two (K,m) are used to fit the biological data extracted from two-

dimensional images. The third (!) is used to match the oscillation frequency. The

last (n) is used to match the zero strain constraint along the span.

The zero strain constraint (Eq. (3.2)) cannot be exactly satisfied with the analyt-

ical form (Eq. (3.3)). However, the choice of this functional form dictates how closely

this criteria can be met. Also, there is a free fitting parameter, n, where the optimal

value can be determined and used to minimize the strain in the span direction of

the model. To determine the optimal value of n, a parametric study is performed.

The values of (m,n) are iteratively input into the model while K is set to zero and

! is arbitrary. The model steps through a flapping cycle and the strain in the span

direction of the neutral axis is measured using Equation (3.3). A plot of the strain

as a function and (m,n) can be seen in Figure 3.3. The zero strain fitting parameter

can be related to the amplitude parameter (n = 0.1342m2) to minimize the strain
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Figure 3.7: Schematic of the fin with different planform taper ratio, 𝑇𝑅 = 𝐵/𝐴. Aspect 
ratio (𝐴𝑅 = 𝑏!/𝑆) is kept constant during the study.  
 

 The fin planform is an equilateral triangle with an aspect ratio (aspect ratio is 

defined as the square of the wingspan 𝑏 divided by the area 𝑆 of the wing) of 𝐴𝑅 = 2. 

The frequency and tip-to-tip amplitude of flapping are 𝑓   =   1 Hz and 𝐴   =   0.8𝑏 (80 

percent of the span, 𝑏). The incoming flow Reynolds number based on the mean chord of 

the fin is 𝑅𝑒 = 19,000. The choice of input parameters is based on the swimming 

kinematics of cownose ray [18]. All the parameters are kept fixed throughout the study 

but taper ratio remains a variable (Fig. 3.7).  

 Figure 3.8 plots the cycle-averaged thrust coefficient, 𝐶! , the hydrodynamic 

power coefficient for power deposited into the fluid, 𝐶! = 𝑃 !
!
𝜌𝑈!𝑆, and the resulting 

efficiency, 𝜂 = 𝐶!/𝐶!, for the fin under study as a function of the planform taper ratio. 

The transient hydrodynamic power, 𝑃, is calculated as 𝑃 = 𝑭 ∙ 𝑽  𝑑𝐴 where 𝑭 and 𝑽 

denote the traction and velocity at each point of the surface of the fin. It is found that both 

𝐶! and 𝐶! increase with taper ratio for a given flapping parameters. This increase is 

mainly attributed to the greater amount of fluid that is being pushed by the fins (normal to 

the surface) with higher taper ratio (in this case higher taper ratio corresponds to higher 
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surface area).  The increase in thrust with taper ratio comes with the price of consuming 

more power to flap the fin. The question arises as to whether there is an optimum for the 

taper ratio at which the resulting thrust is maximized for the given input power, i.e. when 

the propulsive efficiency is maximized. 

 

    

                               (a)                           (b) 

Figure 3.8: (a) cycle-averaged thrust and power coefficient and (b) propulsive efficiency 
as a function of taper ratio for the fin under study. 
 

 As is shown in Fig, 3.8b, the propulsive efficiency plateaus for fins with high 

taper ratios. This finding indicates that highly tapered batoid pectoral fins (in nature) are 

not necessarily adapted for high propulsive efficiency but to minimize the applied toque 

that is required to flap the fin (hydrodynamic input power). To gain more insight into this 

finding, transient thrust coefficients are plotted in Fig. 3.9. It is found that during each 

cycle of the flapping, two peaks of thrust are generated as the fin flaps through the neutral 

position (when the fin has its maximum flapping speed) and two peaks of drag are 

observed as the fin comes to rest at the ends of the flapping motion. This expected pattern 

is similar to that exhibited by a simple 2D heaving or pitching foil. As the taper ratio 
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increases, the maximum thrust coefficient in each cycle also increases. However, the 

maximum drag coefficient stays the same without the regard for the value of taper ratio.  

 

 

Figure 3.9: Transient thrust coefficient for the last two periods of the run. Note that 
negative values correspond to force in streamwise direction (thrust) whereas the positive 
values correspond to force in the opposite direction (drag).  
 

 To explain the unintuitive independence of the maximum drag coefficients to the 

planform taper ratio in each flapping cycle, it is sufficient to think of the flapping fin at 

the stationary positions as a fixed-wing at which the conventional aerodynamics rules 

apply (for low flapping frequencies). In the absence of movement and since the fin is 

composed of spanwise symmetric cross-sections with no chordwise traveling wave, the 

net generated force on the fin is drag dominated by skin friction. Thus different fins with 

different taper ratios are considered similar streamlined bodies with different values for 

drag force (since the surfaces areas are different) however with the same drag coefficient. 
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3.2.2 The Distribution of Thrust 
	
  
 It is of interest to investigate the distribution of thrust on the surface of the 

flapping fin. The ultimate thrust distribution affects the structural design of the fin. From 

experimental point of view, measuring the shear and pressure forces on the surface of a 

flexible flapping fin is very challenging. Dewey et al. [65] used a control volume 

momentum integral to estimate the momentum flux just behind the wing in order to find 

the thrust concentration along the span. They showed that momentum flux is 

concentrated at a location about 80 percent of the wingspan. Their method however did 

not account for the pressure change and transverse momentum flux, which are significant 

in highly three-dimensional flows [52, 16, 77].  
 Here, the net streamwise force vectors are calculated for the non- and highly 

tapered fins when the fin has its highest flapping speed (Figs 3.10a and 3.11a). It is found 

that for both cases, most of the thrust comes from the regions around the fin leading edge 

towards the tip (as expected also from the quasi-steady theory). However thrust 

distribution is found to be dependent on the planform taper ratios. For non-tapered fins, 

thrust vectors are distributed nearly uniformly with two mild spikes, one near the tip and 

another in about 80 percent of the span (Fig. 3.11a). For the highly tapered fin (Fig. 

3.10a), thrust vectors are found to be sharply concentrated near the location at 80 percent 

of the span. This finding nicely matches with the results presented by Dewey et al. [65], 

suggesting that ignoring the pressure gradient as well as the spanwise flow terms in 

estimating the momentum flux behind the fin does not affect the overall qualitative 

momentum flux distribution. 
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 To take a deeper look into thrust distribution, the surface pressure contours are 

plotted in Figs. 3.10b and 3.11b for the cases under study. It is clear that thrust vectors 

are concentrated in the areas with negative gauge pressure (suction). The difference 

between thrust distributions for non- and highly tapered fins can be explained by 

considering the effects of tip vortices, which are very strong in the non- tapered fin and 

weak in the highly tapered fin. Tip vortices create low-pressure regions around the tip of 

the fin that helps increase the thrust production, however as shown in Fig. 3.8a, come 

with the price of increasing input hydrodynamic power. 

 

 

 

                            (a)                                (b) 

Figure 3.10: (a) Thrust vetcors, and (b) pressure contours plotted on the surface of the fin 
with taper ratio of 𝑇𝑅 = 0.125. The fin is at its maximum flapping speed. 
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                                         (a)                               (b) 

Figure 3.11: (a) Thrust vetcors, and (b) pressure contours plotted on the surface of the fin 
with taper ratio of 𝑇𝑅 = 1. The fin is at its maximum flapping speed. 

 

3.3 Wake topology 
	
  
 Computational flow visualization is performed at free-stream Reynolds number of 

𝑅𝑒   =   10,000  based on the mean chord, frequency of 𝑓   =   1.5  𝐻𝑧  and tip-to-tip 

amplitude of 50 percent of the span. Examining the wake behind the fin suggests a highly 

three-dimensional flow field. The wake consists of hairpin vortices with alternating signs 

that originate from the leading and trailing edge of the fin. The structures are similar to 

that observed by Clark and Smits [16] for an elliptical undulating fin at very low 

Reynolds number. In this particular case, the direction of the induced velocity arrows 

suggest that no momentum is being transferred to the fluid, i.e. the thrust produced by the 

fin is zero. The vortical structures are visualized by plotting the iso-surfaces of Q-
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criterion defined as 𝑄 = 𝐶!(𝛺! − 𝐾!!), where 𝐶! is a constant (𝐶! = 0.25 in ANSYS 

CFD-post), 𝛺 is the vorticity magnitude, and 𝐾! is the mean strain rate. The dimension of 

𝑄 is 1 𝑡𝑖𝑚𝑒!. 

 

  

 

Figure 3.12: Vortical structures behind the computational fin under study. The arrows 
show the induced velocity direction. 

 

3.4 Parametric Study  
	
  
 To better understand the effects of swimming kinematics on the hydrodynamic 

performance of batoids, a parametric study is performed to calculate the cycle-averaged 

thrust coefficient of a batoid shaped fin for a range of flapping frequencies and 

amplitudes. The planform is chosen such that it mimics the manta ray pectoral fin (Fig. 

3.13). The fin root is fixed to the symmetry wall and a fixed-incoming flow speed is 

imposed on the inlet of the domain (Fig 3.4a). Although manta rays swim with Reynolds 

numbers close to 10! based on the mid-span fin chord [78], the free-stream Reynolds 

number here is set to 𝑅𝑒   =   35,000 considering the numerical accuracy based on the 
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level of mesh refinement around the foil. Figure 3.13a shows the mesh used for the 

current parametric study. The analytical model developed by Moored [18] is used to 

prescribe the fin motion. Large fin deformations were considered to mimic the pectoral 

fin deformations of manta ray (Fig. 13.14).   

 

 

 

                                 (a)                                (b) 

Figure 3.13: (a) Computational and (b) natural Manta ray pectoral fin.  

 

 

 

Figure 3.14: Various (front-view) deformation of the fin under parametric study. The 
amplitude, A, is calculated based on the tip-to-tip excursion.  
  

Flow	
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Figure 3.15a plots the cycle-averaged thrust coefficient as a function of frequency and 

amplitude (reported as the percentage of the fin span). It is found the thrust coefficient 

increases with both frequency and amplitude as also found in other three-dimensional 

[52, 56, 16] and two-dimensional rigid flapping wing analyses [47, 51]. The boundless 

increase of 𝐶!  with 𝑓 and 𝐴 without any local optimum is a signature of rigid wing 

flapping propulsion. Considering that the (curved) motion of the current fin is known, 

such pattern of thrust coefficient with the kinematics of the fin is expected. For fins that 

are (passively) flexible, thrust coefficient usually plateaus at some finite frequency and 

amplitude as shown by Quinn et al. [79]. 

 

 

   

                            (a)                                (b) 

Figure 3.15: Thrust coefficient (a) surface and (b) contours on frequency versus tip-to-tip 
amplitude plane. Dashed lines denote constant Strouhal number lines. 
 

 Figure 3.15b plots the two-dimensional contours of the thrust coefficient in the 

frequency versus amplitude plane. Considering the importance of Strouhal number as a 

non-dimensional kinematic parameter in flapping propulsion, Strouhal number contours 

Amplitude/Span	
  
Amplitude/Span	
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(defined as frequency multiplied the amplitude divided by free-stream flow speed) are 

also plotted in Fig. 3.15b to see if 𝑆𝑡 helps select an amplitude-frequency optimum for a 

desired 𝐶!. Interestingly, it is found that the constant thrust coefficient lines (iso-𝐶!) 

coincide with constant Strouhal number (iso-  𝑆𝑡) lines. This coincidence suggests that 

thrust coefficient in flapping propulsion can be described solely as a function of Strouhal 

number. Or, equivalently, for a given 𝐶!(and cruise speed) there are infinitely many 

pairs of amplitude and frequency which results in the same Strouhal number, without 

regard for energetics of the motion. 

 If 𝐶! is indeed solely a function of Strouhal number, then based on the force 

balance in cruise condition (thrust=drag), it is implied (hypothesized) that St is solely a 

function of shape, i.e. drag coefficient and area. Given the observation that swimming 

animals cruise with fairly constant Strouhal number for a wide range of speeds [21, 49 

and 51], this hypothesis has profound implication on our understanding of the role of 

Strouhal number in free-swimming. Specifically, there seems to be little relationship 

between the value of 𝑆𝑡 and the efficiency or economy of the swimmer: 𝑆𝑡 is set by the 

shape of the freely swimming animal. 

 Considering the extensive parameter space, high computational cost and the wake 

complexity of the three-dimensional propulsors, it is decided to investigate this 

hypothesis and its limits using a simpler propulsion platform. The non-opacity of the 

model will allow for clearer understanding of the underlying physics. For this matter, a 

two-dimensional pitching foil is chosen. In the next chapter, a comprehensive 

computational and theoretical study using the pitching foil is conducted to lay down the 
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groundwork for providing more physical insight into the meaning of St in free-

swimming.  
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Chapter 4 

Two-Dimensional Propulsor 
	
  

The results of the previous chapter provided clues on how the thrust coefficient of 

swimming animals is related to their Strouhal number; namely, Strouhal number of a 

freely swimming animal is apparently independent of its gait. To extend and fully 

comprehend the implication of this finding on free-swimming, two-dimensional pitching 

foils are chosen to conduct comprehensive computational and theoretical analyses. First, 

the relation of St with free-swimming is elucidated. Then, an energy analysis is provided 

to explain the underlying mechanisms behind the two kinematic commonalities among 

swimming species, namely the linear relation between tail-beat frequency and speed, as 

well as constancy of amplitude. Dimensional and scaling analyses are provided to support 

the computational results. 
 

4.1 A Framework to Study Free-Swimming 
	
  

Understanding the physical reasons for common kinematic behaviors among 

swimming fish is of fundamental importance in designing biomimetic swimming robots. 

One such observed behavior is that animals cruise (and fly) within a tight range of 
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Strouhal numbers for a wide range of speeds [21, 49 and 51]. Much computational and 

experimental work has been done to establish the relation between 𝑆𝑡  and the 

hydrodynamic performance of the flapping fins and foils to explain the possible reasons 

for this tight range. In such experiments, the foil is typically placed into a water tunnel 

with a fixed-incoming flow speed and then the thrust and power are measured for 

different foil kinematics. The measured thrust coefficient usually increases with Strouhal 

number, but propulsive efficiency peaks for St somewhere between 0.2-0.4 

corresponding to the range observed in nature (Fig. 4.1c). Following the experimental 

results, it has been hypothesized that the maximum propulsive efficiency of flapping 

motions is the principal mechanism that prompts the swimming animal to choose a 

specific St corresponding to the observed narrow range of (0.2-0.4) in nature 

[(21),(49),(51)]. This tight range has also been attributed to the optimal duration when a 

leading edge vortex stays attached to produce maximum possible thrust [33]. 
Although such water-tunnel experiments seem to give clues for how this tight 

range of 𝑆𝑡 is related to energetics of the swimming, their implication that 𝑆𝑡 is actively 

tuned by the animal is rather ambiguous. In these experiments, 𝑆𝑡 is considered as an 

active (input) parameter since the speed is set independently, and is constant. However, in 

free-swimming of animals, St is essentially an outcome (since U is a dependent variable). 

Thus, it remains unclear whether the animal can exercise control over the St of the motion 

to swim efficiently. In particular, the question arises as how to interpret the results of 

fixed-incoming speed experiments to study free-swimming. There is a final question also 

that if indeed the animal cannot choose its 𝑆𝑡, and its 𝑆𝑡 is tuned to the tight range of 
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optimality, how does this tuning take place, and what aspects of the design of the animal 

are most responsible for getting this range of the Strouhal number. 

 

     

                 (a)                    (b)                    (c) 

Figure 4.1 (a) A typical constant-stream approach to studying the hydrodynamics of 
flapping foils and the measured (b) thrust coefficient and (c) propulsive efficiency as a 
function of Strouhal number. Different points on the curve correspond to different bodies 
(source of drag) which are mated with the same propulsor (source of thrust). The curves 
are adopated from experimental work of Anderson et al. [51]. 
 

According to Haj-Hariri [80], there is an inherent inconsistency in constant-

stream approach: any measured net thrust other than zero is incompatible with the 

constant speed assumption. The only proper way to resolve this inconsistency is to 

assume a finite parasitic drag from a perfectly sized separate body that nulls the measured 

thrust. Then the system of the propulsor and that body can swim freely at the speed at 

which the experiment is performed. However, since the speed is constant, different values 

for thrust correspond to different bodies that are mated to the propulsor under study. This 

comparison is shown graphically in Fig. 4.1. Thus, the proper way to study free-

swimming (for a given swimmer) using water tunnel experiments is to compare motions 

restricted to specific thrust at a given speed, i.e. look for the best performance of an 

46 J. M. Anderson, K. Streitlien, D. S. Barrett and M. S. Triantafyllou

Heave motor
Pitch motor
Potentiometer
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Figure 3. Apparatus used for conducting force measurement experiments.

sensors. The high-level analogue voltage outputs were sent to the laboratory monitor
room through a connecting cable; there they were passed through a set of precision
matched low-pass analogue filters to prevent aliasing. The filters were Frequency
Devices four-pole Butterworth low-pass modules with a cuto↵ frequency of 100 Hz
and specifically rigid tolerances on phase and amplitude matching.

Figure 3 provides a sketch of the experimental apparatus. The one-third-chord
point was used in this study as the reference and pivot point, i.e. b⇤ = 1

3 .
We calibrated the force sensors first statically in water by hanging various weights

at the mid-span of the foil, which was oriented first at 0� and then at 90�. Linearity
was better than 0.1%, while repeated daily calibrations over a period of about a
month provided consistent constants with no apparent drift (long-term variations
of about 0.34%). We conducted dynamic calibration by oscillating the apparatus in
air at ten di↵erent frequencies chosen within the range of planned test frequencies,
employing three di↵erent hanging weights and measuring the forces and torque. The
foil was oriented first at 0� and then at 90�. Agreement between theoretically predicted
values and the data measured on the basis of static calibration was better than 2%
for all frequencies and weights tested.

A single harmonic heave and pitch motion was imposed with various combinations
of heave amplitude, pitch amplitude, frequency, and relative phase angle. Most tests
were conducted with phase angle between heave and pitch equal to 90�, while a
limited investigation was also made for the e↵ect of the phase angle, which was
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actual swimmer whose body and propulsor are already paired, and whose propulsor needs 

to generate a specific value of thrust (equal to the drag of its body) to maintain cruise at 

the desired speed. 

Assuming that for a given swimmer, source of net thrust and drag can be 

separated and distinguishable (for instance, in the case of thunniform vertebrates such as 

cetaceans, tunas and lamnid sharks), a simple model of a fish that consists of a virtual 

body (as only source of a drag, 𝐷) and a propulsor (as the source of cycle-averaged net 

thrust, 𝑇) is adopted (Fig. 4.2).  

 

 

                              (a)                          (b) 

Figure 4.2: Schematic of a swimmer that consists of a generic body and a rigid pitching 
foil as the propulsor representing thunniform swimmers. It is assumed that the source of 
thrust is separate and distinguishable from the source of drag. The flapping motion of the 
pitching foil is controlled by frequency and amplitude of the oscillation.   
 

This model, although simple, is able to capture the essence of free-swimming. 

The assumptions leading to the model include: 

(a) The proposed model is composed of two-dimensional propulsor and 

body whereas the flow around a natural swimmer is highly three-

dimensional. In three-dimension, area and propulsor planform are 
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additional major design parameters. Furthermore, three-dimensional 

propulsors suffer an extra contribution to the net drag (induced drag) 

due to the presence of wingtip vortices, thus negatively affecting the 

generated thrust. Induced drag effects are neglected in two-

dimensional swimming models. It is expected that the proposed two-

dimensional model accurately predicts the fundamentals of free-

swimming, i.e. the meaning of Strouhal number, the pattern of which 

thrust changes with speed, the relation of flapping frequency and speed 

and the effect of flapping amplitude on the energetics of swimming. 

 

(b) The proposed model utilizes a propulsor with pure pitch motion 

whereas the caudal fin of a natural swimmer such as dolphin exhibits 

complex flapping motions (a combination of pitch and heave motions). 

It is expected that an optimized heave-pitch flapping motion increases 

the generated thrust for a given input power (higher efficiency) as 

compared to pure pitch (or heave) motion. However, the fundamentals 

of free-swimming are expected to remain the same regardless of the 

type of motion. 

 

(c) The proposed swimming model is based on the cycle-averaged 

quantities (force and speed) and is constrained to only have 

longitudinal movement, thus ignores the oscillatory movements 

(lateral and longitudinal) of a natural swimmer. It is expected that 
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when such effects are included in the model, higher input power is 

required to produce the same motion when oscillatory movements 

were not included. 

  

(d) It is assumed that the body and the propulsor of the proposed swimmer 

are rigid, i.e. effects of flexibility on the thrust, power and swimming 

speed are ignored. It is shown that an optimum flexibility increases 

both generated thrust and propulsive efficiency of flapping foils [79]. 

It is expected that when such effects are included in the proposed 

model, more efficient motions can be generated. However the 

fundamentals of free-swimming are expected to remain the same 

without the regard for flexibility. 

 

Based on the proposed model, the necessary condition for free-swimming at any 

cruising speed, 𝑈, is stated simply as: 

 

 𝑇 = 𝐷 (4.1) 

Where 𝑇 is the cycle-averaged net thrust generated by the propulsor and 𝐷 is the drag 

force experienced by the body. The non-dimensional form of Eq.  4.1 obtained using the 

free-stream dynamic pressure is described as: 

 𝐶!𝑆! = 𝐶!𝑆! (4.2) 

 

With thrust and drag coefficients defined as: 
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 𝐶! =
𝑇

1
2𝜌𝑈

!𝑆!
,        𝐶! =

𝐷
1
2𝜌𝑈

!𝑆!
,       (4.3) 

 

where 𝜌 and 𝜇 are fluid density and dynamic viscosity, 𝑆! is the planform area of the 

propulsor (proportional to the propulsor length ℓ𝓁! square) and 𝑆! is the wetted area of the 

body (proportional to the body length ℓ𝓁!  square) with 𝐶!  being a function of body 

configuration and Reynolds number 𝑅𝑒! = 𝜌𝑈ℓ𝓁!/𝜇. For two-dimensional propulsors 

and bodies, 𝑆!  and 𝑆!  are replaced with propulsor chord length, ℓ𝓁! , and body chord 

length ℓ𝓁!. 

 In this study a two-dimensional rigid pitching foil with NACA0012 cross 

section is chosen as the propulsor. A virtual body (a combination of drag coefficient and 

an area) is considered as a source of drag to nullify the thrust of the foil and allow for 

cruise at finite thrust coefficients. The foil oscillates sinusoidally about its leading edge. 

The chord length and the location of the pitching axis are kept fixed throughout the study, 

making frequency and amplitude of the flapping as well as speed of the incoming flow 

the only independent parameters. The frequency, amplitude and speed are non-

dimensionalized as 𝑓∗ = 𝑓ℓ𝓁! 𝑈 , 𝐴∗ = 𝐴 ℓ𝓁!  and 𝑅𝑒 = 𝜌𝑈ℓ𝓁! 𝜇 . Instantaneous power 

deposited to the flow by the foil is calculated using the method described in Chapter 3. In 

the particular case of pure pitching motion, transient power can be calculated simply by 

taking the product of the hydrodynamic moment about the pitching axis and the 

instantaneous angular velocity. Cycle-averaged quantities are taken over many cycles to 

ensure that transient effects of starting vortices are suppressed. Each cycle consists of 500 
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time steps for all the cases. Details of the numerical procedures and validation are 

presented in Chapter 5. 

 

 

                              (a)                          (b) 

Figure 4.3: (a) The computational domain with the boundary conditions highlighted and 
(b) the closed-up view of the mesh around the foil. 
 
 

The foil was placed inside a rectangular fluid domain (Fig. 4.3a). An O-type 

structured mesh was created such that it was refined around the foil and coarsened away 

from the foil (Fig. 4.3b). The physical normal distance of the first mesh node above the 

surface of the foil was kept fixed for all the cases. The maximum non-dimensional 

distance corresponding to the first node above the foil surface was 𝑦! ≈ 2.1 for the case 

with the highest Strouhal number,  𝑓∗ = 3;𝐴∗ = 0.2, when the foil had its maximum 

rotational speed. For the mesh study and validation, see Chapter 5. 
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              (a)      (b) 

Figure 4.4: Computed thrust and input power coefficients for the pitching foil under 
study: (a) C!  contours (solid lines) and the corresponding St contours (dashed lines; 
St = f ∗A∗ ), and  (b) power coefficient for each C!  contour as a function of non-
dimensional frequency. 𝐴!"#$#!!!∗  is denoted by bold symbols. 

 

 Since the virtual body is identified by an area (a length of the propulsor for 2D 

cases) and a drag coefficient (i.e. ℓ𝓁! and 𝐶!), then based on Eq. 4.2, each iso-𝐶! line 

corresponds to a unique swimmer. In other words, each iso-𝐶!  line relates to the 

propulsor mated to a specific body. Thus, to properly study free-swimming using the 

experiments in which the incoming flow speed is fixed, one should compare the motions 

along individual constant thrust lines. The solid lines in Fig. 4.4a show four contours of 

𝐶!  (= 0.0, 0.06, 0.16, 0.40) for the pitching foil in the   𝑓∗ − 𝐴∗  plane. The Reynolds 

number for these simulations is set to 𝑅𝑒 = 10,000. The dashed lines in Fig. 4.4a show 

four contours of 𝑆𝑡  (= 𝑓∗𝐴∗)  (= 0.12, 0.18, 0.25, 0.37) , which closely track the 𝐶! 

contours. 

 According to Eq. 4.2, each 𝐶! contour in Fig. 4.4a represents a swimmer that 

consists of a specific virtual body attached to the propulsor under study. Note that 
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different 𝐶! lines correspond to different bodies attached to the same propulsor such that 

𝐶!ℓ𝓁! = 𝐶!ℓ𝓁!, and cruising at the speed at which the numerical experiment is performed. 

It is interesting to note that 𝐶! and 𝑆𝑡 contours coincide up to some limiting amplitude, 

𝐴!"#$#!%&∗ . The amplitude 𝐴!"#$#!%&∗  is specific to each 𝐶!  contour, and is not found to 

follow any global pattern. Thus for any given swimmer cruising at a constant speed, 

thrust coefficient depends solely on 𝑆𝑡 of the motion so long as the amplitude is below 

𝐴!"#$#!%&∗ .  Although initially arrived at for a particular speed U (corresponding to 

𝑅𝑒 = 10,000), it is found that the phenomenon of coincidence of 𝑆𝑡 and 𝐶! lines in the 

dimensionless plane of 𝑓∗ − 𝐴∗ (Fig. 4.4a) is independent of the cruising speed. This 

finding is in agreement with the experimental findings of Quinn et al. [79] in which they 

showed the sole dependence of thrust coefficient of a flexible heaving panel on 𝑆𝑡 over a 

wide range of conditions. An implication of the sole dependence of 𝐶! on 𝑆𝑡 is that 

(based on Eq. 4.2) 𝑆𝑡 of the motion for a given cruising swimmer is solely a function of 

the geometry and drag characteristics of the body so long as 𝐴∗ ≤ 𝐴!"#$#!%&∗ . Kohannim 

and Iwasaki [81] arrived at the same conclusion without considering the effect of 

flapping amplitude by solving the kinematic equations for a simple model of carangiform 

locomotion with three rigid parts and two hinges. For motions with 𝐴∗ > 𝐴!"#$#!%&∗ , 𝑆𝑡 

corresponding to cruise is dependent on amplitude of the motion in addition to the 

geometry of the swimmer, but our forthcoming studies of the power seem to indicate that 

this regime is not favored in nature.  

 The motions along each 𝐶!  contour share the same 𝑆𝑡 (for 𝐴∗ < 𝐴!"#$#!%&∗ ), 

however they vary in terms of power. Figure 4.4b plots the input power for the motions 

along each of the 𝐶! contours in Fig. 3a. The input power for a 𝐶! contour is found to be 
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minimum at the point where 𝐶! contour begins to deviate from its corresponding 𝑆𝑡 

contour in the 𝑓∗ − 𝐴∗ plane, i.e. at 𝐴∗ = 𝐴!"#$#!%&∗ .  These observations are made for a 

given speed. An important question arises as to how 𝐴!"#$#!%&∗  (for a given 𝐶! contour) 

varies with respect to the cruising speed. One way to answer this question is to remain 

focused on a specific swimmer, i.e. on a specific combination of a virtual body and our 

propulsor. At each cruise speed, 𝐶! of the propulsor is proportioned to 𝐶! of the body by 

ℓ𝓁!/ℓ𝓁!. To assess the sensitivity of 𝐴!"#$#!%&∗  to 𝑈, we look at the dependency of body drag 

coefficient, 𝐶!, on 𝑈. This information leads to the dependence of 𝐶! on 𝑈, and in turn to 

the dependence of 𝐴!"#$#!!"∗ on 𝑈 . As is shown in Fig 4.7b, drag coefficient of a 

streamlined body decreases rapidly with flow speed but reaches an asymptotic state at 

high enough speeds indicating that 𝐴!"#$#!%&∗  remains insensitive to the cruising speed (for 

high enough speeds). This finding suggests that the swimmer can minimize its input 

hydrodynamic power at all speeds by staying at the non-dimensional point corresponding 

to 𝐴!"#$#!%&∗  of its 𝑆𝑡 contour.  And that this 𝐴!"#$#!%& is physically meaningful since it is 

very insensitive to 𝑈. Dimensionally, this means that the swimmer should keep its tail-

beat amplitude at a constant level ℓ𝓁!×𝐴!"#$#!%!∗  and control its speed by varying the 

frequency, 𝑓 = 𝑓∗𝑈 ℓ𝓁!. Our prediction matches the reported behavior for swimming 

species such as trout, goldfish, shark and dolphin [23 and 24]. For these species the 

amplitude of the tail beat is constant, and the frequency is proportional to the speed. 
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4.2 Dimensional Analysis 
	
  

To generalize the findings of the current study, a dimensional analysis is 

performed to relate the 𝑆𝑡 of a cruising swimmer to its geometry and kinematics. It is 

assumed that 𝑆!,!~ℓ𝓁!,!
!. For a cruising swimmer the speed 𝑈 is an outcome of the 

motion and is a function of frequency and amplitude of the flapping, as well as geometry 

and drag characteristics of the swimmer’s body: 

 

 𝑈 = 𝜙(𝑓,𝐴, ℓ𝓁! , ℓ𝓁! ,𝐶!) (4.4) 

 

Nondimensionalizing the above results in: 

 

 
𝑈
𝑓𝐴 = 𝑆𝑡 = 𝜙

ℓ𝓁!
ℓ𝓁!
,
𝐴
ℓ𝓁!
,𝐶!  (4.5) 

 

Equation 4.5 states that, in general, Strouhal number of a cruising swimmer is a 

function of shape as well as the amplitude of the flapping. As our power analysis 

indicates, swimmers should (and do) keep their tail-beat amplitude at a constant level of 

𝐴!!"#"$%&∗  to minimize power consumption at all cruising speeds. Furthermore, this 

𝐴!"#$#!%&∗  is a function of 𝐶!, and in turn, a function of 𝐶!. Thus 𝑆𝑡 of a cruising swimmer, 

which maintains 𝐴!"#$#!%&∗ , is only a function of shape as described in Eq. 4.6. A 

somewhat similar dimensional analysis was performed by Wu [82] where he derived the 

swimming speed of fish as a function of their body length, drag coefficient and metabolic 

rate. 
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 !
!"
= 𝑆𝑡 = 𝜙 ℓ𝓁!

ℓ𝓁!
,𝐶!       with  A = ℓ𝓁!   𝐴!"#$#!%&∗ (𝐶!) (4.6) 

   

 Equation 4.6 highlights the fact that the 𝑺𝒕 at which a swimmer is cruising 

cannot be chosen by tuning the kinematics of the motion, but is determined once the 

shape and size of the swimmer are chosen, and the swimmer is set to swim freely. 

 

4.3 Analytical Solution 
	
  

The dimensional analysis of section 4.2 demonstrates the sole dependence of 𝑆𝑡 

on the shape of the cruising swimmer. To motivate how 𝑆𝑡  is related to the drag 

coefficient and area of the swimmer, Theodorsen’s thin airfoil theory is used to derive an 

analytical solution for the performance of a cruising two-dimensional rigid pitching foil 

(mated to a generic body) as a function of speed, frequency and amplitude, where the foil 

is modeled as a flat plate. For a constant incoming flow speed, U, and assuming the flow 

is always attached on the surface of the foil (i.e. when the amplitude of the motion is 

small), the total lift exerted on the thin pitching foil when rotating about the leading edge, 

is composed of circulatory 𝐿! and non-circulatory 𝐿! components [45]: 

 

 𝐿 = 𝜋𝜌𝑈ℓ𝓁!   ∁ 𝑘 𝑈𝛼 +
3
4 ℓ𝓁!𝛼 +

𝜋𝜌ℓ𝓁!!

4 𝑈𝛼 +
1
2 ℓ𝓁!𝛼  (4.7) 

 



	
   58	
  

 𝐿 =   𝐿! + 𝐿! (4.8) 

 

In a similar fashion, the instantaneous moment exerted on the pitching axis will be equal 

to: 

 

 𝑀! = −
𝜋𝜌ℓ𝓁!!

4
3
4𝑈ℓ𝓁!𝛼 +

9
32 ℓ𝓁!

!𝛼 + 𝑈∁ 𝑘 𝑈𝛼 +
3
4 ℓ𝓁!𝛼  (4.9) 

 

When 𝛼 is the instantaneous pitch angle and ∁ 𝑘  is a weak function of reduced 

frequency known as Theodorsen’s function where reduced frequency is defined as 

𝑘 = 2𝜋𝑓ℓ𝓁! 𝑈. The value of ∁ 𝑘  varies between 0.5 and 1.0, and therefore attenuates 

the total lift force. The figure 13.19 of Katz and Plotkin [45] plots the exact values 

of  ∁ 𝑘 . The lift components on the foil are shown schematically in Fig. 4.5. 

 

 

 

Figure 4.5: The schematic of theoretical circulatory and non-circulatory forces acting on 
the pitching foil. Circulatory lift is always perpendicular to the free stream velocity as 
opposed to non-circulatory lift that is perpendicular to the chord of the foil. 
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Since the circulatory component of the lift is always perpendicular to the free 

stream direction, 𝐿! does not have any contribution to thrust production for pitching foils. 

Instead, non-circulatory effects, i.e. added mass, will contribute to the thrust generated by 

the foil. As a result, the equation for instantaneous thrust reads as follow: 

 

 𝑇 = 𝐿!  𝛼 =   
𝜋𝜌ℓ𝓁!!

4 𝑈𝛼𝛼 +
ℓ𝓁!
2 𝛼𝛼  (4.10) 

 

The instantaneous hydrodynamic power deposited into the flow by an oscillating 

foil can be described as the surface integral of the inner product of total force and 

velocity at each point on the surface of the foil. In the case of pure pitching of a rigid foil, 

the surface integral of the total force times velocity can be simplified to the scalar product 

of moment about the pitching axis and the angular velocity as shown below: 

 

 𝑃 = 𝑀!𝛼 = −
𝜋𝜌ℓ𝓁!!

4
3
4𝑈ℓ𝓁!𝛼

! +
9
32 ℓ𝓁!

!𝛼𝛼 + 𝑈∁ 𝑘 𝑈𝛼𝛼 +
3
4 ℓ𝓁!𝛼

!  (4.11) 

 

Assuming a sinusoidal pitching oscillation, i.e. 𝛼 =   𝛼!"# sin(2𝜋𝑓𝑡)  where 

𝛼!"# = 𝐴 2ℓ𝓁!, the mean thrust force and input power over a cycle with the period 

of  𝑡! = 1 𝑓 will be equal to: 

 

 𝑇 =     
1
𝑡!

  
𝜋𝜌ℓ𝓁!!

4 𝑈𝛼𝛼 +
ℓ𝓁!
2 𝛼𝛼 𝑑𝑡

!!

!
=
𝜋!

16𝜌ℓ𝓁!(𝑓𝐴)
! (4.12) 
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 𝑃 = −
1
𝑡!

𝑀!𝛼
!!

!
𝑑𝑡 =

3𝜋!

32 𝜌ℓ𝓁!(1+ ∁ 𝑘 )(𝑓𝐴)!𝑈 (4.13) 

 

Therefore, thrust and power coefficients per unit span must read: 

 

 𝐶! =
𝑇

1
2𝜌𝑈

!ℓ𝓁!
=
𝜋!

8 𝑆𝑡!,          𝐶! =
𝑃

1
2𝜌𝑈

!ℓ𝓁!
=
3𝜋!

16 (1+ ∁ 𝑘 )𝑆𝑡! (4.14) 

 

 As is suggested by equation 4.14, for pitching foils swimming in an ideal flow 

at a constant speed with small flapping amplitudes, both thrust and power coefficients can 

be solely described as a function of Strouhal number. Note that 𝐶!  is also slightly 

dependent on reduced frequency, 𝑘, through Theodorsen’s function ∁ 𝑘 . This finding 

highlights the importance of 𝑆𝑡 as a governing parameter in force generation and power 

consumption of pitching foils. Figure 4.6 compares the computed thrust coefficient as a 

function of Strouhal number for a pitching foil with NACA0012 cross-section with that 

obtained using Theodorsen’s theory (Eq. 4.14). The Reynolds number and the non-

dimensional flapping amplitude are set to 𝑅𝑒   =   3,000 and 𝐴 ℓ𝓁! = 0.1. The apparent 

shift between the two lines in Fig. 4.6 is predominantly due to the absence of viscous 

drag in the calculations of force and moment in Theodorsen’s theory.  
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Figure 4.6: Comparison of the computational thrust coefficient as a function of Strouhal 
number for a pitching foil against the values obtained using Theodorsen’s thin airfoil 
theory (Eq. 4.14). 
 

 Consider a two-dimensional virtual body that is attached to the propulsor 

(with a drag, 𝐷 = !
!
𝜌ℓ𝓁!𝑈!𝐶!) and the system is cruising at some speed 𝑈. The value for 

𝐶! from equation 4.14 can be substituted into equation 4.2 to satisfy the force balance 

condition in cruise: 

 

 
𝑓𝐴
𝑈 = 𝑆𝑡 =

8
𝜋!
ℓ𝓁!
ℓ𝓁!
𝐶! (4.15) 

 

 Eq. 4.15 supports the findings that were obtained computationally (Fig. 4.4a) 

and using dimensional analysis (Eq. 4.6), namely that 𝑆𝑡 is solely a function of 𝐶! of 

propulsor or 𝐶! of the body. To derive Eq. 4.15, thrust and moment were calculated by 

integrating the pressure around the thin pitching foil in ideal flow. However, the relation 
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of 𝑆𝑡 to geometry and drag coefficient of a swimmer can also be obtained using a more 

general scale analysis. For high flapping frequencies (large 𝑓∗ ) and low flapping 

amplitudes (small 𝐴∗ ) added mass effects are the dominant contributors for force 

production. As a result, it makes sense to scale cycle-averaged thrust as 𝑇  ~  𝜌ℓ𝓁!
!(𝑓𝐴)!, 

i.e. base the velocity scale on the normal velocity of the propulsor. A thrust coefficient  𝐶! 

corresponding to this scaling is then defined:  

 

 𝑇 = 𝐶!   𝜌ℓ𝓁!
!(𝑓𝐴)! (4.16) 

 

Where it is easy to show that 𝐶!   =   𝑆𝑡!𝐶! .  Theory and computations show that 𝐶!   is 

constant. Based on Theodorsen’s theory, for a thin pitching foil in ideal flow, the value 

for the constant is 𝐶! = 𝜋! 8 (Eq. 4.14). For Navier-Stokes solutions, as was shown in 

Fig. 4.4a, 𝐶! (and 𝐶!) stays constant for each 𝐶! contour (which is also a St contour) so 

long as 𝐴∗ ≤ 𝐴!"#$#$!%&∗ ; although its value can vary from one contour to another as 𝐶! 

approaches zero. Substituting the new expression for 𝐶! into Eq. 4.2 results in: 

 

 𝑆𝑡 =
ℓ𝓁!
ℓ𝓁!

𝐶!
𝐶!   
  
!/!

 (4.17) 

 

 It has been reported that 𝑆𝑡 for swimming species varies with swimming 

speed ([3] and [73]). This variation can be explained by noting that based on equation 

4.17, 𝑆𝑡 itself is an implicit function of swimming speed through the dependency of drag 

coefficient of the body, 𝐶!, on the swimming speed (or Reynolds number). 
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              (a)      (b) 

Figure 4.7. (a) Variation of Strouhal number with body-based Reynolds number for six 
odontocete cetaceans species observed by Rohr and Fish [24] (private communication) 
(b) experimental drag coefficient of a streamlined section with 12% thickness ratio as a 
function of Reynolds number. Adopted from Hoerner [83]. 
 

 If the values for drag coefficient of two-dimensional streamlined bodies (Fig. 

4.7b) are inserted into Eq. 4.17, then St is found to be a decreasing function of swimming 

speed with a pattern similar to that of drag coefficient (of an streamlined body) with 

Reynolds number: 𝑆𝑡  drops rapidly with speed at low Re and eventually levels-off 

(becomes constant) at high enough Re. This trend of 𝑆𝑡-vs-𝑈 predicted by Eq. 4.17 

matches closely with that of observed among six captive odontocete cetaceans as reported 

by Rohr and Fish [24] and shown in Fig. 4.7a.  
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4.4 Energy Analysis 
	
  

As was previously discussed, different iso-𝐶! lines in Fig. 4.4a correspond to 

different bodies mated to the same propulsor that are cruising at the given speed. Then 

the question arises as to which of these iso-𝐶!  lines is energetically the most 

advantageous (in other words, which combination of body-propulsor is energetically the 

best). As is widely agreed, Froude efficiency, 𝜂 = 𝐶!/𝐶!, is considered as the metric to 

determine the effectiveness of thrust production with respect to the consumed input 

power. Thus, the iso-𝐶! line with the highest overall efficiency is the indicator of a 

body/propulsor pairing that is capable of swimming most efficiently. 

 

Figure 4.8b plots the efficiency contours for our pitching wing. It is found that 

there exists one pair of non-dimensional frequency and amplitude (𝑓!"#∗ = 1.0;𝐴!"#∗ =

0.26) at which the efficiency of the pitching foil attains its global maximum. The 

existence of this unique point implies that the usual interpretation of Strouhal number 

(𝑆𝑡 = 𝑓∗𝐴∗) as the sufficient indicator of propulsive efficiency [68] is imprecise in a 

sense that both 𝑓∗ and 𝐴∗ are needed to describe efficiency, as also shown by Lewin and 

Haj-Hariri [47] for rigid heaving foils and later on by Quinn et al. [79] for flexible 

heaving panels. Nonetheless, the numerical value for the Strouhal number corresponding 

to the maximum efficiency point is found to be between 0.2-0.4 consistent with what has 

been observed in nature. We argue that 𝑆𝑡 ∈ [0.2− 0.4] is thus not  a sufficient condition 

for optimality (measured by efficiency), but is at best a necessary condition. 
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              (a)      (b) 

Figure 4.8: (a) Observed kinematic data points for the captive odontocete dolphins 
plotted in the non-dimensional amplitude versus frequency plane. Adopted from Rohr 
and Fish [24]. Note that the body-length is used as length scale. (b) Efficiency contours 
corresponding to the computations of Fig. 4.4a. The red circle indicates the maximum 
efficiency point. Note that the propulsor-length is used as length scale.	
   
 

Our simple model suggests that the swimmer will stay at the maximum efficiency 

point of its propulsor (at all speeds) when the drag of its body is matched to the thrust of 

its propulsor at the point of maximum efficiency of the latter. In other words, 𝐴 = ℓ𝓁!𝐴!"#∗  

and 𝑓 = 𝑓!"#∗ 𝑈
ℓ𝓁!. This condition implies that as long as the swimmer controls its speed 

by maintaining fixed tail-beat amplitude and modulating the frequency, it remains at its 

optimum design point, and will always swim efficiently. A constant 𝑓∗ further implies a 

linear trend between the frequency of the flapping and the swimming speed. 

The observations made by Rohr and Fish [24] for odontocete cetaceans, by 

Bainbridge [23] for few specimens of dace, trout and goldfish, and by Webber et al. [84] 

for cod (Gadus morhua), confirm the linear trend between the tail-beat frequency of the 

animals and their swimming speed, as well as the near constancy of flapping amplitude. 

In particular, the kinematic data points plotted in Fig. 4.8a (Rohr and Fish [24]) clearly 

shows that the animals are clustered near one point in the non-dimensional frequency 

f *
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versus amplitude plane, confirming our prediction that both 𝑓∗ and 𝐴∗ are bound to a 

tight range for efficient swimmers. 

The iso-𝐶! lines plotted in Fig. 4.4a (and their corresponding efficiency contours 

in Fig. 4.8b) are calculated for a specific flow speed. To understand the effect of 

swimming speed on the maximum efficiency point in Fig. 4.8b, thrust and power 

coefficients for a set of motions with constant non-dimensional frequency, 𝑓∗ = 1.2, are 

calculated as a function of Reynolds number (based on the propulsor length) for different 

non-dimensional amplitudes and plotted in Fig. 4.9. The value of 𝑓∗ was chosen to be 

slightly greater than 𝑓!"#∗ . The results are unaffected by the exact value of 𝑓∗. The goal of 

this exercise is to show that the non-dimensional performance parameters are insensitive 

to the speed. Fig. 4.9 shows that 𝐶! and 𝐶! are effectively constant at high enough speeds 

(for each amplitude). This verifies that the non-dimensional performance characteristic of 

pitching foils and their various representations such as the iso-𝐶! lines or efficiency 

contours, remain unchanged with respect to swimming speed in the 𝑓∗ − 𝐴∗ for high 

enough Reynolds numbers. Therefore, the optimum-efficiency point (𝑓!"#∗ ;   𝐴!"#∗ ) is 

independent of the (high-enough) swimming speed. 

 

 



	
   67	
  

 

                               (a)                               (b) 

Figure 4.9: Variation of (a) thrust coefficient and (b) hydrodynamic input power 
coefficient with Reynolds number for the case with constant non-dimensional frequency 
of 𝑓∗ = 1.2. 
 

The independence of the optimum design point from the swim speed lends 

universality to our conclusions: nature is efficient not because the animals are monitoring 

every detail of their locomotion in real time, but because the design of the animal is such 

that it cannot be inefficient. Some animals have higher efficiency than others, but each 

has a body/propulsor pairing, which is optimized for the efficiency of its propulsor. And 

the sophistication of the design alleviates the need for complex control of the motion.  
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4.5 Power-Velocity Relation 
	
  

Power-velocity relation is of great importance in the design and optimization of 

underwater vehicles as it provides critical information regarding the overall energetics of 

the vehicles. The goal of this section is to show that the results obtained by fixed-

incoming speed experiments are most meaningful when viewed in a more general 

framework that describes the relationship between the consumed cycle-averaged power 

inserted to fluid, 𝑃, output power, 𝑇𝑈, and swimming speed, 𝑈 for a cruising swimmer (a 

virtual but specific body mated to a pitching foil). The general picture makes applicable 

to free-swimming the fixed-incoming flow experiments. 

Consider a pitching foil (without a body) that is set to swim freely while flapping 

with a constant amplitude and frequency. The foil is only allowed to move in the 

streamwise direction. Initially, when the thrust is finite, the foil accelerates from rest. As 

the foil speeds up it reaches the steady state where thrust is zero (Fig. 4.10). It is of 

interest to see how the consumed power changes during the acceleration phase. We adopt 

a quasi-steady view, assuming that the flap period is much shorter than the time scale of 

variation in the speed. The cycle-averaged input power at each speed, 𝑈 , is then 

calculated as if the foil were moving at the constant speed, 𝑈. The flapping amplitude is 

kept fixed at 𝐴 ℓ𝓁! = 0.6  for all the cases reported in this section.  
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Figure 4.10: The schematic of a pitching foil (constant frequency and amplitude) that 
accelerates from rest (right) until it reaches the steady state (left). 
 

Figure 4.11a plots the computed cycle-averaged power as a function of Reynolds 

number (speed) for two different frequencies. For each frequency, the highest Reynolds 

number corresponds to the speed at which the net thrust is zero (open markers in Fig. 

4.11a). It is found that input power remains fairly constant with Reynolds number. Also, 

as expected, more power is needed for the foil with the higher frequency so that the foil 

will end up cruising at a higher speed. Note that non-dimensional power, 𝐶!, will behave 

completely differently than the power itself. Nonetheless, only absolute values for power 

are of interest in this particular exercise. If the same experiment is performed for many 

different frequencies, a power-velocity relation can be plotted as shown schematically in 

Fig. 4.11b. Note that the dashed lines correspond to the (quasi-steady) acceleration phase 

described in Fig. 4.10. The solid line, which is constructed by connecting the open 

markers in 4.11a, corresponds to the cruising pitching foil (without a body). Thrust on 

any point but the solid line is greater than zero. 

	
  	
  _	
  _	
   	
  	
  _	
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                                        (a)                                      (b) 

Figure 4.11: (a) Computed cycle-averaged power as a function of Reynolds number for 
two given frequencies. Open markers correspond to the speeds where thrust is zero 
(cruise). (b) the schematic of the final power-velocity relation for a pitching foil if many 
frequency lines (Fig. 4.11a) are computed. Higher power corresponds to higher 
frequencies. Solid line corresponds to cruising pitching foil. Long dash dot dot line 
corresponds to cruising pitching foil attached to a body (drag). 
 

The dependence of the power of a cruising pitching foil on the swimming speed 

(solid line in Fig. 4.11b) can be obtained simply by stating the input power as follows: 

 

 𝑃   =   
1
2𝜌ℓ𝓁!𝐶!𝑈

! (4.18) 

 

As was shown previously, power coefficient, 𝐶!, remains insensitive to the swimming 

speed at high Reynolds numbers (Fig. 4.9b). Thus, for a cruising pitching foil, the input 

power increases monotonically as a cubic function of swimming speed. 

If a generic body with the drag 𝐷 (=!
!
𝜌ℓ𝓁!𝐶!𝑈!) is added to the cruising pitching 

foil at a given speed 𝑈, the pitching foil needs to expend more power (an amount equal to 
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𝐷𝑈) to swim at the same speed if there were no body attached. The total power for 

swimmer reads: 

 

 𝑃   =   𝑃!"#$   +   𝑃!"#$ =
1
2𝜌(ℓ𝓁!𝐶! + ℓ𝓁!𝐶!)𝑈

! (4.19) 

 

It is known that 𝐶! of a streamlined body plateaus to a constant for high enough 

Reynolds numbers (Fig. 4.7b). Thus, the total power as a function of speed for a 

swimmer follows the same cubic pattern as that of pitching foil alone (long dash dot dot 

line in Fig. 4.11b). 

Useful power, 𝑇𝑈, is defined as the fraction of the input power that is used to 

propel forward. For each constant frequency line (horizontal dashed line in Fig. 4.11b), 

useful power, 𝑇𝑈, produced by the foil is zero at two instants: when the foil begins to 

swim from rest (since 𝑈 = 0) and when the foil reaches the steady state (where 𝑇   =   0). 

The useful power then must peak at some velocity in between zero and cruise speed. This 

variation is shown schematically in the three-dimensional plot of Fig. 4.12a. Note that the 

maximum 𝑇𝑈 approaches zero at the origin. Since the power remains constant along the 

constant-frequency line, Froude efficiency, 𝜂 = 𝑇𝑈/𝑃, follows the same pattern as of 𝑇𝑈 

with respect to flow speed. The long dash line in Fig. 4.12a is the locus of maximum 

efficiency points on power-speed plane. 
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                                        (a)                                      (b) 

Figure 4.12: (a) The three-dimensional schematic variation of power input, 𝑃, and useful 
power, 𝑇𝑈, with swimming speed, 𝑈, for a pitching foil. (b) a typical efficiency versus 
Strouhal number plot obtained from fixed incoming speed experiments. Efficiency plot is 
adopted from Triantafyllou et al. [49]. 
 

The common method of studying the performance of flapping foils is to fix the 

flow speed (in the water tunnel) and then measure the thrust and power for various 

frequencies and amplitudes. The constant-speed long dash dot line in the power-speed 

plane of the Fig. 4.12a embodies the results of such common experiments. Moving along 

the constant-speed line, thrust and power increase with frequency without bound. Froude 

efficiency on the other hand peaks at some finite frequency (or 𝑆𝑡) when the long dash 

dot line crosses the maximum efficiency line (long dash line on the power-speed plane). 

This variation of thrust and efficiency with frequency are typical of the performance plots 

obtained by such experiments (Fig. 4.12b). 

The three-dimensional representation of the relationship between power, thrust 

and speed (Fig. 4.12a) provides useful insight into how the results from fixed-incoming 

flow experiments should be interpreted for studying free-swimming. To study the free-

swimming of the propulsor alone, one should compare the motions along the cruise line 
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0” 
0 0.4 
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z 0.3 i- 

potentiometer 
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Strouhal Number St 

FIG. 1. Experimental data for the average thrust coefficient of an airfoil: 
(0) 2 degrees pitch and [A) 4 degrees pitch about the quarter-point 
(Koochesfahani, 1989); (0) heaving and pitching foil (Isshiki and Mu- 
rakami, 1984); (V) present data, 

tude; and 0.052 for a four degree pitch amplitude. Them 
curves of a measured thrust coefficient for these two cases, 
plotted against the Strouhal nnmber, collapse into a single 
curve as shown in Fig. 1, demonstrating the predominance 
of the Strouhal number as a governing parameter. It 
should be noted that these two curves vary widely from 
each other when plotted against the reduced frequency 
(nfc/‘v> .4 The Reynolds number in these experiments was 
3000. 

Isshiki and Murakami12 have studied the thrust-pro: 
ducing capability of moving hydrofoils placed near the 
water surface and under long (relative to the chord length) 
water waves. The foil was allowed to pitch &d heave 
through attached springs. Since the waves are long, this is 
equivalent to a heaving and pitching airfoil in steady flow. 
On the basis of the measured heave and pitch response 
and calculated relative phase angle (for one condition only, 
of waveIength ;I = 4 rn). we evaluated the thrust coefficient 
versus the Sttouhal number. The data are superimposed 
.in -Fig. 1: The double-amplitude ta chord ratio is moder- 
ately large (0.28 1; the data .by %hiki. and ~Murakami’” 
agree remarkably well with the data by Koochesfahani,” 
aIthough produced under different conditions; they also 
cover a much wider range in Strouhal number. The Reyn- 
olds number in the experiments by Isshiki and Murakami12 
was in the range of 70 000 to 200 000. 

supporting 
strut 

transmission 
chain 

supporting 
strut 

FIG. 2. Sketch of experimental apparatus used. 

We tested a heaving and pitching foil in the MIT Test- 
ing Tank Facility. Figure 2 shows a sketch of the oscillator, 
which was attached on the forward-moving carriage. A 
motor is driving two connected brackets supporting the foil 
in a heaving (up-and-down) motion, while a second 
smaller motor can force the foil to rotate about an adjust- 
able rotation axis (pitch). Thus an arbitrary heaving and 
pitching motion may be imposed on the foil, of variable 
relative amplitude, frequency of oscillation, and relative 
phase angle. The foil tested is a NACA 00 12 foil with zero 
camber, 10 cm chord and 60 cm span. The foil was made 
of wood, with an external layer of glass/graphite fiber to 
ensure uniform smoothness. Aluminum endplates were fit- 
ted to avoid three-dimensional end effects. The force was 
measured at one end of the foil with a KISTLER piezo- 
el&tric force transducer, providing force measurements in 
three axes. The torque was measured at the (small) motor 
through a dynamometer, while the imposed vertical mo- 

o’4. -=-I 

0.1 0.2 0.4 03 
Strouhal Number St 

FIG. 3. Experimenta data for the efliciency of the foil shown in Fig. 2, 
heaving with double-amplitude 12.7 cm and for the feathering parameter 
equal to D=I. 
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(solid line in Fig. 4.12a).  This comparison requires changing the incoming flow speed 

and then looking for flapping frequencies for which thrust remains zero. In the case of a 

propulsor that is carrying a body, the motions along the long dash dot dot line should be 

studied, where the speed for each frequency is such that the resulting thrust of the 

propulsor balances the drag of the body moving at that speed.  

 To summarize, Froude efficiency should be used as a design parameter to 

match a body to the given propulsor. As was shown in Fig 4.8b, for pitching foils, the 

maximum efficiency occurs at a point in the non-dimensional amplitude versus frequency 

plane. The correct interpretation of a point in this non-dimensional parameter space is 

that the swimmer should keep its flapping amplitude at a constant level and change its 

speed by varying the flapping frequency. This gait then ensures optimal efficiency of the 

propulsor. For such efficient swimmers, input power increases monotonically as a cubic 

function of the swimming speed. There does not exist any preferred swimming speed 

with regard to the input power. In other words, more effort is required for the swimmer to 

cruise faster. The kinematic data observed among swimming species confirm that the 

animals do not prefer any swimming speed to another, but rather swim within a wide 

range of speeds [23, 24 and 84]. 

 

4.6 Wake Analysis  
 

The wake properties of two-dimensional heaving and pitching foils have been 

extensively studied [47, 51 and 53]. However, most of the studies have been usually 

restricted to low Reynolds number flows (𝑅𝑒 < 1,000). Here, the computational wake 
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behind the pitching foil is fully analyzed for a wide range of flapping frequencies and 

amplitudes at high flow Reynolds numbers (𝑅𝑒 = 10,000). The important findings are 

presented below. 

 

4.6.1 General Properties of the Wake 
	
  

Figure 4.13 shows a complete set of wakes corresponding to the points (a point is 

a pair of frequency and amplitude) that constitute the iso-𝐶! lines shown in Fig. 4.4a. The 

wake behind the pitching foil is found to consist of simple consecutive array of counter 

rotating vortices for all amplitudes below the critical amplitude of each iso-𝐶! line. More 

complex structures are observed for low flapping frequencies and high amplitudes. In 

agreement with Godoy-Diana et al. [53], it is found that the transition between von 

Karman and reverse von Karman wake does not correspond to the onset of thrust 

generation. In fact the wake transition occurs before the actual drag-thrust transition. 

Additionally, deflected wake are observed at high Strouhal numbers. The current 

computational wake patterns are consistent with the experimental observations reported 

by Godoy-Diana et al. [53] and Schnipper et al. [55]. 

 

4.6.2 Wake Pattern at Maximum-Efficiency Point 
	
  

There have been efforts to determine the wake structures that lead to efficient 

swimming. In particular, the role of leading edge vortex in attaining high propulsive 
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efficiencies has been highlighted. For instance, Lewin and Haj-Hariri [47] argued that the 

maximum efficiency for heaving foils occurred when leading edge vortices coalesced 

with trailing edge vortices constructively. Similarly, Dewey et al. [65] concluded that 

high propulsive efficiencies for three-dimensional fins were obtained when the leading 

vortices merged with the trailing edge vortices over a significant portion of the fin.  
In the current study, the leading edge vortex shedding is absent for all the motions 

of interest owing to the choice of the airfoil (NACA0012) as well as the pitch-only 

motion. The current computations show that even without the presence of leading edge 

vortices, there still exists an optimum in the propulsive efficiency of flapping foils with 

respect to their kinematics (Fig. 4.8b). This raises the possibility that the fundamental 

mechanism responsible for efficient swimming has its roots in the particular arrangement 

of the simple counter rotating vortices behind the flapping wing. This remains a topic to 

be studied in the future work. 
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4.6.3 Wake Pattern at Cruise 
	
  

Of particular interest in studying free-swimming is to analyze the wake evolution 

behind the swimmer as a function of swimming speed. Fig. 4.14 shows the wake for a 

self-propelling pitching foil (without body) at different cruising speeds. The flapping 

amplitude is kept constant at 𝐴/ℓ𝓁! = 0.15 for all the cases (corresponding to the critical 

amplitude of the iso-𝐶! line with 𝐶! = 0 in Fig. 4.4a). Thus, the foil can be thought as a 

swimmer that is manipulating the swimming speed by varying the frequency. There are 

numerous options for determining the physical combination of 𝐴, 𝑓 and 𝑈. We proceed 

by selecting a Reynolds number, and then searching for the flapping frequency that 

results in zero thrust. 

It is found for the first time that the wake structure for self-propelling pitching 

foils (𝐴=constant) remains fairly unchanged with respect to swimming speed. In 

particular, the spacing of the vortices remains the same while their strength is modified. 

One implication of this finding is that the horizontal distance between two consecutive 

vortices in the wake scales with 𝑈/𝑓, which is the non-dimensional frequency, 𝑓∗, which 

remains fairly constant. Although derived for a pitching foil without a body, it is easy to 

show that the same principle applies to a propulsor that carries a body (drag): once a 

swimmer is set to swim freely with a constant amplitude, the wake structures remain 

identical regardless of the cruising speed. 
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Figure 4.14: Wake pattern behind the pitching foil under study at cruise condition (i.e. 
when 𝐶! = 0) for various Reynolds numbers. 
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Chapter 5 

Numerical Procedures 
	
  

To address the set of numerical problems discussed in this dissertation, a code is 

required that is capable of representing complex geometries and performing simulations 

that include large mesh deformation as well as fluid-structure coupling. For this matter 

the commercial Computational Fluid Dynamics (CFD) package ANSYS® CFX, release 

14.0 was chosen to solve the governing equations for the fluid, while ANSYS® 

Mechanical was used for the solid part. 
The package ANSYS® CFX employs a hybrid finite-volume/finite-element 

approach to discretizing the Navier-Stokes equations. The Navier-Stokes equations are 

solved by an unsteady, fully implicit, fully coupled, multigrid solver in the inertial 

reference frame. ANSYS® Mechanical uses the standard finite element approach to solve 

for the structure displacement (ANSYS Help system [85]).  
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5.1 Governing Equations  
	
  

5.1.1 Flow Equations: 
	
  

The non-dimensional instantaneous equations of mass and momentum 

conservation for incompressible Newtonian flows (Navier-Stokes equations) governing 

all the flows in the current study can be written in the stationary frame as follows: 
 

 ∇    ∙   u = 0 (5.1) 

 

 !u
!"
= −u · ∇u+ !

!"
∇!u− ∇𝑝 + 𝐟  (5.2) 

 

Where u and 𝑝 are the flow velocity and pressure field, 𝑅𝑒 is the Reynolds number and f 

is the external body force acceleration term. 

 

5.1.2 Solid Equations 
	
  

The structure displacement can be generally described in the Lagrangian form as 

follows: 
 

 !!(x!X)
!!!

= !
!!
∇    ∙   𝜎 + b   (5.3) 

 



	
   81	
  

Where x and X are the current and initial position, 𝜌! is the solid density, 𝜎 is the Cauchy 

stress tensor and b is the external forcing term. 

 

5.1.3 Solution Strategy 
	
  

Since there does not exist an analytical solution to the general highly non-linear 

Navier-Stokes and structural displacement equations, a numerical approach should be 

undertaken to replace the equations with a set of algebraic equations which can then be 

solved numerically. To do so, first the conservation equation for mass and momentum 

must be integrated over each control volume. The volume and surface integrals are then 

discretized spatially and temporarily within each element. Figure 5.1 shows the schematic 

of a single two-dimensional element used in ANSYS CFX. The advection schemes can 

be generalized as: 
 

 𝜙!" = 𝜙!" + 𝛽∇𝜙   ∙   ∆𝒓   (5.4) 

 

Where 𝜙!" is the solution value at the integration point, 𝜙!" is the value at the upwind 

point, 𝒓 is the vector from the upwind node to the integration point and 𝛽 and ∇𝜙 results 

in different schemes. In the current study, high-resolution scheme is used for the 

advection term. In this scheme, the values for 𝛽 are calculated based on a nonlinear 

recipe discussed in Barth and Jesperson [89]. Second order backward Euler scheme is 

used for the transient term. The diffusion and pressure gradient terms are evaluated using 
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shape functions (a standard approach in finite-element analysis). Fig. 5.2 highlights the 

general solution strategy taken by ANSYS CFX to solve the Navier-Stokes equations: 

 

 

 

Figure 5.1: Schematic of a two-dimensional mesh element in ANSYS CFX. 
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Figure 5.2: The general solution strategy used in ANSYS CFX. Adopted from [85]. 

 
 

5.2 Mesh Deformation  
	
  
 

To accurately calculate the normal and shear fluid forces on the surface of the 3D 

and 2D foils at high Reynolds numbers, body-fitted grids are used throughout this study. 

When such grids include moving boundaries in the stationary frame, the mesh needs to be 

constantly adjusted to account for the deformation of the rigid or deformed body. The 

cases with mesh deformation usually suffer from high mesh skewness issues. A proper 

way to avoid such problems is to apply the mesh motion gradually where during each 

11.2.2. Linear Equation Solution

ANSYS CFX uses a Multigrid (MG) accelerated Incomplete Lower Upper (ILU) factorization technique for
solving the discrete system of linearized equations. It is an iterative solver whereby the exact solution
of the equations is approached during the course of several iterations.

The linearized system of discrete equations described above can be written in the general matrix form:

(11.49)=

where  is the coefficient matrix,  the solution vector and  the right hand side.

Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.346

Discretization and Solution Theory
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time step the mesh displacement equation is solved iteratively and the results are used to 

update the new mesh node positions. 

ANSYS CFX incorporates displacement diffusion model to tackle mesh 

deformation. In this model, the position of mesh nodes at the solid surface is known 

either as prescribed motion or the results of FSI simulation. The mesh motion of all the 

other mesh points is determined by solving the displacement diffusion equation: 

 

 ∇    ∙    𝛤!"#$∇𝛿 = 0   (5.5) 

 

Where 𝛿 is the relative mesh displacement and 𝛤!"#$ can be thought as the mesh stiffness. 

𝛤!"#$ determines the degree to which the nodes in a specific region move together. 

Adjusting 𝛤!"#$ is specifically crucial in avoiding mesh folding near the sharp corners of 

the geometry such as wing tips. Although a number of models for mesh stiffness are 

available in ANSYS CFX, the best fit for 𝛤!"#$ is usually highly problem specific. In the 

three-dimensional cases studied in Chapter 3 in which the wing underwent high 

deformations, the mesh stiffness model below was found to minimize the mesh folding: 

 

 𝛤!"#$ =
!

(!!!!)!
   (5.6) 

 

where 𝑑! is the normal distance from the surface of the wing and 𝜀 is a constant that is 

set to 0.001  to avoid singularity of 𝛤!"#$ at the surface. 

For the cases presented in chapter 4, a simplified mesh deformation model was 

chosen to take advantage of the pure pitch motion of the rigid two-dimensional foil. In 
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this approach, the domain is divided into three regions as shown in Fig. 5.3: i) The inner 

circle where a rigid pitch motion is imposed on all the mesh nodes, ii) the annular region 

where the pitch motion of the nodes linearly drops to zero at the boundary, and iii) the 

outer region where the mesh is fixed. The radius of the inner circle is large enough to 

encompass at least 5 consecutive vortices in the wake. This approach eliminates any 

problem that arises due to mesh folding near the sharp trailing edge of the foil, and leads 

to higher numerical accuracy (Fig. 5.3b). 

 

 

                                         (a)                                (b) 

Figure 5.3: (a) The mesh used for two-dimensional cases is divided into three regions 
with different mesh motion to avoid mesh folding, (b) the zoomed view of the mesh. 

 

5.3 Fluid Structure Interaction (FSI) 
	
  

A partitioned approach is undertaken to tackle the two-way fully coupled FSI 

problems for the cases presented in chapter 3. In this approach, ANSYS CFX flow solver 

is used to solve the Navier-Stokes equations. The displacement of the solid part is solved 

using a linear large-deformation transient analysis performed by ANSYS Mechanical 
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module. The two solvers then transfer the force and displacement data through 

interpolation at the solid-fluid interface. 

The coupling strategy is as follows (Fig. 5.4): for each time step, first the solid 

solver is run. The calculated loads (pressure and shear forces as well as displacement) are 

then applied at the interface boundary in the fluid domain before the flow solver starts. 

These two steps are looped until the final convergence for fluid and solid solver as well 

as the load transfer is achieved. To ensure a smooth convergence, an under-relaxation 

factor is used to gradually transfer the loads between the solvers for each time step.  
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Figure 5.4: The chart that elucidates the steps undertaken to solve a Fluid-Structure 
Interaction problem. Adopted from ANSYS CFX help System [85]. 
 

Figure 5.4:  Sequence of Synchronization Points

77
Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Fluid Structure Interaction
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5.4 Validation of the Flow Solver 
	
  

The performance and accuracy of the flow solver (ANSYS CFX) is assessed 

through a series of numerical experiments using steady and flapping airfoils. 

 

5.4.1 Steady Airfoil Section 
	
  

The flow around two airfoil sections, NACA 0012 and Eppler 387, is simulated 

for various angles of attack and Reynolds numbers. The Shear Stress Transport (SST) 

turbulence model [76], which combines the k-ω model near the wall and the k-ε model 

away from the wall, is used throughout the study. The choice of turbulence model allows 

for accurate prediction of onset and amount of flow separation under adverse pressure 

gradient conditions, and provides the ability to handle the laminar-turbulent transition 

phenomenon. In particular, the SST model allows capturing the laminar-turbulent 

transition of the separated shear layer over the leading edge of an airfoil. The turbulent 

shear layer then quickly reattaches to the wall boundary [86]. The reattachment of the 

shear layer creates a separation bubble along which the pressure is effectively constant. 

The separation bubble relieves the severe adverse pressure gradient over the airfoil and 

resists the sudden loss of lift (Fig. 5.5).  
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                                 (a)                                        (b) 

Figure 5.5: (a) Flow streamlines over a NACA 0012 airfoil section at 10 degrees of angle 
of attack, and  (b) its corresponding chordwise pressure distribution. 
 

The current computational lift and drag coefficients for NACA 0012 airfoil 

section as a function of angle of attack at 𝑅𝑒 = 5  ×  10! are compared against experiment 

and are plotted in Fig. 5.6. In particular, the stall angle of attack is accurately predicted 

using the current mesh and numerical setup. Additionally, the computed pressure 

distribution is validated against experiment for Eppler 387 airfoil section at 𝑅𝑒   =   10! 

and zero angle of attack (Fig. 5.7). Particularly, the pressure along the separation bubble 

at the aft part of the Eppler 387 airfoil is accurately computed. 
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                                      (a)                                     (b) 

Figure 5.6: Comparison of the computational section lift and drag coefficients as a 
function of angle of attack with those obtained experimentally [87] for NACA0012 
airfoil.  
 

 

Figure 5.7: Variation of section pressure coefficient over the non-dimensional chord 
length for Eppler 387 airfoil section at zero angle of attack. The experimental results are 
adopted form [88]. 
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5.4.2 Pitching Foil 
	
  

This section presents the numerical details and validation study for the two-

dimensional rigid pitching foil discussed in chapter 4. To assess the effects of grid 

refinement on the solution, three sets of numerical experiments with (𝑓∗,𝐴∗) =

{ 3.0,0.2 , (1.2,0.4), (0.8,0.6)}  are performed using five levels of mesh refinement: 

85×135 (Grid 1 with 85 nodes around the foil and 135 nodes in azimuthal direction), 

130×135 (Grid 2), 210×210 (Grid 3), 320×300 (Grid 4) and 480×400 (Grid 5). The 

Reynolds number is set to 𝑅𝑒   =   75,000. Figure 5.8 shows the calculated cycle-averaged 

thrust and power coefficients for different mesh resolutions. The values for 𝐶! are within 

2% of the converged value. The values for power coefficient, 𝐶!, were found to exhibit a 

similar pattern. The highest grid resolution is chosen to perform the computational 

experiments reported in the rest of study. To ensure that the computational results 

presented here are physically valid, the pitching-foil case studied by Godoy-Diana et al. 

[53] is simulated and the computational contour 𝐶! = 0   is plotted against the 

experimental curve in Fig. 5.9. The non-dimensional frequency and amplitude as reported 

by [53] are converted to match the current scale that uses the chord length as the length 

scale. The excellent match between our computational results with that of experiment 

gives confidence in the computational results. 
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                                       (a)                                       (b) 

Figure 5.8. (a) Cycle-averaged thrust and (b) power coefficient for 5 grid resolutions 
ranging from coarse to fine (refer to the text for the actual resolution) at 𝑅𝑒 = 75,000 for 
𝑓∗,𝐴∗  values of 3.0, 0.2   !;(1.2,0.4) "; and (0.8,0.6) #. 

 
 
 

 

 
 
Figure 5.9: Comparison of computational contour 𝐶! = 0  with the experimental contour 
(Godoy-Diana et al. [53]) at 𝑅𝑒 = 1,173. 
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Similar experiment was performed in Gas Dynamics Laboratory at Princeton 

University in which they measured the performance of rigid and flexible pitching foils 

with sinusoidal motion in the water tunnel. As an additional step, their case of rigid foil is 

simulated here. Fig. 5.10 compares the computed thrust and power coefficients against 

those obtained experimentally. The section of the foil is the same as that of Godoy-Diana 

et al. [53] with chord length equals to 10 times the leading edge diameter. The flapping 

amplitude is kept fixed at 𝐴/ℓ𝓁! = 10. The Reynolds number is set to 𝑅𝑒 = 4,700. There 

is excellent match with the experiments, again giving confidence in the computational 

results underpinning the hypotheses and conclusions in this dissertation. 

  

 	
    

                                       (a)                                     (b) 

Figure 5.10: Comparison of the computational thrust and power coefficients with those of 
obtained experimentally at Gas Dynamics Laboratory at Princeton University. Private 
communication. 
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Chapter 6  

Concluding Remarks and Suggestions 
for Future Work 
	
  

The major goal of this work was to provide new insights into the fundamentals of 

efficient free swimming. One way to understand animal swimming is to look for the 

common kinematic patterns among them. Such common behaviors are possible 

signatures of efficient swimming presumably due to the years of evolution. Two common 

kinematic behaviors were discussed in this work: (a) the existence of a tight range for 

Strouhal number among a variety of fish and cetaceans including rays that utilize 

pectoral-fin-based propulsion and (b) maintenance of a constant tail-beat amplitude by 

most fish during cruise. They change the swimming speed by varying the frequency such 

that frequency is linearly correlated with swimming speed. In this research, a 

computational and theoretical approach was undertaken to study the hydrodynamics of 

two and three-dimensional flapping propulsors. The prevalent hypothesis to explain (a) 

was critiqued. Additionally, a physical mechanism responsible for (b) was presented. 
First, a three-dimensional model was developed replicating the experimental 

prototype of Moored [18]. The computational results were validated against experiment 

to test the accuracy of the mesh and the FSI solver. The effect of planform taper ratio on 
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hydrodynamic performance was discussed. In particular, the distribution of thrust on the 

wing planform as well as the wake topology was illustrated. Furthermore, a parametric 

study was performed to investigate the effects of wing kinematic on the generated thrust. 

It was found that iso-𝐶! lines (thrust contour lines) were coincided with iso-𝑆𝑡 lines (𝑆𝑡 

contour lines) in the plane of (non-dimensional) frequency versus amplitude. This 

coincidence suggests that thrust coefficient of flapping wings are solely a function of 

Strouhal number. Since thrust of the propulsor is equal to the drag of the body, this 

finding implies that Strouhal number of freely swimming animals is predetermined based 

on the shape of the swimmer, i.e. drag coefficient and area of the body. Considering the 

large parameter space as well as high computational cost associated with three-

dimensional wings, the detailed simulations are focused on a simpler model. 

A simple two-dimensional model of a thunniform swimmer was adopted to 

further investigate the meaning of Strouhal number in free-swimming. The model 

consisted of a generic body, as the source of drag, and a pitching foil, as the source of 

thrust. A framework was developed to interpret and adapt the results obtained from 

today’s fixed incoming-flow experiments for studying free-swimming. Within this 

framework, the performance and energetics of the pitching foil were computed and 

discussed. An analytical solution was also derived for the performance of pitching foil 

using thin airfoil theory. Dimensional and scaling analyses were performed to generalize 

the findings. Wake evolution behind the pitching foil was fully discussed. The two-

dimensional results were validated against experiments performed at Gas Dynamics 

Laboratory at the Princeton University. Lastly, the numerical procedures employed to 
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compute the performance of two and three-dimensional flapping foils were presented. 

The important findings of this research are summarized as follows: 

 

(a) The interpretation of St as a sufficient measure of efficiency is too broad. This 

finding is in contrast to the previous hypothesis that suggests the tight range of 𝑆𝑡 

dictates the efficiency of the motion ([21] and [49]). Underpinning this assertion 

is the observation (presented in this dissertation) that in free swimming the 

Strouhal number of the motion for a given swimmer is effectively fixed for all 

gaits, including those that may be inefficient. In fact, it was shown here for the 

first time that 𝑆𝑡 is only a function of shape, i.e. drag coefficient and area of the 

body. The constancy of St in free swimming follows simply from the observation 

that in free-swimming the speed (and thus St indirectly) is a dependent variable.  

 

(b) For a given swimmer, 𝑆𝑡 is a decreasing function of swimming speed with a        

pattern similar to that of variation of drag coefficient with Reynolds number for 

streamlined bodies: they both decrease rapidly with speed and level off for high 

enough swimming speeds. The trend closely matches that exhibited by 248 

captive odontocete cetaceans reported by Rohr and Fish [24].  

 

(c) For a pitching foil oscillating with sinusoidal motion, there exists a unique 

optimum point in the dimensionless frequency (𝑓∗ ≡ 𝑓ℓ𝓁!/𝑈)  vs. amplitude 

(𝐴∗ ≡ 𝐴/ℓ𝓁!) plane, where Froude efficiency is maximized. It is found that this 

point is insensitive to swimming speed for high enough Reynolds numbers. In 
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free-swimming, the maximum efficiency point represents a swimmer with a 

generic body whose drag is perfectly matched with thrust of the pitching tail 

under study so as to place the swimmer at the optimum point of the performance 

of its thruster. So long as the swimmer controls its speed by maintaining fixed 

flap amplitude and modulating the frequency, it remains at its optimum design 

point, and will swim efficiently. This finding gives physical explanation for the 

observed kinematic behavior among seven different cetacean species reported by 

Rohr and Fish [24] and for few different fish species reported by Bainbridge [23]: 

Swimming animals such as trout, dace, goldfish, cod and dolphins cruise by 

oscillating their tails with fixed amplitude while controlling swimming speed by 

modulation of their tail-beat frequency such that speed is linearly correlated with 

frequency. 

 

a. In free-swimming, the location of maximum efficiency point in 𝑓∗ − 𝐴∗ 

plane changes with swimming speed for low Reynolds numbers (due to 

the dependence of body drag coefficient on Reynolds numbers). Thus 

cruising animals should (and do) change their flapping amplitude at low 

swimming speeds to stay at the maximum efficiency point. This finding 

gives an explanation for the question posed by Webb [74] as to why the 

swimming animals do not maintain their tail-beat amplitude at a constant 

level when swimming at low speeds. 
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(d) For swimmers that are designed based on the maximum propulsive efficiency 

point in 𝑓∗ − 𝐴∗ plane (i.e. their body is perfectly matched with their propulsor), 

the power inserted to the flow by the propulsor increases monotonically with 

respect to the swimming speed. In other words, for a swimmer that is cruising 

with some constant amplitude, there does not exist an optimum swimming speed 

based on the power, and simply more effort is required for the swimmer to cruise 

faster. Evidence supporting this finding is found from the swimming kinematic 

data provided by Rohr and Fish [24] for dolphins and Bainbridge [23] for a 

number of fish species where it is observed that fish swim within a wide range of 

speeds without preferring one to another. 

 

(e) It is shown (for the first time) that the wake structure for a cruising swimmer that 

keeps the tail-beat flapping amplitude constant while changing the speed by 

manipulating frequency remains unchanged with respect to cruising speed. This 

observation implies that there may exist a specific arrangement of vortices in the 

wake that is energetically superior over the others. This could be related to the 

wake stability studies by Lewin and Haj-Hariri [47], Moored et al. [67] for rigid 

foils and Moored et al. [91] for flexible foils.  

 

Future work 

 

The findings of the current work were derived using a simple two-dimensional 

body-pitching foil fish model that allowed us to learn the fundamentals of efficient 
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swimming. Within the current framework, it is of interest to study free-swimming using 

more complex models. The future steps that can be undertaken to expand our knowledge 

of efficient swimming are summarized as follows: 

 

(a) Complex flapping motion. The heave motion can be added to the current pitch 

motion to make up a more complex flapping motion. Pitch-heave motions can 

acquire high propulsive efficiency compared to heave or pitch-only motions 

(Anderson et al. [51]). The parameter space corresponding to such motions is 

large and is composed of frequency, pitch and heave amplitude, speed and phase 

angle between heave and pitch. The pitch-heave motion also generates more 

complex wakes that do not necessarily follows a particular pattern (specially due 

to leading edge shedding). 

 

(b) Three-dimensional model. In 3D swimming models, area and planform shape of 

the propulsor are additional major parameters. An objective will be to find the 

best wing platform that produces more thrust with less/equal input power among 

others. Nonetheless, it is expected that in 3D, the swimming fundamentals that 

were discussed in this research remain unchanged. 

 

(c) Swimming with no constraints. In this research, fish swimming is simulated by 

fixing the model and imposing a constant flow stream into the domain. However 

in reality, a fish that is swimming freely along a straight line, exhibits oscillatory 

movements in streamwise and vertical directions due to the oscillatory nature of 
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thrust and lift. Of particular interest is to determine the effect of these oscillatory 

movements on the energetics of the swimmer. 

 

(d) Flexibility effects. The current findings and hypotheses were derived based on 

rigid propulsors. It has been shown that flexible pitching panels produce thrust 

more efficiently than their rigid counterparts [79]. It is expected that adding 

flexibility to the current model will not change the current findings 

fundamentally but will improve thrust production which then translates into 

achieving higher speeds with the same input power (Power-speed line in Fig. 

4.11b will be shifted downward). Of particular value will be to study the role of 

structural resonance in free-swimming.  

 

(e) Acceleration phase. As a more general objective, it is of interest to model the 

acceleration phase of a given swimmer. Theoretically, it is possible to achieve a 

given cruising speed using an infinite number of flapping gaits. It is 

hypothesized that one particular gait allows the swimmer to reach steady state 

most efficiently while another gait corresponds to shortest duration of 

acceleration. 
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