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Abstract 
 

 

 

Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease, characterized 

by unexplained left ventricular hypertrophy, myofibrillar disarray and myocardial fibrosis. Left 

and right ventricular mass, ejection fraction and myocardium wall thickness at different segments 

measured from cardiac cine MRI based on LV, RV segmentation and mean myocardial T1 

measured from LV segmentation on native T1 maps are critical biomarkers for diagnosis and 

prognosis of HCM patients. Deep convolutional neural networks (DCNNs) have shown great 

promise in many medical image segmentation tasks, including cardiac MRI. However, due to the 

greatly increased variability in shape and size of heart chambers and often reduced image contrast, 

the segmentation for HCM is more challenging than healthy and other patient populations and the 

model trained on generic cardiac MRI is very likely to fail on HCM. In this study, we developed 

a cascaded deep convolutional neural network to automatically segment the epi and endocardium 

at end-diastole and end-systole phases from cine and native T1 images to calculate all variables of 

interest based on a database with 100 HCM patients. Ejection fraction, LV and RV mass, mean 

myocardial T1 and regional wall thickness at 6 automatically localized segments per slice were 

calculated with promising results. The model greatly reduces the post-processing time and 

inter/intra-observer variability in biomarker quantifications for HCM patients. 
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Chapter	1	
	

Introduction	
Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease and the number one 

cause of heart related death in young adults. Currently known clinical risk markers are only modestly 

effective at identifying highest risk individuals.  There is a pressing need for rapid and robust quantification 

of biomarkers from cardiac magnetic resonance images (CMR) to find ways of predicting the risk of 

developing complications associated with HCM, so that the most appropriate advice and treatment can be 

given to patients. In order to completely understand the techniques we developed for automated biomarker 

quantification, it will be very helpful to know the anatomy of the heart and basics of CMR images. These 

introductory sections are followed by the motivation, related work and the research contributions of this 

study. 

 

1.1 Anatomy	of	Human	Heart	

The heart is a muscular pump with four chambers and an equal number of valves. The two chambers at the 

top of the heart are known as the atria, a right and a left. The two bottom chambers are the ventricles. The 

atria receive blood that returns from the different parts of the body, while the ventricles pump that blood 

back to all body tissues. The heart wall consists of three layers: the outer epicardium, the 

middle myocardium, and the inner endocardium. The epicardium and endocardium are thin layers. The 

myocardium forms the main bulk of the heart and is made up of cardiac muscle fibers. Vessels that carry 

blood away from the heart to the body are called arteries; vessels that bring it back are called veins. The 

largest artery is named the aorta. It arises from the left ventricle. The events that take place in the heart 

between successive heartbeats constitute the cardiac cycle. Such events include the opening and closing of 

valves and contraction and relaxation of chambers. The cardiac cycle is split into two 

phases: systole and diastole. During systole, the ventricles contract and push blood into the arteries. During 

diastole, the ventricles relax and receive blood from the atria. Figure 1 shows a longitudinal cross-section 

of heart where all four chambers can be seen. 
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Figure 1: Cross-section of human heart showing all four chambers and all four valves 
*Source: https://www.texasheart.org/heart-health/heart-information-center/topics/heart-anatomy 

 

1.2 Hypertrophic	Cardiomyopathy	

HCM is a cardiovascular disease that affects the heart muscle, also known as the myocardium. It is 

characterized by the thickening of heart muscle, especially in the ventricles (or lower heart chambers). 

Thickening of the myocardium occurs most commonly at the septum, which is the muscular wall that 

separates the left and right side of the heart. The thickened septum may cause a narrowing that can block 

or reduce the blood flow from the left ventricle to the aorta - a condition called “outflow tract obstruction.” 

The ventricles must pump harder to overcome the narrowing or blockage. HCM also may cause thickening 

in other parts of the heart muscle, such as the bottom of the heart called the apex, right ventricle, or 

throughout the entire left ventricle. The degree and location of thickening is fairly random. Myocardial 

thickening also causes cellular changes which lead to stiffening of the tissue. This restricts the normal 

relaxation of the ventricle disabling it from fully filling with blood. Since there is less blood at the end of 

filling, there is less oxygen-rich blood pumped to the organs and muscles, which leads to ischemia.  

 

Figure 2 shows a pictorial representation of the longitudinal cross-section of normal and HCM hearts. The 

thickening of the septum which greatly reduces the left ventricular volume can be observed in the HCM 

heart. In addition, the figure also shows the blockage of aortic valve due to hypertrophy in the ventricular 

septum. 
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HCM is very common and can affect people of any age. It affects men and women equally. It is a common 

cause of sudden cardiac arrest in young people, including young athletes. HCM usually is inherited. It is 

caused by a change in some of the genes in heart muscle proteins. However, the actual cause of the disease 

is unknown. 

 
Figure 2: Cross section showing all four chambers in Normal(left) and HCM(right) heart 

*Source: https://www.mayoclinic.org/diseases-conditions/hypertrophic-cardiomyopathy/symptoms-causes/syc-20350198 

 

HCM is particularly interesting because it is asymptomatic and goes undiagnosed in some patients until it 

manifests itself, causing a cardiac event (heart failure, cardiac arrest, etc). It can be diagnosed by family 

screening which includes genetic testing and echo cardiogram tests with an accuracy of 80%. CMR, which 

is considered the gold standard for determining the physical properties of the left ventricular wall, can serve 

as a more efficient screening tool for several reasons. Echo images are not conclusive and cannot be helpful 

in determining some cases like segmental lateral ventricular hypertrophy. Moreover, the hypertrophy 

maybe absent in children because their hearts are not fully developed. It fails to detect HCM as no physical 

attributes representing it exists. Researchers, however, have studied asymptomatic carriers of an HCM-

causing mutation through the use of CMR and have been able to identify crypts in the interventricular septal 

tissue in these people. Biomarkers extracted from CMR can be very helpful in identifying the patients at 

highest risk. The following section introduces CMR and discusses different types of CMR images used in 

this study. 
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1.3 Cardiac	MRI	

Cardiac MRI is a medical technology for non-invasive assessment of the function and structure of 

the cardiovascular system. CMR uses the same basic principles of image acquisition and reconstruction as 

other MRI techniques which rely on positively charged hydrogen protons in the body, most of which are 

located in water molecules. A powerful, uniform, external magnetic field is employed to align the protons 

that are normally randomly oriented within the water nuclei of the tissue being examined. This alignment 

(or magnetization) is next perturbed or disrupted by introduction of an external Radio Frequency (RF) 

energy. The nuclei return to their resting alignment through various relaxation processes and therefore emit 

RF energy. After a certain period following the initial RF, the emitted signals are measured. Fourier 

transformation is used to convert the frequency information contained in the signal from each location in 

the imaged plane to corresponding intensity levels, which are then displayed as shades of gray in a matrix 

arrangement of pixels. By varying the sequence of RF pulses applied and collected, different types of 

images are created. In this study, we use cine cardiac images in short-axis view and native-T1 maps. Details 

regarding the same are presented in following sub sections. 

 

1.3.1 Image	Views	

There are two imaging planes in which the CMR images are acquired, the short axis and the long axis. The 

long axis of the heart is the axis that aligns the base of the heart and the apex. Short axis is the one 

perpendicular to it. Short axis images give an excellent cross-sectional view of the left and right ventricles. 

It is ideal for calculating the ventricular volumes and the wall thickness. Figure 3 shows the long and short 

axis of the heart along with one slice in short-axis view. 

 
Figure 3: Long and short axis of the heart 

*Source: http://fqz301.brinkster.net/Braunwald%20Heart%20Disease%207th-new/heart%207th%20by%20FengQZ%202005-07-
02/html/124[1].html 
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1.3.2 Cine	Cardiac	MRI	

Cine CMR images (will be referred to as cine images from now on) are short movies that show the heart 

motion throughout the cardiac cycle, in short-axis. Cine images are obtained with ECG triggered segmented 

imaging. Segmented acquisition is the process of dividing the cardiac cycle into multiple segments to 

produce a series of images that can be displayed as a movie.  The cardiac cycle begins with the R wave of 

the ECG, ends with the subsequent R wave and is typically divided into 10 to 20 segments, depending on 

the heart rate, Figure 4 shows a visual representation of this. Each image in the cine is typically composed 

of information gathered over several heart beats allowing for a movie to be acquired with a breath hold of 

10 to 20 seconds depending on the sequence.  As in any movie, the final cine is a sequence of individual 

frames. These images can be very helpful in studying cardiac function, valvular function, and the movement 

of blood through the heart.  

 

 

 
Figure 4: ECG tracing with the colored boxes representing different frames 

*Source: https://www.med-ed.virginia.edu/courses/rad/cardiacmr/Techniques/Cine.html 

 

In the cardiac cycle which is comprised of multiple phases represented by different frames in the cine, we 

are particularly interested in two phases namely end-diastole and end-systole. At end-diastole, the 

myocardium is completely relaxed and is fully filled with blood that will be pumped in the following systole 

phase. At end-systole, the myocardium is completely contracted and has pumped all the blood it can, out 

of the ventricle. Figure 5 shows the cine on one slice; the cine includes end-systole and end-diastole which 

are marked correspondingly. 
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Figure 5: A cine with twenty-five cardiac phases/frames in sequence on a mid-cavity slice. Phase 7 is end-systole end phase 25 is 

end-diastole 

 

1.3.3 T1	Maps	

T1 (longitudinal relaxation time) is the time constant which determines the rate at which excited protons 

return to equilibrium. It is a measure of the time taken for spinning protons to realign with the external 

magnetic field. T1 of the myocardium is altered in various disease states due to increased water content or 

other changes to the local molecular environment. Changes in both native T1 and T1 following 
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administration of gadolinium (Gd) based contrast agents are considered important biomarkers. In this study, 

we only use native T1 maps, which represents the absolute T1 value of the tissue.  

 

1.4 Motivation	

The goal of this work is to automate the rapid and robust quantification of biomarkers including the left and 

the right ventricular mass, ejection fraction and myocardial wall thickness, from cine images, and mean 

myocardial T1 from native T1 maps for identification of HCM patients at risk. To achieve accurate 

measurements of these variables, segmentation of heart chambers and myocardium regions is required on 

cine images across all short-axis slices and for at least end-diastole and end-systole phases, and on native 

T1 maps. Currently the segmentation is performed manually by experienced cardiologists, so it is time-

consuming and suffers from inter-observer variability with reduced biomarker quantification accuracy and 

robustness, especially in a multi-site study. Automating the biomarker quantification involves automating 

the heart chamber segmentation task. 

 

There are several challenges in automating the heart chamber segmentation task - the heterogeneities in the 

brightness of LV cavity due to blood flow, presence of papillary muscles with signal intensities similar to 

myocardium makes it harder to delineate the endocardial wall. Tissues surrounding the epicardium (fat, 

lung), which have different intensity profiles and show poor contrast with the myocardium, make the 

segmentation of the epicardium difficult. Segmentation complexity also depends on the slice level of the 

image. Apical and basal slice images are more difficult to segment than mid-ventricular images. Indeed, 

MRI resolution is not high enough to resolve size of small structures at the apex and ventricle shapes are 

strongly modified close to the base of the heart, because of the vicinity of the atria1. Dynamic motion of 

heart causes inhomogeneity of intensity and high variations in contrasts. Irregular crescent shape of the 

right ventricle makes it much harder to segment in comparison with the left ventricle. Moreover, data from 

HCM population has a much higher variability in the shape and size of the heart chambers because of the 

randomness of hypertrophy in comparison with normal and other pathologies. Figure 6 shows basal, mid 

ventricular and apical slices from HCM hearts (a, b) and a normal heart (c). The myocardial hypertrophy is 

pointed to by white arrows. It can be observed that in a normal heart the wall thickness is consistent 

throughout the LV, whereas in HCM hearts the consistency highly varies.  
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Figure 6: Comparison of HCM (a, b) with normal heart (c). White arrows point to the hypertrophy in myocardium 

 

1.5 Related	Work	

Existing automatic cardiac MRI segmentation techniques can broadly be classified into two groups – those 

that need no prior information2–7 and those that need weak or strong prior knowledge8–10. The former 

includes techniques that are primarily image-driven which use the pixel intensity differences to distinguish 

between different regions of interest. The latter techniques are often model-driven, using statistical 

information extracted from manually annotated training data that describe the spatial relationships of the 

LV and RV objects and their surrounding structures, knowledge of the heart biomechanics, or anatomical 

assumptions about the statistical shapes of the objects. Such assumptions about the objects, through either 



 15 

weak or strong priors, contributes to the propensity of these methods to overfit on a particular training 

dataset, thus making them less generalizable.  

 

The approaches that need no prior information includes active contours or snakes techniques, pixel 

classification using clustering algorithms, region growing algorithms, learning based techniques. Among 

these approaches, accurate fully automatic segmentation is only achievable using learning based techniques. 

These include techniques based on random forests11–13,  markov random fields5,14 (MRF),  conditional 

random fields15,16 (CRF),  restricted boltzman machines17 (RBM) and deep learning. Methods using random 

forests rely on image intensity and define the segmentation problem as a classification task. These methods 

have multiple stages of intensity standardization, estimation and normalization, which are computationally 

expensive and affect the success of further steps. Moreover, their performance is rather mediocre at basal 

and apical slices and overall inferior to the state-of-the-art. MRFs and RBMs try to learn the probability of 

input data. Computing the image probability and parameter estimation in generative models is generally 

difficult and can lead to reduced performance if oversimplified. Besides, they use the Gibbs sampling 

algorithm for training, which can be slow, become stuck for correlated inputs, and produce different results 

each time it is run due to its randomized nature. Alternatively, CRF methods try to model the conditional 

probability of latent variables, instead of the input data. However, they are still computationally difficult, 

due to complexity of parameter estimation, and their convergence is not guaranteed. Deep learning 

techniques, that received much attention over the course of last 5 years, are much more stable and achieve 

a better performance in comparison with the techniques mentioned earlier. 

 

Deep convolutional neural networks (DCNN) have shown great promise in many medical image 

segmentation tasks, including cardiac MRI. A majority of these only focus on segmenting the LV for 

ejection fraction calculation. Yang et al.18 proposed a fully convolutional architecture to segment the LV 

myocardium which is relatively shallow, consisting of three convolutional blocks with two of them 

followed by max pooling and one 4 strided deconvolution to regain the original image dimension. An 

average of dice score of 0.75 was reported on the CMR dataset from York University. Avendi et al19. 

proposed a hybrid approach that uses deformable models in conjunction with deep learning. A fully 

convolutional network is used to locate the LV, and a stacked auto encoder is then used to infer the shape 

of the ventricle which is then used by a deformable model to accurately segment the region of interest. The 
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main limitation of this method is that it is multi-stage and requires manual offline training along with 

extensive hyper-parameter tuning, which can be cumbersome and difficult to generalize to multi-site data. 

Tran et al20. proposed a 15-layered architecture that uses 2D data, which achieved the state-of-art dice scores 

of 0.96 on epicardium and 0.92 on endocardium using the Sunnybrook dataset. Despite being the state-of-

art, this technique uses 2D data and ignores the overall shape of the LV which could be crucial in identifying 

the edge slices that shouldn’t be segmented.  

 

Some approaches that perform both LV and RV segmentations treat them as two separate problems, thus 

ignoring their relative positions and shapes. Avendi et al21. also proposed a technique quite similar to the 

one discussed earlier to segment the RV. A dice score of 0.81 was reported on the endocardium. Tran et 

al20. also suggested their LV segmentation approach can be used, without any changes, to segment the RV. 

Furthermore, none of these studies focus on HCM populations, and we hypothesize that a model trained on 

normal and other patient populations is very likely to perform poorly on an HCM dataset due to the notable 

differences in contrast and shape. 

 

1.6 Contributions	

Inspired from the works mentioned earlier, the problem of automatic biomarker quantification is tackled 

by-  

1. Developing a fully automatic cascaded deep learning model to accurately segment both epicardium 

and endocardium of left and right ventricles from cine images.  

2. Developing deep learning models to accurately segment the epicardium and endocardium of LV 

from native T1 images. 

3. Quantifying the following biomarkers 

a. LV wall thickness 

b. LV mass, RV mass 

c. LV ejection fraction, RV ejection fraction 

d. Mean myocardial T1 
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Chapter	2	
	

Convolutional	Neural	Networks	
We introduce the basic concepts and the lexicon of deep learning models used in this study, which are the 

convolutional neural networks (CNN), and discuss their history in image segmentation problems. Some 

common CNN architectures used for image segmentation are briefly described. The very popular 3D-UNet 

style architecture extensively used in medical image segmentation is described in detail. 

 

2.1 Background	

CNNs are multi-layer feed-forward networks specifically designed to recognize features in image data. The 

architecture of CNNs is inspired by Hubel and Wiesel’s study of neurobiological signal processing in cat’s 

visual cortex. A typical application of CNNs consists of recognition of various objects in images. However 

convolutional networks have been successfully used for various different tasks, too. The neurons in CNNs 

work by considering a small portion of the image, say patch. The patches are inspected for features that can 

be recognized by the network. As a simple example, a feature may be a vertical line, an arch, or a circle. 

These features are then captured by the respective feature maps of the network. A combination of features 

is then used to classify the image, or in our case, each pixel.  

	

A CNN architecture typically consists of multiple layers. The abstraction, i.e layers, is done based on the 

functionality of the operations. The series of mathematical operations that perform convolutions on the 

image using multiple kernels (in this case, filters or feature maps) are termed convolutional layers, ones 

that reduce the spatial dimension by averaging the local information are called pooling layers, ones that 

apply a non-linear function to each pixel in the image in order to amplify the effects of a previous 

convolution are called activation layers, ones that increase the spatial dimension by transposed convolutions 

or interpolations are respectively called deconvolution or up-sampling layers. A series of many such layers 

together constitutes a CNN.  
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2.1.1 Convolutional	Layers	

Convolutional layer includes a kernel (or filter) whose weights will be ‘learned’ over time while training. 

Let K be a kernel with x rows, y columns and depth d. Then the kernel with size Kx * Ky * d works on a 

receptive field of Kx * Ky on the image. The kernel height and width are smaller than the input image height 

and width. The kernel slides over (convolves with) the image, producing a feature map (Figure 7). 

Convolution is the sum of the element-wise multiplication of the kernel and the original image. Note that 

the depth d of the kernel is equal to the depth of its input. Therefore, it varies within the network. Usually 

the depth of an image is the number of color channels, the three RGB channels. During training, discussed 

at the end of this chapter, the values in the convolutional kernels are “learned”. 

 

 

 
Figure 7: An example of the convolution operation using a kernel whose values are all 1s 

*Source: https://datascience.stackexchange.com/questions/23183/why-convolutions-always-use-odd-numbers-as-filter-size 

 

Although efficient, using the simple convolutional operation might not yield the best feature extraction at 

times when the regions of interest have complex shapes. Moreover, using larger kernels to increase the 

effective receptive field (the dimension of the original image viewed by a convolutional layer) size so as to 

infer more spatial information isn’t always efficient as there will be a lot more parameters to train which 
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not only takes longer, but could also lead to overfitting. To overcome these issues, we tried incorporating 

dilated convolutions into our CNN. 

2.1.1.1 Dilated	Convolution	

In general, the receptive field of the CNN should be larger the region of interest being segmented so as to 

acquire enough spatial information. A simple way of increasing the receptive field is to use a larger 

convolutional kernel. But doing so also increases the number of parameters that are to be trained which not 

only increases the time to convergence of the gradient descent algorithm but also increases the chance of 

overfitting on the training data. To overcome this issue the idea of dilated convolutions22 was put forth.  

 

In simple terms, dilated convolution is just a convolution applied to input with defined gaps. With 

this definition, given our input is an 2D image, dilation rate k=1 is normal convolution and k=2 means 

skipping one pixel per input and k=4 means skipping 3 pixels.  

 
Figure 8: Systematic dilation supports exponential expansion of the receptive field without loss of 
resolution or coverage. (a) F1 is produced from F0 by a 1-dilated convolution; each element in F1 has 
a receptive field of 3×3. (b) F2 is produced from F1 by a 2-dilated convolution; each element in F2 has 
a receptive field of 7×7. (c) F3 is produced from F2 by a 4-dilated convolution; each element in F3 has 
a receptive field of 15×15. The number of parameters associated with each layer is identical. The 
receptive field grows exponentially while the number of parameters grows linearly. 

* Taken from “MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS”  

 

Figure 8 shows the exponential increase in the receptive field as a function of the dilation rate. The red dots 

are the points at which the kernel values are centered. The green shaded area represents the receptive field 

of the kernel. Note that the number of red dots, that represents the number of parameters to be trained 

remain constant. 
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2.1.2 Pooling	Layer	

Pooling layers are used to reduce the spatial dimension of the feature maps in order to reduce the number 

of parameters and the computation in the network. This also helps to control overfitting.  Pooling Layer 

operates independently on every depth slice of the input and resizes it spatially, using either the ‘max’, ‘min’ 

or ‘average’ operations. The most common form is a pooling layer with filters of size 2x2 applied with a 

stride of 2 down samples every depth slice in the input by 2 along both width and height, discarding 75% 

of the activations. If it were using the ‘max’ operation, every ‘max’ operation would in this case be taking a 

‘max’ over 4 numbers (little 2x2 region in some depth slice). The depth dimension remains unchanged. This 

is called max-pooling. Average pooling and minimum pooling are defined similarly. In our work, we mostly 

use max-pooling. Figure 9 shows an illustration of max-pooling. 

 

 
Figure 9: The most common down sampling operation is max, giving rise to max pooling, here 

shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square) 
*Source: http://cs231n.github.io/convolutional-networks/\ 

 

2.1.3 Deconvolution	Layer	

Deconvolutional layers are typically used in CNNs in order to annul the effects of a previous pooling layers 

and convolutional layers in the network. The job of these layers is to increase the spatial dimension, so that 

the final output has the same resolution as the input image and direct correlations between the model output 

and the regions in the output feature map can be obtained. These layers, similar to convolutional layers, 

have weights that can be ‘learned’. Rather than using a fixed function, such as an interpolation kernel, these 

layers can learn the upsampling operation. These are sometimes also called transposed convolutions. Figure 

10 shows an illustration of the deconvolution operation. The 2x2 blue image at the bottom is the input and 

the 3x3 gray grid is the deconvolutional kernel. 



 21 

 
Figure 10: Illustration of deconvolution operation on a 2x2 image using a 3x3 kernel with stride 1 

*Source: https://datascience.stackexchange.com/questions/6107/what-are-deconvolutional-layers 

 

The kernel is moved around with a  stride of 1 pixel with no padding. The output size of the deconvolution 

is given the formula below- 

 
Where Si is the input size, Sf is the kernel size, pad is the padding and So is the output size. Using this 

formula, the output dimension of our example is 4x4, which is twice the input dimension. 

 

2.1.4 Activation	Layer	

In general, every convolution layer is immediately followed by an activation layer. Activation layers apply 

a non-linear function to its inputs. In context of neural networks, activation layers are of much significance 

as they enable it to estimate a complex non-linear function. Without activations, the neural network would 

simply be a high order linear equation, which has limited power and does not performs good most of the 

times. A linear equation is easy to solve but they are limited in their complexity and have less power to 

learn complex functional mappings from data. One hard requirement that an activation function should 

satisfy is its differentiability. While ‘learning’, the back-propagation (described in further sections) 

algorithm relies on the gradients from these functions to determine the error that needs to be propagated 
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backwards. For the most part, we use the rectified linear activation (ReLU) and softmax activation in our 

networks. They are described below. 

 

2.1.4.1 ReLU	

ReLU has become very popular in the last few years. It computes the function f(x)=max(0,x). In other 

words, the activation is simply thresholded at zero. It was found to greatly accelerate the convergence of 

stochastic gradient descent compared to other complex functions. It is argued that this is due to its linear, 

non-saturating form. Unfortunately, ReLU can be fragile during training and can “die”. For example, a large 

gradient flowing through a ReLU layer could cause the weights to update in such a way that the neuron will 

never activate on any datapoint again. If this happens, then the gradient flowing through the unit will forever 

be zero from that point on. That is, the ReLU units can irreversibly die during training since they can get 

knocked off the data manifold. It is a major pitfall that should be avoided using ReLU. Despite this technical 

drawback, in practice, researchers have found that ReLU significantly reduces the training time without 

any effect on the accuracy. Figure 11 shows a graphical representation of the activation function 

 

 
Figure 11: Graphical representation of the ReLU activation 

 

2.1.4.2 Softmax	

Softmax function calculates the probabilities distribution of the event over ’n’ different events. In a general 

way of saying, this function will calculate the probabilities of each target class over all possible target 

classes. Later the calculated probabilities will be helpful for determining the target class for the given inputs. 

Mathematically, it is defined as –  
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Where K is the dimension of input vector z. Resultant vector σ(Z) has values between (0, 1) whose sum is 

equals to one.  We use softmax activation on the very last layer of our network to get the pseudo-

probabilities that represent the confidence of a pixel belonging to a particular class. 

 

2.1.5 Batch	Normalization	Layer	

This layer adds a normalization step (shifting inputs to zero-mean and unit variance) to make the inputs of 

each trainable layers comparable across features. By doing this it ensures a high learning rate while keeping 

the network learning. This layer quickly became very popular mostly because it helps to converge faster. 

Also, it allows activations functions to not get stuck in the saturation mode (e.g. gradient equal to 0).  

 

2.1.6 Training	

Training phase of a CNN involves calculation of the loss term and back propagation of the loss through the 

entire network. The loss term represents the error in prediction made by the CNN on an input. The gradients 

computed on each layer represent the contribution of that layer to the final loss term. When back 

propagating, all the trainable parameters are updated according to their gradients. When this is repeated on 

all training inputs for several epochs, the parameters will be updated in a way that they approximate a non-

linear function that models the task at hand. 

 

2.2 Segmentation	Using	CNNs	

Image segmentation using CNNs is a classification task on a pixel level.  Fully Convolutional Networks 

(FCN)(CNNs with all convolutional layers) by Long et al. from Berkeley, popularized CNN architectures 

for dense predictions. This allowed segmentation maps to be generated for image of any size. Almost all 

the subsequent state of the art approaches on segmentation adopted this paradigm. One of the main problems 

with using CNNs for segmentation is pooling layers. Pooling layers increase the field of view and are able 

to aggregate the context while discarding the ‘where’ information. However, segmentation requires the 

exact alignment of class maps and therefore, needs the ‘where’ information to be preserved. Encoder-
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Decoder style network architecture was proposed to tackle this issue. Encoder gradually reduces the spatial 

dimension with pooling layers and decoder gradually recovers the object details and spatial dimension. 

There are usually shortcut connections from encoder to decoder to help decoder recover the object details 

better.  

 

2.2.1 3D	UNet	

3D UNet was originally proposed by Cicek et al.23 for automatic segmentation of Xenopus (a highly aquatic 

frog) kidney.  It has an encoder-decoder style architecture with skip connections between corresponding 

layers in encoding and decoding paths. This architecture is very popular for medical image segmentation. 

All the deep learning models used in this study have the same architecture, the 3D UNet. 3D in the name 

indicates that the input to this network is a 3D image. UNet refers to the structure of the network, which 

resembles the letter ‘U’. Figure 12 shows the block representation of 3D UNet architecture. 

 

 
Figure 12: The 3D u-net architecture. Blue boxes represent feature maps. The num- ber of channels is 

denoted above each feature map. 

*Taken from 'Learning Dense Volumetric Segmentation from Sparse Annotation' 

 

Each convolutional block has two convolutions followed by max pooling. Every convolution is 

immediately followed by ReLU activation and batch normalization layer. Each deconvolutional block 

consists of two convolutions followed by a deconvolution to regain spatial dimension. Moreover, there are 

skip connections from the encoding path to decoding path at corresponding spatial dimensions. These are 
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shown by green arrows. The very final convolution (shown by a purple arrow) that generates a three-

dimensional feature map is followed by a softmax activation in order to obtain a pseudo-random probability 

distribution at each pixel representing its class membership. All the deep learning models used in this work 

have the UNet architecture. 
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Chapter	3	
	

HCM	Registry	
The data from HCM Registry24, a National Heart Lung and Blood Institute-sponsored 2750-patient, 44-site, 

international registry and natural history study designed to address limitations in extant evidence to improve 

prognostication in HCM, is used in this study. We only use 100 datasets from this registry of which 60% 

were used for training and the rest for testing. Images acquired using cine and T1 protocols are used in this 

study. 

 

3.1 Cine	Data	

Cine data has images for all cardiac phases on slices covering the entire heart. Ground truth segmentation 

masks for both epi and endocardial LV and RV are available at end-diastole phase and only endocardial 

LV and RV are available at end-systole phase. Data preprocessing includes building 4D image matrices 

from DICOM. 4D images represent a 3D heart in time, i.e. different cardiac phases. Building 4D matrices 

requires the parsing of information from DICOM meta data to find the appropriate slice location and phase 

number for each 2D image that it contains. These images are later center cropped from 256x256 to 154x154 

to reduce the overall size and increase training speed. As the region of interest is always at the center of the 

image in CMR, we can be certain that such cropping wouldn’t exclude it. Also, resizing the images to 32 

slices allows all of them to have uniform size while being fed into the deep learning model. Intensity 

normalization by subtracting the mean and dividing with standard deviation of the image.  

 

a)   
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b)  

c)  
Figure 13: Examples of cine data and its augmentation 

 

During training, random 3D affine transformation including translation, rotation, scaling and shear was 

used on the fly to augment the dataset. Figure 13a shows some 2D images representing one slice of the 

heart along with some introduced augmentations for epicardial boundaries of LV and RV,  Figure 13b 

shows the same but for LV endocardium and Figure 13c for RV endocardium. The first column is the source 

image and columns 2 and 3 are augmentations on the source image.  

 

3.2 T1	Data	

Data used for T1 segmentation is also part of the HCM Registry.  We use the native T1 maps to segment 

out the left ventricle. The LV epicardial and endocardial ground truth contours are available for all 

corresponding images. Data preprocessing is fairly similar to that of cine data. As T1 maps are only acquired 

at basal, mid-cavity and apical positions rather than on all slices that cover the entire heart, we use 2D 

versions of the augmentations used for cine data to warp each 2D image. Figure 14 shows native T1 maps 

at basal, mid-sequence and apical slices along with the epi and endocardial (red and green respectively) 

contours. The corresponding 2D augmentations are shown in Figure 15. 
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Figure 14: Native T1 maps at basal, mid-sequence and apical slices 

 

 

 
Figure 15: Augmentation results on epi and endo contours shown in Figure 14 
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Chapter	4 

 

Approach	
This chapter describes the fully automatic approach that we developed to achieve accurate segmentations 

on both cine and native T1 maps. Also, automatic algorithms for biomarker quantification based on the 

segmentations are detailed along with evaluation metrics that were used to assess the segmentation quality 

and biomarker quantification accuracy. 

 

4.1 Cardiac	Chamber	Segmentation	

A cascaded deep learning based approach was developed to accurately segment the heart chambers and 

thereby automate the quantification of HCM biomarkers. First, accurate segmentations for LV and RV 

epicardium are obtained with one network. Results from the epi segmentation are then used to obtain tight 

bounding boxes that encloses the LV and RV chamber, respectively. Separate models are trained for 

endocardium segmentation for each chamber. Input images are also masked by the results from epi 

segmentation so that the network can focus on the inside of the chamber. Figure 16 shows a workflow of 

this approach. The following sub sections further discuss each step. 

 

4.1.1 DCNN	Architecture	and	Loss	Metric	

A 3D-UNet style architecture is used for the segmentation in both steps. Convolutions in the encoding phase 

of 3D-UNet were replaced with dilated convolutions in order to increase the receptive field without having 

to train more parameters. In medical images, the ground truth masks are dominated by background leading 

to an overwhelming class imbalance, especially when there are multiple foreground classes. This can be 

addressed by applying a weight map to the categorical-cross entropy loss function or by using a dice-

similarity metric based loss function. The latter is usually preferred as it does not rely on hyper parameters. 

With multiple foreground labels, the loss is given as-  
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where n is the number of classes, excluding background and each individual dice is calculated using 

Sorenson’s coefficient.  

 

 

 
Figure 16: Workflow of the cascaded DCNN approach for end-diastole cardiac chamber 

 

 

4.1.2 Epicardium	Segmentation	-	Diastole	

A single model is used to segment both the LV and RV epicardium with three labels of output: background, 

LV chamber and RV chamber. During training, random 3D affine transformation including translation, 

rotation, scaling and shear was used on the fly to augment the dataset. Adam optimizer is used with a 

learning rate of 5e-4 to minimize the loss. The model was trained for 800 epochs on a TitanX GPU for 8 

hrs. For both LV and RV, only one fully connected component is retained during post-processing. 
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4.1.3 Endocardium	Segmentation	-	Diastole	

As the endocardium is always inside the epicardium, to maximize the efficiency of the network by focusing 

on the myocardium-blood contrast, two separate models are trained for LV and RV endocardial 

segmentation on masked images. The segmentation task is now a pixel-wise binary classification problem.  

During training, ground truth epicardium masks are used to obtain a tight bounding box that encloses the 

contour. The images are then cropped accordingly and pixels outside the epicardium are also masked out. 

As a comparison, we also trained models without images to check their contribution to the performance. 

The cropped images are then resized to 128x128x32 dimensions to ensure that all inputs to the model have 

the same size. Similar affine augmentations is performed as well. During testing, results from the 

corresponding epi segmentation generated by the model are used for masking and bounding box extraction.  

Adam optimizer was used with a learning rate of 5e-4 to minimize the loss on both models which were 

trained for 400 epochs on a TitanX GPU for 4 hrs each. 

 

4.1.4 Endocardium	Segmentation	–	Systole	

Although training augmentation of the images at end-diastole phase can mimic end-systole images for 

general cardiac MRI, we found that the model trained with end-diastole images performs poorly on end-

systole images for HCM patients since the shape and contrast is drastically different between the two 

phases. In some extreme cases where wall thickening is severe, no blood signal is visible, yet the chamber 

boundary still should be drawn. As ground truth epi masks are not available at systole, the cascaded 

approach can’t be used. Individual models were then used for the endo segmentation of LV and RV on the 

original images. Adam optimizer was used with a learning rate of 5e-4 to minimize the loss on both models 

which were trained for 200 epochs on a Titan X GPU for 4 hours in total. 

 

4.1.5 T1	Segmentation	

Segmentation of T1 maps is fairly straight forward and highly similar to the strategy we followed for systole 

endocardium. We train two different models, one to segment LV epicardium and the other to segment LV 

endocardium. While segmenting the endocardium, we mask the input image with the results of epicardium 

segmentation. Adam optimizer was used with a learning rate of 5e-4 to minimize the loss on both models 

which were trained for 200 epochs on a Titan X GPU for 4 hours in total. 
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4.2 Biomarker	Quantification	

4.2.1 Wall	Thickness	

Wall thickness calculations are made following the 17-segment model recommended by the AHA with 

slight modifications to be able to compare the results with available data. All slices including apical are 

automatically divided into 6 segments. Figure 2 shows the division of left ventricle into six segments of 60° 

each on a mid-ventricular slice. Segments 2 and 3 are first found by identifying the septum, which is the 

overlap of LV and RV epi contours. The exact boundaries of the two segments are symmetrically adjusted 

to make sure the angle is 120°.  Segments 1, 6, 5, 4 can be found by dividing the remaining area into four 

equal parts. Myocardium thickness is calculated at the beginning of each segment – represented by solid 

white lines in Figure 17. The same angles are used for all other slices for myocardium division. 

 

 

Figure 17: Division of the left ventricle into six equal segments – anterior, antero septal, infero septal, 
inferior, infero lateral, antero lateral. 

 

4.2.2 Ejection	Fraction,	LV	&	RV	Mass	

Simpson’s rule is used to calculate endocardial volumes at end-diastole (EDV) and end-systole (ESV). 

Ejection fraction (EF) can be found by the below formula. EFs of both LV and RV are calculated. 

 

12 = 	1(3 − 1431(3 ∗ 100 
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Mass calculations require epicardial volumes in addition to endocardial volumes. As epi contours are not 

available at end-systole, mass is only calculated at end-diastole. Myocardial volume is calculated as the 

difference of epi and endocardial volumes. Mass is calculated as the product of myocardial volume and 

density, which was assumed to be constant at 1.05g/cc. 

 

4.2.3 Mean	Myocardial	T1	

Changes in myocardial T1 can be a very helpful biomarker in identifying risk associated with HCM. It is 

calculated by taking the average of all the pixel values that lie in the myocardium, which is identified from 

the corresponding segmentation masks on T1 maps.  

   

4.3 Evaluation		

Dice scores and average perpendicular distance are calculated to evaluate the segmentation quality. To 

demonstrate the necessity of different models for HCM patients, we also trained a model for LV epi and 

endocardium segmentation using the SunnyBrook dataset, which contains normal and other patient 

populations, and tested the model on HCM patients. Symmetric mean absolute percentage error and root 

mean squared error values were calculated to evaluate the biomarker quantification results. 

 

4.3.1 Dice	Score	

The dice score is a statistic used for comparing the similarity of two samples. When applied to boolean 

data, using the definition of true positive (TP), false positive (FP), and false negative (FN), it can be written 

as – 

 
The value of dice score ranges from 0 to 1 with 0 being complete mismatch and 1 being perfect overlay. 

Figure 18 shows a visual representation of dice metric. 

 

 
Figure 18: Visual representation of dice score 
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4.3.2 Average	Perpendicular	Distance	

The average perpendicular distance (APD) measures the distance from the automatically segmented contour 

to the corresponding manually drawn expert contour, averaged over all contour points. A high value implies 

that the two contours do not match closely. In general, an APD value less than 5mm is considered a good 

contour. Figure 19 shows a visual representation of APD. 

 

 
Figure 19: Visual representation of point pairs for APD calculation 

Considering a pixel spacing of 1mm, the APD for the above example is 1.426mm, maximum distance is 

5.45mm and minimum distance is 0mm. 

 

4.3.3 Symmetric	Mean	Absolute	Percentage	Error	

Symmetric mean absolute percentage error (sMAPE) is an accuracy measure based on percentage (or 

relative) errors. It is used to evaluate the quantification of biomarkers. For a set of actual values A and 

predicted values P, sMAPE is given by -  #7891 = 	 /::%- 	 <=>	?=
<= @	 ?=

-
A./  

 

4.3.4 Root	Mean	Squared	Error	

The root mean squared error (RMSE) represents the sample standard deviation of the differences between 

predicted values and observed values. It is calculated as the square root of average of squared errors. 
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Chapter	5 

 

Results	&	Discussion	
5.1 Cardiac	Chamber	Segmentation		

When using the model trained on the Sunnybrook dataset, a dice score of 0.368 on endo_LV and 0.685 on 

epi LV were achieved while the scores were 0.92 and 0.95 on its own validation dataset. Upon visual 

inspection of the results, the model failed to locate the endo_LV ROI on many cases, causing the dice score 

to be 0. Figure 20 shows some results from this experiment.  

 

a)  

b)  
Figure 20: Prediction errors when a model trained on sunnybrook data is deployed on HCM data, Green contours are ground 
truth and red are predictions. a) result on epicardium, Dice: 0.04; b) result on endocardium, Dice: 0.  

 

When using the cascaded approach trained on end-diastole images to test on end-systole images, the dice 

scores of 0.45 on endo_LV and 0.36 on endo_RV were obtained, justifying the need to train separate 

networks for end-systole segmentation. When masking on the images for endo segmentation was not used, 

the dice score was 0.78 on endo_RV and 0.90 on endo_LV. With masked image, the dice score of RV 
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increased to 0.81. Table 1 summarizes the final results from our automatic segmentation models for cine 

data. In general, an APD less than 5mm is considered good segmentation for large objects. 
Table 1. Results from the cascaded approach used at end-diastole and separate networks used for endocardium segmentation at 
end-systole.  

ROI Dice APD (mm) 

Endo_LV – Dia 0.902 ± 0.025 2.25 ± 0.58 

Epi_LV – Dia 0.927 ±  0.025 2.21 ± 0.73 

Endo_RV – Dia 0.813 ± 0.045 2.98 ± 0.89 

Epi_RV – Dia 0.820 ± 0.040 3.08 ± 0.88 

Endo_LV – Sys 0.752 ± 0.071 3.96 ± 1.82 

Endo_RV – Sys 0.613 ± 0.197 6.23 ± 4.88 

 

In an attempt to understand the model failures, we identified slices with poor segmentation (dice score < 

0.80). The bar chart in Figure 21 shows the percentage of bad slices at basal, mid ventricular and apical 

locations for End-Diastole. These locations were identified by choosing the first, middle and the last slices 

from the 3D ground truth mask containing contours. 

 

The RV segmentation is performing poorly at basal and apical locations and is significantly better at the 

mid ventricular location. As the endocardial segmentation is contingent on the accuracy of epicardial 

segmentation, the former is expected to perform poorly when the latter fails, which explains the relatively 
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Figure 21: Percentage of bad slices at basal, mid ventricular and apical locations is shown in the bar chart. RV_Epi and 
RV_Endo have relative more issues at basal and apical locations. The Pie chart shows the contribution of each ROI to the 
total number of bad slices among all slice locations 
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high percentage of RV_Endo bad. LV segmentation is following the same trends but with better 

performance. Among slices at all locations, approximately, 25% of them were bad. The pie chart in Figure 

21 shows the contribution of each ROI to the total number of bad slices identified. This represents the 

overall performance of the model in segmenting these ROIs, irrespective of their location. The model is 

doing a better job at segmenting the LV relative to RV. This is expected, given the complex crescent shape 

of the RV.  

 

Figure 22 shows the same information for End-Systole phase. The model is performing rather poorly in 

identifying the basal and apical slices for Endo_RV. The percentage of bad slices at end-systole was 42%.  

 The segmentation results for different ROIs are shown in Figure 23. It can be observed that a good 

epicardial segmentation allows for a good endocardial segmentation. 

a) b)  

c)   d)  
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Figure 22: Percentage of bad slices at basal, mid ventricular and apical locations is shown in the bar chart. The Pie chart 
shows the contribution of Endo_LV and Endo_RVto the total number of bad slices among all slice locations. 
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e)  f)  
Figure 23: Segmentation results on apical, mid ventricular and basal slices. Green contour is the ground truth and red is the 
prediction a) Epi_LV, diastole, Dice:0.95; b)Endo_LV, diastole, for images in ‘a’ , Dice:0.92; c)Epi_RV, diastole,Dice:0.91; 
d)Endo_RV, diastole, for images in ‘c’, Dice:0.91; e)Endo_LV, systole, Dice:0.93; f)Endo_RV, systole, Dice:0.73 

 

Dice scores of 0.91 and 0.84 were achieved on epicardial and endocardial regions of native T1 maps. As 

the native T1 contrasts are very poor, it is often difficult for a human segmenter to accurately delineate the 

endocardium, which leads to higher variability.  Figure 24 shows some segmentation results on native T1 

maps.  

a)  

b)  
Figure 24: Native T1 map segmentation results. Ground truth contour is in green and prediction in red. a)Endocardium, 

Dice:0.92; b)Epicardium, Dice:0.95 

 

5.2 Quantification	of	Biomarkers	

Table 2 summarizes the results of biomarker quantification. The ‘Mean_Value’ column shows the average 

value of the quantified biomarker on test data. For comparison, root mean square error (RMSE) values from 

model predictions and an inter-observer study on generic cardiac MRI data are reported [15]. Wall thickness 

measurements are only done at end-diastole as no epi contours are available for end-systole.  
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Table 2. Quantification results for LV, RV Mass, Ejection Fraction, Mean myocardial T1 and the End-Diastole wall thickness. 

Biomarker Mean_Value sMAPE in % Model_RMSE InterObserver_RMSE 
(Generic Cardiac 

MRI) 

LV Mass  158.8 gm 13.7 ± 8.9 52.4 gm 17.5 gm 

RV Mass  23.9 gm 32.2 ± 18.9 16.4 gm N/A 

LV Ejection Fraction 64.5 % 5.8 ± 4.5 9.5% 4.2% 

RV Ejection Fraction 58.0 % 9.2 ± 5.9 21.6% N/A 

Wall Thickness  6.2 mm 20.8 ± 8.1 2.97 mm N/A 

Mean Myocardial T1 916 msec 2.91 ± 2.96 54.5 msec N/A 

 

The inter observer RMSE values reported in Table 2 are from a population that is representative of healthy 

patients25. RMSE values on HCM population are expected to be higher given the increased variability in 

the size and shape of heart chambers. Higher errors in RV related values are a result of poor segmentation 

in comparison with LV. Moreover, the poor performance in basal slice segmentation contributes 

significantly to the errors in mass and ejection fraction calculations. For myocardial T1, in general the 

values are around 1000msecs. RMSE of 54.5 msec and sMAPE of 2.9% indicates a robust quantification. 

Time taken for automatic quantification using the methods we developed is approximately 10sec for each 

subject. 
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Conclusion	
 

We have successfully developed a cascaded DCNN approach for cardiac segmentation and quantification 

of biomarkers in HCM. The underlying aim of the cascaded approach was to achieve improved results on 

endo when we have an accurate segmentation for epi, since epicardium segmentation usually performs 

better due to more distinct contrast. Our results concur with this aim; endo APD and dice scores are very 

close to epi values at end-diastole. Upon visual inspection, it was found that the cascaded approach works 

perfectly on the mid-cavity slices, but has trouble when segmenting the very apical and very basal slices 

where the ROI vanishes suddenly. The accurate delineation of LV and RV is very challenging and 

ambiguous even for cardiologists, especially in RV, which explains the relatively poor RV mass 

calculations. Even though the inter-observer variability values on HCM data are likely to be higher than on 

a generic cardiac MRI data, the large differences of the latter in comparison with model prediction signifies 

the need for improvement. In the future, we will continue to improve the model focusing on basal and apical 

slices and use more data for training. In addition, we will build models to automatically quantify biomarkers 

from post contrast T1 and LGE images, which are also acquired in the study protocol to capture more 

information for HCM diagnosis and prognosis.  
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