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Abstract 
 
 While germline variation has had a rich history of being studied in the 

context of cancer risk, emerging evidence now suggests that germline variation 

shapes the landscape of somatic aberrations in cancer and may affect the 

sensitivity and toxicity of chemotherapy drugs. Given these findings, we 

hypothesized that germline variation should not only predict the risk of acquiring 

cancers but also affect the rate at which the tumor progresses. We began our 

search for germline variants affecting tumor progression by analyzing the 

genomic sequencing data of approximately 500 patients diagnosed with lower 

grade gliomas. We identified two germline variants associated with poor outcome 

in these patients, one in the oncogene GRB2 and the other in the tumor 

suppressor gene of ANKDD1a.  Our results suggested that germline variation is 

associated with patient outcome and that there is an interaction between 

common polymorphisms and the somatic landscape in lower grade gliomas. 

 We then searched for germline variants associated with patient outcome 

across 33 different types of cancers using sequencing data from over 10,000 

cancer patients. In total, we identified 79 prognostic germline variants in 

individual cancers and 112 prognostic germline variants in groups of cancers. 

The germline variants identified in individual cancers provide additional predictive 

power about patient outcomes beyond clinical information currently in use and 

may therefore augment clinical decisions based on expected tumor 

aggressiveness. Our results suggested that the idea that germline variation 

contributes to tumor progression is a general principle of cancer genomics as we 
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found this to be true across essentially all cancers for which we were sufficiently 

powered.  

 Having found that germline variants impact tumor progression, we 

suspected that the interaction between germline variants and the landscape of 

somatic events could be exploited therapeutically. To assess this possibility, we 

developed a pan-cancer approach to identify pathogenic germline variants 

associated with elevated tumor mutational burden, as high tumor mutational 

burden is a validated biomarker of immune checkpoint inhibitor efficacy. We 

identified an association with overall tumor mutational burden in nine genes using 

a pan-cancer approach, fourteen pathways in individual cancers, and twelve 

pathways using a pan-cancer approach. Patients with the pathogenic germline 

variants described in this study may be more likely to respond to treatment with 

immune checkpoint inhibitors. 

 Together, our work suggests that germline variation affects tumor 

progression and is involved with shaping the landscape of somatic events in 

cancers in a predictable way that can likely be targeted therapeutically. These 

findings pave the way for future efforts to better individualize patient care. 
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Chapter 1: Introduction 
 

Germline Variants Increase the Risk for Cancer 
 
Heritability of Cancer   
 
 While cancer has historically been thought of as having both an inherited 

and environmental basis, exposures and sporadic genetic events occurring as a 

result of random chance had been believed to be responsible for the tumors 

observed in most patients. The notion that cancer has a hereditary component 

had been reinforced through the characterization of a handful of familial cancer 

syndromes, as individuals with multiple relatives with cancer were found to have 

a much higher risk of cancer than the general population. However, these familial 

cancer syndromes were rare and were thought to be driven by the perturbation of 

genes with dominant effects, leading to the belief that cancer predominantly 

occurs due to environmental exposures [1-3]. Epidemiologic studies of patients 

with breast, prostate, ovarian, and uterine cancer suggested that the inherited 

component of cancer may be much greater than the small number of patients 

with familial cancer syndromes that had been characterized, though the 

“inheritance” of cancer risk in these studies of patients with relatives with cancer 

was confounded by individuals often sharing similar environmental exposures 

with their relatives [4-8]. The landmark study by Lichtenstein et al. pooled data 

from over 40,000 pairs of twins to assess the risk of cancer at 28 different 

anatomical sites and could estimate the genetic and nongenetic components of 

cancer risk through the comparison of concordant tumor development in 

monozygotic compared to dizygotic twins. The study estimated that the genetic 
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component of cancer risk for prostate, colorectal, and breast cancer was 42%, 

35%, and 27%, respectively. For most cancers, the familial cancer syndromes 

had accounted for 1% of cancer cases. This study suggested that there was a 

major gap in the understanding of the hereditary component of cancer and that 

focusing solely on the study of DNA repair genes typically perturbed in familial 

cancer syndromes would not explain the bulk of the genetic contributors of 

cancer risk [9].  

Genetic Understanding of Cancer Risk 
 
 Growing clinical evidence suggesting that there existed an inherited 

component of cancer predisposition fueled interest in studying this risk at the 

genetic and molecular level [10]. The work by Theodor Boveri first suggested that 

cancer occurred through somatic events at the genetic level and that inherited 

perturbations to genetic units, which had not yet been fully characterized, could 

also be responsible for cancer. Alfred Knudson’s “two-hit hypothesis” published 

in 1971 was in line with this prediction, as Knudson’s hypothesis suggested that 

each allele of a tumor suppressor gene needed to be impaired to allow for 

tumorigenesis. Further epidemiologic work building off this hypothesis found that 

two hits, one to each allele of the tumor suppressor gene RB1, had typically 

occurred in patients with retinoblastomas with pathogenic germline variants often 

being responsible for the first hit [10].  

 Over 100 cancer predisposition genes perturbed by pathogenic germline 

variants have been identified through clinical and genomic studies and 

characterized using experimental approaches. Pathogenic germline variants in 
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cancer predisposition genes result in loss of function of tumor suppressor genes, 

such as ATM, BRCA1, BRCA2, BRIP1, PALB2, TP53, APC, NF1, PMS2, and 

RB1. Many of these pathogenic germline variants perturbing tumor suppressor 

genes disrupt pathways closely tied to tumorigenesis, such as DNA repair, cell 

proliferation, and cell adhesion [10-12]. Pathogenic germline variants in cancer 

predisposition genes result in gain of function of proto-oncogenes, such as MET, 

RET, EGFR, Ras, and Myc and perturb pathways that predispose to cancer 

development, such as cell cycle, cell death, and cell growth [10, 11].  

Genomic Study of Cancer Predisposition Genes 
 
 Large scale sequencing projects have enabled the identification of a 

substantial number of pathogenic germline variants in cancer predisposition 

genes [13, 14]. A large study of pathogenic germline variants in around 10,000 

cancer patients from The Cancer Genome Atlas project across 33 cancers found 

that 8% of cancer patients harbor pathogenic germline variants [11]. Other 

smaller studies have also identified an array of pathogenic germline variants 

across a wide spectrum of cancers [15-20]. Previous studies have identified 

common variants associated with differences in risk for cancer, though their 

effect sizes tend to be smaller in magnitude [21-25]. 

 Despite the explosion in the identification of germline variants associated 

with differences in cancer risk, the utility of germline variants in clinical oncology 

has not progressed as rapidly. Although clinical guidelines recommend that 

patients with pathogenic germline variants that fit under genetic syndromes such 

as hereditary breast and ovarian cancer syndrome, Lynch syndrome, Li-
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Fraumeni syndrome, and Peutz-Jeghers syndrome be considered for earlier 

screening, these guidelines have not been extended to the full spectrum of 

germline variants that have been associated with increased risk of cancer [26].  

Incorporating germline variants into clinical practice has been challenging 

for several reasons [11, 19, 21, 26-28]: 

(1) The usage of germline variants as part of robust cancer screening 

regimens requires validation in large cohorts. Germline variants with large 

effect sizes tend to be rare, with a few exceptions such as the variants in 

the APOE4 gene associated with the risk for Alzheimer’s disease [29]. 

Given the rarity of these pathogenic germline variants, they are 

challenging to validate and require large cohorts of patients to study 

effectively. On the other hand, common variants are found much more 

frequently in the population, but their effect sizes tend to be smaller, with a 

few exceptions [30]. As a result, common variants also typically require 

fairly large cohorts to validate.  

(2) Germline variation should be considered in the context of other clinical 

factors to maximize clinical utility. As previously described, while there 

does exist a genetic component to cancer risk, the bulk of cancer risk for 

many cancers is believed to be due to environmental exposures and is 

associated with aging. The translation of the discovery of germline 

variants associated with differences in cancer risk is perhaps best done 

using datasets with detailed and standardized demographic and 
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environmental exposure data. These datasets require more foresight and 

time to generate.  

(3) The effect sizes of the germline variants must be large enough to alter 

clinical decisions. Even if a germline variant is predictive of cancer risk, 

the magnitude of the effect size must be large enough to warrant the 

increased cost and inconvenience to the patient to start screening for 

cancer earlier. Furthermore, clinical trials are necessary to show that the 

detection of that particular cancer earlier in the disease course can 

actually be acted upon by oncologists to lengthen overall survival, after 

adjusting for the lead-time bias. 

Further work is necessary to determine when the use of germline variation 

would be valuable for modifying cancer screening regimens to catch and treat 

cancer earlier in the disease course. 

Germline Variation Affects the Landscape of Somatic Aberrations in 
Cancer 
 
 While most studies of germline variation in cancer have focused on cancer 

risk, recent studies suggest that germline variation affects the landscape of 

somatic aberrations in cancer. Alfred Knudson’s “two-hit hypothesis” published in 

1971 predicted this, as his hypothesis suggested that a germline variant that 

affected the function of a tumor suppressor gene could be followed by a somatic 

mutation that affected the other allele of that tumor suppressor gene to cause 

tumorigenesis [10]. While Alfred Knudson’s ideas were initially focused on 

mutations in RB1 in children with retinoblastoma, the idea that germline variants 

in tumor suppressor genes predisposed patients to developing tumors with 
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somatic mutations in the other allele of the same tumor suppressor gene was 

extended to other tumor suppressors as well. A recent study of 429 patients with 

ovarian carcinoma found that the majority of patients with germline truncating 

mutations in the tumor suppressor genes BRCA1 and BRCA2 exhibited loss of 

heterozygosity [31]. Similarly, genomic studies of myeloproliferative neoplasms 

identified a germline JAK2 haplotype associated with increased risk for the 

development of JAK2V617F somatic mutations, which is one of the most common 

and well-characterized drivers of myeloproliferative neoplasms [32-35]. In line 

with these findings, a previous study identified functional germline variants in the 

EGFR tyrosine kinase associated with an increased risk for subsequent somatic 

mutations in EGFR [36]. 

 A large study by Carter et al. analyzed the interaction between inherited 

polymorphisms and somatic aberrations in almost 6,000 tumors across 22 

different cancer types. Carter et al. identified and validated 412 genetic 

interactions between germline variants and somatic aberrations. While the 

previous studies discussed here identified somatic associations occurring in the 

other allele of the same gene perturbed by a germline variant, the study by 

Carter et al. identified somatic aberrations in genes that were not always the 

same as the one perturbed by the germline variant. In some cases, the germline 

variants were associated with increased risk for somatic mutations in genes of 

the same pathway but not always in the same gene. These findings suggested 

that the interaction between germline variation and somatic events is much more 

complex than the field had believed, as germline variants could increase the 
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susceptibility for somatic aberrations in genes other than the ones that they are 

found in. Furthermore, this finding suggested that more complex computational 

methods are necessary to attain an integrated understanding of tumorigenesis 

and the large number of factors that likely influence which somatic events will 

occur [37]. 

 A study of the interaction between germline variation and somatic 

aberrations in cancer using whole genome sequencing data from 2,658 patients 

across 38 tumor types by the Pan-Cancer Analysis of Whole Genomes 

Consortium found that germline variation is predictive of somatic mutational 

processes across cancers. For example, their analysis identified germline 

variants at the 22q13.1 locus associated with decreased APOBEC mutagenesis 

in cancer. They found rare variants in BRCA1 and BRCA2 to be associated with 

a higher abundance of small somatic structural variant deletions and tandem 

deletions, consistent with a role of these proteins in error-free homologous 

recombination directed repair of double-strand breaks. Germline MBD4 variants 

were associated with an elevated rate of C>T somatic mutations at CpG 

dinucleotides. This result is consistent with the role of MBD4 in binding to 

methylated CpGs and correcting G:T or G:U mismatches in the vicinity.  Finally, 

they identified 114 germline source L1 elements that were capable of active 

somatic retrotransposition. Overall, their results suggest that germline variation 

can shape somatic processes at a genome wide scale [38]. 

 Numerous additional studies have explored the link between germline 

variation and somatic aberrations [39, 40]. Research from our group has also 
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suggested a link between germline variation and somatic aberrations and our 

findings are detailed in Chapter 2, Chapter 3, and Chapter 4 [41, 42]. Briefly, in 

Chapter 2 we find that patients with lower grade gliomas with a germline variant 

in the GRB2 oncogene in the Ras signaling pathway are at increased risk for 

somatic mutations in Capicua transcription repressor (CIC), a driver gene that 

also regulates the Ras signaling pathway. In Chapter 3, we describe our 

discovery of how prognostic germline variants are associated with an increased 

risk for somatic mutations in driver genes. Finally, in Chapter 4, we describe how 

the tumors found in patients with pathogenic germline variants exhibit predictable 

perturbations to the transcriptome and somatic mutation profile, further 

supporting the notion that germline variation shapes the somatic aberration 

landscape at a genome wide scale.  

Understanding the relationship between germline variation and somatic 

aberrations is particularly promising from a clinical perspective for several 

reasons [39]:  

(1) The existence of a relationship between germline variation and somatic 

aberration suggests that the aggressiveness of a tumor can be predicted 

based on the germline status. This could enable clinicians to determine 

whether or not a tumor will be indolent or aggressive even at the earliest 

stages of tumorigenesis and could alter the course of treatment. 

(2) Germline variation could be used to improve the selection of clinical 

therapy. The recent large-scale sequencing of tumors and cancer cell 

lines has helped to identify the genomic determinants of drug sensitivity 
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[43, 44]. The existence of an interaction between germline variation and 

somatic aberrations suggests that chemotherapy responsiveness can be 

predicted using the status of germline variants. In addition, germline 

variants in the mismatch repair genes predict microsatellite instability, 

which leads to a greater chance of producing neo-antigens, thus 

predicting responsiveness to immune checkpoint blockade therapy [45-

47]. 

(3) Understanding the relationship between germline variation and somatic 

aberration may reinforce the discovery of variants that increase 

susceptibility to cancer, as it would provide the field with an understanding 

of the genetic sequence of events by which germline variants contributes 

to tumorigenesis. This validation could improve the accuracy of polygenic 

risk scores used to predict an individual patient’s risk for cancer. 

(4) Understanding the interaction between germline variation and somatic 

aberrations would inform the creation of complex genomic network-based 

models integrating germline variation and somatic aberration for predicting 

cancer risk and progression. 

While understanding the interaction between germline variation and somatic 

aberrations has significant promise for clinical applicability, the investigation of 

these interactions is riddled with several challenges [31, 37, 39, 40]:  

(1) There have been reports of associations between germline variants and 

somatic aberrations, but associations may be the result of several 

complex indirect interactions. Gaining a thorough understanding of these 
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interactions will likely require detailed multi-omic datasets, complex 

network-based computational approaches, and experimental perturbation. 

(2) These interactions may have some context dependence. Some 

interactions may only be evident in certain contexts, such as in the context 

of certain environmental exposures or in the presence of germline variants 

found more commonly in patients of a particularly race. 

Germline Variation Affects Tumor Progression  
 
 The idea that there is a link between germline variation and somatic 

events in cancer implies that germline variation may also affect tumor 

progression and could be used to predict the prognosis of patients with cancer. 

Several studies in this area identified germline variants predictive of patient 

outcome in genes with well-characterized driver roles in those cancers, such as 

SUFU, a negative regulator of Hedgehog signaling, in medulloblastoma or 

BRCA1 and BRCA2 in breast cancer [33, 48, 49].  

 In Chapter 2 and Chapter 3, we describe studies from our group 

supporting the idea that germline variation affects tumor progression. In Chapter 

2, we screen approximately 200,000 germline variants for associations with 

overall survival in patients with lower grade gliomas and identify two germline 

variants associated with poor outcome. One germline variant was identified in the 

GRB2 oncogene and the other was identified in a tumor suppressor gene, 

ANKDD1a [41]. In Chapter 3, we extend our approach to all 33 cancers 

encompassed in The Cancer Genome Atlas and characterize the landscape of 

prognostic germline variants using genomic sequencing data from approximately 
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10,000 patients. Our results suggest that germline variation is associated with 

patient outcome across cancers and that germline variation seems to affect 

tumor progression. We found that nearly half of the prognostic germline variants 

are found in genes with previously reported roles as oncogenes or tumor 

suppressor genes, a finding which was consistent with our previous study 

detailed in Chapter 2. The other half of the genes with prognostic germline 

variants were of unknown function and require further study [42]. 

 Understanding the mechanisms by which germline variants are associated 

with patient outcome and modulate tumor progression is challenging due to 

genetic linkage between variants, meaning the identified variant may not itself be 

responsible for the effect on outcome. In addition, the germline variants are 

present in every tissue in the body, and so could have an effect on outcome 

through effects on non-tumor cells in the body such as through immune system 

cells or through changes in the tumor microenvironment. Finally, most of the 

available datasets are limited to exonic regions, and therefore miss potentially 

important germline variants in introns and intergenic regions, though this is 

quickly changing. As a result, determining which nucleotide and which tissue is 

responsible for the observed phenotype has made understanding the exact 

molecular mechanisms by which germline variants act quite difficult. 

Nevertheless, research in this area has suggested possible roles by which the 

variants may be acting, such as through perturbation of protein structure and 

function and modulation of gene expression [42, 50, 51]. 
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Germline Variation Affects Drug Responsiveness 
 
 While germline variation may be associated with patient outcome directly 

by modulating aspects of tumor biology, germline variation may also be 

predictive of patient outcome by modulating responsiveness to therapy [42]. 

Identifying germline variants that are predictive of differences in therapy 

responsiveness poses several challenges to the field for two primary reasons 

[52]: 

(1) Patients with the same cancer do not always receive the same treatment. 

Patients may be treated with different combinations of chemotherapy 

drugs, radiotherapy, and surgical interventions, making association 

studies difficult to perform. Furthermore, patients may receive different 

dosages of chemotherapy drugs or can receive treatment at difference 

times in their disease course. 

(2) Few cohorts have both rich clinical annotation and genomic data 

availability. Most cohorts typically have either one data type or the other. 

Despite these challenges, several studies have begun to address this 

question. A pan-cancer analysis by Menden et al. of drug sensitivity data from 

cancer cell lines found that germline variation could be used to predict drug 

sensitivity across many of the 265 total drugs included in their analysis. In some 

cases, they found that the germline component of drug sensitivity exceeded the 

portion of drug sensitivity that could be predicted using somatic mutations. They 

replicated previous associations, such as germline loss of function mutations in 

BRCA1 and BRCA2 being associated with olaparib and cisplatin sensitivity, 
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DPYD loss of function germline mutations being associated with 5-flurouracil 

sensitivity, WFS1 variants being associated with cisplatin toxicity, and MGMT 

variants being associated with temozolomide toxicity [53-57]. Many of these 

associations can be explained.  For example, the loss of BRCA1 or BRCA2, 

makes cells susceptible to PARP inhibitors (discussed below) and to cisplatin, 

which causes cross-linking DNA damage, the repair of which uses HR-

dependent steps that are impaired upon mutations in these genes. Similarly, 

DPYD is involved in the catabolism of thymidine and uracil, and so loss of DPYD 

increases the levels of 5-FU in tumor cells, while MGMT is a DNA 

methyltransferase that repairs the alkylating DNA damage caused by 

temozolomide, so that a decrease in MGMT activity increases the toxic effect of 

temozolomide. Their results suggested that germline variation could affect drug 

sensitivity through perturbation of protein structure or by being associated with 

differences in gene expression [53]. 

 Several associations between germline variation and drug sensitivity have 

been reported in the literature and approved for clinical use by the Food and 

Drug Associations [58]. A few of the most well-studied associations are 

highlighted below. 

PARP Inhibitors and Germline Mutations in BRCA1 and BRCA2 
 
 Olaparib (Lynparza), Rucaparib (Rubraca), Veliparib are chemotherapy 

drugs that act by inhibiting poly ADP ribose polymerase (PARP). PARPs catalyze 

poly ADP-ribosylation reactions, which involve the transfer of ADP-ribose groups 

to target proteins [59]. While PARPs are involved in a variety of biological 
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processes, they are of particular interest as targets in cancer because of their 

participation in base excision repair and nucleotide excision repair [60-62]. The 

failure of base excision repair, in particular, predisposes cells to double-strand 

breaks. In addition, because PARPs participate in DNA repair, they facilitate the 

repair of DNA damage caused by alkylating agents, chemotherapy drugs 

frequently used in the treatment of a variety of cancers. Furthermore, the 

importance of PARPs for DNA repair increases as the functions of other DNA 

repair damage pathways are lost [63]. 

 Pathogenic germline variants in BRCA1 or BRCA2 impair homologous 

recombination (HR) directed repair, a DNA repair process used to repair double 

strand breaks. PARP inhibitors are particularly effective in patients with 

pathogenic germline variants in BRCA1 or BRCA2 because inhibition of PARPs 

substantially decreases the tumor cells’ ability to repair DNA damage and 

increase double strand breaks that require HR directed repair. This ultimately 

results in cell death. Olaparib has been approved by the Food and Drug 

Administration of the United States to treat patients with pathogenic germline 

variants in BRCA1 or BRCA2 with advanced ovarian cancer who have failed 

three or more previous lines of chemotherapy. Olaparib has also been approved 

for the treatment of metastatic HER2-negative breast cancer in patients with 

pathogenic germline variants in BRCA1 or BRCA2 [64-68]. Rucaparib is a PARP 

inhibitor that has been approved for the treatment of adults with deleterious 

germline mutations in BRCA1 or BRCA2 with epithelial ovarian, fallopian tube, or 
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primary peritoneal cancer who have been previously treated with two or more 

chemotherapy drugs [64]. 

Germline Deletions in BIM Predispose Patients to Imatinib Resistance 
 
 Imatinib (Gleevec) is a tyrosine kinase inhibitor that is used to treat chronic 

myelogenous leukemia. Imatinib inhibits the constitutively active tyrosine kinase 

BCR-ABL, which is a fusion protein formed by a chromosomal translocation and 

the driver of chronic myelogenous leukemia. Although imatinib has been 

massively successful for converting a previously deadly disease into one that can 

be chronically managed, a small percentage of patients exhibit resistance to 

imatinib treatment [69, 70].   

 The study of these resistance patterns resulted in the identification of a 

2,903 germline base pair deletion in the BIM gene that is associated with 

decreased responsiveness to imatinib in patients with chronic myelogenous 

leukemia. The deletion is present in roughly 15% of East Asians and Latin 

Americans but is not found in Europeans or Africans. BIM functions as an 

apoptotic activator. Functionally, BIM is regulated through alternative splicing. 

The three major proapoptotic isoforms of BIM are BIMEL, BIML, and BIMS. BIM 

has two other isoforms, BIMγ1 and BIMγ2, which are not proapoptotic. The 

proapoptotic isoforms all contains exon 4, whereas the two isoforms that are not 

proapoptotic do not contain exon 4. The deletion discovered in these studies 

occurs over exon 4. As a result, the proapoptotic isoforms are either absent or 

diminished. Although imatinib is still able to inhibit the activity of BCR-ABL in 
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patients with this deletion, the cells’ subsequent apoptotic response is impaired, 

resulting in resistance to therapy [30, 69, 71-76]. 

Germline Mutations in Mismatch Repair Genes and 5-Fluorouracil 
Sensitivity 
 
 5-Fluorouracil is a chemotherapy drug commonly used to treat 

gastrointestinal (esophageal, stomach colon, and pancreatic) cancers, breast 

cancer, and cervical cancer. 5-Fluorouracil functions by inhibiting thymidylate 

synthase, which methylates deoxyuridine monophosphate to form thymidine 

monophosphate. 5-Flurouracil causes cell death because thymidine 

monosphosphate is essential for DNA synthesis. It is particularly effective for 

treating cancer because DNA synthesis is necessary for cell division [77, 78]. 

 Lynch syndrome is characterized by pathogenic germline variants in 

mismatch repair genes such as MSH2, MSH3, MSH6, MLH1, MLH2, MLH3, 

PMS1, and PMS2. The mismatch repair pathway functions to repair DNA 

damage that has occurred as a result of mispairing between nucleotides, 

including those resulting from small insertions or deletions, most commonly after 

DNA replication. The small insertions or deletions that occur in areas with one to 

six nucleotide repeats (microsatellites) due to polymerase slippage are corrected 

by mismatch repair pathways. Patients with mutations in the mismatch repair 

pathway thus exhibit a high degree of microsatellite instability and widespread 

changes in the number of repeating units of microsatellites, [78, 79].  

While the widespread microsatellite instability associated with Lynch 

syndrome predisposes patients to a variety of cancers, patients with Lynch 

syndrome also exhibit increased resistance to treatment with 5-Fluorouracil. In 
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wild type cells, treatment with 5-Flurouracil results in the incorporation of 5-

Flurodeoxyuridine triphosphate during the generation of new strands of DNA 

during DNA replication and widespread base pair mismatches. These base pair 

mismatches are recognized by mismatch repair proteins, which attempt to repair 

them, but the abundance of the mismatches and resulting repair activities result 

in cell death. Cells of patients with Lynch syndrome that are mismatch repair 

deficient are unable to detect these widespread mismatches, resulting in cell 

survival and therefore resistance to 5-Flurouracil [78, 80-83]. Many clinical 

studies have confirmed the experimental pre-clinical studies and have shown that 

patients with evidence of microsatellite instability do not respond as well to 

treatment with 5-Fluorouracil [45, 79, 84-87]. 

Patients with Lynch Syndrome are More Likely to Respond to Immune 
Checkpoint Inhibitors 
 
 Immune checkpoint inhibitors are cancer immunotherapy drugs that target 

immune checkpoints. Biologically, immune checkpoints act to downregulate the 

immune system and prevent autoimmune diseases. However, cancer cells 

frequently take advantage of these immune checkpoints as a means of 

downregulating the immune response, enabling the survival and further 

proliferation of cancer cells. These cancer cells harbor neoantigens that would 

otherwise result in the cancer cells being targeted by the immune system. 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell 

death protein 1 (PD-1) are examples of cell surface proteins that downregulate 

immune system activity. Several immune checkpoint inhibitors have been 

approved by the Food and Drug Administration in the United States. Ipilimumab 
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is an antibody against CTLA-4. Nivolumab, Pembrolizumab (Keytruda), and 

Spartalizumab are PD-1 inhibitors. Atezolizumab is a PD-L1 inhibitor [88-90]. 

 Clinically, immune checkpoint inhibitors have been shown to be effective 

in only a subset of cancer patients. Although identifying biomarkers of immune 

checkpoint inhibitor efficacy is still an ongoing area of research, overall somatic 

tumor mutation burden has emerged as a biomarker that has been shown to 

predict immune checkpoint inhibitor response in multiple cancers and in multiple 

cancer cohorts. Overall somatic mutation burden is believed to correlate with 

immune checkpoint inhibitor response because tumors with higher overall 

somatic mutation burden tend to produce a larger number of proteins with 

mutations that could act as neoantigens that can recognized by the immune 

system. As a result, following the inhibition of CTLA-4 or PD-1 by immune 

checkpoint inhibitors, the immune system is better able to target and kill cells 

harboring neoantigens. Clonal non-synonymous tumor mutation burden has 

correlated better with immune checkpoint inhibitor response than overall non-

synonymous mutation burden or overall somatic mutation burden. Non-

synonymous mutations can cause changes in protein structure whereas 

synonymous mutations do not cause changes in protein structure. Tumors with 

one (or few) large clone(s) carrying a somatic mutation are believed to be better 

targeted by the immune system because a single (or few) antibody or T cell is 

able to target a large number of tumor cells [46, 47, 88, 89, 91, 92]. 

 Patients with Lynch syndrome have been shown to be more likely to 

respond to treatment with immune checkpoint inhibitors than patients without 
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Lynch syndrome. As explained above, these patients have pathogenic germline 

variants in genes necessary for mismatch repair, resulting in widespread 

microsatellite instability. This genomic instability results in the production of more 

neoantigens, meaning these tumors are more likely to be targeted by the immune 

system following inhibition of CTLA-4 or PD-1 [93].  

 In Chapter 4, I describe our approach to identifying pathogenic germline 

variants that may be associated with immune checkpoint inhibitor 

responsiveness. Because a small number of tumors from patients treated with 

immune checkpoint inhibitors have been sequenced, it is challenging to identify 

germline variants directly associated with responsiveness to immune checkpoint 

inhibitors. Instead, we use overall somatic mutation burden, non-synonymous 

mutation burden, and clonal non-synonymous mutation burden as proxies for 

immune checkpoint inhibitor efficacy. This enabled us to analyze the sequencing 

data from the approximately 10,000 patients from The Cancer Genome Atlas to 

identify germline variants associated with increased somatic mutation burden. 

We hypothesize that because these germline variants are associated with an 

increase in somatic mutation burden, they are also likely to associate with an 

increase in immune checkpoint inhibitor efficacy.  

Germline Variation Affects Drug Toxicity 
 
 Germline variation is often the focus of studies in pharmacogenomics 

centered on drug toxicity. While chemotherapy drugs are often studied in the 

context of somatic aberrations when studying the efficacy of drugs against tumor 

cells, studies of drug toxicity are concerned with the effects of the drug on the 



 20 

other non-mutated cells in the rest of the body [58, 94, 95]. An example of an 

association found between germline variation and toxicity for chemotherapeutic 

drugs is discussed below. This example suggests that studying germline 

variation in molecular and clinical oncology could enable individualization of 

cancer therapy selection to minimize the risk of adverse drug reactions based on 

a patient’s genotype.  

Germline Variants in CYP2B6 Affect Cyclophosphamide Toxicity 
 
 Cyclophosphamide is a chemotherapy drug used in clinical oncology to 

treat ovarian, breast, small cell lung cancer, hematologic cancers, and several 

other solid tumors. Cyclophosphamide is a prodrug and requires activation to 

exert an effect on cells. Cyclophosphamide is activated by one of several 

cytochrome P450 enzymes in the liver to form 4-hydroxycyclophosphamide. 4-

hydroxycyclophosphamide undergoes several additional reactions to ultimately 

form a phosphoramide mustard, which is an active cytotoxic agent. 

Phosphoramide mustard is able to form DNA crosslinks between and within DNA 

strands. These crosslinks impair DNA replication and transcription and ultimately 

result in cell death [96]. 

 CYP2B6 is one of the primary cytochrome P450 enzymes that activates 

cyclophosphamide, resulting in the production of 4-hydroxycyclophosphamide. 

As a result, CYP2B6 activity and expression level impacts the toxicity of 

cyclophosphamide. Several pharmacokinetic studies have found that germline 

variants in CYP2B6, such as rs2279343, rs3211371, and rs3745274, alter the 

function and expression of CYP2B6. These polymorphisms either decrease the 
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function of CYP2B6 or are associated with decrease in the expression of 

CYP2B6, leading to decreased production of active 4-hydroxycyclophosphamide. 

Clinically, patients with these polymorphisms are less likely to exhibit 

complications of cyclophosphamide treatment, such as grade 4 neutropenia [96-

98]. 

 Additional examples, such as the effect of germline variants in DPYD on 

5-FU toxicity and in MGMT on temozolomide toxicity have been discussed 

earlier. 

Overview of this Dissertation 
 
 In this chapter, I have described the studies of germline variation in the 

context of oncology, from the initial studies of germline variation and cancer risk 

to the studies of germline variation in the context of tumor progression and 

pharmacogenomics. Together, the evidence from the field suggests that germline 

variation should be studied in the context of cancer risk and tumor progression. 

Furthermore, unbiased analyses are necessary to identify new means by which 

germline variation could perturb known oncogenes and tumor suppressor genes 

and also identify other genes perturbed by germline variation. In Chapter 2, I 

describe our study of germline variants associated with overall survival in lower 

grade glioma patients. In Chapter 3, I extend our study of germline variation to 

all 33 cancers included within The Cancer Genome Atlas to argue that germline 

variation contributes to tumor progression across cancers. Finally, in Chapter 4, I 

describe our study of pathogenic germline variants associated with differences in 

overall somatic mutation burden which suggest that germline variation can be 
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used to predict immune checkpoint inhibitor efficacy in cancer patients. In 

Chapter 5, I discuss unfinished studies and future directions in which the results 

in Chapters 2-4 should be advanced and the general implications of our results. I 

list other papers from the Dutta lab that I am an author on and indicated my 

contribution to each of those papers in the Appendix. 
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Abstract   
 
 Lower grade gliomas are invasive brain tumors that are difficult to 

completely resect neurosurgically. They often recur following resection and 

progress, resulting in death. Although previous studies have shown that specific 

germline variants increase the risk of tumor formation, no previous study has 

screened many germline variants to identify variants predictive of survival in 

glioma patients. In this study, we present an approach to identify the small 

fraction of prognostic germline variants from the pool of over four million variants 

that we variant called in The Cancer Genome Atlas whole exome sequencing 

and RNA sequencing datasets. We identified two germline variants that are 

predictive of poor patient outcomes by Cox regression, controlling for eleven 

covariates. rs61757955 is a germline variant found in the 3’ UTR of GRB2 

associated with increased KRAS signaling, CIC mutations, and 1p/19q co-

deletion. rs34988193 is a germline variant found in the tumor suppressor gene 

ANKDD1a that causes an amino acid change from lysine to glutamate. This 

variant was found to be predictive of poor prognosis in two independent lower 

grade glioma datasets and is predicted to be within the top 0.06% of deleterious 

mutations across the human genome. The wild type residue is conserved in all 

22 other species with a homologous protein.  

Implications: This is the first study presenting an approach to screening many 

germline variants to identify variants predictive of survival and our application of 

this methodology revealed the germline variants rs61757955 and rs34988193 as 

being predictive of survival in lower grade glioma patients. 
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Introduction  
 
 Grade II and grade III (low grade) gliomas are primary brain tumors that 

are derived from glial cells and include astrocytomas and oligodendrogliomas. 

They are most commonly found in the cerebral hemispheres. They are highly 

invasive and therefore difficult to completely resect neurosurgically without 

significant patient morbidity. Following surgery, patients are typically treated with 

chemotherapy and radiation, though these tumors typically recur or progress to 

grade IV gliomas and are fatal.1 The median survival following lower grade 

glioma diagnosis is around 7 years.2  

 While the 2007 World Health Organization’s (WHO) classification of 

central nervous system neoplasms differentiated between neoplasms primarily 

based on histological features, the updated 2016 WHO classification system now 

utilizes both molecular and histological parameters.1 Isocitrate dehydrogenase 

mutation (IDH) status, 1p/19q co-deletion status, telomerase reverse 

transcriptase (TERT) promoter mutation status, MGMT promoter methylation, 

TP53 mutation status, and ATRX mutation status may be used to molecularly 

characterize gliomas.1,3 The availability of genomic data from patient glioma 

samples from groups such as The Cancer Genome Atlas (TCGA), the Chinese 

Glioma Genome Atlas (CGGA), and the Ivy Glioblastoma Atlas Project has 

substantially contributed to our understanding of these tumors.4,5  

 Many studies have utilized these datasets to identify gene expression 

signatures, microRNA expression patterns, somatic mutation status, and imaging 

characteristics that are predictive of survival in lower grade gliomas.6–8 While 
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studies have shown that germline mutations can increase an individual’s 

susceptibility for specific cancers,9–12 including a recent study that identified 853 

pathogenic or likely pathogenic germline variants found in 8% of 10,389 cancer 

patients,13 no study has comprehensively screened all of the germline variants in 

a given cancer type to discover the prognostic variants in that cancer type. 

Although germline mutations have been shown to be prognostic in breast 

cancer14 and medulloblastoma9 in genes that have been well-characterized in the 

context of these cancers, these variants were not identified using an unbiased 

approach that screened a large number of germline variants. Identifying 

prognostic germline variants is challenging due to the limited effect size of 

germline variants, the large number of germline variants, and confounding clinical 

factors that may be associated with germline variants. Here we present a novel 

methodology for identifying prognostic germline variants and report two germline 

variants that we have found to be associated with survival in lower grade glioma 

patients.  

Methods  
 
Glioma Datasets 
 
 491whole exome sequenced normal blood samples (WXS normal), 503 

whole exome sequenced tumor samples (WXS tumor), and 501 RNA sequenced 

tumor samples (RNA tumor) from TCGA lower grade glioma4 patients available 

on the Cancer Genomics Cloud (CGC)15 platform were used as part of this 

analysis. The clinical information was downloaded directly from the TCGA data 

portal using the GenomicDataCommons 
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(https://bioconductor.org/packages/release/bioc/html/GenomicDataCommons.ht

ml) R package available through Bioconductor. Additional molecular 

characteristics about these TCGA patients were acquired by downloading the 

supplement from Ceccarelli et. al.16 The raw sequencing data from the Chinese 

Glioma Genome Atlas patients was downloaded using accession number 

SRP027383 from the Sequence Read Archive. Clinical information for these 

patients was downloaded directly from the project’s website 

(http://www.cgga.org.cn/).  

Variant Calling 
 
 Variant calling was performed on the TCGA lower grade glioma whole 

exome sequenced normal blood samples (WXS normal), whole-exome 

sequenced tumor samples (WXS tumor), and RNA sequenced tumor samples 

(RNA tumor) using VarDict17 on CGC. The VarDict settings were set at default 

except for requiring mapping quality greater than 30, base quality greater than 

25, a minimum of 3 variant reads, minimum allele frequency of 5%, and the 

removal of duplicate reads. We compiled a list of all of the unique variants and 

ran ‘samtools18 depth’ on all sequencing files requiring a mapping quality greater 

than 30. We determined the status of each variant in each patient from the three 

datasets (WXS normal sample, WXS tumor sample, and RNA tumor sample). 

The variant status at positions with fewer than ten reads for a given patient was 

changed to unknown. We used the WXS tumor samples to insert variant calls 

into the WXS normal samples at positions at which a variant status was listed as 

unknown in the WXS normal samples. If the variant status was still missing in a 
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given patient, we then used the RNA tumor sample to insert variant calls into the 

combined WXS variant call set, allowing us to create the combined set of variant 

calls.  

 The same program parameters and approach were used to variant call 

and process the CGGA RNA sequencing dataset. All computation on the CGGA 

dataset was performed locally and not on CGC. 

Quality Control  
 
 We used annovar19 to determine the allele frequencies of the variants 

called by VarDict as listed in gnomAD (http://gnomad.broadinstitute.org/). We 

calculated the allele frequency of the variants in our study using the following 

formula: 

 
2 ∗ #$%&'(	*+	,-.*(	/00'0'	1*%*234*5'6 + #$%&'(	*+	1'5'(*234*5'6

2 ∗ 8*590	#$%&'(	*+	:95-'.56  

 

The R package GGally (https://cran.r-

project.org/web/packages/GGally/index.html) was used to calculate the 

correlation between the four variant call sets and to display their correlations with 

each other. Only variants with an allele frequency of greater than 5% in gnomAD 

and found in 15 or more of the TCGA lower grade glioma patients were tested for 

an association with survival by Cox regression. 

 Because we used the WXS tumor and RNA tumor samples to fill in 

missing variant calls, we evaluated whether somatic mutations were affecting the 

validity of our results. We first determined the percentage of variants called in the 

WXS tumor sample that were somatic mutations. To do this, we downloaded the 
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set of somatic mutations generated by the TCGA Research Network.20 We then 

calculated the number of somatic mutations called in each patient in this variant 

call set and divided that number by the total number of variants called in that 

patient’s WXS normal sample. To assess whether somatic mutations were 

affecting the integrity of our results, we counted the number of times that a 

somatic mutation called by the TCGA Research Network overlapped with the set 

of germline variants that we were testing for an association with survival.  

 Since we used the RNA tumor sample to fill in missing variant calls, we 

evaluated whether RNA editing was having a significant impact on our analysis. 

To do this, we downloaded the set of over 2.5 million known RNA editing sites 

from a rigorously annotated database of RNA editing sites, RADAR.21 We 

counted the number of times that the germline variants that we were testing for 

an association with survival overlapped with any of the known 2.5 million RNA 

editing sites. 

Principal Component Analysis 
 
 In order to calculate principal components that could separate patients on 

the basis of race, we used PLINK22 to create a pruned set of germline variants to 

avoid bias from variants in linkage disequilibrium. Pruning was performed using a 

window size of 50 variants and a variance inflation factor of 2. These variants 

were used to calculate principal components using base R.  

Cox Regression and Receiver Operator Characteristic Curves 
 
 Lasso in the R package glmnet23 was run on 17 covariates (Table 1). 

Information about patient age, gender, tumor location, grade, treatment site, and 
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TP53 mutation status was acquired from the TCGA data portal, while data for 

patient somatic mutation count, percent aneuploidy, TERT expression, IDH 

mutation status, 1p/19q co-deletion status, MGMT promoter methylation status, 

and chromosome 7 gain with chromosome 10 loss status was acquired from 

Ceccarelli et. al.16 The principal components were calculated as described 

above. 11 of these 17 covariates were selected for inclusion in the final model for 

survival prediction. The R packages survival24 and survminer25 were used to run 

Cox regression and create Kaplan-Meier curves. For each minor allele, we our 

model tested whether the minor allele was associated with a difference in 

survival outcomes with respect to the reference allele. False discovery rate 

correction was performed through Bonferroni correction.   

 Receiver operator characteristic (ROC) curves were created and 

evaluated using the survivalROC (https://cran.r-

project.org/web/packages/survivalROC/survivalROC.pdf) and pROC 

(https://cran.r-project.org/web/packages/pROC/pROC.pdf) R packages. In order 

to test whether rs61757955 significantly improves the survival model consisting 

of the eleven covariates selected by Lasso, we compared the two ROC curves 

using the bootstrap method with 1000 iterations. We also used this bootstrapping 

approach to determine whether ANKDD1a expression levels, GRB2 expression 

levels, rs61757955, and rs34988193 together improve the survival model with 

respect to the eleven covariates selected by Lasso. 
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RNA-Sequencing Data Processing 
 
 We downloaded the HTSeq FPKM quantification files for each patient from 

the Genomic Data Commons data portal. We only used gene quantification files 

from primary tumor samples as part of this analysis. Replicate samples from a 

single patient were averaged.  

Variant Correlation to Covariates and Somatic Mutations 
 
 In order to test for associations between the germline variants and 

genomic and histological tumor characteristics, we divided patients based on 

their germline variant status. We used the Wilcoxon rank-sum test to test for 

significant differences in each of the continuous variables between patients with 

and without a given variant. We used Fisher’s exact test to test for differences in 

each of the discrete variables using a similar approach. Somatic mutation calls 

were downloaded from Ellrott et. al.20 

Gene Set Enrichment Analysis  
 
 Gene set enrichment analysis (GSEA) of mRNA changes associated with 

rs61757955 and rs34988193 was performed by dividing the patients into two 

groups for each variant based on whether or not they had the reference allele at 

the position of the variant. For each germline variant, we calculated the log fold 

change for all genes expressed greater than one fragment per kilobase per 

million mapped reads (FPKM) between patients with the variant and without the 

variant. For each gene, fold change was calculated by dividing the median 

expression of the gene in patients with the variant by the median expression of 
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the gene in patients without the variant. We used the log fold change to rank the 

genes from greatest log fold change to smallest log fold change. This file was 

used as input for GSEA.26 

Variant Annotation 
 
 In order to identify deleterious mutations, we annotated all variants by 

combined annotation dependent depletion (CADD) scores and only analyzed the 

variants predicted to be within the top 0.1% of all deleterious variants (CADD > 

30).27 This led us to identify rs34988193 in ANKDD1a as a potentially deleterious 

variant predictive of survival. Because rs34988193 causes an amino acid change 

from positively charged lysine to negatively charged glutamate, we ran a BLASTp 

(httpps://blast.ncbi.nlm.nih.gov/Blast.cgi) search so that we could determine how 

many species have a protein homologous to ANKDD1a and how consistently the 

wild type lysine residue was conserved. We identified homologous sequences in 

22 other species. These sequences were aligned using ClustalW in MEGA.28 We 

also annotated this variant with its PhyloP score.29 Because the crystal structure 

for ANKDD1a was not available, we downloaded the predicted model for this 

protein from Modbase (https://modbase.compbio.ucsf.edu/modbase-

cgi/index.cgi) and calculated the Gribskov score using prophecy on EMBOSS.30 

We retrieved linked variants from Ensembl using the population of Utah residents 

with Northern and Western European ancestry which is demographically similar 

to the TCGA lower grade glioma patient population. 
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Results 
 
Identification of High Quality Germline Variants 
 
 Our variant calling pipeline is shown in Figure 1. Briefly, we used the 

variant caller VarDict on Cancer Genomics Cloud to identify variants from whole 

exome sequencing (WXS) and RNA sequencing samples in about 500 lower 

grade glioma patients. In total, we found 4,453,701 unique variants. We used 

‘samtools depth’ to determine the sequencing depth at each of these variants for 

each patient and changed the variant status to ‘unknown’ for patients with 

sequencing coverage less than 10 reads at a given position. We created a set of 

combined variant calls by using the WXS and RNA tumor samples to fill in 

unknown values in the whole exome sequenced normal samples that resulted 

from having a sequencing coverage of less than 10 reads at a given position. 

This approach increased our sample size and enabled us to include many more 

variants in our analysis than if we had solely used variant calls from the whole 

exome sequenced normal blood samples. Ultimately, this left us with four sets of 

variants – WXS normal, WXS tumor, RNA tumor, and a combined set that 

resulted from merging the other three variant call sets, giving preference to the 

WXS normal and then WXS tumor variant calls. We used the combined variant 

call set when testing variants for an association with survival. We only tested 

variants found in 15 or more lower grade glioma TCGA patients and listed in 

gnomAD as having an allele frequency of greater than 5%.  
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Tumor Variant Calls are not Significantly Affected by Somatic Mutations or 
RNA Editing After Filtering 
 
 Because we used sequencing data from the WXS tumor and RNA tumor 

samples to fill in missing calls in the WXS normal samples, we evaluated our 

variant calls for contributions from somatic mutations and RNA editing. We first 

showed that the majority of variant calls in the tumor sample are germline variant 

calls. To do this, we counted the number of somatic mutations called by the 

TCGA Research Network’s analysis in each patient and divided that number by 

the number of variants that we called in the WXS normal sample.20 The median 

number of somatic mutations called per patient was 39. The median number of 

variants called in the WXS normal sample was 95,794. We therefore estimated 

that over 99.9% of variants called in the WXS tumor sample consisted of 

germline variants and that the percentage of somatic mutations in the WXS 

tumor sample across all patients was quite small (Figure S1). Because somatic 

mutations rarely occur at the same position, we suspected that the number of 

somatic mutations included in our study was extremely small since we limited our 

analysis to variants found in 15 or more of the lower grade glioma patients and 

found in gnomAD with an allele frequency of greater than 5%. Indeed, only one 

of the 196,022 variants that we tested overlapped with a somatic mutation. This 

somatic mutation occurred in only a single patient (Table S1). Ultimately, we did 

not find any evidence to suggest that somatic mutations were impacting the 

quality of our analysis. 

 We next determined whether RNA editing was affecting our analysis by 

downloading the 2.5 million known RNA editing sites from the rigorously 
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annotated RNA editing database, RADAR.21 Only 215 of the 196,022 variants 

that we tested were located at a position that overlapped with a known RNA 

editing site. We did not find any of these variants to be prognostic as part of our 

analysis. We therefore did not find any empirical evidence to suggest that 

somatic mutations or RNA editing impacted our findings (Table S1). 

 Finally, we established that our four variant call sets (WXS normal, WXS 

tumor, RNA tumor, and combined) were concordant with each other by 

calculating the allele frequency of each variant called in the four sets and 

demonstrating a very strong correlation between all pairs of variants (r > 0.98 for 

all pairs, Figure S2). To further evaluate the quality of our variants calls, we 

calculated the frequency of each allele and compared it to the frequency of these 

alleles as listed in gnomAD. Our alleles frequencies were well correlated with 

gnomAD (r > 0.93 for all four variant sets, Table S2). As expected, the 

distribution of allele frequencies is negatively skewed as the majority of the 

identified variants are rare (Figure S2). We used the variants from the WXS 

normal samples to determine the principal components. As expected, these 

principal components effectively separate patients on the basis of reported race 

(Figure S3).  

Identification of 271 Prognostic Germline Variants that are Independent of 
Clinical Covariates 
 
 In order to identify clinically relevant germline variants, we restricted our 

analysis to variants found in at least 15 patients in the TCGA dataset and found 

in gnomAD with an allele frequency of greater than five percent. This restricted 

our analysis to 196,022 testable variants (Figure 2A). In order to reduce the risk 
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of identifying variants that are prognostic because they are confounded by other 

covariates known to be associated with survival, we used the machine learning 

algorithm Lasso to determine which of 17 covariates should be controlled for in 

our Cox regression model. Lasso regression was useful in the screening of these 

17 covariates because it penalizes models based on the number of coefficients, 

allowing for the elimination of less predictive coefficients from the model. The 

algorithm selected 10 covariates known to be associated with differences in 

survival in lower grade glioma (age, somatic mutation count, percent aneuploidy, 

histological subtype of astrocytoma, tumor grade, treatment site, IDH mutation 

status, 1p/19q co-deletion status, MGMT promoter methylation status, 

chromosome 7 gain/chromosome 10 loss status) along with the third principal 

component that we calculated (Table 1). Although the first two principal 

components are more effective in stratifying patients on the basis of race than 

the third principal component, the selection of the third principal component over 

the first two suggests that the third principal component contributes more 

information to the survival model than the first two principal components. This 

third principal component primarily separates African Americans from each other, 

suggesting that a subpopulation of African Americans experienced worse clinical 

outcomes in this dataset compared to other groups. We ran Cox regression on all 

196,022 variants one at a time, controlling for these 11 covariates, to identify 

germline variants predictive of survival. 

 We identified 271 germline variants that are predictive of survival (p < 

0.001) (Figure 2A). As is the case with germline variants in general, the majority 
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of these germline variants are found in protein-coding genes (Figure 2B), are 

located in introns (Figure 2C), and are single nucleotide polymorphisms (Figure 

2D). Most single nucleotide polymorphisms are transitions (Figure 2E).   

The Germline Variant rs61757955 in GRB2 is Associated with Poor 
Prognosis 
 
  We identified two germline variants that are highly predictive of survival 

after false discovery rate correction (FDR < 0.10) (Figure 3A, Table 2A). 

rs61757955 results in a mutation in the 3’ UTR of Growth Factor Receptor Bound 

Protein 2 (GRB2) and is associated with a poor prognosis (p=7.08E-10, hazard 

ratio(HR)=20.4, Figure 3B, Table 2A). To determine whether rs61757955 

enhances the survival model compared to the eleven clinical covariates alone, 

we calculated a risk score for each patient using a Cox regression model with 

rs61757955 and the other 11 covariates and a risk score using the 11 covariates 

alone. Using these risk scores, we determined the rate at which a patient would 

be correctly labeled as alive or dead at 7 years with a given false positive rate to 

create a receiver operator characteristic curve. The increased area under the 

curve suggests that rs61757955 enhances the survival model compared to the 

eleven clinical covariates alone (p=0.0489, Figure 3C). The allele frequency of 

rs61757955 is close to 0% according to the 1000 Genomes Project31 in the 

Chinese population and, as expected, did not show up in the Chinese Glioma 

Genome Atlas. We also found rs28672782, a germline variant found in the intron 

of BRSK2, to be associated with a favorable prognosis, though the testable 

sample size for this variant was small and the maximum follow up for patients 
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with this variant was only three years. Therefore, we did not investigate this 

variant further (Figure S4, Table 2A).  

 In order to test whether rs61757955 in GRB2 is associated with an 

increased risk of other genomic abnormalities, we separated patients on the 

basis of this variant to see if there was a difference in the incidence of the 

genomic or histological variables (Table 3). We found this variant to be 

associated with an increased incidence of 1p/19q co-deletions (p=0.038). 

Because 1p/19q co-deletions are frequently seen in Capicua transcriptional 

repressor (CIC) mutated gliomas32 and CIC aberrations are known to be a driver 

in lower grade glioma tumorigenesis,33 we tested whether there was a difference 

in the incidence of CIC mutations in patients with this variant. 38% of patients 

with this variant had CIC mutated gliomas, whereas only 16% of patients without 

the variant had a CIC mutation (p=0.0168, Table 3). Although the incidence of 

oligodendrogliomas was elevated in patients with the variant compared to 

patients without the variant, consistent with reports from the literature that 1p/19q 

co-deletions and CIC mutations are enriched in oligodendrogliomas,32 this 

difference was not statistically significant (p=0.475). Since rs61757955 is in a 

non-coding region, we also tested whether this variant is associated with 

differences in gene expression. We separated patients based on their variant 

status and calculated the log fold change of each gene between patients with the 

variant and patients without the variant. This data was used as the input for gene 

set enrichment analysis (GSEA). We found rs61757955 to be associated with 

increased KRAS signaling (FDR=0.015) (Figure 3D). 
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 Because we only have whole exome sequencing and RNA sequencing 

data from The Cancer Genome Atlas, we do not know whether the upregulation 

of genes in the KRAS signaling pathway and the increased incidence of CIC 

mutations and 1p/19q deletions are due to this variant or a linked variant in a 

regulatory region that we would be able to analyze with whole genome 

sequencing data. Therefore, we identified the four other variants that are 

genetically linked to rs61757955 in the European population, the population 

which is most similar to the TCGA lower grade glioma patient population (Table 

S3). These variants did not pass the criteria to be included within the 196,022 

testable variants that we had identified at the beginning of this study but could 

become useful in the future. 

rs34988193 is a Deleterious Germline Variant Present in ANKDD1a 
Associated with Poor Outcomes 
 
 In order to identify prognostic variants that are predicted to be deleterious 

due to effects on the encoded protein, we repeated our analysis but restricted it 

to only variants with a combined annotation dependent depletion (CADD) score 

greater than 30 and expression greater than one FPKM on average. 81 variants 

met this criteria. These variants correspond to the top 0.1% of deleterious 

mutations as predicted by this scoring system. We found the germline variant 

rs34988193 in the tumor suppressor gene ANKDD1a to be associated with poor 

prognosis in the TCGA dataset (p=0.001, HR=1.73, FDR < 0.10, Figure 4A-B, 

Table 2B). Because this variant is found in both the European and Asian 

populations, we were able to test whether this variant is also predictive of survival 

in the independent Chinese Glioma Genome Atlas (CGGA) dataset. We found 
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this variant to be predictive of survival in the CGGA dataset and we found the 

hazard ratio that we calculated in CGGA to be very similar to the hazard ratio 

calculated in the TCGA dataset (p=0.0743, HR=1.79, Figure 4C, Table 2B). 

rs34988193 is not linked with any other variant in the European population. We 

did not find any enriched pathways after performing gene set enrichment analysis 

and this variant was not associated with differences of any of the genomic or 

histological variables (Table S4).  

 ANKDD1a contains ten ankyrin repeat domains and one death-like 

domain. This variant causes a non-synonymous mutation in the last codon of the 

ninth ankyrin repeat domain. The AAG to GAG codon change results in the 

incorporation of negatively charged glutamate instead of the wild type positively 

charged lysine residue in the loop between ankyrin repeats nine and ten (Figure 

4D). This variant has a CADD score of 32 and is therefore predicted to be in the 

top 0.06% of deleterious mutations across the human genome.  We performed a 

BLASTp search using the ANKDD1a protein sequence to identify homologous 

sequences in 22 other species. We aligned these sequences using ClustalW and 

found that this lysine residue is conserved in all 22 of these species (Figure 4E). 

The PhyloP score at this position is 8.42, suggesting that evolution is occurring 

much more slowly than expected at this residue assuming no selection pressure. 

We determined the position-specific profile Gribskov’s score for a lysine to 

glutamate amino acid change at this position using the multiple sequencing 

alignment from 23 species to be 15 to 3, suggesting that this variant is highly 

unfavorable.   
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Combined Model Predicts Survival Better Than Clinical Covariates Alone 
 
 As a result of this analysis, we found the germline variants rs61757955 in 

the 3’ UTR of GRB2 and rs34988193 in the protein-coding region of ANKDD1a to 

be predictive of survival in lower grade glioma patients. We constructed a 

survival model consisting of the eleven clinical covariates, rs61757955, 

rs34988193, GRB2 expression, and ANKDD1a expression and generated a 

receiver operator characteristic curve by using this model to categorize patients 

as alive or dead after seven years of follow up. This combined model is 

significantly better at predicting survival compared to the eleven clinical 

covariates alone (p=0.0279, Figure 4F). 

Discussion 
 
 Up until this point, the identification of prognostic features in gliomas has 

been limited to clinical factors, somatic mutations, gene expression changes, and 

methylation pattern changes.6–8 Although many studies have commented on how 

germline variants could enable physicians to better individualize patient care by 

being able to better predict how a patient might respond to chemotherapeutic 

treatment,34–36 most large-scale studies have focused on identifying germline 

variants that predispose or protect an individual to a disease.13,37 These studies 

have not focused on understanding how germline variants can be used to 

individualize patient care following diagnosis. Identifying prognostic germline 

variants is difficult due to the large number of germline variants, the limited effect 

of any single germline variant, and clinical factors that may confound the effect of 

germline variants. In this study, we have developed a novel method that can be 
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used to identify prognostic germline variants and we have used that method to 

identify two variants that are predictive of survival in the TCGA dataset. The 

germline variant rs61757955 in GRB2 is not found in the Asian population and so 

could not be confirmed in an independent dataset.  In contrast, the germline 

variant rs34988193 in ANKDD1a is found in both the European and Asian 

populations, and remarkably, was found to be prognostic with very similar hazard 

ratios in both the TCGA and CGGA datasets. 

 Studies of germline variants using TCGA datasets typically solely utilize 

the WXS normal blood samples.13,38 One major disadvantage to this approach is 

that it limits the analysis to genes within the capture regions of the whole exome 

sequencing kits used by the study.4 In this study, we combined the information 

from both the whole exome sequencing and RNA sequencing datasets for a 

given patient to identify germline variants outside of the whole exome sequencing 

capture region. Our approach had the added benefit of providing us with more 

information for a given variant for variants with low sequencing depth in the 

whole exome sequencing datasets. We do not believe that this approach 

significantly affected the accuracy of our variant calls because the allele 

frequencies calculated from the RNA sequencing dataset were well correlated 

with the allele frequencies from gnomAD and with the allele frequencies 

calculated from the whole exome sequencing datasets. We showed that somatic 

mutations and RNA editing did not affect the integrity of our finding. Only one 

somatic mutation in a single patient overlapped with the 196,022 variants that we 

tested in our analysis and only 215 of the 196,022 variants that we tested 
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overlapped with the 2.5 million known RNA editing sites. We did not find any of 

these variants to be predictive of survival. Instead, we feel that the increased 

sample size resulting from the additional sequencing coverage greatly outweighs 

any effect that somatic mutations or RNA editing had on our results. 

 We next needed to devise an approach to using these germline variants in 

a Cox regression model. We first had to decide how to deal with the absence of a 

variant in the variant call file. The variant could be absent because the patient 

was wild type for that allele or because the sequencing depth at that position was 

too low to make the variant call. We therefore determined the sequencing depth 

of each variant at each position so that we could exclude patients with low 

sequencing depths for the testing of specific variants. Testing a large number of 

variants increased the probability of a variant being significant solely because it 

was confounded with another significant variable. To avoid this issue, we tested 

each variant while controlling for 11 other covariates that we found to be 

predictive of survival. In this study, we found rs61757955 to be associated with 

differences in 1p/19q co-deletion status. By including the 1p/19q co-deletion as a 

covariate in our model, we were able to estimate the effect of rs61757955 

independent from the 1p/19q co-deletion status and the other ten covariates. 

 GRB2 is a signal transduction adaptor protein that plays an oncogenic role 

in a variety of cancers.39–42 GRB2 plays an important role in the RAS/RAF/ERK 

pathway. Its SH2 domain binds the phosphotyrosine of activated growth factor 

receptor, while its two SH3 domains bind the guanine nucleotide exchange factor 

son of sevenless (SOS) protein, resulting in SOS recruitment to the plasma 
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membrane and subsequent RAS activation. RAS binds and activates the kinase 

RAF, which phosphorylates the kinase MEK. MEK phosphorylates and activates 

extracellular signal-regulated kinase (ERK) which transmits the signal to 

transcription factors in the nucleus. This results in cell proliferation.43 We found 

the variant rs61757955 located in the 3’ UTR of GRB2 to be associated with poor 

prognosis in glioma patients. Separating patients on the basis of this variant 

revealed that the KRAS signaling pathway is upregulated in patients with this 

variant. As described above, GRB2 plays a well-characterized role in this 

pathway.43 We also found this variant to be associated with an increased 

incidence of CIC mutations and 1p/19q co-deletions. CIC is a known driver of 

lower grade glioma pathogenesis.33 Mutations in CIC are common in 

oligodendrogliomas and are associated with poor prognosis.4,32 Although patients 

with rs61757955 variant exhibited an elevation in the incidence of 

oligodendrogliomas which we expected given the increased incidence of CIC 

mutations and 1p/19q co-deletions,32 this difference was not statistically 

significant. It is possible that this germline variant or the four other germline 

variants that it is linked with increase a patient’s risk for oligodendrogliomas with 

the CIC mutation and 1p/19q co-deletion. 

 In this study, we were only able to study variants in the whole exome or 

RNA sequencing data. Although it is possible that the 3’ UTR of GRB2 has 

regulatory activity or affects GRB2 protein translation efficiency, it is also possible 

that one of the variants that rs61757955 is linked to regulates the KRAS signaling 

pathway. None of the four linked variants are in the protein coding sequence of 
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GRB2 so that if they upregulate RAS activity, like the rs61757955, they likely do 

so by regulating the expression of GRB2. While recent large-scale sequencing 

studies have published patient whole genome sequences,44 this data is not yet 

available for gliomas. We will be able to apply our approach to variants in 

regulatory regions in the future to specifically identify these prognostic variants 

when whole genome sequencing data for gliomas is available. Our inability to 

further study this variant in the CGGA dataset due to this variant being rare in 

Asian populations is a limitation of this study which could be addressed in the 

future with the availability of additional glioma sequencing datasets. This result 

also suggests that the clinical usefulness of specific germline variants is 

dependent on the frequency of that germline variant in the population. 

 ANKDD1a is a tumor suppressor gene that has been shown to inhibit cell 

autophagy and induce apoptosis in glioblastoma multiforme (GBM). It directly 

interacts with and upregulates FIH1, resulting in inhibition of HIF1α activity and 

decreased HIF1α half-life. This induces apoptosis in GBM cell lines in hypoxic 

microenvironments. Hypermethylation of this gene is common in GBM and leads 

to decreased ANKDD1a expression and increased cell proliferation.45 We found 

the germline variant rs34988193, located at the end of the ninth of ten ankyrin 

repeat domains in this protein, to be associated with a poor prognosis in lower 

grade glioma patients in both the TCGA and CGGA datasets. The hazard ratio 

independently calculated using the two datasets is remarkably similar. The wild 

type lysine residue is conserved in all 22 species with a homologue to ANKDD1a 

and this position has a high PhyloP score. This variant is predicted to be within 
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the top 0.06% of deleterious mutations in the human genome by CADD score27 

because it causes a change from a positively charged lysine residue to a 

negatively charged glutamic acid residue in the loop of this ankyrin repeat. 

Ankyrin repeats are common domains known for their involvement with protein-

protein interactions.46,47 Previous studies have suggested that mutations in the 

loops of ankyrin repeats may disrupt protein-protein interactions.48–50 The change 

from a positively to negatively charged amino acid resulting from the germline 

variant rs34988193 in the loop of ANKDD1a may disrupt ANKDD1a’s protein 

interaction partners and could explain the poor prognosis associated with this 

variant seen in two independent datasets. Given the amino acid change, further 

studies involving rs34988193 in ANKDD1a could be directed towards 

experimentally determining whether or not this variant alters ANKDD1a’s protein-

protein interactions.  

 rs61757955 in GRB2 and rs34988193 in ANKDD1a could also be used to 

enhance predictions made by survival models clinically, as we found that these 

variants are significant predictors of prognosis even after controlling for eleven 

covariates. The prognostic effect of rs34988193 in ANKDD1a seems to be fairly 

reliable, as we found that this variant had a similar hazard ratio in both the TCGA 

and CGGA datasets. Our approach could be used in the future to identify sets of 

germline variants that together enhance the predictions made by survival models, 

though the current number of lower grade glioma sequencing samples is small 

relative to the large number of possible combinations of germline variants. 

Focused studies on particular sets of genes or pathways could potentially get 
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around this low sample size problem by drastically limiting the number of variants 

studied. We believe that this study provides researchers with an effective 

approach to identifying biologically significant germline variants and provides 

clinicians with germline variants that could enhance currently existing survival 

models. 
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Figures 
 
Figure 1. A flowchart describing the steps involved in identifying prognostic germline 
variants. 
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Figure 2. Prognostic germline variants in the TCGA dataset.  
(A) Of the 4.4 million unique variants called in the TCGA dataset, we ran Cox 
regression on the 196,022 germline variants found in gnomAD with an allele 
frequency greater than 5% and found in 15 or more of the TCGA lower grade 
glioma patients.  
(B-E) Similar to the 196,022 germline variants, the 271 prognostic variants are 
mostly found in (B) protein-coding genes, (C) are located in introns, and are (D) 
single nucleotide polymorphisms (SNP). (E) Most single nucleotide 
polymorphisms cause transitions.  
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Figure 3. rs61757955 is a highly prognostic germline variant identified in the 
TCGA dataset.  
(A) Manhattan plot showing the p-values resulting from testing each germline 
variant by Cox regression, controlling for the 11 variables in bolded in Table 
1.Two variants passed the FDR threshold in the TCGA dataset.  
(B) A Kaplan-Meier plot depicting the deleterious outcome associated with 
rs61757955, adjusting for the eleven covariates. 
(C) Receiver operator characteristic curve at 7 years. rs61757955 increases the 
area under the curve compared to the 11 covariates alone, suggesting that it 
improves the clinical model. 
(D) Separation of patients on the basis of whether or not they have this germline 
variant to determine which genes are induced or repressed in patients with 
rs61757955. Subsequent gene set enrichment analysis reveals that patients with 
this germline variant exhibit upregulation of the genes involved with KRAS 
signaling. 
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Figure 4. rs34988193 is a prognostic variant predicted to be highly deleterious.  
(A) A Manhattan plot with the p-values resulting from testing each germline 
variant by Cox regression, controlling for the eleven covariates in bolded in Table 
1. rs34988193 is prognostic (FDR<0.10) in the TCGA when restricting the 
analysis to the top 0.1% most deleterious variants by combined annotation 
dependent depletion (CADD).  
(B-C) Kaplan-Meier plots depicting the deleterious outcome associated with 
rs34988193 in the (C) TCGA and (D) CGGA datasets, adjusted for the eleven 
covariates.  
(D) A schematic showing that this variant is located in the ninth ankyrin repeat of 
ANKDD1a. The predicted protein structure of ANKDD1a reveals that this variant 
leads to an amino acid change from lysine to glutamate on the loop of an ankyrin 
repeat.  
(E) Multiple sequence alignment of ANKDD1a in 22 species showing that lysine 
is conserved at this position in all of the species with this protein.  
(F) Receiver operator characteristic curves comparing the ability of two survival 
models to label patients as alive or dead after seven years of follow up. The 
inclusion of rs61757955 variant status, rs34988193 variant status, GRB2 
expression and ANKDD1a expression significantly improves the survival 
prediction compared to the eleven covariates bolded in table 1 alone (p=0.0279). 
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Tables 
 
Table 1. List of variables that are known to be associated with differences in 
survival in lower grade glioma patients. 11 variables (bolded) were selected by 
Lasso for inclusion in the survival model. We used these 11 variables as 
covariates in our Cox regression model when testing each germline variant. 
 

Covariate Median (Min-Max) or Number of Patients 
Age 41 (14 - 87) 

Gender  
Female 250 

Male 200 
Somatic Mutation Count 50 (0 - 12255) 

Percent Aneuploidy 11% (5.2E-4% - 95%) 
log(TERT Expression) 1.0 (0.0 - 9.1) FPKM 

Principle Component 1 (PC1) 0.043 (-0.091 - 0.064) 
Principle Component 2 (PC2) -0.017 (-0.23 - 0.17) 

Principle Component 3 (PC3) -0.53 (1.34E-4 - 0.33) 

Histological Type 
Astroctyoma 172 

Oligoastrocytoma 113 
Oligodendroglioma 165 

Tumor Location 

Frontal Lobe 265 
Temporal Lobe 125 
Parietal Lobe 42 

Other 18 

Grade 
G2 212 
G3 237 

Cannot Be Assessed 1 

Treatment Site 

Henry Fords Hospital 82 
Case Western St. 

Joes 
90 

Other 278 
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IDH Mutant 
Wild Type 83 
Mutant 367 

1p/19q Co-deletion 
Absent 303 
Present 147 

MGMT Promoter Methylation 
Unmethylated 80 
Methylated 370 

Chr 7 gain/Chr 10 loss 
Absent 399 
Present 51 

TP53 Mutant 
Absent 232 
Present 218 
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Table 2. Description of the prognostic germline variants identified in this study.  
(A) A description of the two prognostic germline variants (FDR<0.10) in the TCGA dataset identified when testing all 
196,022 germline variants.  
(B) A description of the prognostic germline variant (FDR<0.10) rs34988193 in ANKDD1a identified when the analysis 
was restricted to only germline variants with a combined annotation dependent depletion (CADD) score greater than 30 in 
the TCGA and CGGA datasets.  
 
Table 2A.  

 
Table 2B. 
 

Variant Chrom Pos Ref Alt Population 
Frequency 

CADD 
Score 

PhyloP 
Score 

Gene 
Name Dataset Sample 

Size 
Number of 

Heterozygotes 
Number of 

Homozygotes p-value Hazard 
Ratio 

rs34988193 15 64943580 A G 30.90% 32 8.42 ANKDD1a 
TCGA 450 199 52 0.00113 1.73 

CGGA 76 18 2 0.0743 1.79 
 
  

Variant Chrom Pos Ref Alt Population 
Frequency 

Sample 
Size 

Number of 
Heterozygotes 

Number of 
Homozygotes 

Gene 
Name 

Median 
Expression 

(FPKM) 

p-
value 

Hazard 
Ratio 

rs61757955 17 75318086 A G 5.01% 291 21 0 GRB2 42.2 7.08E-
10 20.4 

rs28672782 11 1446622 C T 16.27% 50 15 5 BRSK2 7.29 <1E-
16 

1.15E-
10 
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Table 3. The association between the germline variant rs61757955 and genomic and histological variables. Patients were 
divided based on whether or not they had the germline variant rs61757955. Patients with the germline variant rs61757955 
were more likely to have CIC mutated gliomas and the 1p/19q co-deletion.  
 
 

Variable Mean or Percentage (Wild 
Type) 

Mean or Percentage 
(Mutant) p-value 

CIC Mutated 15.9% 38.1% 0.017 
1p/19q Co-deletion 25.2% 47.6% 0.038 
Oligodendroglioma 33.7% 42.9% 0.475 

Total Somatic Mutation 
Count 30.9 30.0 0.766 

Percent Aneuploidy 15.1% 11.7% 0.524 
Astrocytoma 38.1% 42.9% 0.651 

Grade 3 53.0% 42.9% 0.497 
IDH Mutated 78.1% 85.7% 0.583 

1p/19q Co-deletion 25.2% 47.6% 0.038 
MGMT Promoter 

Methylation 77.8% 81.0% 1.000 

Chr 7 Gain/Chr 10 Loss 13.0% 9.5% 1.000 
Expression of GRB2 

(FPKM) 45.7 44.4 0.636 
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Supplementary Figures 
 
Figure S1. A boxplot representing the percentage of variants called in the whole 
exome sequenced (WXS) tumor sample that is likely somatic mutations. This 
value was calculated by counting the number of somatic mutations called in each 
patient by The Cancer Genome Atlas (TCGA) Research Network and dividing 
that number by the number of variants called in the WXS normal sample. Even 
before filtering, most variants called in the WXS tumor sample are germline 
variants. 
 

 
 
 
 
 
 
 
 
 
 
 
 

P
er

ce
nt

ag
e 

of
 S

om
at

ic
 M

ut
at

io
ns

 in
 th

e 
W

X
S

 T
um

or
 S

am
pl

es

Figure S1



 73 

Figure S2. Correlation between the variant allele frequencies calculated from the 
four variant sets and the distribution of allele frequencies. The Pearson 
correlation panels on the top right (red) indicate that the calculated allele 
frequencies of the four variant sets are well-correlated with each other. This is 
depicted graphically in the bottom left panels with scatterplots. The distribution of 
allele frequencies is plotted along the diagonal. As has been shown in other 
studies, the distribution is negatively skewed because most minor alleles in the 
human population are rare. 
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Figure S3. Principal components calculated from germline variants from the whole 
exome sequencing data from the non-tumor samples. Our principal components 
effectively stratify patients on the basis of patient-reported race.  
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Figure S4. Kaplan-Meier plot for the germline variant rs28672782 in BRSK2. 
Although we found this germline variant to be prognostic (FDR<0.10), we decided 
not to further investigate this germline variant due to only 50 patients having 
sufficient sequencing depth at this position and due to the maximum follow up of 
patients with this germline variant being only three years.  
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Supplementary Tables 
 
Table S1. Quality control checks reveal that somatic mutations and RNA editing 
did not affect the results of our analysis. Less than 0.1% of variants called in the 
whole exome sequenced (WXS) tumor sample are somatic mutations in the 
TCGA lower grade glioma patients. After our filtering steps, only one somatic 
mutation of the 196,022 variants tested in a single patient persists as part of our 
analysis. Of the 196,022 variants that we tested, only 0.1% of these variants 
overlap with a known RNA editing site. We did not find any of these variants as 
prognostic in our analysis, implying that somatic mutations and RNA editing did 
not compromise the quality of our analysis. 
 

Quality Check Percentage 
Percentage of Somatic Mutations Called in the WXS 

Tumor Sample < 0.1% 

Percentage of Somatic Mutations Included in this 
Analysis After Filtering < 0.001% 

Percentage of Germline Variants Included in this Analysis 
that Overlap with a Known RNA Editing Site 0.10% 
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Table S2. Correlation between the allele frequencies calculated in our four variant 
sets and the allele frequencies reported by gnomAD. Our calculated allele 
frequencies are well-correlated with the allele frequencies reported by gnomAD, 
suggesting that our variant calls are high quality.  
 

Variant Set Pearson Correlation Coefficient with 
gnomAD 

WXS Normal 0.963 
WXS Tumor 0.964 
RNA Tumor 0.937 
Combined 0.947 
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Table S3. Variants genetically linked to rs61757955 in the European population, 
the population that is most similar to the TCGA lower grade glioma patient 
population. The upregulation of KRAS signaling may be due to rs61757955 or to 
one of these four linked variants.  
 

Variant Chromosome Position 

Distance 
from 

rs61757955 
(bp) 

Correlation 
(r2) Location 

rs56298430 17 75341627 23541 1 Intron of GRB2 
rs41282071 17 75320799 2713 0.936 Intron of GRB2 
rs55771008 17 75342476 24390 0.936 Intron of GRB2 

rs72850335 17 75298213 19873 0.879 18,863 Base Pairs 
Upstream of GRB2 
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Table S4. Results from testing for an association between the germline variant  
rs34988193 and genomic and histological variables. We did not find the germline 
variant rs34988193 to be associated with any changes in genomic or histological 
variables by separating patients on the basis of whether or not they had the 
germline variant rs34988193.  
 

Variable 
Mean or 

Percentage 
(Wild Type) 

Mean or 
Percentage 

(Mutant) 
p-value 

Total Somatic Mutation Count 31.5 76.9 0.436 

Percent Aneuploidy 13.4% 15.1% 0.466 
Astrocytoma 41.7% 35.5% 0.204 

Grade 3 53.8% 51.8% 0.704 
IDH Mutated 82.9% 80.5% 0.542 

1p/19q Co-deletion 28.6% 35.9% 0.107 

MGMT Promoter Methylation 82.4% 82.1% 1.000 

Chr 7 Gain/Chr 10 Loss 10.6% 12.0% 0.657 
Expression of ANKDD1a 2.53 2.6 0.473 
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Abstract  
 
Background: While clinical factors such as age, grade, stage, and histological 

subtype provide physicians with information about patient prognosis, genomic 

data can further improve these predictions. Previous studies have shown that 

germline variants in known cancer driver genes are predictive of patient outcome 

but no study has systematically analyzed multiple cancers in an unbiased way to 

identify genetic loci that can improve patient outcome predictions made using 

clinical factors.   

Methods: We analyzed sequencing data from the over 10,000 cancer patients 

available through The Cancer Genome Atlas to identify germline variants 

associated with patient outcome using multivariate Cox regression models. 

Results: We identified 79 prognostic germline variants in individual cancers and 

112 prognostic germline variants in groups of cancers. The germline variants 

identified in individual cancers provide additional predictive power about patient 

outcomes beyond clinical information currently in use and may therefore 

augment clinical decisions based on expected tumor aggressiveness. 

Molecularly, at least twelve of the germline variants are likely associated with 

patient outcome through perturbation of protein structure and at least five through 

association with gene expression differences. Almost half of these germline 

variants are in previously reported tumor suppressors, oncogenes or cancer-

driver genes with the other half pointing to genomic loci that should be further 

investigated for their roles in cancers. 
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Conclusions: Germline variants are predictive of outcome in cancer patients 

and specific germline variants can improve patient outcome predictions beyond 

predictions made using clinical factors alone. The germline variants also 

implicate new means by which known oncogenes, tumor suppressor genes, and 

driver genes are perturbed in cancer and suggest roles in cancer for other genes 

that have not been extensively studied in oncology. Further studies in other 

cancer cohorts are necessary to confirm that germline variation is associated 

with outcome in cancer patients as this is a proof-of-principle study. 
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Background 
 
 Large-scale sequencing projects increased our molecular understanding 

of cancers to the point where using sequencing data to augment clinical 

decisions seems promising [1, 2]. Somatic mutations in cancers have received 

substantial attention in oncology as they can be used to individualize drug 

selection [2, 3]. While much effort has been directed towards characterizing 

somatic mutations in cancer, recent studies suggest that germline variants also 

have significant clinical utility.  

 In line with the heritability of some cancers, several germline variants 

predict a patient’s risk for developing cancer and are useful for individualizing 

cancer screening guidelines [4-13]. Germline variation can affect drug sensitivity, 

predict drug toxicity, and could help select therapy to minimize side-effects [14-

26]. Some germline variants increase patient risk for specific somatic aberrations, 

suggesting that germline variation may impact disease course [27]. 

 We hypothesized that the effects of germline variants on cancer 

progression may be strong enough to identify associations with patient outcome. 

Previous studies tested for an association between patient outcome and a small 

number of germline variants in genes well-characterized in a given cancer [28, 

29]. We published an unbiased method of testing for an association between a 

large number of germline variants and patient outcome in patients with lower 

grade gliomas [30]. In this study, we identify prognostic germline variants using 

sequencing data from 10,582 patients from The Cancer Genome Atlas (TCGA). 

These germline variants significantly improve predictions of patient outcome 
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compared to clinical variables alone, identify biological mechanisms by which 

germline variants affect patient outcomes, and identify genes and pathways that 

impact cancer biology and therapy. 

Methods 
 
Data Sources, Variant Calling, and Quality Control 
 

The results in this manuscript are based upon data generated by The 

Cancer Genome Atlas (TCGA) Research Network: https://www.cancer.gov/tcga. 

We determined the germline variant statuses of 10,582 cancer patients by variant 

calling the patients’ whole exome sequenced normal samples (WXS normal), 

whole exome sequenced tumor samples (WXS tumor), and RNA sequenced 

tumor samples (RNA tumor) available on Cancer Genomics Cloud using VarDict 

(mapping quality > 30, base quality > 25, variant reads > 2, minimum allele 

frequency > 5%, no duplicate reads) and determined the sequencing depth at 

each position using samtools (mapping quality > 30) [31-33]. We set variant calls 

to unknown if the position at which the variant was called was covered by fewer 

than 10 reads. We then merged these three variant call sets, giving preference to 

WXS normal then WXS tumor then RNA tumor. We only included variants with 

an allele frequency of greater than 5% in the non-Finnish European population of 

gnomAD, variants found in more than 14 patients in a given cancer, and variants 

whose calls were greater than 90% concordant with each other in a given cancer 

in our final analysis [34]. These thresholds had been selected in our previous 

study in order to better tune the allele frequencies of the European patients in our 

study to previously reported population frequencies [30]. Our quality control tests 
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for setting these thresholds yielded similar results across the other cancers 

outside of the lower grade gliomas.  We labeled variant calls as concordant for a 

given variant if they gave the exact same variant call (homozygous for the 

reference allele, heterozygous, or homozygous for the alternate allele) in the 

WXS normal, WXS tumor, and RNA tumor samples. Variant calls were therefore 

discordant if the variant call differed in any of the three samples. The percentage 

concordance was calculated for each germline variant by dividing the total 

number of concordant variant calls by the total number of patients and multiplying 

the result by 100%. 

 We retrieved clinical outcomes data for each patient using the TCGA Pan-

Cancer clinical data resource [35]. We used TCGAbiolinks to obtain patient 

clinical information and we downloaded patient race composition from The 

Cancer Genome Ancestry Atlas (TCGAA) [36, 37]. Additional clinical information 

for the lower grade glioma and glioblastoma patients was downloaded from a 

previous analysis [38]. We used Lasso-regularization to determine which clinical 

covariates should be controlled for in our models, while using patient race 

composition from TCGAA in place of patient-reported race [39, 40]. The patient 

race composition reported in the TCGAA more accurately captured the genetic 

ancestry of the TCGA patients compared to patient reported race as patient race 

composition is quantitative and multidimensional. Where we did not control for 

patient race composition in cancers where patient race composition was not 

identified as a significant predictor of patient outcome by Lasso-regularized Cox 

regression, we later retested the set of prognostic germline variants by adding 
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back patient race composition as a covariate into our Cox regression models. As 

expected, because patient race composition was not a significant predictor of 

patient outcome in these cancers, we still found all of our originally identified 

prognostic germline variants to be statistically significant predictors of patient 

outcome. We also found that the hazard ratios estimated in the original models 

(without race) with the retested models (with race) were highly correlated 

(Spearman rho=0.983, p=7.63E-47). 

We were not able to control for treatment. As discussed in greater detail 

by Liu et al., it is very difficult to control for treatment in the TCGA dataset [35]. 

Detailed treatment information was not submitted in a consistent manner for 

many of the patients in TCGA and absence of submitted treatment information 

does not necessarily mean that the patient did not receive treatment. 

Furthermore, treatment regimens are quite complex and depend on 

chemotherapy drug selection and dosage, extent of surgical excision, and 

radiation therapy, among other factors. The broad spectrum of treatment options 

makes treatment challenging to control for. As discussed by Liu et al., the TCGA 

treatment information will likely need to be evaluated by panels of cancer 

specialists before it can be used for modeling in pan-cancer studies [35]. 

Nevertheless, it is unlikely that differences in treatment accounted for the bulk of 

the associations observed in this study. The most natural way for treatment 

differences to account for the observation that germline variation is associated 

with patient outcome is due to socioeconomic differences associated with patient 

race or unconscious or conscious biases in treatment selection based on patient 
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race. However, we accounted for calculated genetic ancestry as part of our 

pipeline, making these possibilities unlikely. 

 We determined the number of somatic mutations in the cancer samples 

and evaluated the overlap between germline variants and somatic mutations and 

RNA editing sites as previously described [30]. To ensure that our variant calls 

from the four variant call sets (WXS normal, WXS tumor, RNA tumor, and 

Combined) were concordant with each other, we calculated the allele frequency 

of each variant as in our previous analysis and calculated the Spearman 

correlation coefficient of these allele frequencies with each other. 

Power Analysis 
 

We performed a power analysis in individual cancers to evaluate our 

ability to detect associations between germline variants and patient outcome 

using Cox regression. The power to detect an association between a germline 

variant and patient outcome is dependent on the sample size, effect size, 

correlation with other covariates in the model, the number of individuals with the 

germline variants, and the number of individuals without a germline variant, 

among other factors. As a result, the power to detect an association differs 

between germline variants, even assuming the same hazard ratio. To estimate 

our power, we therefore randomly sampled 10,000 germline for each cancer from 

the pool of germline variants to be tested in that cancer. We calculated statistical 

power using the powerSurvEpi R package (https://cran.r-

project.org/web/packages/powerSurvEpi/index.html). We calculated our power to 

detect a significant association at a significance level (α) of:  
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0.10
Total	Number	of	Germline	Variants	Tested	in	That	Cancer

 

This threshold would be as stringent or slightly more stringent than false 

discovery correction using the Benjamini-Hochberg procedure which we 

ultimately used in our analysis. We then calculated the percentage of germline 

variants for which we had greater than 80% statistical power to detect a 

significant association at hazard ratios of 2, 3, 4, 5, 10, 15, and 20.   

Identification of Prognostic Germline Variants 
 
 We utilized six total approaches for identifying prognostic germline 

variants. In all analyses, we tested variants for an association with outcome using 

a Cox regression model, controlling for the covariates that we identified 

previously for each cancer using Lasso-regularization. We used the R packages 

survminer (https://cran.r-project.org/web/packages/survminer/index.html) and 

survival (https://cran.r-project.org/web/packages/survival/index.html) to perform 

Cox regression and generate Kaplan-Meier plots. p-values were corrected for 

multiple hypothesis testing using the Benjamini-Hochberg procedure. The circos 

plots were generated using the R package circlize [41].  

In analysis 1, we tested variants for an association with patient outcome in 

individual cancers, setting an adjusted p-value threshold (FDR) less than 0.10. 

We reported all statistically significant results and did not filter our results based 

on a hazard ratio threshold, as it is difficult to know what hazard ratio threshold 

would be clinically and biologically relevant. In the second analysis, we filtered 

our results from analysis one to identify germline variants that were recurrently 

associated (p<0.05) with favorable (hazard ratio (HR)<1) or poor (HR>1) 
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outcome relative to the reference allele in seven or more cancers, such that the 

most recurrent prognostic variants would be reported. Given that molecular 

similarities between some of the TCGA cancers may have made it more likely 

that certain germline variants would be picked up in this second analysis than 

others, we did not think that it would be statistically valid to estimate the 

probability of variants being pulled out by this analysis by chance. In the third 

analysis, we grouped the cancers based on clinical understanding about the 

cancers and clustering patterns observed previously by the TCGA research 

network [42]. We tested germline variants for associations with patient outcome 

(FDR<0.10) in these larger groups to detect germline variants with smaller effect 

sizes. In pooling cancers, we implicitly assumed that the germline variant had 

similar effects in the grouped cancers. If this assumption was not true for a 

particular germline variant, then that germline variant would actually be less likely 

to be associated with patient outcome. Only variants found in 15 or more patients 

across all grouped cancers were tested, resulting in fewer variants being tested 

in this analysis. 

Analyses 4-6 were quite similar to analyses one through three, except that 

we restricted our analysis to only germline variants that caused significant amino 

acid changes with a combined annotation dependent depletion (CADD) score 

greater than 25 [43]. This enabled us to identify associations that we did not 

capture in analyses one through three due to the relatively higher stringency in 

that analysis resulting from multiple hypothesis correction. In analysis four, we 

tested variants with CADD score > 25 in individual cancers for an association 
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with patient outcome (FDR<0.10). In analysis five, we filtered the results from 

analysis four to identify germline variants with CADD score > 25 that were 

recurrently associated (p<0.05) with favorable (HR<1) or poor (HR>1) prognosis 

in 5 or more patients. In analysis six, we tested germline variants with CADD > 

25 for a significant association (FDR<0.10) with patient outcome in the previously 

described patient groups. 

 The Cox regression models that we fit for individual cancers controlled for 

the covariates that we found to be prognostic in those cancers (Table S1). The 

Cox regression models that we fit for patient groups controlled for the covariates 

that we found to be prognostic in individual cancers with each term containing an 

interaction term associating that variable with the cancer that it was associated 

with patient outcome in. We also controlled for cancer type in these combined 

groups. As an example, suppose that variable A is associated with patient 

outcome in cancer X and variable B is associated with patient outcome in cancer 

Y. Then we would fit two Cox regression models to identify prognostic germline 

variants in individual cancers and a third Cox regression model to identify 

germline variants prognostic in the pooled cohort, as illustrated below. 

(1) Identifying germline variants associated with patient outcome in cancer X 

Patient	Outcome	~	β> + β@(Variable	A) +	βD(Germline	Variant	Status) 

(2) Identifying germline variants associated with patient outcome in cancer Y 

Patient	Outcome	~	β> + β@(Variable	B) +	βD(Germline	Variant	Status) 
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(3) Identifying germline variants associated with patient outcome when the 

patients with cancer X and the patients with cancer Y are pooled together 

Patient	Outcome	~	β>+	β@(Cancer	X	Status) + βD(Cancer	X	Status)(Variable	A)

+	βH(Cancer	Y	Status)(Variable	B)	+	βJ(Germline	Variant	Status) 

In model (3) above, cancer X status is a dummy variable that can be 0 or 1. The 

value of this variable is 0 for patients with cancer Y and 1 for patients with cancer 

X. The opposite is true for the cancer Y status variable. This allowed us to group 

patients to test for an association with patient outcome, while controlling for 

differences between different cancers and relevant clinical differences between 

patients with the same cancer. 

Concordance and Correlation of Hazard Ratios for the Prognostic Germline 
Variants 
 
 We tested whether germline variants associated with patient outcome 

(p<0.05) in three of more cancers were typically recurrently associated with 

increased risk of poor outcome or recurrently associated with decreased risk of 

poor outcome more often than would be expected by random chance and if the 

hazard ratios estimated for these prognostic germline variants in different 

cancers were correlated with each other. 

 To test for concordance, we first counted the number of times that 

germline variant was found to be associated (p<0.05) with poor patient outcome 

(HR<1) or favorable patient outcome (HR>1). We then calculated the following 

value for each prognostic germline variant:  
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max(LMMN	OPQRMST, VWXMNWYZT	OPQRMST)
LMMN	OPQRMST + VWXMNWYZT	OPQRMST

 

where poor outcome is the number of times that the germline variant was 

associated with poor outcome (HR<1) and favorable outcome is the number of 

times that the germline variant was associated with favorable outcome (HR>1). If 

a germline variant was perfectly concordant, then the calculated value would be 

1. While theoretically the expected value would be 0.5 for a random germline 

variant, we empirically estimated the expected value by the following calculation:  

max([MQWZ	\PSYTN	M]	LMMN	OPQRMST, [MQWZ	\PSYTN	M]	VWXMNWYZT	OPQRMST)
[MQWZ	\PSYTN	M]	LMMN	OPQRMST + [MQWZ	\PSYTN	M]	VWXMNWYZT	OPQRMST

 

In this set of prognostic variants, there were more variants associated with poor 

patient outcome (HR<1) than favorable patient outcome (HR>1), resulting in the 

expected index being 0.589. We then used a Wilcoxon rank sum test to 

determine whether the concordance values that we calculated from the set of 

prognostic germline variants differed from what we would expect by random 

chance. 

 We next tested whether the hazard ratios estimated for a given prognostic 

germline variant in different cancers were correlated with each other. Because 

we had previously found the hazard ratios to be concordant, we performed this 

analysis separately for instances in which a germline variant was found to be 

associated with increased risk of poor outcome and decreased risk of poor 

outcome. We identified the set of variants associated with favorable (HR<1) 

outcome and poor (HR>1) outcome in three or more cancers. The set of variants 

that were associated with favorable and poor outcome were analyzed separately. 
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For each analysis, we generated all possible pairs of hazard ratios for a given 

germline variant. We then ran a Spearman’s correlation test to determine 

whether or not the hazard ratios were correlated to each other. Because the 

hazard ratio is also correlated to the allele frequency, we repeated the prior 

analysis with a Spearman partial correlation test to control for germline variant 

allele frequency. Partial correlation was calculated used the ppcor R package 

[44]. 

Characteristics of Prognostic Germline Variants 
 
 Having identified the prognostic germline variants, we then aimed to 

compare the characteristics of prognostic germline variants to the characteristics 

of germline variants identified in previous genome wide association studies [45]. 

We decided to use the variants from analysis one and analysis three to 

understand the characteristics of prognostic germline variants because the other 

approaches each identified a very small number of prognostic germline variants. 

We decided not to pool all of the germline variants together due to possible 

differences in characteristics between these sets of variants. We therefore 

analyzed the characteristics of the prognostic germline variants from analysis 

one and from analysis three separately. To avoid considering the same 

information multiple times, we removed variants that were linked with each other 

from the analyses in this section and only retained the first variant by genomic 

position. The actual variant retained did not have a significant effect on our 

results because the hazard ratios and sample sizes for the linked variants were 

very similar. 
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 We first tested whether or not the minor allele was typically associated 

with poor patient outcomes. We sorted the variants into two categories: minor 

alleles that were associated with poor outcome in the Cox regression model 

(HR>1) and minor alleles that were associated with favorable outcomes (HR<1). 

Although the reference allele was often the major allele, this was not always the 

case. We performed a one-sided Fisher’s exact test in R to determine whether or 

not the minor allele was more likely to be associated with poor outcome. The R 

package scatterpie (https://cran.r-

project.org/web/packages/scatterpie/index.html) was used to display the 

proportion of homozygous reference, heterozygous, and homozygous alternate 

individuals. For variants in analysis three that were pulled out in multiple groups, 

we displayed the proportion of individuals only for the group that contained the 

largest number of individuals. The largest group always contained all individuals 

because the smaller groups were made up of smaller number of cancers and 

was always contained in the larger group. For example, suppose a variant was 

found to be prognostic in both group 20 (KICH, KIRP) and group 19 (KICH, 

KIRC, KIRP). In this case, we would perform all calculations using the 

information from group 19.  

 We next tested whether or not there was an inverse correlation between 

effect size and allele frequency. To do this, we calculated the Spearman 

correlation coefficient between effect size, calculated as |ln(HR) − 0|,	and allele 

frequency. Finally, we identified the genomic regions (upstream of a gene, 5’ 

UTR, exonic, intronic, 3’ UTR, downstream of a gene, or intergenic) in which 
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each variant was located in using annovar [46]. Some variants were found in 

multiple different transcripts and therefore mapped to several different genic 

regions. For the purposes of creating the figures, we allowed a single variant to 

count once for multiple different regions. Excluding these variants from the 

figures did not change our interpretation of the results. 

Testing Whether the Effects of the Prognostic Germline Variants are at 
Least Partially Independent  
 
 If the effects of the prognostic germline variants are at least partially 

independent of each other, we would expect that if two prognostic germline 

variants are found in the same patient that the outcome observed in those 

patients would be even more extreme than the outcome in patients with only a 

single germline variant. In other words, a patient with two prognostic germline 

variants associated increased risk for poor outcome should have a worse 

outcome than a patient with only one prognostic germline variant associated with 

poor outcome. 

To test this hypothesis, we analyzed the set of prognostic variants identified in 

individual cancers. We set a few boundaries on our analysis to reduce bias.  

(1) We identified prognostic germline variants highly linked to each other and 

only kept the first prognostic germline variant by chromosomal position in this 

set. The determination of which germline variant was selected did not 

substantially alter our results.  

(2) We analyzed pairs of variants in individual cancers. Although we could 

evaluate multiple prognostic variants in each of the cancers, this would make 
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the analysis more complex, given the differing effect sizes of the prognostic 

germline variants. 

(3) Because most of the prognostic variants in individual cancers were 

associated with increased risk for poor outcome, we limited this analysis to 

only variants associated with increased risk for poor outcome and 

excluded variants associated with favorable outcome. 

(4) In the testing of each pair of prognostic germline variants, we excluded 

individuals who were homozygous for one of the prognostic germline 

variants. Our Kaplan-Meier plots suggest that for some of the prognostic 

germline variants, having two copies of the variant has a stronger effect 

than having a single copy so including homozygotes for the prognostic 

germline variants could confound our results. The homozygotes for the 

prognostic germline variant were relatively rare and so we could not test 

them separately. Since they were relatively rare, the exclusion of 

homozygotes for the prognostic germline variant did not dramatically 

reduce our sample size. 

Having setup the conditions for this test, we created three groups for each pair of 

prognostic germline variants associated with poor patient outcome: 

(1) Patients homozygous for the reference allele of both prognostic germline 

variants 

(2) Patients heterozygous for one of the two prognostic germline variants and 

homozygous for the reference allele of the other prognostic germline 

variant 
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(3) Patients heterozygous for both of the prognostic germline variants 

We then tested for differences in patient outcome between groups (2) and (1) 

and groups (3) and (1). If the effects of the prognostic germline variants are at 

least partially independent, we would expect the hazard ratio from the 

comparison of groups (3) and (1) to be greater than the hazard ratio from the 

comparison of groups (2) and (1). We calculated these hazard ratios for each 

pair of prognostic germline variants and ran a paired one-sided Wilcoxon signed-

rank test to evaluate whether the hazard ratio from the comparison of groups (3) 

and (1) was greater than the hazard ratio from the comparison of groups (2). 

Association of Prognostic Germline Variants with Somatic Driver Mutations 
 
 We tested whether the prognostic germline variants were more likely to be 

associated with somatic mutations in driver genes than would be expected by 

random chance. We retrieved the set of driver genes for each cancer and 

consensus somatic mutation calls for each cancer from TCGA Network analyses 

[2, 47]. For each cancer, we only considered driver genes with five or more 

patients with a somatic mutation in that driver gene in that cancer. For each 

prognostic germline variant, we tested whether the variant associated with 

increased risk of poor outcome was associated with an increased incidence of 

somatic mutations in each of the driver genes being considered for that cancer in 

patients with the allele associated with increased risk of poor outcome compared 

to patients with the protective allele using a one-sided Fisher’s exact test. p-

values were adjusted using the Benjamini-Hochberg procedure. 
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 We were then able to determine the number of germline variants that were 

associated with a somatic mutation in a driver gene. We repeated this approach 

for all germline variants included in this analysis and performed a one-sided 

Fisher’s exact test to determine whether or not more prognostic germline variants 

than expected were associated with a somatic mutation in a driver gene. 

Area Under the Curve 
 
 To assess the clinical relevance of our findings, we tested whether the 

germline variants enhanced patient outcome predictions made using clinical 

information alone. While we had identified germline variants associated with 

outcome controlling for clinical covariates, we aimed to determine whether these 

variants significantly improved patient outcome predictions beyond predictions 

made using the clinical model alone, particularly in cancers in which the 

prediction by the clinical model was already quite accurate. We generated 

receiver operator characteristic (ROC) curves from the tenth percentile of patient 

death or patient progression to the ninetieth percentile of patient death or patient 

progression for each variant in R (https://cran.r-

project.org/web/packages/survivalROC/survivalROC.pdf, https://cran.r-

project.org/web/packages/timeROC/timeROC.pdf). We generated two ROC 

curves per variant: (1) the first was made using only patient clinical information 

(C) and (2) the second was generated using both patient clinical information and 

germline variant status (C+GV). We ran a one-sided Wilcoxon-rank sum test in R 

to determine whether the model supplemented with germline variant status 

consistently yielded better predictions across time for each variant. While our 
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Cox regression analysis identified variants that were significantly associated with 

patient outcome, these variants may not necessarily substantially improve clinical 

outcome predictions in cancers in which the clinical variables are already very 

good at predicting outcome. Running the one-sided Wilcoxon-rank sum test 

allowed us to test whether the improvement to the prediction was significant.  

Gene Annotation and Literature Review  
 
 We annotated the variants resulting from our analysis using biomaRt [48, 

49]. We reviewed the literature for the functions of these genes to understand 

their functions. Many of the authors (RP, SK, ZS, SS, BW, TT, JA, KL, TP, ES, 

MK) initially reviewed the literature for information about each gene. The 

literature review was then verified by three of the authors (RP, SK, ZS) to ensure 

consistency and validity. 

Having generated a list of genes that the germline variants are associated 

with from biomaRt, we first specifically searched the literature to see if these 

genes had a function in cancer that had been characterized and that fit a 

category described by Weinberg and Hanahan [50]. This part of the literature 

review had the largest number of unknowns due to the large amount of specificity 

required by the studies. We then relaxed our stringency and checked to see 

whether or not the gene was associated with findings in the literature consistent 

with oncogenic or tumor suppressor activity in the context of cancer. The 

classification of the genes as oncogenes or tumor suppressors was based on 

published biochemical or molecular studies of the genes in the context of cancer. 

Multiple studies supported the classification as either an oncogene or tumor 
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suppressor gene for a substantial number of the genes. Finally, to understand in 

general whether or not these genes are being actively studied by the field, we 

categorized these genes based on whether or not the literature suggested that 

the genes are being studied in a cancer in which the germline variant was found 

to be prognostic, studied in any cancer, or studied in any human disease. We 

also overlapped our gene list with the list of driver genes generated by the TCGA 

research network [2]. 

Variant Mechanisms and Literature Review  
 
 We next aimed to understand the mechanisms by which the prognostic 

germline variants may be exerting their effects. We started with the germline 

variants that were predicted to cause significant amino acid changes (CADD>25). 

We determined the position and amino acid change caused by these germline 

variants using Ensembl [51]. We determined the domain in which these germline 

variants cause their amino acid changes using the National Center for 

Biotechnology Information databases (https://www.ncbi.nlm.nih.gov/) and the 

Ensembl and Uniprot databases [52]. We next identified germline variants that 

are likely acting as expression quantitative trait loci in cis (cis eQTLs). For each 

germline variant, we separated patients based on whether or not they had at 

least one non-reference allele and then determined whether or not there was a 

statistically significant difference between the mean expression of the gene 

associated with the variant between the two groups using a Wilcoxon rank sum 

test. We then combined our prediction as to whether the germline variant was 

protective or associated with increased risk of poor outcome with the expression 
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difference between the two groups to determine whether increased expression of 

the gene would be expected to be protective or associated with increased risk of 

poor outcome. We fit Cox regression models using the expression of each of the 

genes, controlling for clinical covariates, and compared the result to our 

prediction. We reported variants that are concordant with our predictions. 

Because the differential expression and Cox regression results had to both be 

concordant with each other, we used a more relaxed cut-off of p < 0.10 for 

hypothesis generation. Further studies with larger cohorts and more statistically 

power are necessary to further interrogate these associations. Finally, we 

checked to see whether the eQTL was also reported in GTEx in the tissue from 

which the tumor was derived by downloading the list of tissue-specific and pan-

tissue eQTLs and comparing the eQTLs identified in our analysis to those 

reported in GTEx. 

 We reviewed the literature for previous associations tied to these variants 

reported in the literature. As was the case with gene annotation, the literature 

review was first done by multiple authors (RP, SK, ZS, SS, BW, TT, JA, KL, TP, 

ES, MK) with the final round of quality control and verification being done by a 

single author (BW).  

Correlation with Drug Sensitivity 
 
 We found the germline variant rs1800932 in MSH6 to be associated with 

favorable patient outcome and increased MSH6 expression. Because a previous 

analysis found that MSH6 knockdown resulted in increased temozolomide 

resistance, we tested whether MSH6 expression was correlated with 
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temozolomide sensitivity in cancer cell lines [53]. To do this, we downloaded 

MSH6 expression levels and temozolomide sensitivity for 915 cell lines using 

data from the Genomics of Drug Sensitivity in Cancer database through 

CellMinerCDB [54, 55]. We tested for an association using Spearman’s 

correlation test. 

Pathway Dysregulation 
 
 For selected prognostic germline variants described in the text, we tested 

whether or not these prognostic germline variants were associated with 

upregulation or downregulation of genes in specific pathways. For each 

prognostic germline variant, we separated patients into two groups based on 

whether or not the variant allele was called in those patients. We calculated the 

log fold change of each gene expressed greater than a median of 1 fragment per 

kilobase per million mapped reads and used these values as an input for gene 

set enrichment analysis [56]. 

Results 
 
Identification of High Quality Germline Variants  
 
 Germline variants were called and filtered as shown Figure S1 using 

sequencing data from 10,582 TCGA patients with 33 different types of cancers. 

In total, 77.6 million unique variants were called. After filtering, we limited our 

analysis to 519,319 unique variants (Figure S2). Because the final variant call 

set was created by merging variant calls from whole exome sequenced (WXS) 

normal tissue samples, WXS tumor samples, and RNA sequenced tumor 

samples, we evaluated our variant calls for contamination by somatic mutations 
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or RNA editing. Our final germline variant call set did not substantially overlap 

with somatic mutations or RNA editing sites (Figures S3-4, Text S1).  

Determination of Prognostic Clinical Models for Each Cancer  
 
 To identify prognostic germline variants that provide additional outcome 

information not already captured by clinical variables, we created clinical models 

predictive of patient outcome for each cancer using the clinical information 

previously collected by the TCGA research network along with the components 

of calculated race from The Cancer Genome Ancestry Atlas. The variables 

selected for each cancer are summarized in Table S1. The study was powered 

to capture prognostic germline variants with moderate to high effect sizes 

(beginning at hazard ratios > 2) (Figure S5, Text S2).  

Identification of Prognostic Germline Variants 
 
 The 191 prognostic germline variants from the six analyses are described 

in Table S2A-F.  

 The first three analyses identified germline variants associated with 

prognosis in (1) individual cancers, (2) multiple cancers giving roughly equal 

weight to each cancer, and (3) cancers grouped by organ system, histological, or 

molecular classifications (Figure 1A). Analysis 1 tested 519,139 variants for 

associations with patient outcome in individual cancers and identified 70 unique 

prognostic variants (Figure 1B, Table S2A, Kaplan Meier plots of selected 

examples in Figure 2).  

While analysis 2 identified hundreds of variants recurrently predictive of 

outcome in >4 cancers, we will only discuss the 5 variants that were predictive in 
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seven or more cancers (Figure 1C, Table S2B). Both the direction of the hazard 

ratios (increased or decreased risk of poor outcome) and the magnitude of the 

effect on patient outcome for germline variants across different cancers were 

highly correlated (Text S3).  

Analysis 3 increased our statistical power by grouping similar cancer types 

to increase the number of patients with the minor allele that could be included in 

the study. 29 different patient groups were created based on organ system, 

histological, or molecular classification (Figure 1D, group justification in Table 

S3). 258,466 unique germline variants were tested and 103 prognostic variants 

were identified (Figure 1E, Table S2C, Kaplan Meier plots of selected examples 

in Figure S6).  

Prognostic Germline Variants Causing Significant Amino Acid Changes 
 

Analyses 4-6 repeated analyses 1-3 but limited these analyses to variants 

within the top 0.3% of deleterious mutants across the human genome with 

CADD>25 (Figure 3A). Analysis 4 tested a total of 981 unique variants and 

identified nine unique prognostic variants (Figure 3B, Table S2D). Of the 16 

variants that were recurrently predictive of patient outcomes in 4 or more cancers 

(analysis 5), we will discuss the one variant that was predictive in five cancers 

(Figure 3C, Table S2E). Analysis 6 tested 903 unique variants for an association 

with outcome in the patient groups used in analysis 3 and described in Figure 1D 

and identified 3 additional prognostic variants (Figure 3D, Table S2F).  
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The Pan-Cancer Landscape of Prognostic Germline Variants 
 

The large number of prognostic variants identified in analysis 1 and 3 

allowed us to compare the characteristics of these germline variants with 

previously reported characteristics of variants identified by genome wide 

association studies (GWAS). Three characteristics have been noted in variants 

identified through GWAS: (1) the minor allele tends to be associated with 

increased risk for poor outcome when considering the set of variants with large 

effect sizes, (2) there is a negative correlation between effect size and allele 

frequency, and (3) most germline variants identified by GWAS do not cause 

amino acid changes [45]. 

To test whether the allele associated with increased risk for poor outcome 

is usually the minor allele, the predictive alternate alleles from analysis 1 were 

classified as associated with increased risk for poor outcome (HR>1) or 

decreased risk for poor outcome (HR<1) based on the Cox regression results. Of 

the prognostic germline variants from analysis 1, the allele associated with 

increased risk is clearly often the minor allele (p=7.077E-8) (Figure 4A). A similar 

analysis with the predictive variants from analysis 3 (Figure 4B) did not show a 

significant statistical depletion of alternate alleles associated with increased risk 

for poor outcome from the population (p=0.115). The predictive variants from 

analysis 3 were detectable only with larger sample sizes and have smaller effect 

sizes than those identified by analysis 1. Thus the result in Figure 4B is still 

consistent with the first premise that an allele associated with increased risk for 
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poor outcome with a large effect size (as in analysis 1, but not analysis 3) is 

usually the minor allele [45].  

A negative correlation is seen between effect size and allele frequency 

with both variants from analysis 1 (Spearman’s rho = -0.282, p=0.0184) and 

analysis 3 (Spearman’s rho = -0.667, p<2.2E-16), satisfying the second premise. 

Finally, the vast majority of predictive variants identified by this study do not 

cause amino acid changes (Figure 4C-D), satisfying the third premise.  

If the effects of the prognostic germline variants are at least partially 

independent of each other, we would expect that patients with two prognostic 

germline variants that increase the risk for poor outcome should do worse than 

patients with only one of these prognostic germline variant that increases the risk 

for poor outcome. Indeed, when tested, we found this to be true (p=8.45E-17, 

analysis approach detailed in Methods). 

A previous study had identified germline variants associated with an 

increased incidence of somatic mutations in cancer related genes [27]. We also 

found that some of the prognostic germline variants were associated with an 

increased risk of somatic mutations in cancer driver genes. While more 

prognostic germline variants were associated with an increased risk of somatic 

mutations in driver genes than was expected by random chance (OR=1.89, 

p=0.0001, Text S4), not all of the prognostic germline variants were associated 

with an increased risk of such somatic mutations. A more detailed study of 

somatic mutations in driver genes is necessary that will take into account 

differences in genes and cancer types. 
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Germline Variants Significantly Improve Outcome Prediction Models 
 
 The effect sizes of prognostic germline variants from analysis 1 were large 

enough to hypothesize that germline variants identified in individual cancers 

could improve clinical outcome models in current use.  

 The clinical variables predictive of outcome (Table S1) were used to 

generate the first outcome model (Clinical: C). The second outcome model was 

based on clinical information plus the status of a particular predictive germline 

variant (Germline Variant: GV) (C+GV). An example receiver operator 

characteristic (ROC) curve for predicting LAML patient vital status at 366 days of 

follow-up is shown using C and C+GV for predictive variant rs3003628 (ROC in 

Figure 4E). The area under the ROC curves (ΔAUC) for the C model is 0.807 

and for the C+GV model is 0.928. The change in AUC (ΔAUC) for the C+GV 

model relative to the C model in this example is 0.12 (12%). To ensure that the 

change in AUC is consistent at different times of follow-up, ΔAUC was calculated 

from the 10th to the 90th percentile of patient outcome time. The mean and 

standard error of ΔAUC was plotted against the p-value of the one-sided test 

evaluating whether the AUC for C+GV is significantly larger than the AUC for C 

(Figure 4F). 

This analysis was repeated for all predictive variants. There is a 

consistent, statistically significant (p<0.05) increase in AUC when the clinical 

model is enhanced by germline variant information (C+GV) compared to the 

clinical model alone (C) for 63 of the predictive germline variants out of 70 tested 
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(Table S4). These results demonstrate that adding predictive germline variants to 

existing clinical criteria will improve the prediction of outcome of many cancers. 

Prognostic Variants in Driver Genes, Oncogenes, and Tumor Suppressor 
Genes 
 
 90 of the 193 genes in the proximity of one of the prognostic germline 

variants have been functionally implicated in nine of the twelve hallmarks of 

cancer (Figure 5A, Table S5) [50]. 

Roughly 50% of the predictive variants are found in or near genes that 

possibly have tumor suppressor or oncogenic activity (Figure 5B, Table S5). 

About 25% of the predictive genes were previously studied in the cancer in which 

the germline variant was found to be prognostic, about half were previously 

studied in at least one cancer, and roughly two-thirds were studied in at least one 

human disease (Figure 5C, Table S5). Prognostic variants were identified in or 

near MSH6, POLQ, ARID5B, and IDH2, which are previously reported cancer-

driver genes (Figure 5D).  

Prognostic Germline Variants Can Cause Significant Amino Acid Changes 
or Act as eQTLs 
 
 The 12 prognostic variants identified in analyses 4-6 caused significant 

amino acid changes (CADD>25), with many of these amino acid changes 

occurring in protein-coding domains with annotated or known functions (Figure 

5E).  

 39 variants could act as cis eQTLs, as they were associated with 

expression differences of the proximate genes.  We highlight 5 of these variants 

because the expression levels of the proximate genes are also predictive of 
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survival, with the direction of the effect (HR >1 or <1) being concordant with the 

effect of the variant (Figure 5F). Of these 5 variants, 3 were also cis eQTLs in 

the corresponding tissue in GTEx [57].  

Prognostic Variants Implicated in Other Diseases 
 

Some of the prognostic variants are linked with diseases that occur in the 

tissue giving rise to the tumor, suggesting the variant has an important function in 

that tissue (Figure 5G, Table S6A). Table S6B lists prognostic genes that are 

linked in the literature to traits in tissues outside the ones bearing the tumors. 

Individual Prognostic Variant Characterization 
 
 In this section, we characterize three germline variants to illustrate how 

individual germline variants may be associated with patient outcome. These 

hypotheses are supported by bioinformatic analyses and require future molecular 

insight to confirm and fully understand the mechanistic underpinnings of these 

associations. 

rs1800932 in MSH6 May Be Associated with Favorable Outcome by 
Increasing Temozolomide Sensitivity 
 

rs1800932 predicts favorable patient outcome in gliomas (LGG and GBM). 

This variant is an eQTL for increased expression of MSH6 in many tissues, 

including nerve, is associated with increased expression of MSH6 in patients with 

LGG (p=0.00732), and has previously been reported to be associated with a 

decreased risk of prostate cancer [57, 58]. We found MSH6 expression to be 

correlated with elevated temozolomide sensitivity in cancer cell lines 

(Spearman’s rho=0.165, p=5.01E-7) [54]. Temozolomide is a DNA alkylating 

agent used in the treatment of most glioma patients and is likely to have been 
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used in the therapy of most patients with gliomas in TCGA. MSH6 knockdown 

increases temozolomide resistance and somatic mutations in MSH6 are 

associated with temozolomide resistance in gliomas [53, 59]. Taken together, this 

suggests that rs1800932 is an eQTL for increased expression of MSH6 in 

gliomas, which may increase sensitivity to temozolomide, the primary 

chemotherapeutic agent for gliomas. 

rs55796947 in MAP2K3 May Result in Cell Cycle Arrest and Apoptosis 
 

rs55796947 in MAP2K3/MKK3 predicts favorable prognosis in KIRC. This 

germline variant introduces a stop codon in MAP2K3 that truncates the kinase 

domain. MAP2K3 inhibition results in cell cycle arrest, autophagy-mediated cell 

death, the unfolded protein response (UPR), and sensitization to chemotherapy 

drugs [60]. Indeed, tumors in patients with this variant upregulate genes involved 

with apoptosis (p<0.001, Figure 6A-B) and downregulate E2F targets involved in 

cell-cycle progression (p=0.047, Figure 6C). This germline variant likely 

truncates the kinase domain of MAP2K3, resulting in cell cycle arrest, apoptosis, 

and favorable patient outcome.  

rs77903511 is an eQTL for BIRC5 which Inhibits Apoptosis 
 
 rs77903511 predicts poor patient outcome in UVM (Figure 6D). BIRC5 

inhibits apoptosis through interaction with and inhibition of caspase 9 and effector 

caspases. The alternate allele is associated with increased BIRC5 expression in 

the tumors (p=0.02, Figure 6E). Consistent with a role of BIRC5 in apoptosis 

inhibition, BIRC5 expression is associated with poor patient outcome (Figure 
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6F). This variant, therefore, may be associated with poor outcome because of an 

increase of the apoptosis inhibitor BIRC5. 

Discussion 
 
 This study shows, as a general principle, that germline variants are 

associated with cancer patient outcome. The prognostic germline variants 

enhanced patient outcome predictions compared to models based on currently 

collected clinical data. We envision germline variants providing clinicians with 

information about a patient as a supplement to reported history, physical exam 

findings, and imaging and laboratory tests. These predictions will improve over 

time with the use of more information available in electronic medical records.  

The results of this study are most easily applied at the population level to 

identify groups of patients at increased risk for poor outcome (for example for 

clinical trials) and for follow-up mechanistic studies on how the variants affect 

outcome. This study will serve as the basis for future work to apply these findings 

at the level of individual patients, as a given variant will need to be considered in 

conjunction with other variants and with clinical factors to calculate expected 

survival time or time to progression. While we identified a large number of 

prognostic germline variants in analysis 1, our sample size for this study was 

relatively modest. The power calculations and the identification of additional 

prognostic germline variants by grouping similar cancers suggest that more 

prognostic germline variants will likely emerge as more tumors are sequenced 

and will further support the notion that germline variation is associated with 

patient outcome across cancers. Our study of prognostic germline variants was 
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limited to common germline variants (allele frequency > 5% in the population) 

due to statistical limitations derived from sample size in our ability to study 

pathogenic and low frequency germline variants. However, our results imply that 

these rarer germline variants may have large effect sizes that may make them 

particularly valuable for improving clinical outcome model predictions. These 

variants will likely be studied in the future through more complex approaches or 

in studies of larger cohorts. 

 Further study is necessary to validate the associations that we identified, 

as setting the discovery threshold at FDR<0.10 suggests that some of the 

associations may have occurred by random chance. The variants identified in 

analyses 2 and 5 require deeper interrogation, as we were unable to develop an 

unbiased test to assess the probability of those associations occurring by random 

chance. While we identified germline variants associated with significant 

improvements in clinical outcome predictions, further work is necessary to 

identify situations in which the additional prognostic information would be 

valuable for treatment decisions or end of life planning. 

 Given the paucity of studies testing for associations between germline 

variants and patient outcome in cohorts of cancer patients, we were unsure of 

the effect sizes that could be expected in this study across the 33 cancers. This 

uncertainty was further exacerbated by reports of effect sizes being negatively 

correlated with allele frequency for some traits [45]. The results of this study will 

provide researchers with a sense for the magnitude of effect sizes that can be 

expected from germline variants associated with patient outcome along with the 
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relationship between effect size and allele frequency. These results will help 

better optimize future studies for detecting significant associations. 

It is reassuring that a significant fraction of prognostic germline variants 

are found in or near possible tumor suppressor genes, oncogenes, or known 

cancer driver genes. The variants in cancer driver genes, MSH6, POLQ, 

ARID5B, and IDH2, warrant further study to determine the mechanism by which 

these variant affect cancer progression [61]. The twelve germline variants in 

Figure 5E that cause substantial amino acid changes are prime candidates for 

experimental follow-up and are discussed in detail in Text S5. A handful of the 

prognostic germline variants have been associated with human disease, some in 

the same tissue and others in unrelated tissues, suggesting that these 

pathologies may stem from shared molecular phenomena (Table S6).  

The mechanisms of action of many of the prognostic variants are currently 

unknown. There are many possibilities by which the variants that do not cause 

amino acid changes could affect cancer biology [62]. Many variants are likely 

acting as trans eQTLs, which are difficult to study in datasets with relatively small 

sample sizes. Some of the variants may also be acting as eQTLs in non-tumor 

cells, such as immune system cells or cells of the vasculature. The already high 

involvement of tumor suppressor genes, oncogenes, and driver genes among the 

prognostic germline variants is promising for future study. This report provides 

basic science researchers with genes and variants that should be studied to 

better understand the etiology and progression of cancers, while providing 
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clinicians with the potential for better clinical predictions that could be made if 

germline variants are considered in the context of patient care. 

Conclusions 
 
 While the prediction of outcome for patients with cancer is currently based 

on clinical factors, the analysis of next-generation sequencing data in clinical 

oncology has suggested that genomic information can further improve these 

predictions. Previous studies analyzing the usage of genomic information in 

clinical oncology have focused primarily on somatic aberrations. In this proof-of-

principle study, we systematically analyzed sequencing data from thirty-three 

different cancers to test whether germline variation could also be used to provide 

clinicians with information about patient outcome. We identified prognostic 

germline variants across individual cancers and group of cancers and find that 

these germline variants provide additional predictive power about patient 

outcomes beyond the information that can be gathered from clinical factors 

alone. Mechanistically, twelve of the germline variants seem to be associated 

with patient outcome through perturbation of protein structure and at least five 

through association with gene expression differences, though the molecular 

functions of most of the germline variants are currently unknown. About half of 

the germline variants are in previously reported tumor suppressor genes, 

oncogenes, or driver genes with the other half implicating loci that deserve 

further investigation in oncology. As this is a proof-of-principle study, further 

studies of germline variation in other cancer cohorts are necessary confirm that 

germline variation is associated with patient outcome across cancers.  
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WXS Tumor - Whole Exome Sequenced Tumor Sample 
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Figures 
 
Figure 1. Prognostic germline variants identified in analyses one through three. 
  
A. A description of the three analyses used to identify prognostic germline 
variants in this figure. 
 
B. Analysis 1. Germline variants found to be predictive of patient outcome in 
each cancer. Each dot represents a germline variant that was tested for an 
association with patient outcome. Variants closer to the outside of the plot are 
more closely associated with patient outcome. Variants in red are significantly 
(FDR<0.10) associated with patient outcome. The alternating black and grey 
colors reflect alternating chromosomes for the germline variants that were not 
significant predictors of patient outcome. 
 
C. Analysis 2. Germline variants found to be recurrently predictive of patient 
outcome in multiple different cancers. We identified 5 total germline variants that 
were recurrently predictive (p<0.05) of favorable (HR<1) or poor (HR>1) patient 
outcomes in 7 or more different cancers. 
 
D. Analysis 3. 29 groups of cancers created to identify germline variants with 
weaker effect sizes in larger patient cohorts. Justification for these groups is 
provided in Table S3. 
 
E. Analysis 3. Germline variants found to be predictive of patient outcome in the 
groups described in Figure 1D. The format of the figure is the same as in Figure 
1B. 
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Figure 2. Selected Kaplan-Meier plots of the prognostic germline variants from 
Analysis 1. The number of patients in each group is indicated next to each line 
and the patient outcome measure of each disease is given in Table S1. The 
reported p-values and hazard ratios were calculated using univariate regression 
and are different from the p-values and hazard ratios reported elsewhere which 
are based on multivariate regression 
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Figure 3. Prognostic germline variants that cause significant amino acid changes 
(CADD>25) identified in analyses four through six.  
 
A. A description of the three analyses used to identify prognostic germline 
variants in this figure. 
 
B. Analysis 4. Germline variants causing significant amino acid changes found to 
be predictive (FDR<0.10) of patient outcome in each cancer.  
C. Analysis 5. Germline variants causing significant amino acid changes found to 
be recurrently predictive (p<0.05) of favorable (HR<1) or poor (HR>1) patient 
outcomes in 5 or more different cancers. 
 
D.  Analysis 6. Germline variants causing significant amino acid changes found 
to be predictive of patient outcome in patient groups defined in Figure 1D. 
 

  



 131 

 

 

  

B C

D

FDR<0.10

FDR<0.10

Figure 3

A



 132 

Figure 4. Characteristics of prognostic germline variants and improvement of 
patient outcome models by the prognostic germline variants. 
 
A-B. Scatterplots of the prognostic germline variants identified in individual 
cancers in Analysis 1 (A) and in groups of cancers in Analysis 3 (B). Each pie 
chart reflects the distribution of patients that are homozygous for the reference 
allele, heterozygous, and homozygous for the alternate allele for one prognostic 
variant. The minor allele was much more likely to be associated with increased 
risk for poor outcome rather than decreased risk for poor outcome (p=7.077E-8) 
in Analysis 1 though this trend was not significant in Analysis 3 (p=0.115).  
 
C-D. Pie charts displaying the genomic locations of the germline variants in 
Analysis 1 (C) and Analysis 3 (D).  
 
E. An example of a receiver operator characteristic (ROC) curve calculated using 
data from LAML at 366 days of follow-up. The blue line represents the patient 
outcome predictions made using clinical information alone (C model). The red 
line represents patient outcome predictions made using clinical information in 
addition to rs3003628 germline variant status (C+GV model), which we found to 
be predictive of patient outcomes in LAML. The Area Under the Curve (AUC) 
was 0.81 for the C model and 0.93 for the C+GV model giving a �AUC of 0.12 
(12%). 
 
F. Many of the prognostic germline variants improve clinical outcome model 
predictions. For each prognostic variant, we created a ROC curve based on the 
clinical (C) model and the clinical + germline variant (C+GV model), as in Figure 
4E, at each point in time from the 10th- 90th percentile of patient progression or 
death for each cancer. The ΔAUC of the C+GV model versus the C model at 
each time point was calculated (Table S4).  X-axis: Mean and standard error of 
ΔAUC. Y-axis: The p-values from testing whether or not the AUC of the C+GV 
model is significantly greater than that of the C model using a Wilcoxon rank sum 
test. Four examples of prognostic germline variants that significantly increase the 
AUC are labeled and highlighted in Table S4. 
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Figure 5. Literature review of genes associated with the prognostic germline 
variants and mechanisms by which prognostic germline variants may exert their 
effects. 
 
A. The cancer-related functions of genes associated with the prognostic germline 
variants are quite diverse.  
 
B. Many of the genes associated with the variants have previously been reported 
to be tumor suppressor genes or oncogenes. We categorized genes as tumor 
suppressor genes or oncogenes based on phenotypes reported in the literature, 
even if the exact mechanism through which the genes act have not yet been 
determined. 
 
C. Although many of the variants have been studied in the field, there are many 
genes that have not yet been studied in the context of human disease and 
therefore may warrant investigation by the field. 
 
D. Four of the genes associated with prognostic germline variants are in 
previously reported cancer driver genes. 
 
E. Some of the prognostic germline variants cause dramatic amino acid changes 
and may disrupt well-characterized protein domains. 
 
F. Some of the prognostic germline variants likely act as expression quantitative 
trait loci in cis (cis eQTLs) and the expression of these genes are predictive of 
patient outcome. We found three of these germline variants to also be eQTLs in 
the genotype tissue expression (GTEx) database in the same tissue that the 
tumor was derived from. 
 
G. Some of the prognostic germline variants have been reported to be 
associated with other diseases related to the tissue from which the tumor was 
derived. 
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Figure 6. Examples by which two of the prognostic germline variants may be 
associated with patient outcome. 
 
A-C. rs55796947 in MAP2K3/MKK3 is associated with favorable patient outcome 
in KIRC and results in complete loss of MAP2K3’s protein kinase domain due to 
a Q73* amino acid change. MAP2K3 inhibition has previously been reported to 
result in cell cycle arrest and response to chemotherapy drugs. Tumors with the 
variant show upregulation of genes involved with apoptotic cleavage (A), genes 
in the apoptotic execution phase (B), and downregulation of E2F targets (C) in a 
Gene Set Enrichment Analysis (GSEA) of RNAseq data.  
 
D-F. rs77903511 in the apoptosis inhibitor BIRC5 is predictive of poor patient 
outcome in UVM (D). This variant is associated with increased BIRC5 expression 
(E). Elevated BIRC5 expression is associated with poor patient outcome (F).  
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Supplementary Figures  
 
Figure S1. An overview of our approach to identifying prognostic germline 
variants. Whole exome sequenced normal (WXS Normal), whole exome 
sequenced tumor (WXS Tumor), and RNA sequenced tumor (RNA Tumor) 
samples from 10,582 cancer patients from The Cancer Genome Atlas (TCGA) 
were variant called. The three variant call sets were merged to create a single 
Combined variant call set that was used in the rest of the analysis. The variants 
were filtered to include only common variants that were concordant between the 
three sequencing datasets. We tested variants for an association with patient 
outcomes while controlling for clinical covariates using Cox regression models. 
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Figure S2. An overview of the total number of germline variants called and 
removed by the various filters included in this analysis. 519,319 germline variants 
were analyzed in this study. 
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Figure S3. Somatic mutations did not compromise the integrity of this study. 
A. Most variants called from the tumor samples were germline variants. We 
plotted the percentage of variants called in the whole exome sequenced tumor 
(WXST) sample that were somatic mutations (SM) across all cancers.  
B.  Few germline variants (GV) cause the same base change as a somatic 
mutation (SM) across all the cancers after filtering. 
C.  Few germline variants (GV) included in this analysis overlap in genomic 
position with a somatic mutation (SM).  
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Figure S4. RNA editing did not affect the integrity of this analysis. 
A. Few germline variants (GV) included in this study overlap with a known RNA 
editing site in genomic position. 
B. Most germline variants are called in the whole exome sequenced samples 
(WXS). A relatively small number of germline variants were called solely from the 
RNA sequenced tumor (RNAT) sample. 
C. The variant calls from the whole exome sequenced normal (WXSN), whole 
exome sequenced tumor (WXST), RNA sequenced tumor (RNAT), and 
Combined (the three variant call sets merged together) are highly concordant 
with each other. We calculated the allele frequency of each variant in each 
variant call set and calculated the Spearman correlation coefficient between all 
pairs. 
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Figure S5. Power analysis results depicting the percentage of germline variants 
with >80% power to detect an association between variant status and patient 
outcome in individual cancers assuming varying effect sizes. To estimate our 
statistical power, we randomly sampled 10,000 germline variants in each cancer 
in each iteration and calculated our statistical power to detect an association 
between each germline variant and patient outcome. The results of this analysis 
separated the cancers out into three groups:  

(1) Associations detectable at hazard ratios of moderate magnitudes of 2-3 
(BLCA, BRCA, GBM, HNSC, KIRC, LGG, LUAD, LUSC, OV, SKCM, 
STAD, CESC, COAD, ESCA, LAML, LIHC, MESO, PAAD, PRAD, SARC, 
THCA, and UCEC)  

(2) Associations detectable at hazard ratios of moderately high magnitudes of 
4-5 (ACC, KIRP, READ, TGCT, UCS, PCPG, THYM, and UVM)  

(3) Associations detectable at hazard ratios of high magnitudes (CHOL, 
DLBC, and KICH)  
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Figure S6. Selected Kaplan-Meier curves from the variants identified in Analysis 
3 in which related cancers were grouped together prior to testing for association 
with survival. 
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Figure S7. Schematic representations of how rs1558526, rs6174114, and 
rs35602605 may perturb well characterize protein domains. 
 
 A. rs1558526 is associated with favorable patient outcome in OV in the secreted 
protease inhibitor A2ML1. Wild type A2ML1 inhibits proteases by forming a 
covalent bond following cleavage of its central bait domain (left). C970 facilitates 
the formation of this covalent bond. rs1558526 causes a C970Y amino acid 
change that likely disrupts A2ML1’s ability to inhibit proteases (right). 
 
B. rs6174114 in CRYBG1/AIM1 is associated with poor patient outcome in 
PAAD. The binding of CRYBG1 to actin requires its 12 �� crystallin motifs and 
results in suppression of pro-invasion phenotypes. rs6174114 causes a L1235P 
amino acid change in the fifth �� crystallin motifs that may disrupt the packing of 
the beta sheets and perturb CRYBG1’s function, likely leading to increased tumor 
invasiveness and poor patient outcome. 
 
C. rs35602605 in EIF2AK4/GCN2 is associated with poor prognosis in THCA. 
EIF2AK4 decreases translation of some proteins and increases translation of 
others (such as CDKN1A) under conditions of stress by binding uncharged 
tRNAs through its histidyl-tRNA-synthetase domain. rs35602605 results in a 
G1306S amino acid change in the histidyl-tRNA synthetase-like domain. This 
variant may disrupt the function of EIF2AK4 resulting in poor patient outcome. 
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Supplementary Tables 
 
Table S1. Clinical information about the patients included in this study and the 
covariates that we controlled for in our Cox regression models that were selected 
using Lasso-regularization. 
 
Abbreviation Cancer Sample Size Endpoint Covariates 

ACC Adrenocortical 
carcinoma 91 OS Age, Gender, Calculated Race, Stage 

BLCA Bladder Urothelial 
Carcinoma 410 OS Age, Height, Stage 

BRCA Breast invasive 
carcinoma 1079 OS Age, Estrogen Receptor Status 

CESC 

Cervical squamous 
cell carcinoma and 

endocervical 
adenocarcinoma 

294 OS Age, Histological Type, Calculated Race, Stage 

CHOL Cholangiocarcinoma 45 OS Albumin Level, Calculated Race 

COAD Colon 
adenocarcinoma 441 OS Age, Anatomic Position, Calculated Race, 

Stage 

DLBC 
Lymphoid Neoplasm 
Diffuse Large B-cell 

Lymphoma 
47 PFI None 

ESCA Esophageal 
carcinoma 184 PFI Histological Type, Anatomic Location, Weight 

GBM Glioblastoma 
multiforme 390 OS Age, Chr 19/20 co-gain, Gender, IDH Mutation 

Status 

HNSC 
Head and Neck 
squamous cell 

carcinoma 
523 OS Age, Anatomic Location, Grade, Calculated 

Race, Stage 

KICH Kidney 
Chromophobe 65 PFI Age, Stage 

KIRC Kidney renal clear 
cell carcinoma 530 OS 

Age, Gender, Grade, Hemoglobin Level, 
Platelet Count, Calculated Race, Stage, White 

Blood Cell Count 

KIRP 
Kidney renal 
papillary cell 
carcinoma 

286 OS Stage 

LAML Acute Myeloid 
Leukemia 131 OS Age, Cytogenetics Risk, Morphology 

LGG Brain Lower Grade 
Glioma 510 OS 1p/19q co-deletion status, Age, Chr 7 gain/Chr 

10 Loss Status, Grade, IDH Mutation Status 

LIHC Liver hepatocellular 
carcinoma 369 OS 

Age, Alcohol Consumption History, Fetoprotein 
Value, Grade, Platelet Count, Calculated Race, 

Stage 

LUAD Lung 
adenocarcinoma 506 OS Stage 

LUSC Lung squamous cell 
carcinoma 497 OS Age, Anatomic Location, Calculated Race 

MESO Mesothelioma 85 OS Age, Histological Type 

OV Ovarian serous 
cystadenocarcinoma 523 OS Age, Anatomic Location, Grade, Calculated 

Race, Stage 



 145 

PAAD Pancreatic 
adenocarcinoma 184 OS Age, Anatomic Location, Gender, Grade, 

Calculated Race, Smoking History, Stage 

PCPG Pheochromocytoma 
and Paraganglioma 177 PFI None 

PRAD Prostate 
adenocarcinoma 498 PFI Anatomic Location, Gleason Grade, Calculated 

Race 

READ Rectum 
adenocarcinoma 163 PFI Age, Gender, Calculated Race, Stage 

SARC Sarcoma 260 OS Age, Pathology Margin Status, Postoperative 
Treatment, Residual Tumor 

SKCM Skin Cutaneous 
Melanoma 437 OS Age, Breslow Depth Value, Calculated Race, 

Stage 

STAD Stomach 
adenocarcinoma 416 OS Age, Anatomic Location, Grade, Stage, 

Calculated Race 

TGCT Testicular Germ Cell 
Tumors 134 PFI Anatomic Location, History of Undescended 

Testis, Calculated Race, Stage 
THCA Thyroid carcinoma 505 PFI Histological Type, Stage 
THYM Thymoma 122 PFI None 

UCEC 
Uterine Corpus 

Endometrial 
Carcinoma 

544 OS 

Age, Grade, Height, Histological Type, 
Menopausal Status, Calculated Race, Stage, 
Total Pelvic Lymph Node Ratio, Total Pelvic 

Lymph Nodes Positive, Weight 

UCS Uterine 
Carcinosarcoma 56 OS 

Hypertension, Residual Tumor, Total Pelvic 
Lymph Node Ratio, Tumor Invasion on Primary 

Pathology 

UVM Uveal Melanoma 80 OS Age, Morphology, Tumor Diameter, Year of 
Diagnosis 
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Table S3. Justification for the groups presented in Figure 1D.  
 

Group Number Group Group Description 
1 ACC, KICH Clustered by TCGA 
2 ACC, PCPG Adrenal Tumors 
3 BLCA, CESC, HNSC, LUSC Clustered by TCGA 
4 BLCA, KICH, KIRC, KIRP Urinary System 
5 BLCA, KIRC, KIRP Urinary System Without KICH 
6 BRCA, OV, UCEC, UCS Female Reproductive 
7 CESC, HNSC, LUSC Clustered by TCGA 

8 CHOL, COAD, ESCA, LIHC, PAAD, READ, 
STAD Gastro-intestinal 

9 CHOL, LIHC Bile Production and Storage 
10 COAD, ESCA, PAAD, READ, STAD Digestive System 
11 COAD, ESCA, READ, STAD Gastro-intestinal Tract 
12 COAD, READ Colon 
13 COAD, READ, STAD Lower Gastro-intestinal Tract 
14 DLBC, LAML Blood 
15 DLBC, LAML, THYM Immune System 
16 DLBC, PCPG, SARC, THYM, UCS Clustered by TCGA 
17 GBM, LGG Gliomas 
18 GBM, LGG, PCPG Neuro-endocrine and Gliomas 
19 KICH, KIRC, KIRP Kidney 
20 KIRC, KIRP Kidney without KICH 
21 LAML, PRAD, THCA, THYM Clustered by TCGA 
22 LAML, THCA Clustered by TCGA 
23 LUAD, LUSC Pulmonary without MESO 
24 LUAD, LUSC, MESO Pulmonary 
25 OV, UCEC Pelvic Female Reproductive 
26 PAAD, STAD GI Enzyme Production 
27 PRAD, TGCT Male Reproductive 
28 SKCM, UVM Melanoma 
29 UCEC, UCS Uterus 
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Supplementary Text 
 
Text S1. The final set of germline variants included in this analysis are not 
substantially contaminated by somatic mutations or RNA editing. 
 
 Because the final variant call set was created by merging variant calls 

from WXS Normal, WXS Tumor, and RNA Tumor data, we evaluated our variant 

calls to ensure that they were not significantly contaminated by somatic 

mutations or RNA editing.  

 The total number of somatic mutations in each patient were obtained from 

the TCGA Research Network [47]. <2% of the total number of variants in a 

patient prior to any filtering or quality control were somatic mutations (Figure 

S3A). After filtering, <0.002% of germline variants in a given cancer included in 

this analysis caused the same base pair change as a somatic mutation (Figure 

S3B). In fact, <0.02% of germline variants included in this analysis in a given 

cancer even overlapped in position with a somatic mutation (Figure S3C). 

Therefore our final variant call set after filtering was not significantly 

contaminated by somatic mutations.  

 We next checked whether our variant call set was significantly affected by 

RNA editing. A set of over 2.5 million known RNA editing sites was identified 

from the rigorously annotated RNA editing database RADAR and overlapped 

with the germline variants included in this analysis [63]. <0.25% of germline 

variants in a given cancer included in this analysis overlapped in position with an 

RNA editing site (Figure S4A).  

 79.6% of germline variants were called in both the WXS and RNA 

samples, 19.6% were called only in the WXS samples, and 0.8% were called 
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only in the RNA samples (Figure S4B). Because a large number of germline 

variants were called in both the WXS and RNA samples, we were able to 

evaluate the concordance between the variant calls between the WXS Normal, 

WXS Tumor, and RNA Tumor samples. The allele frequency of each variant in 

each cancer in all four variant call sets (WXS Normal, WXS Tumor, RNA Tumor, 

and the three variant call sets combined) was calculated and correlated with 

each other. The allele frequencies in the four variant call sets were very well 

correlated with each other (Figure S4C), implying that the variant calls between 

the different samples were highly concordant. Taken together, these results 

suggest that somatic mutations, RNA editing, and pooling of the variant call sets 

did not lead to spurious germline variant calls. 

 Germline variant calling of all of the patients included in TCGA had 

previously been performed by Huang et al. [4]. We found that 93.0% of the 

variants called by Huang et al. were also found to have the same exact germline 

variant call in our analysis. For 1.5% of the variant calls there was disagreement 

between the two tools about whether an individual was heterozygous or 

homozygous for the alternate allele. 5.53% of the variants were called by 

GenomeVIP (Huang et al.’s tool) but not VarDict (our tool). <0.07% of the 

variants were called in VarDict but not GenomeVIP. 

 The concordance between the two germline variant call sets is quite 

strong, given the differences between the two studies. Huang et al. had 

performed variant calling on the WXS Normal samples aligned to hg19 and had 

performed variant calling using GenomeVIP, which integrates variant calls from 
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Varscan, GATK, and pindel, whereas our germline variant calls were generated 

using VarDict from the WXS Normal, WXS Tumor, and RNA sequenced tumor 

samples aligned to hg38 [33, 64-66]. Huang et al. implemented a variety of 

filtering criteria, including requiring an unfiltered allelic depth greater than 5 

reads. We required a filtered (we excluded reads with a mapping quality less 

than 30 and base quality less than 25) read depth of 3 reads per sample and 

allele fraction of 5% The level of discordance that we found was expected, given 

the differences that could result from the usage of different reference genomes 

during alignment, filtering criteria, and variant calling tools [33].  
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Text S2. The results of our power analysis suggest that we can detect 
associations between germline variants with moderate to high effect sizes and 
patient outcome. 
 
 We evaluated our ability to detect significant associations between 

germline variants and patient outcome across the thirty-three cancers by 

calculating statistical power. The power to detect a significant association 

between a variant and patient outcome is dependent on multiple factors, 

including sample size, effect size, correlation with other covariates in the survival 

model, the number of patients with the germline variant, and the number of 

patients without the germline variant. To get a sense of our likelihood to detect 

associations across the thirty-three cancers at various effect sizes, we randomly 

sampled 10,000 germline variants from the pool of testable germline variants and 

calculated power for each germline variant at hazard ratios of 2, 3, 4, 5, 10, 15, 

and 20. The results are depicted in Figure S5.  

 The results suggest that our study design would enable us to detect 

associations beginning around a hazard ratio of 2. With that said, our power 

study suggests that for every germline variant that we are able to associate with 

patient outcome at lower hazard ratios, we will likely fail to detect several others 

due to having limited statistical power for variants with lower effect sizes, even in 

the cancers with the largest sample sizes. Future studies with larger sample 

sizes will be able to detect these associations that our current study will likely 

miss. Furthermore, it should be noted that even if germline variants fail to be 

associated with patient outcome, our study is not sufficiently powered to claim 

that those variants are not in reality associated with outcome. Finally, the results 
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suggest that we are extremely unlike to detect an association with germline 

variants with low to moderate effect sizes in ACC, CHOL, DLBC, KICH, PCPG, 

TGCT, THYM, UCS, and UVM.  
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Text S3. The direction (indicating whether a germline variant is associated with 
increased or decreased risk of poor outcome) and magnitude of the hazard ratio 
is correlated across cancers in which the germline variant is prognostic. 
 

When looking at the set of variants associated with patient outcome in 

three or more cancers, we found that the direction of the hazard ratio for a given 

variant in different cancers in which it was prognostic (HR>1 implying that the 

variant is associated with increased risk of poor outcome or HR<1 implying that 

the variant is associated with decreased risk of poor outcome) was much more 

concordant (p<2.2E-16) than we expected based on random chance. 

Surprisingly, we even found the magnitude of the hazard ratio to be correlated 

across cancers. We identified the set of variants associated with favorable 

(HR<1) outcome and poor (HR>1) outcome in three or more cancers and found 

the hazard ratios estimated for a variant in different cancers to be correlated for 

both the variants associated with poor outcome (HR>1) (Spearman rho=0.146, 

p=5.36E-157) and variants associated with favorable outcome (HR<1) 

(Spearman’s rho=0.185, p=2.71E-101). Because previous studies have reported 

a correlation between effect size of variants identified in GWAS and allele 

frequency, we considered whether this correlation may be confounded by the 

allele frequency of these variants [45]. After controlling for allele frequency, we 

still find a significant partial correlation after analyzing both the variants 

associated with increased risk of poor outcome (Spearman rho=0.0667, 

p=4.024E-34) and decreased risk of poor outcome (Spearman rho=0.0584, 

p=2.274E-11) variants. These findings reinforce the notion that the prognostic 

germline variants’ effects tend to show some consistency across cancers. 
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 Text S4. The alleles associated with increased risk of poor outcome of 
prognostic germline variants are more likely to be associated with somatic 
mutations in known cancer driver genes than the alleles of non-prognostic 
germline variants. 
 

A previous study had identified germline variants that were associated 

with a significant increased incidence of somatic mutations in cancer related 

genes.[27] We therefore hypothesized that the prognostic variants were 

associated with an increased incidence of somatic mutations in driver genes in 

the cancer in which that variant was prognostic. To test this hypothesis, we 

created 353 germline variant-cancer pairs and determined the number of 

prognostic variants for which the allele associated with increased risk of poor 

outcome was associated with an increased incidence of somatic mutations 

relative to the protective allele. We repeated this analysis for all of the germline 

variants included in this analysis. We found that 47 of the 353 (13.3%) germline 

variant-cancer pairs were associated with an increased incidence of mutations in 

cancer driver genes which is more than expected by random chance (OR=1.89, 

p=0.0001).  
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Text S5. A detailed discussion of the twelve germline variants that cause 
significant amino acid changes.  
 

To demonstrate that the prognostic germline variants identify genes that 

could be directly or indirectly linked to cancer progression, below we turn to the 

twelve germline variants in Figure 5E that caused substantial amino acid 

changes. Of these MAP2K3 has been discussed in the main text. 

A2ML1 is a secreted protease inhibitor that inhibits all classes of 

proteases. When proteases cleave the central bait domain of A2ML1, 

conformational changes cause an internal thiol ester, formed by C970 and 

Gln973, to become highly reactive. This thiol ester bond binds the protease and 

facilitates the formation of covalent bonds between A2ML1 and the protease, 

resulting in protease entrapment and inhibition [67]. In our analysis, the germline 

variant rs1558526 was associated with favorable patient outcome in ovarian 

cancer patients and resulted in a C970Y change in A2ML1. Because the very 

cysteine residue that forms the internal thiol ester is lost, this amino acid change 

likely disrupts A2ML1’s protease inhibition function (Figure S7A). This result 

suggests that certain extracellular proteases which A2ML1 may normally inhibit 

may have anti-tumor effects, for example by degrading angiogenic factors or anti-

immune factors.  

CRYBG1/AIM1 (absent in melanoma) is a protein that localizes to the 

cytoskeleton. Loss of CRYBG1 in prostate cancer cells leads to increased G-

actin (relative to F-actin), cell migration, invasion and soft agar colony formation.  

Binding of AIM1 to actin requires the six C terminal domains made of 12 βγ 

crystallin motifs [68]. We found rs6174114 in CRYBG1 to be associated with poor 
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patient outcome in pancreatic cancer. This variant changes L1235 to P in the fifth 

domain of CRYBG1. Substitution of proline at this position could disrupt the 

packing of the beta sheets that make a β or γ motif (Figure S7B), resulting in 

loss of CRYBG1 function and therefore increase cell migration, invasion, and soft 

agar colony formation. This would explain the poor patient outcome associated 

with this germline variant. Somatic mutation or epigenetic suppression of 

CRYBG1 has been seen in melanomas, lymphomas, and prostate carcinoma. 

Decreased expression of the protein associated with metastasis [68]. 

EIF2AK4/GCN2 is a protein kinase that is activated under stress by 

binding to uncharged tRNAs through its histidyl-tRNA-synthetase domain. This 

kinase is important for decreasing protein translation and for activating specific 

translation of genes like ATF4 and p21/CDKN1A under conditions of stress often 

seen inside tumors like amino acid starvation and glucose starvation. We found 

the germline variant rs35602605 in EIF2AK4 to be associated with poor 

prognosis. This variant causes a G1306S amino acid change in the histidyl-tRNA 

synthetase-like domain (Figure S7C). This variant may disrupt the ability of the 

histidyl-tRNA synthetase-like domain to bind uncharged tRNAs and thereby 

protect the cancer cells from translation of stress-induced genes like CDKN1A 

that restrain tumor proliferation. If true, this would explain the association of this 

germline variant with poor patient outcome.  

The other gene-products identified by prognostic variants in Figure 5E 

also warrant a detailed examination. Two of them could be important for immune 

response to a tumor. FCRL6 binds to MHC class II proteins and acts as an 
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immune checkpoint protein that is often upregulated in Tumor infiltrating 

lymphocytes [69]. It is particularly interesting that FCRL6 expression of T 

lymphocytes is decreased five-fold in acute and chronic myeloid leukemias 

because the rs61823162 variant (which truncates the protein) is associated with 

outcome in LAML [70]. EPHA10 is a non-functional tyrosine kinase receptor for 

ephrins. The G749E mutation is located in the tyrosine kinase domain, which 

upregulates PD-L1 protein expression [71]. Three genes are involved in 

intracellular vesicle transport, membrane fusion and cell migration: BORCS5 

recruits the ARL8B GTPase to lysosomes for lysosomal movement and function, 

KDELR3 is involved in retaining proteins in the endoplasmic reticulum, and 

MYOF facilitates vesicle fusion. Two are involved in GPCR pathways: OR10X1 is 

an olfactory receptor and SAG/arrestin1 binds to GPCRs (such as rhodopsin) to 

terminate signaling. Many olfactory receptors are ectopically expressed in 

several cancer and their activation decreases cancer cell proliferation and 

migration and increases apoptosis [72, 73]. The I-76 of SAG that is altered by the 

variation is located in the highly conserved finger loop of motif 2, 

(E/D)x(I/L)xxxGL, which is extended and buried in the rhodopsin (GPCR)-SAG 

interface [74]. Finally ECD/SGT1 associates with many cellular proteins relevant 

for cancer, MDM2, Rb, HSP90, SKP1, and RUVBL1, the last in particular using 

the C-terminal region of ECD that is mutated in the prognostic variant.  
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Abstract 
 
 Although rare genetic syndromes have historically been challenging to 

study and treat, the explosion of next generation sequencing data has made the 

study of these syndromes much more feasible. While patients with certain rare 

genetic syndromes are at higher risk for acquiring cancer and are therefore 

screened for cancer more aggressively, clinical management guidelines for 

patients with pathogenic germline variants after acquiring cancer are only now 

beginning to change. In this study, we identify pathogenic germline variants 

associated with tumor hypermutation by grouping them by gene or by pathway, 

as a proxy for identifying germline markers of immune checkpoint inhibitor 

efficacy, as immune checkpoint inhibitor responsiveness has been strongly 

correlated to overall tumor mutational burden. We identified an association with 

overall tumor mutational burden in nine genes (APC, FANCL, SLC25A13, 

ERCC3, MSH6, PMS2, TP53, MSH2, and BRIP1) using a pan-cancer approach, 

fourteen pathways in individual cancers, and twelve pathways using a pan-

cancer approach. We also report evidence of the effects of the pathogenic 

germline variants on the cells, suggesting that these germline variants affect how 

the tumor progresses and not just tumor risk. Patients with pathogenic germline 

variants in APC or genes related to beta-catenin degradation exhibit upregulation 

of genes in the tumors involved with Wnt signaling and patients with pathogenic 

germline variants in genes regulating cell cycle checkpoint exhibit upregulation of 

E2F targets and mitotic spindle genes in the tumors. We found tumor mutational 

signatures concordant with the expected effects of pathogenic germline variants 
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in pathways related to mismatch repair, nucleotide excision repair, and 

homologous recombination. Our findings suggest that tumors of patients with the 

identified pathogenic germline variants have increased tumor mutational burden 

compared to tumors of patients without these germline variants. Patients with the 

pathogenic germline variants described in this study may be more likely to 

respond to immune checkpoint blockade because of the expected increase in 

tumor neoantigens. 

Introduction 
 
 Rare genetic syndromes have historically been challenging to study and 

treat due to challenges associated with finding enough patients to sufficiently 

power cohort studies, discouraging companies to invest in drug development for 

rare diseases due to predicted lack of profitability. While individually these 

diseases are rare, collectively these diseases affect millions of individuals 

worldwide, leaving many patients undiagnosed or without treatment [1, 2]. 

 The explosion of next generation sequencing data has helped to identify 

rare germline variants that cause or contribute to these rare genetic syndromes 

[3, 4]. In oncology, it is well-established that patients with germline variants in 

genes mutated in certain genetic syndromes, such as Lynch syndrome, Li-

Fraumeni syndrome, Von Hippel-Lindau syndrome, and Fanconi anemia, are at 

much higher risk of acquiring cancer [5, 6]. While individuals with these 

pathogenic germline variants are generally screened more aggressively, clinical 

management for patients with these pathogenic germline variants is occasionally, 

but not always, differentiated from that of patients without pathogenic germline 
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variants [7-9]. Patients with Lynch syndrome have pathogenic germline variants 

in mismatch repair genes, such as MSH2, MSH6, PMS2, and MLH1. Patients 

with pathogenic germline variants in mismatch repair genes exhibit higher levels 

of microsatellite instability and it has been well documented that patients with 

high tumor mutational burden have been shown to be more likely to respond to 

immunotherapy drugs such as pembrolizumab [10, 11]. As expected, patients 

with Lynch syndrome are more likely to respond to treatment with immune 

checkpoint blockade [12]. 

 We have previously suggested that germline variants affect tumor 

progression across a large spectrum of cancers through the analysis of common 

germline variants with an allele frequency greater than 5% in the population [13, 

14]. In this study, we analyze rare, pathogenic germline variants to identify 

germline variants associated with increased tumor mutational burden, as these 

germline variants may increase the likelihood of a patient responding to immune 

checkpoint blockade.  

Methods 
 
Patient Data Availability 
 
 We downloaded the set of rare, pathogenic germline variants found in the 

patients in The Cancer Genome Atlas (TCGA) previously published by Huang et 

al. and the set of somatic mutations in these patients generated by Ellrott et al. 

[5, 15]. Overall tumor mutational burden for each patient was determined by 

counting the total number of somatic mutations found in the primary tumor 



 164 

sample of each patient. Clinical data for the TCGA patients was accessed from 

the TCGA pan-cancer clinical data resource [16].  

Identification of Individual Genes Associated with Tumor Hypermutation 
 
 Across all of the TCGA patients, 132 unique genes contained at least one 

pathogenic germline variant. We limited our analysis only to genes with 

pathogenic germline variants in at least five different patients. As a result, we 

decided not to test individual genes in individual cancers since this criteria would 

only be met for 13 genes. Instead, we pooled all of the TCGA patients together 

and tested whether individual genes perturbed by pathogenic germline variants 

(presence or absence of a pathogenic germline variant) were associated with 

overall tumor mutation burden using linear regression, controlling for tumor type. 

We tested a total of 73 unique genes in this analysis. P-values were adjusted 

using the Benjamini-Hochberg procedure throughout this study. 

Identification of Pathways Associated with Tumor Hypermutation 
 
 To study the association between pathogenic germline variants and tumor 

mutational burden in individual cancers, we grouped genes by pathways. We 

tested pathways perturbed by pathogenic germline variants in five or more 

patients. We downloaded pathway annotation information from Reactome [17]. 

We tested whether having a pathogenic germline variant in the pathway 

(presence or absence) was associated with overall somatic mutation burden 

using linear regression in individual cancers. We tested a total of 117 unique 

pathways. Finally, we performed a pan-cancer analysis of pathway association 
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with tumor hypermutation using the same approach, while also controlling for 

tumor type. We tested a total of 454 unique pathways in this analysis.  

 While each gene set itself was unique, some of the gene sets entirely 

overlapped with each other in this analysis based on the genes that the 

pathogenic germline variants were found in. For example, suppose gene set 1 

contains genes A, B, and C and gene set 2 contains genes B, C, and D. While 

these two gene sets are unique, if pathogenic germline variants are only found in 

genes B and C, then the resulting statistical test results of gene sets 1 and 2 will 

be exactly the same meaning our approach lacks the resolution to distinguish 

between these two gene sets. To address this issue, we have reported all gene 

sets in Table 1 that entirely overlap for each statistical test that yielded a 

significant p-value (adjusted p-value < 0.05).  

Gene Set Enrichment Analysis 
 
 As part of our analysis, we found that pathogenic germline variants in 

APC, genes involved with the degradation of beta-catenin, and cell cycle 

checkpoint genes were associated with elevated tumor mutational burden. APC 

forms a complex with beta-catenin, an intracellular signaling transducer of Wnt 

signaling, resulting in the degradation of beta-catenin. We hypothesized that the 

perturbation of APC and genes involved with the degradation of beta-catenin 

would result in upregulation of genes involved with Wnt signaling [18]. Similarly, 

we hypothesized that perturbation of genes involved with cell cycle checkpoint 

would result in upregulation of E2F targets and genes involved with mitotic 

spindle activity.  
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 We tested these hypotheses by performing gene set enrichment analyses. 

We downloaded the previously released RNA-sequencing quantification files for 

each patient generated by the TCGA research network 

(https://portal.gdc.cancer.gov/). We then excluded genes with a median 

expression level less than 1 FPKM across the patient cohort being tested. The 

expression values of the remaining genes were then normalized by mean and 

standard deviation. We ranked the genes from induced to repressed by testing 

for an association between the expression of each gene and the presence of a 

pathogenic germline variant in the gene or pathway using logistic regression, 

controlling for tumor type. We used these ranked gene lists to perform Gene Set 

Enrichment Analysis [19]. 

Mutational Signature Analysis 
 
 Having identified pathogenic germline variants perturbing well-known DNA 

repair genes associated with overall somatic burden, we hypothesized that the 

mutational signatures corresponding to these DNA repair genes would be 

enriched in patients with these pathogenic germline variants compared to 

patients without these germline variants. To test this possibility, we downloaded 

all single base substitution signatures from COSMIC [20]. We determined the 

optimal contribution of COSMIC signatures to reconstruct the mutational profile 

observed in each of the patients in TCGA using the R package 

“MutationalPatterns” [21]. We converted the contribution values to fraction of the 

total set of somatic mutations explained for that patient, such that the sum of the 
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fraction contributions of all the COSMIC signatures for each patient was equal to 

1.  

  Because the etiology of many of the COSMIC signatures is known, we 

were able to generate hypotheses for the mutational signatures that we expected 

to be enriched in each group of patients. For example, we had found that patients 

with pathogenic germline variants in MSH6 had tumors with higher somatic 

mutation burden. MSH6 is a well-characterized gene involved with DNA 

mismatch repair, so we hypothesized that COSMIC signatures related to DNA 

mismatch repair deficiency would be enriched, such as COSMIC signatures 6, 

15, 20, 26, and 44. We evaluated this hypothesis by testing for an association 

between the fractional contribution of a signature and the presence or absence of 

pathogenic germline variants perturbing a gene or pathway, controlling for tumor 

type. We also controlled for the presence or absence of deleterious somatic 

mutations in the gene or pathway being tested to partially isolate the effect of the 

germline variant itself apart from any somatic mutations that it may predispose a 

patient to. We defined deleterious somatic mutations as somatic mutations 

marked as “probably damaging” by the TCGA research network [5]. 

Increased Susceptibility to Mutations in Cancer Driver Genes and in Genes 
in the Same Pathway as the Original Pathogenic Germline Variant 
 
 Having identified pathogenic germline variants that predispose patients to 

increased overall tumor mutational burden, we asked whether or not the 

pathogenic germline variants were associated with the somatically mutated 

genes that the were ultimately seen in the tumor. We downloaded the list of 

driver genes in each cancer released by Bailey et al. [22]. We calculated the 
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number of “probably damaging” somatic mutations in driver genes in each 

patient. The set of driver genes reported by Bailey et al. differs across cancers 

[22]. We tested for an association between the log-transformed number of 

“probably damaging” somatic mutations in cancer driver genes and the presence 

or absence of a pathogenic germline variant in a gene or pathway, controlling for 

tumor type and total tumor mutational burden in that patient. We controlled for 

total tumor mutational burden because otherwise we would find an enrichment of 

deleterious somatic mutations across many classes of genes, not just driver 

genes. This enabled us to test whether the number of deleterious somatic 

mutations in the cancer driver genes was enriched more than we would expect in 

patients with pathogenic germline variants given the patients’ overall tumor 

mutational burden. 

 We repeated this approach for testing for enrichment of “probably 

damaging” somatic mutations in the same pathway as the gene or pathway 

affected by the pathogenic germline variants. When performing this test with our 

individual gene association, we tested all pathways in which that gene was 

found. When performing this test with our pathway associations, we only tested 

for an association with somatic mutations in that particular pathway. 

Software 
 
Computation was performed using R version 3.5.2. The R packages “ggplot2” 

and “scatterpie” were used to generate the figures in this manuscript. 
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Results 
 
 Huang et al. had previously described the set of rare, pathogenic germline 

variants found in the patients in The Cancer Genome Atlas [15]. The majority of 

these pathogenic germline variants were predicted to functionally perturb known 

tumor suppressor genes or oncogenes. Prior to identifying which pathogenic 

germline variants contribute to elevated tumor mutational burden, we had to 

address the problem raised by the low frequency of the variants in the study 

population. While 132 unique genes contained pathogenic germline variants, we 

recognized that only 13 of them could be analyzed in individual cancers with a 

modest threshold requiring at least five patients in the cancer cohort carrying the 

given variant. As a result, this approach could only be applied to a handful of 

cancers (Figure 1A). We therefore felt that we were unable to study most genes 

containing a pathogenic germline variant using this approach. 

 We therefore increased the number of patients with related germline 

variants by three approaches. (1) We pooled all of the patients in The Cancer 

Genome Atlas (TCGA) together, and, by doing so, were now able to test 73 total 

genes (Figure 1B). (2) We grouped the pathogenic germline variants by pathway 

in individual cancers (Figure 1C). (3) We grouped the pathogenic germline 

variants by pathway and then studied all the cancers grouped together (Figure 

1D). Our overall methodology is summarized in Figure 2.  

Identification of Individual Genes Associated with Tumor Hypermutation 
 
 In the first analysis we grouped the pathogenic germline variants based on 

the gene they were found in and tested each gene for association with overall 
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tumor mutational burden using all patients in TCGA, but controlling for tumor 

type. This identified nine genes that when perturbed by a pathogenic germline 

variant were associated with elevated tumor mutational burden (Figure 3A, 

Table 1A). Three of these genes (APC, FANCL, and SLC25A13) were significant 

after correcting for multiple hypothesis testing. We further characterized the other 

significant associations later in this study (p<0.05) despite them not reaching the 

multiple hypothesis corrected p-value cut-off because all of these genes 

(ERCC3, MSH2, MSH6, PMS2, BRIP1, and TP53) have well-known roles in DNA 

repair.  

Identification of Pathways in Individual Cancers Associated with Tumor 
Hypermutation 
 
 We next grouped pathogenic germline variants in individual cancers by 

pathway. We tested each germline variants in each pathway for association with 

overall tumor mutational burden in each of the individual cancers. This identified 

significant increases in tumor mutational burden in COAD, ESCA, and KIRC due 

to germline variants in specific pathways (Figure 3B, Table 1B). While each of 

the annotated pathways consisted of different and unique gene sets, the genes 

that empirically contributed to these gene sets sometimes overlapped in this 

analysis. We have therefore grouped pathways for which the contributing genes 

entirely overlapped in this particular analysis. In total, we identified 14 

associations (1 in COAD, 6 in ESCA, and 7 in KIRC). The significantly associated 

pathways were primarily related to DNA damage repair and cell cycle control.  
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Pan-Cancer Identification of Pathways Associated with Tumor 
Hypermutation 
 
 Lastly, we identified pathogenic germline variants in pathways which were 

associated with elevated tumor mutational burden using a pan-cancer approach, 

controlling for tumor type as in Analysis 1 (Figure 3C, Table 1C). In total, we 

identified twelve significant associations. Four of the gene sets were related to 

Wnt signaling. The pathogenic germline variants in APC greatly contributed to 

these associations, as described in our analysis of individual genes. One 

association was driven entirely by SLC25A13 and had also been described in the 

first analysis with individual genes. Two associations were with pathways related 

to apoptosis and two other associations were in pathways indicating deficiencies 

in mismatch repair.   

Pathogenic Germline Variants that Predict Increased Tumor Mutational 
Burden Predict Changes in the Transcriptome in the Corresponding 
Tumors 
 

Our results suggest that the pathogenic variants not only increase the risk 

for cancer, as has been previously shown [15], but may also contribute to a  

patient’s tumor having a higher tumor mutational burden than that of a patient 

without a pathogenic germline variant. In order to support this hypothesis, we 

searched for other evidence that the pathogenic germline variants affected tumor 

phenotype, beginning with changes in the transcriptome.  

Patients with pathogenic germline variants in APC went on to develop 

tumors with higher tumor mutational burden. APC is a well-known negative 

regulator of beta-catenin, a signal transducer in the Wnt signaling pathway [18, 
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23]. Indeed, we found widespread upregulation of the genes involved with Wnt 

signaling in patients with pathogenic germline variants in APC compared to 

patients without pathogenic germline variants in APC (p<0.001) in a gene set 

enrichment analysis. When germline variants are pooled by pathways, we also 

find that patients with pathogenic germline variants in the Wnt signaling pathway 

exhibit higher tumor mutational load than patients without such variants. We 

again find that genes involved in Wnt signaling are upregulated in tumors of 

these patients with germline variants in the Wnt signaling pathway (Table 2).  

 In Analysis 2, we found that patients with pathogenic germline variants in 

genes related to cell cycle checkpoint control exhibit high tumor mutational 

burden. In a gene set enrichment analysis, E2F targets and genes related to the 

mitotic spindle function were upregulated in these patients. This suggests a de-

regulation of the cell cycle transcriptional program in tumors of these patients 

with pathogenic germline variants in cell cycle checkpoint genes (Table 2). 

 Collectively, these results support the hypothesis that specific germline 

variants that affect the tumor mutational burden can also affect other tumor 

phenotypes like the gene expression profile.  The changes in the tumor gene 

expression profile could hint at phenotypes that explain the increased tumor 

mutational burden.   

Pathogenic Germline Variants that Predict Increased Tumor Mutation 
Burden Predict an Enrichment of Expected Mutation Signatures 
 
 Previous work has shown that patients with certain germline variants are 

at higher risk for specific somatic mutations in the tumor [24]. Given that certain 

germline variants predict increased tumor somatic mutation, we hypothesized 
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that those variants in genes or pathways associated with DNA repair will also 

predispose the tumors to certain specific mutational signatures. 

 To get at this question, we first estimated what fraction of each patient’s 

somatic mutation profile is explained by each of the previously reported COSMIC 

mutational signatures. We next tested whether there was an enrichment of 

specific mutational signatures corresponding to the expected effect of the 

pathogenic germline variants.  

We first did this analysis with individual genes predicted to increase the 

tumor mutational burden. When comparing patients with pathogenic germline 

variants to those without, we found enrichment of mismatch repair signatures in 

patients with pathogenic germline variants in the mismatch repair genes PMS2 

(COSMIC signature 44: p=0.032), MSH2 (COSMIC signature 6: p=0.017, 

COSMIC signature 15: 1.22E-5), and MSH6 (COSMIC signature 6: p=0.024, 

COSMIC signature 15: p=0.0091). We also found enrichment in a transcription-

coupled nucleotide excision repair signature in patients with pathogenic germline 

variants in the nucleotide excision repair gene ERCC3 (COSMIC signature 29, 

p=0.034) (Table 3).  

 Upon repeating this analysis using our results from pathogenic germline 

variants grouped by pathways in individual cancers, we found an enrichment of 

homology directed repair deficiencies in patients with pathogenic germline 

variants in pathways related to homology directed repair (COSMIC signature 3: 

p=3.40E-4) and DNA double strand break repair (COSMIC signature 3: 

p=0.00267). Finally, in the pan-cancer analysis at the level of pathways, we 
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found enrichment in mismatch repair signatures in patients with pathogenic 

germline variants in pathways related to mismatch repair (COSMIC signature 6: 

p=0.00285, COSMIC signature 15: p=0.000127) and diseases of mismatch repair 

(COSMIC signature 6: p=0.00207, COSMIC signature 15: p=0.000296) (Table 

3).  

 Thus, as hypothesized, germline variants in genes or pathways that 

predict increased tumor mutational burden, often also predict the enrichment of 

mutation signatures that are expected from our knowledge of the DNA repair 

functions of these genes and pathways. 

Increased Risk for Somatic Mutations in Driver Genes 
 
 Having identified pathogenic germline variants associated with tumor 

hypermutation and obtained evidence at the level of the transcriptome and 

somatic mutation profile that the pathogenic germline variants influenced the 

molecular features of tumors, we next wondered whether the presence of 

pathogenic germline variants affected the genes perturbed by somatic mutations.  

Not surprisingly, because the overall tumor mutational burden was higher 

in patients with the pathogenic germline variants that we identified, these patients 

were at higher risk for somatic mutations in driver genes and genes in the same 

pathway as the pathogenic germline variant (data not shown). To account for 

this, we reperformed these analyses controlling for each patients’ overall tumor 

mutational burden.  

 We first tested the nine individual genes predisposing to increased tumor 

mutational burden identified using the pan-cancer approach. Patients with 
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pathogenic germline variants in MSH2 (effect size = 0.806 additional somatic 

mutations in driver genes, adjusted p-value = 0.0216) and MSH6 (effect size = 

0.483 additional somatic mutations in driver genes, adjusted p-value = 0.00776) 

had more deleterious somatic mutations in driver genes, controlling for tumor 

type and total tumor mutational burden (Table 4A). We did not find an 

enrichment of deleterious somatic mutations in driver genes from pathways 

predisposing to increased tumor mutational burden, after controlling for tumor 

mutational burden in each sample.  

Increased Risk for Somatic Mutations in the Same Pathway 
 
 Alfred Knudson’s classic two-hit hypothesis stated that many genes, 

particularly tumor suppressor genes, require two hits to result in a phenotypic 

change. We hypothesized that if a germline variant served as the first hit to a 

pathway, that a somatic mutation in the same pathway would be more likely to 

result in cancer than it would in a patient without a pathogenic germline variant in 

the pathway. If true, this would suggest that the pathogenic germline variants 

may contribute not only to the increased tumor mutational burden of a tumor but 

may also influence the somatic mutations that are selected for during the 

development and progression of cancer. 

 We first tested whether patients with pathogenic germline variants in the 

nine individual genes that we identified to be associated with increased tumor 

mutational burden were at higher risk of acquiring a deleterious somatic mutation 

in the same gene. We did not find any genes for which this was the case. We 

then asked whether these patients were at a higher risk for a deleterious somatic 
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mutation in the same pathway, controlling for tumor mutational burden. Indeed, 

we found patients with pathogenic germline variants in APC, MSH2, and MSH6 

to be at increased risk of deleterious somatic mutations in the same pathway 

(Table 4B). Multiple pathways were tested for each gene because the genes 

were annotated in several different pathways. 

 We did not find any examples of this phenomenon when testing the 

pathways that were significantly associated with overall tumor mutational burden 

in individual cancers. When analyzing our pan-cancer pathway results, we found 

that patients with pathogenic germline variants in genes related to mitochondrial 

protein import (consisting of SLC25A13 pathogenic germline variants in this 

study) and beta catenin phosphorylation (consisting mainly of APC pathogenic 

germline variants) pathways were at higher risk for deleterious somatic mutations 

in the same pathway, controlling for tumor type and overall tumor mutational 

burden (Table 4B). 

Discussion 
 
 The widespread collection of next generation sequencing data has 

enabled detailed study of rare genetic syndromes [6, 25]. While patients with 

pathogenic germline variants are often screened more aggressively for cancer, 

clinical guidelines for these patients has only changed in a few circumstances [7, 

12]. We previously identified common germline variants associated with 

differences in patient outcome across a multitude of cancers, suggesting that 

germline variation contributes not only to cancer risk but also to tumor 

progression [13, 14]. In this study, we identified pathogenic germline variants 
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associated with tumor hypermutation and have identified molecular fingerprints of 

their effects by analyzing RNA-sequencing data and somatic mutation profiles. 

Our findings suggest that these pathogenic germline variants remain relevant 

after a patient has been diagnosed with cancer and may contribute to the 

molecular differences in tumors collected from patients with and without 

pathogenic germline variants. Our results suggest that patients with pathogenic 

germline variants should be managed differently than patients without pathogenic 

germline variants in some cases. 

 We found that tumors from patients with pathogenic germline variants in 

the mismatch repair genes MSH2, MSH6, and PMS2, and in the mismatch repair 

pathway exhibit elevated somatic mutation burden. We found enrichment in the 

of COSMIC mutational signatures related to mismatch repair in these patients’ 

somatic mutation profiles. Germline mismatch repair deficiency has previously 

been associated with microsatellite instability and increased responsiveness to 

immunotherapy and so these findings served as an important positive control in 

our study [12].  

 Tumors with pathogenic germline variants in the nucleotide excision repair 

gene ERCC3 were associated with elevated tumor mutational burden and we 

observed enrichment for the mutational signature for nucleotide excision repair 

deficiency in these patients. While a previous study showed that somatic 

mutations in the nucleotide base excision repair gene ERCC2 likely contributes 

to increased overall somatic mutation burden, no previous study has 

demonstrated an association between nucleotide excision repair gene 
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perturbation and immune checkpoint inhibitor efficacy [26]. We did not find a 

significant association between nucleotide excision repair pathway perturbation 

by pathogenic germline variants and tumor mutational burden at the pathway 

level, suggesting that the contribution to overall somatic mutation burden may be 

limited to select genes in the pathway.  

 We found patients with pathogenic germline variants in APC, which binds 

to beta-catenin and leads to its degradation, and genes involved with beta-

catenin degradation to be associated with elevated tumor mutational burden. We 

observed upregulation of genes involved with Wnt signaling in these patients. 

Aberrations to the Wnt signaling pathway are linked to the formation of many 

cancers [23]. Spranger et al. showed that non-T cell inflamed tumors exhibited 

high beta-catenin signaling activity and reduced response to immune checkpoint 

blockade [27]. Further work is necessary to predict whether pathogenic germline 

variants in APC and genes involved with beta-catenin degradation will be 

associated with increased or decreased response to immune checkpoint 

blockade, as the elevated tumor mutational burden would be expected to 

increase efficacy whereas the elevated beta-catenin signaling would be expected 

to decrease efficacy.  

 Patients with pathogenic germline variants in BRIP1 and other genes 

involved with homology directed repair exhibited high tumor mutational burden 

and we observed the molecular signature for homology directed repair in our 

pathway analysis. Mutations in the homology directed repair genes BRCA1 and 

BRCA2 have previously been shown to be associated with increased tumor 
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mutational burden and increased response to immune checkpoint blockade [28, 

29]. Our results suggest that this finding may be extended to other genes 

involved with homology directed repair as well. 

 Tumors from patients with pathogenic germline variants in SLC25A13 

exhibited elevated tumor mutational burden. This gene codes for a mitochondrial 

aspartate/glutamate transporter. Pathogenic germline variants in this gene are 

associated with the urea cycle disorder type II citrullinemia and neonatal 

intrahepatic cholestasis [30]. Lee et al. has previously shown that tumors 

exhibiting urea cycle dysfunction generate nitrogen metabolites, resulting in DNA 

damage and ultimately better response to immune checkpoint blockade [31]. 

While Lee et al.’s analysis focused on somatic urea cycle dysfunction, our work 

suggests that germline urea cycle dysfunction may also be a marker for improved 

immune checkpoint blockade response. 

 Overall, the results of our analysis suggest that understanding the 

germline contribution to tumor mutational burden could identify sets of patients 

that could benefit from immune checkpoint blockade therapy. More broadly, our 

work suggests that germline variation informs the landscape of somatic 

aberrations and that the contribution from germline variation may ultimately 

contribute to important differences in clinical management, such as the selection 

of chemotherapy drugs. This implication is consistent with prior work done in 

cancer genomics [24, 32] Furthermore, our work supports the findings of other 

studies discussing the association between somatic biomarkers and efficacy of 

immune checkpoint blockade. Nevertheless, there are several limitations to our 
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study. While we are predicting that overall tumor mutational burden will predict 

better efficacy of immune checkpoint blockade, the strength of this association 

may differ across patients with different genetic syndromes. Although we did 

observe downstream evidence of the pathogenic germline variants’ effects, we 

were unable to validate our associations in an independent dataset due to the 

rarity of these pathogenic germline variants. Both of these concerns will be 

addressed in the future, as the amount of sequencing data available from 

patients treated with immune checkpoint inhibitors continues to grow.  
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Figures 
 
Figure 1. An overview of the number of genes or pathways that could be tested 
requiring pathogenic germline variants in five or more patients. (A) We did not 
test for associations in individual genes in individual cancers due to small sample 
size. We were able to test for associations in (B) individual genes using a pan-
cancer approach, (C) pathways in individual cancers, and (D) pathways using a 
pan-cancer approach. The distribution of patients in the pan-cancer approaches 
is displayed graphically in (B) and (D).  



 182 

 

 

  

D

454 Testable Pathways

13 Unique 
Testable Genes

117 Unique 
Testable Pathways

73 Unique 
Testable Genes

Figure 1
A B

C



 183 

Figure 2. A summary of the overall approach employed in this study. 
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Figure 3. Manhattan plots summarizing the associations with overall somatic 
mutation burden using our three analyses. We identified associations with 
elevated somatic mutation burden in (A) genes perturbed by pathogenic germline 
variants using a pan-cancer approach, (B) pathways perturbed by pathogenic 
germline variants in individual cancers, and (C) pathways perturbed by 
pathogenic germline variants using a pan-cancer approach.  
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Tables 
 
Table 1. A summary of the associations we found with elevated tumor mutational 
burden in (A) individual genes using a pan-cancer approach, (B) pathways in 
individual cancers (B), and (C) pathways using a pan-cancer approach.  
 
Table 1A.  

Gene 

Number of 
Patients 

with 
Mutation 

Number of 
Additional 
Somatic 

Mutations 

p-value Adjusted 
p-value 

APC 5 3406.9 3.57E-08 2.61E-06 
FANCL 10 2115.6 1.26E-06 4.62E-05 

SLC25A13 17 1134.1 7.24E-04 1.76E-02 
ERCC3 28 854.2 1.07E-03 1.96E-02 
MSH6 22 705.0 1.68E-02 1.80E-01 
PMS2 34 572.9 1.57E-02 1.80E-01 
TP53 19 755.6 1.73E-02 1.80E-01 
MSH2 7 1070.3 4.05E-02 3.70E-01 
BRIP1 35 464.2 4.71E-02 3.82E-01 
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Table 1B. 

Cancer Pathway 

Number 
of 

Additional 
Somatic 

Mutations 

p-value Adjusted 
p-value 

Mutated 
Genes 

KIRC 
HDR THROUGH SINGLE STRAND 

ANNEALING SSA, PROCESSING OF 
DNA DOUBLE STRAND BREAK ENDS 

142.6 1.54E-04 2.04E-03 
BRCA1 (3), 

BLM (1), 
BRIP1 (1) 

KIRC 

RESOLUTION OF D LOOP 
STRUCTURES, RESOLUTION OF D 

LOOP STRUCTURES THROUGH 
SYNTHESIS DEPENDENT STRAND 
ANNEALING SDSA, HOMOLOGOUS 

DNA PAIRING AND STRAND 
EXCHANGE 

124.7 3.00E-04 2.04E-03 

BRCA1 (3), 
BLM (1), 

BRCA2 (1), 
BRIP1 (1) 

COAD DISEASE 1724.2 1.00E-04 2.71E-03 

MSH6 (3), 
MLH1 (2), 
MSH2 (2), 

CDKN2A (1), 
ERCC3 (1), 

KIT (1), 
NTHL1 (1), 
PMS2 (1) 

KIRC 

G2 M CHECKPOINTS, G2 M DNA 
DAMAGE CHECKPOINT, 

REGULATION OF TP53 ACTIVITY, 
REGULATION OF TP53 ACTIVITY 
THROUGH PHOSPHORYLATION 

113.7 9.97E-04 3.77E-03 

BRCA1 (3), 
BLM (1), 

BRIP1 (1), 
TP53 (1) 

KIRC 
HDR THROUGH HOMOLOGOUS 

RECOMBINATION HRR, HOMOLOGY 
DIRECTED REPAIR 

95.2 1.51E-03 4.68E-03 

BRCA1 (3), 
POLE (2), 
BLM (1), 

BRCA2 (1), 
BRIP1 (1) 
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KIRC CELL CYCLE CHECKPOINTS 94.7 3.14E-03 8.89E-03 

BRCA1 (3), 
BLM (1), 

BRIP1 (1), 
CDKN1B (1), 

TP53 (1) 

ESCA MEIOSIS, MEIOTIC 
RECOMBINATION, REPRODUCTION 370.3 3.68E-03 1.01E-02 

ATM (2), 
BRCA2 (2), 
PRDM9 (2), 
RAD51C (1) 

ESCA 

CELL CYCLE CHECKPOINTS, G2 M 
CHECKPOINTS, G2 M DNA DAMAGE 

CHECKPOINT, HDR THROUGH 
SINGLE STRAND ANNEALING SSA, 

PROCESSING OF DNA DOUBLE 
STRAND BREAK ENDS 

456.1 2.34E-03 1.01E-02 
ATM (2), 

BRIP1 (2), 
BARD1 (1) 

ESCA TP53 REGULATES TRANSCRIPTION 
OF DNA REPAIR GENES 432.3 3.97E-03 1.01E-02 

ATM (2), 
FANCC (1), 

FANCD2 (1), 
RAD51D (1) 

ESCA 
REGULATION OF TP53 ACTIVITY, 
REGULATION OF TP53 ACTIVITY 
THROUGH PHOSPHORYLATION 

358.7 9.16E-03 1.92E-02 

ATM (2), 
BRIP1 (2), 
BARD1 (1), 
STK11 (1) 

KIRC DNA DOUBLE STRAND BREAK 
REPAIR 64.1 9.46E-03 2.47E-02 

BAP1 (3), 
BRCA1 (3), 
POLE (2), 
BLM (1), 

BRCA2 (1), 
BRIP1 (1), 
TP53 (1) 
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KIRC CELL CYCLE 63.5 1.38E-02 3.34E-02 

BRCA1 (3), 
POLE (2), 
BLM (1), 

BRCA2 (1), 
BRIP1 (1), 

CDKN1B (1), 
DKC1 (1), 
TP53 (1) 

ESCA CELL CYCLE 241.2 2.56E-02 4.13E-02 

ATM (2), 
BRCA2 (2), 
BRIP1 (2), 

PRDM9 (2), 
BARD1 (1), 
RAD51C (1) 

ESCA 

HDR THROUGH HOMOLOGOUS 
RECOMBINATION HRR, DNA 

DOUBLE STRAND BREAK REPAIR, 
RESOLUTION OF D LOOP 

STRUCTURES, HOMOLOGY 
DIRECTED REPAIR, RESOLUTION 

OF D LOOP STRUCTURES 
THROUGH SYNTHESIS DEPENDENT 

STRAND ANNEALING SDSA, 
HOMOLOGOUS DNA PAIRING AND 

STRAND EXCHANGE 

231.5 3.23E-02 4.13E-02 

ATM (2), 
BRCA2 (2), 
BRIP1 (2), 
BARD1 (1), 
PALB2 (1), 

RAD51C (1), 
RAD51D (1) 
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Table 1C.  

Pathway 

Number of 
Additional 
Somatic 

Mutations 

p-value Adjusted p-
value 

Mutated 
Genes 

BETA CATENIN 
PHOSPHORYLATION CASCADE, 

DISASSEMBLY OF THE 
DESTRUCTION COMPLEX AND 

RECRUITMENT OF AXIN TO THE 
MEMBRANE, SIGNALING BY WNT 
IN CANCER, PHOSPHORYLATION 
SITE MUTANTS OF CTNNB1 ARE 

NOT TARGETED TO THE 
PROTEASOME BY THE 

DESTRUCTION COMPLEX 

3406.9 3.57E-08 4.04E-06 APC (5) 

DEGRADATION OF BETA CATENIN 
BY THE DESTRUCTION COMPLEX 2823.0 5.65E-07 5.12E-05 APC (5), 

AXIN2 (1) 

DEACTIVATION OF THE BETA 
CATENIN TRANSACTIVATING 

COMPLEX 
2408.2 4.08E-06 3.08E-04 APC (5), 

MEN1 (2) 

OVARIAN TUMOR DOMAIN 
PROTEASES 1186.7 1.82E-05 1.17E-03 

TP53 (21), 
APC (5), PTEN 

(3) 

PROGRAMMED CELL DEATH 1001.9 5.65E-05 3.20E-03 

TP53 (21), 
CDH1 (6), 
APC (5), 

STAT3 (1) 

MISMATCH REPAIR 647.5 7.36E-05 3.35E-03 

PMS2 (35), 
MSH6 (23), 
MSH2 (11), 
MLH1 (7), 
POLD1 (2) 

DISEASES OF MISMATCH REPAIR 
MMR 656.5 7.40E-05 3.35E-03 

PMS2 (35), 
MSH6 (23), 
MSH2 (11), 
MLH1 (7) 
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DISEASE 355.2 8.36E-05 3.44E-03 

PMS2 (35), 
ERCC3 (28), 
MSH6 (23), 
NF1 (18), 

ERCC2 (17), 
MUTYH (14), 
EGFR (13), 
EXT2 (11), 
MSH2 (11), 

CDKN2A (10), 
MLH1 (7), 
CDH1 (6), 
NTHL1 (6), 

PTPN11 (6), 
APC (5), MET 
(5), ABCB11 
(4), MAP2K2 
(4), CDK4 (3), 
CDKN1B (3), 

HRAS (3), 
KRAS (3), 
PTEN (3), 
RAF1 (3), 

GALNT3 (2), 
KIT (2), 

PDGFRA (2), 
TSC2 (2), CBL 
(1), EXT1 (1), 
SMAD4 (1), 
SOS1 (1), 
STAT3 (1) 

SIGNALING BY WNT, TCF 
DEPENDENT SIGNALING IN 

RESPONSE TO WNT 
1534.9 2.31E-04 8.06E-03 

APC (5), 
MEN1 (2), 
TERT (2), 
AXIN2 (1), 

SMARCA4 (1) 

APOPTOTIC CLEAVAGE OF 
CELLULAR PROTEINS, APOPTOTIC 

EXECUTION PHASE 
1482.7 3.75E-04 1.13E-02 CDH1 (6), 

APC (5) 
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MITOCHONDRIAL PROTEIN 
IMPORT, GLUCONEOGENESIS, 

GLUCOSE METABOLISM, 
ASPARTATE AND ASPARAGINE 

METABOLISM, PROTEIN 
LOCALIZATION 

1134.1 7.24E-04 1.64E-02 SLC25A13 
(17) 

REGULATION OF KIT SIGNALING 1784.4 1.57E-03 3.39E-02 
KIT (2), SH2B3 

(2), CBL (1), 
SOS1 (1) 
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Table 2. Gene set enrichment results concordant with the expected effects of the 
pathogenic germline variants. We observed upregulation of Wnt signaling in 
patients with pathogenic germline variants in APC and genes involved with beta-
catenin degradation. We observed upregulation of E2F target genes and genes 
involved with mitotic spindle formation in patients with pathogenic germline 
variants in genes related to cell cycle checkpoint. 
 

Patient 
Set Gene Set Gene or Pathway Associated GSEA Result p-value 

Pan-
Cancer Individual Genes APC Upregulation of Wnt Signaling 

Pathway <0.001 

ESCA Pathway Cell Cycle Checkpoint Upregulation of Genes Involved 
with Mitotic Spindle Formation 0.00875 

ESCA Pathway Cell Cycle Checkpoint Upregulation of E2F Target 
Genes 0.0459 

KIRC Pathway Cell Cycle Checkpoint Upregulation of Genes Involved 
with Mitotic Spindle Formation <0.001 

KIRC Pathway Cell Cycle Checkpoint Upregulation of E2F Target 
Genes <0.001 

Pan-
Cancer Pathway Degradation of Beta Catenin Upregulation of Wnt Signaling 

Pathway <0.001 
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Table 3. Mutational signature results concordant with the expected effects of the 
pathogenic germline variants.  
 

Patient 
Set Gene or Pathway Signature Reported Cause 

of Signature p-value 

Pan-
Cancer MSH6 6 Mismatch Repair 

Deficiency 
2.360E-

02 

Pan-
Cancer MSH6 15 Mismatch Repair 

Deficiency 
9.100E-

03 

Pan-
Cancer ERCC3 29 

Transcription-
Coupled 

Nucleotide 
Excision Repair 

Deficiency 

3.350E-
02 

Pan-
Cancer PMS2 44 Mismatch Repair 

Deficiency 
3.199E-

02 

Pan-
Cancer MSH2 6 Mismatch Repair 

Deficiency 
1.730E-

02 

Pan-
Cancer MSH2  15 Mismatch Repair 

Deficiency 
1.220E-

05 

KIRC 

HDR THROUGH 
HOMOLOGOUS 

RECOMBINATION HRR, 
HOMOLOGY DIRECTED 

REPAIR 

3 
Homologous 

Recombination 
Deficiency 

3.400E-
04 

KIRC DNA DOUBLE STRAND 
BREAK REPAIR 3 

Homologous 
Recombination 

Deficiency 

2.670E-
03 

Pan-
Cancer MISMATCH REPAIR 6 Mismatch Repair 

Deficiency 
2.850E-

03 

Pan-
Cancer MISMATCH REPAIR 15 Mismatch Repair 

Deficiency 
1.270E-

04 

Pan-
Cancer 

DISEASES OF 
MISMATCH REPAIR 

MMR 
6 Mismatch Repair 

Deficiency 
2.070E-

03 

Pan-
Cancer 

DISEASES OF 
MISMATCH REPAIR 

MMR 
15 Mismatch Repair 

Deficiency 
2.960E-

04 
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Table 4. Patients with certain pathogenic germline variants are more likely to 
accrue deleterious somatic mutations in (A) cancer-specific driver genes and (B) 
genes in the same pathway, even after controlling for tumor type and overall 
somatic mutation burden. 
 
Table 4A. 
 

Gene Number of Additional Somatic 
Mutations in Driver Genes p-value Adjusted p-value 

MSH6 0.483 8.626E-04 7.764E-03 
MSH2 0.807 4.797E-03 2.159E-02 
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Table 4B. 
 

Patient 
Set Gene Set Gene or Pathway Pathway 

Number 
of 

Additional 
Somatic 

Mutations 
in 

Pathway 

p-value Adjusted 
p-value 

Pan-
Cancer 

Individual 
Gene MSH2 DISEASE 3.181 8.097E-

08 
1.287E-

05 

Pan-
Cancer 

Individual 
Gene APC 

BETA CATENIN 
PHOSPHORYLATION 

CASCADE 
0.545 1.013E-

06 
4.027E-

05 

Pan-
Cancer 

Individual 
Gene APC 

PHOSPHORYLATION 
SITE MUTANTS OF 
CTNNB1 ARE NOT 

TARGETED TO THE 
PROTEASOME BY 

THE DESTRUCTION 
COMPLEX 

0.547 8.818E-
07 

4.027E-
05 

Pan-
Cancer 

Individual 
Gene MSH2 GENE EXPRESSION 

TRANSCRIPTION 2.867 8.510E-
07 

4.027E-
05 

Pan-
Cancer 

Individual 
Gene MSH6 DISEASE 1.041 2.142E-

06 
6.813E-

05 

Pan-
Cancer 

Individual 
Gene MSH2 

GENERIC 
TRANSCRIPTION 

PATHWAY 
2.394 3.799E-

06 
1.007E-

04 

Pan-
Cancer 

Individual 
Gene MSH2 

TRANSCRIPTIONAL 
REGULATION BY 

TP53 
1.524 6.784E-

06 
1.541E-

04 

Pan-
Cancer 

Individual 
Gene MSH2 DNA REPAIR 1.141 1.633E-

04 
3.245E-

03 
Pan-

Cancer 
Individual 

Gene MSH6 DNA REPAIR 0.519 2.429E-
04 

4.291E-
03 

Pan-
Cancer 

Individual 
Gene APC SIGNALING BY WNT 

IN CANCER 0.473 1.099E-
03 

1.748E-
02 

Pan-
Cancer 

Individual 
Gene APC 

DEGRADATION OF 
BETA CATENIN BY 

THE DESTRUCTION 
COMPLEX 

0.522 2.440E-
03 

3.527E-
02 

Pan-
Cancer Pathway 

BETA CATENIN 
PHOSPHORYLATION 

CASCADE 

BETA CATENIN 
PHOSPHORYLATION 

CASCADE 
0.545 1.013E-

06 
1.064E-

05 
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Pan-
Cancer Pathway 

PHOSPHORYLATION 
SITE MUTANTS OF 
CTNNB1 ARE NOT 

TARGETED TO THE 
PROTEASOME BY 

THE DESTRUCTION 
COMPLEX 

PHOSPHORYLATION 
SITE MUTANTS OF 
CTNNB1 ARE NOT 

TARGETED TO THE 
PROTEASOME BY 

THE DESTRUCTION 
COMPLEX 

0.547 8.818E-
07 

1.064E-
05 

Pan-
Cancer Pathway SIGNALING BY WNT 

IN CANCER 
SIGNALING BY WNT 

IN CANCER 0.473 1.099E-
03 

7.694E-
03 

Pan-
Cancer Pathway 

DISASSEMBLY OF 
THE DESTRUCTION 

COMPLEX AND 
RECRUITMENT OF 

AXIN TO THE 
MEMBRANE 

DISASSEMBLY OF 
THE DESTRUCTION 

COMPLEX AND 
RECRUITMENT OF 

AXIN TO THE 
MEMBRANE 

0.364 4.512E-
03 

2.369E-
02 

Pan-
Cancer Pathway 

DEGRADATION OF 
BETA CATENIN BY 

THE DESTRUCTION 
COMPLEX 

DEGRADATION OF 
BETA CATENIN BY 

THE DESTRUCTION 
COMPLEX 

0.402 7.494E-
03 

3.147E-
02 

Pan-
Cancer Pathway 

ASPARTATE AND 
ASPARAGINE 
METABOLISM 

ASPARTATE AND 
ASPARAGINE 
METABOLISM 

0.094 1.267E-
02 

4.433E-
02 
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Chapter 5: Discussion 
 

Inferring Germline Variant Status from Tumor Samples and RNA-
Sequencing Data 
 
 The initial goal of this project was to determine whether or not germline 

variants contribute to tumor progression. To get at this question, we decided to 

utilize sequencing data from The Cancer Genome Atlas, as it was one of the 

largest repositories of publicly available sequencing data from tumors with 

matched germline samples. While developing our pipeline, we had found that the 

status of some germline variants could not always be determined using only the 

whole exome sequenced non-tumor sample due to limited sequencing depth. We 

hypothesized that the germline variants should also be found in the whole exome 

sequenced tumor sample and the RNA-sequenced tumor sample, assuming that 

these germline variants were not somatically mutated in the tumor samples, 

changed through RNA editing, or suppressed through allele-specific expression 

in the RNA-sequenced tumor sample. We decided to include these samples in 

our pipeline to increase the total number of germline variants that we could call. 

We hypothesized that the inclusion of additional patients would increase our 

statistical power to detect significant associations with patient outcome. Our 

approach is detailed in Chapter 2 and Chapter 3 [1, 2].  

 Our method can be applied to whole exome sequenced and RNA 

sequenced samples to identify the statuses of common germline variants, even 

in the absence of non-tumor samples. While studies performing whole exome 

sequencing in oncology typically collect both a tumor and non-tumor sample to 

identify somatic mutations, some studies only perform RNA sequencing on 
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tumors, and it is not uncommon to use tumor-only panels in a clinical setting. Our 

method will enable the study of common germline variants in these studies, even 

in the absence of a non-tumor sample. Furthermore, our method could also be 

applied to datasets for which it is not possible to generate a non-tumor sample, 

such as data generated from cancer cell lines [1-4]. 

Limitations to our Method and Possible Improvements 
 
 There are several limitations to our method and opportunities for future 

improvement. Most importantly, our method is only able to extract common 

germline variants and is entirely unable to differentiate between rare pathogenic 

germline variants and somatic mutations [1, 2]. As the number of paired tumor-

normal samples in oncology continues to grow, it may be possible to train 

machine learning classifiers to distinguish between rare germline variants and 

somatic mutations in samples lacking a normal sample, as driver somatic 

mutations are known to occur in certain hotspots and local mutation rates 

between the tumors and normal healthy tissue are different [5]. Other methods 

consider features such as allele fraction to distinguish between rare germline 

variants and somatic mutations in patient samples, though allele fraction would 

not be able to distinguish between germline variants and highly clonal somatic 

mutations in samples from clonal cell lines [6]. Methods exist to enrich for 

somatic mutations by excluding the set of known germline variants, though this 

approach would not be effective for identifying rare germline variants with high 

confidence [7]. 
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 In Chapter 3, we explain how the overlap between the common germline 

variants pulled out using our approach and somatic mutations is less than 0.02% 

from tumor samples. We examined the overlap between common germline 

variants and somatic mutations to get a sense for how often the germline variants 

that we extracted from tumor sequencing data could have been somatic 

mutations. Overall, we found the overlap to be quite small, suggesting to us that 

our method is fairly accurate. We found the overlap between the common 

germline variants that we pulled out and RNA editing sites to be less than 0.20%. 

While the potential error rate is quite low for genome wide association studies 

structured similarly to ours, our approach does not involve estimating the 

probability that an individual germline variant is not a somatic mutation or is 

affected by RNA editing. Therefore, our method can be extended by identifying 

genomic features that can be used to calculate the probability of individually 

extracted variants actually being germline variants by using paired tumor-normal 

samples for validation. To do this, we could use the germline variant status from 

the whole exome sequenced normal sample as the true set of germline variant 

calls and compare this true set of germline variant calls against the germline 

variant calls that we extract from the whole exome sequenced tumor and RNA 

sequenced tumor samples. We could create a model to predict the likelihood of 

the germline variant calls from the whole exome sequenced tumor and RNA 

sequenced tumor samples actually being real germline variants based on 

genomic features, such as allele fraction or population allele frequency. As an 

example, we would expect allele fraction to be inversely correlated to the 
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probability of being a real germline variant and population allele frequency to be 

directly correlated with the probability of being a real germline variant.  

Germline Variation is Associated with Tumor Progression Across 
Cancers 
 
 Past studies had identified germline variants in previously characterized 

cancer driver genes associated with overall survival in individual cancers [8-10]. 

In Chapter 2, I describe the unbiased genome wide association study that we 

performed in a cohort of approximately 500 lower grade glioma patients to test 

whether or not germline variation is associated with overall survival. Our analysis 

identified two germline variants associated with patient outcome, one in the 

oncogene GRB2 and the other in the tumor suppressor gene ANKDD1a. While 

much of the research in molecular oncology has been on somatic aberrations, 

our results from this study suggested that germline variation should be studied 

not only for understanding risk of cancer but also for understanding cancer 

progression.  

 In Chapter 3, I discuss the extension of this approach across all cancers 

included within The Cancer Genome Atlas. Similar to what we found in our study 

of tumors from patients with lower grade gliomas, we found that germline 

variation is associated with tumor progression across all cancers for which we 

were well-powered. We mapped many of the prognostic germline variants to 

known tumor suppressor genes or oncogenes, suggesting that some of the 

prognostic germline variants perturb similar pathways as those perturbed by 

somatic mutations. Our results suggest that some of the germline variants may 

act as expression quantitative trait loci and a few may perturb protein coding 
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domains, though experimentation is needed to confirm our hypothesized 

mechanisms of action for each of the variants. 

 Given our findings in Chapter 2 and Chapter 3, it is likely that germline 

variation contributes to tumor progression in most cancers. The study of germline 

variation in the context of tumor progression will likely become more 

commonplace in the future, as long-term outcome data for large cohorts of 

cancer patients becomes more readily available. Future studies will likely 

replicate the findings that we report in Chapter 2 and Chapter 3 by identifying 

germline variants associated with tumor progression that are not solely found in 

driver genes characterized in that particular cancer. Our study sets the 

groundwork for the study of germline variation in the context of tumor progression 

and can be extended in several ways. 

Identification of Prognostic Pathogenic and Rare Germline Variants 
 
 In Chapter 3, I discussed our study of common germline variants with a 

population allele frequency greater than five percent across the 33 cancers 

included within The Cancer Genome Atlas (TCGA). We had identified germline 

variants associated with patient outcome across all cancers for which we were 

sufficiently powered to detect variants with moderate effect size [1, 2].  

 Numerous studies in the area of cancer risk have reported a negative 

correlation between population allele frequency and cancer risk [11]. We also 

reported a similar finding in our study of variants associated with tumor 

progression [2]. This finding suggests that the pathogenic (typically extremely 

rare germline variants that are predicted to functionally perturb genes associated 
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with known human diseases) and rare (variants with population allele frequencies 

lower than five percent) variants may have larger effect sizes and could therefore 

substantially augment clinical outcome model predictions. 

 These rare and pathogenic germline variants are challenging to study. In 

relatively modest sized cohorts such as TCGA, we were unable to study these 

variants individually due to lack of statistical power. While one possible solution is 

to group these variants together, this solution introduces two new problems: 

(1) In grouping variants together, some variants may have functional 

consequences, whereas others may not. If the effect sizes of the variants 

with functional consequences are small or the proportion of non-functional 

variants is high, our ability to detect significant associations would be low.  

(2) Variants in the same gene could have effect sizes in opposite directions. If 

we used a statistical approach similar to the one employed in Chapter 3, 

the effects of these variants could cancel each other out, resulting in us 

being unable to detect significant associations.  

(3) In grouping rare germline variants, the germline variants that are more 

common may have more influence on the statistical test than germline 

variants that are very rare because these germline variants are found in 

more individuals. This is likely undesirable, as this would decrease our 

statistical power to detect significant associations since we observed a 

negative correlation between allele frequency and effect size. 
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Other branches of genomics have proposed several solutions to these 

problems which could be repurposed for analyses of tumor progression in 

cancer genomics [12, 13]: 

(1) We could enrich for functional variants by restricting our analysis only to 

pathogenic germline variants or variants predicted to have functional 

consequences based on another metric (such as CADD score, SIFT 

score, and PhyloP score) [14-16].  

(2) In Chapter 3, we described how we had tested germline variants 

individually using Cox regression models. For analyses of groups of 

variants, we could test for associations using variance-based tests such 

as the sequenced kernel association test (SKAT). The Cox regression 

models that we utilized in Chapter 2 and Chapter 3 were burden-based 

tests that tested whether or not a group of patients with the germline 

variant did significantly better or significantly worse as a set than patients 

without the germline variant. Although this approach works well for 

individual germline variants, it may not work well for testing sets of 

variants. When considering sets of variants, if half of the variants are 

associated with favorable outcome and half of the variants are associated 

with poor outcome and the magnitude of effects are similar, then on net 

the differences will cancel each other out and the test will not detect a 

significant difference from the control group. Variance-based tests such as 

the sequenced kernel association test (SKAT) could be designed to 

examine the dispersion of outcomes in the test group compared to the 
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control group. If the dispersion is larger in the test group, the variance-

based test would yield a significant difference. This would allow us to 

detect associations even in cases in which the directions of the effects of 

individual variants are in opposite directions [17, 18]. The major 

disadvantage to variance-based tests is that it would not be clear which 

variants are associated with favorable outcome and which would be 

associated with poor outcome without further post-hoc testing [19].  

(3) To deal with more common germline variants potentially having too much 

influence on the statistical test, we could adjust the weights of the 

germline variants included within the tested sets. For example, we could 

consider decreasing the weight of more common variants and increasing 

the weight of rarer variants. Similarly, we may weigh the variants based on 

other metrics, such as CADD score, SIFT score, and PhyloP score [20].  

Ideally, these approaches will enable us to identify additional sets of 

prognostic germline variants that could further improve clinical outcome model 

predictions. Algorithms such as backward elimination can be used to further 

prioritize the variants in these sets based on their probability to be causal [19]. 

These algorithms work by removing variants for which the elimination of the 

variant results in a decreased p-value when performing a sequenced kernel 

association test. Furthermore, these approaches would enable us to test whether 

the pathogenic and rare variants in well-known oncogenes and tumor suppressor 

genes that contribute to increased risk for cancer also contribute to an increased 

rate of cancer progression [21-26]. We provide an approach to grouping variants 
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based on pathway in Chapter 4 that could be applied to the study of rare 

germline variants associated with differences in patient outcome.  

Understanding how Prognostic Germline Variants Vary Across Different 
Races 
 
 Our study of germline variants associated with differences in patient 

outcome described in Chapter 2 and Chapter 3 was performed using data from 

The Cancer Genome Atlas [1, 2]. Although The Cancer Genome Atlas is a rich 

multi-omic resource for genomic studies, most patients from The Cancer 

Genome Atlas are of European ancestry [27-29]. As a result, the prognostic 

germline variants that we reported were discovered in a cohort of patients 

primarily of European descent. The genetic ancestry of all TCGA patients has 

been reported in The Cancer Genome Ancestry Atlas [29]. From their report of 

the genetic ancestry of TCGA patients, the cohort is primarily of European 

ancestry. BRCA, GBM, BLCA, LGG, HNSC, THCA, PCPG, COAD, KIRP/KIRC, 

PRAD, OV, and UCEC have greater than 20 patients each that are of African-

American descent. BRCA, ESCA, LIHC, STAD, THCA, CESC, and UCEC are 

cancers that have 20 or more patients of Asian descent. Based on these 

numbers, it is feasible to investigate the contribution of germline variation to 

patient outcome in these cancers, stratifying the analysis by race. In our own 

analysis, we found that calculated race was a significant predictor of patient 

outcome for ACC, CESC, CHOL, COAD, HNSC, KIRC, LIHC, LUSC, OV, PAAD, 

SKCM, STAD, TGCT, and UCEC, suggesting that these cancers may have 

significant differences at the level of germline variants or that outcome may be 

confounded by socioeconomic factors tied to race in these cancers.  
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Many studies have reported genomic differences in cancers from patients 

of different races, suggesting that the germline variants that contribute, along 

with the strength of their contribution to cancer progression likely varies based on 

race [30-44]. These results suggest that the study of prognostic germline variants 

should be extended to cohorts of patients of non-European ancestry. 

In Chapter 2, we had identified two germline variants predictive of 

outcome in patients with lower grade gliomas and tested those germline variants 

in an independent population of patients with lower grade gliomas of Chinese 

ancestry. We found that one of the germline variants was not found in any of the 

patients in the Chinese cohort, which was consistent with the reported allele 

frequency from a study of thousands of individuals [45]. We found the other 

germline variant to have nearly the same effect in the Chinese cohort as the 

cohort of patients from The Cancer Genome Atlas. If these results are consistent 

with future studies in non-European cohorts, then we can reasonably expect 

some of the prognostic germline variants to be shared across races and for some 

other prognostic germline variants to be specific to individual races. 

Discovery of Germline Variants with Lower Effect Sizes 
 
 In our analyses described in Chapter 2 and Chapter 3, we were able to 

detect associations in individual cancers beginning at a hazard ratio of about 2, 

based on our power analysis. Future studies in larger cohorts will likely be able to 

detect germline variants with lower effect sizes. Alternatively, our original 

analysis on the TCGA cohort could be reperformed after removing low frequency 

germline variants. We had initially tested germline variants found in 15 or more 
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individuals across cancers because we found this to be the optimal threshold for 

correlating the allele frequency of germline variants extracted from tumor 

sequencing data with the known population allele frequency. If we had used a 

custom threshold across cancers, we may have been able to detect additional 

germline variants with lower effect sizes. 

Translation to Clinical Practice 
 
 While our studies have provided us with insight into which genetic loci are 

associated with patient outcome in each of the individual cancers, additional work 

is necessary to translate these findings into clinical practice. 

(1) Firstly, the associations described in Chapter 3 need to be tested in other 

cohorts to attain a better understanding as to which groups of patients 

these germline variants could be useful in. 

(2) The prognostic germline variants need to be more rigorously integrated 

with clinical information, along with other genomic data types, to build 

models with maximal predictive power. Although The Cancer Genome 

Atlas is a rich resource of multi-omic data, the annotation of clinical data is 

far less rigorous than what would be available to a practicing clinician from 

an electronic medical record. It is essential to create models taking into 

account the wealth of clinical information available to a physician along 

with the multi-omic data from studies such as TCGA to best individualize a 

patient’s care. We had shown that germline variation provides additional 

information about patient outcome not captured by clinical information 

alone in Chapter 3. To be useful in clinical practice, standardized clinical 
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models need to be generated using the same clinical information and 

genomic information. One of the current challenges in cancer genomics is 

that while most datasets offer similar types of genomic data, the clinical 

data that accompany these datasets vary. The clinically rich datasets with 

multi-omic data that will likely be generated in the future will be quite 

useful for generating integrated models that could be used in clinical 

practice. 

(3) Further discussions with expert clinicians who treat each tumor type could 

help clarify the circumstances in which additional insight about a patient’s 

prognosis could be clinically valuable. Prognostic models for cancers for 

which most patients have a very favorable prognosis may be less useful 

compared to cancers in which there is much more heterogeneity in patient 

outcome. 

Interaction Between Germline Variation and the Landscape of 
Somatic Aberrations 
 
 Numerous studies in cancer genomics have now suggested that there is 

an interaction between germline variants and the landscape of somatic 

aberrations, suggesting that knowledge of germline variation can be used to 

predict future somatic events [46-52]. Our results discussed in Chapter 2, 

Chapter 3, and Chapter 4 also support this idea. 

 In Chapter 2, I discussed our discovery of a germline variant in the 3’UTR 

of the oncogene GRB2, an adaptor protein in the Ras signaling pathway, 

associated with poor patient outcome. This germline variant was associated with 

widespread upregulation of downstream genes in the Ras signaling pathway and 
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was associated with increased incidence of CIC mutations and 1p/19q co-

deletions. CIC is a tumor suppressor gene located on 19q that downregulates the 

Ras signaling pathway. These results suggest that the GRB2 variant may serve 

as the first “hit” to the Ras signaling pathway and that a second “hit” by a somatic 

event to the Ras signaling event, perhaps to CIC, may be responsible for the 

widespread upregulation of genes involved in Ras signaling that we found in 

patients with lower grade gliomas [1]. In Chapter 3, I described how we had 

found that the prognostic germline variants associated with poor outcome were 

more likely to be associated with somatic mutations in driver genes. I also 

provided examples of how tumors from patients with germline variants in 

MAP2K3 and BIRC5 exhibited expected transcriptomic differences in their 

respective pathways [2]. Experimental work or more complex network-based 

approaches is necessary to better understand the molecular underpinnings of 

this association. 

 In Chapter 4, I described our approach to identifying pathogenic germline 

variants associated with elevated tumor mutational burden. The results described 

in this analysis clearly suggest that the somatic aberrations present in tumors 

that arise in patients with and without pathogenic germline variants are clearly 

not equivalent. Generally speaking, we found tumors from patients with 

pathogenic germline variants in genes related to DNA repair and cell cycle 

pathways to be associated with higher tumor mutational burden. When looking at 

the somatic mutation signatures and the transcriptomic changes in these 

patients, we observed changes consistent with the expected effects of the 
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pathogenic germline variants based on previously published experimental work, 

suggesting that these germline variants shape the somatic mutation landscape.  

The Need for an Unbiased Analysis of the Interaction Between Germline 
Variants and the Landscape of Somatic Aberrations 
 
 Most studies, including ours, analyzing the interaction between germline 

variation and the landscape of somatic aberrations, such as somatic mutations, 

gene duplications, gene deletions, methylation changes, and transcriptomic 

dysregulation, have tested specifically for somatic aberrations that would be 

expected to be associated with particular germline variants [10, 21, 24, 49, 50, 

52, 53]. For example, in Chapter 2 we tested whether or not the prognostic 

germline variant in GRB2, an oncogene in the Ras signaling pathway, was 

associated with differences in Ras signaling due to somatic mutations in genes 

like CIC in that pathway. In Chapter 3, we tested for the transcriptomic changes 

that we expected to be present in patients with germline variants in MAP2K3 and 

BIRC5, based on previously published experimental data. In Chapter 4, we 

looked for differences in the somatic mutational profiles and transcriptome that 

would be consistent with the field’s understanding of the pathogenic germline 

variants that we were studying.   

 Although this approach is a reasonable starting point, the work by Carter 

et al. suggests that germline variants can shape somatic events in genes outside 

of the immediate pathway that the germline variant is found in [46]. Molecularly, 

this finding certainly seems plausible given the large amount of cross-talk 

between pathways. This finding therefore raises the need for unbiased analyses 

between germline variants and the landscape of somatic changes. Network 
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based or experimental follow-up of these findings may reveal new avenues for 

cross-talk between pathways and would improve our understanding as to why a 

germline variant in one gene would predispose tumor cells to somatic events in a 

different seemingly unrelated gene.  

Mechanisms of Action of the Prognostic Germline Variants 
 
 Experimental study of the prognostic germline variants could further reveal 

the mechanisms by which germline variants may affect tumor progression. 

Although many of the germline variants discussed in Chapter 2 and Chapter 3 

are candidates for experimental study, I will discuss the germline variants in 

GRB2 and ANKDD1a below. 

 In Chapter 2, we report a germline variant in the 3’ UTR GRB2 to be 

associated with poor patient outcome in patients diagnosed with lower grade 

gliomas. GRB2 is an adaptor protein near the beginning of the Ras signaling 

pathway [54]. We found this germline variant to be associated with upregulation 

of Ras signaling and to be associated with an increased risk for CIC somatic 

mutations and 1p/19q co-deletions. The variant we identified in GRB2 is 

genetically linked to four other germline variants and requires genetic 

perturbation to identify the causal variant: 

(1) If the causal variant is the variant we identified in Chapter 2, then the 

causal variant may act by disrupting a miRNA binding site, resulting in 

elevated GRB2 protein and subsequent increased Ras signaling. If this is 

the case, then a luciferase experiment in which the wild type and mutant 

GRB2 3’ UTRs have been inserted into luciferase constructs may show 
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increased fluorescence in cells transfected with the mutant construct 

compared to the wild type construct. 

(2) If there is no difference in the luciferase assay results then the variant may 

not act through disruption of the 3’ UTR or one of the other four genetically 

linked variants may be causal. To identify the causal variants, mutants of 

each of the variants could be created through CRISPR/Cas9. 

After creating mutants through CRISPR/Cas9, the mutants could be screened 

relative to the control (wild type at all sites) for several different phenotypes: 

(1) Increased tumor aggressiveness – I would expect cell proliferation, 

invasion, migration, and soft agar colony formation in a cell culture system 

and the rate of tumor expansion in a mouse xenograft experiment to be 

elevated in the cell line with the causal variant. 

(2) Evidence of increased Ras signaling activity – I would expect increased 

phosphorylation of MEK, ERK, and Elk-1 on Western blot and 

upregulation of Elk-1 targets on RT-PCR and RNA sequencing in cell lines 

with the causal variant. 

(3) Increased frequency of CIC somatic mutations and 1p/19q co-deletions – I 

would expect increased frequency of CIC somatic mutations and 1p/19q 

co-deletions following long-term culture of the cell lines. 

 

In Chapter 2, we discovered a germline variant in the tumor suppressor 

gene ANKDD1a to be associated with poor patient outcome in a cohort of 

American patients and a cohort of Chinese patients. ANKDD1a is a tumor 
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suppressor gene that promotes the activity of FIH-1 and results in the 

degradation of HIF-1α. By doing so, ANKDD1a downregulates the hypoxia 

induced response and decreases the ability of tumor cells to proliferative in 

their hypoxic microenvironment. The variant that we identified results in an 

amino acid change from positively charged lysine to negatively charged 

glutamic acid. This germline variant could be studied through the following 

experiments: 

(1) Overexpress wild type and mutant ANKDD1a constructs to test 

whether the mutant is associated with more aggressive phenotypes 

compared to the wild type form (increased cell proliferation, invasion, 

migration, and soft agar colony formation in a cell culture system and 

increased rate of tumor expansion in a mouse xenograft model). 

Repeat with glioma cell lines that have been edited through 

CRISPR/Cas9. 

(2) Test whether or not the mutant form of ANKDD1a is associated with 

upregulation of HIF-1α responsive genes indirectly using a luciferase 

reporter and directly through RT-PCR and RNA sequencing. 

(3) Test whether the mutant form of ANKDD1a has lower affinity for FIH-1 

than the wild type form through Western blotting. If there is no 

difference in affinity, perform mass spectrometry following 

immunoprecipitation of ANKDD1a to identify possible binding partners 

for ANKDD1a. Validate these binding partners through Western 

blotting. 
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Germline Variation Informs Therapeutic Decisions 
 
 Historically, therapeutic decisions in oncology have been based on tumor 

location, grade, and stage. The explosion of next generation sequencing data 

has suggested that therapeutic decisions in oncology should also be based on 

somatic aberrations. Recent studies now suggest that germline variation also 

contributes to drug sensitivity as well and that the contribution of germline 

variation to drug sensitivity may actually be greater than the contribution from 

somatic aberration for some drugs [55-62].  

 In Chapter 4, we identify sets of germline variants associated with 

differences in tumor mutational burden. Tumor mutational burden is a strong 

predictor of response to treatment with immune checkpoint inhibitors. Most of the 

pathogenic germline variants associated with differences in tumor mutational 

burden are found in genes with known functions in DNA repair, mitosis, or cell 

cycle regulation. Our results suggest that germline variation could potentially be 

used to predict whether or not a patient will respond to treatment with immune 

checkpoint inhibitors.  

The Need for Large Datasets with Better Clinical Annotation 
 
 Using germline variation for making treatment decisions is arguably one of 

the most clinically promising applications of studying germline variation. 

Currently, these studies have been very challenging due to the lack of treatment 

and response data in large cohorts of cancer patients. Substantial efforts by 

consortia are now underway to generate multi-omic datasets with detailed clinical 
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annotation. The future study of these datasets will likely result in the discovery of 

many germline variants that predict response to therapy.  

Germline Variants Predicting Response to Therapy and Outcome in 
Diseases Other than Cancer 
 
 Genome wide association studies have been largely focused on the risk of 

acquiring disease. These studies are beneficial for identifying patients that should 

be screened for diseases earlier. However, several studies have suggested that 

germline variation contributes to the progression of other diseases as well, such 

as HIV/AIDS, systemic mastocytosis, and major depression [63-65]. The 

literature published in the area of pharmacogenomics suggests that germline 

variation influences response and toxicity to a variety of drugs, including codeine, 

tramadol, antidepressents, warfarin, phenytoin, simvastatin, and tacrolimus [66]. 

Although studying germline variation in the context of disease progression and 

treatment response is more challenging and expensive due to the need for long-

term follow-up, the results presented in this thesis along with the growing body of 

work on this topic in the literature suggest that germline variation could play a 

substantial role in personalizing the clinical management of a large number of 

diseases. 

Conclusion 
 
 Germline variation has a rich history of being studied in the context of risk 

for cancer. Emerging studies in the area of cancer genomics now suggest that 

germline variation contributes to the landscape of somatic aberrations in cancer, 

affects tumor progression, and informs treatment sensitivity and toxicity. The 

work described in this dissertation touches on and supports each of these 
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emerging areas. In Chapter 2 and Chapter 3, we find that germline variation is 

associated with patient outcome across most cancers and that the notion that 

germline variants affect tumor progression is likely a fundamental principle of 

cancer genomics. In Chapter 4, we show that the tumors of patients with 

pathogenic germline variants in certain genes are substantially different from the 

tumors of patients who do not have pathogenic germline variants in these genes 

and that this difference can likely be exploited through the use of immune 

checkpoint inhibitors to improve the care of patients with these germline 

biomarkers. Overall, this work suggests that germline variation warrants deeper 

study in clinical oncology as germline variation likely has untapped potential for 

improving the care of patients with cancer.  
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Appendix: Scientific Contributions to Other Studies 
From the Dutta Lab 
 
In addition to the contributions described in the preceding chapters, I have also 
made contributions to the publications described below [1-3]. 
 
1. Kiran M, Chatrath A, Tang X, Keenan DM, Dutta A: A Prognostic 

Signature for Lower Grade Gliomas Based on Expression of Long 
Non-Coding RNAs. Mol Neurobiol 2019, 56:4786-4798. 

  
- I analyzed the RNA-sequencing data from the caners included in The 

Cancer Genome Atlas to determine whether or not the long non-coding 
RNAs that make up our published prognostic signature (“UVA8”) are 
associated with outcome in other cancers and helped with critically 
revising the manuscript. 
 

2. Saha S, Kiran M, Kuscu C, Chatrath A, Wotton D, Mayo MW, Dutta A: 
Long Noncoding RNA DRAIC Inhibits Prostate Cancer Progression by 
Interacting with IKK to Inhibit NF-kappaB Activation. Cancer Res 2020, 
80:950-963 
 

- Dr. Manjari Kiran computationally showed that low expression of the 
long non-coding RNA DRAIC is associated with NF-kappaB activity in 
prostate cancer. I analyzed RNA-sequencing data from other cancers 
to show that this finding was true in several other cancers besides 
prostate cancer. I also generated figures for the publication based on 
these results and helped with critically revising the manuscript. 

 
3. Kumar P, Kiran S, Saha S, Su Z, Paulsen T, Chatrath A, Shibata Y, 

Shibata, E, Dutta A: ATAC-seq identifies thousands of 
extrachromosomal circular DNA in cancers and cell lines. Science 
Advances. 

 
- I developed a methodology to test whether or not changes in copy 

number from extrachromosomal circular DNAs would likely be detected 
using SNP genotyping arrays through standard copy number analyses. 
I also tested whether the genes contained on the extrachromosomal 
circular DNAs were enriched for certain pathways or functions through 
gene ontology analysis across the cancers included in The Cancer 
Genome Atlas. Finally, I identified and reported the oncogenes found 
on the extrachromosomal circular DNAs that may be driving 
tumorigenesis in those caners. I generated figures for each of these 
analyses which are included in the publication and helped with critically 
revising the manuscript. 
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A Prognostic Signature for Lower Grade Gliomas Based on 
Expression of Long Non-Coding RNAs 
 
Manjari Kiran, Ajay Chatrath, Xiwei Tang, Daniel M Keenan, Anindya Dutta 
 
Adapted From:  
 
Kiran M, Chatrath A, Tang X, Keenan DM, Dutta A: A Prognostic Signature for 
Lower Grade Gliomas Based on Expression of Long Non-Coding RNAs. Mol 
Neurobiol 2019, 56:4786-4798. 
 
Abstract:  
 
Diffuse low-grade and intermediate-grade gliomas (together known as lower 

grade gliomas, WHO grade II and III) develop in the supporting glial cells of brain 

and are the most common types of primary brain tumor. Despite a better 

prognosis for lower grade gliomas, 70% of patients undergo high-grade 

transformation within 10 years, stressing the importance of better prognosis. 

Long non-coding RNAs (lncRNAs) are gaining attention as potential biomarkers 

for cancer diagnosis and prognosis. We have developed a computational model, 

UVA8, for prognosis of lower grade gliomas by combining lncRNA expression, 

Cox regression, and L1-LASSO penalization. The model was trained on a subset 

of patients in TCGA. Patients in TCGA, as well as a completely independent 

validation set (CGGA) could be dichotomized based on their risk score, a linear 

combination of the level of each prognostic lncRNA weighted by its multivariable 

Cox regression coefficient. UVA8 is an independent predictor of survival and 

outperforms standard epidemiological approaches and previous published 

lncRNA-based predictors as a survival model. Guilt-by-association studies of the 

lncRNAs in UVA8, all of which predict good outcome, suggest they have a role in 

suppressing interferon-stimulated response and epithelial to mesenchymal 
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transition. The expression levels of eight lncRNAs can be combined to produce a 

prognostic tool applicable to diverse populations of glioma patients. The 8 

lncRNA (UVA8) based score can identify grade II and grade III glioma patients 

with poor outcome, and thus identify patients who should receive more 

aggressive therapy at the outset. 
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Long Noncoding RNA DRAIC Inhibits Prostate Cancer Progression by 
Interacting with IKK to Inhibit NF-kappaB Activation 
 
Shekhar Saha, Manjari Kiran, Cana Kuscu, Ajay Chatrath, David Wotton, Marty 
W Mayo, Anindya Dutta 
 
Adapted From: 
 
Saha S, Kiran M, Kuscu C, Chatrath A, Wotton D, Mayo MW, Dutta A: Long 
Noncoding RNA DRAIC Inhibits Prostate Cancer Progression by Interacting 
with IKK to Inhibit NF-kappaB Activation. Cancer Res 2020, 80:950-963 
 
Abstract:  
 
DRAIC is a 1.7 kb spliced long noncoding RNA downregulated in castration-

resistant advanced prostate cancer. Decreased DRAIC expression predicts poor 

patient outcome in prostate and seven other cancers, while increased DRAIC 

represses growth of xenografted tumors. Here, we show that cancers with 

decreased DRAIC expression have increased NF-κB target gene expression. 

DRAIC downregulation increased cell invasion and soft agar colony formation; 

this was dependent on NF-κB activation. DRAIC interacted with subunits of the 

IκB kinase (IKK) complex to inhibit their interaction with each other, the 

phosphorylation of IκBα, and the activation of NF-κB. These functions of DRAIC 

mapped to the same fragment containing bases 701-905. Thus, DRAIC lncRNA 

inhibits prostate cancer progression through suppression of NF-κB activation by 

interfering with IKK activity.  

SIGNIFICANCE: A cytoplasmic tumor-suppressive lncRNA interacts with and 

inhibits a major kinase that activates an oncogenic transcription factor in prostate 

cancer.  
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ATAC-seq identifies thousands of extrachromosomal circular DNA in 
cancers and cell lines 
 
Pankaj Kumar, Shashi Kiran, Shekhar Saha, Zhangli Su, Teressa Paulsen, Ajay 
Chatrath, Yoshiyuki Shibata, Etsuko Shibata, Anindya Dutta 
 
Adapted From: 
 
Kumar P, Kiran S, Saha S, Su Z, Paulsen T, Chatrath A, Shibata Y, Shibata, E, 
Dutta A: ATAC-seq identifies thousands of extrachromosomal circular DNA 
in cancers and cell lines. Science Advances. 
 
Abstract:  
 
Extrachromosomal circular DNAs (eccDNAs) are usually somatically mosaic and 

a source of intercellular heterogeneity in normal and tumor cells. Because short 

eccDNAs are poorly chromatinized, we hypothesized that they are sequenced by 

tagmentation in ATAC-seq experiments, without any enrichment of circular DNA, 

and thus identified thousands of eccDNAs. The eccDNAs identified in cell lines 

were validated by inverse PCR on DNA that survives exonuclease digestion of 

linear DNA, and by metaphase FISH. ATAC-seq in Gliomas and Glioblastomas 

identify hundreds of eccDNAs, including one containing the well-known EGFR 

gene amplicon from chr7.  Over 18,000 eccDNAs, many carrying known cancer 

driver genes, are identified in a pan-cancer analysis of 360 ATAC-seq libraries 

from 23 tumor types. Because of somatic mosaicism, eccDNAs are identified by 

ATAC-seq even before amplification of the locus is recognized by genome-wide 

copy number variation measurements. Thus, standard ATAC-seq is a sensitive 

method to detect eccDNA present in a subset of tumor cells, ready to be 

amplified under appropriate selection, as during therapy. 

 


