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Predicting earthquakes is a significantly challenging problem with a long history of

largely unsuccessful attempts. As defined by the United States Geological Survey (USGS), an

acceptable earthquake prediction must include its date and time, location, and magnitude (What

is, n.d.). In addition, earthquake predictions deal with larger-scale time windows on the order of

months and years. There has never been an accurate prediction of any major earthquake (Can,

n.d.). The technical research is focused on predicting earthquakes by feeding large historical

datasets of events into machine learning (ML) models.

The ability to predict naturally leads to the deployment of earthquake early warning

(EEW) systems in given regions. Earthquake forecasting models, predicting the characteristics of

an earthquake hours or days in advance, are becoming more successful. As a result, there are

many short-term EEWs, built on these forecasting models, dispersed in high-impact regions of

the world. While potentially a powerful tool in any field, early warning (EW) systems must be

carefully configured due to the uncertainty in any prediction. Especially if longer-range

prediction from the technical project proves to be successful, EEWs built on prediction models

need to be standardized before implemented. As the overall power of EEWs will increase, the

chance for mispredictions increases with it. The STS research is comparing and contrasting EW

systems from many different fields to see how such tradeoffs in predictive power and uncertainty

are generally made. This is tightly coupled with the technical research, as this knowledge

ultimately assists in imagining how a larger-window EEW would be best configured and

deployed.

The technical work was started at the beginning of 2022 with Geoffrey C. Fox. Certain

models can accurately predict earthquakes in multiple regions throughout the US around six

months in advance. Present work is related to statistically analyzing the reliability of these
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results, particularly as the model makes predictions further out into the future. Once these results

are gathered, a paper will be written. It will hopefully communicate the success of using LSTM

networks for earthquake prediction in certain regions, as well as improvements that need to be

made before deployment to the public. The paper will most likely be completed by the end of

2022. For the STS research, the main sources for comparison have been collected. Currently,

efforts are being made to read, analyze, and compare these papers to develop a knowledge base

for the STS question. This work will be carried out through 2022 and into 2023. A

comprehensive argument answering the question will hopefully be able to be made at the end of

January 2023.

PREDICTING EARTHQUAKES USING LONG SHORT-TERM MEMORY
NETWORKS

It would be very useful to know when and where large earthquakes will occur. Countless

lives would be able to be saved. Even for communities that cannot access transportation to

geographically relocate during an event, moving to open areas or holding onto shelter and

covering one’s head is fairly effective in preventing casualties (What should, n.d.). Furthermore,

mitigation efforts would be able to take place far in the future, at least as far as the prediction

window of the model. Resources such as buildings, food, and livestock would also be able to be

moved and saved. Pre-designated dangerous areas, such as the downtown of cities, could be

closed off during the predicted time of the event. Simply put, given an accurate prediction of a

large event, the public would have more time to prepare which directly relates to less chance for

harm.

While there are known physical equations that govern when and where an earthquake

will happen, humans are unable to obtain the parameters needed to perform such a calculation.
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One traditional field of attempts for predicting earthquakes has been monitoring for suspected

local precursors to large events (Hayakawa, 2016; Korepanov, 2016). This is challenging because

of the high complexity in correlation and the relatively short prediction range into the future this

allows. Therefore, at best it could only be used for earthquake forecasting. Another avenue has

been mathematically analyzing long-term trends in geophysical-related patterns (Boucouvalas et.

al, 2015; Kannan, 2014). No consistent pattern has emerged as it relates to earthquakes. This

technical research is on predicting earthquakes using machine learning models rather than

physical models. Machine learning methods are possible because of the large amount of

historical earthquake data available. With this data and high computational power, computers can

be trained to fit a certain dataset. Furthermore, the built-in ability of time-series based methods to

correlate complex spatio-temporal state spaces makes them promising for this problem. The goal

is to accurately predict the date, location, and magnitude of major earthquakes months or years

into the future.

USGS has developed the most extensive, up-to-date database on earthquakes events

worldwide since around 1950 (Lists, n.d.). This publicly-available data includes events

characterized by their magnitude, depth, date, and latitude/longitude coordinates. All of the

computer processing was done using Google Colab, and the subscription fee was paid for by

UVA’s Biocomplexity Institute. No additional resources were needed.

The data was transformed into a space-time matrix by binning the events based on bin

size. A bin size of 0.1, for example, included all events within a 0.1 by 0.1 degree box into the

same location. Therefore, an event at (34.9, 116.4) and (34.84, 116.2) would be processed as

events at the same location. A final matrix was constructed such that for every time unit, a

location space at that time was stored. The time unit was chosen to be one day. Therefore, if the
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two events from the previous example occurred on the same day, the value in the array on that

day in that box of space would be the sum of the two events. Multiple major events in the same

region on the same day would rarely happen, and usually spots in the array either held the event

that happened there at that time or a 0, signifying no earthquake activity.

This was used to train a single Long-Short-Term Memory (LSTM) model. This ML

model is made for problems that deal with predicting certain values over time, which is exactly

the framework of the earthquake prediction model. Its architecture is two stacked LSTM layers

with single fully-connected networks at the start and end. The architecture was experimented

with and it ultimately dictates how the input will be processed to get the desired output. Training

the model consisted of giving it one “slice” of the time series data, say from 1950 to 2000, to

find patterns from. Once it had “learned” some pattern, it was asked to predict earthquake

activity from 2000 to 2022. If the model had substantially learned something, then its predictions

should have matched the actual earthquake activity from 2000 to 2022. Other parameters were

tweaked in an effort to increase the similarity between the prediction and the actual output.

Initially, data was gathered from all areas with significant earthquake activity, including

Southern California, Japan, Mexico, and others. After further inspection, it was found that only

data from the United States contained enough small events with magnitude less than 0.5. It was

impossible to accurately predict future events in regions that did not record small events, which

suggested that these small events act as necessary predictors for big events. Therefore, results

were collected for regions in the United States such as Southern and Northern California,

Hawaii, Washington, and Alaska.

Figure 1 shows the results for a model asked to predict 6 months in the future on

earthquakes from Hawaii. Within each graph, the actual cumulative magnitude within the entire
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locations space is plotted over time in blue. At every point in time, the model is given a history

of actual events up to that point, and is asked to predict the magnitudes across the location space

six months into the future. Therefore, the predicted value on January 1, 2000 in orange was made

by the model with only an understanding of what had happened up to June 1, 1999. On both

graphs, the orange line shows these predictions. The left graph contains locations included in the

training set from which the model learned a pattern in input parameters and output prediction.

The right graph serves as a test, as it shows the model’s predictions on locations within Hawaii it

had never seen before. The results are promising, as it seems earthquake prediction is feasible

with such a model. A scholarly paper will be written on the findings once more statistical

analysis is done to ensure confidence.

ANALYZING THE NECESSARY CONFIGRUATIONS OF A LONG-TERM
EARTHQUAKE EARLY WARNING SYSTEM

For any technology built on a prediction algorithm, there is generally an exponential

relationship between how far into the future it is predicting and a resulting uncertainty as shown

in Figure 2. This is because of compounding errors, and specifically the compounding error of
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predicting 50 days in advance that builds on predicting 25 days in advance, for example. Most of

the literature on EW systems revolves around systems that are contained in the rectangular black

box on the figure. Therefore, to imagine a long-term EEW system that would be far outside the

box requires both technological and STS research-backed support.

Most current EEW systems are incredibly short-term in their alerts, as they report the

presence of an event based on real-time, event-driven data. With an EEW system predicting

months and potentially years in advance, the uncertainty naturally rises, and thus an appropriate

threshold of confidence before prediction must be established. Establishing this threshold is

necessary for any technology that calls for action based on the prediction of a future event. This

is a very common problem when preparing for not only earthquakes, but also floods, landslides,

and other natural disasters (Reksten et. al, 2019; Guzetti et. al, 2020). For example, floods within

Norway have the potential to cause significant damage to towns on the edge of fjords. Reksten,

Salberg, and Solberg have researched the development of a technology that uses satellite images
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to detect the floods right before they happen. Subsequently, alerts are delivered so people can

mobilize to a safe altitude above the flood. These authors mention that the challenge for

preventing false positives still remains, but efforts such as identifying critical scores between

precision and recall and select filtering of the output maps slightly improve the problem.

While removing false positives and false negatives entirely is the ultimate goal, it is

largely unrealistic. More importantly, EW systems that are known to potentially be wrong yet are

still deployed need to have a set level of trust established, which is a discussion that leads to

many ethical questions of how to distribute resources with variable uncertainty. For example,

Alam, Hobbelink, and other authors presented an overview of EW systems for patient outcomes

in medical settings (Alam et. al, 2014). They analyzed seven studies performed in different

hospitals that compare outcomes before and after the introduction of an EW system, providing

details on each implementation, the following course of action, and the outcomes. What they

found is largely inconclusive in itself, but when combined with other similar analyses from other

domains it could be helpful.

The STS question is how should this tradeoff in predictive power and uncertainty be

made for a larger window EEW. Insight can be gained by comparing and contrasting other

successful and unsuccessful EW systems in different domains. In terms of natural disaster

preparedness, there have been multiple successful landslide EW systems (Guzetti et. al, 2020).

These fields will not directly map on to each other. For example, the negative effects of a false

positive from an EW system for patients in a hospital are much less than those for an earthquake

(Alam et. al, 2014). Nevertheless, insight can still be gained to imagine the ethical, yet useful

configuration of a long-term EEW system.
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TAKING A SOCIAL CONSTRUCTION THEORY OF TECHNOLOGY APPROACH

Allen and Melgar conducted several case studies that look at how EEW systems around

the world are implemented, configured, and deployed (Allen & Melgar, 2019). They generally

found that, among other things, studies on the public’s preferences are used to assist the

configuration of the EEW system, an otherwise tricky task. This suggests that the STS research

done here will take a Social Construction Theory of Technology (SCOT) view on EW systems.

Figure 3 shows the general mapping of SCOT to any EW system. Once a warning is triggered,

related scientists must assess and explain specifics of the warning, local officials or decision

makers must accordingly outline necessary actions, mitigation teams must carry out those

actions, and locals will be directly affected by actions taken or not taken. There may be other

supporting groups depending on the specifics of the EW system. Nevertheless, all groups must

be involved in the process of recieving a warning to taking action.

COMPARING AND CONTRASTING USING THE SCOT APPROACH

Using case studies of other EW systems, the interaction of these groups will be studied to

understand how to negotiate configurations for a successful EW system. It may be challenging to
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extract general patterns when decisions are made on a specific basis within each case study. But,

given that the specifics are known through the technical, there is greater potential for useful

analysis. In each case, it is necessary to understand who defines each group, how their

preferences and needs are assessed, and how those are translated into decisions about the

implementation and/or deployment of the technology. Additionally, it will be helpful to observe

how conflicts are resolved, as the error-prone nature of EW systems can create disagreement in

action that can’t easily be settled with confidence. It will be useful to compare which groups tend

to take precedence over others within both successful and unsuccessful EW systems. With this

understanding of both the makeup of relevant groups and their impact on the EW system,

hopefully a well-supported theory can be put forth that answers these same questions related to

handling a long-term EEW system. Figure 4 shows the general outline of the study.

Each paper will be used to answer each relevant question as it relates to the specific case study.

The knowledge will be combined to hypothesize the answers to the same questions revolving

around the negotiations between relevant social groups for a long-term EEW system.
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EFFECTIVELY CREATING AND DEPLOYING A LONG-TERM EEW SYSTEM

The technical research aims to create a reliable long-term EEW system for select regions

in the United States. With an appropriately comprehensive dataset, it appears that using LSTM

networks are promising prediction models anywhere in the world, although more work needs to

be done to support this claim. Nevertheless, the advent of long-term EEW systems built on such

models is nearing, and necessary questions suggested by SCOT need to be addressed. This will

be done by comparing and contrasting how these questions were answered with other EW

technologies. Although there is not necessarily a clear mapping from each domain to the other,

the similarities and differences can be contextually related to each other to imagine a successful

implementation of a long-term EEW system.
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