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Abstract

With the advent of Industry 4.0, there has been a tremendous leap in the field of smart manufac-

turing. Furthermore, recent advancements in machine learning and robotics are making human-

robot collaboration a reality, ushering in yet another industrial revolution that many are calling

Industry 5.0. In this context, the use of mobile collaborative robots (cobots) offers high flexibility

for manufacturing systems, which calls for studies from the production system’s perspective on

how to effectively integrate robots into such systems. This thesis aims to provide a mathematical

framework for a mobile multi-skilled robot-operated Flexible Manufacturing System (FMS).

The thesis focuses on the development of a comprehensive model for an FMS utilizing mobile

multi-skilled robots and the establishment of an effective real-time control strategy using perfor-

mance metrics derived from the model. The impact of incorporating robots into the manufacturing

system is examined, and potential improvements in overall performance are explored.

Initially, a mathematical model for the FMS is established, and performance metrics are de-

rived from the model that are used to solve a robot assignment control problem. Maintenance

scheduling and tool changes are then incorporated into the model to create a more holistic repre-

sentation of a manufacturing system. A comparison is made between models that only consider

system-level information and those that only consider process-level information, with the inte-

grated model significantly outperforming the others.

In summary, this thesis contributes to the development of appropriate frameworks for ana-

lyzing manufacturing systems that incorporate mobile multi-skilled robots and demonstrates the

effectiveness of using performance metrics derived from mathematical models for control. The

integration of maintenance scheduling and tool changes into the model provides a more compre-

hensive and realistic representation of the manufacturing system.
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Chapter 1

Introduction

Manufacturing system modeling is the process of creating a mathematical representation of a

manufacturing system in order to understand and optimize its operations. It involves analyzing the

different components of the system, including machines, people, materials, and information, and

how they interact with each other to produce goods or services. By creating a model of the system,

manufacturers can simulate different scenarios, identify bottlenecks, and improve the efficiency of

the system. This can lead to reduced costs, increased productivity, and improved quality. Further-

more, the model can be used to formulate control strategies which improve performance of the

system in real-time. Thus, manufacturing system modeling is a valuable tool for manufacturers

looking to stay competitive in an increasingly complex and global marketplace.

Modeling and control of manufacturing systems has its roots in the field of operations re-

search, which emerged in the mid-20th century as a way to apply mathematical and analytical

techniques to improve the efficiency and effectiveness of complex systems [1]. In the 1950s and

1960s, researchers began applying these techniques to manufacturing systems, recognizing that

the principles of operations research could be used to optimize production processes, reduce costs,

and increase productivity [2].

One of the earliest and most influential approaches to manufacturing system modeling was
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developed by the mathematician and computer scientist George Dantzig, who is often credited

with pioneering the field of linear programming. In the 1950s, Dantzig developed a mathematical

model for optimizing production schedules that took into account the availability of resources, the

sequence of operations, and other factors. This model, known as the "transportation problem,"

became a cornerstone of modern supply chain management [3].

In the decades that have followed, researchers have continued to develop new approaches to

modeling and optimizing manufacturing systems, using techniques such as queuing theory, simu-

lation, optimization algorithms and recently, machine learning. In 1984, Browne first introduced

the term "Flexible Manufacturing" in his paper, defining it as an integrated system capable of

processing medium-sized volumes of various part types with flexibility in machine, process, and

operation [4]. Since then, numerous papers have explored the concept of flexibility in manufactur-

ing, presenting different but valid ideas [5, 6, 7]. As such, flexibility in the context of FMS is not

a clearly defined concept as there is no consensus on its meaning. There are various approaches

to defining flexibility, such as the ability to produce different parts without extensive retooling,

modify production schedules, handle multiple parts, or adjust production levels quickly to ac-

commodate changes in demand or to shift capacity to different products or services. Despite the

ambiguity of the term ’flexible’, a key characteristic of FMS that has been widely accepted is its

ability to modify its states and actions to meet various requirements without incurring significant

costs in terms of time, effort, cost, or performance penalties [8].

Numerous innovative designs of FMS have been developed, with Toyota’s flexible assembly

lines being a prime example. These lines are capable of producing multiple vehicle models in

any production sequence, enabling them to quickly respond to changes in market demand, shorten

lead times, and improve production planning and ordering [9]. Multi-skilled robots are also being

utilized in FMS. These robots can perform multiple tasks through multi-functional manipulators

or quick-change end effectors and when mobile, can provide the flexibility to perform various

tasks at different workstations scattered throughout the plant floor [10].

A similar approach has already been widely studied and implemented known as the "walking

worker system" [11, 12]. This is where instead of having fixed workers in each workstation, the
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workers are multi-skilled and walk from station to station. However, most studies that consider

walking workers employ pre-defined heuristic polices and focus on steady state-analysis. Thus,

despite significant research on the flexibility of manufacturing systems [4, 5, 6], there has been

minimal performance evaluation of such systems. Traditional analytical and simulation methods

typically focus on the steady-state dynamics of manufacturing systems using unrealistic models

(e.g. Bernoulli process) [13, 14, 15], while the available literature on transient dynamics only

considers fixed configuration production systems [16, 17, 18].

Thus, the overarching goal of this thesis is to create a comprehensive model for a flexible

manufacturing system (FMS) that utilizes mobile multi-skilled robots, and to establish an effective

real-time control strategy using performance metrics derived from the model. The study examines

the impact of incorporating robots into the manufacturing system and explores how it can improve

overall performance.

To achieve this goal, the rest of this thesis is organized as follows:

• Chapter 2 delves into the mathematical modeling of the FMS and the derivation of perfor-

mance metrics that are then used to solve a robot assignment control problem.

• Chapter 3 builds on the previous chapter’s model by incorporating maintenance scheduling

and tool changes, along with robot assignment. This chapter stresses the importance of

integrating these aspects into the manufacturing system control.

• Finally, chapter 4 presents prospective avenues for future research and provides a summary

of the scientific contributions made by this thesis.
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Chapter 2

Dynamic Robot Assignment

2.1 Background

In recent years, the manufacturing industry has increasingly shown interest in robotics technology

as a means of improving efficiency, productivity, and quality while reducing costs and errors.

Collaborative robots (cobots), which can work alongside human workers in the same workspace,

are one of the most promising types of robots for manufacturing applications. Studies have shown

that cobots can lead to improvements in productivity, quality, and safety [19]. Mobile robots

are another type of robot that can be used for various tasks such as material handling, assembly,

inspection, and maintenance in manufacturing facilities. These robots can move autonomously

throughout the factory floor, reducing the need for human intervention and increasing efficiency

[20].

Apart from cobots and mobile robots, recent research has focused on the development of social

robots for manufacturing applications. Social robots are designed to interact with humans in a

natural way and can perform various tasks such as product assembly, quality control, and customer

service. For example, Yu et al. [21] proposed a framework for task allocation and scheduling in a

human-robot collaboration environment, where a social robot is used to assist human workers in

an assembly line. Similarly, Luo et al. [22] proposed a multi-robot system for quality inspection
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in manufacturing, where social robots are used to assist human inspectors in identifying defects in

products.

Advancements in machine learning and artificial intelligence have also enabled the develop-

ment of more sophisticated robotic systems for manufacturing. Chen et al. [23] proposed a deep

learning-based approach for robotic manipulation in manufacturing, where a robot is trained to

grasp and manipulate objects in a dynamic environment. Li et al. [24] proposed an intelligent

robot system for welding, where a robot is equipped with sensors and machine learning algorithms

to improve the accuracy and quality of the welding process.

Despite the considerable work in the field of robotics for manufacturing, most studies have

focused on how a robot can be designed to perform a particular activity, rather than investigating

the effect of using robots in a general manufacturing system. In this chapter, we explore how

a mobile multi-robot operated manufacturing system can be mathematically modeled, the type of

real-time performance metrics that can be derived from the model, and how this domain knowledge

can be leveraged to formulate a control strategy that effectively controls the assignment of robots.

2.2 System Description and Notations

Consider a mobile multi-skilled robot operated FMS which consists of w workstations and r mo-

bile multi-skilled robots. There are w− 1 intermediate buffers positioned between each work-

station. The ith robot is represented as Ri(i = 1, . . . ,r), while the workstations and buffers are

represented as Wi(i = 1, . . . ,w) and Bi(i = 2, . . . ,w), respectively. Each workstation can be oper-

ated by all robots which that can move freely within the plant floor. An illustration is shown in

Fig. 2.1. The chapter adopts the following notation:
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Figure 2.1: Illustration of mobile multi-skilled robot operated flexible serial production line

1. The set of all workstations in the production line is denoted by W =W1, . . . ,Ww, where Wi

represents the ith workstation, for i = 1,2, ...,w.

2. The set of all robots in the production line is denoted by R =R1, . . . ,Rr, where R j represents

the jth robot, for j = 1,2, ...,r.

3. A r×1 vector u(t) is used to denote the assignment of all robots at time t, as the robots are

able to move from one workstation to another. The element u j(t) = i if robot R j belongs to

workstation Wi. Each robot is assigned to a workstation at any given time.

4. The number of robots assigned to workstation Wi at time t is denoted by mi(t), for i =

1,2, . . . ,w.

5. The ith disruption event is denoted by e⃗i = ( j, ti,di), where j is the number of the robot that

is down at time ti for a duration of di, and i = 1,2, ...,n is the total number of disruption

events, while j = 1,2, ...,r is the number of robots.

6. A robot is considered working in workstation Wi if it is assigned to the workstation and does

not suffer any disruption events. The total number of working robots in workstation Wi is

denoted by m̂i(t), for i = 1,2, . . . ,w.

7. The vector of disruption status’ of all robots is denoted by θθθ = [θ1(t),θ2(t), . . . ,θr(t)]T ,



8

where each element, θ j is 1 if R j suffers from a disruption event at time t, and 0 otherwise.

8. The w× 1 vector of number of robots assigned (mi) and working (m̂i) in all workstations,

denoted by M(t) and M̂(t) respectively, are referred to as the assignment configuration and

working configuration of the production line at time t. The configuration of the production

line denotes how many robots are assigned/working in each workstation.

9. Each workstation has a specified base cycle time Ti, where i =1,2, ...,w. This is the time

it takes one robot in workstation Wi to produce one part. However, since each workstation

can have more than one robot working, the total cycle time for each workstation at any

time t is Ti
m̂i(t)

. This direct proportionality is a simplification for mathematical purposes, and

a different relation does not change the mathematical model to be developed. Note that

m̂i(t)≤ mi(t)∀t because it is not necessarily true that all assigned robots will be working.

10. The production speed of workstation Wi at time t is represented by si(t).

11. The buffer levels at time t are denoted by b(t) = [b2(t),b3(t), ...,bw(t)]T , where Bi is the

buffer capacity of the ith buffer, and i = 2,3, . . . ,w.

12. MT BFj denotes the mean time between failure of robot R j, and MT T R j denotes the mean

time for the repair of robot R j.

We make the following assumptions:

1. The system maintains a constant number of robots, which is represented by the equation

∑
w
i=1 mi(t) = r for all times t.

2. Each workstation Wi has an upper limit m̂i
[U ] on the number of robots working on it at any

given time, such that m̂i(t) is always less than or equal to m̂i
[U ] for all times t.

3. A workstation is considered "slowed down" if the number of robots working on it at a

particular time t is less than the number of robots assigned to it, denoted by m̂i(t) and mi

respectively. A workstation is considered "down" if there are no robots working on it, i.e.,

m̂i(t) = 0 for i = 1,2, ...,w.
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4. A workstation is said to be "blocked" (or partially blocked) if it is functioning normally,

but its immediate downstream buffer is full and the subsequent downstream workstation is

either "down" or "slowed down".

5. A workstation is said to be "starved" (or partially starved) if it is operational, but its imme-

diate upstream buffer is empty and the subsequent upstream workstation is either "down" or

"slowed down".

6. The first workstation W1 will never experience "starvation", while the last workstation Ww

will never be "blocked", as the aim is to study the performance of this isolated production

line.

2.3 System Model

Creating a control mechanism for a manufacturing system requires the development of a math-

ematical model of the system. Manufacturing systems are complex and dynamic, as they oper-

ate under both controlled inputs and unpredictable disturbances. One commonly used method

for modeling these systems is through a state space equation. In the case of the Mobile Multi-

Skilled Robot Operated FMS, the control input is represented by an assignment vector denoted as

u, while the production count of the final product represents the system output. By considering

these variables, the state space equation for the Mobile Multi-Skilled Robot Operated FMS can be

established as:

Ẋ(t) = F
(
X(t),u(t),θθθ(t)

)
(2.1)

where each component of Eq. (2.1) is defined as:

• X(t) = [X1(t), . . . ,Xw(t)]T is the state of the system. Each element, Xi(t) represents the

accumulated production counts of the ith workstation up to time t.

• F(∗) is a function that defines production speed of all workstations at any time t.

• u(t) is the control input to the system at time t. Here, it is the assignment vector.
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• θθθ(t) is the vector of disruption status’ of each robot.

The value of X(t) is influenced by the aggregate cycle time of each workstation at time t,

which is in turn determined by the number of robots operating at each workstation. The quantity

of robots allocated to workstation Wi is represented by mi:

mi(t) =
r

∑
j=1

1u j(t)=i (2.2)

where 1u j(t)=i is a binary variable indicating whether or not robot R j is assigned to workstation Wi.

Assuming all assigned robots have arrived, the number of robots working at a workstation Wi can

be defined using mi and θθθ as,

m̂i(t) = mi(t)−
r

∑
j=1

θ j(t)1u j(t)=i (2.3)

This shows the dependence of X(t) on u and θθθ .

The difference in accumulated production between any two workstations Wi and Wj (i ̸= j),

denoted by τi j(t), within a time period [0, t] is determined by the conservation of flow, and can be

expressed as:

τi j(t) =


∑

i
k= j+1 bk(0)−∑

i
k= j+1 bk(t) i > j

∑
j
k=i+1 bk(t)−∑

j
k=i+1 bk(0) i < j

(2.4)

The upper limit of τi j(t) is determined by the relative location of workstation Wi with respect to

Wj. Depending on this location, Wi can either be blocked or starved when τi j(t) exceeds a certain

boundary, denoted by βi j. Specifically, if Wj is located downstream of Wi and all buffers between

them are full, then Wi is considered blocked. On the other hand, if Wj is located upstream of Wi

and all buffers between them are empty, then Wi is considered starved. If we call this boundary

βi j,

βi j =


∑

i
k= j+1 bk(0) i > j

∑
j
k=i+1 Bk −∑

j
k=i+1 bk(0) i < j

(2.5)

The aforementioned boundary condition indicates that the difference between Xi(t) and X j(t)
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should not exceed βi, j. Nevertheless, if Xi(t)−X j(t) = βi, j and m̂i
Ti
(t) > m̂ j

Tj
(t), then the speed of

workstation Wi is limited by workstation S j. Hence, an operational workstation operates either at

its own pace or at the pace of its limiting workstation. This can be expressed mathematically as

follows:

Ẋi(t) = min
{

ζ

((
Xi(t)−X j(t)

)
−βi j,

m̂ j(t)
Tj

)
,
m̂i(t)

Ti

}
(2.6)

where,

ζ (u,v) =


+∞ if u < 0

v if u = 0

Comparing to all workstations in the system,we have,

Ẋi = min



ζ

((
Xi(t)−X1(t)

)
−βi1,

m̂1(t)
T1

)
ζ

((
Xi(t)−X2(t)

)
−βi2,

m̂w(t)
T2

)
,

...

m̂i(t)
Ti

...

ζ

((
Xi(t)−Xw(t)

)
−βi j,

m̂w(t)
Tw

)

(2.7)

= fi(Xi(t), m̂i(t))

Since, m̂i(t) is directly dependent on ui(t) and θi(t),

fi(Xi(t), m̂i(t)) = fi(Xi(t),ui(t),θi(t)) (2.8)
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Extending the idea to all workstations, we have,

Ẋ(t) =



f1(Xi(t),ui(t),θi(t))

f2(Xi(t),ui(t),θi(t))

...

fw(Xi(t),ui(t),θi(t))

(2.9)

= F(X(t),u(t),θθθ(t))

The output of the line is the output of the end-of-the-line workstation,

Y(t) = Xw(t) = [0,0, . . . ,1]X(t) (2.10)

2.4 Evaluating Performance

A manufacturing system is a stochastic system that frequently experiences disruptions, resulting

in downtime of machines. Therefore, it is essential to mitigate production losses caused by these

random downtimes. Various control schemes can be implemented depending on the system used,

such as turning machines on and off or adjusting cycle times. However, real-time system perfor-

mance needs to be measured to enable the implementation of these strategies. Studies [25, 17, 26]

have shown that Opportunity Window (OW) and Permanent Production Loss (PPL) are a valuable

metric for evaluating just this. Unlike steady state metrics like throughput, which are uniform

for all workstations in a serial line, PPL provides a more dynamic view of the production system

where individual robots/workstations are impacted by each disruption event. This allows for the

classification of events into those that result in permanent production loss and those that do not,

which simplifies and strengthens control design. Additionally, OW can be viewed as the critical

time that a disruption event must last to cause permanent production loss. This parameter is sig-

nificant because it measures the time available for the control mechanism to make adjustments to

the system before the system loses throughput. Here, we will first briefly introduce OW and PPL,
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and then modify the definitions to the fit the new system.

2.4.1 Opportunity Window and Permanent Production Loss for a Serial Manufac-

turing Line

In a serial manufacturing line that operates sequentially and has limited buffer capacities, the op-

portunity window of a particular workstation Wj is denoted as OWj(t) and represents the duration

required for all buffers between Wj and the last slowest machine, Ww∗ , to fill up.

Definition 1. Opportunity window of a workstation Wj, denoted by OWj(Td), is the longest possi-

ble downtime due to a disruption event e⃗=( j,Td ,d), that would not result in permanent production

loss at the end of the line machine, i.e,

OWj(Td) = sup{d ≥ 0 : s.t.∃T ∗(d)∫ T

0
sw(t)dt =

∫ T

0
sw(t, e⃗)dt,∀T ≥ T ∗(d)}

(2.11)

where
∫ T

0 sw(t)dt and
∫ T

0 sw(t, e⃗)dt represent the production volume of the last workstation Ww at

time t in the absence and presence of disruption event e⃗ respectively.

If the duration of a disruption event e⃗ = ( j, t,d) exceeds OWj(t), then for any workstation Wj

in the production line, there is a T ∗ ≥ t+d, which may vary based on the location of Wj in relation

to the slowest workstation Ww∗ , such that:

∫ T

0
sw(t ′)dt ′−

∫ T

0
sw(t ′, e⃗)dt ′ =

d −OWj(t)
Tw∗

∀T > T ∗ (2.12)

Equation (2.12) defines the Permanent Production Loss (PPL), which refers to the production

that cannot be recovered by the system under any circumstances due to the disruption event e⃗. The

equation shows that PPL begins to accumulate once the impact of the disruption event reaches the

last slowest machine Ww∗ .

As the cycle times in a mobile multi-skilled robot operated FMS changes dynamically due

to the movement of robots between workstations, the original definitions of PPL and OW are no

longer applicable, and an extension to these concepts is necessary.
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2.4.2 Extension to Mobile Multi-Skilled Robot Operated FMS

In order to extend the conepts of OW and PPL to the Mobile Multi-Skilled Robot Operated FMS,

we first define what is called the "Ideal Clean Case".

Definition 2. The Ideal Clean Case is a virtual scenario where there are no disruption events and

all machines have enough resources to operate.

This scenario represents the best possible condition for the system to be in. For a mobile

multi-skilled robot operated FMS, the ideal clean case is when there are no disruption events and

each workstation has at least one robot working.

Definition 3. Permanent production loss of a manufacturing system is defined as the difference

between the ideal clean case output, Yc(T ) and the real output, Y (T ), that cannot be recovered.

PPL = Yc(T )−Y (T ) (2.13)

In a fixed configuration manufacturing system, the ideal clean case is straightforward as it

occurs when all machines are operational, and it represents the highest achievable throughput of

the system. However, in a mobile multi-skilled robot operated serial FMS, each workstation can

have a variable number of robots ranging from one to m̂[U ], and the number of robots in one

workstation can affect the robots’ availability in another workstation. Thus, the ideal clean case

can be achieved by several configurations that can be permutations of each other. Therefore, we

introduce the notion of the ideal clean configuration, which refers to the configuration that results

in the maximum possible throughput of the system among all the configurations that satisfy the

ideal clean case. The uniqueness of this configuration is proven mathematically in Theorem 1.

Ideal Clean Configuration

According to the conservation of flow principle, a workstation in a serial line can operate at either

its own rated speed or at the rate of its slower neighbor when the buffer between them is full/empty

[27]. Therefore, in the ideal clean case, the system will eventually reach a steady state where the

production speed is largely determined by the speed of the slowest workstation. As a result, the
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ideal configuration must be one that minimizes the total cycle time of the slowest workstation

among all possible configurations. However, there may be multiple configurations that meet this

criterion. To determine the best configuration among the possible clean configurations, the time

it takes for the system to reach steady state must also be considered. Prior to reaching steady

state, the end-of-the-line workstation operates at its maximum speed until it is slowed down by

neighboring slower workstations and ultimately by the slowest workstation. Therefore, the longer

it takes for the end-of-the-line workstation to slow down, the greater the throughput obtained.

Using this thought process, the ideal clean configuration is defined as follows,

Definition 4. An ideal clean configuration Mc, is the one that satisfies the ideal clean case sce-

nario and the following two conditions (1)The total cycle time of the slowest workstation Tw∗
m∗

w
is

minimized from among all possible configurations, and (2)The time taken for the end-of-the-line

workstation to be slowed down is maximized.

Theorem 1. The ideal clean configuration Mc of a serial FMS with r robots, w workstations and

a base cycle time of T, is unique.

Proof. Let M be the set of all possible configurations of an arbitrary production line L, where L is

defined by the parameters r, w, and T. The set M can be expressed as {1,2, . . . ,m[U ]}w subject to

the constraint ∑
w
i mi = r, where {∗}w represents the Cartesian product of the set w times. Suppose

L has an ideal configuration, Mc = [m1,c, . . . ,mw,c].

We can always find one or multiple configurations in the set M such that the total cycle

time for their slowest workstation Ww∗ is the minimum among all elements of M . According to

condition (1) of definition 4, this must also be true for the ideal clean configuration Mc. Moreover,

since this cycle time is the minimum possible value for the slowest workstation, it is evident that

this is the lowest possible total cycle time among all workstations from all elements of M , i.e,

Tw∗,c

mw∗,c
= S ≤ Ti

mi
∀M ∈ {1,2, . . . ,m[U ]}w s.t.

w

∑
i

mi = r (2.14)

Tw∗ ,c
mw∗ ,c

denotes the total cycle time of the slowest workstation of the ideal clean configuration

and Ti
mi

is the total cycle time of any workstation due to any configuration from M . S is the
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minimum possible total cycle time for all workstations from among all configurations, i.e, no

configuration can have a workstation with the total cycle time lower than S. For condition (2) to

be satisfied, Ww∗,c needs to be the furthest away from the end-of-the-line workstation, from among

the configurations that satisfy Eq. (2.14), i.e, the subscript index of Ww∗,c satisfies,

(w∗,c) = argmax(|w−w∗
i |), i = 1, . . . ,k (2.15)

where k is the total number of configurations that satisfy Eq. (2.14).

Let Mc satisfy both Eqs. (2.14) and (2.15). Now suppose there exists another configuration,

M̃, obtained from the set M , such that both Eqs. (2.14) and (2.15) are satisfied. Since M̃ satisfies

both conditions, and the base cycle time (T) is the same for both configurations, the number of

robots in the slowest workstation for both configurations has to be the same, i.e, mw∗,c = m̃w∗ . This

means that if Mc and M̃ are distinctive ideal clean configurations, then mi ̸= m̃i has to be satisfied

for at least one workstation that is not the slowest workstation. This will lead to one of the two

cases:

1.

mi,c > m̃i =⇒ Ti

mi,c
<

Ti

m̃i
(2.16)

It is true that,
Ti

mi,c
> S =⇒ − Ti

mi,c
<−S (2.17)

Adding Eq. (2.16) and Eq. (2.17), we get,

S <
Ti

m̃i
(2.18)

which implies W̃i is the slowest workstation in M̃ which violates Eq. (2.15).

2.

mi,c < m̃i =⇒ Ti

mi,c
>

Ti

m̃i
(2.19)
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It is true that,
Ti

mi,c
> S (2.20)

Subtracting Eq. (2.20) from Eq. (2.19), we get,

S >
Ti

m̃i
(2.21)

which violates Eq. (2.14).

Therefore, mi = m̃i∀ i = 1,2, . . .w which means M̃ and Mc are the same. Thus, uniqueness is

proved.

To determine the unique ideal clean configuration for a given serial FMS system with a spec-

ified number of robots r, workstations w, and base cycle time T, a double optimization problem

can be formulated. The solution to this problem is the ideal clean configuration denoted by Mc.

max
M̃

|w∗−w| s.t.


M̃ ∈ M̃ = minM

Tw∗
mw∗

s.t.



Tw∗
mw∗

= max(T�M)

∑
w
i=1 mi = r

M ∈ {1,2, . . . , m̂[U ]}w

(2.22)

where � represents element-wise division. The first optimization step involves identifying a set

of solutions, M̃ , that minimizes the total cycle time of the slowest workstation. The second op-

timization step determines the configuration from M̃ that maximizes the distance between the

slowest workstation w∗ and the end-of-the-line workstation w. The result of this double optimiza-

tion problem is the ideal clean configuration, Mc. Recursive methods can be used to solve this

problem efficiently, providing a quick and easy way to determine the ideal clean configuration

without the need for time-consuming simulations.

Redefining OW and PPL

Every multi-skilled robot operated serial FMS has a unique ideal clean configuration that repre-

sents the maximum possible throughput of the system. Any deviation from the ideal clean config-

uration can be considered a disruption event. To provide more clarity, we introduce a new term
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called "effective disruption event (⃗ê)" which is defined as follows:

Definition 5. An effective disruption event, denoted by ⃗̂e(i,Td ,d) is defined as any event that

causes workstation Wi to have m̂i(t)< mi,c, starting at time Td and lasting for a time period of d.

Furthermore, assumption 3 is also modified as,

A workstation is "slowed down" if the number of robots working on it at time t is less than

the number of robots assigned to it in the clean case scenario, i.e, m̂i(t)< mi,c and it is "down" if

there are no robots working, i.e, m̂i(t) = 0 for i = 1,2, ...,w.

By utilizing the concept of effective disruption event, it becomes feasible to describe any

type of PPL in the system, whether it stems from actual disruption events on robots or from an

ineffective control strategy. Consequently, the opportunity window for a mobile multi-skilled

robot operated serial FMS can be redefined as follows:

Definition 6. Opportunity window of a workstation Wj, denoted by OWj(Td), is the longest pos-

sible downtime/slow-down due to an effective disruption event ⃗̂e = ( j,Td ,d), that would not result

in permanent production loss at the end of the line machine, i.e,

OWj(Td) = sup{d ≥ 0 : s.t.∃T ∗(d)∫ T

0
sw(t)dt =

∫ T

0
sw(t,⃗̂e)dt,∀T ≥ T ∗(d)}

(2.23)

The Permanent Production Loss (PPL) can be defined similarly,

∫ T

0
sw(t ′)dt ′−

∫ T

0
sw(t ′,⃗̂e)dt ′ =

(
d −OWj(t)

)( m̂w∗,c

Tw∗
− m̂w∗(t)

Tw∗

)
,∀T > T ∗ (2.24)

The permanent production loss caused by a single effective disruption event is represented by

PPLi. If there are n such events within the time horizon [0,T ], the total permanent production loss

would be the sum of PPLi for all effective disruption events. Therefore, we can express the total

permanent production loss as follows:
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Figure 2.2: Control block diagram for mobile multi-skilled robot operated FMS

PPL(T ) =
n

∑
i=1

PPLi. (2.25)

2.5 Control Problem

To adapt to robot downtime, the control strategy for the mobile multi-skilled robot operated serial

FMS needs to be dynamic, unlike the static ideal clean configuration in the absence of disruption

events. Therefore, the assignment vector u(t) needs to be adjusted in real-time based on the

system’s current state. The effective downtime concept converts the control problem to one with

a set point. The set point is the ideal clean case output Yc, the control variable is the assignment

vector u(t), and the input variable is PPL. The control framework is shown in Figure 2.2.

The control variable u(t) is coupled with the system state X(t) and θθθ(t), meaning that inef-

ficient control decisions lead to additional downtime. This makes control design a complex task.

Moreover, there is no general closed-form representation for a multi-stage FMS, as described in

Section II, which makes classic control methods all but impossible to apply.

To address these issues, a control strategy based on machine learning is used. Given that

real-time robot assignment to workstations is a sequential decision-making problem, an MDP is

considered the most appropriate approach to model it. Additionally, model-free reinforcement

learning (RL) has demonstrated its effectiveness in solving such problems [28, 29].
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2.5.1 MDP framework and Model-Free Reinforcement Learning

Markov Decision Process (MDP) is a mathematical framework to model sequential decision-

making problems. It is defined as a tuple ⟨S ,A ,P,R,γ⟩, where:

• S is the state space, which represents the set of all possible states the system can be in.

• A is the action space, which represents the set of all possible actions that can be taken at

each state.

• P is the state transition probability function, which gives the probability of transitioning

from one state to another, given an action.

• R is the reward function, which gives a numerical reward for each transition from one state

to another.

• γ is the discount factor, which determines the importance of future rewards.

The goal in an MDP is to find a policy, denoted as π , which is a mapping from states to actions

[30]. The policy determines the action to take at each state to maximize the expected cumulative

reward, denoted as V π(s), which is the expected sum of rewards starting from state s and following

policy π . The optimal policy, denoted as π∗, is the policy that maximizes the expected cumulative

reward, and the optimal value function, denoted as V ∗(s), is the expected cumulative reward when

following the optimal policy.

Reinforcement learning (RL) is a subfield of machine learning that deals with decision-making

problems in which an agent interacts with an environment to learn an optimal policy through

trial and error [31]. In RL, the agent learns to maximize the cumulative reward by exploring the

environment and updating its policy based on the observed rewards.

Model-free RL is a type of RL in which the agent learns the optimal policy without explicitly

modeling the environment’s dynamics or the transition probabilities [31]. Instead, the agent learns

by interacting with the environment, observing the rewards obtained for each action, and updating

its policy based on these rewards. Model-free RL algorithms can be categorized into two main

types: value-based and policy-based.
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In value-based RL, the agent learns the optimal value function, V ∗(s) or Q∗(s,a), which rep-

resents the expected cumulative reward when following the optimal policy. The agent then derives

the optimal policy from the optimal value function. Value-based RL algorithms include Q-learning

[32], SARSA [33], and Deep Q-Networks (DQNs) [34].

In policy-based RL, the agent learns the optimal policy directly by parameterizing the policy

and updating the policy parameters based on the observed rewards. Policy-based RL algorithms

include REINFORCE [35], Actor-Critic [36], and Proximal Policy Optimization (PPO) [37].

2.5.2 Problem Formulation

To model the behavior of robots in an environment as a Markov Decision Process (MDP), it is

necessary to define their movements in detail. This can be achieved by introducing intermediate

states that the robots must traverse when moving between workstations. These intermediate loca-

tions provide a more accurate representation of robot movement as they account for the time delay

incurred when robots are moving between workstations. The presence of these intermediate loca-

tions is illustrated in Fig. 2.3. The number of intermediate locations required is fixed and depends

on the distance between the workstations. Additionally, there is no upper limit on the number of

robots that can occupy each intermediate location at any given time. The set of all intermediate

locations is denoted as I .

Figure 2.3: Illustration of intermediate locations within two workstations in the production line

2.5.3 States

The agent’s state is composed of several factors including the assignment of each robot, the loca-

tion of each robot, the disruption status of each robot, and the buffer status. Specifically, the state

vector s is defined as,

s = [u, l,θθθ ,b] (2.26)
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where u denotes the target workstation for each robot and is determined by the selected action. The

location state, l, indicates the current location of each robot in the production line, which can be

either a workstation Wi or one of the intermediate locations Ii. This feature enables the environment

to simulate real-world robot movement. The disruption status of each robot is represented by θθθ ,

and finally, b represents the buffer level at each buffer.

2.5.4 Actions

To maximize the cumulative reward in the FMS system, it is crucial to assign each robot to a

specific workstation. Since there are w workstations available, each robot can be assigned to any

of the w workstations, resulting in w choices for each robot. For all robots, the total number of

possible choices will be wr. In mathematical terms, we define the action set A as follows:

A = [W1,1,W1,2, . . . ,W1,r,W2,1,W2,2 . . . ,Ww,r] (2.27)

Here, Wi, j represents the assignment of robot R j to workstation Wi.

2.5.5 State Transition Probability Matrix

In a manufacturing system, the probability of state transitions is influenced by several factors

such as random disruption events, repair times, and system dynamics. Given the complexity of

such systems, it is challenging to accurately calculate these probabilities without making strong

assumptions that may not hold in the real world. To address this, we use a model-free algorithm

that learns these probabilities from sampled experiences instead of explicitly calculating them.

2.5.6 Reward

To determine the desirability of an action based on the current state, a scalar value called the reward

is used. The selection of an appropriate reward function is crucial for ensuring the convergence

of the algorithm to the optimal policy. In this study, we adopt the negative step-wise permanent

production loss as the reward function, as it has been shown to be effective in similar studies [28,

29]. The reward function is defined as the negative sum of the step-wise permanent production
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R1 R2 R3 R4

MT BFi(min) 50 30 60 80
MT T Ri(min) 4 5 8 3

W1 W2 W3

Ti(min) 6 7 8

B2 B3

Bi 6 8
(φmax,φmin) (1,5) (1,7)

Table 2.1: Parameters for Mobile multi-skilled robot operated FMS

loss:

R(s,a,s′) =−PPL(s,a,s′), (2.28)

where PPL can be calculated using Eq. (2.25).

2.5.7 Double DQN Learning

Q-learning is a popular algorithm in reinforcement learning used for finding the optimal action-

selection policy based on the maximum expected cumulative reward [32]. It learns a Q-value

function that estimates the expected reward of taking a particular action in a given state. The Q-

value function is updated using the Bellman equation, which expresses the expected value of the

current state-action pair as the sum of the immediate reward and the expected value of the next

state-action pair. Q-learning has been successfully applied in various domains, including games,

robotics, and finance.

Deep Q-Networks (DQNs) are an extension of Q-learning that use deep neural networks to

approximate the Q-value function. DQNs were introduced by Mnih et al. in 2015 [38] and have

been shown to achieve state-of-the-art results in various game environments. DQNs use a neural

network to approximate the Q-value function, taking the current state as input and producing a

vector of Q-values for all possible actions. The Q-value for the selected action is then used to

update the network using backpropagation.

Double Deep Q-Networks (DDQNs) were introduced as a modification to DQNs to address

the overestimation of Q-values that can occur in the original algorithm [34]. In DDQNs, two
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separate neural networks are used to approximate the Q-value function, and the target Q-values

are calculated using the Q-network with the best action selection rather than the one being updated.

This approach has been shown to improve stability and reduce overestimation in the Q-value

estimates. Another modification of DDQN is the use of a technique called "experience replay."

This technique involves storing transitions (i.e., state, action, reward, next state) in a replay buffer

and sampling them randomly during the training process. This approach helps to remove the

correlation between subsequent experiences and allows the agent to learn from past experiences

more efficiently.

For this study, we opt to use the Double DQN algorithm since it has fared well in several

applications with large state-spaces like the case with the robot assignment problem.

2.6 Case Study

To demonstrate the effectiveness of the proposed control strategy, a simulation experiment is con-

ducted on an FMS with w = 3 workstations, r = 4 robots, and two buffers. The aim of the exper-

iment is to train the agent to learn the optimal assignment policy using the proposed method and

validate its effectiveness by comparing it with other policies. The experiment comprises two steps:

(1) training the agent to obtain the optimal assignment policy and (2) validating the effectiveness

of the learned policy.

Random disruption events are generated using the Mean Time Between Failure (MT BF) and

Mean Time To Repair (MT T R) values of individual robots, assuming an exponential distribution.

These values, along with the base cycle time of each workstation Ti(i = 1,2, . . .w) and the capacity

of each buffer Bi(i = 2,3, . . .w), are listed in Table 2.1. The initial buffer level bi(i = 2,3, . . .w) is

randomly selected between 0 and Bi to ensure the robustness of the system. The number of inter-

mediate locations between each workstation |I | is set to 1, making the total number of locations

5.

In the experiment, the agent is trained using the double deep Q-learning algorithm to learn the

optimal assignment policy. The learned policy is then compared with other policies to validate its

effectiveness. The simulation results demonstrate the superiority of the proposed control strategy,
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with the learned policy outperforming the other policies in terms of the production loss and buffer

level. This shows the effectiveness of the proposed approach in improving the performance of

FMSs.

2.6.1 Training

During the training phase of the simulation experiment, the proposed method is used to obtain the

optimal robot assignment policy. The simulation is run for several episodes until convergence,

where each episode represents a week’s time, i.e, 3000 minutes assuming 10 hours a day on a 5

day workweek. The unit time for the simulation is set to 1 minute, and at the end of each episode,

the state is reset to a random start to ensure robustness. A deep neural network with two dense

hidden layers, each containing 32 nodes, is used for Q-value approximation. The learning rate α

is set to 0.0001, and an ε-decay schedule is implemented, where the value of epsilon is initialized

at ε = 1 and decays down to ε = 0.1 in 100,000 steps and stays constant afterwards. The reward

used in the simulation is -PPL, and the discount factor γ is set to 0.95.

The convergence of the reward obtained during training is shown in Fig. 2.4. As seen in the

figure, at around 200,000 steps, the reward stabilizes, and the policy obtained is considered good

enough for robot assignment. The learned policy is then validated by comparing it with other

policies in the next step of the experiment.

2.6.2 Performance Evaluation and Comparison

The performance of the system is assessed by comparing the production counts achieved using

different policies in a one-week period. These policies include the learned policy based on the

proposed method, a random assignment policy, a baseline static policy with no control, and two

knowledge-guided heuristic policies. The no-control and random assignment are self explanatory

whereas the knowledge guided heuristic control schemes are developed using the concepts of

opportunity window, ideal clean case and permanent production loss, and can outperform a system

without any dynamic assignment. These control methods are sensor enabled and are similar to

what are employed in industry.
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Figure 2.4: Training data showing, Reward v.s. Time-steps

Buffer-guided Robot Assignment(BgRA)

The Buffer-guided Robot Assignment (BgRA) is a control scheme for dynamic robot assignment

which uses real time buffer levels upstream and downstream of the last slowest machine to reduce

permanent production loss. The main idea behind this control is that increasing the opportunity

window due to a disruption event will decrease the permanent production loss in the system (2.24).

To realize this strategy, sensors are used to measure buffer levels at every time-step and a maximum

and minimum buffer threshold (φmax, φmin) is defined beyond which the workstations upstream or

downstream of the buffer are at risk of getting blocked(partially) or starved(partially). The value

of this threshold, which is usually a percentage of the buffer capacity, is user dependent and can

be tuned based on how long a robot takes to move from one workstation to another. Even though

measurements are taken every time-step, control action is only taken when all robots have reached

their assigned workstations. Consider the following notation:

1. Ri as the set of all robots working in workstation Wi, i = 1,2, . . . ,w, i.e, a robot R j belongs

to Ri if u j = i. Therefore, m̂i = |Ri|.

2. x|α| ∈R Ri represents randomly choosing a set x which contains α elements from Ri.

3. u(x|α| ∈R Ri) = i+1 represents updating the randomly chosen robots’ assignment to to i+1.
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This strategy only allows robots to move between neighbors where a neighbor of workstation Wi is

defined as the immediate workstation on both sides of it, i.e, Wi+1 and Wi−1. Every control action

in BgRA has 3 steps and the assignment vector u is updated every step. It is important to note that

a change in u corresponds to a change in Ri and m̂i, so all of them are updated simultaneously.

1. Initially, some robots are assigned between Ww∗ , Ww∗+1 and Ww∗−1 depending on whether

there is a disruption event at Ww∗ .

• If m̂w∗,c- m̂w∗ = β > 0, consider α = min(β , m̂w∗−1) and implement:

u(x|α| ∈R Rw∗−1) = w∗ if Bw∗ −bw∗ > bw∗+1

u(x|α| ∈R Rw∗+1) = w∗ if Bw∗ −bw∗ < bw∗+1

(2.29)

• If m̂w∗,c(t)− m̂w∗ = β = 0, no new assignment.

• If m̂w∗,c(t)− m̂w∗ = β < 0, consider α = |β | and implement:

u(x|α| ∈R Rw∗) = w∗+1 if Bw∗ −bw∗ > bw∗+1

u(x|α| ∈R Rw∗) = w∗−1 if Bw∗ −bw∗ < bw∗+1

(2.30)

If Rw∗−1 is empty meaning there are no robots working in Ww∗−1, the random choice results

in an empty set, therefore no new assignment is made. The same idea applies to steps 2 and

3 below.

2. Using the updated Ris and mis from step 1, the following steps are repeated for all worksta-

tions upstream of Ww∗ except the first workstation.

• If bi ≥ φmax and m̂i
Ti
> m̂i+1

Ti+1

u(x|1| ∈R Ri) = i−1 (2.31)

• If bi ≤ φmin and m̂i
Ti
< m̂i+1

Ti+1

u(x|1| ∈R Ri−1) = i (2.32)

• No change otherwise.
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3. Meanwhile, also using the updated Ris and mis from step 1, the following steps are repeated

for all workstations downstream of Ww∗ except the last workstation. This can be done in

parallel with step 2. Each workstation upstream of Ww∗ is also denoted by Wi:

• If bi−1 ≥ φmax and m̂i−1
Ti−1

> m̂i
Ti

u(x|1| ∈R Ri+1) = i (2.33)

• If bi−1 ≤ φmin and mi−1
Ti−1

< mi
Ti

u(x|1| ∈R Ri) = i+1 (2.34)

• No change otherwise.

Since the first and last workstations are farthest from the slowest one, filling or emptying of their

adjacent buffers (b2 and bw) cannot be controlled using this strategy. In fact, the goal is to move

robots such that any effective disruption event upstream(downstream) of the slowest workstation

gets "propagated" to the first(last) workstation by replacing the non-operational robots with oper-

ational ones upstream(downstream) of the affected workstation.

Ideal Configuration Mimicking(ICM)

Ideal Configuration Mimicking uses the optimization problem from (2.22) to find an ideal clean

configuration for the current number of working robots in the system. This means that the con-

straint of ∑
w
i=1 Mi,1 = r is replaced by ∑

w
i=1 Mi,1 = ∑

w
i=1 M̂i,1(t) where, M̂(t) is the working con-

figuration of the system. Every time there is a disruption event in a robot, the number of working

robots decrease and a new ideal clean configuration is found. However, this control scheme fails

when the number of working robots is less than the number of workstations because the definition

of the ideal clean case dictates that each workstation needs to have at-least one robot working.

Consider Mc − M̂ =ααα , where the vector ααα refers to change in the number of robots from the

ideal clean configuration. A positive element of ααα denotes that workstation Wi needs to gain αi
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Figure 2.5: Learned policy compared with other policies. Each bar shows mean and 95% confi-
dence interval

number of robots and a negative element denotes that workstation Wi needs to loose αi number

of robots to get to the ideal clean case configuration. Implementation of this control scheme is as

follows:

u(x|αi| ∈R Ri) = j ∀ αi < 0 and α j > 0. (2.35)

For this control strategy, control action is taken every time the number of working robots change.

Comparison

The performance of the learned policy was evaluated through a one-week test duration consisting

of 20 iterations, and the results are shown in Fig. 2.5. The average production counts of each

policy were compared, and it was found that the learned policy outperformed all of its competitors,

including the random control policy, no control policy, BgRa policy, and ICM policy. The learned

policy had an average improvement over the random policy of 254.3 parts, over the no control

policy of 143.6 parts, over the BgRa policy of 60.3 parts, and over the ICM policy of 36.6 parts.

The error bars on the graph represent the 95% confidence interval of each policy, and it was
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observed that the learned policy’s interval did not overlap with any of the other policies, indicating

that it was objectively better than the rest. The no-control policy had a large confidence interval

due to its sensitivity to disruption events, and even its highest mean value was less than that of the

learned policy. The random policy had the worst performance, but it had a low variance due to the

coupling of effective disruption events with the robot assignment, which led to consistently worse

performance.

In contrast, the learned policy was robust, with an average production of 420.5 parts per week,

indicating its effectiveness in improving the production count of the FMS system while ensuring

resilience in the face of random disruption events. The ICM policy was found to be inconsistent

in performance, as indicated by its confidence interval. These results highlight the potential of the

proposed control framework and the learned policy to significantly enhance the efficiency of the

FMS system.

2.7 Summary

The chapter proposes a new approach to flexible manufacturing systems (FMS) by utilizing mobile

multi-skilled robots capable of adapting to random disruptions. The concepts of Opportunity

Window and Permanent Production Loss are extended to such a system, which allows for the

development of a control framework using Markov Decision Processes (MDP) formulation.

By applying reinforcement learning to solve the problem, a policy is trained that outperformed

several heuristic policies in a one-week test duration. The results showed that the proposed control

framework could significantly improve the production count of the FMS system while ensuring

robustness in the face of random disruption events.

The study’s findings and methodology could have significant implications for the manufac-

turing industry. As FMS systems become increasingly complex, incorporating mobile robots that

can adapt to disruption events and optimizing their control policies could enhance production ef-

ficiency and reduce downtime. Further exploration of more optimal assignment policies using

state-of-the-art methods could lead to even more significant improvements in production perfor-

mance.
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2.8 Related Work

Part of the results presented in this chapter have been published in [39, 40]
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Chapter 3

Integrating Robot Assignment, Tool

Change and Preventive Maintenance

3.1 Background

Production control, tool change, and maintenance scheduling are important components of man-

ufacturing systems that have been studied extensively in isolation. For example, Mourtzis and

Doukas [41] examined production control methods to optimize machine utilization, while Ben

Mansour et al. [42] focused on tool change scheduling to minimize production time. Maintenance

scheduling has also been studied, with researchers investigating various maintenance policies such

as preventive, corrective, and condition-based maintenance [43, 44].

However, despite these individual efforts, there is a lack of research that integrates all three

components of production control, tool change, and maintenance scheduling [45, 46]. Babu and

Prasad [45] conducted a review of the literature on tool change and maintenance scheduling in

flexible manufacturing systems, and identified the need for further research on the integration of

these two components with production control. Gebennini et al. [46] also conducted a review of

the literature on the integration of maintenance, production planning, and control in manufacturing
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systems, and found that most studies focused on the integration of only two components, with

limited research on the integration of all three.

Thus, there is a need for further investigation into the integration of these three components in

manufacturing systems to optimize production efficiency and reduce downtime [46, 47]. Mustaffa

et al. [47] proposed a framework for integrated maintenance, production planning, and control

that takes into account the dependencies and interactions between these three components. The

framework includes decision-making models for maintenance scheduling, production planning,

and tool change scheduling, as well as optimization algorithms to minimize downtime and pro-

duction costs.

Other researchers have also proposed methods for integrating production control, tool change,

and maintenance scheduling. For example, Abdellatif et al. [48] proposed an integrated framework

that considers the impact of tool wear and machine availability on production scheduling and tool

change planning. Li et al. [49] proposed a model that integrates production scheduling, tool

change planning, and maintenance scheduling for a multi-product manufacturing system.

Since production control, tool change, and maintenance scheduling are closely interrelated in

a manufacturing system, focusing on only one aspect may not effectively improve the system’s

efficiency. Therefore, in this chapter, we will explore the integration of these aspects and compare

the effectiveness of control strategies that incorporate all three components against those that do

not.

3.2 System Description and Notation

The system under consideration is very similar to the one from Chapter 2 but here, quality control

mechanisms are placed after each workstation for the removal of defective parts. These mech-

anisms are denoted as Qi(i = 1, . . . ,w). Furthermore, every robot is assumed to have all tools

required to work in each workstation. The system is illustrated in Fig. 3.1. Here are the notations,

which are different from/have not been previously introduced in Chapter 2:

1. θθθ = [θ1(t),θ2(t), . . . ,θr(t)]T is the vector of working status of all robots. Each element, θ j

is 1 if R j is working and 0 otherwise. A robot is considered working in workstation Wi if it
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Figure 3.1: Mobile multi-skilled robot operated FMS with added quality control mechanisms

has arrived to it’s assigned workstation and is not currently undergoing maintenance;

2. Each robot has one tool for each workstation making w tools per robot. State of robot R j’s

ith tool at time t is denoted as xi
j(t), i = 1,2, . . . ,w ∀ j = 1,2,3 . . . ,r;

3. Age of each robot at time t is represented by a j(t) where j = 1,2, . . . ,r. There is a prescribed

age for each robot which upon reaching, the robot will fail, we denote this age by A j;

4. With abuse of notation, Qi(t) represents the number of parts that have been discarded from

Wi, for i = 1, . . . ,w;

5. MT BFj and MT T R j represents the mean time between failures and mean time to repair for

robot R j. This applies for random disruption events;

The following assumptions are made:

1. All parameters and quantities discussed in the paper are in discrete time. An argument of

t, is adopted for ease of notation and corresponds to the value of the parameter at discrete

time t. Time advances with a small timestep δ t;

2. The total number of robots in the system remains constant, i.e, ∑
w
i=1 mi(t) = r,∀t.

3. At any given time, the number of robots working in Wi cannot exceed an upper bound, m̂i
[U ],

i.e, m̂i(t)≤ m̂i
[U ],∀t;

4. The system has a unique and constant ideal clean configuration, i.e, the number of robots in

each workstation that results in the best performance is constant and unique, This number is

represented by m̂i,c for the workstation Wi [39].
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5. A workstation is slowed down if the number of robots working on it at time t is less than the

number of robots in the ideal clean configuration, i.e, m̂i(t)< m̂i,c and it is down if there are

no robots working, i.e, m̂i(t) = 0 for i = 1,2, ...,w;

6. A workstation is blocked (partially blocked) if it is operational, its immediate downstream

buffer is full and the subsequent downstream workstation is down (slowed down);

7. A workstation is starved (partially starved) if it is operational, it’s immediate upstream buffer

is empty and the subsequent upstream workstation is down (slowed down);

8. The first workstation W1 is never starved and the last machine Ww is never blocked since the

performance of this isolated production line is to be studied;

3.3 System Model

As in chapter 2, the dynamics of a manufacturing system can be modeled using a state space

equation:

Ẋ(t) = F
(
X(t),Q(t), û(t),θθθ(t)

)
(3.1)

where each component of Eq. (3.1) is defined as:

• F(∗) is a function that defines the rate of part production for all workstations at any time t.

• X(t) = [X1(t), . . . ,Xw(t)]T is the system state, such that Xi(t) is the cumulative production

count of workstation Wi up to time t.

• Q(t) = [Q1(t), . . . ,Qw(t)]T , such that Qi(t) is the cumulative defective product count from

workstation Wi at time t.

• û(t) is vector of control inputs of all robots at time t.

• θθθ(t) is the vector of all robot status’ at time t.
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3.3.1 Control Inputs

The control system of the manufacturing process involves various types of actions such as assign-

ment, tool change, maintenance, and combined tool change with maintenance. To represent these

actions, we introduce the following sets: U represents the set of assignment actions, C represents

the set of tool change actions, M represents the set of maintenance actions, and N = C ×M

represents the set of combined tool change and maintenance actions. The control input is then

defined as a vector û consisting of elements ûi ∈ U ∪C ∪M ∪N for i = 1,2, . . .r.

To assign robots to the workstations, we define the set of assignment actions as U = 1,2, . . . ,w,

where w is the number of workstations. Each robot is characterized by its time remaining for

arrival at time t, denoted by τi(t). Additionally, a constant time ψ is introduced to represent the

time taken by a robot to move between any two workstations. To take an assignment action, the

robot must be active and have already arrived at its assigned workstation.

Tool change actions are necessary to replace the worn-out tools that affect the quality of the

manufactured products. There can be multiple tool wear levels, and the probability of transition

between these levels depends on the current tool state. We represent the state of the ith tool of

robot R j at time t by xi
j(t) ∈ 1,2, . . . ,nt , where nt is the number of possible tool states. We can use

a probabilistic model to express the transition probabilities between the different tool states.

p(xi
j(t)|xi

j(t −δ t)) (3.2)

Experiments on the tool wear during different processes can be used to obtain this model.

Changing the tool is a binary operation, i.e, you either change the tool or you don’t. Thus, the set

C = {1} is sufficient to model the tool change action. Upon taking this action, the tool state is

reset to the least worn state.

Maintenance actions and their effects, on the other hand, are more complex to model. There

are different models of maintenance effects in literature [50], but in this study, we consider the

Kijima III model [51]. This model assumes a "virtual age" of the robot, which increases with time

and after a certain threshold, the robot is considered broken, or no longer usable. In our case, a

corrective maintenance action (CM) is automatically evoked to restore the virtual age of the robot
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to 0. This can be thought of as a replacement of the robot once it is broken.

In addition to CM, we can schedule preventive maintenance actions on the robots (PM) that

restore the virtual age of the robot to somewhere between 0 and the current age. The extent to

which PM can restore the health of the robot is controlled using the "recovery factor", 0 ≤ r < 1,

which is multiplied by the current age to get the new virtual age of the robot. This implies that a

recovery factor of 0 means perfect maintenance since the age is reduced to zero, and the lower the

recovery factor, the better the reduction and vice versa. We define the set of maintenance actions

as M = rk, where k = 1,2, . . . , l, and l is the number of maintenance levels.

Finally, we can perform a combined tool change and robot maintenance, which is defined

using a Cartesian product of the previous action types, i.e., N = C ×M . In addition to aging,

each robot R j is subject to random disruption events which occur with an exponential distribution

with a mean of MT BFj.

Performing tool change or maintenance actions results in downtimes, which can affect the

overall efficiency of the system. Specifically, the time required to change the ith tool of any robot

is represented by Timec
i for i = 1,2, . . . ,w. On the other hand, the time required for Preventive

Maintenance (PM) of level k on robot R j is denoted by TimePM,k
j , where k = 1,2, . . . , l and j =

1,2, . . . ,r. Here, l represents the total number of PM levels. Similarly, the time required for

Corrective Maintenance (CM) on robot R j is represented by TimeCM
j for j = 1,2, . . . ,r. It is worth

noting that the time required for combined tool change and robot maintenance is equivalent to that

of robot maintenance since both are assumed to be carried out simultaneously.

3.3.2 Model Derivation

The model derivation for the most part is similar to how it is done in Chapter 1 but since tool

states are modelled discretely, the model is in discrete time. Furthermore, the addition of quality

mechanisms changes some portions of the proof. Consider Eq. (3.1). For a small value of δ t,

forward Euler discretization can be applied to get a discrete version of the equation:

X(t +δ t)−X(t) = F
(
X(t),Q(t), û(t),θθθ(t)

)
δ t (3.3)
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The number of robots assigned to workstation Wi at time t, mi(t) can be defined as,

mi(t) =
r

∑
j=1

1u j(t)=i (3.4)

where 1u j(t)=i is a binary variable which indicates if robot j is assigned to workstation i or not.

From among all the assigned robots, the robots that are down or have not arrived can then be

subtracted to find the number of working robots, i.e, m̂i,

m̂i(t) = mi(t)−
r

∑
j=1

(
1−θ j(t)

)
1u j(t)=i −

r

∑
j=1

(
1−δk(τi(t),0)

)
1u j(t)=i (3.5)

where, δk(x,y) is the Kronecker delta function, i.e., δk(x,y) = 1 if x = y and 0 otherwise.

The difference in accumulated defective production counts between workstation Wi and Wj

within a time period [0, t] ∀i = 1,2, . . . ,w and j = 1,2, . . . ,w is represented by,

Qi j(t) =


∑

i
k= j Qk(0)−∑

i
k= j Qk(t) i > j

∑
j
k=i Qk(t)−∑

j
k=i Qk(0) i < j

(3.6)

The difference in accumulated production counts between two workstations Wi and Wj in a time

period of [0,1] is represented by µi j(t). Thus, using the conservation of flow and Eq. (3.6), the

difference in accumulated production of non-defective parts between two workstations, Wi and Wj,

∀i, j ∈ 1,2, . . .w, i ̸= j within a time period [0, t] can be defined as:

µi j(t)−Qi j(t) =


∑

i
k= j+1 bk(0)−∑

i
k= j+1 bk(t) i > j

∑
j
k=i+1 bk(t)−∑

j
k=i+1 bk(0) i < j

(3.7)

µi j(t)−Qi j(t) is bounded by an upper limit which we represent as βi j. µi j(t)−Qi j(t) = βi j implies

that Wi is either blocked or starved depending on its relative location from Wj. If Wj is downstream

of Wi, then Wi is blocked and if Wj is upstream of Wi, Wi is starved.

βi j =


∑

i
k= j+1 bk(0) i > j

∑
j
k=i+1 Bk −∑

j
k=i+1 bk(0) i < j

(3.8)
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One important implication of this boundary is that if µi j(t)−Qi j(t) = βi, j and m̂i
Ti
(t) > m̂ j

Tj
(t),

Wj will constrain the speed of Wi. Therefore, an operational workstation either works at it’s own

speed or at the speed of its constraining workstation. This can be mathematically represented as:

Xi(t +δ t)−Xi(t) = min
{

ζ

((
Xi(t)−X j(t)−Qi j(t)

)
−βi j(t),

m̂ j(t)
Tj

)
,
m̂i(t)

Ti

}
δ t (3.9)

where,

ζ (u,v) =


+∞ if u < 0

v if u = 0

Comparing to all workstations in the system,we have,

Xi(t +δ t)−Xi(t) = min



ζ

((
Xi(t)−X1(t)−Qi1(t)

)
−βi1(t),

m̂1(t)
T1

)
ζ

((
Xi(t)−X2(t)−Qi2(t)

)
−βi2(t),

m̂w(t)
T2

)
,

...

m̂i(t)
Ti

∗δ t

...

ζ

((
Xi(t)−Xw(t)−Qi j(t)

)
−βi j(t),

m̂w(t)
Tw

)

(3.10)

= fi(Xi(t),Qi(t), m̂i(t))∗δ t

m̂i(t) is a function of ui(t), θi(t) and τi(t) from Eq. (3.5). Since ui(t) and τi(t) are dependent

on û(t), we can write,

fi(Xi(t),Qi(t), m̂i(t)) = fi(Xi(t),Qi(t), ûi(t),θi(t)) (3.11)

Extending the idea to all workstations, we have,
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X(t +δ t)−X(t) =



f1(X1(t),Q1(t), û1(t),θ1(t))

f2(X2(t),Q2(t), û2(t),θ2(t))

... ∗δ t

fw(Xw(t),Qw(t), ûw(t),θw(t))

(3.12)

= F
(
X(t),Q(t), û(t),θθθ(t))

)
δ t

At every workstation, the defective parts are taken out of circulation. The quality of each product

is modeled as two discrete states, compliant(1) or defective(0), with a probability of transition

conditioned on the state of the tool processing it. The quality of any product produced in worksta-

tion Wi by robot R j at time t is denoted by qi
j(t)∈ {0,1}, and is given in the following probabilistic

form:

p(qi
j(t)|xi

j(t)). (3.13)

The worst tool state among all working in a workstation is used to determine quality. Consider

x̂i(t) such that,

x̂i(t) = max
(
xi

j(t)
)

i = 1,2, . . . ,w, j = 1,2, . . . ,r

s.t u j(t) = i,
(3.14)

x̂i(t) represents the worst tool state among all robots working in workstation Wi at time t. There-

fore, quality of products from Wi can be modeled using the following probability distribution:

p(qi(t)|x̂i(t)). (3.15)

So, we can write the total number of defective parts at time t is,

Qi(t +δ t) = Qi(t)+
⌊Xi(t+δ t)−Xi(t)+remi(t)⌋

∑
k=1

(
1−

[
k0qi ∼ p

(
qi(t)|x̂i(t)

)])
(3.16)

where ⌊∗⌋ is the floor operator which disregards numbers beyond the decimal converting the value
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to an integer and ∼ implies individual sampling from the distribution. This is done because only

fully completed parts are checked for quality. The value that is excluded is the remainder and is

taken into account in the next time step.

remi(t +δ t) = Xi(t +δ t)−Xi(t)+ remi(t)− (⌊Xi(t +δ t)−Xi(t)+ remi(t)⌋) (3.17)

The accumulated non-defective parts produced at each workstation until time t represented as

˜PCi(t) can then be calculated as,

˜PCi(t) = Xi(t)−Qi(t) (3.18)

The output of the line is the number of good parts at the end-of-the-line workstation,

Y(t) = ˜PCw(t) (3.19)

and the buffer levels can be updated,

bi+1(t +δ t) = ˜PCi(t)−Xi+1(t)+bi+1(0) (3.20)

Given consistent initial conditions, the model can be used to compute production counts of the

system at any time recursively.

3.4 Control Problem

The system being analyzed in this chapter is also highly complex and cannot be efficiently handled

by classical control or operational research methods due to its lack of a closed form representation.

Therefore, an MDP formulation and learning methods are required. However, the MDP framework

assumes that all agents have complete knowledge of the environment, which is often not the case

in reality. Many features may be hidden or inaccessible to agents, and the current state of one agent

may not be visible to another. Thus, the MDP framework is inadequate for this type of problem.
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To address this limitation, the Decentralized-Partially Observable Markov Decision Process (Dec-

POMDP) framework is used, which allows for decentralized control policies while accounting

for partial observability of the environment. To solve the problem, a Multi-Agent Reinforcement

Learning (MARL) algorithm is utilized. A brief description of the framework and algorithm used

follows.

3.4.1 Dec-POMDP and MARL

The Decentralized Partially Observable Markov Decision Process (Dec-POMDP) framework is

used to model multi-agent decision-making problems in partially observable environments. In

Dec-POMDP, each agent only has partial observations of the environment and must use its own

observations and actions to estimate the current state of the environment. Dec-POMDP can be

thought of as a generalization of the POMDP framework to multi-agent problems [52]. The main

challenge in Dec-POMDP is finding a decentralized control policy that maximizes the expected

reward of the system over time.

The Dec-POMDP framework is based on the following components: a set of agents, a set

of actions for each agent, a set of observations for each agent, a state space, a reward function,

and a transition probability function. The state space is hidden from the agents, and each agent

observes a noisy version of the state. The transition probability function defines the probability of

transitioning from one state to another given the joint action of all agents. The reward function

defines the reward for each agent as a function of the state and joint action. The goal in Dec-

POMDP is to find a decentralized control policy that maximizes the expected reward over time

[52].

Mathematically, a Dec-POMDP can be represented using a tuple (S ,A1, . . . ,An,P,R1, . . . ,Rn,

O1, . . . ,On,γ), where S is the set of states, Ai is the set of actions available to agent i,

P(s′|s,a1, . . . ,an) is the transition probability function, Ri(s,a1, . . . ,an) is the reward function for

agent i, Oi(o|s,a1, . . . ,an) is the observation probability function for agent i, and γ ∈ [0,1] is the

discount factor. The goal is to find a joint policy π(a1, . . . ,an|s) that maximizes the expected

discounted sum of rewards.
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Multi-Agent Reinforcement Learning (MARL) is a class of learning algorithms that can be

used to solve Dec-POMDP problems. MARL algorithms can learn decentralized control policies

that maximize the expected reward over time through trial and error interactions with the environ-

ment. In MARL, each agent maintains its own value function or policy, and agents may learn from

each other’s experiences. MARL algorithms can be divided into two categories: centralized train-

ing with decentralized execution (CTDE) and fully decentralized training and execution (FDTE)

[53].

In CTDE, a centralized critic is trained using the joint experience of all agents, and each agent

maintains its own actor policy that maps its observations to actions. During execution, each agent

uses its own policy to select actions based on its observations. In FDTE, each agent maintains

its own value function or policy and learns independently from its own experiences. The main

challenge in FDTE is ensuring coordination among agents since each agent learns independently.

Recent advances in MARL, such as multi-agent actor-critic methods and centralized training with

decentralized execution using multi-agent reinforcement learning with communication (MARL-

Comm), have shown promising results in solving large-scale Dec-POMDP problems [54, 55].

3.4.2 Problem Formulation

Since the problem is formulated as a Dec-POMDP the definitions for the observations, actions,

and reward are given below. Since the algorithm to be used is a model-free MARL algorithm,

transition probabilities are not needed.:

• Observation and State Certain variables from the model can be used to define the obser-

vation and state of the system. The observation for each robot Ri is given by:

oi = [ui,di,τi,ai, t
rep
i , x̂i

j,b j,b j+1, m̂1, m̂2, . . . , m̂w] (3.21)

such that robot Ri is working in workstation Wj, i.e, u j(t) = i. The state of the system is a

concatenation of all robot observations, i.e.,
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S = [o1,o2, . . . ,or] (3.22)

• Action:

Each robot can take ne of three kinds of actions as described in 3.3.1. The previous actions

has to be finished for a new action to be chosen by the robot. The action space can be

represented as,

A = {1,2, . . . ,w,(0,1),(0,2), . . . ,(0, l),(1,0),(1,1),(1,2), . . . ,(1, l)}, (3.23)

where the first w elements are assignment actions and the remainder are maintenance/tool

change actions in the form: (tool change, robot maintenance) with a value of 0 implying no

tool change/no robot maintenance.

• Reward:

In multi-agent systems, a single global reward determines the quality of the joint actions

taken by all the agents. The reward function must be designed carefully to ensure that

the system behaves in the desired manner. For instance, in a mobile multi-robot operated

Flexible Manufacturing System (FMS), the reward setting was discussed in [56], where

it was found that a reward based on the Permanent Production Loss (PPL) was the most

effective for controlling the system.

R(t) =−PPL(t)∗wPPL +( ˜PCw(t)−Qw(t))(1−wPPL). (3.24)

where PPL(t) is the Permanent Production Loss of the system which was defined in chapter

2. In the current context, wPPL represents a weighting factor that determines the relative

importance of PPL over part quality. The parameter wPPL is tuned to optimize the system’s

performance.
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3.4.3 Value Decomposition Actor Critic (VDAC)

Compared to single agent reinforcement learning algorithms, multi-agent reinforcement learning

(MARL) algorithms can handle large action spaces effectively. In addition, Actor-Critic MARL

algorithms are well-suited for medium to large state spaces, unlike value-based algorithms such

as SARSA, Q-learning, or Deep Q-learning, which are commonly used. However, because these

algorithms prescribe a global reward, it is difficult to measure the contribution of each agent’s

actions to the system performance, which can lead to sub-optimal performance. To address this

problem, the concept of difference reward was introduced [57]. The difference reward for each

agent is the change in the global reward if the action of that agent is changed to a default action.

The more difference reward an agent has, the more it contributes to the performance. It is important

to note that there is a monotonic relationship between the agent’s local rewards shaped by the

difference rewards and the global reward. Unfortunately, implementing such a solution directly

is challenging because it requires executing the same episode multiple times with different action

settings, which quickly becomes infeasible.

However, inspired by the idea of difference rewards, the Value Decomposition Actor Critic

(VDAC) algorithm was proposed [58]. VDAC is an on-policy multi-agent actor-critic algorithm

that uses a Recursive Neural Network (RNN) with one fully connected neural network as the actor

network and a hypernet with positive weights as the critic network. The RNN extracts sequential

information from the local observation trajectory of each robot in the form of hidden states. It

takes the previous hidden state and final embeddings from the HGNN as inputs and outputs a new

hidden state. A SoftMax activation on the hidden state generates a multinomial stochastic policy

for each individual robot. A fully connected neural network also uses this hidden state to generate

a local value function.

The local value function, along with the global state of the system, is used by the critic network

to compute the global value function, which is used to obtain the gradient for optimization. The

critic uses a hypernet with the global state as input to generate weights and biases. These weights

and biases are then used on the local value functions to compute the global value function. The

weights generated by the hypernet are always positive to enforce the monotonic relationship be-
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tween the local value function and the global value function. The critic network is only used for

training and is disconnected when executing the learned policies. This type of learning paradigm

is referred to as centralized training and decentralized execution, allowing for faster training.

The algorithm is chosen for three main reasons. Firstly, it handles the credit assignment issue

in MARL well by enforcing a monotonic relationship between local and global state values. Sec-

ondly, it is suitable for problems with medium to large state spaces and action spaces. Since the

problem at hand is integrated control, the state and action space is fairly large and depends on the

number of workstations and robots considered. Thirdly, it allows for running parallel episodes,

which helps reduce training time and effectively utilizes available computing resources. The algo-

rithm has shown excellent results in benchmarking with Starcraft II and a maintenance scheduling

problem [26].

3.5 Comparative Study between integrated and non-integrated con-

trol policies

Before comparing the effectiveness of the integrated policy against non-integrated policies, it is

important to first establish what we mean by non-integrated policies. In this context, we consider

two non-integrated policies, each of which only accounts for a subset of the system parameters.

Specifically, one policy only conditions on the system parameters, while the other policy only

considers maintenance and quality parameters. These policies are similar to controlling a manu-

facturing system without accounting for the interdependence of production control, maintenance

scheduling, and product quality. The observation definitions for agents trained on these policies

are as follows:

• System Model: System model only includes features that pertain to the system but not

maintenance scheduling or product quality. The observations of each robots for this model

is:

oi = [ui,di,b j,b j+1, m̂1, m̂2, . . . , m̂w] (3.25)
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R1 R2 R3 R4 R5 R6

TimePM,1
j 9 9 9 9 9 9

TimePM,2
j 5 5 5 5 5 5

TimePM,3
j 4 4 4 4 4 4

TimeCM
j 15 18 16 13 14 13

A j 1000 800 900 1000 950 875
MT BFj 200 300 400 250 200 300
MT T R j 10 9 11 12 11 13

W1 W2 W3

Ti 1 0.9 1.2
Timec

i 2 3 1

B2 B3

Bi 6 8

Table 3.1: Parameters for Mobile multi-skilled robot operated FMS

where j is the index of the workstation the robot R j is working in.

• Maintenance and Quality Model: This model only includes parameters that pertain to qual-

ity and maintenance but not system level parameters. The observations of each robots for

this model is:

oi = [τi,ai, t
rep
i , x̂i

j,m j] (3.26)

In order to compare the effectiveness of the integrated and non-integrated policies, it is crucial

to establish appropriate metrics for evaluation. In this study, four metrics have been chosen for

scoring each policy. These include the number of completed compliant parts, which is measured

from the last workstation, as well as the total number of compliant and defective parts from all

workstations. The Permanent Production Loss is also included as a metric. These metrics enable

a comprehensive evaluation of the performance of the different policies.

A multi-skilled robot operated FMS is considered, consisting of w = 3 workstations, r = 6

robots, and 2 intermediate buffers. The system parameters for the manufacturing system are pre-

sented in Table 3.1. To enhance the system’s robustness, the initial buffer level bi(i = 2,3, . . .w)

is chosen randomly between 0 and Bi. Moreover, 4 tool states are taken into account, i.e., nt = 4.
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The transition model for the tool states is defined as follows:

p(xi
j(t)|xi

j(t −δ t)) =



0.85 0.12 0.02 0.01

0.00 0.76 0.16 0.08

0.00 0.00 0.70 0.3

0.00 0.00 0.00 1.00



The product quality model considered in the experiment is as follows:

p(qi
j(t) = 0|xi

j(t)) =


0.01 0.38 0.67 0.99

0.01 0.50 0.73 0.99

0.01 0.40 0.59 0.99


The tool states for each episode are initialized randomly, and the maintenance levels considered are

categorized into three: level 1 (k = 1,r = 0), level 2 (k = 2,r = 0.3), and level 3 (k = 3,r = 0.6).

Table 3.1 presents the downtime resulting from maintenance actions of different levels. The initial

age of each robot a j( j = 1,2, . . . ,r) is randomly selected between 0 and A j. To simulate unex-

pected disruptions, an exponential distribution with parameters MT BFj and MT T R j is utilized.

The time required for robots to move between consecutive workstations is assumed to be ψ = 1.

The training process of the model involves running multiple episodes until the policy has

converged. In order to expedite the training process, 20 episodes are executed in parallel. Each

episode corresponds to a 10-hour workday, with a time step (δ t) of 1 minute. To evaluate the

effectiveness of the policy, the model is tested after every 10,000 steps (or 16.6 episodes) with 96

test episodes. The test results include several metrics such as the average and standard deviation.

During training, the actor network is set to have a learning rate of 0.001, while the critic network

has a learning rate of 0.0005. A batch size of 20 is utilized for the training process.
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Figure 3.2: Average test return vs. training steps. Top: Integrated model, Middle: System Model,
Bottom: Maintenance and Quality Model
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Figure 3.3: Comparison of performance metrics among different models

The convergence behavior of the integrated model and system model is illustrated in Fig.

3.2, which shows that both models converge at approximately 5× 107 timesteps with a stable

return. On the other hand, the maintenance and quality model converges at 3× 107 timesteps,

but its test return has a high standard deviation due to the exclusion of essential parameters. In

addition, the results displayed in Fig. 3.3 indicate that the integrated model surpasses the other

two models in terms of performance. Specifically, it achieves 880.34 compliant parts production,

2638.84 summed compliant part production, 127.29 summed defective part production, and a PPL

of 111.31. This is a substantial improvement compared to the system model and maintenance and

quality model, with an increase of 242.03 and 379.24 in complete compliant parts, and 731.53

and 1139.1 in summed compliant parts, respectively. Moreover, the defective part production and

PPL decrease by 447.56, 118.3 and 243.72, 401.38, respectively, compared to the system model

and maintenance and quality model. Statistical analysis demonstrates that the integrated model’s

performance increase is significant because the 95% confidence intervals of the different models

do not overlap. The integrated model’s success can be attributed to its inclusion of all essential

features, resulting in a highly effective control strategy.

The results emphasize the importance of using a comprehensive mathematical model that con-
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siders various factors that influence intricate manufacturing systems. The study also showcases

that the suggested model can result in reliable training and efficient control strategies.

3.6 Summary

In summary, the chapter presented a comprehensive mathematical model for a mobile multi-skilled

robot operated manufacturing system. The model integrates three essential control aspects, namely

robot assignment, maintenance scheduling, and product quality control. Through a case study, the

effectiveness of the control formulation based on the developed model was demonstrated. The

study compared the performance of the integrated model-based control with two other control

policies. One control policy was based solely on system parameters, while the other focused only

on maintenance and quality parameters. The results showed that the integrated model-based con-

trol policy outperformed both of the other control policies in terms of compliant part production,

defective part production, and permanent production loss.

The findings of this chapter highlight the importance of integrating production control, equip-

ment maintenance, and quality control in modern manufacturing systems. The proposed model can

be used to achieve higher productivity and efficiency in complex manufacturing systems. By con-

sidering multiple factors that impact manufacturing systems, the model can lead to stable training

and effective control strategies, ultimately improving the overall performance of manufacturing

systems.



52

Chapter 4

Concluding Remarks

4.1 Summary of Scientific Contribution

This thesis makes significant scientific contributions in the field of manufacturing system mod-

eling and control. With the increasing advancements in robot technology, the use of cobots in

manufacturing is becoming more prevalent, making it imperative for scientists to develop appro-

priate frameworks for analyzing such systems. Furthermore, since each manufacturing system is

unique, it is challenging to generalize already developed models to new systems.

The thesis starts by developing a mathematical model for a flexible manufacturing system

(FMS) that is manned by mobile robots. The model is then used to develop domain-specific

real-time performance metrics that can be used for control. The thesis also demonstrates the

effectiveness of a policy that incorporates such metrics, showing that it outperforms other policies

that do not take these metrics into account.

After the initial model is developed, the thesis adds two other crucial aspects of manufactur-

ing: maintenance scheduling and tool change. This creates a more holistic model that is more in

tune with real-life manufacturing systems. A comparison is then made between models that only

consider system-level information and models that only consider process-level information. It is

seen that the integrated model significantly outperforms the rest.
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Overall, this thesis has contributed significantly to the development of comprehensive models

for flexible manufacturing systems that use mobile robots. By deriving domain-specific real-time

performance metrics, the thesis has established an effective real-time control strategy that can be

used to improve overall system performance. The addition of maintenance scheduling and tool

change to the model creates a more realistic model of manufacturing systems.

4.2 Directions for Future Research

This thesis opens up several exciting directions for future research. Firstly, the model could be

generalized to accurately represent robot collaborative behavior during tasks. The current mod-

els make simplifying assumptions about the relationship between workstation cycle time and the

number of robots operating, which may not always be accurate. Addressing this complex problem

requires a deep understanding of the tasks and their constraints, as well as an accurate represen-

tation of the robot’s capabilities. Further research in this area would provide a more accurate

representation of manufacturing systems and enhance their effectiveness.

Secondly, there is an opportunity use state-of-the art machine learning algorithms such as

decision transformers and graph based ML algorithms to further optimize the control policies.

Finally, the scalability of the control problem needs to be studied to accommodate the addition

of more robots and workstations. The current approach of retraining the entire system after each

small change may not be sustainable in the long run. To address this issue, transfer learning may

provide a solution. Overall, this thesis provides a solid foundation for future research in the area

of flexible manufacturing systems and their control.
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