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ABSTRACT

The color-magnitude diagram (CMD) is a type of Hertzsprung-Russell (H-R) diagram, which charts

stellar populations by plotting stars’ brightness in magnitudes versus their color index, from which we

can extract information about the formation and evolution of stars and stellar populations. In this

paper, I present Python code that I have implemented which reads data from Nbody6 protocluster

simulations and interfaces with a software package called Stellar Population Interface for Stellar Evo-

lution and Atmospheres (SPISEA), to calculate photometric values and generate a synthetic CMD.

Using the generated CMDs, I also present a study of the effects of age spread within a simulated star

cluster on the spread of magnitude brightness of the stellar population, and how these effects are seen

in the CMD.

1. INTRODUCTION

1.1. Hertzsprung-Russell and Color-Magnitude

Diagrams

Independently invented by Ejnar Hertzsprung in 1911

and Henry Norris Russell in 1914, the Hertzsprung-

Russell (H-R) diagram is a scatterplot of stars establish-

ing a relation between their luminosity (energy output

in watts) and their effective temperature (Hertzsprung

1908, 1911; Russell 1914). The Color-Magnitude dia-

gram (CMD) is equivalent to the H-R diagram, with

the difference that it replaces luminosity with apparent

magnitude and effective temperature with color index.

CMDs prove to be advantageous for observational con-

texts, as values for color index and apparent magni-

tude are easier to observe and measure since they are

dependent purely on a star’s appearance. Luminosity

and effective temperature, on the other hand, require

additional computation, as luminosity is derived from

apparent brightness & distance via the inverse-square

law, and temperature is derived from peak wavelength

via Wien’s law. These computations often entail us-

ing other observational techniques, including determin-

ing distance from parallax angle or standard candles, as

well as correcting for effects such as reddening, extinc-

tion, and Doppler shift.

The features in H-R diagrams and CMDs reveal vital

information regarding stellar evolution, such as the main

sequence, when stars fuse hydrogen in their cores, or the

red giant branch, when stars toward the end of their

life begin hydrogen shell fusion and helium core fusion

(The Editors of Encyclopedia Britannica 2021). These

features are seen in the H-R diagram shown in Figure 1.

Plotting any given stellar population on an H-R diagram

or CMD discloses a wide variety of information, such as

its overall age, mass distribution, metallicity, and the

rate at which its constituent stars formed.

My project aims to introduce an agile and mod-

ular software solution that can interface with simu-

Figure 1. Example H-R diagram plotting stellar luminos-
ity against effective temperature (European Space Agency
2007).

lation datasets to create color-magnitude (as well as

Hertzsprung-Russell) diagrams. This would be espe-

cially useful in observational applications, as a user

could then model the appearance of a stellar popula-

tion of interest, as well as how its appearance is affected

by certain properties regarding its formation.

1.2. Measuring a Star’s Brightness via the Magnitude

System

The brightness of a star is directly tied to its energy

output, commonly referred to in astronomy as its lumi-

nosity. A star’s luminosity is one of its most important

characteristics, as it is closely related to its other prop-

erties, such as its size, mass, and effective temperature,

all of which dictate its rate of nuclear fusion and chemi-

cal composition. While luminosity is a vital quantity in



Figure 2. Illustration demonstrating the inverse square law
(National Aeronautics and Space Administration n.d.).

astronomy, a star’s brightness as it appears in the night

sky relative to other stars is not always consistent with

their relative luminosities. In the same way a candle

appears increasingly dimmer when viewed from greater

distances, a star may appear dimmer than a star of lesser

luminosity if it is sufficiently far away. Apparent bright-

ness decreases exponentially with an observer’s distance

from a source due to light dispersing spherically, and

spherical surface area scaling exponentially with radial

distance. This is known as the inverse-square law, de-

scribed in Equation 1 and visualized in Figure 2.

Apparent brightness =
Luminosity

4π ∗ distance2
(1)

Therefore, distinguishing between the intrinsic lumi-

nosity of a star and its apparent brightness becomes

paramount. The magnitude system is a logarithmic

scale used to describe the brightness of objects in as-

tronomy, a measure central to this project. Magnitude

brightness can be described as either an apparent mag-

nitude or an absolute magnitude.

1.2.1. Apparent Magnitude

Originating in Hellenistic Greece, the magnitude sys-

tem was created based on stars’ apparent brightness.

Stars were organized into six rankings ranging 1–6, with

brighter stars having a lesser magnitude and dimmer

stars having a greater magnitude (Miles 2007).

In 1856, Norman Robert Pogson formalized the mag-

nitude system into a logarithmic scale by establishing

that a first-magnitude star is 100 times brighter than a

sixth-magnitude star. Based on this stipulation, a dif-

ference of one magnitude corresponds to a brightness

ratio of 2.512. This brightness is measured as flux, the

energy per unit area of a star’s light as it reaches the ob-

server’s location. The relation that dictates the Pogson

magnitude scale in terms of flux is described in Equation

2:

m1 −m2 = −2.5 log10(f1/f2) (2)

This relation yields the magnitude difference between

stars 1 and 2, where star 1 is the star of interest, and

star 2 is the reference star to which the flux ratio is

relative. This relation can be applied to any two stars in

the night sky. Since any star can be chosen as a reference

star, defining magnitudes in this manner is referred to

as relative photometry.

To standardize the magnitude system, astronomers

agreed upon the star Vega to define the zero-point flux

by convention, such that the magnitude brightness for

any given star in reference to Vega is on an “absolute”

scale. This is known as both the Vega system and ab-

solute photometry. The Vega system follows the same

mathematical definition as relative photometry, except

the flux of reference star 2 is replaced with the flux of

Vega, and the corresponding magnitude is set to zero,

shown in Equation 3.

m = −2.5 log10(f/fV ega) (3)

The Vega-calibrated Pogson magnitude system is also

visualized in Figure 3.

1.2.2. Absolute Magnitude

A star’s absolute magnitude (not to be confused with

absolute photometry) is a measure of its brightness on

the same descending logarithmic scale while eliminat-

ing the brightness-attenuating effects of distance, ex-

tinction, and reddening (Hughes 2006). This is done

by taking the apparent magnitude of the object as if

it were viewed from a distance of 10 parsecs, assuming

no intermediate gas or dust. By holding distance con-

stant, the absolute magnitude of stars can be used as

a surrogate measure for luminosity. As such, absolute

magnitude is sometimes seen as a replacement for lu-

minosity on the vertical axis of H-R diagrams, although

the use of absolute magnitude is outside the focus of this

paper.

1.3. Measuring a Star’s Color via Color Index

While color is often treated as a categorical variable in

statistical contexts (especially econometric and behav-

ioral), it is a quantitative variable in astrophysics, as

an object’s color is directly related to the wavelength

and intensity of the light that it emits. The color-

determining wavelength of peak intensity for the light

emitted by an object is dictated by Wien’s law, shown

in Equation 4.
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Figure 3. Visualization of Vega-calibrated Pogson Magnitude scale, with real-world examples (Milwaukee Astronomical Society
2024).

λpeak (µm) =
2900µm ∗K

T (K)
(4)

In addition to an object’s peak wavelength, the intensity

of its emitted light is also dependent on its temperature

and is dictated by the Stefan-Boltzmann law, described

in Equation 5.

Intensity = σT 4 (5)

The inverse relationship that temperature has with

peak wavelength and the quadratic relationship between

temperature and radiative intensity are together ob-

served in Planck’s law, which describes the distribution

of light intensity as a function of wavelength. Thus,

hotter objects are observed to have Planck distributions

which are “taller” in shape and their centers closer to

the end of the wavelength axis corresponding to shorter

wavelengths. Planck’s law is the underlying cause of why

massive stars, which have higher effective temperatures,

appear brighter and bluer: temperature is directly pro-

portional to core gravitational pressure, which increases

with mass. The appearance of the Planck distribution

as dictated by temperature is shown in Figure 4.

Astronomers take advantage of Planck’s law to define

a quantitative measure for color, commonly referred to

as a color index. Color index is derived by measuring

the brightness of an object in magnitudes for two sep-

arate wavelength bands using photometric filters, and

subtracting the two quantities. By convention, the mag-

nitude brightness in the longer wavelength band is sub-

tracted from that of the shorter wavelength band. This

metric yields a smaller (or even negative) number for

bluer objects, as blue objects have lesser magnitudes in

the blue and greater magnitudes in the red. A demon-

stration of how color index is measured is shown in Fig-

ure 5.

Figure 4. Diagram of Planck’s law as a function of temper-
ature (The Editors of Encyclopedia Britannica 2024).

Figure 5. Demonstration of how color index is computed
by selectively measuring radiative intensity in two different
wavelength bands. Adapted from Schombert (2015).
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1.4. Star Formation

A star is born as the result of the gravitational col-

lapse of a cloud of gas and dust in interstellar space

that achieves a critical density dictated by the Jeans

mass and Jeans length (McKee & Ostriker 2007). These

clouds are commonly known as molecular clouds because

they contain molecular species, the most common of

which is molecular hydrogen. Molecular clouds are not

uniformly distributed in mass and have internal turbu-

lence, which introduces variations in density throughout.

As a molecular cloud collapses under its gravity, varia-

tions in density become more pronounced as dense re-

gions (or clumps) have a greater mass concentration and

thus collapse faster than lower-density regions. Stars

are known to form in clusters within these embedded

clumps (Lada & Lada 2003). This process is illustrated

in Figure 6. The formation of stars via the collapse of

molecular clouds is a part of the stellar life cycle, as

dying stars return gas and heavy elements (known in

astronomy as metals) to the interstellar medium, from

which gas and dust can clump up to form stars anew.

Star formation is a field that is actively studied within

astronomy, and is an intricate process that involves

many interacting astrophysical processes. It is the hope

that modeling star formation will aid in understand-

ing its parameter space and how the process responds

to changes in said parameters. Such advancements in

understanding star formation will bring astrophysicists

closer to answering a wide range of questions, such as

how planets form, how the universe looked in its infancy,

and how stellar populations change as galaxies evolve.

2. RELATED WORKS

A similar project was undertaken by an undergrad-

uate student in 2021 for the Chalmers Astrophysics &

Space Science Summer (CASSUM) Research Fellowship

Program, which sought to generate synthetic H-R dia-

grams using isochrone models and gravitational simu-

lations (Masegian 2021). This project takes a similar

approach to generating a synthetic diagram, namely us-

ing mass and age data to interpolate between isochrone

points, although this project was limited in scope to only

generating H-R diagrams that plot luminosity against

effective temperature.

My project expands upon this by using the software

package SPISEA (described in Section 3.2.1) to generate

isochrone curves with which interpolation is executed in

order to determine stellar properties and photometric

values used in plotting stars on the CMD. SPISEA is in-

strumental in my project, as I focus on generating CMDs

as opposed to H-R diagrams, and SPISEA features syn-

thetic photometry software routines to calculate a star’s

apparent brightness in magnitudes. SPISEA especially

shines in this application because it exhibits a high level

of modularity, accounting for myriad variables in the

synthetic photometric process (Hosek et al. 2020).

Both my project and Masegian (2021) draw upon

Farias et al. (2019), the second paper to a three-paper

series that explores and models the formation of star

clusters. In it, they present Nbody6 simulation code for

the formation of hypothetical protoclusters embedded

within in a molecular cloud.

3. METHOD

3.1. Software Environment Information

My code was written in Python 3.9.12, primarily run

in Jupyter Notebook 6.4.8. Astropy 5.0.4 was used for

opening a variety of .fits data files, as well as storing

data in the form of tables. Numpy 1.21.5 was used for

performing mathematical operations on data in the form

of arrays. Matplotlib 3.5.1 was used for generating plots.

Pdb was used for debugging code.

3.2. Model Preparation

Generation of a synthetic CMD is dependent on two

software packages: Stellar Population Interface for Stel-

lar Evolution and Atmospheres (SPIAEA), and Nbody6.

SPISEA provides the isochrones upon which photomet-

ric values are evaluated via interpolation, and gravita-

tional simulations run in Nbody6 supply the values for

mass and age for which photometric values are interpo-

lated.

3.2.1. SPISEA

SPISEA (pronounced “spicy”, as per the creators) is a

software package for modeling stellar populations writ-

ten in Python (Hosek et al. 2020). It has a robust in-

put space, accepting up to thirteen input parameters,

including age, distance, stellar evolution model, stellar

atmosphere model, extinction, photometric filters, and

more.

SPISEA offers support for several commonly used stel-

lar evolution models: MESA Isochrones & Stellar Tracks

(MIST) (Choi et al. 2016), Geneva (Ekström et al. 2012),

PAdova & TRieste Stellar Evolution Code (PARSEC)

(Bressan et al. 2012), Baraffe (Baraffe et al. 2015), and

Pisa (Tognelli et al. 2011). Additionally, SPISEA offers

support for a wide suite of photometric filters, including

those used by Hubble, 2MASS, Gaia, JWST, and more.

SPISEA provides users with the ability to define their

own evolution/atmosphere models and photometric fil-

ters.

Upon specifying the desired input values, SPISEA un-

dergoes a process of calculating synthetic photometry
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Figure 6. Visualization of star birth via gravitational collapse of a molecular cloud (Min 2008).

for a mass range of stars for a specified age, generating a

data table that stores values such as luminosity, effective

temperature, and brightness in Vega system magnitudes

for the specified filters. These data points can then be

used to plot an isochrone curve, which represents how a

star’s magnitude and color index (or in the case of an

H-R diagram, luminosity and temperature) vary with

mass, holding age constant. Example isochrone curves

generated by SPISEA are shown in Figure 7.

SPISEA can generate multiple isochrones in one com-

mand, if an input parameter is supplied as an array of

values, as opposed to a single value. This is particularly

useful in generating an isochrone that contains photo-

metric data for more than one filter, or for generating

a set of isochrones for multiple ages. A combination of

input parameters can be specified as arrays, so one can

supply both an array of ages and an array of filters to

generate a set of isochrones that store photometric val-

ues for multiple filters, which also span a range of ages.

This feature is used quite extensively in my project, as

the generation of a synthetic CMD, especially one with

age spread, requires an isochrone grid to be generated

for multiple ages to model stellar evolution, and also re-

quires more than one filter to be used in the synthetic

photometry calculation such that a color index can be

computed for each star and plotted on the horizontal

axis. Figure 7. 1, 1.5, and 2 Myr MIST isochrones generated by
SPISEA in JWST/NIRCAM filters F115W and F182M, at
distance d = 410pc, with no extinction, and solar metallicity.
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Parameter Cloud Mass Density Freefall Timescale

Σcloud, (g/cm
3) ϵff (scalar)

Possible values 0.1 0.01

1.0 0.03

0.10

0.30

1.00

Table 1. Values for Nbody6 protocluster formation simula-
tion parameters.

3.2.2. Nbody6

Although SPISEA includes functionality for simulat-

ing a cluster and generating a CMD for it, my project

seeks to create CMDs using cluster simulations separate

from SPISEA. While SPISEA has a wide-spanning pa-

rameter space, the synthetic CMD generator lacks two

keystone parameters critical to creating a CMD, which

are the datasets containing the values for stellar age and

mass. Without values for age, SPISEA cannot generate

isochrone curves, which are age-dependent, and with-

out values for mass, the CMD generator does not know

where along the isochrone curves each star lies.

The Nbody6 simulations from Farias et al. (2019) em-

ulate the gradual formation of a protocluster inside a

clump of 3000 solar masses embedded within a molecu-

lar cloud. These simulations follow an initial mass func-

tion described in Kroupa (2001) and feature primordial

binary systems, pairs of gravitationally-bound stars that

form together. The simulations are defined with a wide

range of parameters describing the physical properties of

the clump and parent cloud. The parameters most rel-

evant to this project are the density of the cloud Σcloud

in grams per cubic centimeter and the freefall timescale

parameter ϵff , a scalar value for which higher values

represent a faster freefall. The possible values for these

parameters are summarized in Table 1. The interplay of

these parameters affects gravitational interactions, and

thus the rate of star formation. The mass and age for

each star for any given elapsed cluster time tcl can be

extracted from the simulations as an Astropy table.

The aim of simulating and analyzing these gradually

forming cluster models is to attribute observable effects

that accompany the spread in the age of constituent

stars to the properties of the cloud from which they

form. Understanding the effect of age spread on the

appearance of star clusters would then allow astrophysi-

cists to observe a real-life star cluster and estimate in the

reverse direction the physical properties of the molecular

cloud that formed it.

As noted in Masegian (2021), the clusters simulated

in Nbody6 are observed to have greater age spread with

longer freefall timescales. The same can be said for clus-

ters with lower mass density, as more time is required

for mass to gravitationally collapse to form stars. These

effects are expected to manifest themselves in the syn-

thetic CMD in the form of magnitude spread along the

vertical axis, as isochrones vary along the vertical axis

with age. This is also supported by the effects of age

spread on the spread in luminosity seen in Masegian

(2021).

3.3. Diagram Generation

The process of diagram generation begins with the

preparation of the input parameters for generating the

SPISEA isochrone grid. First, parameters that can be

set in a single assignment statement are specified: dis-

tance, extinction, evolution model, atmosphere model,

reddening, metallicity, and photometric filters.

A snapshot of an Nbody6 simulation for a particular

time tcl since formation is loaded into the program as

an Astropy table, from which values for the mass and

age of each simulated star are extracted. The values for

mass and age are stored in separate Python arrays. The

ages for the youngest and oldest stars are then identified,

and along with an increment value, are used to define

an array of evenly-spaced ages that capture the full age

range of the stellar population. If either the youngest or

oldest star is out of the age range of the specified evo-

lution model, then the age array is redefined in terms

of the bounds of the evolution model. This array of

ages is then fed to the SPISEA constructor statement

for generating the isochrone grid. This constructor is

run, and the resultant generated isochrones are stored

in a Python object array. The diagram generator cre-

ates grid of isochrone curves for interpolation as opposed

to a continuum of curves, as the synthetic photometric

calculations done by SPISEA are computationally ex-

pensive and thus infeasible to perform for every possible

age of the simulated stars. An example isochrone grid

is shown in Figure 8.

After the isochrone grid is generated, the diagram gen-

erator proceeds to the interpolation process, in which

photometric values are calculated for each simulated

star. This is done by an iterative loop that reads the

mass-age value pair (m, a) for each star, identifies the

pair of isochrones whose ages bracket a, performs a lin-

ear interpolation along each isochrone curve to locate

where a star of mass m appears on the respective curve,

then conducts a second linear interpolation between the

two points to arrive at the photometric values for a star

of mass m and age a. A visual explanation of the inter-

polation process is included in Figure 9. In addition to

photometric values, the interpolation process also com-
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Figure 8. Example grid of isochrones at the ages 500 Kyr,
1 Myr, 2 Myr, 4 Myr, 10 Myr, and 20 Myr. In reality, an
isochrone grid generated for the synthetic CMD generator
would be regularly spaced; a small selection of ages was plot-
ted to demonstrate a simple example of how isochrone curves
vary with age.

putes interpolated values for luminosity, effective tem-

perature, and surface gravity. All of these values are

stored in an array that is used for the subsequent plot-

ting of stars as points on the CMD.

Once all simulated stars have been run through the

interpolation process, the diagram generator is ready to

create the diagram. It begins by plotting the isochrone

curves generated by SPISEA, followed by the plotting

of stars’ output values as computed by the interpola-

tor. The user can redefine the code to dictate whether

the program plots apparent magnitude versus color in-

dex for generating a CMD, or luminosity versus effective

temperature for generating an H-R diagram.

3.4. Accounting for Binary Systems

As previously mentioned, the Nbody6 simulations

in Farias et al. (2019) feature binary systems. Ac-

counting for binaries in the CMD generation process

is quite straightforward and will look different depend-

Figure 9. Example interpolation of a 0.9 Msun star with
age 1.25 Myr. Example points are more spread out than
reality for the sake of the reader’s understanding. In reality,
photometric interpolation is done using mass values that are
much closer together.

ing on whether the user wishes to treat them as re-

solved or unresolved. A resolved binary is a system of

two gravitationally-bound stars that subtends a large
enough angular distance to appear to the observer as

two separate stars, and an unresolved binary is a sys-

tem close enough that it appears as a single “star”.

The Nbody data table discerns binary systems from

singles stars in its method of data representation. It does

so by storing the mass of the primary star in the “mass”

column and maintaining separate columns that store the

companion’s mass and the combined mass of the system,

as well as a separate column that stores a boolean flag

indicating whether the row represents a binary system.

Thus, if a row in the table is a single star, this boolean

variable will be false, and the companion mass column

will be empty. The Nbody data table is ordered in such

a way that the table begins with rows representing single

stars at the top, with all binary systems occupying the

bottom of the table. A simplified visualization of this

data representation is shown in Table 2.
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Mass Is Multiple Companion Mass System Mass [...] Age

[...]

1 Msun False (Empty) (Empty) 1.5 Myr

1 Msun True 0.25 Msun 1.25 Msun 1.4 Myr

[...]

Table 2. Example visualization of Nbody6 table represen-
tation for single stars and binary systems.

3.4.1. Resolved Binaries

Modeling resolved binary systems is trivial and follows

the same steps for plotting single stars. The masses of

the companion stars are extracted from the Nbody ta-

ble, and using the same age as the primary star, each

companion star is run through the same process of in-

terpolation and plotting, being treated the same as a

single star. Plotting binary systems in this manner re-

sults in the appearance of binary stars as a point repre-

senting the primary star and another point representing

the companion star in a region of lower mass on the

same age track, as Nbody6 models all binary systems

as having the same age, and always chooses the higher

mass star to be the primary star when pairing stars into

binary systems.

3.4.2. Unresolved Binaries

For unresolved binary systems, a more involved pro-

cess is undertaken. The same process of extracting the

mass of companion stars and running them through the

interpolator is taken. However, after interpolation, un-

resolved binaries are not plotted as a pair of points on

the CMD, as an unresolved binary would appear as a sin-

gle point source in the night sky to an observer. Instead,

a combined brightness for the binary system is computed

by converting the primary and companion stars’ magni-

tude brightness into flux as per Equation 3 using the

zero-point flux of Vega (which is filter-dependent), sum-

ming the flux, and converting the combined flux back

into a magnitude brightness:

fprimary = 10−mprimary/2.5 ∗ fV ega

fcompanion = 10−mcompanion/2.5 ∗ fV ega

mbinary = −2.5 log10(
fprimary + fcompanion

fV ega
)

The binary system is then plotted with this new com-

bined apparent magnitude against the color index of the

primary star. Plotting a binary system in this manner

causes it to be plotted as a point that sits higher on the

vertical axis than if the primary star were to be plot-

ted on its own. This has the net effect of creating a

“binary sequence”, a band of points on the synthetic

CMD that appears to hover above the track of single

stars due to their higher combined brightness. For this

reason, a CMD that treats binary systems as unresolved

is expected to have a greater spread in magnitude as op-

posed to one that plots the same simulated cluster while

treating binaries as resolved.

4. RESULTS & ANALYSIS

For a majority of the synthetic CMDs generated, the

isochrone grid used for interpolation was created using

a proprietary Baraffe evolution model that extends its

lower mass range down to 0.01 Msun. The isochrone pa-

rameters were specified as follows: the distance was 410

parsecs, extinction was neglected, and the metallicity

was set to that of the Sun. A merged atmosphere model

was used that is based on the ATLAS9 (Castelli & Ku-

rucz 2004), PHOENIXv16 (Husser, T.-O. et al. 2013),

BTSettl (Baraffe et al. 2015), and Koester10 (Koester

2010) atmosphere models. A more detailed description

of this merged atmosphere model is found in Lam et al.

(2020). The age range was defined to cover a cluster time

duration spanning 500 Kyr to 20 Myr in 500 Kyr incre-

ments. This age array was fed to the SPISEA isochrone

generator to create the isochrone grid that would be

used for interpolation. The isochrone grid was plotted

without any stars and is shown in Figure 10.

Figure 10. Grid of 0.01–1.4 Msun Baraffe isochrone curves
ranging from 500 Kyr to 20 Myr, with a distance of 410
parsecs and no extinction.
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Figure 11. Sample CMD generated using extended-range
Baraffe isochrones, for a simulated protocluster with age of
1.5 Myr, cloud density of 1.0 g/cm3, freefall parameter ϵff =
0.03, a distance of 410 parsecs, and no extinction.

Figure 12. Sample H-R diagram generated using the same
parameters as Figure 11.

Figure 13. Sample CMD treating binaries as unresolved,
generated using the same parameters as Figure 11. Green
points represent unresolved binaries and black points repre-
sent single stars.

To demonstrate and verify the functionality of the syn-

thetic CMD generator, a CMD and an H-R diagram

were generated for a simulated protocluster. The proto-

cluster simulation was loaded with the cluster time set

to 1.5 Myr, its cloud density equal to 1.0 g/cm3, and

freefall parameter ϵff equal to 0.03. The distance was

set to 410 parsecs, and extinction was neglected. The

generated color-magnitude diagram is featured in Fig-

ure 11 and the H-R diagram generated using the same

simulation data and parameters is included in Figure

12. Another CMD was then generated for the same

simulated cluster, this time treating binary systems as

unresolved, and is shown in Figure 13.

Several CMDs were then generated for a range of ages

to show how the appearance of the CMD changes as a

cluster ages, shown in Figure 14. An important trend to

note is that magnitude brightness on average decreases

as the cluster ages. This is supported by the general

downward migration of isochrones with age in Figure

10. The same trend is noted with luminosity and age in

Masegian (2021).
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Figure 14. Grid of CMDs generated at various cluster ages for the same simulation parameters as Figure 11. The diagrams
show that as a cluster ages, the mean magnitude brightness of stars decreases.
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4.1. Measuring the Effects of Age Spread

To demonstrate the effects of magnitude spread as a

function of freefall timescale, the CMD generator was

run on multiple simulation snapshots using the same pa-

rameters, with the exception that snapshots were loaded

from simulations of varying freefall timescale. Hold-

ing age constant, one can see in the generated CMDs

that protoclusters exhibit a greater spread in magni-

tude brightness for longer freefall timescales due to the

increased age spread. The CMDs generated that demon-

strate the increase in magnitude spread with freefall

timescale are shown in Figure 15.

Then, the effects of magnitude spread as a function of

freefall timescale were then measured on each CMD by

defining a bounding box, splitting it up into color index

bins along the horizontal axis, computing the standard

deviation for the stars enclosed within each bin, and av-

eraging all of the standard deviations. The bounding

box was defined in the intermediate-mass region of the

isochrones so that it would measure spread in a region

of the diagram where the slope of the curves is approx-

imately constant, avoiding areas where the isochrone

curves bend back on themselves. The spread metric was

computed as an average standard deviation across sev-

eral color bins—as opposed to a single standard devia-

tion calculation—to mitigate any contributions that the

slope of the isochrone curves may have on the magni-

tude spread. This metric was measured for all values of

freefall timescale ϵff as described in Table 1, and plot-

ted against ϵff on a logarithmic scale. The magnitude

spread as a function of freefall timescale for a cluster

time of 2 Myr is shown in Figure 16.

In examining the generated CMDs and measuring the

magnitude spread as a function of freefall timescale,

holding elapsed cluster time constant, three important

trends can be observed:

1. For the same freefall timescale, the magnitude

spread is greater for parent clouds of low mass

density.

2. CMDs that plot binaries as unresolved have more

magnitude spread than those that plot binaries as

resolved.

3. For all parent cloud densities, magnitude spread

generally increases with a longer freefall timescale

(smaller ϵff ).

These observations are consistent with expectations and

agree with the findings in Masegian (2021).

The same metric for magnitude spread was then per-

formed on the same simulations while varying the cluster

time. The spread of points along the vertical axis of the

CMD is observed to increase with the age of the cluster

up to a cluster time of 10 Myr. While this metric is

expected to monotonically increase with cluster age, the

spread in magnitudes appears to decrease past a clus-

ter age of 10 Myr. This is an artifact and is due to the

isochrones shifting in position on the CMD, with regions

of higher mass —which have a shallower slope— drift-

ing into the bounding box used to calculate spread. A

plot demonstrating the increase in magnitude spread as

a function of cluster time is shown in Figure 17.

The increase in magnitude spread over time is deter-

mine to be caused by the age spread of the simulated

stars, which also increases with time. Age spread in-

creases with cluster time because existing stars age as

new stars continue to form, increasing the spread in stel-

lar age until star formation stops. Using the same met-

ric defined in Masegian (2021), I measure age spread

for a particular cluster time by computing the 95th per-

centile of age minus the 5th percentile. This percentile

range metric for age spread increases with the cluster

time in the same way that magnitude spread does and

is shown in Figure 18. Finally, we can see in Figure

19 that magnitude spread is directly correlated to age

spread for the age range where the magnitude spread is

more reliable. This relationship is also consistent with

the positive relationship between luminosity spread and

age spread found in Masegian (2021).

4.2. Time Complexity Analysis of Software Execution

In theoretical computer science, time complexity is a

method of analyzing how efficiently a software program

can execute, based on the size of its inputs (Papadim-

itriou 2014). Time complexity analysis examines how

computation time is expected to trend as the input size

increases, described as a mathematical relationship. Be-

cause time complexity analysis examines the asymptotic

behavior of software as a function of its input size, time

complexity is interchangeably referred to as asymptotic

analysis. Time complexity analysis can model a pro-

gram’s best-case (“Big-Omega”), worst-case (“Big-O”),

and expected performance (“Big-Theta”). To evaluate

the software performance of my code, I choose to analyze

its worst-case complexity using Big-O notation (Mala

& Ali 2022). The decision to use Big-O notation is

driven by the large parameter space for the synthetic

CMD generator, for which most of the use cases in this

paper held many input parameters constant, including

distance, metallicity, extinction, and stellar atmosphere

model.
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Figure 15. CMD grid showcasing magnitude spread in response to age spread introduced by the freefall timescale. Something
to note is that there appear to be fewer stars in the CMD for ϵff = 0.01 due to the low rate of star formation.

Figure 16. Average magnitude spread across color bins as a function of freefall timescale, for a cluster time of 2 Myr. Magnitude
spread appears to be larger for longer freefall timescale, lower cloud density, and cases in which binaries are treated as unresolved.
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Figure 17. Plot of magnitude spread as a function of cluster time for all possible values for cloud density and freefall timescale.
The curves diverge from the expectation of being monotonically increasing due to the spread for metric losing its efficacy as
isochrone curves migrate and change shape with cluster age.

Figure 18. Plot of age spread as a function of cluster time for each freefall timescale for a cloud of density 0.1 g/cm3. This
plot emphasizes the positive relationship between age spread and cluster time, which plateaus as star formation halts.

Figure 19. Plot of magnitude spread as a positive function of age spread. The curves also demonstrate the relationship between
age spread and the rate of star birth as they elongate with longer freefall times.
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Various orders of Big-O complexity and accompanying

example algorithms are given:

• O(1) Constant time: the time to execute does

not depend on the size of the input. Example:

accessing a specific index of an array.

• O(n) Linear time: the time to execute scales

directly with the size of the input. Example: per-

forming a linear search for a particular value in an

array using a single for-loop.

• O(n2) Quadratic time: the time to execute

scales with the size of the input to a power. Con-

sidered to be inefficient, and faster solutions are

more desirable. Example: searching for a pair of

matching values in an array using nested for-loops.

• O(2n) Exponential time: the time to execute

doubles when the size of the input increases by one

element. This is considered the worst time com-

plexity and is often the time complexity for brute-

force algorithms. Example: a password-cracking

algorithm that successively picks combinations of

alphanumeric characters until successful.

When performing Big-O analysis, lower-order terms

are dropped, leaving only the highest-order term. Con-

sider a program that searches for a pair of matching

values as described in our O(n2) example, but it then

iterates through the array again to add that value to all

other array elements, shown in Listing 1. This particu-

lar program has a nested for-loop that iterates through

an array of size n for each element in that array. It is

then followed by a single for-loop which iterates through

the same array. Thus, the full expression for time com-

plexity would be O(n2 + n), which then simplifies down

to O(n2). Additionally, Big-O notation discards any co-

efficients not related to the input size. For example,

a program that does three linear searches on the same

array would be O(3n), which reduces to O(n).

The time complexity of the entire process of generat-

ing a synthetic CMD from start to finish can be broken

down into three major components, in ascending order

of expected time to complete:

1. The code that I wrote to extract Nbody data, in-

terpolate points, and generate the diagram.

2. The generation of the isochrone grid using

SPISEA.

3. The protocluster formation simulation in Nbody6.

A code review of the synthetic CMD generator re-

veals that its time complexity is dependent on two in-

puts: the size of the Nbody cluster table (the number of

1 /**

2 * Searches array for a pair of matching values

then adds that value to every other array

element

3 *

4 * Precondition - array has all positive values

5 *

6 * @param array - Array of integers

7 * @return array - Array of integers at the end

of execution

8 */

9 public int[] addDuplicateElement(int[] array) {

10

11 // Stores the value of matching array

elements

12 int match = 0;

13

14 // Scan array to find a pair of matching

values

15 for (int i = 0; i < n; i++)

16 {

17 for (int j = 0; j < n; j++)

18 {

19 if (array[i] == array[j])

20 // Two matching array elements

are found , store the value in match

21 match = array[i];

22 }

23 }

24

25 // Add value to all other array elements ,

if none found , match is still 0 and the

arrray is unaffected

26 for (int i = 0; i < n; i++)

27 {

28 array[i] += match;

29 }

30

31 return array;

32 }

Listing 1. Java example of O(n2) complexity code. The
nested for-loop is O(n2) and the single for-loop is O(n),
leaving us with a full expression O(n2 + n) which simplifies
down to O(n2).

stars in the simulation) n and the number of points in

the isochrone curves p (which is model-dependent). For

both input vectors, the generator performs several iter-

ative for-loops as it reads simulation data, interpolates

stars, and plots both the isochrone curves and the stellar

population. For the worst case, an isochrone is gener-

ated for every possible value of age in the Nbody data

table, which is upper-bounded by n. If the isochrone

files already exist, the program only needs to read the

files, which is linear in p. Thus, the worst-case for gener-

ating a diagram is the maximum possible number of age

values times the number of points in the isochrones, or

O(np). Interpolating and plotting the stars, regardless

of whether binaries are resolved or unresolved, is linear

in n. In total, the simplified Big-O notation for reading

the data files and generating a diagram is O(np+ n).
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Assuming the isochrone curves have already been gen-

erated, the diagram generator executes quite quickly. If

the data files containing the values for the points that

make up the isochrone curves are not present in the

same directory as the CMD generator, then it will gen-

erate an isochrone grid from scratch using the SPISEA

constructor. A review of the SPISEA code1 finds that

the most expensive part of generating isochrone curves

is the routine for calculating the synthetic photometry,

which features a series of nested for-loops dependent on

the number of filters and the number of points in the

isochrone curves. We assume the number of filters to

be constant, so the time complexity of SPISEA is O(n).

When we include isochrone generation in the time com-

plexity analysis, with the assumption that the Nbody

data table has already been generated, the Big-O nota-

tion does not change and is still O(np+ n).

If one were to consider running the Nbody6 simula-

tions as a part of the synthetic CMD generation pro-

cess in addition to isochrone generation, then the time

complexity of Nbody6 is added to the Big-O notation.

According to Wang et al. (2015), Nbody6 has a time

complexity of O(n2), so the full expression for the syn-

thetic CMD generator including SPISEA and Nbody6

is O(n2 + np + n). This ultimately simplifies down to

O(n2).

In terms of measurable time, the synthetic CMD gen-

erator can create a diagram in less than a minute if the

Nbody6 simulation data is already generated and so are

the required isochrones. If no isochrones have been gen-

erated, then the synthetic CMD generator is expected

to take a few minutes to an hour. Although SPISEA

has a linear time complexity, it takes several minutes

to generate an isochrone grid due to how large the evo-

lution model files are. Additionally, the time it takes

for the isochrone grid to generate depends on how finely

spaced the isochrone grid is. Holding granularity con-

stant, the measurable time to generate the isochrone also

depends on the age spread, as a greater age spread will

require more isochrones to be generated, which has been

established to depend on the cloud density and freefall

timescale of the Nbody simulation. Finally, if the Nbody

simulation data is not present and needs to be generated,

then the user would need to run an Nbody simulation

and wait for it to complete, a latency period on the mag-

nitude of days. It is assumed that for most cases, a user

would already have several simulation datasets ready to

go.

1 https://github.com/astropy/SPISEA

5. FUTURE WORKS

Future works may consider various improvements to

the software, both in improving its scientific accuracy,

as well as its general performance and usability.

5.1. Suggested Scientific Improvements

Astronomically literate readers would be justified to

take issue with the method of interpolation with which

photometry was calculated. Values were computed us-

ing a series of linear interpolations along magnitudes,

which is a logarithmic scale, and thus not entirely in

line with the mathematics of the Pogson magnitude sys-

tem. The main reason for this discrepancy is that the

interpolation scheme was written before I learned about

the magnitude system in the Intro Astrophysics course

that I was taking while working on this project. Despite

this, data points that make up the isochrone curves gen-

erated by SPISEA are in close enough proximity that

interpolating between them does not produce any gross

deviations from the expected values. Figure 20 shows

the margin of error realized by the current interpola-

tion subroutine. While this may seem like a simple fix,

implementing a more photometrically sound method of

interpolating along magnitudes would also require im-

plementing a way to identify the filters being used and

using the proper zero-point flux associated with said fil-

ters. This has not yet been addressed at the time of

writing this paper, as the marginal benefit of implement-

ing such a solution did not outweigh the expected cost

of time spent programming such a feature.

Several approaches were taken in trying to measure

magnitude spread as a function of cluster age, freefall

timescale, and parent cloud density. In Masegian (2021),

a similar approach was taken by defining temperature

bins along the horizontal axis of the H-R diagram and

computing the average standard deviation across the

color bins. The same geometric approach proved to be

more challenging to use in the context of this project

for various reasons. Isochrone curves plotting magni-

tude in the NIRCAM filter F200W against the F115W-

F200W color index have regions in which they bend

back on themselves, making it difficult to define bins

along the horizontal axis, as higher mass stars can fall

into the same color bins as intermediate-mass stars.

This was not as big of an issue in Masegian (2021), as

isochrones on the H-R diagram are relatively straight.

The workaround to this issue that was used in this

project was to define upper and lower bounds for magni-

tude, but this introduces a new problem, as isochrones

also decrease in mean magnitude with increasing age.

Thus, the same bounding box will not always measure

spread in the same mass range as a protocluster ages.
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Figure 20. Comparison of interpolated output against gen-
erated output. 1.5 Myr and 2.0 Myr Baraffe isochrones were
used for synthetic interpolation for a 1 Msun, 1.6 Myr-old
star. Then, a 1.6 Myr isochrone was generated to find the
expected photometric values of a 1 Msun star. Both points
were then plotted on top of the generated isochrone.

Additionally, this approach loses efficacy for higher age

models, as the isochrone curves become steeper in slope,

causing measurements of spread for older clusters to be

increasingly contaminated by the shape of the isochrone

curves. Future works might consider probing the effects

of age spread on the CMD using an analytical approach

as opposed to a geometric approach.

As mentioned, SPISEA is packaged with several evolu-

tion models. In generating the synthetic CMDs featured

in this paper, a trade-off was made by choosing to use

the Baraffe model, which covers quite a small mass range

compared to the other models. While the Baraffe model

is particularly useful for modeling low-mass stars, as

well as binary systems with a low secondary-to-primary

mass ratio, its mass range only goes up to 1.4 Msun.

Similar to the merged stellar atmosphere model that I

used in this project, Hosek et al. (2020) offers an evolu-

tion model that merges the Baraffe, Pisa, Geneva, and

PARSEC models via a process of linear interpolation

in the regions where the mass ranges overlap. A simi-

lar merged model using the proprietary extended mass

range Baraffe model would prove useful, as it would

cover a wider mass range while preserving the Baraffe

model’s primary strength in modeling low mass ratio

binary systems. This would provide a more complete

picture of the simulated protoclusters by including the

higher mass stars previously left excluded, especially for

simulations with higher mass density.

5.2. Suggested Software Improvements

Currently, the synthetic CMD generator exists only

as proof-of-concept code in Jupyter Notebooks and re-

quires some values to be manually set by the user,

namely filter code names and zero-point fluxes. A major

driving factor behind the decision to use SPISEA, upon

which this project is heavily dependent, was the agility

and modularity that it offers as a software package. The

benefits that SPISEA offers cannot be fully realized un-

til most, if not all, of the functionality in my code can

run programmatically. Consolidating all of the code into

a callable Python script would also make for a more ele-

gant user experience, which would only require users to

write a few lines of code to use, instead of editing and

running multiple Jupyter Notebook cells.

Other additions to the codebase that would maximize

usability include creating user documentation. This

could be either in the form of a markdown document

on the GitHub repository where this code is hosted or

as a fully-fledged website, as GitHub provides webpage

hosting. Creating a step-by-step example of a CMD gen-

eration in Jupyter Notebook would also be helpful in

educating users. Another possible addition that would

increase usability would be a graphical interface that

would allow a user to run the generator without having

to write a single line of code.

6. CONCLUSION

I introduce a software solution that generates both

Hertzsprung-Russell and Color-Magnitude Diagrams,

capable of modeling binary systems as both resolved and

unresolved. The generator does this by interfacing with

Nbody6 cluster simulation data to obtain values for the

age and mass of each star, which is fed into an interpo-

lation scheme that uses a grid of isochrone curves gener-

ated by synthetic photometry software SPISEA, before

creating the diagram by plotting the isochrone grid and

superimposing the stars on top of the isochrone curves.

I discuss my methods for performing a statistical

study on the generated CMDs. I find that in general,

magnitude spread is higher for simulations with lower

mass density, and for CMDs that plot binary systems

as unresolved. Additionally, I find that the spread in
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magnitude of a CMD increases with freefall timescale,

holding age constant. Finally, I find that the spread

also increases with the cluster’s age as a direct effect

of the stellar population’s age spread as older stars dim

as they age while new stars are being actively formed.

All of these findings are consistent with those found in

Masegian (2021)

While far from a finished product, the software in the

form of proof-of-concept code is publicly available on

GitHub2.
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