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Abstract

We present a method to identify small molecule ligand binding sites and orientations to
a given protein crystal structure using GPU-accelerated Hamiltonian replica exchange
molecular dynamics simulations. The Hamiltonians used vary from the physical end
state of protein interacting with the ligand to an unphysical end state where the ligand
does not interact with the protein. As replicas explore the space of Hamiltonians inter-
polating between these states the ligand can rapidly escape local minima and explore
potential binding sites. Geometric restraints keep the ligands from leaving the vicin-
ity of the protein and an alchemical pathway designed to increase phase space overlap
between intermediates ensures good mixing. Because of the rigorous statistical me-
chanical nature of the Hamiltonian exchange framework, we can also extract binding
free energy estimates for all putative binding sites. We present results of this method-
ology on the T4 lysozyme L99A model system for three known ligands and one non-
binder as a control, using an implicit solvent. We find that our methodology identifies
known crystallographic binding sites consistently and accurately for the small number
of ligands considered here and gives free energies consistent with experiment. We are
also able to analyze the contribution of individual binding sites to the overall binding
affinity. Our methodology points to near term potential applications in early-stage drug
discovery.
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Introduction

Determining small molecule binding sites and bound poses is an important part of the
drug discovery process. When the co-crystal structure of a lead compound is unavail-
able, rationalizing affinity changes in a lead compound series and designing molecules
with improved affinity can prove challenging. Even when the binding site is known,
additional sites with varying druggability may exist, and targeting these alternative sites
may produce desirable biological responses and hence provide new opportunities for
drug discovery.

With rapid development in processing power and molecular simulation algorithms,
computational methods are now playing an important role in predicting protein-ligand
binding properties, especially in early-stage drug discovery. Docking methods, the most
widely used class of structure-based drug design methods, aim to rapidly generate a
comprehensive set of conformations of the protein-ligand complex and rank them using
scoring functions of varying complexity and accuracy. Though docking methods can
quickly rank and often identify binding sites and poses, the accuracy of docking is
limited by a number of factors, including the effectiveness of semi-empirical scoring
functions, the difficulty of including solvation effects, and the difficulty of representing
a statistical mechanical ensemble with one or a few configurations. Docking is therefore
problematic in projects requiring detailed and reliable knowledge of location of ligand
binding in the binding pocket and its interactions with the target in the binding site.

A number of studies have worked to fix many of these issues. Some studies have
successfully improved docking methodologies by introducing receptor flexibility [2],
explicit water molecules [3], or even using post-docking methods to rescore the ensem-
ble of docked structures. ensemble [4, 5]. Nevertheless, as shown by studies evaluating
and comparing different docking programs, their intrinsic limitations, such as a low
level of physical detail and lack of statistical mechanical considerations, make them un-
able to consistently identify ligand binding sites and poses [6–8]. Other structure-based
drug design methods that are specifically designed for identifying binding sites based
on geometric properties [9–11] or that are knowledge-based [12–14] have also been
used with varying success, but these methods are only useful when the binding sites
are well-defined pockets. Moreover, extensive usage of fitted models and parameters
makes them less generalizable to systems for which they were not parameterized.

In contrast with cheap but approximate docking methods are more rigorous, physics-
based techniques such as molecular dynamics (MD) and Monte Carlo (MC) simula-
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tions, which historically have found much less use in the drug design process because
of their expense. With an all-atom representation of the protein and explicit or implicit
representations of solvent, MD simulations can provide microscopic information about
protein-ligand interactions, predict and calculate properties based on statistical averages
of an ensemble of conformations, and have been shown to be capable of accurately pre-
dicting binding affinities in model systems [1, 15, 16]. In theory, MD simulations of a
protein with a known ligand will eventually converge to the true distribution of bound
structures if run sufficiently (though impractically) long with an accurate force field.
Free energy calculation methods [17] can then in principle be used to either decide
between the predicted poses or compare the results with experimental data.

In reality, optimizing these simulation tools individually and assembling them to-
gether to produce useful predictions on a timeline consistent with a realistic drug dis-
covery project is still an unsolved problem. The rapid development of computer power
and techniques such as GPU-accelerated simulations [18, 19], increasingly accurate
biomolecular force fields [20–22], implicit solvent models [23–25], and simulation ma-
chines designed specifically for MD simulations [26, 27] have made these problems
much more amenable to computation, but many issues must still be addressed to enable
simulations of sufficient accuracy to be useful in drug design or discovery.

Among these issues, poor or insufficient sampling is undoubtedly the most stub-
born one [28]. A ligand in an MD simulation can easily become kinetically trapped for
long periods of time, effectively preventing it from visiting the relevant parts of con-
formational space. This leads to incorrect sampling of the ensemble and results in the
computed binding affinities or observed binding modes that are sensitive to the initial
configuration. In fact, without adequate sampling, even a perfect force field would be
of limited use. As argued by Mobley [28] in a recent review, we are still running uncon-
verged simulations with important unsampled configurations on a daily basis, hoping
that the unsampled configurations are not essential to ligand binding or other events of
interest. Overcoming this sampling problem could lead to direct use of more physical
methods to understand and predict small molecule binding.

Because of these computational limits, knowledge of the binding site is usually a
prerequisite in standard ligand binding free energy calculation methods. A crystal struc-
ture of a related small molecule or, alternatively, a putative initial structure generated by
docking tools is often used as the starting configuration to increase the likelihood that
the free energy calculations can at least converge within the binding site in the simula-
tion time available. But could these methods ever practically be used to identify binding



4

sites and poses both rapidly accurately without prior knowledge of the binding site? A
number of docking-based tools and structure-guided drug design methods can sample
putative binding sites to generate a putative ensemble of bound conformations [29], but
in many cases the emphasis on making the process fast discards the physics required
to obtain a properly weighted ensembles that would provide critical information about
which sites are populated to which degree.

In this study, we investigate whether sufficiently optimized accelerated MD simula-
tions in implicit solvent can discover binding sites and poses without prior knowledge of
the binding site, even in a highly buried binding pocket. Many studies have investigated
enhanced sampling methods for accelerating the rate at which MD can sample relevant
conformations and we focus specifically on Hamiltonian replica exchange molecular
dynamics (HREMD) in this paper. In HREMD methods, individual replicas can visit a
range of predefined Hamiltonians during the course of a simulation, with exchanges be-
tween pairs of replicas accepted according to a modified Metropolis criterion to ensure
the equilibrium distribution is preserved for each Hamiltonian. Because kinetic barriers
can vary drastically among Hamiltonians, correlation times can be reduced as replicas
perform a random walk in Hamiltonian space.

HREMD has been proven to improve sampling in free energy calculations over
the use of independent simulations at fixed Hamiltonians [30]. However, because of
the large gap between the time scale that current computers can achieve and the time
scale of most relevant biomolecular motions, we must further optimize HREMD [31] or
combine it with other enhanced sampling methods to fully explore the biophysical con-
figurations of interest in protein-ligand binding. In this study, we accelerate sampling
beyond that which can typically be achieved by HREMD, without sacrificing thermo-
dynamic accuracy, using a number of methods. Specifically, we employ flat-bottom
restraints to keep the ligand near the protein, make use of multiple coupled and uncou-
pled states, incorporate Monte Carlo simulation techniques, and use GPU-accelerated
molecular dynamics with the OpenMM toolkit [19, 32]. A number of other less con-
ceptually central sampling enhancements are also incorporated as discussed below. Be-
cause of the rigorous statistical mechanical nature of the Hamiltonian replica exchange
framework, we can also extract binding free energy estimates at all putative binding
sites using the multistate Bennett acceptance ratio (MBAR) algorithm [33].

We note that the methodology presented here has many similarities to the Bind-
ing Energy Distribution Analysis Method (BEDAM) of Gallicchio et al. [34], in which
Hamiltonian replica exchange in an implicit solvent system is used to enhance sam-
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pling. However, in our case no binding site is assumed, the Hamiltonian is designed to
explicitly maximize phase space overlap between replicas, and no restraints are placed
on the protein.

To test the methodology presented in this paper, we examine a model protein-ligand
binding system consisting of the engineered L99A mutant of T4 lysozyme and a series
of small aromatic ligands. This model system has been widely used by a number of
researchers to test the accuracy of free energy methods [1, 15, 35]. T4 lysozyme L99A
has a small, buried, hydrophobic internal pocket that has proven to be a difficult target
for a number of docking methods [36–39]. Importantly, the crystallographic binding
structures and binding free energies are well characterized for this system, allowing us
to directly validate our methodology against experiment.
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Theory and computational methods

1 System preparation

Protein parameterization: The T4 lysozyme L99A benzene-bound structure (PDB
accession code 181L) was used for this study. The protein was parameterized with the
AMBER parm96 forcefield [22] using LEaP from the AmberTools 11 [40] (with the
force field chosen to be consistent with previous studies of this system) [1].

Ligand parameterization: Ligand structures were created from IUPAC names us-
ing the OpenEye OEChem toolkit (version 2.3.2). Mobley et al. [41] have shown that
the semi-empirical quantum mechanical AM1-BCC charge model [42, 43] for small
molecules works almost as well as ab initio methods in calculating binding free en-
ergies for implicit systems. This treatment was used to derive charges for the ligand,
and the other parameters were assigned from AMBER GAFF force field [22, 44] using
Antechamber [45].

2 Docking

To compare the performance of traditional docking methods and our methodology,
AutoDock 4.2 was used to dock the same four ligands to the protein [46, 47]. Each
ligand was docked twice, once with an entirely rigid protein and once with the same
rigid protein except for three flexible residues, Val111, Val103 and Leu118. The three
flexible residues were chosen based on their reorientation observed in X-ray structures
in response to ligand binding previously reported [1]. All docking was performed to
the same PDB structure 181L, the co-crystal of the mutant with benzene. The protein
for rigid and flexible docking was prepared according to standard AutoDockTools pro-
cedures, hydrogens were added to the original files and Gasteiger partial charges were
assigned. The AutoDock default grid spacing was used, with the grid box sizes for all
docking set to be the box size, which effectively covers the entire protein volume. The
number of genetic algorithm runs was set at 50, resulting in 50 final poses.

We note that this docking setup is only partially blind, as the bound structure used
is the actual crystal structure for one of the four ligands, so there is some degree of
preorganization of the docking site for a bound ligand. Additionally, in the case of the
flexible docking, only the residues which are known to potentially move in alternate
crystal structures were made flexible. This therefore represents in many ways a best
case scenario for docking.
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3 Simulation Methodology

The HREMD-based simulations utilized a modified version of the open-source Python
alchemical free energy code YANK, which is built on the OpenMM GPU-accelerated
molecular simulation library [19, 32]. We performed our simulations using a gener-
alized Born (GB) implicit representation of water [24]. A Langevin dynamics inte-
grator with a 2 fs time step and a 0.1 ps−1 collision frequency was used, with a bath
temperature of 298 K, and bond lengths to hydrogen were constrained by the CCMA
method [48]. A flat-bottom restraint was implemented to keep the ligand in the vicin-
ity of the protein while allowing it to sample in an unbiased way all spatially available
and physically reasonable conformational space consistent with binding. The specific
choices made for this potential are described below. Hamiltonian replica exchange [30]
was used to improve sampling, along with a number of improvements described below.
Simulations were run on GPU computing resources provided by XSEDE, including the
NCSA Forge and Lincoln clusters.

All preliminary tests of simulation parameters and the 10-fold replicate test of sim-
ulation consistency were performed with 1-methylpyrrole, a known binder. The ability
of our approach to differentiate binders from non-binders was then examined by intro-
ducing another three ligands: benzene, a small binder; p-xylene, a larger binder which
requires conformational change in Val111 upon binding; and phenol, a nonbinder, as a
control [1]. By using p-xylene, the ability of the method to sample relevant biomolecu-
lar motions of the protein can be examined.

Figure 1: Protein system and small molecule ligands used in this study. The T4
lysozyme L99A and four small-molecule ligands (of which is one a non-binder) were
examined. The ligand atoms closest to the molecular centroids, circled in red, were
used to define the location of the ligand in subsequent analysis.

The system used in our simulations is shown in Fig. 1. With sufficient sampling of
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all relevant binding conformations, the simulations here can also be used to estimate
protein-ligand free energy of binding. For this purpose, we additionally performed
HREMD simulations of the ligand alone, in implicit solvent, with the same parameters
as described above.

Flat-bottomed restraint: It is common in free energy calculations to employ re-
straints to keep the ligand close to the putative binding site, especially in alchemical
states where the ligand has weakened interactions with the protein [49, 50]. In our case,
we use the tendency of the uncoupled ligand to wander to our advantage in order to
identify new binding sites. A restraint to a single binding site would defeat this objec-
tive. However, we still wish to keep the ligand near the protein, as the time the ligand
spends in the solvent is not of interest, and without periodic boundary conditions the
ligand could drift away indefinitely. We therefore used a flat-bottomed restraint to keep
the ligand close to the protein. The restraint potential is zero inside a cutoff radius (r0)
with harmonic restraining walls outside of this radius, using the equation:

U(r) =

0 if r ≤ r0

1
2
k(r − r0)2 if r > r0

(1)

whereU(r) is the restraining potential, k is the spring constant, r is the distance between
the protein and ligand centers of geometry, and r0 is the cutoff radius.

We set r0 at half the maximum distance between protein atoms plus a 5 Å buffer so
that the entire protein with a buffer zone for surface binding sites was within the cutoff.
We set the spring constant k = 5.92 kcal/mol/Å2, such that at 1 Å away from the cutoff,
the potential energy rises to 5kBT . This minimizes the amount of time the ligand spends
away from the protein. In this case, we obtain a cutoff r0 of 35.34 Å from the center of
the protein for this system. This restraint is present regardless of the degree the ligand
is coupled to the protein. We validated our flat-bottom restraint and integration scheme
for physical consistency as described in the Supporting Information. In the case of
a less spherical protein, the amount of time spent sampling configurations away from
the protein surface could be minimized using a more complicated shape such as an
ellipsoid with major axes constrained to be oriented along the protein’s corresponding
major axes.

Hamiltonian replica exchange molecular dynamics (HREMD): In MD simula-
tions of protein-ligand complexes, ligands are highly likely to get kinetically trapped in
local minima in the free energy surface, potentially for tens of microseconds [51, 52].
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These trapping events prevent the ligands from visiting other potential binding sites.
Our proposed solution to this problem is to use Hamiltonian replica exchange molecular
dynamics (HREMD) between coupled and uncoupled ligand states along an optimized
path of alchemical intermediate states. Typically in HREMD, K replicas of simulations
at different intermediates along the coupling pathway are run in parallel, with Monte
Carlo exchanges attempted periodically between neighboring replicas. This process can
lower correlation times for a particular Hamiltonian state of interest by allowing replicas
to visit other Hamiltonian states with shorter correlation times. In our particular imple-
mentation, the states simulated are defined as follows, starting the fully interacting state:
charges are first scaled to zero, followed by removing the Lennard-Jones interactions
between ligand and protein through soft-core potentials [53–56], leaving an uncharged
molecule decoupled from the protein at the other end state. The state of physical interest
is fully coupled state, in which all protein-ligand interactions are turned on. However,
by including partially and fully uncoupled states in our simulation we allow the ligands
to escape from kinetically trapped states, such as nonspecific binding minima, on the
time scale of tens or hundreds of picoseconds rather than microseconds. Here, we use
a Langevin integrator, but many other sampling methods that preserve the canonical
distribution are possible.

In order to efficiently discover putative ligand binding sites and geometries when
such information is unavailable, we made a number of modifications to the standard
Hamiltonian replica exchange algorithm and Langevin dynamics [30]. These included
the use of Gibbs sampling for replica exchanges, the addition of Monte Carlo trans-
lation and rotation moves for the ligand, the initial seeding of replicas with distinct
configurations, and the use of multiple coupled and uncoupled states to aid statistics.

Gibbs sampling for replica exchange: Recently, it was shown that replica ex-
change algorithms can be considered a form of Gibbs sampling, with approaches that
speed mixing in the permutation of thermodynamic state indices associated with each
replica also speeding overall mixing of the whole simulation Markov chain [31]. We
make use of this scheme here by attempting many swaps of randomly selected replica
pairs (i, j), using the acceptance criteria described in Eq. 24 of Ref. [31]. We attempt a
total ofK5 swaps each iteration, whereK is the total number of replicas, to ensure thor-
ough mixing. Thus, instead of only jumping to the nearest neighbors, a given replica
can jump to any Hamiltonian, though potentially with low probability. The stationary
probability is correctly reproduced. In previous test cases, this increased the rate of
sampling between 2 and 100 times, depending on the observables and systems exam-
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ined, with negligible increase in computational cost [31]. The potential energy matrix
of each configuration calculated at all alchemical states is calculated and stored for later
MBAR analysis.

Monte Carlo ligand translational/rotational moves: To further enhance confor-
mational sampling, we introduced Monte Carlo translational and rotational moves, car-
ried out immediately prior to dynamics with each iteration of Hamiltonian exchange.
For these moves, a random displacement of the ligand atoms is attempted, with the
trial displacement in each dimension drawn from a normal distribution with 1 nm stan-
dard deviation, and acceptance or rejection determined by the Metropolis criterion. A
uniform rotational move is chosen by drawing by generating a uniform quaternion [a
uniform element of SO(3)] and computing the corresponding rotation matrix, with ro-
tations accepted or rejected separately from translation by the Metropolis criterion.

Seeding replicas with independent starting configurations: To eliminate bias-
ing from the starting configuration, we initialized the simulations with random starting
configurations in the allowed simulation space at all replicas. We applied random rota-
tional and translational moves to the initial bound configurations of all replicas using the
scheme described in the previous section without Metropolization. Translational moves
were proposed by generating three random numbers from 0 to 2 nm corresponding to
(x, y, z) translation from the initial bound configurations, followed by a rotational move
as described above. This starting location was rejected if any atom was less than 3 Å
from any protein atom.

Using multiple fully coupled and fully uncoupled states: Standard HREMD uses
only one fully coupled state and one fully uncoupled state. We can increase the amount
of physically meaningful sampling by using multiple fully coupled states. By also using
multiple fully uncoupled states, we increase the chance of a ligand being exchanged into
a fully uncoupled state, gaining the ability to move freely around the accessible volume.

In our HREMD simulations, the potential energy can be expressed in terms of two
coupling parameters:

U(X) = U0(x) + Uelec(X;λelec) + ULJ(X;λLJ) (2)

where U0 is the potential of the system with the noninteracting ligand. Uelec and ULJ
are the Lennard-Jones and electrostatic potentials. λelec and λLJ ∈ [0,1] are the corre-
sponding coupling parameters. Note that the flat-bottom restraint and the ligand torsion,
angle, and bond potentials are fully turned on in all states and therefore part of U0.
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For simulations of the ligand in complex, we use 24 total states, as this number
is easily portable between configurations of 6 or 8 GPUs per CPU on the computing
clusters simulations were run on. In this study, one iteration is defined as the period in
MD time steps between replica exchanges. The MD time step was 2 fs, with 500 time
steps between exchanges, making each iteration 1 ps long. Velocities were reassigned
from the Maxwell-Boltzmann distribution at the beginning of each iteration to ensure
the simulation is maintained in the canonical ensemble. Fewer time steps per iteration
allows for more exchanges in state space in a given unit time, and thus for faster tran-
sitions of ligands in and out of putative binding sites [57]. However, at some point as
exchanges become more frequent there is a tradeoff between the computational over-
head required to perform state exchanges and the acceleration of binding transitions due
to the exchanges. We ran a series of 1 ns simulations with different numbers of time
steps per iteration (250, 500, 1000, 2500). We chose 500 steps for our performance
runs, because with 250 MD iterations per swap the percentage of time spent performing
exchanges was about twice as large as that for 500 and began to be a non-negligible
fraction of the total simulation time. The total time taken was independent of whether
Gibbs sampling or standard Metropolis neighbor exchange was performed. The partic-
ular tradeoffs involved in choosing this exchange frequency are highly sensitive to the
particular CUDA implementation and the networking details of the computers on which
simulations are run, and should not be taken as definitive for all hardware or software
configurations.

We performed a series of runs using a beta version of the code to examine the sensi-
tivity of the simulation efficiency on simulation parameters, including the number and
spacing of intermediate states, the number of additional fully coupled and fully uncou-
pled states, and the size of the Monte Carlo displacements. The results showed that
other than having sufficiently close spacing of intermediate states in λ space, sampling
was not very sensitive to these simulation parameters, and thus no attempt at extensive
optimization was made. A table of simulation parameters tested is included as Supple-
mentary Material.

The ligand was alchemically decoupled from the rest of the system through a series
of discharging intermediates in which the ligand charges were scaled by the alchemical
parameter λelec (charge annihilation). This was followed by a series of intermediates in
which the ligand Lennard-Jones interactions were removed using the soft-core pathway
in Pham et al. [56] with parameters a = 1, b = 1 and c = 1 using the alchemical
parameter λLJ (Lennard-Jones decoupling). Specifically, we utilized the alchemical
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schedule (λelec: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.85, 0.65, 0.35, 0; λLJ : 1.0, 0.95, 0.90,
0.85, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, 0.0, 0.0, 0.0), which were chosen
to ensure that replica exchange success probabilities between neighboring states were
approximately equal across the entire transformation. Here, λ = 1 represents the fully
interacting potential term, while λ = 0 represents the noninteracting potential. Note that
six fully coupled and three fully uncoupled states were used, for a total of 24 states. One
equilibrium iteration was followed by production runs performed for 15 000 iterations
(15 ns/replica).

For the ligand in solvent HREMD simulations (decoupling the ligand in implicit
solvent), we used only three states—a fully coupled state (λelec = λLJ = 1), a fully
discharged (λelec = 0;λLJ = 1), and a noninteracting state (λelec = λLJ = 0). This
spacing was found to be sufficient to guarantee full mixing between states the solvent
alone. All other simulation parameters were the same as in ligand-protein complex
simulations.

4 Production runs

To test simulation consistency and repeatability, we performed ten independent runs of
the 1-methylpyrrole/T4 lysozyme L99A system starting from random initial configu-
rations for 15 ns per replica. After clustering the sampled ligand conformations from
the fully interacting states, we then compared clustering patterns between these ten in-
dependent runs. Simulations starting from different configurations, if run sufficiently
long, should converge to the same clusters, within some statistical noise.

We also performed simulations with two other binders and one other non-binder to
examine whether this methodology was able to differentiate binders from non-binders.
For the p-xylene case, a conformational change in Val111 is required for the ligand to
bind [1], which provides a good opportunity to test the ability of our method to sample
relevant biomolecular motions and ligand motions.

Binding site identification: The configurations sampled at all of the fully coupled
(i.e., fully interacting) states were analyzed together to give final predictions of putative
binding sites. In the analysis, the location of the ligand at any given configuration was
determined by the ligand atom closest to the center of geometry of the ligand, circled in
red in Fig. 1.

Protein alignment: Both the protein and ligand were flexible during our simula-
tions. To be able to cluster all ligand binding sites, all protein conformations from all
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complexes had to be aligned to provide information on ligand locations relative to the
protein. Alignments used the Kabsch algorithm [58, 59] as implemented by Bosco K.
Ho [60]. All configurations were aligned to the alpha carbons of the crystal structure.

Clustering analysis: After alignment, the samples from all fully coupled states
were clustered using the Density-Based Scan Algorithm with Noise (DBSCAN) [61].
The rationale behind this choice of clustering algorithm lies in the nature of the data.
We do not know ahead of time how many alternative binding sites are possible, though
we expect that the density in binding sites will be moderately localized, because the
exponential nature of the Boltzmann distribution means that binding sites with free en-
ergy of binding several kcal/mol lower will have significantly higher density compared
to other locations. However, there is also likely to be nonspecific binding density. We
therefore expect distinct clusters, with moderate noise, but with the number of clusters
unknown a priori. These requirements make K-means and hierarchical clustering algo-
rithms less useful. Density-based clustering methods that cluster results based on the
density of data points appear more applicable.

To simplify the clustering, we began the clustering process with a grid-based den-
sity analysis. Starting from atomic coordinates of the protein, a three-dimensional cube
with 36 Å edge length, just large enough to fit the observed data sampled during the flat-
bottom restrained simulation, was centered on the center of geometry of the system and
filled with a 2 Å resolution grid defining 46 656 cells of 8 Å3 volume each. A 2 Å edge
length was chosen based on the standard tolerance for the approximate maximum al-
lowable fluctuations from crystal structure. The uniform density over all nonempty
cells was calculated, and all cells with fewer than 8 times the background density were
discarded. The factor of 8 was chosen for this model system because, clusters that
appeared visually distinct could not be separated by the clustering algorithms with a
density cutoff factor less than 8. This choice of density threshold to exclude from the
clustering introduces a small amount of bias, which we address later.

After this filtering, the DBSCAN algorithm was used to cluster the results [61]. We
used a minimum threshold population of 1% of the total number of samples remaining
after low density filtering as the criteria for defining a cluster. Without this filtering
removing the low density volumes, the DBSCAN algorithm tended to give large amor-
phous clusters. This initial density filtering resulted in well-defined clusters in all cases
examined. The most populated cluster was then identified as the most probable binding
site, with the the centroids of the clusters used to define the locations of the binding
sites.
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Binding pose identification: The bound configuration of the ligand is determined
not only by the location of its center of geometry, but also by the orientation and confor-
mation of the ligand within the binding site. It is therefore important to further analyze
these clusters to find the most probable binding orientations and poses.

In order to identify poses, we ran LIGPLOT for each observed pose in the predicted
binding sites [62]. The LIGPLOT program generates both lists of observed interactions
(such as hydrogen bonding, π-π stacking, and hydrophobic contact interactions) and
schematic 2-D representation of protein-ligand complexes in terms of these interactions.
We first examined the hydrophobic interaction patterns of all the poses at each site by
counting the interactions predicted by LIGPLOT. We then identified interactions that
were frequently formed for low-RMSD structures and classified the poses based on
possession of sets of these predicted interactions.

However, because of the small size of these ligands and the partial freedom the
bound states have to reorient in the binding site, it was impossible to uniquely spec-
ify low RMSD configurations based solely on lists of observed contacts. We therefore
default to classifying clusters based on the average RMSD values of all the poses in
the most populated cluster from the ligand in the co-crystal structure after alpha carbon
alignment in order demonstrate the performance of the methodology. This procedure re-
quires having a crystal structure with the ligand of interest, but we anticipate that pose
identification based on specific protein-ligand contacts in a crystal structure-agnostic
method should work much more effectively than it worked here for other more compli-
cated binding sites with larger, more chemically diverse ligands.

5 Computing binding free energies

Because the simulation algorithm presented here generates samples from all the inter-
mediate states connecting the coupled and uncoupled states, we can use free energy
perturbation and reweighting techniques to calculate binding free energies. In this case,
we use the multistate Bennett acceptance ratio (MBAR) method to calculate free ener-
gies [33], as implemented as the pymbar Python code [63]. Because the Gibbs replica
exchange scheme we employ requires the potential energies of all replicas be computed
for all alchemical states anyway, no additional information is required to analyze the
simulation using MBAR if these energies are written to disk during the simulation, as
we do here.

The thermodynamic cycle used in this calculation is show in Fig. 2, and involves
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Figure 2: Thermodynamic cycle for calculating binding free energy. To calculate
the binding free energy (B to A), the ligand is first decoupled from the solvent (B to
D), transferred into the protein binding site (D to C), and coupled with the protein (C
to A), closing the cycle. The dotted box represents the implicit solvent environment.
Grey and red ligands represent decoupled and coupled ligands, respectively. ∆Gsolvent

and ∆Gcomplex are the free energies of decoupling the ligand in solvent and complex,
respectively.

alchemical decoupling of the ligand both from a system containing a protein, and from
a system without a protein. These two free energies are calculated using HREMD
simulations as described in the Methods section.

The free energy of then transferring the ideal gas ligand out of the simulation volume
(∆Gtransfer) is equal to kBT times the ratio of the volumes the ideal gas ligand is
sampling. We will then have for the overall binding free energy:

∆Gbinding = ∆Gsolvent −∆Gcomplex + kBT ln
V ◦

Vbinding
(3)

where ∆Gsolvent and ∆Gcomplex are the free energy of decoupling the ligand in solvent
and complex and V ◦ and Vsphere are the standard-state volumes for a single molecule in
a box of size 1 L/NA, whereNA is Avogadro’s number. and Vbinding is the volume of the
binding site, which may change depending on the most appropriate definition of binding
site. kB and T are the Boltzmann constant and temperature in Kelvin, respectively.
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∆Gcomplex can be calculated by:

∆Gcomplex = −kBT lnQ/V ◦ (4)

where Q is canonical partition function, which is given by:

Q =

∫
V

e−U/kBTd~x (5)

where U is the potential energy as a function of the coordinates ~x and V is the phase
space volume of ~x over which we sample.

In our study, because we spatially restrict the ligand to the vicinity of the protein,
we can calculate not only the overall free energy of the ligand binding to the protein,
but also the binding free energy with respect to all potential binding sites considered
jointly and the binding free energies of ligand binding to individual binding sites. The
difference between these three binding free energies is the configurational volume over
which we integrate to calculate the partition function.

Overall binding free energies calculations: The overall binding free energy is
the free energy of the ligand considering the entire simulation volume, with partition
function given by:

Qoverall =

∫
Voverall

e−U/kBTd~x (6)

where Voverall is total volume inside the flat-bottom sphere. In the limit of box that
does not extend far beyond the edge of the protein, and with a sufficiently tight binding
affinity, this would be the free energy consistent with an experimental measurement of
protein association.

Binding free energies of individual sites: We can also calculate the binding free
energies of the ligand to individual binding sites. Using the grid constructed during
the grid-based density analysis, we define a site as the volume made up of the smallest
number of cells that include all the samples from that cluster. The partition function for
the site is given by:

Qsite =

∫
Vsite

e−U/kBTd~x (7)

where the only difference is that Vsite is volume within an individual binding site. This
free energy will be equivalent to the binding free energy calculated for a method that
requires binding at a specific site of a protein, such as fluorescence polarization compe-
tition assays. MBAR is applied to all samples that occur in that defined binding volume,
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over all intermediate and final states.
Binding free energies over all sites: We introduce a final measure, all-site binding

free energies, which is the binding free energy over all the bound clusters considered
together. Here, we are interested in the binding affinity over the volume defined by all
known specific binding clusters previous identified. The partition function is given by:

Qall sites =

∫
Vall sites

e−U/kBTd~x (8)

where Vall sites represents the volume of all individual binding sites combined. This
should be nearly equal to the binding affinity over the entire protein (∆Goverall), and
thus may be more comparable for many experimental definitions of binding affinity such
as by isothermal calorimetry (ITC) or surface plasmon resonance (SPR) than the overall
binding affinity using MBAR. This definition does exclude probability density outside
of a localized binding site but still in contact with the protein, but these interactions
should be negligible because of the low density. Because of the granularity of the
boxes, this definition may also exclude some probability density at the edge of clusters
that spills into neighboring boxes without reaching the density cutoff, an approximation
that we analyze later. MBAR is applied to the samples that occur over the joint volume
of all binding sites, over all intermediate and final states. Because the partition function
in MBAR is a weighted sum over all samples, each sample can be assigned to a binding
cluster, and we strictly satisfy:

Qall sites =

Nclusters∑
i=1

Qsite,i (9)

or alternatively:

∆Gall sites = −kBT ln

(
Nclusters∑
i=1

e−∆Gsite,i/kBT

)
(10)

In this study, there are a few cases where more than one cluster has samples in the same
grid volume, which means that relationship in Eqs. 9 and 10 is only approximately
correct because of double counting. However, for this grid size, the differences are less
than 0.1 kcal/mol, so we do not attempt to define binding site volumes using a finer grid
spacing or split the boxes between clusters.
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Results and discussions

1 Binding sites are consistently identified in repeated trials

To test the statistical robustness of our methodology, we performed ten independent
simulation runs of the 1-methylpyrrole/T4 lysozyme L99A system. We analyzed the
configuration distribution from all fully coupled states for each independent run indi-
vidually and compared them.

Between six and twelve clusters were identified for each of the ten simulations, with
a total of seventeen independent clusters observed among all simulations. For statistical
consistency, we are interested mainly in the most common clusters. After we discarded
the six singletons which occurred in only one simulation, eleven sites were left that
appeared in multiple simulations. The occupancy O of a specific site i, the probability
of observing a ligand in this binding site, over the Ntrials = 10 trials is defined as:

Oi =
1

Ntrials

Ntrials∑
j=1

Ni,j

Ntotal,j

(11)

Ni,j is the number of samples observed in site i in trial j, and is set to zero if no cluster
is found at that site that trial. Ntotal,j is the total of number of samples in the observed
clusters over all trials. This is a slight approximation, as if a cluster is not observed, the
volume still has nonzero density. However, since the cutoff for a cluster is < 1%, the
approximation does not appreciably change the results.

Table 1 shows the analysis of the eleven sites identified from our ten runs, with
their physical locations in the protein shown by the first eleven positions in Fig. 3a. In
Fig. 3a, the volume describing the binding site is represented by a sphere with diameter
of 2 Å (the grid resolution). Black indicates the experimental binding site. The eleven
sites are numbered based on the frequency of each cluster appearing in the ten trials,
and by occupancy if frequency is the same. Of the eleven sites, three are observed in all
ten runs, two of which had fractional occupancies greater than 0.2 in all ten runs.

Importantly, site 1 is the most populated in all ten independent runs and is located at
the crystallographic ligand binding site, indicating that we can identify this experimen-
tally observed binding site consistently. Site 2 is also observed in all runs and has an
average occupancy of more than 0.2. Though not as populated, site 3 is also observed
in all runs. However, as indicated from Fig. 3a, site 3 is very close to site 1 and could be
interpreted as “spillover” from site 1. All the other sites occur with much lower prob-
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ability and can be best interpreted as weaker nonspecific binding sites. The clusters in
Fig. 3b show the binding site predictions (with the same numbering system) for all four
molecules after conducting the grid-based density analysis, each point representing a
conformation at the fully coupled states, with only one of the ten runs shown (in red)
for 1-methylpyrrole. As shown in Fig. 3b, the volume of site 1 for 1-methylpyrrole is
relatively small despite having almost half of the total samples, indicating that density
at the binding site is highly localized.

Free energy differences are simply kBT times the natural logarithm ratios of the
relative probabilities of the two states. We should therefore be able to directly compare
the ranking of the sites by occupancy (measured by probabilities of being found in
each location in the fully coupled states) to the free energies calculated for each site
estimated by MBAR. Free energies of binding to each site are computed as described
Section 5 using Eq. 7, and are shown in Table 1, where they can be compared directly
to the occupancies. The ranking of the free energies of the sites agrees with that of the
occupancies in almost all cases, though there are some differences somewhat outside
of statistical error. The free energy difference between the top two binding sites is
only 0.44 kcal/mol, suggesting that there may exist at least one potential binding site
other than the experimental binding site. The fact that low-frequency clusters are not
consistently observed in all simulations indicate that the simulations are not entirely
converged. This may explain the difference in binding affinity between rarer clusters,
although the convergence of the dominant binding sites does appear adequate based on
agreement between the two ways of calculating relative affinity between clusters.

To better understand the consistency between free energies and occupancies, we
can estimate an occupancy for each site based on its free energy. We estimated the
occupancies Oi from the free energies ∆Gi as:

Oi =
e−∆Gi/kBT∑Nsites

i=1 e−∆Gi/kBT
(12)

where Gi is the ∆Gsite for binding site i. Uncertainties for each site free energy are
the standard deviation of the free energy over the ten independent runs, and are the
uncertainty in a single calculation, not in the mean.

We can also estimate each cluster’s free energy based on the directly observed oc-
cupancy of the cluster in the fully interacting states. Each cluster’s relative free energy
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is equal to:

∆Gi = −kBT ln
Oi

Ofar

(13)

where Gi and Oi are ∆Gsite and occupancy for site i. Ofar is the occupancy of the
“cluster” of samples far away from the protein as to be effectively noninteracting. This
cluster serves as a reference, because the transfer of the ligand from solvent to this
volume should be ∆Gsite = 0. We define this cluster as those samples found between
r=rcutoff and rcutoff − 5Å in the fully coupled state.

As shown in Table 1, the occupancies calculated both ways as well as the free ener-
gies calculated both ways are in relatively good agreement within statistical error, indi-
cating that our definition of the occupancy and the free energy calculation methodology
are consistent. The free energy calculations in principle contain more information, since
they incorporate the potential energies, as well as the location information the occupan-
cies contain, and also include samples from multiple intermediate states. Interestingly,
however, the uncertainties in occupancies and free energies calculated starting from
either directly observed occupancies or using MBAR are similar.

2 The dominant binding site can be identified accurately across
multiple molecules

To test the accuracy of our methodology in identifying binding sites across a range of
ligands, we examined the predicted sites of four ligands binding to the same protein, one
of which (phenol) is known not to bind experimentally. The same simulation parameters
were used, except only one simulation was run for each of these additional ligands.

Fig. 4 shows the site occupancies for four molecules. For 1-methylpyrrole, the sta-
tistical error in a single run (not in the mean) was calculated over the 10 runs, while
values for only one run were used for the other three ligands. Since many of the
same binding sites were observed in simulations of the different molecules, we used
the same numbering systems described in the previous section for the 1-methylpyrrole
runs, adding newly identified sites to the initial eleven sites.

As shown in Fig. 4, since the three binders share similar binding patterns, the total
number of potential binding sites identified on the protein only increases by four when
additional ligands are analyzed, with two of the sites from the non-binder, phenol. These
four additional sites are the last four numbered sites in Fig. 3a. Orange and blue repre-
sent additional sites observed for p-xylene and phenol, respectively. The green, orange
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Table 1: Computed site occupancies and free energies. Quantitative analysis of the
eleven putative binding sites identified from ten simulation runs. Frequency is the num-
ber of trial runs (out of ten) observed at this site. Occupancies from direct observation
of the fully interacting states are calculated via Eq. 11, while free energies are esti-
mated from these occupancies by Eq. 13. Free energies are computed at each binding
site using MBAR and samples collected from all intermediates confined to the binding
sites (Eq. 7), with occupancy estimated from the calculated free energies via Eq.12. Of
eleven putative binding sites discovered in total, three are observed in all ten runs. Site
1, the most populated site in all runs, is located in the binding pocket, indicating that
we can identify the binding sites consistently. All free energies in kcal/mol. Error bars
are standard deviations over the ten runs.

From Direct Observation From Free Energy Calculation
Site Frequency ∆Gsite Occupancy ∆Gsite Occupancy

1 10 -3.239±0.292 0.467 ± 0.046 -3.482 ± 0.261 0.364 ± 0.101
2 10 -2.784±0.213 0.211 ± 0.024 -3.043 ± 0.182 0.173 ± 0.044
3 10 -2.142±0.176 0.075 ± 0.010 -2.612 ± 0.206 0.084 ± 0.027
4 8 -2.103±0.154 0.060 ± 0.008 -2.587 ± 0.152 0.080 ± 0.019
5 8 -1.889±0.149 0.048 ± 0.008 -2.566 ± 0.131 0.077 ± 0.016
6 6 -1.804±0.104 0.042 ± 0.005 -2.538 ± 0.119 0.074 ± 0.014
7 5 -1.708±0.109 0.035 ± 0.005 -1.893 ± 0.123 0.025 ± 0.005
8 7 -1.596±0.138 0.029 ± 0.008 -2.599 ± 0.103 0.082 ± 0.013
9 5 -1.263±0.114 0.016 ± 0.005 -1.820 ± 0.091 0.022 ± 0.003

10 4 -1.347±0.098 0.010 ± 0.003 -1.613 ± 0.118 0.016 ± 0.003
11 3 -0.765±0.001 0.007 ± 0.000 -0.672 ± 0.019 0.003 ± 0.000
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a b

Figure 3: Fifteen binding sites identified from all simulation runs. (a) The centroid
of each site is represented by a sphere, with diameter of 2 Å (the grid resolution).
Black indicates the crystallographic binding site. Black and red sites together are the
eleven sites for 1-methylpyrrole, with benzene sites as a subset of these. Pink and
blue represent additional sites exclusively for p-xylene and phenol, respectively. (b)
The binding site predictions for one run of 1-methylpyrrole (red), benzene (green), p-
xylene (orange) and phenol (blue). Each point represents the center of geometry at the
fully coupled states after grid-based density filtering and clustering. In the inset of the
nonpolar binding pocket, all the protein residues within 6 Å of the ligand are shown.

and blue clusters in Fig. 3b are the binding site predictions for benzene, p-xylene and
phenol. Each point represents a conformation at the fully coupled state, with the low
density sites filtered out. The binding site at the crystallographically observed binding
cavity (site 1) is identified as the most populated site for all three binders. Additionally,
no binding cluster of any density above background is identified at this location for sim-
ulations of the non-binder. This suggests that, at least for this model system and small
set of ligands, we can identify the experimental binding site accurately and consistently
and differentiate the binders from non-binders.
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Figure 4: Binding site fractional occupancies. The three binders share similar binding
patterns, and are labeled by extending the numbering scheme from the 1-methylpyrrole
simulations. Site 1, located at the experimental binding site, is the most populated site
for all three binders. However, no samples above background are observed in the bind-
ing site for the nonbinder, phenol. Error bars in 1-methylpyrrole are standard deviations
over the ten runs.

3 Binding poses can also be identified

3.1 Pose prediction at site 1 for 1-methylpyrrole

After the binding site (site 1) was successfully identified, we further examined the poses
found at that site. From the 10 runs of the 1-methylpyrrole/T4 lysozyme L99A system,
we took the set of ligands in the most populated cluster, which is also the experimental
binding cluster, and examined the poses of the ligand configurations in this site.

We initially attempted to analyze the poses based on the hydrophobic interaction
contacts made between the ligand and the protein predicted by the LIGPLOT program.
Although there were a number of hydrophobic interactions correlated with low RMSD
configurations, there was no single hydrophobic interaction pattern that could be con-
clusively identified with low RMSD binding, suggesting that it is not possible to identify
the most representative pose by hydrophobic interaction patterns alone for this system.
This was determined by using one run of 1-methylpyrrole system as a training set to
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determine patterns of contacts associated with low RMSD and then testing these pat-
terns on a second run to see if low RMSD structures were identified. However, no
pattern in hydrophobic binding was identified that could consistently identify poses
within 1 Å RMSD. We hypothesize that it is difficult to determine binding patterns
from contacts is this case because it is an engineered ligand binding system with a large
hydrophobic binding surface (up to 20 contacts, depending on the definition of contact),
with similar contributions to binding energy. Such a consensus pose procedure based on
observed contacts is more likely to work for systems with important hydrogen-bonding
patterns systems and more complex ligands, a hypothesis that we plan to test in future
studies.

We therefore focused on identifying poses based on RMSD from crystal structure.
We calculated the RMSD for all four molecules with respect to the co-crystal poses
(Table 2 and Table 3). All RMSD values are symmetry corrected. Although we ran all
docking and simulations with the benzene co-crystal structure, we calculated RMSDs
from the experimental crystal structures of 1-methylpyrrole and p-xylene (PDB acces-
sion code 2OU0 and 3GUM) after aligning the alpha carbons to incorporate the confor-
mational differences between the complexes.

Fig. 5 shows 100 typical poses of each binder at the binding site are shown. 1-
methylpyrrole is primarily oriented the same way in all configurations, as can be seen by
the essentially stationary single nitrogen. Benzene has somewhat more conformational
heterogeneity, as can be expected from a highly symmetrical ligand, but still has a
relatively localized binding density. However, p-xylene has significant conformational
heterogeneity in the binding site, which we discuss in the next section.

3.2 The role of Val111 in binding

One of the challenges involved in simulations of ligand binding is capturing correlated
motions involving both ligand and protein. T4 lysozyme L99A is a good model system
to test the power of this methodology to overcome this sampling problem. Previous sim-
ulations have shown that p-xylene cannot bind to the same configuration of the binding
cavity as smaller ligands; instead, a rotamer change of Val111 is first required. In sim-
ulations with p-xylene placed in the binding cavity, the occluded nature of the pocket
makes this rotamer motion is extremely slow, often occurring on time scales beyond
that of typical simulations [1]. In this study, we monitored movement of Val111 dur-
ing the HREMD simulations of p-xylene and benzene. Fig. 6 shows the RMSD of the
two ligands from their crystal structure with respect to the RMSD of Val111 from the
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Figure 5: Superimposed poses (100 each) at the experimental binding site for all
three binders for 1-methylpyrrole, benzene and p-xylene. For 1-methylpyrrole and
benzene, configurational noise is limited, while p-xylene transitions between two dif-
ferent clusters during the simulation.

crystal structure for (a) p-xylene and (b) benzene as well as the ligand RMSD of the
ligands versus against the Val111 χ dihedral angle (C-Cα-Cβ-Cγ) in (c) and (d). Each
dot is a conformation at each iteration. Because we are comparing the ligand pose to
the crystal structure pose, low ligand RMSD corresponds to the ligand being in the
crystallographic binding site.

As shown in Fig. 6a, the ligand binding and the conformational change of Val111
for p-xylene are highly correlated. When p-xylene enters the binding site, Val111 is
necessarily displaced; if it is not, no binding occurs. For benzene binding (Fig. 6b),
Val111 stays in the initial location regardless of whether the ligand is bound or not.
This demonstrates that our HREMD decoupling strategy can significantly accelerate
such coupled configurational changes on binding that would normally require long sim-
ulations of at least several nanoseconds in standard MD simulations [1]. HREMD does
this by removing the ligand from the pocket so that the dihedral transition can occur.

If we look directly at the Val111 χ dihedral angle (C-Cα-Cβ-Cγ), the correlation
between binding of ligand and the conformational change of Val111 is not complete.
There are in fact configurations that have low p-xylene RMSD, but where the dihedral
corresponds to the bound crystal structure. This is possible because the protein back-
bone shifts out, allowing Val111 to move, a binding mode not observed in previous free
energy calculations. Fig. 7 shows two low RMSD structures from each of the two clus-
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ters. Cyan and orange are used for the dihedral shift (RMSD=0.34Å) and alternative
backbone shift (RMSD=2.87Å) structures, respectively. It is not clear if this observed
difference in binding modes from previous simulations is due to force field errors, im-
plicit solvent deficiencies, lack of protein relaxation, or some other unknown reason.

To quantify the relative frequency of the two binding modes, we clustered all the
conformations in the binding site of p-xylene. Only two clusters with more than 10%
of all the conformations are present, with respective occupancies of 0.53 and 0.32.
By comparing to the p-xylene crystal structure, we found that cluster one has a 0.56
Å average RMSD with respect to the crystal structure while cluster two has a 3.03
Å average RMSD. There are thus two primary binding modes in this location-defined
cluster that can be distinguished by their orientation.

One unrelated but important observation from Fig. 6 is that there are no ligand ob-
servations in the range of 5 Å and 10 Å for either benzene or p-xylene in the interacting
state, indicating that there is no observed physical entry route for the ligand in the
simulation. Instead, it hops back and forth between bulk and the binding site via the
unphysical decoupling pathway.

4 Comparison of docking and our modified HREMD methodology

It is instructive to compare the performance of docking methods to our methodology.
The T4 lysozyme L99A system has proven a challenging case for UCSF’s DOCK pro-
gram as well as other docking programs [36–39]. Therefore, as an additional check
we attempted molecular docking to identify binding sites and poses, in our case using
AutoDock. We first compared the average ligand RMSD from the crystal structures
for all binders in both cases. For AutoDock, the average RMSD was calculated over
50 top poses, while for our modified HREMD, the average RMSD was calculated over
all poses in the highest probability binding site. We also compared the percentages
of poses with RMSD (from the experimental co-crystal structure for each ligand after
alpha carbon alignment) with values less than 2 Å. Since there is no crystal structure
for the nonbinder phenol, we used the benzene co-crystal and replaced the benzene
with phenol and used RMSDs to that modeled crystal structure to see if either approach
incorrectly placed phenol into the binding site. Results are shown in Table 2 and 3.

We note that the percentage of ligands in the binding volume (as seen in Fig 4) may
be higher than the percentage within 2 Å RMSD of the crystal structure because of
local protein rearrangement during the simulation. For example, ≈40% of p-xylene
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Figure 6: Correlation between ligand binding site occupation and Val111 displace-
ment for p-xylene and benzene. RMSD of the ligand from the crystal structure with
respect to the RMSD of Val111 from the crystal structure (upper graphs) and the Val111
χ dihedral angle (C-Cα-Cβ-Cγ) (lower graphs) for p-xylene (left side, a and c) and ben-
zene (right side b and d). All calculations are of fully interacting ligands. Val111 must
move for p-xylene binding to occur, either by a torsional angle rotation or by backbone
motion, but benzene binding is only to the unbound crystallographic configuration of
Val111.
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Figure 7: Two representative structures observed in the simulation of p-
xylene. Cyan and orange are crystal-like (RMSD=0.3Å from crystal) and alterna-
tive (RMSD=2.87Å from crystal) structures, respectively. In the crystal-like structure,
Val111 dihedral changes from the configuration found in the apo or small binder crys-
tals. In the alternative structure, Val111 shifts away via backbone motion.

configurations were in the binding volume, and the average RMSD of the alternate
configurations was 3.03 Å compared to the average RMSD of 0.56 Å without protein
rearrangement. If such protein rearrangements observed in simulation are accepted as
potentially physical, then these alternate configurations should also be considered part
of the binding ensemble at this site.

Surprisingly, AutoDock and the more sophisticated methodology presented here
produced comparable results for the binding site locations. Fraction within a given
RMSD does not mean exactly the same thing when comparing the two methods. In the
docking runs, only 50 poses were generated out of hundreds of thousands of attempts
while in our simulations, all poses in the binding configuration are counted. Instead, it
should be considered only an indication of whether the crystallographic binding site can
be identified. Rigid docking outperforms flexible docking substantially for two binders,
which is especially interesting in the case of p-xylene. Since we know that Val111 must
readjust from the small-binder crystal structure in both experiment and simulations for
binding to actually occur, the better performance of rigid docking indicates that the
good performance may be a statistical fluke, and that it is only recognizing a hollow
hydrophobic site. Tests on wider sets of ligands as we are currently carrying out will be
required to further compare the methods.
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Table 2: Average ligand RMSD (in Å) from crystal structures of AutoDock and the
methodology presented in this paper. For AutoDock, the average RMSD was calcu-
lated over 50 top poses, while for our methodology, this RMSD was calculated over
all poses in the binding site cluster, with the standard deviation over 10 repetitions for
1-methylpyrrole. For the nonbinder phenol, since there is no crystal structure avail-
able, we use the co-crystal ligand benzene with phenol in order to identify whether
docking incorrectly places the ligands in the binding site. The percentage of ligands in
the binding volume may be higher than that within 2 RMSD because of local protein
rearrangement during the simulation. All RMSDs are symmetry corrected.

Molecules Rigid AutoDock Flexible AutoDock Our methodology
1-methylpyrrole 1.84 1.87 1.93 ± 0.09

benzene 1.62 2.30 2.32
p-xylene 2.32 3.76 3.14
phenola 11.21 12.87 N/A

aAs compared to the binding cavity in benzene co-crystal structure.

Table 3: Percentages (%) of poses with RMSD from crystal structure less than 2 Å for
AutoDock and the methodology presented in this paper. The standard error for 1-
methylpyrrole was calculated over the ten runs. For the nonbinder phenol, since there
is no crystal structure available, we replaced the benzene co-crystal ligand with phenol
and computed RMSD to the resulting structure. All RMSDs are symmetry corrected.

Molecules Rigid AutoDock Flexible AutoDock Our methodology
1-methylpyrrole 46.0 50.0 43.3 ± 2.8

benzene 52.0 30.0 33.4
p-xylene 36.0 20.0 19.1
phenola 2.0 4.0 0.0

aAs compared to the binding cavity in benzene co-crystal structure.
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5 Binding free energies can be accurately calculated.

Though the initial goal of this study was not to calculate the binding free energies, the
fact that our methodology was modified from a free energy calculation tool made it
straightforward. We calculated the free energies of ligand binding to different sites, as
shown in Table 1. The ordering of the sites using free energies matches the ordering
using occupancies well, though not perfectly. The free energy of ligand binding to the
most populated binding site is substantially more favorable than those of other sites,
confirming that a single site is dominant, though not overwhelmingly so, at only 2–3
times the occupancy of the next most frequently occupied site.

Additionally, we were able to calculate the overall free energies of different ligands
associated with the protein, over the entire simulation volume, as shown in Table 4.
The overall free energies generally match the experimental values to within statistical
noise. In Table 4, we also compare all-site binding free energies and binding free to the
dominant binding site to the the overall free energies. For the non-binder phenol ∆Gsite

is close to zero since the experimental site was not observed as the one of the predicted
potential clusters. The errors for the 10 replica set of 1-methylpyrrole simulations are
calculated using the standard deviation in the free energy over the ten simulations, while
the errors for the rest are calculated using the statistical uncertainty estimate for MBAR.

As a comparison, we also include in Table 4 the explicit solvent calculations of the
same ligands (with the same forcefield except for the use of explicit, rather than im-
plicit, solvent) from Mobley et al. [1], which were calculated assuming binding to only
a single site. We observe that these binding calculations are relatively consistent with
our results. They are in particularly close agreement with the free energy of binding to
the highest occupancy site, though the statistical noise is somewhat too high to reach
any strong conclusions. Gallicchio et al., using a different choice of force field and im-
plicit solvation model, but also assuming a single binding site, calculated a binding free
energy of -4.01 ± 0.04 kcal/mol for benzene and -1.40 ± 0.03 for phenol [34]. This
agrees with our single site calculation for benzene, but is more favorable for binding
for phenol. The number for phenol in Table 4 is for the most favorable binding site
for phenol, not the hydrophobic pocket, which has a binding affinity -0.16 kcal/mol.
The binding free energies of other molecules examined by Gallicchio et al. were also
underestimated, similar to the explicit solvent calculations of Mobley et al. This under-
estimation may be due to experimental contribution of alternate sites to the free energy
of binding not examined in these simulations, but may also be explained by a host of
other force field issues.
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Molecules ∆Gsite ∆Gall sites ∆Goverall ∆Gexplicit ∆Gexperimental

1-methylpyrrole -3.48 ± 0.26 -4.15 ± 0.25 -5.05 ± 0.21 -4.32 ± 0.08 -4.44
benzene -4.26 ± 0.71 -5.15 ± 0.80 -6.01 ± 0.81 -4.56 ± 0.20 -5.19
p-xylene -4.01 ± 0.89 -4.94 ± 0.85 -5.72 ± 0.95 -3.54± 0.17 -4.67
phenol -1.03± 0.32 -1.78 ± 0.47 -2.32 ± 0.58 -1.26 ± 0.09 > -2.74

Table 4: Comparisons between calculated and experimental binding free energies of
four different molecules in kcal/mol. ∆Gsite is the binding free energy to the most
populated cluster, which except for phenol is the binding cavity. The binding energy of
phenol to the binding cavity is -0.16± 0.53 kcal/mol. ∆Gall sites is the binding energy
over all specifically-bound clusters, while ∆Goverall is over the entire protein. ∆Gexplicit

are explicit solvent simulations from Ref. [1].

In the limit of tight binding and a sufficiently small simulation volume, the overall
free energy should be slightly more favorable than the all-sites free energy, because the
overall free energy also includes the completely nonspecific binding to the protein and
the low concentration in the simulated volume near the protein. However, in this study
this discrepancy approaches 1 kcal/mol. This difference appears to in part be because of
the granularity of the clustering algorithm, which omits density outside the cluster if it
falls below the 8 times average density background. We performed an alternate binding
calculation for the 1-methylpyrrole case in which we set the energies of all samples not
in the set of grid cubes assigned to binding site clusters equal to energies drawn from the
samples away from the protein. In this case, the overall binding affinity changed from
-5.05 ± 0.21 to -4.19 ± 0.19 kcal/mol, indicating that the difference between the all-
site free energy and overall free energy was due to samples associated with the protein,
not samples at other locations in the box. However, it is still unclear how much of the
weight is due to samples from the binding sites that were not included in the clustering
because of the grid granularity and how much is due to samples weakly associated to
the protein but not part of any binding cluster. With these missing densities, all-site
binding affinities would be shifted somewhat towards the overall binding affinity, and
the individual site binding affinities would also become slightly more favorable.

6 Discussion

One of the difficulties in GPU-accelerated MD simulations is parallelization of a single
simulation across multiple GPUs. The highly parallelized replica structure of HREMD
made it suitable to run on multiple GPUs, since we can parallelize up to one GPU per



32

replica. As a result, we were able to generate 15-ns simulations for all 24 alchemical
states in about 6.3 days of wall time, using 6 GPUs at 4 replicas per GPU, running at
approximately 10 ns/day/GPU in GPU time per single replica. This time scale makes
such calculations already potentially useful for drug discovery. Optimized OpenMM
GPU code without the alchemical state code achieved 40 ns/day on the same same
machine and on the same systems. This indicates that with properly optimized code
and given the rapid development of GPU processor technology, the wall-clock time for
studies such as this will decrease significantly in the very near future.

Some parameters involved in our simulations, such as the number of fully coupled
states, the number of fully uncoupled states and the Monte Carlo displacement, could
potentially be further optimized, as our initial optimization tests of these parameters was
done with a sparse grid of parameter choices. The results (in Supporting Information)
suggest that in most cases, the sampling is not particularly sensitive to these parameters,
though a full optimization is beyond the scope of the current study. A rigorous explo-
ration of these parameters over longer time scale may reveal additional ways to further
improve the efficiency of the methods presented in this study. There are a large number
of other potential ways to improve the efficiency of these simulations. For example,
choosing c = 6 or c = 12 instead of c = 1 is likely to be somewhat more efficient [56],
requiring fewer intermediates for rapid mixing between states. Other possibilities in-
clude optimization of the OpenMM CUDA implementation and adding Monte Carlo
moves of ligand and protein torsional angles. Such improvements could further bring
the convergence time down from days to hours, making such simulations a more useful
tool in drug design pipelines.

We have found that optimized HREMD simulations in implicit solvent can identify
binding sites and binding modes in a model system without prior knowledge of the
binding site, even in a highly buried binding pocket. Since we start the simulations
from random starting configurations, no binding site information is needed. As a result,
our methodology can potentially be used to conduct low-throughput virtual screening,
even when no binding site information is available. In low-throughput virtual screening,
especially in the lead optimization stage, the accuracy presented here may be sufficient,
and the relatively moderate computational cost will either now or soon be accessible.

However, it is important to recognize that this is a test of only four molecules and
a single, relatively small protein. The demonstrated ability of modified HREMD meth-
ods presented here to sample multiple binding sites will be independent of the system.
However, the success in finding the binding site and the agreement of binding affinities



33

may not be nearly as transferable. This study is meant as an exploration of the utility of
modified HREMD to sample between binding sites, and is only a proof-of-principle.

Despite the general success of this methodology, there are a few flaws in the clus-
tering approach presented here. One problem is that more than one cluster can contain
samples in the same grid volume, leading to the inability to uniquely decompose a bind-
ing site into separate clusters. However, this leads to a relatively low amount of error,
less than 0.1 kcal/mol in this study. Another problem is that there are some samples
belonging to the binding cluster that are omitted because they partially fall into an-
other box that falls below the overall density cutoff. Overcoming these problems would
require either additional data in order to use a smaller grid, or a more robust density-
based clustering algorithm, technical problems that can presumably be overcome with
sufficient work, but which are not required for the level of precision presented in this
study.

We find that for at least the moderate affinity ligands in this study, the free energy of
binding sites other than the most likely binding site contributes nonnegligibly to the total
free energy, with these alternate binding sites contributing between 0.7 and 0.9 kcal/mol
to the overall binding free energy. Although this contribution is likely to be less in tight
binding molecules that have a very high affinity binding mode, this observation does
mean that the exact binding affinity can depend significantly on the way the binding
site is defined and the method used to calculate it. This contribution from alternate
sites may possibly be a reason that binding affinities computed in the studies of Mobley
et al. [1] and Gallicchio et al., [34] in which only the crystallographic buried binding
cavity of was considered, were consistently less favorable than experiment by about
this amount. However, there are certainly no lack of other possible explanations for
this discrepancy. The existence of a distribution of binding sites, if it is applicable for
similar experimental system, and not merely an artifact of the simulation, may also be
important for fragment-based drug design studies, as there may be multiple binding
sites that are worth targeting in a single protein.

We also compared the alternative binding sites observed directly with the experi-
mental electron densities deposited in the Protein Data Bank to see if unassigned densi-
ties could be correlated with these putative binding sites. We examined all binding sites
with threshold occupancy of 0.1 in the simulations, as density lower than this is unlikely
to be observed above noise. For benzene, no alternative sites have occupancies larger
than 0.1, so no search is necessary. For p-xylene, we did not observe any apparent elec-
tron densities in the volumes of the two putative sites with occupancies larger than the



34

threshold. For 1-methylpyrrole, two ligands were proposed in the crystal structure, one
of which is an alternative site with a lower density than the binding site. However, this
alternative site was not predicted by our methodology. For the single computationally
predicted alternative site with 1-methylpyrrole with an occupancy higher than 0.1, we
observed some unassigned electron density in the crystal structure at that location, but
it was not distinguishable from water. Interestingly, the electron density of Met106 in
this alternative binding site was ambiguous in the crystal structure, with two different
conformations of Met106 proposed. However, this may be a coincidence and may not
be related to potential experimental partial occupancy of the ligand at this site. Our
simulations do appear to be fairly well converged, at least with respect to the two most
populous binding sites, which suggests that either the force field and/or implicit solvent
model is creating spurious density, or there is some physical reason for this binding site
not being present in experimental crystal structures.
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Conclusions

In this study, we used a modified version of Hamiltonian replica exchange molecular
dynamics among alchemical intermediates combined with Monte Carlo ligand displace-
ment/rotation moves to identify putative binding sites and poses in the T4 lysozyme
L99A model system starting from random initial ligand positions. Our results sug-
gest that this methodology can identify the binding sites consistently and accurately.
Moreover, we can identify the correct binding orientations within these binding sites
relatively accurately. Last but not least, we can not only calculate the overall free ener-
gies of binding using MBAR, but can also decompose the contributions to the overall
binding free energy both in terms of individual binding sites and all binding sites com-
bined, demonstrating the extent to which the ensemble of weak binders may contribute
nonnegligibly to the overall free energy. With the wider availability of GPU simula-
tion resources, this methodology may be a stepping-off point for further improved drug
discovery methods when no co-crystal ligand information is available.
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Supplementary information

1 Validation of flat-bottom restraint implementation

1.1 Sampled region

To ensure the flat-bottom harmonic restraint imposed to keep the ligand in the vicinity
of the protein was correctly implemented, Fig. 8a shows the ligand (1-methylpyrrole)
distribution at the fully uncoupled state for a 20 000-iteration simulation with only the
fully uncoupled state. The dots changing in colors represent the ligand trajectories (one
dot for conformation extracted from one iteration). The color changes with iteration
following a RGB scale, with red, green and blue dots representing iterations at the
early, middle and late stage of the simulation. The protein is shown in the figure for
scale purposes alone. As shown in the figure, it qualitatively follows the predicted
uniform distribution.

1.2 Restraint distance distribution

We then examined the distribution in space of the coupled replica to make sure the
flat-bottom restraint was correctly implemented within the cutoff radius we defined, we
called this the restraint distance distribution. We compared the distribution of the the
center of geometry of the ligand relative to that of the protein at each iteration to the
uniform distribution within a given cutoff radius r0.

P (r) =
N(r)

Ntotal

=

(
r

r0

)3

(14)

where r is the distance between protein and ligand centers of geometry, N(r) is the
number of samples inside a the sphere centered at the protein center of geometry with
the radius of r, and Ntotal is total samples generated during simulation. As shown in
Fig. 8b, the observed curve matches perfectly with the expected curve out to the begin-
ning of the harmonic wall created by the flat-bottomed potential. The uniform distribu-
tion also validates the implementation of the Langevin integrator.



45

a b

Figure 8: (a) Qualitative demonstration of correct sampling with the flat bottom
potential. 3D trajectories at the fully uncoupled states of a 20000-iteration simulation
with only samples from the fully uncoupled state. The dots changing in colors rep-
resent the distance along the ligand trajectories, from red to blue, representing rapid
decorrelation within the volume. The protein is shown in the figure to show the scale.
It qualitatively follows a uniform distribution; (b) Quantitative proof: probability distri-
bution of samples within radius r0 at the fully uncoupled states. As shown, the observed
curve matches perfectly with the expected curve.


