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Preface

0.1 Me, a biomedical engineer

I don’t label myself an engineer in the traditional sense; I don’t design things to be manufactured.
I also dislike being called a scientist because of the visual it may provoke; most of my time isn’t
spent in a long white coat at a bench. Though others might think me one, I don’t consider myself
a statistician, computer scientist, or biologist either.

I am a scientist in that I'm curious about nature, especially health and medicine. I'm an engineer
in that 'm curious about translating scientific understanding to ideas and tools that will improve
others’ quality of life. To do this, I use and invent tools in mathematics, statistics, computer science,
and the biological sciences. There is no formal and universally accepted definition of a “biomedical
engineer” and likely never will be. However, these dual interests in basic and translational science

and medicine are what, I believe, defines a biomedical engineer, and I think many would agree.

0.2 Me, a computational systems biologist

As a biomedical engineer in the information age, trillions of data points are available. In this
dissertation alone, I gather data from dozens of expression states of the 3.3-billion letter human
genome or 2.8-billion letter mouse genome. Tens of thousands of megapixel images of individual
cells are captured at different wavelengths of light. Tissue and blood samples from hundreds of mice
under different stresses are analyzed microscopically and by molecular assays to quantify pathology,
the proportion of different cells (e.g., epithelial, white blood cell, etc.), and the amounts of dozens
of proteins.

However, these data points independent of each other are of little use. As an example, consider

xiii



xiv PREFACE

a mouse that ingests a toxin. If we then observe inflammation in the mouse’s intestine, we wonder
about the cause. After dissecting tissue sections, we then find that a particular gene is expressed
prior to inflammation. Is this gene responsible for inflammation? Are there other genes whose
regulation is linked to this gene of interest? How does expression of this gene translate to the
amount of its gene product, the protein that physically interacts with the cells’ environment? Is
this inflammation only due to local events? What about the brain and the nervous system? What
happens after inflammation? Are there any changes throughout the body from the local injury in
the intestine (e.g., in the blood)? Where did the toxin go? The questions go on, but it is apparent
that there are many levels of data and interactions, a system, that determine the apparent clinical
manifestation. Systems biology aims to consider biological systems as a whole and answer how
one or many changes affects the state or output of the entire system.

Systems biology requires computational tools just so data can be managed, so the term compu-
tational systems biology is somewhat redundant. The term’s definition will change from person
to person. As I use it in this dissertation, it is distinct from “systems biology” in that computa-
tional tools are used to make insights and comparisons that would be experimentally impossible,
or would at least be prohibitively difficult. Computational systems biology may take well-designed,
simple, comparative experiments that are the core of good scientific research (e.g., think null versus
alternate hypotheses and p-values) and then go one step further by presenting the data in novel

ways and by making formal, rigorous predictions.

0.3 My dissertation as a biomedical engineer and computational

systems biologist

As T described above, Biomedical Engineering and Computational Systems Biology include aspects
of many different fields (biology, medicine, engineering, etc.). Therefore, this dissertation includes
new contributions and tools to these fields, allowing for better descriptions and reliable, repeatable
predictions from biological data. The unifying element to these contributions and tools is one
research question: why do a bacterium’s toxins make us sick and what are ways to make us better
once we're sick? More specifically, I show how multi-level, systems biology data improves our

understanding of host cell responses to the two principal virulence factors of Clostridium difficile,
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toxins A and B. This understanding suggests new treatments and diagnostics, but also reveals

entirely new ways of thinking that offer leads to promising targets for future treatments.



Chapter 1

Introduction

1.1 Abstract

Toxins A and B, two highly potent protein toxins, are the essential virulence factors of C. difficile,
a bacterium which infects 300,000+ people in the US every year [1]. Since the extent to which
a persons body overreacts to the toxins determines disease severity, controlling the host response
is critical for improving treatments. Given the manifestations of diarrhea and colitis, nearly all
research to date has predictably focused on known inflammatory pathways and related cellular
responses. However, 40 years after the toxins’ discovery, the fatality rate has continued to rise.
A different approach is needed. In this dissertation, I present a holistic approach, profiling the
physiological and transcriptional changes of host cells to toxins in vitro and in vivo. I determine
the most appropriate statistical methods for identifying genes and pathways affected by toxins,
leading to discovery of an unrecognized cell-cycle disruption of epithelial cells treated with toxins.
I then extend the approach to investigate epithelial-layer cells in mice with toxin injected into their
intestines, identifying pathways altered only in vivo. These pathways offer new therapeutic targets,
as is shown by antibody neutralization experiments showing that the levels of two cytokines are
predictive of survival. I again extend the systems approach to analyze toxin sensitivity and dynamic,
morphological changes of cell types in addition to epithelial cells. Sensitivities of macrophages,
epithelial, and endothelial cells indicate that epithelial cells may not be the critical cell type for
initiating disease and show that the most well-studied toxin molecular activity (glucosylation) is

not required for all toxin-induced cellular responses. In addition to these novel findings, this work
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presents new ways of thinking about host responses to C. difficile toxins that can be investigated

in the future with mechanistic models and reductionist experiments.

1.2 A preview of this dissertation

In Chapter 2, I explain the experimental and computational methods at the core of the findings in all
subsequent chapters. A short primer explains the biological concepts of mRNA and transcriptomics
studies. The advantages and pitfalls of the many possible data processing techniques that together
form the analytical workflow are described in context of the data presented in Chapter 5 and
Chapter 6. The importance of reproducibility, a special concern of mine, is also discussed. Chapter 3
presents my transcriptomics analysis of samples from a clinical trial for a combination melanoma
therapy. These methods set the stage for the primary focus of this dissertation, the host response
to C. difficile toxins.

Chapter 4 gives the scientific background and clinical significance of C. difficile infections,
the known roles of C. difficile toxins in infection, and the importance of the host response to
pathogenesis. The basic concepts, advantages, and pitfalls of functional genomics and systems
biology methods such as gene set enrichment that come after the methods in Chapter 2 are briefly
described. These systems biology methods are then used in Chapter 5 to analyze the transcriptional
responses of an epithelial cell line, revealing disruptions in cell cycle that block cell growth without
inducing complete cell death.

Chapter 6 presents physiological and transcriptional responses to C. difficile toxins in a mouse
intoxication model. Changes in the expression of pathways and gene sets that are characteristic
of the response are described and compared to the in vitro responses in Chapter 5. Follow-up
experiments neutralizing two cytokines within these gene sets proved that the systemic levels of
the two cytokines correlated with disease severity and could be used to predict survival.

Epithelial cells are the focus of the in vitro and in vivo transcriptional studies, yet the data
indicate that other cell types are also important. Therefore, in Chapter 7 the dynamic, morpholog-
ical changes responses of macrophage, endothelial cells, and epithelial cells are measured precisely
with electrical impedance. With this experimental framework, I also investigate the necessity of

the toxins’ glucosyltransferase activity to these responses. Software that I developed for managing
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and visualizing time course data from multi-well data is presented in Chapter 8.
The last chapter, Chapter 9, reviews metabolic network analyses. Although not directly related
to the methods in the previous chapters, it is presented as an example of additional analyses that

could be performed to gain more mechanistic insight.



Chapter 2

Reliable, reproducible transcriptomics

analyses

Throughout this dissertation, I present analyses of the expression of the genomes of human cells
or tissues of mice that have been treated with C. difficile toxins A and B (TcdA and TcdB) in
order to determine the pathogenic responses of the host at the cellular level. In deciding how to
process this type of data, I encountered many limitations and misunderstandings in common gene
expression analyses. In this chapter, I summarize the principles of these analyses that form the
base of this dissertation, and explain some important considerations for interpreting sometimes
very different results produced by different data analyses, an overlooked problem in the majority

of gene expression studies.

2.1 Background

2.1.1 mRNA as a measure of cell state

Our genomes are a sequence of ~3-billion “letters” from a four-letter alphabet of nucleobase
molecules (bases) [2]. Each of our ~20,000 genes is pieced together from, on average, 5 physi-
cally separate sequences called exons. Exons, which range from ~20 to 1,600 bases, are contained

within one of the 46 strands of DNA in our cells [3].

The central dogma of molecular biology is DNA — RNA — protein [4]. In each cell, exons are

4
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copied (transcribed) and spliced into portable messenger RNA (mRNA). mRNA is then translated
to strings of amino acids that arrange themselves into shapes with chemical properties that perform
specific tasks. These amino acid strings, or proteins, are the primary functional units that execute
the instructions in our DNA.

When a protein is needed, a cell’s “circuitry” triggers a gene (the DNA encoding that protein)
to be transcribed to mRNA that is then translated to the protein. Specific amounts of proteins are
produced in response to different stimuli. Since the proteins will alter the physical state of cells and
consequently the body’s overall physiological responses, many scientists have striven to understand
the arrangement and logic of this regulatory circuitry.

Most of this circuit’s components were identified soon after the sequencing of the human genome
in 2003 [5, 6]. This and decades of previous biological research provided a very basic view of
connections within the cell, yet many of the studies delineating functions were limited to small sets
of genes and proteins. To be able to understand how all the components affect each other, there
had to be a way to take snapshots of the levels of thousands more mRNAs or proteins.

In 1982, technology to simultaneously measure genome-wide gene expression (i.e., the levels of
mRNA in a cell) from a collection of cells was already being developed [7]. Current RNA sequencing
technologies can now count individual mRNA molecules (transcripts) from a collection of cells for

$1000 or less.

2.1.2 Measuring mRNA levels with microarrays

DNA molecules consist of two, connected, parallel strands, each strand containing a sequence of
nucleobases along a sugar backbone. The four bases (adenosine (A), thymine (T), cytosine (C),
guanine (G)) join to each other by hydrogen bonds. A only pairs with T; C only pairs with G. Two
strands hybridize when their base pairs are aligned.

Strand-specific hybridization can be used to identify DNA sequences from uncharacterized sam-
ples. For example, single-stranded DNA with a known sequence can be fixed to a substrate or
surface, and DNA from an unknown source can then be labeled and washed over that surface. If
DNA from the two sources have matching strands (i.e., they complement one another), the labeled
DNA will hybridize and be detected. The first “gene arrays” that could detect multiple sequences

in this way were built by attaching DNA to hundreds of spots (probes) on glass plates or slides [7,
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8]. Each probe contained thousands or millions of DNA molecules with the same sequence so that
one gene was detected per probe.

Since hybridization requires two DNA samples, mRNA must be reverse transcribed back to
DNA if it is to be measured on a gene array. The resulting complementary DNA (¢cDNA) can then
be labeled and detected. Signal intensities from the probes indicate the relative amounts of each
mRNA in a sample.

Microarrays, very small gene arrays, were introduced in 1995 [9]. Although microarrays require

more sophisticated manufacturing, they are based on the principles of older gene arrays.

2.2 Microarray preprocessing techniques

The most commonly used microarrays over the past decade have been made by Affymetrix. 1
described here many methods designed for these arrays, yet the principles can be extended to most

other microarray technologies and even sequencing data.

2.2.1 Steps of data preprocessing
Affymetrix microarrays

In less than one square inch, Affymetrix arrays fit over one million probes, enough to measure
genome-wide expression (the transcriptome). Since exons are longer than the 25-nucleotide probes,

probe sets of ten to fifteen probes are designed to hybridize one gene or exon.

Nonspecific hybridization

For each probe sequence, Affymetrix made a mismatch probe with the 13'" base changed. The
mismatch probes are placed directly beside the corresponding mismatch probes and were intended
to measure how many other transcripts bind to a similar sequence as the targeted mRNA (the
perfect match probe sequence).

Hence, by subtracting the mismatch signal from the perfect-match signal, nonspecific hybridiza-
tion (cross-hybrdization from other transcripts) may be estimated (perfect-match correction). How-
ever, mismatch hybridization is complex. Usually, more than one third of mismatch probes have

a higher signal than their perfect match probes [10]. This should theoretically never happen, but
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presumably is due to nonspecific binding of other transcripts or low signal to noise ratios. Several
have proposed hierarchical models with nonlinear terms that better account for mismatch probes

[11-14], yet algorithms that ignore mismatch probes perform equally well or better [10, 15, 16].

Background correction

Since mismatch probes cannot be used and there is no empty space on high-density arrays, back-
ground signals must be estimated from many probes. Affymetrix first proposed splitting an array
into zones and calculating background signals from low intensity probes. This approach systemati-
cally corrects large sections of the array, yet it does not address probe-specific background signals.

Irizarry et al. observed the distribution of all observed probe signals (O) could be approximated
by a mixture of an exponential distribution (5) and a normal distribution (B) [10]. S and B were
considered the true signal and background signal, respectively (O = S + B). After the mean and
variance of S and B are estimated from the data, the background-corrected signal can be calculated
as E[S|O = o] by the robust multi-array average (RMA) procedure in [10]. Wu et al. introduced
gcRMA | which improved upon RMA by accounting for sequence-specific probe affinities that were
determined from previous experiments (O = S+ B+ N where N is the differences in hybridization
due to sequence-specific probe affinities) [17]. gcRMA also modeled mismatch probes by making
two equations, one for Opismatch and one for Operfect, With one common term, the true signal S.
Similarly, other model-based expression value calculations have the option to include or ignore

mismatch probes (e.g.,[11, 12]).

Probe set summarization

To estimate a gene’s expression, the probes in a probe set must be summarized. Since outliers are
common, robust statistics (e.g., median) are preferred. Affymetrix first recommended the Tukey
bi-weight statistic, calculating probe set values one microarray at a time. However, many probes
have similar effects across all microarrays (e.g., different affinities), and these probe effects can be
modeled and removed as was shown by Li and Wong ([11, 18] is often called the “Li-Wong method”).
The most popular summarization, “median polish”, places a probe set’s expression values a;; in a
matrix (¢ indicates the probe an j indicates the array). The row and column medians are iteratively

subtracted to estimate an error matrix. Probe effects and expression values are calculated from
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the sum of the subtracted row and column medians, respectively, minus the medians of both vector
sums [10, 19]. Chen et al’s “distribution-free, weighted” summarization accounts for probe effects
primarily by assuming that low-variability probes are high-quality and should be weighted more
than other probes [15]. Hochreiter et al. assume perfect match probes are normally distributed,
enabling them to perform ‘factor analysis’ where the ‘factors’ are mRNA concentrations [16]. Even
more complex models may incorporate background correction, perfect-match correction, and probe

set summarization into one step (e.g. [13, 20]), yet each step is typically performed separately.

Normalization

Systematic differences between arrays must be normalized if they are to be compared. The simplest
normalization procedures center all array values by mean, median, or some other measure, yet
centering doesn’t account for different ranges of values. Quantile normalization forces two arrays
to have the exact same statistical distribution [21]. Li and Wong’s normalization iteratively searches
for a group of “housekeeping genes” (the invariant set of probes) that will be forced to the same
expression values in all arrays, and all other probes are adjusted accordingly [18]. Huber et al. found
that the inverse hypberbolic sine transformation made probe variance less dependent on probe mean
[22]. This variance stabilization—in combination with a nonlinear model fit to find scaling factors
and offsets for each microarray—is used for normalization. Loess normalization applies a smoother
to an ‘MA plot’ which plots the differences between two arrays (M = loga(x1/x2) = loga(z1) —
loga(x2)) versus the average signal of two arrays (4 = 3loga(z122) = 3(loga(z1) + loga(z2))). The
smoother is subtracted from each point so that the plot is centered around the A-axis. Loess

normalization thus makes offset adjustments that are dependent on the intensity of the signal.

2.3 Choosing preprocessing techniques

2.3.1 What are the best preprocessing steps?

Usually, the answer is “we’re not sure” or “it depends”. Hundreds of methods have been published.
Which ones are chosen depends on if the methods’ assumptions match the experimental design.
Selecting the full sequence of steps (the workflow) is daunting. The techniques in 2.2.1 are a

subset of the many choices. For each step (background correction, normalization, perfect-match
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correction, and probe set summarization), there are ten or more possible algorithms making at least
10* = 10,000 possible workflows. However, each algorithm has at least one, sometimes three or
four arbitrarily or heuristically chosen parameters, making for over ten million possible workflows
(actually real number parameters make for infinite workflows). Since there are no general guidelines,

I present some illustrative examples below.

Background correction and perfect-match correction

Background correction algorithms decompose the observed signal into two signals: the noise and
true signal. They are most helpful then for low-signal probes where the signal to noise ratio is
lowest. If researchers are uninterested in low-abundance transcripts, they might consider skipping
background correction.

Background correction is the least understood step because “there is currently no way to de-
sign an oligonucleotide microarray such that the probes have fully predictable hybridization” [23].
gcRMA and PDNN use sequence data to try and infer complex probe affinities from sequence
data yet are not much better than some that do not [10, 17, 20]. Affymetrix’s MAS5.0 back-
ground correction and perfect-match corrections are not model based, making simple assumptions
on how low-intensity probes or mismatch probes should adjust surrounding perfect-match probes.
Although there is no clear, universal support of one method over another, it is commonly accepted
that mismatch signals should be ignored or modeled in some way as contributing to the observed

signal.

Normalization

If one is sure of impeccable sample isolation and reproducibility, they might decide against nor-
malization. However, since even the slightest differences in one of many experimental factors (e.g.,
scanner reproducibility, mRNA concentration calculations, hybridization temperatures) cause sys-
tematic errors, there should be strong justification for skipping normalization.

If researchers believe that only a few dozen of thousands of transcripts vary between arrays, then
the distribution of expression values should be similar among all arrays. Quantile normalization
would then be appropriate. If treatment systematically increases the total mRNA per cell, quantile

normalization would incorrectly mean-center all arrays (though uncommon, cells may need to be
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counted before RNA isolation [24]). Loess normalization might be better since it modifies each
array’s values according to similarly expressed probes on other arrays, allowing for slightly different
distributions. If the primary problem is high variance of low-signal probes, variance stabilization
may be best. If 10 “housekeeping” genes are known or can be trusted to be found algorithmically,
invariant set normalization would work. However, since invariant set normalization assumes probe
affinities are similar, probe values must be corrected in background correction. Treatment groups
may be so different that no normalization cannot be justified. The treatment groups might then

be separately normalized, although subsequent comparisons may be difficult to interpret.

Probe set summarization

There are no general rules for probe set summarization, yet there are mistakes to be avoided. Out-
liers are common in microarrays so robust measures of center are used. It is recommended to choose

2

summaries that “borrow” information from all arrays to identify probe effects. Though different
summarization techniques may produce significantly different expression values, no technique is
necessarily incorrect. However, the artifacts introduced by some techniques may cause incorrect
interpretations in downstream analyses (see 2.3.1).

Summarization reduces 10+ probes to one value, so 90% of the data is lost. Therefore, before
summarization, one might use the distribution of probe values to perform more powerful statistical
tests or to propogate error through subsequent steps [12, 13]. Nevertheless, probe set summarization

must eventually be performed at some level if one wants to study genes, not 25-nucleotide stretches

of DNA.

The order of steps

There is no required order for each step of the workflow, yet there are limitations. For instance,
if probe set summarization were done first, probe values would not be available to estimate the
background signal. Perfect-match correction also wouldn’t be possible. Normalization can be
applied before and/or after summarization. There is no strong evidence supporting one choice over
the other. It is also unclear if normalization should be done for all arrays at once or separately for
subsets (e.g., control and treatment groups).

With few exceptions, each preprocessing method is modular, compatible with any other method.
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However, very few have explored the effects effects of combining algorithms. For example, it may be

the case that a background correction invalidates assumptions for some normalization procedures.

Different choices for different goals

Different analyses work better for different problems. For example, Zhang et al claimed their PDNN
model was superior to dChip ("Li-Wong” method) and MAS5.0 (Affymetrix default) [20]. However,
Wu and Irizzary commented that their RMA and gcRMA methods performed as well or better for
predicting mRNA concentrations [25]. Zhang et al. responded that their concentration predictions
are off by a predictable scale factor, and that the ability to detect differentially expressed genes
was better than RMA and gcRMA [26]. They were also unable to reproduce results supporting
Wu and Irizarry’s claims. It was unclear what the goal should be: accurate predictions of mRNA
levels or differentially expressed genes?

If the goal of a study is to compare the profiles of many genes or samples, one must be aware
of artifacts introduced by probe set summarization algorithms that severely overestimate correla-
tions. Lim et al. observed, with gcRMA, an average correlation coefficient of 0.4 among randomly
generated, uncorrelated arrays [27]. Since correlation measures are essential for reverse engineering
regulatory networks, previous network studies that used gcRMA were flawed. Giorgi et al. iden-
tified that the median polish algorithm introduces high inter-sample correlations among randomly
generated arrays [28]. Their solution was to transpose the matrix of probe intensities for each
probe set, thereby transferring the error so that probes would be overly correlated, not samples.
Therefore, if a study’s goal is to classify patients by a clustering algorithm, one should use the
median polish algorithm very carefully. If the goal is only to detect differentially expressed genes,

then the algorithm will not cause critical errors.

Gold standards?

To once and for all determine the best preprocessing methods, Choe et al. spiked in 5,700 transcripts
at various concentrations on 18 arrays (called “Golden Spike” [29]) By quantifying the accuracy of
predicted differentially expressed genes, they defined one best performing workflow, though several
others performed similarly well. Several authors noted flaws in the experimental design and analysis

causing unrealistic conclusions [30-35], and a “Platinum Spike” data set was generated to address
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the flaws [36]. Conflicting recommendations from various authors that stemmed from these data
suggests that there will likely never be one “best” workflow, yet the analyses made possible by these
data sets highlighted advantages and pitfalls each method (many of which are discussed in 2.3.1)

and led to the invention of new techniques.

2.3.2 Which workflow do I use?

The previous sections have shown that I or anyone else cannot definitively choose the right workflow.
Instead, I would recommend an exploratory approach tailored for each data set. For example, one
could analyze there data set with ten or more different workflows and compare the results using
diagnostic tools (e.g., correlation matrices, clustering, principal components analysis (PCA), and
MA plots). For example, one may find, as I did in one case, that invariant set normalization causes
outlier arrays (identified by PCA) because of the automatically selected “housekeeping genes”.
Using an MA plot, they may then notice extraordinarily high variance in the fold changes of
low-signal probes, and then decide on a workflow (e.g., mmGmos) that propagates this error to
statistical tests for differential expression. If expression levels from arrays will be used as parameters
in another model (e.g., a model of metabolic flux where expression levels indicate the presence
of different enzymes), then the high-variance, low-signal expression values might all be set to a
common threshold. Interactive, easy-to-use diagnostic visualizations that allow for these decisions
are desperately lacking. Although developing visualizations is a tremendous technical challenge,

there is a great opportunity for improvement in this area.

2.4 Detecting differentially expressed genes

After preprocessing, it is common to identify genes that are differentially expressed (DEGs) between
two treatment groups. Like preprocessing, there are many methods with different assumptions
(reviewed in [37-45]). This further expands the number of possible workflows to well over 100
million.

Conceptually, significance tests for DEGs are simple. For each gene, two groups can be com-
pared with a t-test. However, significant p-values are usually found for too many lowly expressed

transcripts with small effect sizes because of very small variances near the microarray detection
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limit. Therefore, filtering of low-abundance transcripts is common, yet newer statistical tests can

adjust for errors in low-signal probes without excluding the probes from subsequent analyses.

2.4.1 Types of statistical tests
Modified t-tests

In Student’s t-test, a t statistic is the difference in expression between conditions (effect size)
divided by the amount of variability in the data (standard error). The distribution of t-statistics
with different sample sizes is known, so how unusual (or how significant) a t-statistic is can be
calculated as a p-value. Since the standard error of probes is what causes too many significant
transcripts, a simple solution is to add a “fudge factor” to the standard error, thus making a

modified t-statistic.

Effect size
fudge factor + standard error

tmodiﬁed - (2 1)

The goal of several bioinformatics studies has been to how to best estimate the fudge factor.
Tusher et al. heuristically chose a constant that minimized the variation of the standard error
across all expression values [46]. Efron et al. chose the constant to be the 90" percentile of the
standard error for all transcripts [47, 48]. Baldi and Speed’s cyberT method adds “pseudo-replicate”
arrays for which the standard deviation is estimated as the average standard deviation of similarly
expressed genes on the real arrays [49]. The variance of expression values is therefore “shrunk”
towards the variance of similarly expressed genes. Fox et al. instead calculate the variance of
pseudoreplicates using the sum-squared differences of similarly expressed genes [50]. Demissie et
al. show how to use a similar fudge factor but for a Welch test (a t-test where groups have unequal

variance) [51].

Bayesian statistics

cyberT improves upon a regular t-test by incorporating information we know (or guessed) to be true,
namely that the sample variance of low-signal probes is usually greater than observed. “Bayesian
statistics” is the field of statistics that allows one to make such prior assumptions (called priors)

in a mathematically rigorous way to reduce the set of possible outcomes (the sample space). The
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reduced sample space allows us to make new, posterior probabilities given the prior information.
For example, my guess of the average height of people in a room (perhaps 5’6”) would change
dramatically if I were told prior that everyone was 2 years old (a subset of the population—the
reduced sample space). Bayesian statistics are common in microarray analyses. Since formulas for
prior and posterior probabilities can be esoteric, I will only mention the assumptions on which the

priors are based.

Lonnstedt et al. derived a statistic equal to the log of the probability a gene is a DEG divided
by the probability the gene is not a DEG [52]. To do so, they made the prior assumptions that (1)
only a small proportion, p, of genes are DEG, (2) all log fold changes of transcripts are normally
distributed, and (3) the variances of expression values follow an inverse gamma distribution. The
parameters for prior distributions (e.g. the mean and variance of the normal distribution) are
called hyperparameters. Lonnstedt et al. guessed p and estimated the other hyperparameters
using the data. Efron et al. assumed a prior distribution of a modified t-statistic based on random
permutations of microarrays. This “empirical Bayes” procedure has been used in several other
DEG tests [48]. As researchers have continued to learn about microarray chemistry so that we may
make better prior assumptions, Bayes statistics for DEG detection have continued to be published.

See the aforementioned reviews and citations for more examples [53-61].

Linear models

Linear models are a natural extension to t-tests when an experiment has multiple factors that
describe the samples (e.g., treatment group, gender, RNA isolation protocol). Analysis of variance
(ANOVA) is used to estimate how much of the experiment-wide variance is due to each factor. In-
stead of a t-statistic, ANOVA finds an F-statistic which compares these variances. Like the modified
t-tests in 2.4.1 | there are several modified F-tests, some of which use Bayesian statistics to estimate
fudge factors (reviewed in [37]). For example, the IBMT method extends cyberT’s assumptions
to linear models [62]. Perhaps the most common DEG test, “linear models for microarray data”
(LIMMA), builds a linear model based on multiple factors that are then reduced to another linear
model calculating specific contrasts (effect sizes) [63, 64]. Limma extends the bayesian moderated

t-statistic from Lonnstedt et al. to calculate the signifcance of the contrasts for each gene [52].
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Rank-based metrics

t-tests and linear models (types of parametric tests) assume the expression values for each gene
are normally distributed. However, the assumption may not be justified; there usually aren’t
enough samples to know. Additionally, the assumption required by the t-test that the mean and
variance are independent is usually not true in microarray data. Nevertheless, parametric tests are
often chosen for practical reasons. Expensive microarray experiments have small sample sizes, and

parametric tests are needed to gain enough statistical power to find DEGs.

However, several non-parametric tests have been developed which make fewer assumptions [65].
The Wilcoxan rank sums test uses combinatorics to calculate how unusual the rankings of microar-
rays are for each gene. In another approach called RankProd, genes are ranked by fold change
for all two-array treatment group comparisons (e.g., 3 x 3 = 9 comparisons for triplicate samples
in two treatment groups) [66-68]. For each gene, the product of its ranking in all comparisons
is calculated. To determine if a rank product is unusual (significant), samples are permuted be-
tween treatment groups many times to estimate the usual distribution of rank products (the null

distribution).

Permutation tests

Many other statistical tests use permutations to avoid making inappropriate assumptions about
the data (e.g., [48, 69]). The most popular DEG test (by citation count) is Significant Analysis of
Microarrays (SAM) [46]. SAM calculates moderated t-statistics for each permutation and compares
this to the actual moderated t-statistic to estimate which genes fall below a specified false discovery
rate (FDR). The greatest limitation of permutation tests is that they require much larger sample
sizes than is typical in costly microarray experiments. For example, the minimum two-sided p-
value for an 8-sample permutation test with quadruplicates is only 2/ (i) = (0.03. Hence although
permutation tests are possible with moderate sample sizes, it is better to have at least ten arrays

where the minimum p-value is 0.008.
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Machine learning-based tests

Many of the previously introduced statistics such as the modified t-statistic violate the assumptions
on which the significance tests are based, or the test statistics are no longer in forms that can be
used in statistical tests. Although these methods depart from the statistical theory, they are still
useful for ranking and prioritizing genes. In this spirit, some statisticians have used machine
learning algorithms to prioritize genes even though the numbers from the algorithms are difficult
to interpret. For example, Lu et al performed PCA on the probes in a probe set to determine
which probe sets to filter as as not differentially expressed [70]. They used the loading on the
first principal component relative to all other loadings to set a filtering cutoff. Clark et al. use
linear discriminant analysis to find a hyperplane in n-dimensional space (where n is the number of
transcripts) that separates treatment groups [71]. The angle between each transcript’s axis and the
hyperplane is used to define how much that gene contributes to the overall differential expression

between treatment groups.

Fold change-based tests

The MAQC project found that irreproducibility between microarrays was largely due to the anal-
yses, not due to the technology or experimental variability [72]. The most basic ranking statistic
they tested, the fold change, was the most consistent between laboratories performing the same
protocols. Other statistics they used such as limma have the problem discussed in the previous
sections that many low-signal probes are ranked among the most significant DEGs. It may be that
many complex significance tests are biased to the data sets on which they were tested. Several
statistical methods that are based on fold change, yet do not disregard the variability in the data,

are potential compromises (e.g. [43, 73-79]).

2.4.2 What test should I use?

Like with preprocessing, I recommend an exploratory approach with significance testing, looking
at the results from several tests. The different gene rankings from the same data will put into
perspective the confidence one should have in any follow-up experiments. Since probes with low

signals are problematic (see previous sections), I also recommend reporting expression values and



2.5. CAVEATS OF MICROARRAYS AND ALTERNATIVES 17

fold changes along with any p-values or statistical measures.

2.5 Caveats of microarrays and alternatives

As discussed, many of the problems with microarrays are low-intensity probes (low-abundance
transcripts). The number of statistical tests to correct for this problem is exasperating, yet very
few studies have focused on experimental methods to improve the dynamic range of arrays.

Next generation sequencing of RNA (RNA-seq) is the next step to improving variability. RNA-
seq offers great potential for reducing the uncertainty in transcript levels because transcripts are
counted. With microarrays, relative abundances can only be estimated indirectly. However, RNA-
seq presents new challenges. For instance, many of the sequenced reads cannot be mapped to the
genome. There also is not a standard way to quantify expression levels of entire genes based off of
many different transcripts.

A major hindrance to any research with microarrays or sequencing is the availability and repro-
ducibility of analyses. I have taken a special interest in reproducible research and will now discuss

it briefly.

2.6 Reproducibile analyses

2.6.1 Why bother?

Irreproducible analyses are dangerous, perhaps bordering on unethical negligence. Dave et al. in
the New England Journal of Medicine reported a marker for follicular lymphoma [80]. In letters
to the editor, Tibshirani and Hong et al. stated they could not reproduce the analyses [81]. Dave
et al. rectified the discrepancy as a misunderstanding in how their data was interpreted. This
is just one of a handful of public disputes in the literature about gene expression analyses (two
mentioned in previous paragraphs). Authors of disputed studies are most always well-intentioned,
yet irreproducible analyses or poorly presented data raise suspicions.

In my opinion, analysts shouldn’t fear being wrong. As researchers, we must speculate and make
hypotheses that, when tested, are very often found to be wrong. Instead, researchers should fear

being overconfident or misleading. By making data and code open to criticism, scientists protect



18 CHAPTER 2. CHOOSING TRANSCRIPTOMICS ANALYSES

their integrity and intellectual property in the same way that lab notebooks do. They protect
their colleagues whose careers are dependent on their analyses as well as the patients whose health
decisions are affected by their research. Finally, they increase their chance for mutually beneficial

collaborations.

2.6.2 Are microarrays reproducible?

Thre has been great concern about inter-lab repeatability of gene expression experiments (see ex-
ample of poor reproducibility in [82-85]). Rather than discrediting microarray analysis, one should
also consider that microarrays may reveal differences in seemingly identical experimental protocols.
For example, with the data presented in this dissertation, arrays from replicate experiments on
different days were clearly different when visualized with principal components analysis. However,

the differences were systematic and could be corrected.

Problems may also arise from overexpectations and misunderstandings of what expression values
can predict. For example, comparisons of microarray classification studies (e.g., [86-98]) with non-
microarray studies have indicated predictive cancer markers or profiles may not be as reliable as
hoped [99-102]. Hundreds or even thousands of microarrays may be necessary to accurately predict
cancer outcomes [103—-106]. However, a more rigorous re-evaluation of a pessimistic study claiming
that microarray studies cannot predict cancer markers found that markers can indeed be found
(see [104, 107-109] for the debate). One shouldn’t jump to conclusions from any one or even
a few analytical workflows. For instance, two studies may find very different list of differentially
expressed genes, yet the correlation between the data sets may be strong. Alternatively, two studies

may predict two different results that are both correct [110, 111].

Several studies raise concerns about experimental reproducibility between experimental plat-
forms [112-118]. Many irreproducibility claims were incorrect, first dismissed by scientists at the
FDA [119]. The FDA and EPA coordinated a Microarray Quality Control (MAQC) project to
set standards and resolve outstanding questions [120-123]. With careful quality assurance and

analyses, microarray data were similar between laboratories [124-129] and platforms [130-138].
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2.7 Transcriptomics analyses in this dissertation

In my dissertation, the first set of challenges have been solving engineering problems—ensuring the
reliability and reproducibility of all analyses. This behind the scenes work is not highlighted in all of
the following chapters, yet it is central to achieving the goals of each chapter. In developing the best
analytical strategies, I worked through several previous publications. The greatest challenge T and
others have faced is reproducing these results. I have made special efforts to make all computational
analyses repeatable.

The next chapter describes a transcriptomics analysis where that I have included to ensure
reproducibility of a clinical trial for which I analyzed the results.

As the hundreds of publications about microarray preprocessing and significance tests have
shown, engineers and statisticians have been very interested in techniques and optimization. How-
ever, the most difficult part of microarray studies comes after the data processing, when biological
interpretations need to be made. For example, new techniques may improve the accuracy of DEG
detection from 80% to 90%, but is that better accuracy more helpful? Would a biologist find it
useful that 9/10 of genes in a list are correct, not just 8/107 Maybe. Maybe not.

The following chapters focus on this transition from statistics to biological understanding. In
particular, transcriptomics analyses of host cells to C. difficile toxins are used to elucidate changes

in the replication of cells and proteins that contribute to or are markers of pathogenesis.



Chapter 3

Transcriptomics characterize

responses to melanoma treatment

3.1 Motivation

Computational models that use millions of data points often require complex, multi-step analyses
that few can implement or understand completely, yet the end goal is most always to find simple,
fundamental relationships that anyone can intellectually grasp. Simple, well-designed summaries
and descriptions of the data are, arguably, of equal importance if not more important than a pre-
dictive or mechanistic model. Transitioning from a computer and data to logic and understanding
is a bottleneck for the sharing ideas with a larger community that can derive new interpretations
to advance medicine. Visual summaries allow us to take advantage of the best analytical tool we
have, the human intellect. Here, I present a phase II clinical trial in which I guided the analyses
and presentation of the data after the completion of the treatment period [139]. Through this
example, I show how appropriate visualizations identified errors in previous analyses and enabled
new interpretations and new hypotheses to be generated.

The clinical trial was directed by Dr. Craig Slingluff at the University of Virginia. Aubrey
Wagenseller, the first author on the associated publication [139], drafted the manuscript and led
follow-up experiments. A more general and briefer background of that given in the manuscript is

provided below. My analysis as presented in the publication (figures and results) are also presented
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in this section. In addition, a more in depth description of the methods are also presented. This
important addition allows one to understand the choice of methods and also reproduce the results
shown in the publication, a process which is not possible from the supplemental data provided in

the published manuscript.

3.2 Introduction

A metastatic melanoma (more formally ‘stage IV melanoma’) is a type of cancer in which melanocytes
(cells that produce the pigment melanin that is found in the skin, eye, inner ear, etc.) grow im-
properly or uncontrollably and spread to other parts of the body. Even with current treatments,
the two-year survival rate is under 20%, so there is a need for new therapeutics or improvements
upon current therapies [140, 141]. To find more potent, target-specific drugs, several studies have
targeted molecular pathways known to be disregulated in many melanomas [142]. Clinical trials
with many of these monotherapies have had variable results: 3% response rate in a Temsirolimus
(targeting PI3K-AKT-mTOR pathway) trial and 0% and 17% response rates in two Bevaczimub
(targeting VEGF) trials [143-145]. However, combination therapies that simultaneously target
multiple pathways have potential to succeed where single drugs have failed. For example, Molhoek
et al. found that dual targeting of VEGF and mTOR with bevacizumab and sirolimus synergisti-
cally reduced growth and caused death in VEGFR-2%, patient-derived, melanoma cell lines [146].
In a follow-up phase II trial with 17 patients treated with temsirolimus+bevaczimub, three patients
partially responded, nine had stable disease after eight weeks, four had progressive disease, and
one patient could not be evaluated (Table 3.1) [147]. In this clinical study, additional miRNA data
was taken from patients before and after treatment. This analysis aimed to identify (1) if pre-
treatment miRNA expression profiles correlate with treatment response or (2) if any post- versus

pre-treatment changes in miRNA expression correlate with the treatment effectiveness.
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Patient Pre-tx Post-tem Post-combo BRAFVY600E Outcome

1 + ND Stable disease

2 + + + Y Stable disease

3 + + ND Y Stable disease

4 + + + Y Stable disease

5 + + + Y Progressive disease
6 + + ND N Partial response
7 + + + N Progressive disease
8 + + + Y Progressive disease
9 + + + N Partial response
10 + + + N Not evaluable
11 + + ND N Stable disease
12 + + + N Stable disease

Table 3.1: Patient outcomes and availability of miRNA data. A ‘4’ indicates that miRNA
was measured from biopsies before treatment (Pre-tx), after temsirolimus treatment (Post-tem),
or after bevacizumab-+temsirolimus treatment (Post-combo). All patients received each treatment
unless denoted with ND (not done). Blank entries indicate where ample RNA could not be obtained.

3.3 Methods

3.3.1 miRNA quantification

500 ng of total RNA was extracted from formalin-fixed, paraffin-embedded tissue sections and
labeled with the dye Hy3. A universal reference sample was labeled with Hy5. After image pro-
cessing, the local median background signal was subtracted from the median signal of each spot
on the array. The log of the ratio of these background-corrected signals (log(Hy3/Hy5)) was then
normalized using LOWESS fits (fitting log(Hy3/Hyb5) versus log(Hy3 x Hy5)/2 ). These intra-array
normalized ratios were denoted as the ‘log median ratio’ (LMR). Inter-array normalization was not
performed because of the built-in normalization provided by the universal reference sample. The
LMR metric will be unfamiliar to most researchers who use popular single-channel, high-density
RNA microarrays (e.g. Affymetrix). However, the universal reference sample in this experimental
design better accounts for errors from cross-hybridization or probe-specific affinities. The raw data
processing was performed by the manufacturer of the arrays. The images of the scanned arrays
are not publicly available. The raw data files publicly available online (GEO #GSE37131) only
include the signal intensities for one channel, which makes it impossible to reproduce the data

normalization. The processed data (the LMR values provided to me) are available online as an
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XML file. The code for parsing and analyzing this XML file is provided online in my public code

repository. For more information about experimental methods, see Wagenseller et al. [139].

3.4 Results

3.4.1 miRNA expression of all samples

Figure 3.1 summarizes the miRNA data from tumors that could be bioposied and profiled (14 of the
17 patients). The row of colors above the heatmap indicate the patient from which miRNA samples
came. The shapes above each column of the heatmap represent the time at which the sample was
obtained. Lines indicate pre-treatment samples. Filled circles represent samples from patients one
day after temsirolimus treatment (day 1). Patients then received bevacizumab+temsirolimus (day
8) and then temsirolimus (day 15). “Double-circles” indicate post-combination treatment samples
that were obtained on day 23. The heatmap colors show the expression of each miRNA relative to

a universal reference sample.

The dendrogram in Figure 3.1 shows a hierarchical clustering of miRNA samples based on
correlation coefficients. This clustering shows that the strongest factor distinguishing the tumors
is the patient. In other words, patient to patient variability is greater than variability from any
other factor such as pre- versus post-treatment. The tight clustering of technical replicates (shaded
gray) showed that variations were due experimental or human error. In the initial analysis, there
were only four samples from patient 7 (there are five samples shown in Figure 3.1). However, the
clustering suggested that one of the pre-treatment samples for patient 7, which had been annotated
as patient 6, was mislabeled. After checking lab notebooks and shipping documents, we rectified the
problem. After correcting the annotations, the variance of samples from patients 6 and 7 decreased
greatly. This, in turn, increased statistical power so that additional differentially expressed miRNAs

could be detected.

This initial profiling provided a general understanding of the structure and scale of the data.
However, because the patient-to-patient variability so strongly dominated the overall variability,

we performed statistical tests to focus on treatment effects.
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Figure 3.1: miRNA expression profiles pre- and post-treatment The 50 miRNAs with the
greatest variance across all samples are shown.
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3.4.2 miRNA expression changes after treatment

To identify differentially expressed miRNAs, paired t-tests were performed by comparing pre- and
post-treatment groups (samples from the same patient were paired). Figure 3.2 plots the p-values
from these tests against the effect size (shown as dLMR = LMRpost-treatment — LMRpre-treatment)-
These “volcano plots” helps identify differences that are statistically significant (y-axis) while the
x-axis helps identify large effects sizes that are often interpreted as more biologically significant.
miRNAs with low p-values and large effects sizes are in the upper left and upper right corners
of the plot. The samples used in the comparisons can be seen in Figure 3.1 or Table 3.1. This
visualization revealed a technical error in previous analyses that was to be used for publication
before I joined the study. There was an unusual distribution of p-values with an overabundance of
values close to 1.0, which appeared to be an artifact of the code used to calculate the statistics.
The volcano plots were used to select miRNAs of interest, with the cutoffs being |dLM R| > 0.5
and p < 0.01 (gray lines in Figure 3.2). No miRNAs met these cutoffs in the post-temsirolimus
treatment versus pre-treatement comparison. However, there were 15 miRNAs of interest when
comparing post-combination treatment versus pre-treatment. One concern from this analysis may
be that the t-test is inappropriate if the effect sizes are not normally distributed. I therefore
performed a permutation based statistical test (‘Significant Analysis of Microarrays’) and found
the same 15 miRNAs as the most significant. Such close agreement between statistical tests is rare.
The same findings with two statistical tests further supports these miRNAs as truly differentially
expressed. The expression of the 15 miRNAs was validated by qRT-PCR. Several of the selected
miRNAs have predicted targets that are known to be oncogenic. For a discussion of these targets,

see Wagenseller et al. [139].

3.4.3 Different miRNA expression changes between responders and non-responders

Last, we investigated if there are miRNAs or sets of miRNAs whose pre-treatment expression would
separate the responders from the non-responders (patients with ‘progressive disease’). This is a
two-class classification problem (10 total samples) with 1,300 features (1,300 miRNAs). Any linear
model with 10 of the miRNAs will be guaranteed to perfectly predict responders. The problem is

then to identify which 10 or fewer miRNAs most reliably predict responders versus non-responders.
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Figure 3.2: Effect size and statistical significance of post- versus pre-treatment miRNA
expression Black circles represent individual miRNAs. Red circles indicate miRNAs of interest.
Closed red circles are putative tumor suppressors.

Backwards subtraction selection of features finds many possible sets of miRNAs that perfectly
predict responders. The problem of many possible models remains. Often, miRNAs are correlated
to each other so that the independence assumption of linear models are violated. I investigated
regularized linear models (lasso and ridge regression), yet there was still no clear best set of miRNAs
that predicted responders. Cross-validation of many models worked 100% of the time. Other
predictive models (e.g. support vector machines and decision trees) had similar problems. After
conceding that there is no ‘best’ model given the miRNA data, I decided to present the four miRNAs
with p < 0.01 and |dLMR| > 0.5 (Figure 3.3A). The heatmap shows that any one of these miRNAs,
with an appropriately selected cutoff, are capable of predicting responders versus non-responders.

Figure 3.3B shows miRNAs with [dLMR| > 0.5 and p < 0.04 when comparing post-combination
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treatment to pre-treatment expression. Finally, BRAFV60E BRAFWT melanomas are treatable
with vemurafenib. Since the effectiveness of temsirolimus and bevacizumab are dependent on BRAF
status, we also tried to distinguish miRNAs that differ between BRAFV6'F and BRAFWT. The
separation of samples based on mutational status is more difficult (Figure 3.3C). However, there

are a collection of miRNAs that warrant further investigation.

A Pre-treatment expression C Patients with and without BRAF mutation
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78 S 6 2 = B TR

hsa-miR—-885—5p 2 8 3 4 5 6 7 109 1211

hsa—miRPlus—C1110 hsa—miR—191

hsa—miR—1207-3p hsa—miR—425

hsa—let—7g* . . hsa—miR—125a—5p
hsa—miR—98

hsa—let—7f
hsa—miR—1297
hsa—let—7d
hsa—let—71
hsa—miR—34a
hsa—miR—-3607—-5p
hsa—miR—3607-3p

B Expression change with
combination treatment

hsa—miR—-3142
hsa—miR—199a—5p hsa—miR—193b
hsa—miR—193a—3p hsa—let=7b
hsa—miR—22 hsa—let—7c
hsa—miR—214 hsa—miR—552
hsa—miR—3653
hsa—miR—-3654 -2 -1 0 1 2

hsa—miR—550a

-1 0 1
dLMR

Figure 3.3: Different miRNA expression between responders and non-responders.
Green numbers and branches indicate non-responders. Red numbers and branches indicate
BRAFVY600E tymors.
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3.5 Conclusions

Proper use of simple statistical tests and well-designed visualizations corrected for small, but critical
errors in the analyses of high throughput biological data obtained from a clinical trial (Figure 3.1).
Bevacizumab+temsirolimus treatment affects miRNA expression more than temsirolimus treat-
ment alone, suggesting that the two drugs are at least additive in their effects on melanoma miRNA
expression (Figure 3.2). This is in line with their synergistic growth-reducing effects in melanoma
cell lines [146].
The pre-treatment expression of small sets of miRNA predicted the success of bevacizumab+temsirolimus
treatment (Figure 3.3A). The expression changes of 7 miRNAs could classify responders versus non-

responders; these miRNAs may play a role in the response to treatment (Figure 3.3B).



Chapter 4

Functional transcriptomics of the host

response to C. difficile toxins

C. difficile causes 300,000+ reported infections and ~20,000 deaths in the US every year, indi-
rectly costing the healthcare system over $8 billion [1]. Infections indicate worsened health due to
Clostridium difficile, not normal colonization of C. difficile that occurs in healthy individuals. C.
difficile strains are only pathogenic if they release toxin A or toxin B (TcdA and TedB). The basic
structure and enzymatic activities of the toxins are understood but the complex host response to
the toxins is not [148-153]. Since the severity of illness is determined by the the host and not the
extent of infection or the number of bacteria in the host, it is critical to understand detrimental

host responses [154].

Taking a systems biology approach, I show how transcriptomics can be used to infer previously
unidentfied host cell responses. The field of functional genomics (or functional transcriptomics)
overlaps with systems biology. They both aim to determine functions from genetic data and char-
acterize interactions between genes and proteins. In this chapter’s last section, I discuss the concept

of “enrichment” to identify groups of genes or pathways that are altered.
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4.1 C. difficile: a dangerous pathogen

4.1.1 Historical significance

In 1935, Hall and O’Toole isolated a novel gram-positive bacterium from infants which they named
Bacillus difficilis because it was a rod (Bacillus) and was an anaerobe that was difficult to grow
(difficilis). They also identified a B. difficilis toxin that killed mice. In 1943, the first rodent model
of infection was made unintentionally when penicillin induced inflammation in the cecum [155].
Remarkably, these findings from 70 years ago summarize much of what we now know: C. difficile
infection occurs when the flora is disrupted by antibiotics and the pathogenic effects are due to
toxins. Even more interesting, several studies over 50 years ago suggested that the most effective
treatment could be the restoration of the bacterial flora, which in the past few years has proved to

be the most effective treatment (reviewed in [156]).

In the intestine,

C. difficile bacteria release

4 o Toxin AandB o b ate

Vo inflammation and
® diarrhea

Figure 4.1: An oversimplified view of C. difficile infection

After the advent of antibiotics, “pseudomembranous colitis” (PMC), a condition manifesting as

inflammation and diarrhea, became associated with antibiotic treatment [156, 157]. The etiology



4.1. C. DIFFICILE: A DANGEROUS PATHOGEN 31

of PMC remained unknown for several years until a rapid succession of experiments between 1977
and 1981 found C. difficile and its two large protein toxins (TcdA and TcdB) to be the primary
cause of PMC [158-167]. With increased antibiotic usage and improved surveillance, the incidience
of C. difficile infections has increased nearly every year since [1]. From 1981 to 1995, studies
characterized the broad physiological toxin effects, many of which are discussed in the following

chapters.

4.1.2 Toxin molecular biology

TedA and TedB are extremely potent. They are not small molecules like other toxins such as
arsenic or cyanide. As proteins, they are more similar to other toxins such as ricin, anthrax toxin,
tetanus toxin, and botulinum toxin (Botox).

The enzymatic activity of TcdA and TcdB which is responsible for their cytopathic effects
was discoverd in 1995 by Just et al. [151, 152]. Both TcdA and TedB, with 63% amino acid
homology [168], have N-terminal domains that glucosylate Rho family proteins, disabling them
from entering their GTP-bound, active state [151, 152]. The C-terminal of both toxins consists
of many “clostridial repetitive oligopeptides” (CROPs) that are present in other clostridial and
streptococcal species [169, 170] that are important for cell binding and entry [171-173]. However,
it is unclear if the CROPs are entirely necessary for cell entry or if the CROPs can alone cause
cytopathic effects [174, 175]. Both toxins enter cells by endocytosis and rearrange structurally in
the acidic endosome [176, 177]. After translocating N-terminal domains to the cytosol through
self-formed pore in the endosome, a cysteine protease domain cleaves off the glucosyltransferase
domain into the cytosol [150, 178, 179]. Although much remains to be understood about the toxins’
functions on the molecular level (e.g., no toxin receptors are known and a large middle portion of
the toxins has no known function), there are even more unknowns about the disease pathogenesis

that is most critical to clinical outcome.

4.1.3 Physiological toxin responses

The external manifestations of C. difficile infection are diarrhea, abdominal pain, and sometimes
fever. Internally, pseudomembranous colitis is characterized by an inflamed colon covered with

yellow, volcano-shaped pseudomembranes made of cellular debris, exudate, and inflammatory cells
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[157]. Histology reveals an abundance of neutrophils and loss of epithelial barrier integrity [180,
181]. Accordingly, many of the hypotheses for C. difficile and toxin studies have been centered
around known inflammatory markers. However, how these markers interact together is unknown.
It is also unknown if any other cell functions (e.g., regulation of metabolism) contribute to the

pathogenesis or the healing process.

4.2 Functional transcriptomics: enrichment

This dissertation presents a systems biology approach to the host response to C. difficile toxins,

using genome-wide expression to reveal altered cellular functions. Appropriate data processing
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techniques were chosen to calculate expression values and differentially expressed genes (Chapter 2).

Many network based algorithms can be used to reconstruct regulatory networks and gene in-
teractions. However, many of these methodologies are unproven or still in the formative stages.
The approach in this dissertation is to present the differentially expressed genes using exploratory

analyses that enable novel hypotheses.

4.2.1 Gene set enrichment analysis

One of the simplest yet most helpful questions from transcriptomics data is ‘what types of genes
changed’. For example, is the number of differentially expressed chemokines greater than expected?
If so, then one could say that the data set is enriched with highly expressed chemokines. Alterna-
tively, it is common to say that chemokine genes or chemokine functions are enriched.

These questions lead to a hypothesis tests in which the significance of the difference between
two different proportions is determined. For example, is there a significantly greater proportion of
chemokines in the list of DEGs compared to the list of non-DEGs? The Fisher exact test calculates
the significance of such proportions, and it is ubiquitous in gene expression studies. The enrichment
of hundreds of predefined sets of genes from public biological databases can be used.

The Fisher test as well as the y? and other tests of proportions require a threshold to define
DEGs, and the results of the test are very sensitive to the threshold chosen. A handful of algorithms
have tried to solve the problem by scanning many thresholds, but they have had little success. These
proportion tests usually assume that genes within the gene set are independent, which usually
incorrect.

Like with DEG significance tests, the choices are numerous. In trying to find the appropriate
test, I evaluated over 130 articles introducing new tests and software tools to perform enrichment
tests, and there are probably one hundred more. Reviews of these methods can usually discuss a
portion of the possible tests [182-186]. Also similar to DEG tests, there are many different cate-
gories (e.g., parametric tests, permutation tests, machine learning algorithms) that make different
statistical assumptions.

Enrichment methods are even more complicated because the hypotheses are ill defined. For
instance, are there more genes in a gene set than all genes outside the gene set? Is the fold change

of gene in a gene set, on average, different than 17 The first question is more restrictive than the
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second, but neither are wrong questions to ask.
In later chapters, I describe some more details of different tests and give reasoning to the
enrichment tests chosen for the transcriptomics data. The tests were chosen based on exploration

of many methods to find the most consistent lists of highly ranked gene sets.



Chapter 5

Toxins A and B disrupt the cell cycle

5.1 Synopsis

Toxins A and B (TedA and TedB) are Clostridium difficile’s principal virulence factors, yet the
pathways by which they lead to inflammation and severe diarrhea remain unclear. Also, the relative
role of either toxin during infection and the differences in their effects across cell lines is still
poorly understood. To better understand their effects in a susceptible cell line, we analyzed the
transciptome-wide gene expression response of human ileocecal epithelial cells (HCT-8) after 2, 6,
and 24 hr of toxin exposure. We show that toxins elicit very similar changes in the gene expression
of HCT-8 cells, with the TedB response occurring sooner. The high similarity suggests differences
between toxins are due to events beyond transcription of a single cell-type and that their relative
potencies during infection may depend on differential effects across cell types within the intestine.
We next performed an enrichment analysis to determine biological functions associated with changes
in transcription. Differentially expressed genes were associated with response to external stimuli and
apoptotic mechanisms and, at 24 hr, were predominately associated with cell-cycle control and DNA
replication. To validate our systems approach, we subsequently verified a novel G;/S and known
G2/M cell-cycle block and increased apoptosis as predicted from our enrichment analysis. This
study shows a successful example of a workflow deriving novel biological insight from transcriptome-
wide gene expression. Importantly, we do not find any significant difference between TcdA and TcdB
besides potency or kinetics. The role of each toxin in the inhibition of cell growth and proliferation,

an important function of cells in the intestinal epithelium, is characterized.
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5.2 Background

C. difficile, a Gram-positive, spore-forming anaerobe, colonizes the human gut and causes infections
leading to pseudomembranous colitis. This opportunistic pathogen flourishes in antibiotic-treated
and immunocompromised patients and is frequently spread in hospitals, although community-
acquired Clostridium difficile infection (CDI) cases have also increased [187]. The emergence of
hypervirulent strains that possess more robust toxin production and increased sporulation has
been correlated with outbreaks across Europe and North America [188]. In most areas, the number
of cases has increased in the past decade. The number of patients hospitalized in the US with CDI
doubled to approximately 250,000/year (from year 2000 to 2003) and fatalities increased at a similar
rate [189]. The US healthcare costs for CDI are estimated to be over $1 billion/year [190]. As TcdA
and TcdB appear to be responsible for many of the clinical manifestations of CDI, understanding
the intracellular and systemic effects of each toxin is critical to developing and improving strategies

for treatment and prevention.

In light of the multiple events and pathways involved in the development of CDI, we chose
to examine the toxins’ effects from a systems perspective, focusing on epithelial cells in vitro.
Both TcdA and TedB bind to cells [173], enter an endosome by clathrin-mediated endocytosis
[176], translocate and then cleave their catalytic domain into the cytosol which glucosylates and so
inactivates Rho family proteins [178]. The disruption of these crucial signaling regulators begins to
explain cytotoxic effects such as deregulation of the cytoskeleton and the breakdown of the epithelial
barrier [191]. However, other processes are likely affected by the trafficking and processing of these
toxins. In addition, secondary effects of Rho glucosylation in relation to pathologies of CDI have

not been fully elucidated.

We therefore investigated the transcriptional profile of HCT-8 [192] cells treated with TcedA or
TedB and identified pathways and cellular functions associated with differentially expressed genes.
With respect to toxins, in vitro analyses of gene expression in host cells have been performed with
type A botulinum neurotoxin, lethal toxin [193] and edema toxin [194] from Bacillus anthracis,
pertussis toxin [195], Shiga toxin type 1 [196], and several others. Such studies provide lists of
differentially expressed genes or classes of genes that serve as a resource for the generation of new

hypotheses. In this regard, we used bioinformatics analyses to identify cellular functions altered
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by TedA and TedB that are relevant to pathogenicity. The correct identification of the majority of
functions found to be affected in previous research regarding TcdA and TedB confirmed our analysis
and experimental design, and experiments reported herein validated changes in cell function that
were suggested by altered gene expression.

Among the genes that TcdA and TedB affect, many are involved in the regulation of the
cell cycle and induction of apoptosis. Bacterial factors such as cytotoxic necrotizing factor and
cytolethal distending toxins that disrupt normal cell cycle progression have been described as
“cyclomodulins” [197]. In addition to effects of TcdA and TedB on cells in the Go/M phase which
have been described previously [198-201], we found that TcdA and TedB affect expression of cyclins
and cyclin-dependent kinase (CDK) inhibitors controlling the G;—S transition. Our experiments
establish that alterations of cell cycle implicated in our analysis of gene expression do, in fact,
occur in toxin-treated cells. In addition to effects on cell cycle, we also present the other cellular
functions associated with differentially expressed genes, some of which enable novel hypotheses on

the cellular activity and function of these toxins.

5.3 Methods

5.3.1 Cell Culture

HCT-8 cells were cultured in RPMI-1640 supplemented with 10% heat-inactivated fetal bovine
serum (Gibco) and 1mM sodium pyruvate (Gibco). The cultures were maintained at 37°C/5%

CO, up to passage 35. Toxin A and Toxin B, isolated from strain VPI-10643, were a generous gift
from David Lyerly (TECHLAB Inc., Blacksburg, VA).

5.3.2 Microarrays

HCT-8 cells (5 x 106/flask) were grown overnight at 37°C/5% CO,. Media were replaced with 2.5
ml fresh media and toxin was added (100 ng/ml). At the end of the indicated incubation period,
cells were washed with 5 ml PBS (Sigma) and total RNA was isolated using the QIAshredder and
RNeasy mini kits (Qiagen), according to the manufacturer’s instructions. An RNase inhibitor was
added (RNasin, Promega) and samples were stored at -80°C. RNA integrity was assessed using

an Agilent 2100 BioAnalyzer prior to cDNA synthesis and RNA labeling using either the 3’ IVT



38 CHAPTER 5. TOXINS A AND B DISRUPT THE CELL CYCLE

expression or one-cycle target labeling methods (Affymetrix). Biotin-labeled RNA was hybridized
to Human Genome U133 Plus 2.0 chips, washed, stained and scanned using a GeneChip System
3000 7G (Affymetrix). Data from three independent microarray experiments were deposited into
the NCBI Gene Expression Omnibus repository (GSE29008).

Microarray signal intensities were normalized using the gcrma package [17]. Treatment and
control groups were contrasted with linear models; a Benjamini-Hochberg correction was applied
across all the probes and the nestedF method within the limma software package was used for
multiple testing across all contrasts [63, 64]. The Gene Ontology (GO) annotation database was
used to map gene symbols to GO categories [202]. A gene symbol was considered differentially
expressed if at least one of the probe sets annotated to it was significant. A probe set was considered
significant if the p<0.1 and the magnitude of the fold change was above 1.5. Enriched GO categories
were identified with the topGO package using Fisher’s exact test to calculate p-values and the elim

algorithm [203].

5.3.3 Flow Cytometry

HCT-8 cells were grown overnight to 50% confluence, media were removed and replaced with fresh
media, and toxin was added at the concentrations denoted in the text and figures. At 24h and 48h,
non-adherent cells were removed and saved on ice. Adherent cells were treated with 1mL of 0.25%
trypsin and 1 mL of Accutase with EDTA for 30 min at room temperature and joined with the non-
adherent cells in 5 mL PBS. After centrifugation, resuspension for counting cells, and another round
of centrifugation, the dissociated cells were resuspended to 2x10° cells/mL and 0.5 mL was added
to bmL of 70% ice-cold ethanol for fixation. Afterward, the fixed cells were resuspended in 5 ml
PBS with 2% Bovine Serum Albumin and then resuspended and incubated for 30 min in a solution
to stain DNA (PBS with 10% Triton X-100, 2% DNasefree RNase, 0.02% propidium iodide(PI)).
Single-cell fluorescence was measured with a Becton Dickinson FACSCalibur flow cytometer. The
proportion of cells in each stage of the cel