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Abstract

Creating interventions to avoid adverse events is an ongoing topic in numerous settings

and thus it is often important to answer questions such as which treatments can be applied

to avoid outcomes such as death or stunted growth. One may hope to answer these queries

through the use of variable importance measures and through modeling the growth and

development of individuals. Variable importance is an up and coming aspect of statistics

that ranks variables in terms of some measure of importance which is often applied without

the notion of either the exact meaning or how it can be compared with other regression or

classification methods. Thus, characterizing standard variable importance measures could

go a long way in the applicability and practicality of these ideas. In addition, confidence

intervals and a lower threshold of importance was created and explored in order to advance

the understanding and interpretability of such measures and methods. Simulations were con-

ducted to show the behavior of such metrics with theoretical results stemming from a simple

setting. In a specific population of Bangladeshi children from the PROVIDE study, growth

models were explored where previous models have not correctly described these children’s

heights over the first two years of time, especially considering the plethora of covariates

(900+). Developmental outcomes from 2 to 5 years of age were additionally modeled and

explored. Throughout this research, the variable importance is described and explored in

diverse manners while the children’s heights and development is explained through various

inclusive models.
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1 Introduction

Infants born prematurely not only have a very low birth weight, but are at high risk of death

and other morbidities such as bronchopulmonary dysplasia, intraventricular hemorrhage,

and retinopathy of prematurity. Perinatal measurements available at birth such as weight,

gestational age, and Apgar scores often determine an accurate baseline risk. However, vital

sign measures such as heart rate and blood oxygen levels that are measured every second or

two while in the Neonatal Intensive Care Unit (NICU) can significantly modify an infant’s

baseline risk. Features calculated from the vital sign time series that can be used to develop

predictive risk models include metrics of average, variability, and skewness. Many of these

measurements are highly correlated and the relationships with the undesirable outcomes

are still being explored. Therefore, an important often asked question is which of these

measurements should be monitored closely in order to lower the patient’s risk of an adverse

event?

It is becoming more well known how the first few years of life can impact the future

health of an individual. A particular problem of stunted growth occurs too often throughout

the world and contributes to mortality of individuals under five and overall developmental

detriment. Being able to explain how children who are particularly susceptible to stunting,

developmental delays, or malnutrition grow and which factors affect their health would allow

for interventions and early detection which in turn would improve the lives of many. Within

this study, hundreds of variables (> 900) involving environmental, maternal, blood and stool,

growth, and developmental factors were measured on the PROVIDE cohort with 700 children

from Bangladesh who were followed irregularly from birth through two years of life with 16

time points. A subset of these children were additionally followed up to seven years of life

thus far. This data set and similar cohorts have been explored using functional principal com-

ponent analysis (FPCA) with linear regression by Zhang et al., penalized linear regression

by Lu et al., a combination of these two methods (working manuscript), and conditional ran-
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dom forest by Donowitz et al. [Zhang et al., 2017] [Lu et al., 2017] [Donowitz et al., 2018]

(coauthor). Of these analyses, only the working manuscript uses the actual heights of chil-

dren whereas the others have explored the height-for-age Z score (HAZ) which is normalized

for gender and age using the World Health Organization (WHO) Multicentre Growth Ref-

erence Study Child Growth Standards. Also, in the second article, only certain variables

were considered of which some were measured at multiple time points with the aspect of

repeated measures being unaccounted for within the analysis. Other articles focused on neu-

rocognitive developmental outcomes such as in Moreau et al., Donowitz et al., and Jensen

et al. or outcomes such as time to infection of cryptosporidiosis with survival analysis in

two articles by Steiner et al. [Moreau et al., 2019] (coauthor) [Donowitz et al., 2018] (coau-

thor) [Jensen et al., 2019] [Steiner et al., 2018] (coauthor) [Steiner et al., 2019] (coauthor).

Therefore, a more comprehensive model which includes numerous covariates over time needs

to be explored and created in order for interventions to be discovered.

Both of these data sets give rise to similar questions in that we are asking which vari-

ables are most important for predicting complications in order to intervene. Extending our

question to other populations and more general problems, a common practical question deals

with selecting which variables are most important or predictive. Thus, the idea of measur-

ing a variable’s importance is very practical. The two data sets described above are both

unique. For the NICU data, the variables are mostly numeric and there is only a small set of

predictors while for the PROVIDE study, numerous variables were measured and have the

potential to be important for the outcomes of interest.

Variable importance (VIMP) measures exist for linear regression and other such proce-

dures, however most of these measures have issues with one being they are not applicable to

separate methods one may wish to use to compare results. Logistic regression has been used

in a couple cases from these data sets one including a VIMP measure for NICU infants by

Sullivan et al. and one which may have been improved with the addition of a VIMP mea-

sure for patients with Clostridium difficile infection by Kulaylat et al. [Sullivan et al., 2018]
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[Kulaylat et al., 2018] (coauthor). Another such example of an existing procedure for VIMP

is using a conditional random forest along with conditional VIMP for the PROVIDE cohort

[Donowitz et al., 2018] (coauthor) [Moreau et al., 2019] (coauthor). This procedure gives

a very intuitive graphical display of the VIMP, however the scale is not comparable with

other such methods and the calculations are somewhat complex. Thus, characterizing these

standard VIMP measures would be beneficial to many individuals. The absence of full under-

standing of VIMP measures which is useful for various regression and classification methods

drives us to explore these VIMP calculations. In order to explore VIMP measures, multiple

analyses using the existing data along with creating new data for simulations is implemented.

Some simulations where the truth about the VIMP is known for simple regression settings

are completed while an exploration of creating confidence intervals and finding a cutoff for

VIMP is explored using the NICU and the PROVIDE study data.

The first objective for this dissertation includes presenting and characterizing standard

VIMP measures for different data sets and thus in various settings. The goal is to provide

measures and their characterizations which allow for the identification of important variables

which predict an outcome where interventions may be imposed to avoid adverse events.

Secondly, the growth modeling process has a goal to build comprehensive models which

explain the growth and development of children from Bangladesh who specifically have a

lack of proper growth. This objective also has the idea to provide interventions to avoid

stunting or neural deficits within this particular population by including numerous covariates

to predict height and developmental responses at two to five years of age.

In Chapter 2, the data behind the motivation for VIMP is first described along with a

data set with additional complexities. Then current VIMP measures with their criticisms

are reported. Next, VIMP measures are characterized using the two data sets in the classi-

fication and regression settings including calculations for confidence intervals of VIMP and

a cutoff/threshold to determine which variables are important. Lastly for Chapter 2, a

theoretical query is postulated along with supporting simulation results.
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Chapter 3 describes the growth modeling portion for the PROVIDE study cohort which

is first described in detail. Multiple current growth models and a proposed growth model

are outlined. Then, simple exploratory results on the data are presented followed by var-

ious statistical models including penalized linear regressions and random forests such that

comprehensive models are suggested per outcome of interest.

The last chapter, Chapter 4, summarizes the findings and suggestions and then suggests

future research paths from this current work. Chapters 2 and 3 were designed to be self

contained in the hopes of publishing articles about these separate Chapters, each of which

include their own unique aspects but are linked in terms of the overall goal to identify

important variables leading to interventions.
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2 Characterizing Variable Importance Measures

Variable importance (VIMP) is somewhat of a vague calculation for many who apply the

methods which automatically output VIMP measures. However, VIMP is a very useful

and often practical application. Often, VIMP is used to select predictors in order to

create interventions for improving health or other aspects of life. Another use is for ex-

ploratory reasons where important predictors of the response may be identified and inter-

preted [Grömping, 2009]. The data fueling our motivation is first described followed by

multiple current VIMP measures and their criticisms. Then, methods for confidence inter-

vals and finding a threshold are discussed within the applications of available data. Finally,

theoretical aspects about the probability for correctly selecting the one and only important

variable in a simple setting are given supported with multiple simulations.

2.1 NICU Data

Preterm newborns are inherently more vulnerable to certain morbidities including death, in-

traventricular hemorrhage (IVH), bronchopulmonary dysplasia (BPD), late-onset septicemia

(LOS), necrotizing enterocolitis (NEC), and retinopathy of prematurity (ROP). IVH is not

necessarily fatal, however it may cause other complications since IVH is bleeding within the

brain confined to areas of the brain which contain spinal fluid. BPD is damage to the lungs

usually caused by ventilation and long term oxygen use, yet most patients will recover. LOS

is sepsis which is inflammation throughout the body as a reaction to an infection which may

result in multiple organ failures and death. NEC may also lead to death or an infection since

it happens when a portion of the bowel dies. However, ROP does not usually lead to death

but is rather abnormal blood vessels throughout the retina causing blindness or other eye

problems. Death and IVH occur earlier within a patient’s stay at the NICU. Thus, these

would need early interventions whereas BPD, LOS, NEC, and ROP may occur during a later

time within a patient’s stay.
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Previous work showed abnormal heart rate characteristics such as the decrease in HR

variability predict death and other morbidities in premature infants [Sullivan et al., 2016].

However, these later morbidities (BPD, LOS, NEC, and ROP) have proved harder to pre-

dict from the following measures: weight at birth in grams (BW); sex; gestational age in

weeks (GA); Apgar scores at one and five minutes; antenatal steroid indicator (number of

steroid doses given before birth); the mean, standard deviation, skewness, or kurtosis of

heart rate (HR) and blood oxygen levels (SPO2); and the minimum and maximum of the

cross-correlations between HR and SPO2 [Sullivan et al., 2018]. The HR and SPO2 were

measured every few seconds over the week from available pulse oximetry data. The statistics

of HR and SPO2 were calculated after twelve hours and at the end of seven days. An Apgar

score is a measure of the physical condition for a newborn which takes into account the

following five aspects each with a perfect rating of two: heart rate, respiratory effort, muscle

tone, reflexes, and skin color. The score one minute after birth tells how well the infant is

tolerating the birthing procedure while the five minute score shows how well the newborn is

doing after birth, or outside the womb [Kaneshiro, 2014]. Some of these variables are highly

correlated as to be expected especially since premature infants usually weigh less; see Figure

1. These correlations are based on Spearman’s correlation and have been split based on

previous results. However, this adds a slight complication to the data structure along with

multiple non-Normal distributions and some low incidence rates. It has been shown that

the first 12 hours of data better predicts death and IVH while the first week of data better

predicts the other outcomes due to when these events usually occur within a NICU stay

[Sullivan et al., 2018] [Sullivan et al., 2016]. For this research, the focus was on the worst

outcome of death. Thus, only the first 12 hours of data was used for calculating some of the

predictors.

This data was collected at two separate sites, the University of Virginia (UVA) Children’s

Hospital from 2012-2015 and Morgan Stanley Children’s Hospital of NewYork-Presbyterian

Columbia University (CU) Medical Center from 2012-2015 to include a total of 778 infants
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Figure 1: The Spearman correlations per the first 12 hours (left) and the first week (right)
of data with the corresponding appropriate outcomes.

(443 from UVA and 335 from CU). Children with congenital heart defects, congenital anoma-

lies, extreme prematurity which prompted planned comfort care only, or those with missing

pulse oximetry within 12 hours of birth were excluded from the data set. This data set

stands as our motivation for the VIMP exploration with the outcome of death and is used

for the application aspects in 2.4.1 and 2.5.1.
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2.2 PROVIDE Cohort Study Data

The PROVIDE birth cohort consisted of 700 infants born in Mirpur which is an urban

slum in Dhaka, Bangladesh from May 2011 to November 2014. Children were recruited at

birth and followed over a two-year period with in-home visits twice a week and irregularly

scheduled clinical visits where blood or stool samples were occasionally taken. A more

detailed description of the study design, recruitment, and follow-up were described previously

[Kikpatrick et al., 2015]. This study was approved by the Ethical Review Board of the

ICDDR,B (FWA 00001468) and the Institutional Review Boards of the University of Virginia

(FWA 00006183) and the University of Vermont (FWA 00000727). A large set of biomarkers

for nutrition and systemic inflammation were calculated from the available stool and blood

samples along with numerous survey results, development, and growth measures including

over 900 potential predictor variables. However, due to numerous missing values and in

order to keep as many subject as possible, a subset of the predictors was selected for analysis

including biomarkers, socioeconomic, and anthropometric measures. Thus, data is still from

all sorts of sources and on numerous aspects of these children’s lives. The primary outcome of

interest is stunting by two years of age defined as a height-for-age Z score (HAZ) or length-

for-age (LAZ) at two years below -2. HAZ specifically is a measure normalized for the

child’s age and gender from standards released from the World Health Organization (WHO)

Multicentre Growth Reference Study Child Growth Standards. Stunting has been shown to

be correlated with subsequent outcomes in later life such as diminished survival, weakened

learning capacity, and lower annual incomes which leads to stunting being a primary interest.

However, HAZ is a commonly used measurement for malnutrition due to it’s ability to

capture the cumulative effects through childhood and is our outcome of interest at two

years of age [Dewey and Begum, 2011][Hoddinott et al., 2008]. The relationships between

the 47 predictors are given in Figure 2 [Donowitz et al., 2018] (coauthor). This figure shows

how the predictors may be clustered together based on Pearson correlations, especially how
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systemic cytokines are related to each other (black cluster), how enrollment anthropometry

is related to sanitation (red cluster), and how economic status is clustered with biomarkers

for enteric inflammation (green cluster). It may be noted that for this particular data set,

if a child had any missing values across the variables, they were excluded along with any

subject having a value above five standard deviations in any of the predictors leading to 371

subjects to analyze. This specific subset of the PROVIDE study is used in 2.4.2 and 2.5.2

for applications aspects.

Figure 2: The Pearson correlations between the predictors for the PROVIDE study cohort
were used to create this hierarchical cluster dendogram.
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2.3 Current Variable Importance Measures with Criticisms

There are currently numerous different measures of a variable’s importance, often depending

on the specific setting and model one is working with. Simple methods such as linear

and logistic regression have many different ways to calculate variable importance (VIMP)

while more complex methods such as neural networks or random forests only have a few.

The following outlines several ways one may choose to calculate VIMP along with certain

criticisms.

2.3.1 Linear and Logistic Regression Setting

There have been various variable importance (VIMP) measures proposed for linear and

logistic regression methods. These measures may be seen in Table 1. Since linear and

logistic regression are widely used, there have been many different proposed methods of

VIMP with some of the simpler ideas coming naturally. The absolute value or squares of

the raw coefficients βj, standardized coefficients βj,st = βj
sj
sy

, test statistics (t-values in linear

regression and z-values in logistic regression), or p-values have all been used in numerous

instances. However, each of these have their own criticisms. As is widely known, the raw

coefficients βj are not scale invariant and thus their interpretations and values depend on the

initial scale of the predictors. Even though the standardized coefficients βj,st take care of this

scale invariance, they are still not very useful when correlations appear between predictors

[Grömping, 2015]. Each of these VIMP measures also are conditional on all other regressors

in the model which, depending on the research question, may not be quite as useful as a

marginal approach. A specific example in Figure 3 from the NICU data has shown how

p-values from a logistic regression model have been used to rank the predictors from most

significant to least significant per each adverse event and split by pulse oximetry or clinical

variables. From this, we can see that for the clinical variables and the outcome of death,

birth weight is ranked the highest whereas for the pulse oximetry measures and still for
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the outcome of death, the mean blood oxygen level is ranked the highest indicating these

are important variables for the prediction of death [Sullivan et al., 2018]. The last measure

which may be applied to linear and logistic regression both is the sequential increase in R-

squared where each regressor is entered into the model in a pre-specified order. This method

can decompose the variance but is often not practical due to the dependence on the order

the variables are entered [Grömping, 2015].

Figure 3: The predictors in the NICU data were ranked per each set of variables, clinical or
pulse oximetry, via their corresponding p-value for the logistic regression analyses per each
outcome [Sullivan et al., 2018].

Specifically for linear regression, multiple other VIMP measures have been assessed. The

simple metrics include the absolute value or square of the raw correlations rY Xj
between each

regressor Xj and the response Y , the absolute value or square of the semipartial correlations

rY (Xj ,other), and the product of the standardized coefficients and their respective raw corre-

lations βj,strY Xj
. The semipartial correlation between Y and X1 when given the response Y
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and two predictors X1 and X2 is

rY (X1,X2) =
rY X1 − rY X2rX1X2√

1− r2X1X2

which represents the correlation between Y and X1 after the effect X2 has on X1 (but not

the effect it has on Y ) has been removed. Again, these have all been scrutinized for var-

ious reasons. For the raw correlations rY Xj
, these values show the marginal effects only

and thus could be deemed important even though the coefficient in a linear regression is

zero, meaning it would have no impact on the response given all other variables in the

model. Likewise with the raw coefficients βj or test statistics, the semipartial correlations

rY (Xj ,other) are also conditional on all the other variables within the model which, again,

may not answer the particular research question. The product of the standardized coeffi-

cients and the raw correlations, βj,strY Xj
, may decompose the R-squared or variance, but

negative contributions might arise which is often criticized [Grömping, 2015]. Other metrics

such as zero-order correlations (raw correlations) rY Xj
, partial correlations rY Xj ,other, Akaike

weights wi, and independent effects IXj
were explored leading to the conclusion that no in-

dex for linear regression performed perfectly especially when correlations between predictors

occurred [Murray and Conner, 2009]. The partial correlations assuming the response Y and

two regressors X1 and X2 are calculated as

rY X1,X2 =
rY X1 − rY X2rX1X2√
1− r2Y X2

√
1− r2X1X2

and is thus the correlation for Y and X1 after the effect of X2 on both Y and X1 has been

removed. The Akaike weights is calculated given the data set and M candidate models.

Thus, the Akaike weight for the ith model is

wi =
exp

(
−1

2
(AICi − AICmin)

)∑M
m=1 exp

(
−1

2
(AICm − AICmin)

)
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where AICmin is the Akaike information criterion (AIC) value for the model with the lowest

AIC. The VIMP using these weights is the sum of the weights, wi, across all models including

the variable Xj. So, the higher this sum of the weights, the more important variable Xj is,

however this VIMP measure is based on the number of models which contain Xj. Therefore,

the number of computing models containing each variable must be balanced. The indepen-

dent effect of a particular variable IXj
indicates the average contribution of this variable

to the variance for all response values over every possible model. This value is calculated

through the comparison of the fit of all models with the predictor and the fit of all possible

nested models without this predictor. With the response Y and P predictor variables, the

independent effect of Xj is

IXj
=

P−1∑
i=0

∑(
r2Y,XjXh

− r2Y,Xh

)
/

(
P − 1

i

)
P

where Xh is some subset of i regressors where Xj is excluded. This is similar to domi-

nance analysis but using hierarchical partitioning. Murray and Conner recommend using

the zero-order correlations first for predictors with near zero correlations, then using the in-

dependent effects to rank the predictors [Murray and Conner, 2009]. This recommendation

is flawed in the case of correlations between predictors since the squared correlations will

no longer sum up to be the R-squared value and thus do not reflect their true contributions

[Murray and Conner, 2009]. Even though these metrics are often used, they all have been

scrutinized and two glaring issues are that these measures are limited to specific regression

methods and do not share the same scales of VIMP.

Additional but more complex VIMP measures have been proposed for linear regres-

sion. These additional VIMP metrics are based on the decomposition of the variance

(See Table 1). These methods are referred to as LMG (Lindeman, Merenda, and Gold),

PMVD (Proportional Marginal Variance Decomposition), Gibson/CAR scores, and Fab-
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bris/Genizi/Johnson. The variance of a linear regression model can be written as

βTΣXXβ =
P∑
j=1

P∑
k=1

βjβkσjk

where βT excludes the intercept, ΣXX represents the true but unknown covariance matrix

(P × P ) of the predictors where σjk are the elements and the matrix can be rewritten

as diagj(
√
σjj)PXXdiagj(

√
σjj), and where PXX is the theoretical correlation matrix (P is

capital Rho). For the following explanations, the data involved is assumed to be centered such

that the empirical covariance matrices are SXX = XTX/(n− 1) and SXY = XTY/(n− 1).

LMG and PMVD are both computationally expensive algorithms which are related to

game theory. The regressors are the players of the game and the variances that can be

explained by a set of predictors is the worth for that particular set of predictors while

the achievable variance explained overall is the total gain or worth which can be allotted

among all regressors fairly. LMG and PMVD are both averages of the sequentially explained

variances over all the possible orderings of the regressors. LMG is the unweighed version

and tends to the marginal side where PMVD is the weighted version which tends to the

conditional side of VIMP. Given disjoint sets of predictors S and M , the explained variance

(evar) and the sequentially added variance (svar) are calculated as

evar(S) = var(Y )− var(Y |Xj, j ∈ S)

svar(M |S) = evar(M ∪ S)− evar(S).

These formulas will allow us to define LMG and PMVD. Thus, the following shows the

equations for the first predictor for simplicity. Here S1(π) is the set of predecessors (previous

predictors) for variable 1 for permutation π.

LMG(1) =
1

P !

∑
πpermutation

svar({1}|S1(π))
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This shows that LMG is an unweighted average for every ordering of the sequential contri-

bution from regressor 1. Since PMVD is also an average over all orderings of the sequential

contribution for regressor 1, although a weighted average, we may write

PMVD(1) =
∑

πpermutation

P (π)svar({1}|S1(π))

where the weights

P (π) = L(π)/
∑
π

L(π)

and where

L(π) =
P−1∏
i=1

svar({πi+1, . . . , πP}|{π1, . . . , πi})−1 (1)

=
P−1∏
i=1

(evar({1, . . . , P})− evar({π1, . . . , πi}))−1 (2)

These methods fail however when the number of regressors is large, especially due to their

expensive computations [Grömping, 2015] [Grömping, 2009].

In addition to the already assumed centered data, the following variance decomposition

methods require the data to be standardized. So, the empirical correlation matrices for

the normalized data are RXX = XTX/(n − 1) and RXY = XTY/(n − 1). Keeping this

in mind, the next variance decomposition method is Gibson/CAR scores which uses the

squared coefficients, c2j with j = 1, . . . , P , from the predictors when the normalized outcome

variable is regressed on an orthogonalized matrix Z. To find the best matrix Z, we assume

full column rank for X, and then the orthogonalization from singular value decomposition

begins with X = UDVT where U is a n × P matrix with orthonormal columns, V is an

orthogonal matrix (P × P ), and D is a diagonal P × P matrix. Z = UVT gives the set of

P orthonormal vectors that is most similar to the X variable’s columns. Thus,

RXX = XTX = VDUTUDVT = VD2VT
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such that R
−1/2
XX = VD−1VT . This therefore leads to

Z = XVD−1VT = UDVTVD−1VT = UVT .

To find the squared coefficients from regressing Y on Z one can simply square the com-

ponents of R
−1/2
XX RXY . Even though the orthogonalized matrix Z is a surrogate for the

normalized X values, when correlations are present between predictors, this matrix may

not be the best choice. Thus, the Fabbris/Genizi/Johnson method modified this approach

by calculating the squared coefficients from regressing the original predictors X on the or-

thogonalized matrix Z then obtaining the R-squared contribution for an original predictor

variable via a weighted sum of the squared coefficients similar to the Gibson/CAR scores

method. This Fabbris/Genizi/Johnson method is regarded as the better of the two by some

whereas others state the measure as theoretically flawed due to the choice of relative weights

[Grömping, 2015]. One important note is that variance decomposition in linear models where

correlations between predictors are present is still being researched and thus these methods

are not applicable in that case.

Often, it is discussed whether VIMP measures should be marginal or conditional or

balance the two. For the VIMP measures given thus far, many of them are one or the

other. Table 1 distinguishes which VIMP measures take either the marginal or conditional

approach and which try to balance these aspects. The conditional types of VIMP are good

when one wants to select a small number of predictors for accurate predictions. Marginal

types are better for interpretations or explanations when selecting the important predictors.

However, one always must understand the relationships within the data, meaning correlation

between predictors can have a large effect on some VIMP measures, especially the marginal

ones.

19



Table 1: Linear and Logistic Regression VIMP Measures.

Linear/Logistic VIMP Measure Type

Both Absolute value or square of raw coefficients Cond
Both Absolute value or square of standardized coefficients Cond
Both Absolute value or square of test statistics Cond
Both Absolute value or square of p-values Cond
Both Sequential increase in the R-squared Cond
Both Akaike weights Cond
Linear Absolute value or square of raw correlations Marg
Linear Absolute value or square of partial correlations Marg
Linear Absolute value of square of semipartial correlations Cond
Linear Independent effects Marg
Linear Product of the standardized coefficient and raw correlation Cond
Linear LMG: Variance decomposition Marg
Linear PMVD: Variance decomposition Cond
Linear Gibson/CAR Scores: Variance decomposition Both
Linear Fabbris/Genizi/Johnson: Variance decomposition Marg

2.3.2 Random Forest and Conditional Random Forest Setting

In order to understand the calculations for VIMP within a tree-based model, one must first

understand a basic decision tree. In Figure 4 panel A, the terminology of a basic decision

tree is given where each split is at a decision node and the end of a branch is a terminal node.

An example is given in Figure 4 panel B. For this example, given an individual, we follow

the tree from top to bottom through the decision nodes ending at a terminal node which will

give a classification, in this case, of high or low mileage. Let’s say we have a 2012 Toyota

Camry to classify. Following the decision tree in Figure 4 panel B, the Toyota is not heavy

and has a horsepower greater than 86 leading to a low mileage classification. A classification

or regression tree searches through each predictor at each split to find a value from one

variable which will divide the data into two groups based on some splitting criteria. The

splitting continues until some stopping criteria is met and thus a tree is grown. These trees

usually do not have many restrictions and may grow very large (imagine a more complex

setting with numerous predictors unlike Figure 4). However, they may be controlled by
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certain parameters such as the minimum number of observations that is allowed within a

terminal node. A strength of these trees is that they can handle several different types of

predictors, although they can suffer from model instability meaning each tree is dependent

on the sample used to create it therefore giving a single tree low bias but high variability

[Kuhn and Johnson, 2016]. To reduce the variability, methods such as bagged trees which

averages individual trees together are implemented.

Figure 4: (A) Basic decision tree terminology and (B) an example to classify mileage of
vehicles.

Bagging, aka bootstrap aggregation, is an ensemble method that aggregates the decision

trees generated from bootstrapped samples as explained in Figure 5. Each of the trees is

grown deep giving each tree low bias but high variability. The variability is reduced when

averaged, but there are no tuning parameters which can lead overfitting the data. For a

binary outcome, each tree can be thought of as casting a vote for which category that tree

thinks the new observation should belong. The total number of votes for each category

is divided by the total number of trees to produce the predicted probability for the new

observation [Kuhn and Johnson, 2016]. These predicted probabilities can then be used to

classify the new observation based on a decision threshold, which can be naively chosen as 0.5.

One general downfall to aggregating trees is the loss of interpretability. A specific downfall

for bagged trees is that the trees are not completely independent of one another. This is due

to all of the predictors being considered at each split for every single tree in the ensemble
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which leads to tree correlation. Tree correlation may prevent the method from optimally

reducing the variance of the predictions since each tree can have comparable structures due

to the underlying relationships.

Figure 5: Flow chart of the general steps bagging, random forests, and conditional random
forests follow.

An improvement from bagged trees is random forest (RF) where the trees are built

on bootstrapped samples similar to bagged trees, however, each time a split in a tree is

considered, a random sample of predictors is chosen as split candidates which decorrelates

the trees. The split then only uses one of the sampled predictors at that decision node. At

each split, or decision node, a fresh set of predictors is randomly chosen from which to select.

Each tree is grown to the maximal depth and contributes equally to the final model, thus if

the number of randomly sampled predictors equals the total number of predictors, then RF

becomes bagged trees. Due to the lessening of tree correlation, the number of trees created

does not attribute much to overfitting [Kuhn and Johnson, 2016]. It is important to note

that when a tree is built, a portion of the observations are left out. These observations are

often called out-of-bag (OOB) observations and are used to calculate VIMP as described

below.
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The steps for creating a RF model similar to Figure 5 are:

1. Select the number of trees to be built, T

2. For each tree, t, complete the following:

(a) Select a bootstrap sample from the original data

(b) Build a tree, t, for this particular sample but for each split, s, of the tree:

i. Randomly select k predictors from the original list of predictors of size P

ii. Select the best predictor among those k in order to split the data

(c) Build the tree until the stopping criteria is met (could be built to maximal depth:

one observations per terminal node)

3. Collectively, these T trees create the forest

An issue arises with the RF method though when predictors are highly correlated. The

importance of correlated predictors may be overestimated making these predictors appear

more important than uncorrelated ones [Strobl et al., 2008] [Strobl et al., 2009] [Boulestix et al., 2012].

The conditional random forest (CRF) method takes into account these correlations and other

aspects to reflect the impact of a single variable conditioned on associated predictors in pre-

dicting the outcome. Thus, CRF uses an unbiased splitting criteria to avoid the issues that

arise with highly correlated variables and is described in more detail below. A tuning pa-

rameter for both RF and CRF is the number of predictors to be randomly chosen at each

decision node. It is important to tune this parameter since a small number of predictors

chosen at each split can lead to choosing variables that are suboptimal and can lead to a

loss of information [Boulestix et al., 2012][Strobl et al., 2008]. In any situation, a main goal

is to have informative predictors identified in order to get the best predictions.

The VIMP measures for RF has been explored fairly extensively with different represen-

tations for the VIMP as seen in Table 3. Originally, the Gini index was postulated for the

classification case. For the classification case, the decrease in a heterogeneity index is used
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as a splitting criteria. For the jth variable at node s of the tth tree, djs is the decrease in a

heterogeneity index (in our case it will be the Gini index). This predictor Xj is used in the

split at node s if the decrease in the index for that variable is larger than the decrease in

the index for any other predictor, djs > dks for k = 1, . . . , P where j 6= k. Then the VIMP

for that variable Xj in the tth tree is the sum of the decrease in heterogeneity when that

variable is used in the split:

V̂IMPXj
(t) =

∑
s

djsIjs

where Ijs is the indicator that takes a value of one if the variable Xj is used in node s. So,

the overall VIMP for Xj is the average over all the trees:

V̂IMPXj
=

1

T

T∑
t=1

V̂IMPXj
(t)

For the calculation of the Gini index in the case of a binary outcome, a given sample is taken

and for a given split of a particular variable at a specific node, the following are calculated:

the number of samples at the node N , the number of observations to the left and right nodes

respectively NL and NR, and the number of cases with the response of 1 and 0 denoted by

N1 and N0. Then the empirical Gini index is computed using p̂ = N1/N in the following:

Ĝ = 2p̂(1− p̂)

Then, the Gini gain, or the impurity reduction, at the particular node produced by the

particular splitting cutpoint is:

djs = ∆̂G = Ĝ−
(
NL

N
ĜL +

NR

N
ĜR

)
= VIMPGini

where ĜL and ĜR are respectively the Gini indexes for the left and right nodes. Then for a

particular tree the VIMP is the sum of the Gini gain when the particular variable is used for

splitting. Thus, over an ensemble of trees, the VIMP for a certain predictor is the average over
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all trees of this sum as shown above. However, if the true Gini index is G = 2p(1−p) then the

estimate Ĝ has a bias of Bias(Ĝ) = −G/N . Another source of bias for this estimate comes

from how predictors with multiple categories or continuous variables are favored since there

are multiple possible partitions on which to split the data [Sandri and Zuccolotto, 2008].

This bias means the variables with more candidate splits are more likely to be chosen and at

least one of the candidate splits may yield a good splitting criterion just by random chance.

Similarly, there is a bias if certain categories have more cases than other categories, even if

the predictors all have the same number of categories (unbalanced categories). Therefore,

the Gini gain is expected to perform best when the covariates are all continuous without

ties and uncorrelated or when the predictors are categorical but all have the same number

of categories with similar sizes [Boulestix et al., 2012]. A bias correction for the Gini gain

was proposed by Sandri and Zuccolotto (2008) where a set of uninformative noise variables

are added to the original set of predictors. The VIMP of these uninformative variables can

under certain conditions approximate the bias of the Gini impurity which is often unknown

[Sandri and Zuccolotto, 2008].

Another process outlined in Figure 6 for RF with classification is a mean decrease

in accuracy which takes advantage of the out-of-bag (OOB) samples as a test set of data

as included in Table 3. Using the respective tree the OOB samples were not used to

build, the predicted classes are found for these OOB observations and the number of correct

predictions are summed to get vt,OOB. Then, for a particular predictor, permute the values

of that predictor only in the OOB observations and use the tree to again predict the classes

for the OOB sample with that permuted variable. With these new predicted classes, sum

the number of correctly predicted classes to get vt,permutedOOB. Then, these two sums are

subtracted, original sum minus the permuted sum, to obtain Dt and the VIMP is the average

of these differences over the number of trees for that particular variable:

VIMPAccuracy =
1

T

T∑
t=1

Dt.
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The process to calculate Dt is outlined as:

1. For each bootstrap sample and thus each tree built with that sample:

(a) Identify the OOB observations

(b) Using the tree, t, built from this bootstrapped sample, predict the class member-

ship for the OOB observations

(c) Sum the number of times tree t correctly predicts the class to get the number of

votes for the correct class: vt,OOB (The error rate could also be calculated in this

step.)

(d) For each variable Xj with the OOB observations:

i. Shuffle the values of Xj (permutation)

ii. Use tree t to predict the class for these permuted values of Xj within the

OOB data

iii. Sum the number of times tree t correctly predicts the class to get the number

of votes for the correct class: vt,permutedOOB (The error rate could also be

calculated in this step.)

iv. Calculate the number of votes for the correct class for the OOB samples

minus the number of votes for the correct class for the permuted samples:

Dt = vt,OOB − vt,permutedOOB [Archer and Kimes, 2008]

The main idea behind this type of VIMP measure is that when the values are shuffled,

the prediction accuracy will substantially decrease if that variable was indeed important for

predicting the response [Strobl et al., 2009]. For this VIMP measure, Archer and Kimes state

that the VIMP for a true predictor may be ranked within the top, but it may not have the

maximum VIMP [Archer and Kimes, 2008]. The relationship of correlated variables was also

found to affect VIMP. Specifically, even if a predictor was not associated with the response

but the predictor was correlated to another predictor which was predictive of the response,
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this collinear variable also received a high VIMP value [Archer and Kimes, 2008]. This

makes distinguishing between possible causal predictors and these collinear predictors very

difficult since they may not directly affect the response, but are deemed more important

than an uncorrelated predictor with also no direct effect on the response. This issue has

been described by many and there have been some given solutions with conditional VIMP

being the main one [Boulestix et al., 2012]. Similar performance was found when the Gini

index was used instead [Archer and Kimes, 2008]. Unlike the Gini gain though, the bias

of the algorithm favoring predictors with many categories or continuous variables does not

affect this permutation based VIMP. In the case of dealing with SNPs, the Gini index was

found to favor the uncorrelated SNPs over highly correlated ones which gives rise to use the

permutation based VIMP for similar situations [Boulestix et al., 2012]. Thus, permutation

based VIMP may be better than the Gini impurity, but both are affected by correlation

between predictors.

Another method is available for RF classification which outperforms the traditional met-

rics, specifically the permutation based VIMP measure, in the case of unbalanced data. This

metric is simply replacing the error rate, or vt,OOB and vt,permutedOOB, with the area under

the curve (AUC) as stated in Table 3. Then we would have

VIMPAUC =
1

T

T∑
t=1

(AUCt,OOB − AUCt,permutedOOB)

The AUC here is calculated as follows. Imagine a classification tree has been built and

we have an OOB observation with a response value of 0 and another OOB observation

with the response value of 1. A good tree is expected to give an observation with the true

response value of 1 a higher class probability for that class, where the value is 1, than for

the observation which belongs to the 0 class. The AUC is then the proportion of pairs

for which this is the case within a particular tree, t. In other words, this metric is an

estimation for the probability that a randomly chosen observation from the class 1 is given
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a higher class 1 probability than a randomly chosen observation from class 0. Compared

to the standard permutation based VIMP measure outlined above, this AUC based metric

outperforms when the classes of the outcome are unbalanced. However, similar performance

is seen when the class sizes are balanced. This is due to the fact that as the level of imbalance

increases, the standard permutation VIMP measure loses it’s ability to distinguish between

the predictor variables which are actually associated with the outcome and those which are

not [Janitza et al., 2013]. Therefore, this procedure may be favored when the class sizes of

the outcome are unbalanced but is interchangeable when the outcome has balanced classes.

For the RF regression case, a permutation based mean square error (MSE) is given again

using the OOB samples. Similar to the case above where the AUC or mean decrease in

accuracy are calculated, this method also involves permuting one variable at a time for the

OOB observations and recalculating the MSE for that particular tree. Then this new MSE

is subtracted from the original MSE with no permutations in which the average difference in

MSE over all trees is taken as the VIMP for the permuted variable as is outlined in Figure

6 [Grömping, 2009]. Therefore,

VIMPMSE =
1

T

T∑
t=1

(MSEt,OOB −MSEt,permutedOOB).

This metric, like the others for random forest is still strongly affected by correlations be-

tween predictors. This is due to the fact that when the variable’s values are permuted,

any associations with other variables are all lost. So, a variable that has no effect of its

own on the outcome, but is correlated with a predictor which does have an effect on the

response, will have an artificially high VIMP measure. Thus, the high VIMP may indicate

the relationship between the variable and the response or it may represent the relationship

between it and another predictor. This may show a variable which has no main effect on the

response as more important than another predictor which isn’t associated with any other

predictors [Strobl et al., 2008] [Strobl et al., 2009]. Thus, in order to use any of the above
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measures for random forest, one must know the structure of the data well, especially in terms

of associations.

Figure 6: The general process to calculate VIMP measures for RF or CRF using the OOB
data.

In order to combat the issues arising from collinearity, the method of conditional random

forest (CRF) was proposed. This method is based on an unbiased splitting criteria which

is based on conditional hypothesis testing. Essentially, at each split and for each candidate

predictor, the association between this predictor and response is tested globally where a

p-value is outputted. This p-value represents the probability of obtaining that high of cor-

relation or more of that predictor with the response given the marginal distribution for the

response and that of the predictor. Thus, this p-value is conditional and contests issue of

correlated predictors being favored over uncorrelated ones each with no direct effect on the

response [Boulestix et al., 2012]. For the VIMP measure within CRF, a particular variable

Xj is still permuted as in regular RF VIMP calculations, however the values of Xj are only
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permuted within particular groups of observations based on a conditioning grid from the

predictors, Z, which are correlated with Xj as seen in Table 2 where xπj(1),j indicates the

first observation for Xj after permutation and xπj|Z=a(1),j represents the first observation for

Xj conditioned on the group of values from Z which equal a. This will then preserve the

correlation structure between predictors and is similar to the idea of partial correlations from

linear regression. When conditioning, the idea is straightforward for categorical variables,

i.e. condition on the categories. However, for continuous variables, conditioning is a bit

more complicated since these variables need to be discretized. Luckily, the tree built for that

particular sample comes in handy and gives a partition of these features which may be used.

The set of predictors being conditioned on contains all variables which the particular current

variable is correlated with. A lower threshold is given with a default of 0.2. So, all predictors

whose correlation with the particular predictor satisfies one minus their p-value greater than

the threshold (1−p-value> 0.2) will be used for the conditioning process. A higher value for

the threshold indicates only strongly correlated variables will be used and thus, the method

takes less computation time [Strobl et al., 2009]. An example of this method on a subset of

the PROVIDE data is shown in Figure 7. These results show how important the mother’s

health is for their child’s height-for-age and gender z score (HAZ) and the change over two

years of HAZ. CRF was chosen for this data due to the mix of variables and correlations

between predictors [Donowitz et al., 2018] (coauthor). This type of graphic is very attractive

to many especially due to its intuitive understanding.

Another aspect for RF or CRF is to make sure the parameter mtry, the number of candi-

date predictors for a split, is tuned before creating and using the final model. This parameter

is known to affect the results of variability for conditional VIMP while for RF the correlated

variables’ VIMP may be overestimated especially when the parameter is small. Additionally,

smaller variation is seen with conditional VIMP than with regular permutation based VIMP

which may lead to easier identifiability of important variables [Strobl et al., 2008]. Auret and

Aldrich explored RF and CRF along with a few other methods and confirmed that VIMP
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Table 2: Permutation scheme for the regular marginal VIMP calculation (left) versus the
permutation for conditional VIMP (right). The shaded cells indicate where permutation
occurs with the different transparencies indicating separate permutations.

Y Xj Z Y Xj Z

y1 xπj(1),j z1 y1 xπj|Z=a(1),j z1 = a
...

... z2 y3 xπj|Z=a(3),j z3 = a

yn xπj(n),j
... y27 xπj|Z=a(27),j z27 = a

y6 xπj|Z=b(6),j z6 = b

y14 xπj|Z=b(14),j z14 = b

y21 xπj|Z=b(21),j z21 = b
...

...
...

measures from CRF avoid the complications brought on by correlation between predictors

[Auret and Aldrich, 2011]. Thus, the CRF method proves best for data when the predictors

are of multiple types, including continuous and categorical even with various numbers of

categories or categorical sizes, and specifically for correlated predictors.

2.3.3 Additional Methods and Settings

A VIMP measure for parametric nonlinear modeling in Table 3, referred to as the Chevan

and Sutherland method, is given by averaging over the ordering similar to LMG or PMVD,

however the metric used can be a goodness of fit measure. The goodness of fit measure one

wishes to use is found for the full model versus the null model, i.e. the difference of the

deviances, which is denoted by GD. The independent contributions, Ij, are calculated as

the unweighted average over the different orderings of the order dependent additions of the

predictor Xj to the goodness of fit measure GD. Then the goodness of fit for the full model

is the sum of these independent contributions. The overall contribution is the goodness of

fit metric for the model with only the particular predictor Xj versus the null model. If

the individual contribution Ij is subtracted from the overall contribution value Rj, then the

31



Figure 7: The VIMP measures are from a conditional random forest (CRF) model with the
conditional VIMP calculated then scaled for the PROVIDE data. This scaled conditional
VIMP is the original conditional VIMP divided by the largest value of conditional VIMP
(that of mother’s weight at enrollment for HAZ at two years and that of LAZ (HAZ) at
enrollment for the infant when predicting the change in HAZ over the two years). Only the
top 15 variables are shown [Donowitz et al., 2018].

joint contribution is created as Jj = Rj − Ij. The R package which implements the Chevan

and Sutherland method which is essentially hierarchical partitioning only works for up to 9

regressors correctly and completely stops for more than 12 predictors [Grömping, 2015].

A common method which is often deemed a ‘black-box’ are neural networks (NNet) which

attempt to mimic the learning pattern of humans’ natural biological neural networks. The

response is modeled through hidden units (often called the neurons) which are unobserv-

able linear combinations of the original predictors as in Figure 8 for the regression case.

These linear combinations are not constrained in any manner. The hidden units are then

transformed by a nonlinear (sigmoidal) function. In the logistic case, the hidden units would

be

hk(X) = g

(
β0k +

P∑
i=1

xjβjk

)

where g(u) = 1
1+e−u and P indicates the total number of predictors. The β values are similar

to that of regression coefficients in that βjk represents the effect for the jth variable on the kth
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hidden unit. The model consists of several hidden units and due to the lack of constraints on

the linear combinations, it’s probable that each coefficient within a particular unit represents

some piece of information. After the hidden units have been defined they need to be related

to the response which may be completed through another set of linear combinations such as

f(X) = γ0 +
H∑
k=1

γkhk

where H is the total number of hidden units. So, for this type of network there are H(P +

1) +H + 1 parameters being estimated in total which as one may imagine grows quickly as

P increases. These parameters are often optimized via the minimum of the sum of squared

residuals when this setting is treated as a nonlinear regression model. However, due to

the complexity, the back-propagation algorithm is used to find the optimal values of the

parameters. This method is very efficient, but has the caveat of possibly not giving the

global solutions. In the case of classification, the last layer (the outcome layer in Figure

8) will have multiple nodes to accommodate the possible categories or classes. Thus, an

additional nonlinear transformation will be used for the combination of hidden units. More

transformations are needed to make the predictions per class like probabilities (between zero

and one and which sum to one) including the softmax transformation. In this case though,

the analogous optimization comes from the error across classes and samples as

C∑
l=1

n∑
i=1

(yil − f ∗il(x))2

where yil is the indicator for a particular class l, C is the total number of classes, and f ∗il is

the model prediction of the lth class and the ith sample after the softmax transformation

[Kuhn and Johnson, 2016].

There are several available VIMP measures for this particular method of NNet as outlined

in Table 3. Specifically, connection weights, Garson’s algorithm, partial derivatives, input

perturbation, sensitivity analysis, and many stepwise selection algorithms were explored in
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Figure 8: The basic structure of a neural network.

Olden et al. [Olden et al., 2004]. The connection weights refer to ”the product of the raw

input-hidden and hidden-output connection weights between each input neuron and output

neuron” where the sums of these products are calculated across all of the hidden neurons

[Olden et al., 2004]. Thus, VIMPconnection weights =
∑H

k=1 βjkγk. Garson’s algorithm involves

a partition into aspects associated with each input neuron of the hidden-output connection

weights by implementing the absolute values of the connection weights. This method is

often the most common within ecological data but had the worst performance within Olden

et al. while the connection weights proposed had the top performance [Olden et al., 2004].

Partial derivatives may be calculated from the output of the artificial neural network with

respect to the input neurons while input perturbation examines the change in the MSE of the

network. The input perturbation adds a specific amount of noise to each input neuron while

all other input neurons are held as observed. The change in MSE is then calculated and this

demonstrates the relative VIMP for that particular predictor. Sensitivity analysis is where

each input predictor across 12 data values are varied while delimiting 11 equal intervals

for its whole range and holding other predictors constant at the values of their five-number

summaries. Across the five-number summary values, the median prediction is calculated

where the relative importance is then the magnitude of its range of the predicted values.
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Four stepwise methods were also explored for Olden et al. [Olden et al., 2004]. These include

the forward selection and backward selection where the change in MSE was considered as the

VIMP measure and the neural networks were rebuilt at each step. The first other stepwise

method is very similar to backwards selection, however instead of just removing the input

neuron the associated weight is also removed sequentially without rebuilding the network.

The change in MSE for each predictor removal is still the VIMP metric. The last stepwise

method involves sequentially replacing input neurons with their respective mean value where

the VIMP measure is still the change in MSE [Olden et al., 2004]. After simulations, Olden

et al. show that the last two stepwise selection methods perform similarly but outperform

both forward and backward selection. The results also state that the first metric, connection

weights, was able to consistently identify the correct ranking of all variables whereas most

other measures could only identify the top few or none [Olden et al., 2004]. All except

the stepwise methods have been more recently explored by Oña and Garrido where due to

the instability or high variability of these metrics a set of neural networks with the same

architecture were used instead of a single neural network [Oña and Garrido, 2014]. The

findings show stability of the ranking from all the importance metrics when a set of neural

networks are used, but the partial derivatives show the highest variability which leads them

to be the least recommended [Oña and Garrido, 2014]. Therefore, the connection weights,

Garson’s algorithm, input perturbation, and sensitivity analysis all seem to be viable options

for NNet.

Another couple ways to calculate variable importance were presented by Parr et al. and

are in Table 3 [Parr et al., 2018]. The first method is named drop-column importance. First,

a baseline performance measure is obtained from the full model with all predictors, then a

predictor is removed entirely and the model is recomputed with a new performance metric

calculated and the random seed being controlled (such as if one were using random forest).

The VIMP is then measured by the difference between the baseline and the new performance

measure. Even though this would give a great estimate of VIMP each time, one can imagine
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that with numerous variables or observations, this method may become computationally

expensive. However, this method is faster than cross validation for VIMP within RF. Like

many VIMP measures, this one is also affected by correlations within the predictors. For

example, if a decision tree were built where a duplicate of one predictor was included, the

duplicate and the original would be each chosen about 50% of the time gaining equal but low

importance per duplicated predictor. Likewise if variables are correlated, the VIMP measure

would be shared between these predictors by the amount they are associated. Therefore, the

idea that correlated predictors should be assessed together arises. If the correlated variables

are permuted together as one feature instead of individually, the correlation structure is not

broken and the difference in accuracy or MSE (or other criteria) may be assessed for the

set of predictors and become the group’s VIMP. The sets of correlated predictors may also

overlap since they are being treated as separate features [Parr et al., 2018]. Another downfall

for any RF or CRF method is that even though these trees take into account interactions,

the VIMP does not. If two predictors that interact with each other have an effect on the

response together but no direct effects alone, then they will most likely not receive a high

VIMP [Boulestix et al., 2012]. Thus, depending on the structure of the data, one may try

the drop-column to create VIMP, but if correlations are present between predictors or if

interacting predictors are of interest, permuting groups of variables may be more meaningful.

2.3.4 VIMP Measures Available in R

One large downfall to having numerous different metrics is that no one metric can be applied

for various methods. This setback is pronounced within the multitude of methods and

calculations of VIMP within R packages. Table 4 shows a list of the several different packages

for assorted classification or regression methods (which is by no means an exhaustive list)

along with whether or not a model specific VIMP measure exists. The R package ‘caret’

employs various other packages including all those in Table 4 where these models can be

trained if there are tuning parameters. This package also includes some VIMP metrics which
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Table 3: VIMP Measures for Nonlinear Models.

Method VIMP Measure Type

Parametric Nonlinear Chevan and Sutherland: goodness of fit measures Both
RF - Regression Permutation based VIMP using the OOB samples Marg
RF - Classification Gini impurity Marg
RF - Classification Mean decrease in accuracy Marg
RF - Classification AUC-based permutation VIMP measure Marg
CRF Conditional VIMP Cond
NNet Connection Weight: input-hidden and hidden-output Cond
NNet Garson’s: partitions hidden-output connection weights Cond
NNet Partial Derivatives Cond
NNet Input perturbation: Change in MSE Marg
NNet Profile by Gevrey et al.: Sensitivity analysis Cond
NNet Change in MSE for addition or removal of variable Cond
Any Drop-column Marg
Any Permute groups of predictors Cond

are model independent. For classification with only two classes, the area under the ROC

curve is computed for each predictor and used as the VIMP measure. When there are more

than two classes, the area under the ROC curve is still calculated, but now is calculate for

each pair of classes. Thus, the VIMP for a specific class is the average of these relevant

pairwise areas. In terms of regression, a relative measure of VIMP is calculated through the

relationship of each regressor and the response. There are two model fitting techniques, one

is simply a linear model with the VIMP metric being the absolute value of the test statistic

for the slope. The second is the loess smoother being fitted where the VIMP measure the R-

squared value calculated for the smoothed fit vs the fit with only an intercept [Kuhn, 2018].

This review stokes the fire for the need of a more standard VIMP measure which can be

calculated across various methods.
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Table 4: Available Classification or Regression Methods with Model Specific VIMP Measures.

Method R Package VIMP?

Linear Regression base R or glm
Generalized Linear Model glm X
Penalized Regression glmnet X
Generalized Additive Model gam X
Multivariate Adaptive Regression Spline earth X
Nonlinear Mixed Effects nlme
Classification And Regression Trees (CART) rpart X
Bagged AdaBoost adabag X
Bagged CART ipred X
Bagged Model caret
CRF party X
RF ranger X
RF Rborist X
RF randomForest X
RF extraTrees
Bayesian Additive Regression Trees bartMachine X
Naive Bayes naivebayes or klaR
C5.0 C5.0 X
Stochastic Gradient Boosting gbm X
ROC-Based Classifier rocc
Linear Discriminant Analysis MASS
Quadratic Discriminant Analysis MASS
k-Nearest Neighbors kknn
Support Vector Machines kernlab
NNet nnet X
Model Averaged NNet nnet
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2.4 Exploring Confidence Interval Calculations for VIMP with

Applications

Currently, few have explored the variability of VIMP metrics such as confidence intervals.

The LMG and PMVD methods do have such calculations, though PMVD is not accessi-

ble for US residents due to a patent [Grömping, 2015]. Also due to the computationally

expensive methods that are LMG and PMVD, these results are not further discussed. How-

ever, one applicable source is from Ishwaran and Lu for random forest discussed a bit later

[Ishwaran and Lu, 2018].

Adding confidence intervals onto ranked graphs of VIMP such as in Figure 9 add greatly

to the interpretability of such measures. From this example of the NICU data in Figure

9 one can see that when the bars of the confidence intervals overlap, one predictor is not

necessarily more important than the other. From this particular graph, we may say that

birth weight and gestational age are the two most important predictors, however, we cannot

say that one is more important than the other due to the overlapping intervals.

In order to create confidence intervals for VIMP measures per variable, a form of ran-

dom sampling such as bootstrapping may be performed. The procedure takes numerous

samples for which VIMP measures per variable is calculated. These VIMP values will then

collectively allow us to assign confidence intervals for VIMP per predictor. The basic idea

for bootstrapping involves taking a random sample of size n from the original data with

replacement. This random sampling is then repeated say 1000 times. Then, the VIMP mea-

sures’ distributions is examined through a histogram and other statistics so the (1−α/2)100

and (α/2)100 percentiles can be calculated representing a confidence interval for the VIMP

measures.

This bootstrapping idea works great within the simpler settings including logistic regres-

sion as can be seen by Figure 10 which shows how close the bootstrapped confidence intervals

may be to the actual confidence intervals for the coefficients of the NICU variables. How-
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Figure 9: Mean decrease in accuracy VIMP for the top 10 predictors from random forest
with 500 trees on the NICU data with intervals showing two standard deviations and the
length of the bars being the mean decrease in accuracy over the 500 trees.

ever, when thinking about bootstrapping within the random forest setting, an issue arises

when the same subject may be selected more than once, if sampling with replacement, as

discussed within Ishwaran and Lu [Ishwaran and Lu, 2018]. The issue is that if a bootstrap

sample with replacement is used to create a random forest (RF), the procedure has a chance

to select one subject for the growth of a tree while the same subject may also be used in

the OOB (out-of-bag) samples which then would not make the OOB set independent of the

tree growing set. Thus, Ishwaran and Lu give a few solutions which may be implemented

in the randomForestSRC R package and subsample() R function after building a random

forest [Ishwaran and Lu, 2018]. These individuals focus on subsampling techniques which

helps approximate the distribution of such statistics and measures.

Their first approach includes bootstrapping, however instead of the typical chance of

0.368 a particular case has of being OOB, the probability a subject has of being truly OOB

is only 0.164. This means that only those cases which are actually OOB, those not repeated
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Figure 10: The original confidence intervals for the estimated coefficients (left) and confidence
intervals created via bootstrapping (right) in logistic regression for the NICU data.

between the OOB and the tree growing set, are used to estimate the variance of the VIMP

measures for RF. To explain why the probability drops to 0.164, let I
(j)
n,T be the VIMP for

the RF and the bootstrap estimator of the variance be V ar(I
(j)
n,T ) for the jth predictor with

T trees. Let Pn be the empirical measure for L which is the entire sample of data. Thus,

L∗ is the bootstrap sample from Pn. We then must draw a bootstrap sample L∗(Θ∗) for the

random forest from this bootstrap sample L∗ where Θ∗ is the set of growing rules for that

particular bootstrap sample (from the other bootstrap sample) making L∗(Θ∗) the double

bootstrap sample. If a specific case is duplicated, it’s not guaranteed that all of these cases

will be in the double bootstrap sample or all in the OOB data. To work out the probability,

let the number of occurrences for case i in L (the first bootstrap sample) be denoted by ni.

With

P (i is truly OOB in L∗(Θ∗)) =
n∑
l=1

P (i is truly OOB in L∗(Θ∗)|ni = l)P (ni = l)
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we have

(n1, . . . , nn) ∼Multinomial(n, (1/n, . . . , 1/n))

ni ∼ Binomial(n, 1/n) � Poisson(1)

Therefore

P (i is truly OOB in L∗(Θ∗)) =
n∑
l=1

(
n− l
n

)n
P (ni = l)
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)n(
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)
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�0.1635

Therefore, this first procedure takes a bootstrap sample then passes it to the RF method

which takes a bootstrap sample from the bootstrap sample given. The OOB data are defined

to be those not within the tree growing data and unique amongst themselves where then

the VIMP is calculated for the tree grown. These steps of the RF are repeated several times

to grow T trees in which the VIMP will be averaged for the forest. This entire procedure

is then repeated for B bootstrap samples and the variance of the VIMP will be estimated

[Ishwaran and Lu, 2018]. Outlined, the process is:

1. Draw a bootstrap sample.

2. Implement random forest where a bootstrap sample is drawn and a tree is grown from

that sample.

3. The tree VIMP is calculated using the OOB data values that are unique cases.
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4. Steps 2 and 3 are repeated T times to grow T trees in the forest.

5. Over the whole forest, the average tree VIMP is calculated which gives the whole

forest’s VIMP.

6. Steps 1 to 5 are repeated B times so the variance of these averaged VIMP values may

be estimated.

Secondly, Ishwaran and Lu use subsampling and the delete-d jackknife approaches since

the double bootstrapping approach leads to the OOB set being much smaller than normal

[Ishwaran and Lu, 2018]. Also since the 0.164 (double) bootstrapping method can become

computationally expensive fairly quickly as the sample size increases, the subsampling will

reduce the computation time since it is more efficient. This method uses small but iid subsets

of the data over which VIMP is calculated. These samples are selected without replacement

which also negates the complication of ties in the OOB set and the subsample used to grow

the tree. The delete-d estimator works with subsets of data with size r = n − d and can

be related to the subsampling estimator as the bias corrected version. So, the subsampling

method with b being the size of the subset is as such:

1. Draw a subsample set of size b.

2. Calculate the forest VIMP using the subsample set.

3. Repeat steps 1 and 2 B times to estimate the variance of the forest VIMP values.

The delete-d jackknife method where d = n − b is the subsampling method above but the

variance estimator is replaced with the bias corrected version.

In a regression setting simulated by Ishwaran and Lu, it was found that the bias of the

subsampling estimator was higher for predictors’ with larger VIMP (the more important

variables), specifically underestimating the VIMP [Ishwaran and Lu, 2018]. The delete-d

improved this bias for the larger VIMP valued predictors, however the 0.164 bootstrap

method outperformed the others. The downfall to the double bootstrapping method is
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the computational cost. Thus, it is recommended that the delete-d estimator should be

used when bias is an issue or that the subsampling rate could be increased to improve

the subsampling estimator which may lead to the subsampling methods outperforming the

double bootstrapping method [Ishwaran and Lu, 2018].

For the specific confidence intervals of these methods, nonparametric and parametric

confidence intervals may be calculated although normality may be justified and thus the

parametric confidence intervals are more stable. These procedures have been shown to pro-

duce too long of intervals when the VIMP is small which is not necessarily a problem since we

would rather overestimate than underestimate. The subsampling procedure creates intervals

too short when the VIMP is large due to the underestimation of the variance previously

stated. This issue of underestimation may be improved by increasing the subsampling rate

which then makes the subsampling method generally better than the delete-d estimator

[Ishwaran and Lu, 2018]. These methods for confidence intervals were calculated with our

data for comparison in 2.4.1 and 2.4.2.

Since bootstrapping gives rise to issues and becomes computationally expensive with

large n, we explored VIMP measures in different manners. One thought was to explore how

the VIMP acts as the number of bootstrap samples increases for logistic regression and as

the number of trees increases for RF. Due to the complex nature of RF, the number of trees

increasing was approached in two different manners. One strictly included building random

forests with increasing numbers of trees while the other included building numerous single

tree forests. These methods were applied to the NICU and PROVIDE data in 2.4.1 and

2.4.2 which encompasses the classification and regression settings respectively. Additionally,

since the VIMP per tree can be accessed, another method is to create a RF trained for

optimal prediction with the number of trees chosen as such and then bootstrap these per

tree VIMP measures to approximate the variation for the specific trained RF. This was also

implemented in 2.4.1 and 2.4.2 for both the NICU and PROVIDE data respectively.
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2.4.1 VIMP Confidence Intervals for the NICU Data

In the case of the NICU data, we are trying to predict or classify mortality. The simplest

most used method for this type of data is often logistic regression especially since the number

of predictors is fairly low. If one is interested in VIMP in this setting, it is common to use the

estimated coefficients, test statistics, or the p-values which as previously described all have

strengths and weaknesses. Since the p-value and test statistic will give similar results and the

estimated coefficients need to be standardized, we choose the test statistic. However, since we

are generally only interested in the magnitude of the test statistic, we will take the absolute

value of the test statistic as our measure of VIMP. The square of the test statistic was also

explored as the VIMP metric in which the same or very similar results were given and the

results have thus been omitted. In order to explore when the mean absolute test statistic

over the number of bootstrap samples converges, 1000 bootstrap samples in total were taken.

For each bootstrap sample, logistic regression was completed with the test statistic being

stored. So, per increase of the number of bootstrap samples, the mean and mean rank of

the absolute test statistics were computed to create the first and last panel respectively

in Figure 11. The standard deviation of the VIMP values per increase in the number of

bootstrap samples was created as in the middle panel of Figure 11. These graphs, which

were truncated at 300 bootstrap samples due to lack of change after this value, show how

much variation there is within the VIMP over the number of bootstrap samples, especially

when the number of samples is small. These results also show that logistic regression in

and of itself may lead to variable VIMP results since the standard deviations converge to

various values for the different predictors. However, the bootstrapping method is used to

give a final result of VIMP intervals within the logistic regression setting for the NICU data

for comparison in Figure 20. Additionally, the percentage of times the absolute value of the

test statistic obtained the correct rank of the predictors (correct rank was set as the rank

of the original test statistics) was assessed per increase in the number of bootstrap samples.

45



Figure 12 states these results in which it seems increasing the number of bootstrap samples

does not allow for better ranking of these predictors.

Figure 11: Mean (left), standard deviation (middle), and mean rank (right) of the absolute
value of the test statistic over increasing the number of bootstrap samples up to 300 for the
NICU data.

The question of how many trees it takes for the VIMP to become stable within the random

forest (RF) setting needs to be answered in order for confidence intervals to be explored.

A simple approach may be to calculate several single tree forests which one may believe to

be similar to a large forest of trees. However, the results defy this first intuition about how

the VIMP behaves. Using the randomForest R package, 50k single tree random forests were

built with the default mtry parameter (number of variables to randomly sample during each

split). Each single treed forest’s Gini index VIMP and mean decrease in accuracy VIMP

was calculated. Then over all the 50k forests, the mean and standard deviation of the VIMP

values were computed per predictor. These values were used to create intervals (plus and

minus one standard deviation) about the mean as shown in Figure 13 and Figure 14 for

the Gini VIMP and the permutation based mean decrease in accuracy VIMP respectively.

One may note the large amount of overlap between the predictors’ intervals and thus the

substantial amount of variation amongst the single tree forests’ VIMP values.
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Figure 12: Percent correct rank of the absolute value of the test statistic (left) and absolute
value of the estimated coefficient (right) over increasing the number of bootstrap samples up
to 1000. Correct rank is considered the rank of the original absolute test statistic with the
full NICU data.

Figure 13: Gini Index VIMP and rank of Gini index VIMP average with one standard
deviation for 50k single tree forests with NICU data.
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Figure 14: Mean decrease in accuracy VIMP and rank with one standard deviation for 50k
single tree forests with NICU data.
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As a next step, instead of creating single tree forests, the number of trees in the RFs was

increased. In particular, 100 RFs were created per value of the number of trees in the forests

such that the average of the mean decrease in accuracy, the average standard deviation of

the mean decrease in accuracy, and the average Gini index over the 100 forests per number

of trees could be calculated. In addition, the mean ranks of the two VIMP measures were

also calculated per number of trees. For clarification, per each value of the number of trees

and each random forest, there is a mean, standard deviation, and rank for the decrease in

accuracy per each predictor along with the Gini index and its rank per predictor. Then, since

there are 100 RFs per number of trees, the average of these measures are calculated. Thus,

Figure 15 shows how nicely the mean decrease in accuracy and its rank stabilizes along with

how the standard deviations will go to zero as the number of trees go to infinity. This effect

is due to the fact that this is the standard deviation of the decrease in accuracy over the trees

in a forest. So, as the number of trees increases, the more information there is and thus as

the VIMP values stabilize, there is no longer much variation (both the mean and standard

deviation involve a n in the denominator; basic statistical properties thus apply). For the

VIMP measures and their ranks in Figures 15 and 16, we can see that even at the default

of 500 trees in a forest, the results are already fairly stable. This is good news for first time

users with a simpler data set! It must also be noted that if the goal is to predict, then less

trees are needed for good results. However, if the goal is to obtain a stable ordering of VIMP,

increasing the number of trees for the forest until stability of the ranks is achieved such as

what was completed here should be the standard. This is especially true if the correct order

of the variables is needed in contrast to if just the top few important variables are needed

regardless of their order. Similar to the logistic regression case, the percentage of times the

correct rank was achieved per number of trees over all the 100 random forests was calculated.

The correct rank though was considered as the mean rankings from the 100 random forests

with 50k trees. Here, the percentage of correct ranks improves as the number of trees in the

forest increases. This solidifies the statement of increasing the number of trees in order to
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obtain the correct ranking of the predictors, especially in the case of having a smaller set of

predictors which are mostly continuous.

Figure 15: Average VIMP (left), average VIMP standard deviation (middle), and average
VIMP rank (right) of VIMP for 100 random forests with mean decrease in accuracy VIMP
over increasing number of trees for the NICU data.

One may also explore the individual predictors’ values and distributions as for birth

weight in Figure 18 showing how the VIMP metrics and ranks for 100 random forests per

number of trees converges as the number of trees increases. In the top left panel, each boxplot

represents the distribution of the mean decrease in accuracy for the variable birth weight

over the 100 forests (there are 100 values per boxplot, each value coming from one random

forest’s VIMP measure for birth weight). The mean decrease in accuracy and its standard

deviation along with the ranks all do well at the default of 500, but improvements may of

course be made if one is particularly worried about having the variables in the correct order

of importance. With the Gini index, we can see that the rank of this measure is a bit more

variable, even with a monstrous amount of trees! This may speak towards the known bias

with this metric especially since we have continuous variables with differing distributions

and with some predictors having more possible splitting values.

Comparing logistic regression VIMP to RF VIMP measures for the NICU data, the VIMP

measures from RF tend to converge faster and better than that of logistic regression. This is
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Figure 16: Mean VIMP (left) and mean VIMP rank (right) of the Gini index for 100 random
forests over increasing number of trees for the NICU data.

Figure 17: Percent correct rank by the mean decrease in accuracy VIMP with 100 random
forests per number of trees for the NICU variables. Correct rank was considered the mean
rank for the 100 forests with 50k trees.

mainly due to increasing the number of trees which also diminishes the standard deviation of

the decrease in accuracy. The Gini index though is not an average but also performs better

when more information is gained through increasing the number of trees in a RF model.
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Figure 18: The VIMP (mean decrease in accuracy and Gini index) and rank of the VIMP
for birth weight predicting mortality in the NICU data over 100 random forests per number
of trees.

Thus, RF methods would be preferred over logistic regression, especially when it comes to

variation of VIMP measures and the ranking of the predictors.

Since the RF VIMP should be preferred over logistic regression, one could explore the

number of trees needed in order for results to become stable within a certain data set. With

the NICU data, we have seen that the VIMP estimates are not bad even at 500 trees, however

if interested in more stable results, increasing the number of trees is best. We can see the

effect the number of trees has on the interpretation when the mean VIMP is plotted as the

length of the bars and the intervals are plus and minus two standard deviations from that

mean as in Figure 19. These graphs show that even at 500 trees, the top two predictors are

birth weight and the gestational age while there is still much overlap between the rest of the

predictors’ intervals. At 5k trees, we see less overlap and the order is the same as in the 50k

trees results. This leads to say that birth weight and gestational age are still the top two

important variables, but we still cannot say which is more important than the other. Since
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there is less overlap for the rest of the variables with 5k trees than in the 500 tree case, more

solid interpretations and ranks can be made. At 50k trees, we see very tight margins for the

intervals although this many trees can take quite a bit longer than a forest with only 1k or

even 5k trees making it seem as though 50k trees is overkill. From this large number of trees

though, we could now say that birth weight is more important than gestational age, however

the max cross correlation between HR and SPO2 and the standard deviation of SPO2 along

with a few other pairs are still not separable in terms of the VIMP intervals.

For comparison, the bootstrapped confidence intervals for the absolute value of the test

statistic and the rank of those within the logistic regression setting have been calculated

over the 1000 samples. Figure 20 shows these intervals and the large variation that goes

with. We definitely cannot state which variables are more important than others due to

the amount of overlap of the intervals between predictors. Again, this showcases the high

variability involved with the logistic VIMP leading again to the preference of RF over logistic

regression.

The published article for the outcome of mortality in Figure 3 chose birth weight, Apgar at

5 minutes, and sex as the most important from the clinical variables and mean [SPO]2, mean

heart rate, and kurtosis of SPO2 as the top pulse oximetry variables [Sullivan et al., 2018].

Using a large RF to obtain stable rankings leads to birth weight, gestational age, mean SPO2,

the max cross correlation between heart rate and SPO2, the standard deviation of SPO2,

and the min cross correlation between heart rate and SPO2 being the top six important

variables shown in Figure 19 for the RF with 5k or 50k trees. Thus, the RF does not exactly

agree with the logistic regression implemented using the p-values of the test statistics as

the VIMP. However, when the bootstrapped absolute value of the test statistic VIMP was

implemented, all but the kurtosis of SPO2 was ranked in the top six as in Figure 20. Even

though the results from the bootstrap samples and the published article mostly agree, there

is great variability as shown in this research for the logistic regression method leading to
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Figure 19: Mean decrease in accuracy with two standard deviations over a 500 tree random
forest (top left), a 5k tree random forest (top right), and a 50k tree random forest (bottom)
for the NICU data.
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Figure 20: Absolute value of test statistic VIMP (left) and rank of VIMP (right) with
bootstrapped confidence intervals (CI) from logistic regression for the NICU data.

suggest the RF method with a large amount of trees should be used to obtain the variables’

stable rankings.

One may wish to build confidence intervals for their particular forest which is used for

prediction. First, a RF must be trained to select the appropriate number of trees to use for

optimal prediction performance. Then, the VIMP of each tree must be extracted to gain

the set of per tree VIMP measures which will be used to create the confidence intervals via

bootstrapping. The process is:

1. Train a random forest for the optimal prediction to find the number of trees.

2. Create the random forest model and store the per tree VIMP values per predictor.

3. Using the per tree VIMP values, take a random sample with replacement and calculate

the mean VIMP per predictor.

4. Repeat step 3 several times, say 1000 times.
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5. Take the 2.5th and 97.5th percentiles of these means to create 95% confidence intervals

per predictor for the VIMP.

This thus gives confidence intervals about the original VIMP values which for the permu-

tation based VIMP are averages over the entire forest. Additionally, one may repeat this

process but with the ranks of the VIMP instead making the results more comparable to other

methods. Figure 21 exemplifies the results for the NICU data and our method of VIMP con-

fidence intervals. These results state again that the birth weight and gestational age are the

top two important predictors in which their ranks’ confidence intervals fully overlap showing

that they may not be separated in terms of ordering. We can also state that the rest of the

predictors are harder to order with much of their intervals overlapping, however it seems

much easier to examine the ordering via the ranks in the right panel of Figure 21.

Figure 21: Mean decrease in accuracy VIMP (left) and rank of VIMP (right) with boot-
strapped 95% confidence intervals (CI) from the trained random forest’s per tree VIMP
values for the NICU data.

56



For comparison when using a trained RF, the methods described and developed by Ish-

waran and Lu were used on the NICU data [Ishwaran and Lu, 2018]. A RF model was

trained as would be usual for prediction and used then for these calculations. The subsam-

pling, delete-d, and double bootstrap methods all with the parametric confidence intervals

were plotted in Figure 22. These results show that the variance for the mean decrease in

accuracy VIMP measures in the double bootstrap procedure is largest of these three meth-

ods. It also seems that the variance for the delete-d jackknife is a bit larger than the regular

subsampling method’s variance, although if one is only interested in which variables are im-

portant, then the subsampling and delete-d methods agree. These methods also agree with

previous results in that the top two predictors should be birth weight and gestational age

along with that one is not more important than the other. In contrast to our RF results

for the NICU data, these methods would rank the predictors differently even though their

intervals overlap and thus one is not truly more important than another. Therefore, it seems

that we can only state that the top two important variables are definitely birth weight and

gestational age, however, these methods are not ideal for ranking the predictors. These

methods from Ishwaran and Lu versus our bootstrapping of per tree VIMP measures have

similar computation times and use the same R package, however Ishwaran and Lu’s methods

do not allow for other plotting methods, manipulation of the resulting values, or confidence

intervals for the ranks of the VIMP. So, without the flexibility of working with the results

from Ishwaran and Lu’s methods’ outputs, one cannot create their own graphics or have

directly comparable interpretations in terms of the ranks for VIMP.

2.4.2 VIMP Confidence Intervals for the PROVIDE Data

The convergence of the mean percent increase in MSE for the PROVIDE data was also

explored such that a number of trees for RF with stable VIMP values and rankings could be

achieved. Figure 23 and top left panel shows the top few important variables clearly while

the rest are clumped near the lower spectrum of VIMP. This bottom panel in the figure
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Figure 22: Subsampling parametric (top left), delete-d jackknife parametric (top right), and
double bootstrap parametric (bottom) confidence intervals with methods from article for
NICU Data [Ishwaran and Lu, 2018].
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also shows how the top important predictors have stable ranks, but the rest are harder to

separate but do eventually have stable orderings. In general though, the results of VIMP

convergence are similar as for the NICU data in that the results become stable fairly quickly

and the standard deviations will eventually go to zero as the number of trees increases.

The percentage of correct ranks per number of trees out of the 100 random forests was

also calculated with the correct ranking being the mean ranking over the 100 RFs with 50k

trees. Contrary to the NICU data, the results for the PROVIDE data show the difficulty of

getting the correct rankings and that the number of trees could be increased even further

to obtain even more stable rankings for the rest of the predictors. These results show the

complexity of this data especially since these results used the mean increase in MSE and not

the conditional VIMP which would more appropriately consider the relationships between

the predictors. Also, due to computation time and the inability to access the per tree VIMP,

conditional random forests and the conditional VIMP was not computed.

Using these results though with regular RF, Figure 25 shows RFs with 500 (top left), 5k

(top right), and 50k (bottom) trees. Mother’s weight can be deemed the most important

variable for the 5k and 50k tree forests, but for the 500 tree forest mother’s weight overlaps

with the infant’s HAZ (LAZ) at birth predictor stating that we could not say which is more

important. While the 5k and 50k tree forests agree on the top five predictors, the rest

are not in the exact same order showing that for the 5k forest one variable (after the fifth

position) is not necessarily more important than another, especially since the intervals are

overlapping. Thus, we cannot rightfully rank the predictors after the top 5. These differences

in the PROVIDE results from the NICU results come from the PROVIDE data having a

complex structure with more and various types of predictors than the NICU data. This

complex structure thus leads to more variability within the VIMP, specifically in terms of

the rankings.

Mother’s weight, HAZ (LAZ) at birth, mannitol recovery at week 12, mother’s height,

and income were ranked as the top 5 predictors for predicting HAZ at two years in a previ-
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Figure 23: Mean (top left), standard deviation (top right), and mean rank (bottom) of mean
percent increase in MSE over 100 random forests per number of trees for the PROVIDE
data.
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Figure 24: Percent correct rank by the mean percent increase in MSE VIMP with 100 random
forests per number of trees for the PROVIDE variables. Correct rank was considered the
mean rank for the 100 50k tree forests.
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Figure 25: Mean percent increase in MSE with two standard deviations over a 500 tree
random forest (top left), a 5k tree random forest (top right), and a 50k tree random forest
(bottom) for the PROVIDE data.
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ously published article using conditional RF and conditional VIMP [Donowitz et al., 2018]

(coauthor). This research here shows that when using regular RF and the mean percent

increase in MSE VIMP, mother’s weight, HAZ (LAZ) at birth, WAZ at birth, income, and

expenditure were the top 5 predictors as in Figure 25 for 5k and 50k trees. These are the

top 5 with 500 trees as well, but with income and expenditure switching order. Thus, three

out of the top 5 in each method were the same, in particular mother’s weight was ranked

the most important followed by HAZ (LAZ) at birth. One must note that the conditional

RF and thus conditional VIMP was not explored in this research to create confidence inter-

vals and such due to the computation time and memory required for increasing the number

of trees. The conditional RF also uses a separate R package in which not all of the same

information can be accessed and thus lead to comparable results. One must also note the

common criticism for RF which is to avoid the regular VIMP metrics when the predictors are

correlated which is the case here. Therefore, these results should be taken with the reminder

of the effect correlation may have for this data set.

The method described above in 2.4.1 to implement bootstrapping from the per tree

VIMP values and thus creating confidence intervals for a particularly trained RF about the

VIMP is implemented here for the PROVIDE data. The results in Figure 26 show the

mother’s weight, HAZ (LAZ) at enrollment, income, WAZ at enrollment, and expenditure

being the top 5 predictors where mother’s weight is the most important and HAZ (LAZ)

at enrollment is the second most important since their confidence intervals do not overlap

with any other variables’ intervals. The next three all have overlapping confidence intervals

with expenditure additionally overlapping with IL-4 at week 18 and ever so slightly with

mother’s height. Thus, income, WAZ at enrollment, and expenditure are in the running for

ranks 3, 4, and 5 with expenditure also being in the running for ranks 6 and 7. Looking at

the ranks, mother’s weight and HAZ (LAZ) at enrollment had constant rankings at 1 and 2

respectively while income ranged from ranks 3 to 4. WAZ at enrollment and expenditure’s

ranks ranged from 4 to 5. These top 5 predictors’ confidence intervals did not overlap with
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any other predictors’ confidence intervals meaning they are indeed the top 5 even though

there is some variability within the specific ordering of these variables for this particularly

trained RF.

Figure 26: Mean increase in MSE VIMP (left) and rank of VIMP (right) with bootstrapped
95% confidence intervals (CI) from the trained random forest’s per tree VIMP values for the
PROVIDE data.

The PROVIDE data was also used in conjunction with Ishwaran and Lu’s procedures

[Ishwaran and Lu, 2018]. These methods produce Figure 27 which shows by the double

bootstrap that only mother’s weight and the infant’s HAZ (LAZ) at birth are important due

to high variability while from the subsampling and the delete-d methods income, expenditure,

and the infant’s WAZ at birth are added to that list of important variables. These methods,

especially the subsampling method, corroborate with the our RF results and methods in that

the mother’s weight followed by the HAZ (LAZ) at birth are the top two important while
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the other three are definitely in the top five. The specific rankings are a bit different, but in

general the confidence intervals give similar results as our method in Figure 26. Timing wise,

the double bootstrap method takes quite a bit longer than the other two and even longer than

creating a RF with 50k trees. Thus, out of these three methods and for this data set, either

the subsampling or delete-d methods should be prefer especially if the double bootstrap is

performing poorly without having to increase the sampling rate for the subsampling method.
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Figure 27: Subsampling parametric (top left), delete-d jackknife parametric (top right), and
double bootstrap parametric (bottom) confidence intervals with methods from article for
PROVIDE Data [Ishwaran and Lu, 2018]. Mother’s weight, income, expenditure, HAZ at
enrollment, and WAZ at enrollment were selected in the top graphs while only income and
HAZ at enrollment were selected for the double bootstrap method.
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2.5 Creating a Threshold to Select Important Variables through

Applications

It is a very nice result to be able to rank variables in order of importance, however, how can

we tell exactly which variables to select? Specifically for calculations of VIMP within the

RF setting, a straightforward approach may be to select any variables with a positive VIMP

value as a value equal to or below zero clearly indicates a variable’s lack of predictive power

towards the outcome [Ishwaran and Lu, 2018]. However, what do values slightly above zero

indicate? Should they still be considered important or useful? Confidence intervals are one

way to answer these questions, but another is to create a threshold or cutoff VIMP value

which may help to select the important predictors.

In order to state which variables within a data set are actually important for the predic-

tion of the outcome, we propose then apply the following method for creating a cutoff value

in order to choose important predictors. The steps are as follows:

1. Shuffle the observed values for all predictor variables.

2. For each shuffle, calculate the VIMP and take the maximum, minimum, median, and

mean over all variables.

3. Repeat steps 1 and 2 several times, say 100 times.

4. Take the maximum of the results to find potential cutoffs of which variables should be

considered important.

The maximum of the maximums indicates the value of VIMP which is the highest such value

corresponding to essentially nonsense. Meaning that any predictor with a VIMP value above

this threshold should definitely be deemed an important predictor. However, this particular

maximum may be higher than any of the variables’ VIMP values as in the top right panel

in Figure 28. Thus, the minimum, median, and mean were also considered. Similarly for
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the maximum of the minimums, this cutoff may be below all of the variables’ VIMP values

and thus all predictors may be deemed important shown by the top left panel in Figure 28.

This is where the maximum of the medians or of the means may be a tradeoff for these more

extreme cutoffs.

2.5.1 VIMP Threshold for the NICU Data

Under the NICU data, the four cutoffs were calculated as described above per each VIMP

measure as shown in Figure 28. In the logistic regression setting the absolute value of the

test statistic was used which is the bottom panel of Figure 28. The max of the means and

medians are very close to each other with both suggesting there are six important variables:

birth weight, mean SPO2, Apgar at 5 minutes, mean heart rate, sex (male= 1), and Apgar

at 1 minute. The cutoff based on the minimums chooses an additional 5 variables leaving

only 6 deemed unimportant. The threshold based on the maximums chooses one important

variable. For the RF method, the mean decrease in accuracy VIMP and the Gini index were

the VIMP measures. The means and medians cutoffs correspond fairly well for the mean

decrease in accuracy VIMP but there are some differences for the Gini VIMP. For the mean

decrease in accuracy VIMP, all the variables are selected by the mins cutoff and all but 3

are selected for the means and medians while the maximum of the maximums cutoff selects

9 predictors as important. With the Gini index, the threshold from the maximums chooses

no important variables while the minimums cutoff chooses all but three. The cutoff from

the means selects 9 and the cutoff from the medians chooses only 3 predictors with them

being the birth weight, the standard deviation of SPO2, and the mean of SPO2. In short, all

three plots give different ordering to the variables, except the birth weight being the most

important in all and the mean SPO2 being in the top 3 for each method. Each of the cutoff

values also indicate various variables as being important and thus no one threshold seems to

stand as the best.
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Figure 28: Creating cutoffs to select NICU variables using random forest’s mean decrease in
accuracy VIMP (top left) and Gini index VIMP (top right) and the absolute value of test
statistic for logistic regression. Cutoffs are the maximum of the minimums (Min), medians
(Med), means (Mean), and maximums (Max) for the VIMP of all variables over several
random shuffles of the data.
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2.5.2 VIMP Threshold for the PROVIDE Data

In order to find a cut point for selecting important variables with the PROVIDE data,

conditional and regular random forest methods were implemented. With the conditional

random forest (CRF), the conditional VIMP and the mean percent increase in MSE VIMP

were calculated. For random forest (RF), only the mean percent increase in MSE VIMP

was computed. Again, all four cutoffs were applied to each situation giving Figure 29. For

the CRF with conditional VIMP the maximum of the maximums cutoff selects no predictors

while the maximum of the minimums cutoff selects all but five. The medians threshold is less

than the means threshold by enough to select several more predictors (around 8 additional).

The cutoff by the means selects only 6 variables: mother’s weight, HAZ (LAZ) at birth,

income, RBP at week 18 (retinol binding protein), calprotectin at week 12, and the indicator

for having a septic tank/toilet for the home. For the mean percent increase in MSE VIMP

calculation within CRF, the minimums chooses all but two while the maximums selects only

mother’s weight as an important predictor. The medians threshold is very close to zero

but slightly below indicating it’s no better than choosing the variables with positive VIMP.

The max of the means cutoff selects five variables: mother’s weight, HAZ (LAZ) at birth,

income, IL-4 at week 18, and expenditure. With the RF method, the minimums chooses all

of the variables and the maximums selects no variables both being completely unhelpful to

select variables. The maximum of the means selects 8 predictors with the top four being

mother’s weight, HAZ (LAZ) at birth, income, and expenditure while the max of the medians

selects several more, but is only slightly above zero. For the most part, the maximum of the

means has performed the best for the PROVIDE data to find a balance between selecting

too few and too many predictors. As for the three different VIMP calculations, the top few

variables mostly agree across the different calculations. It’s safe to say that mother’s weight,

HAZ (LAZ) at birth, and income are the top three important predictors of HAZ at two

years for this data set. However, similar results as with the NICU data and these threshold

calculations arise in that there is no one best cutoff metric that stands out.
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Figure 29: Creating cutoffs to select PROVIDE variables using conditional random forest’s
conditional VIMP (top left) and mean decrease in accuracy VIMP (top right) and the mean
decrease in accuracy for regular random forest. Cutoffs are the maximum of the minimums
(Min), medians (Med), means (Mean), and maximums (Max) for the VIMP of all variables
over several random shuffles of the data.
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2.6 Theoretical Aspects for the Probability of Obtaining the Im-

portant Variable

The following ideas are suggested and supplemented by the simulations in 2.6.1 which show

the estimated probabilities in various situations along with the maximum absolute error

between the estimated coefficients and their true values. The simulations are all described

in 2.6.1 in detail along with their implications.

Theorem 2.1. Suppose we have pn predictor variables X1, . . . , Xpn from a sample of size
n which have been standardized. The continuous response variable Y is regressed on these
variables. We assume the correct model where β1, β2, . . . , βpn are the true coefficients and
there is one important variable such that β1 > max(β2, . . . , βpn). From the regression we

obtain the estimates β̂1, β̂2, . . . , β̂pn which are the VIMP measures.

Let ej = β̂j − βj for all predictors j = 1, . . . , pn. If max(|ej|)→ 0, then

P
(
β̂1 > max(β̂2, . . . , β̂pn)

)
→ 1.

That is, as the maximum distance between the estimated coefficients, the VIMP measures,
and their respective true coefficients decreases, the probability of the VIMP for the impor-
tant variable being greater than the maximum of all other VIMP values for the rest of the
predictors goes to one.

For the case with two predictors we have the following: Let β̂1 ∼ N (β1, σ
2
1) and β̂2 ∼

N (β2, σ
2
2) where ρ is the correlation between these random variables and σ2

1 = σ2
2 = 1 since

the data is standardized. Then, the distribution of Z = β̂1 − β̂2 is:

Z ∼ N
(
β1 − β2, σ2

1 + σ2
2 − 2ρσ1σ2

)
= N (β1 − β2, 2− 2ρ)

So, P (β̂1 > β̂2) = P (β̂1 − β̂2 > 0) = P (Z > 0) =
∫ 0

−∞
1√

2π
√
2−2ρ exp

(
z2−(β1−β2)
2(2−2ρ)

)
dz
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Theorem 2.2. (Conjecture) Following from the previous theorem, let ej = β̂j − βj for all

j = 1, . . . , pn and pn be the number of features for sample size n. If log(pn)
n
→ 0 as n → ∞,

then
max(|ej|)→ 0

and thus
P
(
β̂1 > max(β̂2, . . . , β̂pn)

)
→ 1.

That is, if the number of features for sample size n over the sample size converges to zero,
then the maximum distance between the VIMP measures and their true values will decrease
to zero and thus the probability of the VIMP for the important variable being greater than
the maximum of all other VIMP values for the rest of the predictors goes to one.

A counterexample to this second theorem (conjecture) has been constructed. The simula-

tion explores the probability of correctly obtaining the one and only important variable with

no correlation between any predictors. Thus, β = [1, 1, 0, . . . , 0]T gives the true coefficients.

This simulation sets n = clog(pn) where c is a constant and pn is the number of features for

sample size n. Thus, various values of pn and c were set in order to calculate the correspond-

ing sample size n with results shown in Figure 30. The goal of this particular simulation

was to figure out when P
(
β̂1 > max(β̂2, . . . , β̂p)

)
9 1. So, pn variables each with standard

deviation equal to one were simulated, the response Y = βX + ε where ε ∼ N(0, 1) was

calculated, and the coefficients were estimated through linear regression. This was repeated

1000 times to calculate the percent of times the important variable’s coefficient is larger than

the maximum of the rest of the coefficients. In other words, the P
(
β̂1 > max(β̂2, . . . , β̂p)

)
was estimated. Thus, for different values of c and over the log(pn) or pn, Figure 30 shows

the percentage of times the important variable’s coefficient was larger than the maximum of

the rest and the log of the percentage of times the important variable’s coefficient was not

larger than any of the other variables’. As a result, the probability of correctly obtaining

the important variable does not always go to one even in the simplest case of no correlation.

Thus, if the number of predictors is growing faster than the sample size, one can no longer

correctly identify the important variable using the coefficients.
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Figure 30: The probability of correctly obtaining the only important variable when n =
clog(pn) where c is a constant, pn is the number of variables for sample size n over the log of
the number of variables when no correlation is involved (left). The probability of incorrectly
obtaining the only important variable versus the number of variables for linear regression
(right).

2.6.1 Simulations for the Probability of Obtaining the Important Variable(s)

The main question for the simulations is: What is the probability of correctly identifying

the most important variable as the number of variables and sample size increases? The

framework is of the theorems above where the data is assumed standardized prior to esti-

mating the coefficients in linear regression. The importance of a variable is estimated by the

coefficient. In order to explore this, multiple simulations were created to find the percent

of times the correct important variable or correct order was obtained and the maximum

absolute difference between the predictors’ estimated coefficients and the true coefficients

was computed.

For the simplest case, only two variables were considered with one variable being deemed

important meaning that the true coefficient of this variable was one and the true coefficient

of the unimportant variable was zero. The correlation between these variables was varied

and different sample sizes were assessed. The method was ran 1000 times to calculate the

probability of having the estimated coefficient for the important variable be larger than
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the estimated coefficient of the unimportant variable. The process for each combination of

correlation ρ and sample size n is as follows:

1. Simulate two variables each with standard deviation one and correlation ρ. Specifically,

X ∼ N(0,Σ) where Σ =

1 ρ

ρ 1

.

2. Set the true coefficients as β = [1, 1, 0]T .

3. Calculate the response as Y = βX + ε where ε ∼ N(0, 1).

4. Calculate the regression model to obtain the estimated coefficients β̂1 and β̂2.

5. Repeat steps 1 through 4 1000 times.

6. Calculate the percentage of times β̂1 > β̂2 over the 1000 trials to estimate P
(
β̂1 > β̂2

)
.

These percentages are plotted over the correlations for different values of n in Figure 31 along

with the log of the probability of incorrectly obtaining the important variable. These graphs

show that with a small sample size and especially with higher correlations, the chance of

correctly obtaining the important variable goes down quickly for values of correlation close

to one. That is, the task of choosing the important variable by its coefficient becomes

increasingly difficult as the correlation between the two variables increases and the variables

become essentially the same. In order to explore the relationship between sample size and

correlation, the percentages were plotted in Figure 32 against n(1 − ρ) per sample size n

and correlation ρ. This shows that for such a small sample size, n = 10, the probability

of obtaining the important variable is lower than for sample sizes n ≥ 25. Thus, having

a decent sized sample along with lower correlations, about ρ < 0.5, should allow for easy

obtainment of the important variable with only two predictors.

The natural next step includes three variables with one important variable and two

unimportant variables. This means that β = [1, 1, 0, 0]T are the true coefficients. First

though, the two unimportant variables were considered to be the only correlated variables.
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Figure 31: Probability of correctly (left) and the log of incorrectly (right) obtaining the
important variable via the estimated coefficient over various correlations and for different
sample sizes with only two variables.

Figure 32: Probability of correctly (left) and the log of incorrectly (right) obtaining the
important variable via the estimated coefficients for different sample sizes and over various
values of the sample size multiplied by one minus the correlation, n(1 − ρ), with only two
variables.
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Thus, the correlation structure for these variables is


1 0 0

0 1 ρ

0 ρ 1

. The process described

for the two variable case is the same with the appropriate changes to the true coefficients

and correlation structure for the three variable case described here. Figure 33 shows the

percentage of times the important variable’s estimated coefficient was greater than the max-

imum of the two unimportant variables’ coefficients which estimates P
(
β̂1 > max(β̂2, β̂3)

)
.

One minus this probability was also plotted in the right panel of Figure 33. Similar to the

two variable case, these plots show the difficulty of obtaining the important variable with

a small sample size and high correlations. Additionally, the mean difference in the impor-

tant variable’s coefficient and the maximum of the two unimportant variables’ coefficients,

mean(β̂1 − max(β̂2, β̂3)), was calculated per correlation and sample size combination as in

Figure 34. These results exemplify the difficulty of obtaining the important variable as the

correlation increases, even though the correlation is only between the unimportant variables

in this case. Since the true distance is one and we would need at most an error of 0.5 (half

the true distance) to obtain the important variable in which this figure solidifies the results

from the percentage plots where higher correlations create difficulty in correctly selecting the

important predictor since the estimated coefficients stray away from their true values as the

correlation increases. This makes sense because the closer the second and third variables are

to each other, the harder it may be to give good estimates of the coefficients especially when

one remembers effects of collinearity and the variables essentially becoming one predictor

due to the correlation being close to one.

The previous simulation is somewhat simple, and thus the three variable case was further

explored where all three variables are important, specifically β1 > β2 > β3, and thus β =

[1, 3, 2, 1]T . This setting was explored with various correlation structures, however not all

possible combinations of correlations can be explored due to the correlation matrix becoming
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Figure 33: Probability of correctly (left) and the log of the probability of incorrectly (right)
obtaining the only important variable via the estimated coefficients over various correlations
between the two unimportant variables and for different sample sizes. (Three variable case)

Figure 34: Mean difference between the important variable’s estimated coefficient and the
maximum of the two unimportant variables’ coefficients for different sample sizes and over
various correlations between the two unimportant variables. (Three variable case)
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not positive definite with certain correlation structures between the three variables. However,

the following were explored and simulated:

• Each pair of variables correlated: X1 & X2, X1 & X3, X2 & X3 creating three separate

settings in Figure 35.

• All three variables are equicorrelated: They all have the same correlation to each other

displayed in Figure 36.

• All three variables are correlated, but with varied values. (This setting has issues with

positive definite matrices.)

• Sets of pairs of variables being correlated adding three settings. One example: X1 &

X2 and X1 & X3 are correlated but not X2 & X3. (This setting also has issues with

positive definite matrices.) Results are shown in Figures 37 and 38.

For each setting, the process is still the same, but with the new true coefficients and with a

specific correlation structure per setting in the list above. The plots show the percentage of

times the correct order was obtained, in particular P
(
β̂1 > β̂2 > β̂3

)
. Due to the complex

nature of the results and the issue with not having a positive definite matrix for certain

correlation structures, plots for the setting with all three variables being correlated with

various values are not included. However, there is still much to learn from the remaining

figures. In the first case where only a pair of variables are correlated at one time, we can

see from Figure 35 that it is most difficult to obtain the correct order of importance for

the variables when the first two or the last two variables are correlated. This shows that

it’s easier to discern the order when the most and least important variables are correlated.

When all three variables are equicorrelated, we again see the distinct pattern of difficulty

obtaining the correct order when the correlations increase. However, all three variables are

important here not just one, which leads to greater difficulty of identifying the correct order

of the three variables with smaller samples than if only one variable were important. In the
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last setting of sets of pairs of correlated predictors, the results for the first and second then

the first and third being correlated (X1 & X2 and X1 & X3 are correlated but not X2 & X3)

are displayed in Figures 37 and 38. These figures display the percentage of times the correct

and incorrect order was obtained for various correlations between the two pairs. From this,

we can see that when the correlation between X1 and X3 is changed from 0.1 to 0.5 and

the correlation between X1 and X2 is varied, the probability of obtaining the correct order

would be zero for correlations between X1 and X2 above 0.9. Similar conclusions can be

made when the correlation between X1 and X3 is varied while the correlation between X1

and X2 is changed from 0.1 to 0.5. Also, for various sample sizes, the rate of the percentages

seems to decrease faster when the correlation is held at 0.1 for X1 and X3 than when the

correlation is held at 0.1 for X1 and X2. This is similar to the previous results in that the

more separation there is between X1 and X2 and X2 and X3, the easier it is to obtain the

correct order.

To infer more about when the probability of obtaining the correct important variable

does not go to one, the maximum absolute error between the estimated coefficients and the

true coefficients is explored. In this setting, there are pn predictors with all the same level of

importance such that β = [1, 1, 1, . . . , 1]T . The sample size n was varied along with the num-

ber of predictors pn and the correlation ρ between all predictors (equicorrelation). Similar to

before, the data was simulated, the response calculated, and the coefficients estimated. The

next step was to find the maximum absolute error defined as max(|ej|) = max
(
|β̂j − βj|

)
for j = 1, . . . , pn which measures the maximum absolute distance between each estimated

coefficient and their respective true coefficient. This value was calculated for each trial for a

total of 1000 and then the mean of these maximums was taken for each combination of sam-

ple size, correlation, and number of variables. Figure 39 shows these curves for the various

sample sizes and for different numbers of variables. From these curves, we see that the error

decreases as the sample size increases while the error increases over increasing correlations

in which the difference between the variables’ estimated and true coefficients becomes larger

80



Figure 35: Probability of correctly (top three) and log of the probability of incorrectly (bot-
tom three) obtaining the correct order of the important variables via the estimated coefficient
for different sample sizes over various correlations for each pair of the three variables.
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Figure 36: Probability of correctly (left) and the log of the probability of incorrectly (right)
obtaining the correct order of the important variables via the estimated coefficient over
various correlations between all variables (all equally correlated) and for different sample
sizes.

making it increasingly difficult to extract the important variable. In order to explore the

effect sample size has on the difference between these curves of different numbers of predic-

tors, the ratios between these curves were calculated and plotted in Figure 40. From this

we see that there are very similar ratios between the curves with the exception of the ratio

between pn = 50 and pn = 100 which is different for the smallest sample size than for the

larger sample sizes.

These mean maximum absolute errors were also plotted over 1
1−ρ in Figure 41 to show

how the lines may become straighter and more linear in their trends. The same setting was

repeated then, but for ρ = 1 − 100
n

in Figure 42. This simulation also shows a more linear

trend in the mean maximum absolute error versus the correlation ρ when it’s related to the

sample size n. This particular plot also gives rise to lower errors leading to a suggestion

in which one may choose a sample size based on the correlation such that n = 100
1−ρ . The

reasoning is that no matter how large the distance is between the estimated and the true

coefficient, a maximum absolute error half the true distance or less between the estimated
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Figure 37: Probability of correctly obtaining the correct order of the important variables
via the estimated coefficient for different sample sizes over various correlations for when the
first and second variables and the first and third variables are correlated while the second
and third are not correlated.
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Figure 38: Log of the probability of incorrectly obtaining the correct order of the important
variables via the estimated coefficient for different sample sizes over various correlations for
the first and second variables and the first and third variables being correlated while the
second and third are not correlated.
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Figure 39: Mean maximum absolute error between the estimated coefficient and their true
value over various correlations between the equicorrelated number of predictors and for
different sample sizes.
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Figure 40: Ratios between mean maximum absolute errors in Figure 39 over various corre-
lations between the equicorrelated number of predictors and for different sample sizes.
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and true coefficients is needed for the probability to go to one as long as the estimates are

uniformly estimated over the predictors.

Figure 41: Mean maximum absolute error between the estimated coefficient and their true
value over 1/(1 − ρ) for various correlations, ρ, between the equicorrelated number of pre-
dictors and for different sample sizes.

The asymptotic distribution for the error between the estimated and true coefficients of

pn predictors can be used which nullifies the need for creating standardized data, calculating

the response, and estimating coefficients which greatly improves the computation time of

these simulations. In particular, we simulate the distribution as e ∼ N(0, S−1) with S being

the correlation structure. Thus, pn errors could be simulated quickly and then the absolute

value taken of each and the maximum absolute error calculated over all the errors. This may

be repeated 1000 times with the mean maximum absolute error calculated per correlation, ρ,

and number of variables, pn, combinations as in Figure 43. The ratios between these mean

maximum absolute error curves are also computed for comparison between this simulation
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Figure 42: Mean maximum absolute error between the estimated coefficient and their true
value over various correlations between the equicorrelated number of predictors and for
different sample sizes selected as ρ = 1− (100/n) or n = 100/(1− ρ).

with the asymptotic distribution and the full simulations which started by creating data.

These results are most similar to the full simulation when the sample size equalled 1000

in Figures 39 and 40. This indicates that the asymptotic distribution is verified by the

assumption that the sample size is extremely large for it to hold.

From these simulations, we can conclude that as the correlation increases, the difficulty

of obtaining the important variable or the correct order of the important variables also

increases. As expected, the difficulty increases as the sample size decreases. Additionally, if

the variables are ordered and the most important is correlated only with the least important

(or with lower ordered predictors), then it is much easier to correctly order the variables

by the estimated coefficients. However a question still begs, do these simulations hold for

logistic regression?

The logistic regression case with two variables was explored as shown in Figure 44 and

with three variables, two being unimportant but correlated, was explored in Figure 45. To

simulate this data, the process is similar to that of linear regression, however the response
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Figure 43: Using the asymptotic distribution of the coefficients, the mean maximum absolute
error between the simulated coefficients and the true coefficients is plotted over various
correlations between the coefficients and for different numbers of variables (left). The ratios
between the mean maximum absolute error curves were also plotted (right).

variable takes on a Binomial distribution. Thus, step 3 from the linear regression simulations

above is changed to:

• Z = Xβ

• Y ∼ Binom(1, p) where p = 1
1+exp(−Z)

Figure 44 shows similar results as with linear regression in that as the correlation increases

or as the sample size decreases, the percentage of correctly obtaining the important variable

decreases meaning it becomes harder to correctly obtain the important variable. However,

when the logistic regression case is compared to the linear regression case, these effects of

sample size and correlation are higher. For example, with the sample size of n = 10, the

percent of correctly identifying the important variable over the increasing correlation hovers

above 60% until it drops below at high correlation values (around 0.8 and above) for the

logistic case whereas for the linear case the percentages are above 90% until a correlation

around 0.4 and above 80% until a correlation of 0.8. In terms of the three variable case with

one important variable and the two unimportant variables being correlated, the previous

findings are solidified as shown in Figure 45. Thus, it is harder to obtain the important
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variable in the logistic case as compared to the linear case and with a small sample size or

high correlations.

Figure 44: Probability of correctly (left) and the log of the probability of incorrectly (right)
obtaining the important variable via the estimated coefficient over various correlations and
for different sample sizes with only two variables in logistic regression. (Two variable case)

The counterexample from above where n = c log(pn) with different c and pn values with

no correlation present was repeated for the logistic regression case as shown in Figure 46.

Similar to the above simulations, it shows that for logistic versus linear regression, it is more

difficult to obtain the important variable with lower probabilities for the same situations.

However, the same conclusions can be made in that if the number of predictors is growing

faster than the sample size, one can no longer correctly identify the important variable using

the coefficients for logistic regression even with no correlation present.
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Figure 45: Probability of correctly (left) and the log of the probability of incorrectly (right)
obtaining the only important variable via the estimated coefficients over various correlations
between the two unimportant variables and for different sample sizes in logistic regression.
(Three variable case)

Figure 46: The probability of correctly obtaining the only important variable when n =
clog(pn) where c is a constant, pn is the number of variables for sample size n over the log of
the number of variables when no correlation is involved (left). The probability of incorrectly
obtaining the only important variable versus the number of variables for logistic regression
(right).
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2.7 Potential VIMP Measures and Methods

Due to the numerous and various VIMP measures which are model-specific, other metrics

which deal less with the specific model and more with overall performance should be explored.

Thus, VIMP could be assessed as a degradation in performance of the log-likelihood, sum of

squares error, and R2 after a random shuffle of the variable’s observed values as long as the

predictors are uncorrelated. With the case of correlated variables, the group of correlated

variables may be assessed together through a random permutation of the observations within

the set of the correlated predictors. This means that each variable within the correlated set

will have its observed values shuffled. Then this set of correlated variables will be evaluated

collectively therefore obtaining a VIMP measure for the whole group which will show the

unified importance of the group. This method was proposed by Parr et al. and seems like a

viable option in order to avoid the broken correlation structures which would happen if only

a single predictor was permuted at a time [Parr et al., 2018].

In addition to the above suggested metrics, the following could also be assessed for

classification: Area under the receiver operating characteristic (ROC) curve, sensitivity,

specificity, positive predictability, F1 score, and Score1. In each case of classification, after

one has built a model and obtained the predicted classes, the misclassification matrix can be

obtained as in Table 5. All of the above scores for classification are reliant on this matrix.

First let’s define sensitivity, specificity, and positive predictability (PP) where the values

come from the misclassification matrix.

Sensitivity =
TP

TP + FN

Specifiicity =
TN

TN + FP

PP =
TP

TP + FP
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Table 5: Observed vs predicted counts.

Observed Class 1 Observed Class 0
Predicted Class 1 True Positive (TP) False Positive (FP)
Predicted Class 0 False Negative (FN) True Negative (TN)

The ROC curve plots the sensitivity on the y-axis and one minus the specificity on the

x-axis. The ROC curve shows the tradeoff between sensitivity and specificity meaning an

increase in sensitivity will be followed by a decrease in specificity. If the ROC curve is a

straight line at a 45 degree angle and thus the area under the curve (AUC) is 0.5, then the

method is uninformative [Agresti, 2014]. When this occurs, sensitivity plus specificity equals

one, hence the difference of sensitivity and specificity would be zero which means a positive

difference is an improvement. Thus, the higher the AUC, the better the method and the

more arched towards the top left the ROC curve will be.

A newer approach of evaluation leads from a 2012 PhysioNet Challenge of adults in

intensive care units (ICU) with a low occurrence of interested events (mortality rate was

14.2%) [Silva et al., 2012]. This innovative tactic is referred to as Score1 and is calculated

using sensitivity and the positive predictive (PP) value. The decision threshold is varied with

the sensitivity and the PP being calculated for each value of the decision threshold. When

the sensitivity and PP are plotted across the decision thresholds, the optimal decision cutoff

is chosen as the value where the sensitivity and PP are closest. Score1 is then the minimum of

sensitivity and PP at this decision threshold. This measure is said to be a “reasonable tradeoff

between accuracy of discrimination and prognostic value” [Silva et al., 2012]. Generally, the

PP value is preferred over specificity, leading to a reason Score1 may be preferred over the

AUC of the ROC curve.
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Next, let’s define recall and precision in order to define the F1 score.

precision =
TP

TP + FP
=

TP

TotalPredictedPositive

recall =
TP

TP + FN
=

TP

TotalActualPositive

From these equations, we see that precision is actually PP and recall is the sensitivity. As

for the F1 score, it is a function of these two measures:

F1 = 2
precision · recall
precision+ recall

= 2
PP · sensitivity
PP + sensitivity

.

This measure is the harmonic mean of precision and recall from the equation above. Thus,

this score will punish extreme values unlike the usual mean. In order to create a model

where the precision and recall are balanced, the F1 score would need to be maximized

[Koehrsen, 2018]. Collectively, these measures could be assessed depending on the outcome

variable through simulations and on real life data.
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3 Growth Modeling of Bangladeshi Children

Thus far for growth modeling on subsets from the PROVIDE study or on similar cohorts,

functional principal component analysis (FPCA) has been implemented for height-for-age

(HAZ) growth patterns over the first two years of life. This involved quantifying deviations

of individual’s growth from WHO standards by FPCA while linear regression was used to

identify risk factors associated with growth faltering [Zhang et al., 2017]. Another analysis

included several penalized linear regression methods used to select biomarkers of environmen-

tal enteropathy where the main outcome was still HAZ but at one year of age [Lu et al., 2017].

A current working manuscript on a similar data set of children in Bangladesh (the Preschool

cohort) extends a comparable analysis using FPCA and penalized regression together in or-

der to model the growth, specifically the height, from ages 3 to 18 when the heights are also

observed irregularly. This working article focuses on a procedure which estimates the growth

functions of the individuals which then may be used in further methods such as functional

regression to explore the relationships with the covariates.

Due to the lack of current growth models which also consider the long list of various

risk factors, the PROVIDE cohort is being further explored with the goal of creating a

more comprehensive model of height and development with multiple covariates. In order to

explore and view relationships, various plots were created for these variables and for each

individual. Relationships between growth and the variables dealing with the environment,

maternal health, income, and many bodily factors from the infant were also explored using

traditional methods such as correlations and penalized linear regressions along with newer

machine learning techniques including random forests. Even deep learning methods were

considered. Using these methods leads to a more comprehensive model which includes several

covariates that have been selected in order to best explain how these children are growing

and developing over time, especially within the first two years of life. Thus, interventions

may be applied in order to improve the overall growth, development, and health of children
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in similar situations. Improving the lives of these children will carry through to improve

their lives as adults which in turn would improve their offspring and the overall society as it

has been shown that the first few years of life are of utmost importance for success later in

life.

3.1 The PROVIDE Study Cohort and WHO Standards

The PROVIDE birth cohort consisted of 700 infants born in Mirpur which is an urban

slum in Dhaka, Bangladesh from May 2011 to November 2014. Children were recruited

at birth and followed over a two-year period with in-home visits twice a week and irregu-

larly scheduled clinical visits where blood or stool samples were occasionally taken. A more

detailed description of the study design, recruitment, and follow-up were described previ-

ously [Kikpatrick et al., 2015]. This study was approved by the Ethical Review Board of

the ICDDR,B (FWA 00001468) and the Institutional Review Boards of the University of

Virginia (FWA 00006183) and the University of Vermont (FWA 00000727). A large set of

biomarkers for nutrition and systemic inflammation were calculated from the available stool

and blood samples along with numerous survey results, developmental measures, and growth

measures including over 900 potential predictor variables (see Table 6 for selected predic-

tors). Even metabolomic and metagenomic data was collected from infant samples in order

to gain knowledge about the gut bacteria. A few predictors were collected over time includ-

ing but not limited to neopterin, CRP, calprotectin, activin A, amino acids, metabolomics,

and the number of cumulative episodes of diarrhea. Thus, data is available from all sorts of

sources and on numerous aspects of these children’s lives ranging from their environment,

their mother’s health and background, and their own health in various formats. The pri-

mary outcome of interest is stunted growth by two years of age defined as a height-for-age

Z score (HAZ) below -2 at two years. HAZ is a measure normalized for the child’s age and

gender from standards released from the WHO Multicentre Growth Reference Study Child

Growth Standards. Stunting has been shown to be correlated with subsequent outcomes in
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later life such as diminished survival, weakened learning capacity, and lower annual incomes

[Dewey and Begum, 2011][Hoddinott et al., 2008]. HAZ is a commonly used measurement

for malnutrition due to it’s ability to capture the cumulative effects through childhood, how-

ever we would like to go back to the raw heights in order to explore this specific population.

The heights, weights, and body mass index (BMI) for these children were measured at most

16 times over the two year period. These times are at enrollment and then weeks 6, 10, 12,

14, 17, 18, 24, 39, 40, 52, 53, 65, 78, 91, and 104 where 104 weeks indicates the two year

mark. In addition to the initial time frame of two years, additional data was collected on

a subset of individuals to include at least yearly outcomes for height, HAZ, weight, WAZ,

WHZ, and BMI up to year 7. Developmental tests and scores were also collected including

Bayley Scales of Infant and Toddler Development, Third Edition (Bayley’s) at 1.5, 2, and 3

years of age, Mullen Scales of Early Learning (Mullen’s) at 3 and 4 years, and Weschler Pre-

school and Primary Scale of Intelligence WPPSI (Weschler’s) at 4 and 5 years. Bayley’s was

replaced by Mullen’s at 3 years of age and Weschler’s replaced Mullen’s at 4 years making

the main outcomes Bayley’s at 2 years, Mullen’s at 3 years, and Weschler’s at years 4 and 5.

For these neurocognitive outcomes, multiple articles from the PROVIDE cohort have been

published including Donowitz et al., Moreau et al. and Jensen et al. [Donowitz et al., 2018]

(coauthor) [Moreau et al., 2019] (coauthor) [Jensen et al., 2019]. Data from EEGs (elec-

troencephalogram) was collected on a subset of subjects beyond the two year mark. The

EEG net containing electrodes which sense electrical signals from firing neurons was placed

on a child’s head. Specifically, visual evoked potentials (VEP) were measured in response

to a pattern-reversing checkerboard. This means the subject watched a monitor 65cm away

with a Tobii X2-60 ete-tracking system attached. These signals were heavily processed as

described in Jensen et al. [Jensen et al., 2019]. The latency and amplitude of a component

relative to the previous component was measured for the VEP data as shown in Figure 47

after the VEPs were averaged per child. In addition, event related potentials (ERP) were

collected using the idea that one person’s face will be shown 70% of the time with the other
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30% being a new and different face. The ERP data thus tries to measure the subject’s

ability to distinguish familiar vs unfamiliar faces. The hopes of using the VEP or ERP data

is that these could be culturally independent measures of the children’s development unlike

the Bayley’s or similar tests which cannot be directly compared between cultures. Due to

the rolling enrollment, some children have not reached age six or seven at the time of this re-

search and thus no time points beyond year 5 was further considered. In whole, this data set

holds many complexities especially with the amount of covariates, the irregular times, and

relationships between the predictors as shown in Figures 48, 49, and 50. The correlations

from some selected variables and the incremental changes in height are shown in Figure 48

showing how variables can have an effect in the change in height at later time points. In

particular, Alpha-1-Antitrypsin has a negative effect on the growth rates. Figure 49 shows

the subset of metabolomics from the children’s stool samples at week 40 which encompasses

85 variables alone (there are also sets of metabolomics from the plasma of the infants at week

40 and the breast milk at week 6). One can see the strong relationships between some sets

of metabolomics but the lack of relationship with the incremental changes in height after

they were measured. The sets of metabolomics were analyzed by Moreau et al. in which cer-

tain sets of these metabolites were associated with either growth or neurocognitive outcomes

[Moreau et al., 2019] (coauthor). Figure 50 shows a selected child from the PROVIDE data

set whose change in height from enrollment to two years was in the lower quartile (they

had one of the lowest increases in height over the two years). The figure demonstrates the

sparsity of the data where various data points are missing along with the general irregularity

and the multiple types of measurements taken as also stated in 6.

The WHO growth standards come from the WHO Multicentre Growth Reference Study

(MGRS) which was completed from 1997-2003. About 8500 children were involved in this

study from Brazil, Ghana, India, Norway, Oman, and the USA with all types of backgrounds

being considered allowing the impact of the environment to be lessened. Thus, these stan-

dards represent growth for all children up to age five where the breastfed infant is considered
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Table 6: The Short List of Covariates.

Type/Source Measurements

Maternal

Height and Weight
Age at enrollment, first marriage, and first pregnancy
Number of living children and marriages
Plasma cytokines: IL-8 and TNF-α
Breast milk metabolomics
Breast milk cytokines: IL-7 and PDGFBB
Breast milk lipids: LA, ALA, EIC9, DGLA, GLA, LLA,
PLA, STE, EDA, DPA, ELA, MYR

Infant

Gender
Number of cumulative episodes of diarrhea
Birth order of enrolled infant
Number of wheezing episodes over 2 years
Cytokines from plasma: IL-1β, IL-4, IL-5, IL-6, IL-7, IL-10,
TNF-α, MIP-1β, IFNG, GMCSF
Mannitol and Lactulose concentrations
Alpha lipopolysaccharide
Ferritin
Vitamin D
Retinol binding protein
Activin A
CRP
Amino acids from plasma such as arginine, tyrosine, and tryp-
tophan
Plasma and stool metabolomics such as malate or sphin-
gomyelins and serotonin or spermidine respectively
Filamentous hemagglutinin, a virulence factor
Vaccine responses from measles, haemophilus influenza, and
diptheria
Virus Indicators for Adenovirus, astrovirus, B. fragilis, C.
difficile, C. jejuni/coli, Campy pan, E. histolytica, rotavirus,
salmonella, and more

Environmental/Household

Income and Expenditure (in Taka)
Principal flooring, roofing, and/or wall material
Number of rooms in home
Number of household members
Number of people usually sleeping in home
Type of fuel used for cooking
Food availability, is there usually a deficit?
If the toilet facility shared with other households
Water drinking source
How often the newspaper is read
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Figure 47: The individual components for the VEP outcome with measures of latency and
amplitude.

Figure 48: The Spearman correlation between selected variables at the time points and the
incremental changes in height between each of the 16 time points.

the norm. The children involved in the study were healthy and living in conditions likely to

allow them to reach their full potential. These standards are separated by sex since it is a

known effect on growth. Multiple statistical techniques were used to create the height per-
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Figure 49: The Spearman correlation between the metabolomics from the stool of the infants
at week 40 (left) and between these metabolomics and the incremental changes in height for
each of the 16 time points (right).
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Figure 50: A selected female child within the lower quartile of overall change in height from
the PROVIDE data. The color indicates the source of the measurements: black=stool,
red=plasma, and blue=other. The ∗ indicates missing data for this subject and a + or − is
the result from an indicator variable while the size of the point demonstrates the magnitude.
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centile curves which are given as the standards and are seen on Figure 51 as the black lines

whereas the colored lines (blue for males and pink for females) indicate the PROVIDE study

individuals’ heights over the first two years of life. One can see from this figure that at the

two year mark, the majority of subjects in the PROVIDE study are already below the 50th

percentile mark by this WHO reference. This reference also gives individuals calculations to

convert their data into the height-for-age (HAZ), weight-for-age (WAZ), weight-for-height

(WHZ), and such which was completed within the PROVIDE study. As previously men-

tioned, a HAZ below -2 indicates that the child is stunted often indicating malnutrition

[WHO MGRS Group, 2006]. These standards are the go to reference for healthy growth of

children.

Figure 51: The light blue lines indicate the heights for the males within the study while the
pink lines indicate the females’ heights in the PROVIDE study. The black curves indicate
the percentiles from the WHO standards for the respective sexes.
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3.2 Current and Typical Growth Models

Many growth models have been created and explored. Among the different types polynomial

models, Berkey-Reed, Jenss-Bayley, the Count model, the von Bertalanffy, Gompertz (in

many different forms itself), logistic, and exponential are included. Several of these belong

to the Unified Richards family of growth models including Unified-Gompertz and unified

versions of the logistic and the von Bertalanffy [K. Tjørve and E. Tjørve, 2017]. Chirwa

et al. explored the Berkey-Reed, Count model, Jenss-Bayley (and an adaptation thereof),

and 2nd and 3rd order polynomial models for children in Africa aged 3 months to 10 years

using Stata and SAS [Chirwa et al., 2014]. The findings suggest for modeling height that

the adapted Jenss-Bayley and Berkey-Reed have similar and good performance. Another

result showed the importance of sex within these models which is a widely known effect on

height [Chirwa et al., 2014]. Polynomial models may be useful in certain situations such as

the study by Troutman et al. where Excel was used [Troutman et al., 2018]. In that study,

an age-specific growth model uses polynomial equations for weight and height split by sex

and split further by gestational age. The preterm infants were shown to have a slower gain

in weight and height than full term neonates, especially for those at the earliest gestational

ages. Additionally, the catch up times for growth was explored where the females exhibited a

faster catch up for lower gestational ages than males [Troutman et al., 2018]. An interesting

approach to modeling growth involves a biased random walk. The resulting line resembles

stair steps representing growth bursts where the growth increments come from a time varying

distribution. With this model, each individual has their own curve in which height may be

predicted [Suki and Frey, 2017]. Most of these methods can be used in conjunction with

nonlinear mixed effects (NLME) which is described below and was proposed in this setting

by Lindstrom and Bates [Lindstrom and Bates, 1990]. From these growth models mentioned,

we will explore the Gompertz, logistic, and exponential in more detail.
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The method put forth by Lindstrom and Bates has been widely used especially for

growth modeling [Lindstrom and Bates, 1990]. The method is NLME models when re-

peated measures are the outcome. This method uses least squares estimators and maxi-

mum likelihood estimators (MLE) for the nonlinear fixed effects and the linear mixed effects

respectively. In addition, a Newton-Raphson method is implemented for the estimation

[Lindstrom and Bates, 1990]. The general NLME for the jth observation on the ith individ-

ual is given as:

yij = f(φi,xij) + eij

where yij is the jth response on the ith individual, xij is the regressor vector for the jth

response on the ith individual with no restrictions, f is a nonlinear function for the regressor

vector and the vector of parameters φi with length r and which is allowed to vary from

individual to individual, and lastly eij is normally distributed random noise. The parameter

vector may be included into the model as

φi = Aiβ + Bibi

where bi ∼ N(0, σ2D),β is a fixed population parameters vector of length p, and bi is the

vector of length q for the random effects for individual i. Also, σ2D is the covariance matrix.

The Ai and Bi are design matrices respectively of sizes r × p and r × q. These matrices

can simplify the model. Ai may allow different groups to have varying fixed effects while Bi

can give different groups separate random effects. The model for the ith individual may be

written for the entire response vector as

yi = ηi(φi) + ei
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where

yi =



yi1

yi2
...

yini


, ei =



ei1

ei2
...

eini


, and ηi(φi) =



f(φi,xi1)

f(φi,xi2)

...

f(φi,xini
)


and ei ∼ N(0, σΛi) in which matrix Λi depends on i but only through its dimension. So, if

one wants M individual models within one overall model, we must let

y =



y1

y2

...

yM


,φ =



φ1

φ2

...

φM


, and η(φ) =



η1(φ1)

η2(φ2)

...

ηM(φM)


.

In addition, we also will have D̃ = diag(D,D, . . . ,D) and Λ = diag(Λ1,Λ2, . . . ,ΛM). Hence

the overall model is

y|b ∼ N(η(φ), σ2Λ)

with φ = Aβ + Bb, b ∼ N(0, σ2D̃), and B = diag(B1,B2, . . . ,BM). We also have

b =



b1

b2

...

bM


and A =



A1

A2

...

AM


.

Since the model is specified, the next step would be to estimate the parameters. For the

estimation of β and b, a least squares problem is created by augmenting the data with

“pseudo-data” and then the MLE are found in both the linear and nonlinear cases. Then,

a two-step algorithm is followed with the first step being the pseudo-data (PD) step where

a nonlinear least squares estimation is completed and the second being the linear mixed
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effects (LME) step where Newton-Raphson may be used. The method completes this two-

step algorithm until convergence. To begin using the method and in particular for the first

PD step, one must specify starting or initial values for the parameters. Usually these can

be inferred from the data. A common example from Lindstrom and Bates is of orange tree

growth in terms of circumference on five trees and is given using the logistic model here:

yij =
β1 + bi1

1 + β2eβ3xij
+ eij

where xij are the time points the circumferences were measured, eij are iid N(0, σ2), and

bi ∼ N(0, σ2D) and D is a 1 × 1 matrix [Lindstrom and Bates, 1990]. Starting values are

given to the method and after convergence, the parameter estimates are shown and the curves

are plotted from the restricted MLE estimates. Note that since the circumferences were

gathered over time, it’s natural to think there may be serial correlation for each individual’s

measurements. This is not included within the noise term in the model, but is it assumed

to be taken care of within the random effects structure [Lindstrom and Bates, 1990]. This

method has been implemented in numerous cases, but has a great flexibility which leads

individuals to apply NLME.

K. Tjørve and E. Tjørve (2017) and Chriwas et al. (2014) both advocate the use of

NLME for modeling height and weight using covariates [K. Tjørve and E. Tjørve, 2017]

[Chirwa et al., 2014]. The reasoning these authors among others promote this modeling

technique is due to the incredible flexibility since it can deal with irregularly spaced times

and missing data as well as model on the individual and population levels. Usually, the

fixed effect within the model represents the mean structure or general population curve and

the random effect allows for individual variations in growth. Another highlight of NLME

is the availability of comparison between models making it easier to select a proper growth

model along with the addition of covariates. Most of the previous studies involving low and
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middle income countries have not used NLME for modeling height up to two years of age

since longitudinal data is not readily available in these settings [Chirwa et al., 2014].

The Gompertz growth model is very common and may be used to model the growth for

various biological beings such as plants, birds, fish, mammals, tumors, bacteria, and survival

of cancer patients. Perhaps this model is so widely used due to its age. It was first suggested

as a probability density function in 1825 where Makeham stated the model in the more

common cumulative form. Thus, this model has a long history of multiple uses including

from insurance for mortality. There are multiple versions of the Gompertz including a three-

parameter or four-parameter version, the Zwietering modification (modified Gompertz), the

Zweifel and Lasker re-parameterisation, the Gompertz-Laird, and the Unified-Gompertz. For

most of these versions, the growth parameter values will not be directly comparable to growth

coefficients from other methods and are often difficult to interpret. Thus, the following is

one of the two models which are the Unified-Richards [K. Tjørve and E. Tjørve, 2017]. This

particular model is the W0 form where the W0 is the initial value (height at birth):

W (t) = AU

(
1 +

((
W0

AU

)1−d

− 1

)
· exp

(
−k · t
dd/(1−d)

))1/(1−d)

.

AU denotes the upper asymptote (the highest possible height), d is the parameter that shifts

the inflection value, t is time, and k represents the relative growth rate. Taking this Unified-

Richards model, we can obtain a unified version of the logistic model by setting d = 2. The

W0 form of the Unified-Gompertz is then:

W (t) = AU

(
AU
W0

)− exp(−e·k·t)

.

W0, AU , and t all have the same meaning, however k now becomes the maximum relative

growth rate. So the absolute growth rate would then be AU · k. Note that in the original

paper by K. Tjørve and E. Tjørve, this model showed a negative trend when plotted whereas

when a negative sign was added as in the current representation in this research to the
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first exponential the growth curve then became positive [K. Tjørve and E. Tjørve, 2017].

Switching the AU and W0 in the fraction also gives the same effect and values. This Unified-

Gompertz has an inflection point which is set at 36.8% of the upper asymptote and is

calculated by AU/e whereas for the Unified-Richards, the inflection point is calculated by

AU/d
1/(1−d) [K. Tjørve and E. Tjørve, 2017]. Thus, this model is a good alternative to other

versions due to the interpretability of the parameters.

In addition to Gompertz, the logistic and exponential models will be explored for com-

parison since they are general and simpler to implement. First, the logistic growth model

may go by several other names (and may be connected as above to the Richards family of

growth curves), but has the simple S-shape which is commonly known. In this case, we will

need a starting point, or lower asymptote which is nonzero. Thus, the following formula

provides the logistic growth curve

h(t) = AL +
AU − AL

1 + e(k−t)/δ

where AL is the value for the lower asymptote (here this would be the starting height), AU

is the upper asymptote, k is the growth rate, t is time, and δ is a shape parameter which

determines the steepness of the curve. Similar to the formula for the logistic, the exponential

growth curve may be written as

h(t) = AU − (AU − AL)e−(kt)

where again, AU is the upper asymptote, AL is the lower asymptote, k is the growth rate,

and t is the time. To have similar notation, we may also write the Gompertz curve as

h(t) = AL + (AU − AL)e− exp(−k(t−I))

where I is the inflection point which can be set as previously described (I = AU/e) or by
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the formula I = (AU − AL)/e [Henderson and Seaby, 2006]. Using the previous formula for

Gompertz and this formula with the two different inflection points gives Figure 52 for a

child whose starting height would be 45 cm and reaches 85 cm over the two years. For our

comparisons, it seems as though that none of the representations deem a great fit to the

PROVIDE data.

Figure 52: The first plot corresponds to the representation by K. Tjørve and E. Tjørve
(2017) while the other two correspond to the representation featured in Henderson and
Seaby’s (2006) Growth II program with two separate inflection points.

In general, these nonlinear models in Figure 53 were created since they could be estimated

with certain simplicities. However, we need a model which is a bit more specific and has

a changing growth rate which may depend on several covariates. This need is displayed by

Figure 53 since none of them fully capture the characteristics of the data.
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Figure 53: The first two columns of plots are currently used growth models on the same
scales as the PROVIDE data but for a given subject who was born at 45 cm and will reach
a max of 85 cm over the two years. The last column of plots are the actual heights for males
(light blue) and females (pink) from the PROVIDE data.

3.3 Proposed Growth Model for PROVIDE Cohort

The model we are proposing to use for the PROVIDE cohort is unlike the others explored

above. This model will be specific for the individuals in Bangladesh and has a goal to

incorporate multiple covariates in order to predict height and apply interventions before

stunting occurs. Figure 54 shows an example of the proposed model’s shape for a particular

individual with no missing data. For this example, no covariates have been added into the

model.
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Figure 54: The graph displays an example of the proposed model for a particular subject
with no missing data without covariates added.

The proposed model is derived as follows:

ht = h0

t∏
j=1

(1 + δj∆j)

= h0 exp
t∑

j=1

ln(1 + δj∆j) Let ln(1 + δj∆j) ≈ δj∆j

= h0 exp
t∑

j=1

δj∆j

≈ h0 exp

∫ t

0

δsds

= h0 exp (gtt)

where ∆j are the local time units since data was collected irregularly, δj are the growth rates

per each time point, and h0 is the height at birth.

The average growth rate up to time t is gt = 1
t

∫ t
0
δsds. Thus, as t → ∞, gtt → c where

c is the person’s adult height and so gt → 0. Random variation should also be added to the

112



model due to individual growth rates in which we would have:

ht = h0 exp (gtt+ σtYt).

This is similar to financial models for stock prices where Yt is Brownian motion in which we

can take advantage of their estimation methods to help build the model. Additionally, the

Ornstein-Uhlenbeck process is a continuous analog of a discrete AR(1) time series. Using the

integrated version, we can have a basis on which to build. One may also add in the covariates

to the gtt term as gtt+X where X would be the covariates selected to help explain the growth

of these children.

3.3.1 Constraints and Regularization

Due to the nature of the data, there will be some natural constraints that must occur. For

example, the starting predicted value should be the same as the initial height. Thus, the first

growth rate at time zero should also be zero. Since humans do not lose height specifically

within the first two years of life, another natural constraint is that the growth rates are

nonnegative. Another thought was the dependence between growth rates. From Figure 55,

we see that there is very little correlation (≈ 0.2 or less) between the incremental changes

in height which may show reason against our initial instinct that the growth rates would

be dependent on each other. However, these incremental changes are not normalized which

may lead to the lack of associations.

Possible regularizations could be applied to the model as well. Usually, regularizations

are easily applicable and often penalize the coefficients with some methods assigning values

of zero to unimportant variables. However, in our case, we not only have numerous covariates

(900+), but they are measured at various times with some at multiple time points over the

two years. Most of the individuals also do not have all the possible measurements per each

variable meaning some individuals have very sparse data. In addition, we do not have just
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one particular outcome, we have multiple due to the measures, again, being over time. This

adds numerous complexities and is unlike most problems where regularization is applied.

Hence, a new regularization technique would give the following conjecture.

Conjecture 3.1. For time point t where t = 1, . . . , T , a matrix of covariates Mt with
size p × n have been measured across individuals i = 1, . . . , n along with a 1 × n vector
of incremental changes in height Dt for the time point t across the individuals. The first
value of the incremental changes vector at time t = 1 will effectively be zero due to this time
point being the starting time and thus growth has not yet occurred. In order to explain these
incremental changes in height per each time point, a model must be specified.

For each time t, the following will be optimized over all subjects:

min
n∑
i=1

(Dt,i − β̂t,iMt,i)
2 + λ

(
‖β̂t,i‖2

)
with λ ≥ 0 and where Dt,i is the incremental change at time t for individual i, β̂t,i is the
1 × p vector of coefficients for the corresponding Mt,i which represents the p × 1 vector of
covariates at time t per individual i.

Thus, the second term, λ
(
‖β̂t,i‖2

)
, will allow for regularization of these coefficients at

time t therefore reducing the number of covariates needed at each time point.

This Conjecture may also be connected to the variable importance (VIMP) described in

3.4.3. One might choose to instead use VIMP per each time point t in order to select from

the numerous covariates where a value above zero with random forest (RF) or conditional

random forest (CRF) would indicate a predictor that has an effect on the outcome. Another

way to use the VIMP would be to regularize on the VIMP values which is similar to wavelet

thresholding.

These frameworks proposed here could lead to a fantastic model, but remain unimple-

mented in this current research as the selection of covariates was more thoroughly explored.
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Figure 55: The Spearman correlations between the incremental changes in height over the
time points.
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3.4 Methods of Exploring and Selecting Covariates

3.4.1 Simple and Exploratory Methods

Due to the shear number of covariates available to predict height and other outcomes from

the PROVIDE cohort, some preliminary exploratory analyses had to be completed. With a

subset of this data and with only 47 predictors included, the conditional variable importance

(VIMP) was previously used to explore which variables may predict the height-for-age z-

scores (HAZ) [Donowitz et al., 2018] (coauthor). The results lead to mother’s weight and

height, initial HAZ value, income, and a few biomarkers being deemed important (ranked

within the top 10 in terms of conditional VIMP) as seen in Figure 56. Specifically, mother’s

weight and the initial HAZ of the child were the two most important predictors of HAZ

at two years of age [Donowitz et al., 2018] (coauthor). These results have since then led to

additional funding where nutritional interventions in mothers are being studied.

Figure 56: The variable importance measures are based on a conditional random forest model
with the conditional variable importance calculated for the PROVIDE data. Only the top
15 variables are shown [Donowitz et al., 2018].

In addition to this previous analysis, a simple look through graphical relationships be-

tween all possible variables and height and change in height over two years. These simple
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graphs give a first look and general idea to which predictors may show up in the coming

methods. Another simple way the relationships were viewed included graphical measures

such as Figure 50 which again shows the sparsity of the data. Additionally, Pearson and

Spearman correlations were computed along with the results from a test of the correlation

being significantly different from zero for the variables at each time point and the next time’s

incremental height, height, HAZ, and stunted indicator. For the most part, these two types

of correlation measures overlapped fairly well with the exception of the incremental changes

in height outcome where the two methods showed slightly different variables being corre-

lated with this particular outcome. These results show that the incremental changes are

more difficult to analyze especially since they have not been normalized. However, these

simple calculations only give a first look at which variables may help predict growth and

thus we still have the goal of explaining the growth patterns while exploring the effects of

covariates at certain times in which these first looks are valuable to give intuition.

3.4.2 Penalized Linear Models with L1 and L2 Regularizations

A next step involves somewhat simple manners which explore the selection of covariates

through L1 and L2 regularization, also known as lasso (least absolute shrinkage and selection

operator) and ridge regression respectively. Both of these techniques are linear regression

but with a penalty term added to the loss function of SSE =
∑n

i=1(yi − ŷi)2. The penalty

term penalizes the parameters in the model, here the coefficients of the variables. These

methods may be used to avoid overfitting the data or for the selection of variables. For lasso

regression, the penalty takes the form of the absolute value of the coefficients:

SSE + λ

P∑
j=1

|βj|.
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The penalty term for ridge regression is the sum of the squared coefficients:

SSE + λ

P∑
j=1

β2
j .

In both cases, P is the number of predictors and βj is the coefficient for predictor j. If λ = 0,

then we have the ordinary least squares regression model. However, if λ is large, the model

may underfit the data with too much penalization. As λ increases in lasso regression, coeffi-

cients will become zero, effectively selecting some variables (those with nonzero coefficients),

however in ridge regression, the coefficients will be shrunk to zero but not equal to absolute

zero. Thus ridge regression is not a feature selection method. These implications lead to

ridge shrinking the coefficients of correlated covariates towards the same value while lasso

will choose one of the correlated variables and ignore the rest. These two penalties may be

combined to create the elastic net where the penalty with the loss becomes:

SSE + λ1

P∑
j=1

|βj|+ λ2

P∑
j=1

β2
j .

This method will thus incorporate feature selection along with the shrinkage of the coefficients

which has been suggested to deal better with groups of highly correlated covariates which is

the case here. All three of these methods do require tuning of the λ parameters in order to

achieve the best performance [Kuhn and Johnson, 2016].

For logistic regression, the ideas are similar however the loss function is the binomial

likelihood function L(p) =
(
m
k

)
pk(1−p)m−k where m is the number of trials, k is the number

of successes, and p is the probability of success. The ridge regression like penalty, logL(p)−

λ
∑P

j=1 β
2
j , may stabilize the coefficients and help with correlated covariates. Similarly, a

lasso like penalty may be used. The elastic net may also be implemented, however slightly

differently:

logL(p)− λ

(
(1− α)

1

2

P∑
j=1

β2
j + α

P∑
j=1

|βj|

)
.
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In this case, α is the amount the two penalties are mixed together. If α = 1 it is a lasso

penalty whereas if α = 0, then it is a ridge penalty. The λ still controls the amount of

penalization [Kuhn and Johnson, 2016].

In the implementation of these models, the glmnet R package was used with the cv.glmnet()

function which implements cross validation for the tuning of the λ parameter. Within this R

function, the specific formula optimized for regression and for logistic regression respectively

are
1/2 · SSE

n
+ λ · penalty

− logL(p)

n
+ λ · penalty

where penalty = (1− α)1
2

∑P
j=1 β

2
j + α

∑P
j=1 |βj|.

Since ridge regression does not effectively select variables, the analyses here focused on

lasso and elastic net, although ridge regression was run in case the direction of a predictor’s

linear relationship with an outcome was needed. The outcomes assessed were the incremental

heights, heights, HAZ, and the stunting indicator at the next time point. All predictors per

each time point were used to predict the next outcome while in a separate round of analyses,

the previous predictions were also used for the current time point as an additional predictor

in order to improve the amount of information included within these models per time point.

Then height, HAZ, and Bayley’s at 2 years, Mullen’s at 3 years, and Weschler’s at 4 and 5

years were modeled with these methods as well.

3.4.3 Random Forests and Conditional Random Forests

Bagging (bootstrap aggregation) is an ensemble method that aggregates decision trees gen-

erated from bootstrapped samples as explained in Figure 57. Each of the trees is grown deep

giving each tree low bias but high variability which is reduced when averaged. However there

are no tuning parameters leading to overfitting issues. For a binary outcome, each tree can be

thought of as casting a vote for which category that tree thinks the new observation should

belong. The total number of votes for each category is then divided by the total number of
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trees to produce the predicted probability for a new observation [Kuhn and Johnson, 2016].

These predicted probabilities can then be used to classify the new observation based on a

decision threshold, which can be naively chosen as 0.5. One general downfall to aggregating

trees is the loss of interpretability with a specific downfall for bagged trees being that the

trees are not completely independent of one another. This is due to all of the predictors

being considered at each split for every tree which leads to tree correlation. Tree correlation

may prevent the method from optimally reducing the variance of the predictions since each

tree can have comparable structures.

Figure 57: Flow chart of the general steps bagging, random forests, and conditional random
forests follow.

Random forests (RF) is an improvement from bagged trees and is where the trees are

built on bootstrapped samples (similar to bagged trees) but every time a split is considered, a

random sample of predictors is chosen as split candidates which breaks this tree correlation.

The split then only uses one of the sampled predictors at that decision node. Each tree is

grown to the maximal depth and contributes equally to the final model, thus if the number

of randomly sampled predictors equals the total number of predictors, RF becomes bagging.

Due to the lessening of tree correlation, the number of trees created does not attribute much
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to overfitting [Kuhn and Johnson, 2016]. When predictors are highly correlated, the variable

importance may be overestimated making correlated predictors appear more important than

uncorrelated ones [Strobl et al., 2008] [Boulestix et al., 2012] [Strobl et al., 2009]. The con-

ditional random forests (CRF) and conditional variable importance takes into account these

correlations to reflect the impact of a single variable in predicting the outcome. Thus, CRF

uses an unbiased splitting criteria to avoid such issues. Both of these methods are nonpara-

metric and do not make any assumptions about the data structure. Therefore, these models

may include nonlinear relationships as well as interactions between predictors. While this

is a great advantage, we are also losing the ability to peek inside of the model which would

allow us to know the relationships within. A tuning parameter for both RF and CRF is the

number of predictors to be randomly chosen at each decision node. It is important to tune

this parameter since a small number of predictors chosen at each split can lead to choosing

variables that are suboptimal and can lead to a loss of information [Boulestix et al., 2012]

[Strobl et al., 2008]. In any situation, we would like to have informative predictors used to

get the best predictions.

In terms of the variable importance (VIMP) for RF and CRF, the calculations are fairly

simple. Since each tree in these methods is grown from a bootstrap sample, there are some

subjects or cases that are left out, usually called out-of-bag (OOB). These samples may be

used to assess the importance of a predictor in terms of how much a metric changes after the

values for a certain predictor are shuffled. For example, in the regression setting, the mean

squared error (MSE) is often used in some manner to assess a model. For RF, the MSE per

tree is calculated using the OOB data, then each variable’s values are shuffled one at a time

and the MSE recalculated. The difference in the new MSE and the original MSE is found

for each variable. Then, these differences per tree are averaged to get the whole forest’s

VIMP. In the classification case, the mean decrease in accuracy may be applied instead of

the mean percent increase of MSE. These are often referred to as the permutation based

VIMP metric within RF and it’s the only type we will consider for the following analyses.
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For the conditional random forest, one may consider the use of conditional VIMP in which

a conditioning grid is create and the values of a certain variables are only permuted within

the particular groups or values of the conditioning grid which depends on which variables

the certain predictor is correlated.

Thus, two models (RF and CRF) with respectively the permutation based VIMP and the

conditional VIMP are used for the incremental heights, heights, HAZ, and stunting indicator

at each time point independently and with the predictions from the previous time point

added to the current set of predictors. Additionally, the height, HAZ, Bayley’s, Mullen’s,

and Weschler’s were assessed with these methods. The VIMP measures were used to select

variables with the cutoff being zero since a VIMP of zero or below indicates the variable is

not helpful to the prediction of the outcome.

3.4.4 Deep Learning

In addition to more traditional methods such as penalized models and other but simpler

machine learning techniques like RF, deep learning models were explored. Deep learning

is a subfield of machine learning which emphasizes learning successive layers of information

with increasingly meaningful representations of the data. The depth of the model refers

to the number of layers used. Usually, these layers are neural networks which mimic the

learning patterns of humans’ natural biological neural networks. These networks consist of

hidden units or neurons which are linear combinations of the original predictors which are

not constrained. Thus there are weights per unit of the neural network, which in the deep

learning setting, one could have many weights per each layer of the model. To optimize

these weights, which are the parameters of the model, a backpropegation strategy is imple-

mented where the weights are initially assigned to be random values. Thus, the loss score

is very high but reduces with every case given to the model such that the weights are ad-

justed in the correct direction. Eventually, after many iterations over thousands of examples
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(cases), the algorithm will output a model which optimizes the loss function by the weights

[Chollet and Allaire, 2018].

During the explorations of these models, poor performance was found of the predictions

for the testing set. This poor performance would lead to either the under and/or over

estimates of children’s growth and development which makes it difficult to say which inter-

ventions could be effectively applied. The other difficulty that arises with the deep learning

aspect is the lack of samples in terms of the number of subjects for a regression or classi-

fication setting, at most 700 subjects with numerous missing values, and in terms of time

points for the time series setting, at most 25 time points of heights with again several missing

values. Having these low number of subjects or time points does not allow the method to

effectively learn about the trends within this data in either type of setting. Therefore, the

results from these types of models are not presented nor further examined.
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3.5 Results for Models Predicting the Next Time Point’s Out-

comes

Within 3.5, the PROVIDE data was explored per time point taking each set of predictors

available at a particular time point and predicting the next incremental change in height,

height, HAZ, and whether or not the subject is stunted (HAZ < −2). For example, all

the available covariates at week 6 were used to predict the change in height from week 6 to

week 10, the height at week 10, HAZ at week 10, and stunting at week 10. Therefore, the

largest amount of data is included at enrollment due to dropouts and missed clinic visits

or measurements as time goes on in which the sample size per time point decreases. Due

to this diminishing set of subjects, predictors were scanned before analysis to make sure an

ample amount of subjects were included to select predictors and explore relationships while

other subsets of data were created and separately analyzed such as the metabolomics from

the stool samples at week 40. In addition to the data being explored independently per time

point, the previous model’s predictions were used as a new covariate for the next time point

in the hopes that previous information would improve the next model’s prediction. These

results are summarized and then used to build the models in 3.6.

In general, all four methods’ (lasso, elastic net, RF, and CRF) selection of variables

overlapped fairly well, often with the RF or CRF selecting more predictors than the penal-

ized linear regressions which often picked less than ten predictors. The correlations for the

outcomes and the predictors per time point also corroborated with these models’ results,

although many more predictors had significant correlations (without adjusting for multiple

comparisons since they were pairwise complete correlations) than what were selected by the

different methods of models. However, these initial correlations gave way to the ideas of the

types of predictors which may be selected from these other analyses. A non-exhaustive list

of covariates over all the various time points over two years is included in Table 7. These
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variables were then used in 3.6 for the creation of models predicting outcomes at two years

up to five years.

Due to the lack of sample size for particular subsets of predictors, the metabolomics and

TAC data from stool samples (which included information about which viruses were present)

were analyzed in this first initial analysis, but were unable to be included for the models in

3.6. The TAC data did not choose many predictors throughout all four methods. However,

we can compare the results from the metabolomics from blood samples at week 40 with

Moreau et al. who used CRF for these plasma metabolomics plus a set at 36 months but

arbitrarily chose the top 15 variables per outcome [Moreau et al., 2019] (coauthor). This

article considered HAZ at 4 years, the change in HAZ from enrollment to 4 years, and

Weschler’s at 4 years while only height, HAZ, and stunting at the next time point and the

incremental change in height were considered by the analyses in this research with this set

of predictors. However, there is some overlap between these two analyses. In particular,

the phosphatidylcholine (PC) species with either an ester (aa) or ether (ae) bond for the

fatty acid chains that overlap between the HAZ at 4 year or change in HAZ from enrollment

to 4 years outcomes (article) and next time point HAZ or next time point’s incremental

change in height (this research) are: PC aa C32:3, PC ae C34:2, PC aa C32:3, PC ae C34:1,

and PC aa C36:2. The numbers in these metabolites indicate the total carbon chain length

(x) followed by the number of double bonds (y) in the fatty acids (x:y). There are also

a few sphingomyelin (SM) metabolites, specifically those that are hydroxy-sphingomyelins

(SM-OH) which corroborate between the analyses such as SM-OH C14:1, SM-OH C22:1,

and Total SM-OH which is the sum of these SM-OH metabolites. Lastly, acyclcarnitines

chosen between the two include C6 (C4:1-DC), C12, and C14:1-OH. Therefore, there is a

fair amount of overlap and one can say that these metabolites not only have a short term

(12 weeks) prediction ability but a long term (3.25 years) ability.

In terms of performance, the R-squared values were calculated per time point while

predicting the next time point’s outcomes as in Figure 58. One must note that the R-
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Table 7: A Short List of Selected Covariates from Lasso, Elastic Net, Random Forest, and
Conditional Random Forest over Two Years of Life Predicting the Next Time’s Outcome.

Type/Source Variables

Maternal/Paternal

Mother’s Height and Weight
Mother’s age at enrollment, at first marriage, and at first
pregnancy
Mother’s number of living children, marriages, and number
of stillborns, death, abortions, etc.
Vitamin supplement types taken by mother during pregnancy
Father’s and mother’s education levels and occupations
MFGE8 and EGF from mother’s breast milk

Week 6

Number of cumulative episodes of diarrhea
Number of exclusive breastfeeding days
LM ratio (lactulose to mannitol)
Calprotectin
Neopterin
Alpha lipopolysaccharide (LPS)
Retinol binding protein (RBP)
Myeloperoxidase (MPO)
Ferritin
Vitamin D
Activin A
Reg 1B
sCD14
CRP
Cytokines from plasma: IL-1β, IL-4, IL-6, IL-10, TNF-α, etc.
Filamentous hemagglutinin, a virulence factor
Vaccine responses for measles, pertussis, diptheria, tetanus,
etc.

Environmental/Household

Income and Expenditure (in Taka)
Principal flooring, roofing, and/or wall material
Number of rooms in home
Number of household members
Number of people usually sleeping in home
Type of fuel used for cooking
Food availability, is there usually a deficit?
If the toilet facility shared with other households
Water drinking source
Do they own a clock?
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squared values tend to be higher for predicting outcomes of time points that are closer to

when the variables were collected especially since only the data at a certain time point is

being used to predict the next time point’s outcomes. For instance, predicting week 18

outcomes using week 17 data would be much easier than predicting week 39 outcomes from

week 24 data. Additionally, the breast milk metabolomics subset, clinical stool TAC subset,

and viral shedding stool TAC subset at week 6 were also explored, but the R-squared values

were all essentially zero for each outcome of incremental change in height from week 6 to

week 10, height at week 10, HAZ at week 10, and stunted height at week 10 when lasso and

elastic net were used. Similarly for the TAC data from clinical stools and viral shedding

stools taken at week 10, the R-squared values were basically zero for predicting the next

time’s outcomes at week 12. The subset of stool and blood metabolomics sampled at week

40 gave zero R-squared values except for the outcome of stunted height with lasso giving

3.17% and elastic net giving 2.43%. The subset for the Family Care Indicator (FCI) survey

at week 78 also had zero R-squared values for the outcomes. However for RF and CRF

methods, the R-squared values are as in Table 8. This shows some decent prediction power

especially for the RF method. In terms of the additional exploration using the previous

time’s predictions as a variable, Figure 59 shows very similar R-squared values in which not

much improvement is given, if any, when the predictions are included. However, for some

of the subsets, there are great improvements when the predictions are included but since

they cannot be included in 3.6, the specifics are not discussed. In general for both of these

analyses, RF has the highest R-squared values, most likely due to this method selecting more

predictors than the other methods. For the outcomes, incremental changes in height have

the worst R-squared values over all the time points. This is most likely due to the fact that

these values were not normalized, especially since the time points are not regularly spaced.
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Table 8: R-squared percentage values for subsets of data at weeks 6, 10, 40, and 78 for
the outcomes at the next time point for random forest (RF) and conditional random forest
(CRF). Note: Inc. Ch. = Incremental Change in Height

Subset Method Inc. Ch. Height HAZ Stunted

Week 6 Breast Milk Metabolomics
RF 79.31 76.62 77.00 84.53
CRF 47.21 41.92 40.36 23.29

Week 6 Clinical Stool TAC
RF 18.99 28.62 54.49 74.58
CRF 6.61 4.29 3.32 3.77

Week 6 Viral Shedding Stool TAC
RF 70.42 52.41 51.55 73.14
CRF 8.08 10.22 18.54 6.79

Week 10 Clinical Stool TAC
RF 67.93 77.94 79.11 79.55
CRF 7.23 10.43 20.66 3.53

Week 10 Viral Shedding Stool TAC
RF 56.78 64.13 58.47 64.65
CRF 10.90 4.66 5.42 6.15

Week 40 Blood Metabolomics
RF 81.90 78.55 79.57 86.57
CRF 48.80 45.01 49.36 45.89

Week 40 Stool Metabolomics
RF 78.31 77.98 78.41 86.57
CRF 40.66 43.47 45.13 41.16

Week 78 FCI
RF 51.46 36.81 51.39 19.06
CRF 23.95 26.50 25.79 20.45
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Figure 58: The R-squared values over time for predicting the next time point’s outcome
(incremental change in height, height, HAZ, and stunted height) for lasso, ridge, random
forest, and conditional random forest.

3.6 Results for Models Predicting Outcomes at Two Plus Years

The results from selecting covariates in 3.5 were used to create models with a updating

prediction for the outcomes which are the two year responses of height, HAZ, and Bayley’s

scores along with Mullen’s at three years and Weschler’s at four and five years. In these

models, the predictors at enrollment are used to predict the two year and beyond outcomes

using lasso, elastic net, RF variable importance (VIMP), and CRF with conditional VIMP.
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Figure 59: The R-squared values over time for predicting the next time point’s outcome
(incremental change in height, height, HAZ, and stunted height) with the previous time
point’s predictions as a new variable for lasso, ridge, random forest, and conditional random
forest.

Predictors are selected from the enrollment time point and added to the predictors at week

6. This combined list is then used to again predict the outcomes at two years and beyond.

Then variables are selected to be added to week 10 variables. The process keeps adding

selected predictors and updating the model in this manner up to week 91. Thus, one is able

to track how much the additional predictors add to the prediction of the outcomes by the

percent variation explained, the R-squared. Specifically, when variable selection is used, one
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can see which variables are selected when and if some tend to lose their informativeness as

time goes on. When VIMP is used, one can rank the covariates in terms of importance which

also tells about a variable’s informativeness towards the outcomes over time.

For the change in R-squared over time, we can reference each method for each outcome

of Bayley’s at year two, Mullen’s at year three, Weschler’s at years four and five, and height

and HAZ at year two in Figures 60, 61, 62, and 63 respectively. Collectively, lasso and

elastic net perform poorly even as time goes on with the best R-squared values being for

the height at two years outcome. The RF and CRF do much better than the penalized

regressions at all time points and for all outcomes. One reason the RF method is uniformly

better in terms of the R-squared values is due to the number of predictors included and

that are deemed important in each model. Thus, the R-squared is over inflated due to the

number of predictors included at each time and thus for each model. The CRF does select

more predictors than the penalized regressions, however this method at least considers the

correlation between predictors and is thus the method most trustworthy. In general, it seems

as though height at two years is predicted the best followed by HAZ at two years. For the

developmental outcomes, the R-squared values are similar across the time points and do not

show much, if any, improvement over time unlike that of height at two years. Practically, a

value for R-squared around 40% is fairly decent while ones near 80% are great as is the case

for height at two years and the RF R-squareds.

As for the rank of VIMP of predictors over time for Bayley’s scores, we can view Figures

64, 65, 66, and 67. All of the plots show different types of variables such as maternal,

household/environmental, and biomarkers over the two year time frame with their rank by

the conditional VIMP being plotted. For each of the Bayley’s scores except for motor, with

the maternal variables, MFGE 8 or EGF from the breast milk has a VIMP rank over time

that stays fairly high or improves leading to the interpretation that this particular predictor

is not only important for predicting these outcomes, but stays important as time increases

even though additional variables are added each time. Some indicators for if a certain
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Figure 60: The change in R-squared values over time for predicting each score of Bayley’s
at two years of age for lasso, ridge, random forest, and conditional random forest.

vitamin supplement was taken before birth by the mother were important throughout the

time frame, especially for the folic acid supplement in the top left panel of Figure 66. The

indicator for household food deficit stays important under the household variables panel (top

right) for the cognitive, language, and motor scores of Bayley’s. It is very interesting to see

some similarities between the types of variables in the Bayley’s outcomes especially how

important the maternal aspects can be and stay important over time. Figure 68 shows the

final time point at week 91 and the conditional VIMP for the selected variables (those with

a positive conditional VIMP) for each of the Bayley’s scores. We can see that in addition

to some of the variables plotted in Figures 64, 65, 66, and 67, predictors dealing with the

number of episodes of diarrhea, the number of exclusive breastfeeding days, and height at
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Figure 61: The change in R-squared values over time for predicting each score of Mullen’s
at three years of age for lasso, ridge, random forest, and conditional random forest.
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Figure 62: The change in R-squared values over time for predicting Weschler’s score at 4
years (left) and 5 years (right) for lasso, ridge, random forest, and conditional random forest.

Figure 63: The change in R-squared values over time for predicting height (left) and HAZ
(right) at two years of age for lasso, ridge, random forest, and conditional random forest.

given times are also selected and kept until the end. Cognitive scores seem to be affected

more by the number of episodes of diarrhea than the other scores while cognitive and social

emotional scores deal more with the number of exclusive breastfeeding days than the other
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two. For the diarrhea episodes and exclusive breastfeeding predictors, the language score is

not effected by those types of variables.

Figure 64: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Bayley’s cognitive score.

Similarly, some predictors of height at two years over time is in Figure 69. For the

height outcome, we can see that variables’ VIMP rank such as for maternal weight decreases

over time. This may be due to the added information about the child’s own height as time

increases thus overriding the mother’s influence in combination with the new information.

One can also see from this figure that mother’s education is no longer selected around week

52 or 53 and thus loses it’s importance. This is possibly due to the addition of not only

the children’s heights, but the vaccine responses as seen in the lower righthand panel of
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Figure 65: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Bayley’s language score.
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Figure 66: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Bayley’s motor score.
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Figure 67: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Bayley’s social emo-
tional score.
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Figure 68: Bayley’s positive conditional VIMP per predicting each score at two years: Cogni-
tive (top left), Language (top right), Motor (bottom left), Social Emotional (bottom right).
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Figure 69. Similar to the Bayley’s scores, the indicator for household food deficit is also

deemed important over time. From Figure 70 the top five predictors are of course the latest

heights with the height at week 91 being clearly the most important variable. However,

other variables are still selected in terms of having a positive conditional VIMP as seen more

clearly in the right panel of Figure 70, but for the predictors with conditional VIMP values

near zero, further analyses would need to be completed to state whether these variables are

truly important.

Figure 69: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting height at two years of
age.
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Figure 70: Predicting height at two years, the conditional VIMP at week 91 for predictors
with positive conditional VIMP full scale (left) and the zoomed in version of the same graph
(right).

Overall for height and these developmental outcomes, it’s safe to say from the results

of these analyses that the mother’s effect is not only there, but adamant and thus confirms

Donowitz et al. [Donowitz et al., 2018] (coauthor). As for other types of predictors, some

vaccine responses seem to be predictive of development and growth including the measles

vaccine response as shown for Bayley’s language and motor scores in the bottom right panels

of Figures 65 and 66 and for height at two years from the bottom right panel of Figure 69.

Cytokines and other biomarkers tend to remain important for predicting Bayley’s and height

indicating that they are important in both types of child growth and development. Multiple

other predictors measured from the infants are deemed important over time, however for

height, more of the selected predictors (ones with positive conditional VIMP) are height

variables from previous weeks as would be expected. Even though this outcome includes

multiple previous height variables, we can see from the plots in Figure 69 that other variables

are still considered important within the model for predicting the height at two years. Since
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the conditional VIMP is used, there is no need to have hesitation about the correlation

between any of these predictors.

For other outcomes such as Mullen’s, Weschler’s, and HAZ similar figures are included in

the Appendix. The results for HAZ at two years are shown in Figures A and B. The maternal

variables in this case seem to drop out before the last time point except for the number of

stillborns, deaths, abortions, MC and DNRs the mother has had. Only the number of rooms

in the home was selected and stayed through to week 91 from the household/environmental

type predictors while several biomarkers and other such measures from the infants were

included in the week 91 model. As for vaccine responses, only the pertussis vaccine response

and pertactin were kept. Several of the previous HAZ values were also included while only

one time point for each of the number of exclusive breastfeeding days and the number of

episodes of diarrhea were retained until week 91.

Figures C, D, E, F, and G in the Appendix show some of the variables selected and

their rank by the conditional VIMP over time for the Mullen’s scores. The predictors with

positive conditional VIMP at week 91 are shown in Figure H. From all these figures, one

can see which variables were selected throughout and at the last time point of week 91. For

Mullen’s gross motor response, no maternal predictors were selected and kept throughout the

entire time frame with few being selected for all other outcomes of Mullen’s: 1 for expressive

language, 6 for receptive language, 3 for fine motor, and 4 for visual reception. Similarly,

very few household/environmental predictors were selected with the highest number being

only two for receptive language. The main types of variables chosen are previous heights,

episodes of diarrhea, or biomarkers and other measures from the infants. Thus, the types of

variables selected here are quite different from those selected within the Bayley’s outcomes

which is not quite to be expected, although they are different tests and scales which cannot

be directly compared.

Finally, Weschler’s positive conditional VIMP at week 91 are shown in Figure K while

some variables over time are shown in Figures I and J. With both the 4 and 5 year outcomes,
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there is a good mix of variables selected and kept to the end of week 91. Unfortunately, there

is not much overlap in the exact predictors that were selected between the two time points

most likely due to the fact that more subjects were included with the five year outcome

of Weschler’s due to the switch from Mullen’s to Weschler’s at four years. However, those

that do overlap include: the female indicator, CRP week 18, number of rooms in the home,

the father’s occupation, LPS week 18, income, expenditure, and a few previous heights

and episodes of diarrhea. However, in terms of comparison to Bayley’s, the results from

Weschler’s are more similar than Mullen’s, especially due to the types of variables showing

up including maternal and household predictors.
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4 Conclusions and Future Research

4.1 Conclusions

In general, the ideas behind variable importance (VIMP) encompass many situations and

numerous different calculations which can be model specific. Throughout this research, the

cases of classification for NICU data and regression for the PROVIDE data were explored

for creating VIMP confidence intervals and a cutoff value which can be used to select vari-

ables. Logistic regression versus random forest (RF) were applied for the NICU data in

which the absolute value of the test statistic from logistic regression as the VIMP was much

more variable, especially in the rankings of the predictors, than for either VIMP measure

in RF. However, the Gini index in RF is worse at correctly ranking the variables than the

mean decrease in accuracy, both of which may only be calculated in the classification setting

for RF. For finding a cutoff for the NICU or PROVIDE data, the maximum of the means

and the maximum of the medians were similar for all three VIMP measures (mean decrease

in accuracy, Gini index, and absolute value of the test statistic), however there is not one

specific cutoff method which led to a consensus between VIMP measures. In the regression

setting with the PROVIDE data, only RF was assessed with the mean percent increase in

MSE VIMP where the rankings were very difficult to get correct due to the data’s complex

structure. To find the cutoff values for selecting predictors using VIMP, conditional random

forest (CRF) with two VIMP measures and regular RF with the mean percent increase in

MSE were assessed in which the maximum of the means led to the best cutoff for the PRO-

VIDE data. In both classification and regression, the permutation based VIMP measures

for RF, their standard deviations, and ranks stabilize fairly quickly although if one wants to

ensure correct rankings, the number of trees needs to be increased until the VIMP measures

stabilize, which depending on the data may be fairly large. In terms of computation time,

creating a RF with a large number of trees takes about as long as implementing one of the
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three procedures from Ishwaran and Lu [Ishwaran and Lu, 2018] or our per tree bootstrap-

ping method, but the timing aspect also depends on the size of the data set for the number of

observations and the number of predictors. Thus, if one is mainly interested in predictions,

training a RF model and using the subsampling, delete-d jackknife, double bootstrapping, or

per tree VIMP bootstrapping methods may be of interest to give confidence intervals for that

particularly sized forest. If stable rankings are of interest for the predictors, then creating a

large forest and plotting the mean and standard deviation as in 2.4 would be preferable.

For the theoretical aspects of the linear regression’s estimated coefficients as the VIMP,

higher correlations between predictors adds to the difficulty of obtaining the correct impor-

tant variable(s). As is the case in most statistical topics, increasing the sample size improves

the probability of obtaining the correct important variable or the correct order. However,

there are cases where if the correlation is so close to one that the VIMP measures cannot

distinguish between the predictors. Also, there is a balance between the sample size and the

number of predictors in that if the number of predictors is growing faster than the sample

size, then the probability of obtaining the correct order or important variable does not go to

one. All of this indicates that a sample size larger than the number of predictors, and even

in consideration of large correlations, should be used to obtain correct rankings and good

estimates of VIMP measures, especially within the linear regression setting.

With the PROVIDE study, many covariates were selected in various stages using four

different methods including penalized regressions (lasso and elastic net) and RF and CRF

with respective VIMP calculations. These models were computed per time point predicting

the next time point’s incremental change in height, height, height-for-age z-score (HAZ),

and stunted growth. This analysis gave an ideal about which predictors could be useful in

the growth process over time. After these methods were compared, the list of covariates

selected was then used in an updating model where predictions were made for height, HAZ,

and Bayley’s at two years, Mullen’s at three years, and Weschler’s at four and five years

while covariates were selected at each time and added to the next time’s predictor list. The
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R-squared values from these updating models showed that height followed by HAZ were

easiest to explain. The developmental tests all had similar values and trends across the time

points and models. Lasso and elastic net performed uniformly poorly for all outcomes except

height at two years.

In terms of predictors chosen, maternal factors are still considered important over the two

years for predicting various developmental and growth outcomes. Additionally, household

and environmental aspects such as having a household food deficit or having an open drain

near the home are kept from enrollment over the entire time frame and deemed important

for predicting a particular outcome. In some cases, the variables are not only considered

important, but their importance may grow over the time frame. For the height at two years,

the main types of predictors chosen naturally have to do with the previous heights, which are

expected to be of high importance, however there are multiple other variable types chosen

such as cytokines from the infants’ plasma samples. In general, there is a consensus be-

tween all outcomes on the fact that all types of variables measured are important, however

the specific predictors chosen may vary especially when comparing Mullen’s to Bayley’s or

Weschler’s outcomes. Thus, there is a discrepancy between Mullen’s and the other devel-

opmental tests possibly showing how these three different tests measure separate aspects of

the children’s development.
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4.2 Future Research

There is a great deal of information that has risen from this research, yet there are still nu-

merous directions and questions left unanswered. Specifically, finding new ways to calculate

confidence intervals for measures of VIMP or VIMP measures which are not model specific

should be assessed including the change in metrics after a random shuffle of a predictor’s

values.

Within the PROVIDE growth modeling setting, a framework for a proposed model has

been outlined but not explored or applied further. Thus, much work in this direction can

be completed. Instead of using penalized regressions and random forests to select variables,

screening methods could be applied to the large set of variables for PROVIDE along with

implementing various imputation techniques in order to increase the sample size for certain

predictors which have numerous missing values. There are various additional methods for

selecting and modeling these types of outcomes in which multiple different paths may be

taken to go forward in this research. In addition to these future paths, the EEG data can

be analyzed to pick up on patterns and signals for the individuals these were measured

on and in relation to the neurocognitive tests such as Bayley’s, Mullen’s, and Weschler’s.

The main goal for relating the EEGs to developmental tests would be that these EEGs are

culturally independent while the tests depend heavily on the culture of the individuals taking

it and thus cannot be compared across countries. Metagenomic and metabolomic data from

other infants’ samples are also available which may allow for information about how the gut

bacteria affects the outcomes of interest. All in all, there is still a multitude of information

that can be gathered from this PROVIDE study cohort, especially since it is still ongoing.
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Appendix

Supplemental Figures: HAZ at Two Year Response

Figure A: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting HAZ at two years of
age.
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Figure B: Predicting HAZ at two years, the conditional VIMP at week 91 for predictors with
positive conditional VIMP.
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Supplemental Figures: Mullen’s Responses

Figure C: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Mullen’s Expressive
Language at three years of age.
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Figure D: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Mullen’s Receptive
Language at three years of age.
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Figure E: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Mullen’s Gross Motor
at three years of age.
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Figure F: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Mullen’s Fine Motor
at three years of age.
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Figure G: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Mullen’s Visual Recep-
tion at three years of age.
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Figure H: Predicting Mullen’s at three years, the conditional VIMP at week 91 for predictors
with positive conditional VIMP.
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Supplemental Figures: Weschler’s Responses

Figure I: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Weschler’s at four
years of age.
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Figure J: Maternal factors’ (top left), household variables’ (top right), and other infant’s
measures’ (bottom two) conditional VIMP rank over time predicting Weschler’s at five years
of age.
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Figure K: Predicting Weschler’s at four and five years, the conditional VIMP at week 91 for
predictors with positive conditional VIMP.
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