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Abstract

We introduce relational SEM, an adaptation of structural equation modeling to re-
lational databases. Relational SEM is a superset of the mixed model and multilevel
SEM. In addition, we introduce Rampart, a new computational strategy for frequently
encountered relational SEM models with all continuous indicators. Rampart is in-
spired by the fact that the multivariate normal density is transparent to orthogonal
rotation. Well suited to big data, Rampart becomes more effective as the size of
the data set increases. When data are strictly nested then there are usually fewer
variables in the upper level connected to many more variables in the lower levels. A
regression from teacher skill to student performance has this characteristic. In such a
model, under typical conditions, a rotation can be applied to eliminate all but one of
the links from teacher to student with a corresponding rotation applied to the obser-
vations. This transformation leaves the likelihood function unchanged, but offers a
major benefit: dramatically increased independence in the model implied covariance
matrix. Rampart requires strictly nested structure and identical sub-models. Ram-
part can be applied locally to the part of a model that meets these criteria. Rampart
is implemented in OpenMx. OpenMx is free and open software that runs on all major
operating systems.
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Introduction

Many non-statisticians have an intuitive notion of variability of a indicator and
association between two indicators. We cannot entertain causal theories without these
notions. When an infant learns that crying will cause her parents to offer her water,
food, and a diaper change, these statistical engines are probably at work. Not all
processes are best described by a Gaussian distribution. However, the non-Gaussian
part is often confined to the outer vertices of a casual graph while the central part of
the graph remains Gaussian. The Gaussian distribution is of central importance in

statistics and causal reasoning (Pearl, 2000; Voelkle & Oud, 2013).

Gaussian Models

Let parameter vector @ = {u, X} with g as a K dimensional mean vector (1st
moment) and X as a K x K covariance matrix (2nd moment). For data y and with

some regularity assumptions, the Gaussian log density can be written as,

((y16) = 3 [~ (K log(2m) + log([2)] — 5 (6~ 9 = (- w)] . (1)

i

It is no overstatement to say that this model has a rich history in the annals of

statistics.

Similar to the way that some countries that were slow to implement a wired phone
system have skipped directly to wireless phones, we are now at a stage of Gaussian
model development where great swaths of less productive detours can be skipped. The
history of the Gaussian model has grown sprawling and convoluted. Diverse special
purpose models once conceived independently can now be re-expressed as variations
of a general model. We introduce the general model with a judicious review of the

essential building blocks.
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Figure 1. Data are shown as points with the least squared residual regression line.

Table 1
Ezxample data for linear regression.

predictor response

0.12  —0.68
1.73 0.58
1.25 0.96
0.51 0.21
~1.13  —1.54
—0.93  —0.68
0.19  —0.70
—0.22 0.21
2.70 1.46
0.77 0.55
o= 0.5 0.04
o= 1.18 0.92

Linear Regression

In the 1870s, Galton and colleagues devised linear regression (Stanton, 2001).
Linear regression answers questions of the form, given n independent measurements

of predictor x and response y, what approximation to

y=oa+fx (2)
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minimizes the squared residual.! The solution is

~ Cov(z,y)
b= Var(x) (3)
a=7T—jp. (4)

For example, given data in Table 1 (n = 10),

0.96
B =35 = 069 (5)
a =0.04+ (—0.5)8 = —0.31. (6)

The data and regression line are plotted in Figure 1.

Developed in the olden days before computers, regression was originally framed
in terms of squared residuals because computational simplicity was the overriding
concern. The modern day statistical engine, Bayes’ Theorem (Equation 16), had
been disseminated in 1763 but would not blossom until Fisher conceived the method
of maximum likelihood in the 1920s. Fortuitously, if we specify a Gaussian model
for the data and assume that the residual is independently, identically, and normally
distributed then the least squared residual criterion identifies the the same estimates

as would be found using Fisher’s modern maximum likelihood approach.

Analysis of Variance (ANOVA)

Analysis of variance is concerned with detection of group differences. The sim-
plest version was formally introduced by Fisher in the 1920s. Like linear regression,
ANOVA was originally framed in terms of squared differences instead of in terms of

Bayes” Theorem. Suppose we want to determine if two groups are different on some

"'We use the term residual instead of error because the connotations of error are not always
appropriate.
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Table 2

Example data for one-way analysis of variance with groups 1 and 2 in columns.

1 2

1.18 —0.52

0.32 0.86

0.88 1.29

1.46 1.13

—-0.31 —0.30

—0.91 1.37

0.42 —-0.15

0.14 1.89

—-0.17  0.69

—0.06 —0.32

o= 0.3 0.6

o= 0.72 0.85

measure y. An F' statistic can be obtained with,

2

S Shetween = Z(g] - _)2 (7)
j=1
2 ny
SSwithin = »_ Y (yij — 7;)° (8)
j=1i=1
SSbetween/l
F= . 9
SS’within/<N - 2) ( )

For example, given the data in Table 2,

SSbetween =0.44 (10)

SSuitnin = 11.22 (11)
0.44

F=—=0."71. 12

0.62 (12)

While convenient for hand calculation, the method framed in terms of squared
differences obscures the relationship between ANOVA and linear regression. The two

models are almost the same (compare with Equation 2) except that here z is a binary
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indicator of group membership,

y=a+ fx. (13)

If we code group 2 as x = 1 then
a=1y =03 (14)
B=1y1 —y2=0.3 (15)

The t value for the null hypothesis that g = 0 is not such a simple calculation, but it
can be obtained with R to cross-check the magnitude of v F' = 0.84

summary (lm(y~group, aovData))$coefficients['group2','t value']

## [1] 0.84

The Mixed Model

Linear regression and ANOVA models introduce two different kinds of coeffi-
cients. In linear regression (Equation 2), 5 helps predict every observation whereas
in ANOVA (Equation 13),  only helps predict a subset of observations. This is an
important distinction. Historically, coefficients that help predict all observations are
called fixed effects whereas the other type of coefficient has been called a random
effect. These are an unfortunate terminology. In the statistical literature, there are
at least five definitions of these phrases, all of which differ from each other (Gelman,
2005). Moreover, in computer science, the term random is usually associated with
draws from a uniform random number generator, not synonymous with stochastic
that does not suppose a particular distribution. Here we follow Gelman (2005) and

use the terms constant and varying. For example, the model y;; = a; + Bz;; has



MULTILEVEL SEM 6

varying intercepts «; and a constant slope 5. Models with both kinds of coefficients,
constant and varying, are called mized models.

As foreshadowed, the squared residuals or squared differences approach to model
estimation imposes inconvenient restrictions. To perform ANOVA using squared dif-
ferences, all combinations of conditions must have an equal number of samples and
there is no simple way to cope with missing data. There are some ways to finesse
the problem (e.g., Henderson, 1953), but a much more robust solution is to embrace

Bayes’ Theorem. Let 8 be a vector of model parameters. Bayes’” Theorem is,

Pr(data|@) Pr(0)
Pr(0|data) = 1
(8ldata) Pr(data) (16)
Since Pr(data) does not depend on the parameters 6, we can omit it, leaving
Pr(0|data) x Pr(data|@) Pr(0). (17)

This equation is of such paramount importance that special names are assigned to
each term. The density Pr(0) is the prior, Pr(data|@) is the likelihood, and Pr(0|data)
is the posterior.? For even modestly complex models, the posterior Pr(6|data) can be
impractical to understand directly. To explore and summarize the posterior, at least
two popular approaches are available. One approach is to sample from the poste-
rior, typically using some kind of Markov-Chain Monte Carlo (MCMC) method (e.g.,
Plummer, 2013; Stan Development Team, 2014). From these samples, mean point
estimates and their marginal distributions can be obtained. The second approach is
to treat the likelihood or posterior as an arbitrary function and find its mode. This
method was introduced by Fisher in the 1920s under the name mazimum likelthood

(Efron, 1998). Some controversy surrounds the prior Pr(0) (e.g., Gelman, 2008),

2Likelihood is not synonymous with probability. Consider P(A|B), a function of both A and B.
For fixed B, P(A|B) is the probability of A conditional on B. For fixed A, P(A|B) is the likelihood
of B (MacKay, 2003, p. 28).
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but we have no qualms about it and consider mazimum likelihood synonymous with
mazrimum posterior.

Different ways of summarizing the posterior have strengths and weaknesses. The
MCMC approach can obtain posterior means that are more stable than posterior
modes when the posterior has multiple peaks of nearly equal height. However, unre-
solved questions remain about how to infer MCMC convergence (Gelman & Shirley,
2011). The present article focuses on the mode instead of mean.

A desire for models with arbitrary combinations of constant and varying coef-
ficients without onerous restrictions on data structure culminated in a maximum
likelihood estimation method for the mixed model (Hartley & Rao, 1967). For a col-
umn vector of observations Y, covariates X associated with constant coefficients 3,
covariates Z associated with varying coefficients u, and a column vector of residuals

e, the mixed model can be written as,

Y= X3 +Zu+te. (18)
constant varying

To better appreciate the flexibility of this model, we suspend our presentation
here without discussion of the distributional assumptions. A mixed model is often
specified as a regression formula. A weakness of regression formulae are that they only
specify the model for the first moment (@ of Equation 1). Specification of the second
moment (3 of Equation 1) is assumed as a well known default. As an alternative,

both moments of a model can be specified simultaneously using a path diagram.

Path Diagrams

In the 1970s, two different Gaussian model specification languages emerged, LIS-
REL (Joreskog & Van Thillo, 1972) and COSAN (McDonald, 1978). In the process of
reconciling these two different specifications, the Reticular Action Model (RAM) was

distilled (McArdle, 2005; McArdle & McDonald, 1984). Although LISREL, COSAN,
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Figure 2. Equation 2 drawn as a RAM path diagram. The triangle acts like an
observed variable that is always 1. The square and circle denote observed and latent
variables, respectively. The black square on the path from the triangle to the circle is
a definition variable. Single-headed arrows are regressions and double-headed arrows
are variances. The diagram takes up more space on the page compared to Equation 2,
but it also makes the covariance model explicit. The variance for z is not estimated.
05 is regarded as the residual variance.

and RAM offer equivalent expressive power, the RAM model is the most parsimo-
nious of the three. Moreover, there is a one-to-one correspondence between the RAM
model and intuitive path diagrams. In contrast to regression formulae, RAM path

diagrams incorporate specification of both the first and second moments.

The RAM model consists of 4 matrices, traditionally called A (asymmetric), S
(symmetric), F' (filter), and M (mean). The RAM matrices are related to the model’s

Gaussian distribution by,

p=FI-A)"'M (19)

S=FI-A7'SI-A"TF" (20)

These equations may appear daunting, but note that when A is zero and F' is the
identity matrix then p = M and ¥ = S. So what is the purpose of A and F7?
The A matrix comes into play in the specification of regression relationships. Our
linear regression (Equation 2) can be diagrammed as in Figure 2. The multivariate

generalization of Equation 4 is implemented by the products that involve (I — A)~L.
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Table 3

Example data for latent factor model.

x1 x2 x3

—-0.99 -0.79 -0.67

0.05 —248 —0.64

—1.30 —-0.82 —1.06
—-1.49 —-1.76 —1.28

1.14 1.18 1.06

0.96 0.62 0.91

—0.26 —-0.17 —-0.25
—0.83 1.33 —0.00

p= —034 —-0.36 —0.24
o= 1 1.37 0.86

The F matrix is used to filter out variables from the model, permitting these

variables to be latent (not measured). Latent variables were devised by Spearman

in the early 1900s (P. Lovie & A. D. Lovie, 1996). For example, Figure 3 exhibits a

latent factor model with 3 observed indicators. To clarify how this model works, the

corresponding RAM matrices are given along with the model expected covariance X,

o O
o O

] [a)
> >
g g
w [\

(22)

(23)
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03 = 0.45
=
1 A3 = 1.51
EE
T U
s Tt T3 02, = —0.38
Op1 = Y. U
o2, =1.01

Figure 3. A latent factor model given the observed data in Table 3. The latent factor
is drawn with a circle. The regression from ¢ to x; has a fixed loading of 1. Note

that o2, 02,, and 02, are unique factor variances.

S=FI-A)7'SI-A)"F" =

2 2 2 2
O'g ‘|‘le O'g)\xg O'g)\xg
2 22 2 2
O e OgAin + 05 O3 |- (24)
2 2 22 2
0 A3 O Az Oy + 03

There are 6 parameters. Since the observed covariance matrix has 6 non-redundant
entries, this model is just specified. In modeling, latent factors can be treated as if
they represent regular observed scores. If factor scores are desired then various ways
are available to estimate them (e.g., Estabrook & Neale, 2013) as long as identifying
assumptions are made. In summary, latent factors are an ingenious user interface.
Without the RAM parameterization, it would be more difficult to learn how to specify
Equation 24.

A Gaussian parameterization that is well suited for estimation of latent factors
and regressions is often called a structural equation model (SEM; Fan, 1997). We
regard RAM as an SEM parameterization of the Gaussian model. To review, using
RAM we can specify constant coefficients (1st and 2nd moment) in covariance or

regression form with respect to observed variables or latent factors. Originally, RAM
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Jane Joe
Teachers upper
Students |Noah Jacob lower
Sophia Olivia
Liam Mason
Emma Isabella

Figure 4. Students nested within teachers. For example, Noah is Jane’s student and
Jacob is Joe’s student. There is a one-to-many relationship between teachers and
students. A different model would be needed to accommodate students that spent
some proportion of their time with each teacher.

did not provide any special support for varying coefficients. Recently, at least one
proposal to extend RAM path diagrams to arbitrarily varying coefficients has been
advanced (Curran & Bauer, 2007). Circles, traditionally used to represent latent
factors, were re-purposed to represent varying coefficients. This makes sense because
varying coefficients are a more general concept than latent factors. A latent factor is
equivalent to a coefficient varying by individual with constant estimated loadings to
indicators. At this stage, it may be difficult to judge the merit of Curran and Bauer’s
proposal due to the potential diverse uses of varying coefficients. To better focus
our user interface concerns, we introduce a major application of varying coefficients:

multilevel structure.

Multilevel structure

The simple aggregation of observations (Equation 1) is contingent on the assump-
tions that observations are independent and identically distributed. For example,
students within a single classroom may exhibit independent performance. However,
students drawn from two different classrooms may exhibit some classroom specific
effect. Across classrooms, we can no longer consider the individual student as an
independent unit of analysis (Kenny & Judd, 1986).

Data with complex structure are often stored in relational databases. Typically,

data are normalized into first normal form, eliminating redundant or repeating data.
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Primary keys are assigned to uniquely identify entities. Foreign keys refer to primary
keys, allowing the relationships between the data tables to be recovered by the join
of primary and foreign keys (e.g., Maier, 1983). Data are considered multilevel when
an independent unit of analysis must span across two or more normalized database
tables. For example, data on students and teachers would be stored in at least two
tables. These data must be stored in separate normalized tables because there is not
a 1-to-1 relationship between students and teachers. Since there are fewer teachers
than students, teachers are regarded as the upper level and students as the lower level

(see Figure 4).

To describe model structure when there are more than 2 levels we need to in-
troduce two more terms, nested and crossed. Data are nested when each lower level
partition is contained within its upper level. When data are not nested then they
are crossed. Crossed varying coefficients need not be organized in relation to other
varying coefficients. Crossed coefficients may partition observations in arbitrary ways.
For example, suppose a school reassigns some of its students to different classrooms
halfway through the year. If we study the whole year, some students will have single
teachers but some will have two teachers. Students with two teachers involve a crossed
assignment of varying coefficients. The distinction between nested and crossed data

is useful because nested data are easier to process than crossed data.

Modeling multilevel data is one of the major applications of varying coefficients.
Suppose the focus of our analysis is students. We want to estimate a few constant
regression coefficients to learn how student performance depends on socioeconomic
status and some intervention. We would like to specify our relationships in terms of
latent factors because we cannot measure any of the constructs of interest directly.
However, we need to incorporate varying coefficients in the model to properly account
for teacher effects within a school, school effects within a district, and district effects

within a state. If we proceed along these lines, the independent units of analysis are
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the highest level units, perhaps entire states.

The bottleneck in the evaluation of Equation 1 is the matrix inverse of the model
implied covariance matrix 3. Gauss-Jordan matrix inverse requires O(n?) operations.
To fit multilevel models quickly, it is essential to analyze the structure of this matrix
and devise some way to reduce its dimension or complexity. Before we discuss opti-
mization techniques, it will be helpful to sketch out more concretely the structure of
our hypothetical multilevel student model covariance matrix. To keep things simple,

assume the data are nested (not crossed). We introduce the direct sum operator,

B; O
Bl@BQZ 0 B
2
B, 0 --- 0
k 0 B,
OB, -
i=1 : o0
0 --- 0 By

to conveniently construct these matrices. Suppose we build a covariance model S for

a particular student. A classroom of s students will have covariance matrix

T, T
T = . (25)
T, i1 S

That is, each student is independent of other students, T is square, and T} 2 and
T, are rectangular. The quadrants labeled with T' represent classroom or teacher

relationships with each student. This pattern continues as we move up levels. A
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Employee ‘ Dept Dept ‘ Manager
Harry Sales

. Sales George
Sally Finance . .

. Finance Harriet
George Finance .

; Production Charles

Harriet Sales

Employee >i(Dept) Manager

Employee \ Dept \ Manager
Harry Sales George
Sally Finance Harriet
George Sales George
Harriet Finance Harriet

Figure 5. An employee table (a.k.a relation or data frame) and manager table are
given (upper tables). The employee and manager tables are joined by department
(lower table).

school of ¢ classrooms will have covariance matrix

H,, H,
H = (26)
H,, &, T,

and a district of A schools will have covariance matrix

D1,1 D1,2
D= . (27)
D2,1 ?:1 Hi

Without working out the exact shape of such a covariance matrix, it should be clear

that it can be very large and very sparse.

Relational algebra

Before we proceed to other topics, this is a good point to formally describe how
data is combined in multilevel models and the corresponding OpenMx user interface.
Let R and S be tables (or data frames) that contain rows. A row is a single unit

of data like the data for one teacher or one student. Following standard relational
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database theory (e.g., Maier, 1983), the join operator () is defined as,

R x(F) S={rUsAreRAseSAF(rus)}

where F'is a boolean valued function. Without loss of generality, here F' tests whether
primary and foreign keys match. We will omit F' and write (k) where k is the name
of the key. An example join of employee and department tables is given in Figure 5.
The result of the join of two tables can itself be joined against another table allowing

an unlimited number of tables to be joined together.

In OpenMx, joins were facilitated by a modest change to the user interface. Two
parameters, joinKey and joinModel, were added to mxMatrix and mxPath, and
primaryKey was added to mxData. MxMatrix objects are always contained in an
MxModel. We will call this model the MxMatrix’s home model. When a join is
performed, the specified joinModel is joined against the home model using the
joinKey column in the home model to match against the primaryKey column in
the joinModel. For mxPath, a more friendly interface was devised, naming the join

model in the from parameter (i.e., from=‘joinModel.column’).

An alternate way to store associations in a relational database is to use a separate
linking table. For example, a classroom membership table might contain foreign keys
for both teacher and student. A linking table facilitates many-to-many relationships.
A teacher can have many students and a student can have many teachers. Although
there is no problem with linking tables from the standpoint of the join operator, it
problematic from a modeling point of view because the maximum number of teachers
per student is not fixed. How can the student model be specified? We leave this

question to future research.
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Mixed model, details

Although the user interface is less flexible and convenient compared to RAM,
the mixed model is important because a great deal of research has gone into its
efficient estimation (e.g., Bates & DebRoy, 2004; Harville, 1977; Lindstrom & Bates,
1990; Searle, Casella, & McCulloch, 1992; Wolfinger, Tobias, & Sall, 1994). Recent
work has generalized the mixed model to non-Gaussian distributions (Rabe-Hesketh,
Skrondal, & Pickles, 2004; Skrondal & Rabe-Hesketh, 2004), but we restrict our focus
to Gaussian models. More detailed expositions of the mixed model are available from
many sources (e.g., Bates, Machler, Bolker, & Walker, 2014; West, Welch, & Galecki,

2014). The essentials are as follows.

In matrix notation, for column vector of observations Y, covariates X associated
with constant coefficients 3, covariates Z associated with varying coefficients u, and

column vector of residuals e, the mixed model can be written as,

Y= XB +Zu+te. (28)
— v
constant varymg

We assume u and e are normally distributed with

u 0
E = (29)
e 0
U G 0
Cov = : (30)
e 0 R

The design matrix, X, is not estimated. The matrix Z can be used in two distinct

ways: as a design matrix for varying coefficients (not estimated) or as estimated factor

loadings for latent factors (Skrondal & Rabe-Hesketh, 2004, p. 107).

Although Equation 28 builds intuition, it actually describes the distribution of Y
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conditional on a particular realization of u ~ N (0, G). The unconditional distribu-
tion is

Y=XB+e (31)

which is essentially linear regression (c.f. Equation 2) where

e~N(0,ZGZ" + R). (32)

Univariate models typically use R = ¢2I. Independent units of analysis in multivari-
ate models typically use a block diagonal R with each block as the independent unit.
Once covariance components R and G are estimated, analytic solutions are available
for constant ,é and varying @ coefficients (Henderson Jr, 1982),
XTRX XTR 17 B XTRY 33)
ZTR'X Z'R'Z+ G| \a Z"R'Y
That is, varying coefficients w need not be estimated directly but can be obtained as

an analytic function of the covariance. The solutions of Equation 33 can be written

as,
B=(X"V'X) X"V Y (34)
a=GZ'"V' (Y - XB) (35)

where
V=2GZ" +R. (36)

For parameter vector @, the —2 log-likelihood of n independent observations is,

—2((B,0) = nklog(2r) +log |V| + (Y — XB)"V (Y — Xp) (37)
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where k is the size of V. This likelihood can be simplified by plugging Equation 34

in for B (using provisional estimates). The resulting profile —2 log-likelihood is,

—20(0) = nklog(27) + log |V |+ TV 'p (38)

where

r=Y -—-X

(x"v-'x)" XTV‘lY} . (39)

This likelihood does not take into account the loss of degrees of freedom from
constant coefficients B in the estimation of covariance parameters @. Uncorrected,
covariance parameters tend to exhibit bias. A solution was proposed to obtain un-
biased covariance parameters estimates (known as REML; Patterson & Thompson,
1971). The REML approach can be implemented in OpenMx (Cheung, 2013). How-
ever, when REML is used, the likelihood ratio test cannot be used for constant co-
efficients B (West et al., 2014, p. 35). Fortunately, the addition of a Wishart prior
to the likelihood corrects bias even more accurately than REML (Chung, Gelman,
Rabe-Hesketh, Liu, & Dorie, 2015). The addition of a Bayesian prior is an elegant

solution that corrects for bias without impairing the posterior ratio test.

Inference

Large sample theory provides a number of ready tools for inference such as the
Wald test (including the sandwich estimator), the likelihood ratio test (including pro-
file likelihood confidence intervals), the bootstrap, and the jackknife (Pawitan, 2001;
Pek & Wu, in press; White, 1982). Results established using the mixed model ap-
ply to corresponding relational SEM models. For example, improvement in precision
is possible by conditioning on the type of inference being considered. For constant
coefficients, adjustments are advised to improve calibration of the false positive rate

(e.g., Manor & Zucker, 2004). Inference on variance components can be divided into
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two cases. When the null hypothesis does not involve a parameter space boundary
then standard asymptotic results apply. An example is a test between heterogeneous
and homogeneous residual variance. The second case arises when a parameter space
boundary is involved. This commonly occurs in the test of whether to include a vary-
ing coefficient because varying coefficients are not tested directly but by restriction
of their variance (and covariances) to zero (e.g., Crainiceanu & Ruppert, 2004).
While inference for relational SEM builds on prior research, new model structures
may require new inference guidelines. Inference in multilevel models is an evolving

area. More research is needed.

The mixed model in OpenMx

Instead of following notation similar to that in use by relational databases, a model
specification syntax inspired by conditional probability notation evolved in some pop-
ular R packages that implement the mixed model (e.g., Bates et al., 2014; Pinheiro,
Bates, DebRoy, Sarkar, & R Core Team, 2016). Formula notation (Wilkinson &
Rogers, 1973) for specifying a regression equation was augmented with a vertical bar

clause,
lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

The left part of the regression equation, up to the parenthesis enclosing the vertical
bar, follows standard formula notation. The vertical bar clause is used to specify
varying coefficients. The part after the vertical bar (Subject) names a factor (a
column in the data frame) that partitions the data set. The formula before the
vertical bar (Days) is joined to the base model according to this factor. The implied
relational model may be clarified by translation to an equivalent OpenMx model. While
the model specification will be longer and more laborious, OpenMx will offer greater
flexibility and permit models that are impossible with 1mer.

1 bySubj <— mxModel(
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2 model="bySubj", type="RAM",

3 latentVars=c("slope", "intercept"),

4 mxData(data . frame(Subject=unique (sleepstudy$Subject)),

5 type="raw", primaryKey = "Subject"),

6 mxPath(c("intercept"', "slope"), arrows=2, values=1),

7 mxPath("intercept"', "slope', arrows=2, values=.25, labels="covl"))

9 ss <— mxModel(

10 model="sleep ", type="RAM", bySubj,

11 manifestVars="Reaction", latentVars = "Days",

12 mxData(sleepstudy , type="raw', sort=FALSE),

13 mxPath("one", "Reaction", arrows=1, free=TRUE),

14 mxPath("one", "Days"', arrows=1, free=FALSE, labels="data.Days"),
15 mxPath("Days", "Reaction", arrows=1, free=TRUE),

16 mxPath (" Reaction", arrows=2, values=1),

17 mxPath (paste0('bySubj."', c¢('intercept', 'slope')),

18 'Reaction', arrows=1, free=FALSE, values=c(1,NA),

19 labels=c(NA, "data.Days"), joinKey="Subject"))

We create an mxModel to contain the per-Subject model (line 1). Traditionally,
the mixed model does not permit manifest observations in upper levels. Hence, up-
per levels only contain latent variables (line 3). The Subject model’s data contains
no observations, only primary keys (line 4). Conceptually, we would like to allow a
per-Subject coefficient for intercept and slope. It may be surprising that this is
accomplished by estimating the variance of those varying coefficients and not the co-
efficients themselves (line 6). We estimate the covariance between varying intercept
and slope (line 7).

We include the upper level model as a submodel of the base model (line 10).
The rationale for this organization and other possible organizations are discussed in

Figure 6. The 1me4 package offers a double vertical bar notation to indicate that the
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school
teacher
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Figure 6. Two equivalent model specifications for students nested within teachers
nested within schools. Each rectangle corresponds to an mxModel. The prototype used
organization (a) to specify nested multilevel models. We finalized on (b) for mxPath
specified models. Scheme (b) may seems backwards, but it offers the advantage that
each submodel is also a valid model. This is due to the constraint that outer models
cannot depend on inner models. For example, a school cannot depend on a teacher
and a teacher cannot depend on a student. This structure is only required for mxPath
specified models. No particular model nesting is required for mxMatrix specified
models.

varying coefficient covariance should be fixed to zero. The constant coefficients are
specified starting at line 13. The predictor Days is included in the model as a zero

variance regression (line 14). This warrants a brief digression.

In structural equation modeling, it is customary to assume a normal distribution
for both predictor and response variables. In contrast, regression models assume only
that the residual is normally distributed. No distributional assumption is made about

predictors. There are pros and cons to both approaches.

A major advantage of assuming a distribution for predictors is that missing data
are less of a problem (Enders & Bandalos, 2001). However, when predictors are
not missing and predictor covariance is not of substantive interest then modeling

predictors can add extra parameters for little gain. For example, a script from the
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OpenMx test suite, UnivariateRandomInterceptWide.R, implements a single predic-
tor univariate random intercept model. The standard regression approach estimates
4 parameters (residual variance, intercept, constant regression coefficient, and vary-
ing intercept variance), but UnivariateRandomInterceptWide.R also estimates the
mean and variance of predictor X, adding 2 parameters for a total of 6 (see Ap-
pendix A). The parameters that are common among these two models have matching
estimates, but why estimate an extra 2 parameters unless they are of substantive
interest? For optimal performance, the analyst should think carefully about whether
a predictor needs to be modeled as normally distributed or can be included in the

model as a zero variance regression.

The connections between the per-Subject and base models are set up at line 17.
These connections correspond to the Z matrix in Equation 28. An executable version
of this code is available in Appendix B. While the OpenMx is not as succinct as lmer,
the OpenMx model could easily be extended to incorporate multivariate data such as
digit span in addition to reaction time. Another 1mer example using the Orthodont

data set is available in Appendix C.

All mixed models can be similarly translated into OpenMx models. Each vertical
bar clause is implemented with a latent mxModel of extra variance to account for the
varying coefficients. These latent OpenMx models are joined to the corresponding con-
stant coefficients in the base model using fixed loadings. Although standard practice
is to estimate varying coefficients with a variance, one script in the OpenMx test suite,
MultilevelUniRandomSlopeInt.R, estimates the varying coefficients themselves. A
corresponding model that estimates a varying coefficient variance has been added to

this script (Appendix D).

Upper to lower level transition matrices can take advantage of the usual OpenMx
capabilities. A transition matrix can contain free parameters, definition variables, or

populated values using square bracket notation. Or for maximum flexibility, transition
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matrices can be specified as the result of an mxAlgebra.

Speeding up nested multilevel

We will trace through in more technical detail the steps involved in optimization
of nested multilevel structure. Nested varying coefficients produce a sparse covari-
ance matrix with a pattern amenable to an efficient inverse (Goldstein & McDonald,
1988), but we will do better. We review how the Gaussian distribution is invariant
to orthogonal rotation, show how to use the QR decomposition algorithm to create a
rotation to specific axis vectors, and introduce the novel Rampart rotation to dramat-
ically improve independence in multilevel covariance matrices. Rampart performance
benefits and limitations are described. To validate the implementation, we finish with
a simulation study.

Rampart can only be applied to nested multilevel structure. Crossed varying
coefficients create less orderly covariance patterns. When Rampart is not applicable to

a sub-problem, OpenMx uses sparse matrix algebra to compute inverses for arbitrarily

crossed models (Fellner, 1987).

Topological sort

Once a relational SEM is specified, each row must be assigned to a location in
a model-wide covariance matrix (Goldstein & McDonald, 1988). There are many
possible assignments of rows to covariance locations. One type of ordering that offers
a computational advantage is a topological sort. We can regard a relational SEM as
a directed graph. If we add the restriction that cycles are not allowed then we can
sort the graph by dependency. Units without dependency on other units can come
first and then dependent units. For example, refer to Figure 7. This ordering allows

us to compute the model expected mean unit-wise instead of model-wise.
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Figure 7. Topological sort is accomplished by depth-first search (Tarjan, 1976) in the
opposite direction of the arrows starting from each of the lowest level units (students
in this example). Units are assigned a location (the number in red) as soon as all the
units that they depend upon are assigned a location. This algorithm is linear in time
with the number of units.

Figure 8. Observations (represented by points) in a Gaussian density. The likelihood
of these points is unaffected by axis rotation. For example, the axis could be rotated
to the red dashed lines without affecting the likelihood.
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Gaussian density rotation

An intuitive argument is given in Figure 8. Here we work through the equations
to understand exactly how an orthogonal rotation @ fits into the Gaussian likeli-
hood. The —2 log density of a single observation x from the K dimensional Gaussian

distribution is,

Klog(2m) + log(|=]) + (b — )" 37 (u — ). (40)

Suppose we want to apply an orthogonal rotation @ to . The rotated Q density is,

Klog(2m) +log(|QEQ") + (Q(p —2)) Q=7'Q" (Q(p —=z)). (41

We know that |QXQ7| is equal to |X| because Q is an orthogonal transformation and
eigenvalues are preserved. For the term on the right, we can expand the transpose,

regroup, and use the fact that Q' = Q7

Q(p—))" QZ7'Q" (Q(n —x)) (42)
(- 2)"Q") Qu7'Q" (Q(u — x)) (43)
(r—2)"(Q"Q)ZQ"Q)(1— =) (44)
(=) 1= (1 — @) (45)

(b —a)'S (p—x). (46)

QR decomposition

QR decomposition is a versatile procedure that can be used to accomplish a variety
of goals. QR decomposition expresses matrix A as the product of orthogonal matrix
Q@ and upper triangular matrix R. Matrix A must be m-by-n with m > n. Here

we describe how to use the QR decomposition algorithm to create an orthogonal axis
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rotation that we can plug into the Gaussian density (Equation 41). Hence, A will
always be m-by-m (square) and full rank. Let & be an arbitrary column vector of A

of length |a|. One Householder reflection consists of,

w = x +sign(zy)a[1,0,...,0]" (47)

_ v 48
U ul e
Q=1I-2vv". (49)

In Equation 47, we choose the sign to increase the magnitude of the first entry of .
This ensures the length of u is at least a. Vector w can be regarded as the average of
the direction of @ and the target axis. Vector v is the reflection pivot. The obtained

Q will zero out all except the first row of & such that,

QA = . (50)
. A/

The process is repeated on A’ until QA is upper triangular, generating a series of

rotations Q1, Q2, ..., Qm.

To illustrate the process, let us perform a rotation to an arbitrary basis,

2.87
A= 1255 288 - (51)
1.27 2.88 0.91

We place the basis vectors in the lower triangle because the QR algorithm is blind to
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the upper triangle. The first reflection obtains,

2.87
1 = |2.55
1.27

oy = Ha:1|| =4.04

6.91
w = x1 +sign(zy1)aq [1,0,...,0]" = 2,55

1.27
0.92
u
v=r—0=10.34
[Ju]

0.17

-0.71 -0.63 -0.31

Q:=1I-2vv" = {063 077 -0.12]-

-0.31 -0.12 0.94

As expected, Qq zeros all but the first entry of the first column of A,

“4.04 -2.72 -0.29
Q1A = 1.88 -0.11
238 0.86

We continue with the second reflection,

1.88
2.38

Qg = H.’B2|| =3.04

27

(55)

(56)

(57)

(58)
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u = Ta +sign(za;)asz [1,0,. .. ,O]T
N

|||

Q,=1—-2vv’

4.92
2.38

0.90
0.44

1.00
-0.62 -0.79] -
-0.79  0.62

28

(59)

(60)

Q- is 2-by-2, but we fill it with the identity matrix to expand it back to m-by-m. A

is fully decomposed. We obtain,

-0.71
Q=Q2Q1=|0.64
0.30
-4.04
R=0Q:Q:A =

-0.63
-0.38
-0.67

-2.72
-3.04

-0.67
0.67

-0.61
0.62

-0.31

-0.29

(62)

(63)

However, this Q is the inverse of what we want. We want the rotation from the

identity axis to the axis described by A. Hence, the desired rotation is Q7. With

a deeper understanding of axis rotation, we have the tools we need to describe the

Rampart rotation.

Rampart rotation

Let us take a close look at the model in Figure 9. This model is identified with

only two teachers. With only 8 observations, the matrices are compact enough to

investigate the full model. First we examine the model implied covariance (Equa-

tion 20). Our model has no latent variables so the F' matrix is set to the identity.
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Parameters are assigned arbitrary values.

1.07
1.07
1.07

0.29
0.70
0.70
0.70

0.29

[ Ais([— a)-T _ 106 070 o
( )~ S( )= (66)
1.06 0.70

P

1.06 0.70

We obtain a 4-by-4 covariance matrix instead of 8-by-8 since both sets of teacher-
and-students have the same model. However, this efficiency gain of grouping by
independence does not help much if we add more students. A classroom with a few

hundred students is going to require a large covariance matrix.

Observe that A, the regression from teacher to student, is a single parameter that
is some function of the mean of the students. This is true regardless of the number
of students. Instead of distributing the information about the mean across all the
students, suppose we could rotate the data such that the mean was already computed

and readily available. In fact, we can.
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Let us use a QR decomposition find an orthogonal rotation to basis vectors,

1.00 2.00
1.00 -1.00 1.00] - (67)
1.00 -1.00 -1.00

These vectors are not normalized to unit length to make it easier to understand the
construction. The first column vector obtains a value proportional to the mean. The
remaining basis vectors consist of an arbitrary orthogonal contrast, Helmert contrasts

in this case. QR decomposition obtains

-0.58 -0.58 -0.58
Q" =082 -041 -0.41]|- (68)
071 0.71

We apply this rotation to the 3 student values associated with the first teacher,

0.69 1.34
Q" |-2.03| = |1.79] - (69)
098] |0.74

The mean of the first 3 students is —0.77. The value obtained (1.34) is —/3  times
the mean. The wrong sign is due to rotational indeterminacy. We can take —Q7
instead of QT. The /3 factor results from the need to preserve the length of the

original vector, v/3 = v/12 + 12 + 12. The remaining values reflect the variance,

1.79
{1.79 0.74] 0.69
0.74

31 = Var [-2.03| = 1.88. (70)

-0.98
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With the data rotated, a corresponding rotation to the covariance matrix is re-
quired to leave the density function unchanged. We rotate the teacher-to-student
regression weights. Note that the value of these weights are constant for all stu-
dents, in other words, the weights have zero variance. Therefore, all of the links to
the students, besides the first, get zeroed and the first link is multiplied by v/3" (see

Figure 10). Since S remains as in Equation 65 and the rotated asymmetric matrix

1.85
A* = : (71)
0.29 0.54
0.54 1.71
S=T-A'SIT-A"T= : (72)
0.70
0.70

This rotation dramatically increases the independence in the model implied distribu-
tion. Regardless of the number of students, interdependent blocks of the covariance
matrix need never be larger than 2-by-2 (and most of them are 1-by-1). Moreover,
this algorithm can be applied recursively in more complex models with many levels
such that most of the nonzero regions in a very large multilevel covariance structure
(e.g., Equation 27) become independent. Note that the rotated A* matrix (Equa-
tion 71) is only used to compute the covariance (Equation 20). Although A also
appears in the computation of the expected means (Equation 19), this equation uses
the unrotated A. The residuals are rotated, not (somehow) the predicted means

(refer to Equation 41).

To extend this univariate approach to multiple indicators per students, we can

rotate each indicator independently. Since the orthogonal contrasts are identical and
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Figure 9. A simple multilevel model with 5 parameters: o2 ..., Hicachers O udents

Wstudent, and A. The three students have exactly the same model implied distribution.
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Figure 10. Figure 9 after Rampart rotation is applied to unlink all but one student
from the teacher. Note that the student data (not shown) requires a corresponding
rotation to preserve the value of the likelihood.
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in the same order for each indicator, not only is the variance preserved but also the
covariance! Hence, there is no limit on the complexity of the student model. The only
requirement is that all student models must be identical and have the same single

parent.

Rampart: History and name

The idea for Rampart developed out of discussions among Timo von Oertzen,
Steven M. Boker, and Timothy R. Brick during the summer of 2012. During spring
2013, Rampart was prototyped in OpenMx (see merge v2.3.1-294-g9968ddc in the
source code repository). The prototype was limited to the situation where there are
exactly the same number of lower level units for each upper level unit and no missing
data. Such perfectly balanced data are unlikely to occur in practice. Moreover, the
prototype did not allow definition variables. Definition variables are an important
OpenMx feature that users expect to be implemented consistently throughout OpenMx.
These deficiencies were remedied in the present implementation. The original proof-

of-concept test script was brought up-to-date with the current syntax (Appendix E).

A rotation that was a conceptual precursor to Rampart was named pre-processed
mazximum likelihood in the title of von Oertzen and Hackett (submitted). However,
the phrase pre-processed is remarkably non-specific. Furthermore, there is nothing
about the algorithm that requires maximum likelihood as a fit function as opposed
to, say, unweighted least squares. Hence, none of the elements of the original name
provide helpful semantic cues. We propose Rampart. The name rampart lexically
emphasizes the connection with the RAM parameterization. Colloquially, a rampart
is a wall built for defense. The Rampart algorithm partitions, or places a wall between,

repeated identical elements to defend against poor performance.
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Sufficient statistic formula for the Gaussian density

A challenge with evaluation of the Gaussian density (Equation 1) is that the
covariance dimension is very large, the total number of observations in the model.
Inversion of the covariance is a computationally expensive operation, roughly O(N3).
One common way to speed up evaluation of the Gaussian likelihood function is to use
the sufficient statistic formula. Suppose we have data of N independent observations
of K-variate units. Let p and ¥ be the model expected mean vector and covariance
matrix, respectively. Let m and S be the mean vector and covariance matrix of the

data, respectively. The sufficient statistic formula is,

— 2log L(datal@) = N K log(2m) + N log(|X]) +

(N - Dtr(Z7'8) + N —m)"S(u—m)). (73)

The derivation of this formula is given in many textbooks and omitted here. The
advantage of this formula is that the maximum dimension of the covariance matrix
is K regardless of the number of units N. However, this formula is only applicable
when the units are independent and identical. Fortunately, Rampart dramatically

improves the prospects for application of the sufficient statistic formula.

Rampart and definition variables

To apply Rampart, the upper to lower level transition matrix must be exactly
the same for all lower level units. Constant transition matrices, possibly with free
parameters, pose no difficulty. However, no attempt is made to check whether this
condition holds when the transition matrix is an mxAlgebra or contains square bracket
populated values. If definition variables appear in the transition matrix then an
attempt is made to group them by value. For example, a univariate twin model can

be specified such that the upper to lower level link is either 1 or /0.5 (Appendix F).
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Figure 11. A 3-level latent regression model. All levels use an identical 5 indicator
factor model with the loading to the first indicator fixed to 1.0, freely estimated means,
free factor variance, and homogeneous error variance. Regressions are estimated from
school to teacher and from teacher to school. There are 11 parameters per level and
2 between level regressions for a total of 35 parameters. Indicator error variance
does not need to be homogeneous. More complex error structures are possible, but
were not included in this study. Manifest indicators are not shared by levels, but are
unique to their level. For example, teacher indicators might include level of education
and years of service.

student

Rampart automatically groups same values together and transforms as many units
as possible. Another common use for definition variables is to specify zero variance
regressions. Since these regressions do not affect the covariance, units that differ only
in mean structure are Rampart rotated and evaluated using the sufficient statistic
formula (Equation 73). A model that greatly benefits from automatic identification

of zero variance regressions is given in Appendix G.

Latent regression parameter recovery simulation study

To validate the accuracy of Rampart, a parameter recovery simulation study was
conducted on a 3-level latent regression model. Figure 11 exhibits the per-level model

structure. In addition, the first student indicator was set to missing with 20% prob-
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Table 4

FEuclidean norm of Monte Carlo bias and variance of parameter estimates by algorithm
and parameter set. Rampart exhibits slightly less bias and variance on 6. Both
algorithms exhibit roughly equal performance on 0.

0 replications method ||bias|| [|o?]|
1 174 rampart 1.686 0.769

regular 1.702 0.780
2 171 rampart  2.336 0.557

regular 2.335  0.560

a b.
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Figure 12. Scatterplot of deviance at the maximum likelihood for 8, (a) and 85 (b).
In replications of 81, it was not uncommon for the deviance difference to be greater
than 10 points. For one replication of 6, the regular algorithm got stuck in a local
minimum more than 1000 deviance points from a better minimum found by Rampart.

ability. With observations at multiple levels, this model was outside the capability
of freely available mixed model software and would be challenging to specify in SEM
software without a relational join operator. The simulation study focused on valida-
tion of Rampart, comparing Rampart with the standard, unoptimized approach (i.e.,
simple application of Equation 1).

Two sets of true parameters (6; and 8,) were randomly chosen and data generated.
Random numbers of students were assigned to each class and random numbers of
teachers assigned per school. Parameter 6, was paired with 7 schools, 38 teachers,
and 293 students. Parameter @y was paired with 7 schools, 37 teachers, and 296

students. This was the smallest 3-level data set that we found empirically identified



MULTILEVEL SEM 37

rampart regular

€ 20 -
=
(@]
© 10
0- s . o=
T T T
6 9 12

seconds

[P —
T T
200 300

Figure 13. Seconds required per replication by algorithm for 6;. As expected, Ram-
part exhibits a huge efficiency advantage on this type of model. Note the difference
in scale on the x axis. Timing data for @, is similar, and therefore, is omitted.

for most replications. A 4-level model (adding district as a higher level) was prepared
to further validate the Rampart implementation (see Appendix H), but evaluation of
this model using the standard algorithm required so much CPU time that a simulation

study was deemed impractical.

Two hundred Monte Carlo replications were run for each condition (Algorithm x8).
For each replication, data were generated from the true parameters. The number
of units, which lower level units were linked to which upper level units, and data
missingness patterns were identical for all replications. The model was optimized
against these data to obtain é, using the true parameters as starting values. For R

replications, Monte Carlo bias and variance are

R
MCbias = [R_l Z 07"] - Otrue (74)

r=1

MClyqr = Var(6). (75)

After every replication, the information matrix was estimated by 2-iteration Richard-
son extrapolation of the central difference. The condition number of the information
matrix is the maximum singular value divided by the minimum singular value and
provides a rough gauge of the stability of a solution (Luenberger & Ye, 2008, p. 239).

Replications were excluded from further analysis when the condition number of the
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information matrix was larger than 5 median absolute deviations from the median.
Results are summarized in Table 4. Rampart performed no worse than the stan-
dard algorithm. Additional insight into the performance of Rampart can be gleaned
by plotting the fit values at the mode of the likelihood against each other (Figure 12).
The mode found by Rampart can match the standard algorithm closely or differ by a
considerable amount depending on the model. Another way to examine model stabil-
ity is to take the difference between regular and Rampart condition numbers for the
included replications. These means were 46.6 (SE = 46.53) and 5.24 (SE = 1.84)
for 6, and 0., respectively. That the means were positive suggest that the Rampart
rotation may improve model stability. As expected, Rampart exhibited a huge effi-
ciency advantage (Figure 13), mean time regular = 176.97s, mean time Rampart =
6.5s, Rampart/regular ratio = 0.04. Complete source code for the simulation study

is included in Appendix I.

Application

In order to demonstrate the efficacy of the Rampart algorithm, we reanalyzed
data from a facial expression tracking experiment (Boker et al., 2009). When two
people engage in conversation, prior research indicates that the style of their head
movements tend to become more similar. In this experiment, confederates engaged
in conversation with naive participants over a video conferencing system. However,
naive participants (n = 27) did not see the unfiltered confederates (n = 6) but a
computer generated avatar. To produce a convincing portrayal, confederates’ facial
expressions were meticulously tracked in real-time. The portrayals were sufficiently
convincing that no naive participants guessed that the computer generated faces were
not unmodified live video.

In a crossed experimental design, damping was applied to confederate facial ex-

pressions, vocal inflections, and head movements. Confederates were familiar with
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the nature of the manipulations and their probable effects, but were blind to order
and timing. The head movements of both participants in the conversation were mo-
tion tracked at 81.6 Hz. The dependent variables were anterior-posterior (A-P) and
lateral head angle. These correspond to nods of affirmation (pitch) and head shakes
of disagreement (yaw), respectively. Vigor of angular velocity was taken as a metric.
Based on prior research, it was hypothesized that women would nod and shake their
head with greater vigor than men. In addition, it was hypothesized that each of
the manipulations would increase the vigor of nods and shakes. The notion of vigor
was operationalized as the root mean square (RMS) of the angular velocity during a
condition.

For each 1 minute condition, there were 4860 velocity measurements (81.6 - 60 ~
4860). Conversations were described as lasting 8 minutes (Boker et al., 2009, p. 3488)
with a different condition every minute. However, conversations ranged from 6 to 10
minutes with a median of 9 minutes. Conditions always lasted 1 whole minute so
conversations shorter than 8 minutes did not include all conditions and conversations

longer than 8 minutes included some repeated conditions.

Table 5

Comparison between a variety of modeling options. Model original fits both anterior-
posterior and lateral RMS angular velocity in a single model but leaves them inde-
pendent (as a multiple group model). This matches the original model from Boker
et al. (2009). Model only confed adds a varying intercept for confederates. Model
xyCov is the same as Model original but adds a covariance between anterior-posterior
and lateral RMS angular velocity. Model xyCov_confed adds a varying intercept for
confederates, and a covariance between anterior-posterior and lateral RMS angular
velocity. Model full is similar to Model xyCov__confed but allows covariance between
varying intercepts. See Appendix J for source code.

base comparison ep minus2LL df AIC diffLL  diffdf p

full 33 2275.2 1603 —930.8

full xyCov_ confed 31 2275.7 1605 —934.3 0.5 2 0.79
full  xyCov 29 2329.1 1607 —884.9 53.9 4 0.00
full  only confed 30 2373.0 1606 —839.0 97.8 3 0.00
full  original 28 24154 1608 —800.6  140.2 5 0.00
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Figure 14. Anterior-posterior (a) and lateral (c) RMS angular velocity log(1 + x)
transformed to (b) and (d), respectively.

The models used in the original analysis were loosely based on the Actor-Partner
Interdependence Model (Cook & Kenny, 2005). These models included a varying
intercept per naive participant, but all confederates were assumed to produce equally
vigorous head movements. Hence, the original model violated the assumption of
independent observations since minutes involving the same confederate should be
more similar than minutes involving different confederates. Another weakness in the
analysis was the assumption that anterior-posterior (A-P) and lateral head angle
were independent. No author believed that these two axes of head motion were
independent, but no software was available to conveniently specify a multivariate
model (S. Boker, personal communication, March 2015).

Before proceeding, we note that the RMS statistics are skewed and leptokurtic.
The distribution can be improved by a log(1 + ) transformation (Figure 14). These
raw data were carefully documented and published (Pritikin, 2016). A variety of mod-
eling options were explored (Table 5). We selected Model zyCov__confed to compare

against the original model.
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Figure 15. Generating parameters for power simulation study. For each replication,
data were generated using Model xyCov_confed with each parameter randomly se-
lected (with a uniform distribution) from absent, small+, small—, large+, or large—.
Parameter values were set to correspond in magnitude with empirical parameter es-
timates found with Model zyCov_confed. An empirical parameter estimate was used
in two different ways. If the parameter value divided by the standard error was 2.0
or less then it was assigned to small and large was set to 3 times the standard error.
Otherwise, the parameter value was assigned to large and small was set to 1.5 the
standard error. Variance parameters only used positive values. A few parameters
were not of interest and used the same data generating value for all replications:
the constant variances of x (lateral) and y (anterior-posterior) and their constant
intercepts.
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Figure 16. ROC plots for original (82.05% area under curve) and Model zyCouv__confed
(88.09% area under curve). DeLong’s test of the null hypothesis that the area under
the curves are equal is rejected, D = —5.55, df = 4544.23, p-value = 3.05 x 1078,

A simulation study was conducted to determine how much power we might gain
from Model zyCov confed. Data were generated according to the scheme detailed
in Figure 15. Both models were fit on 100 replications. For the original model, all
replications converged but only 88 converged for Model xyCov_confed. Replications
that failed to converge were excluded from the analysis. For each replication, the
absolute parameter value divided by its standard error was taken as the quantity
of evidence and the true effect was whether the corresponding generating parameter
was large. An incorrect sign, which appeared for 12 parameter estimates throughout
the simulation, was scored by negating the evidence quantity. Simulation results are
summarized in Figure 16. Model zyCouv confed demonstrated significantly greater
power on these data than the original model. Some confidence was gained that

Model zyCouv _confed can accurately recover parameters from simulated data. See
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Figure 17. Parameter estimates for original and new model. Error bars represent
+2SFE. Parameter otherSex became non-significant and the effect size of selfSex
declined. Otherwise, most parameter estimates seemed to change little.

Appendix K for the simulation source code.

Figure 17 exhibits the original parameter estimates together with estimates from
the new model. Some doubt is cast on the effect of sex on RMS angular velocity,
but otherwise, most of the estimates remained stable. Although our contribution is
a step forward, much more could be done to analyze these data in greater depth. For
example, it is now feasible to decompose the one minute conditions into 2s chunks
and estimate both within and between condition contributions. This would be com-

putationally difficult without Rampart.
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Discussion

We reviewed the development of Gaussian modeling from its beginnings in intu-
itive theories of causation to relational structural equation modeling. The optimiza-
tion of nested multilevel models pose particular computational challenges. Rampart,
a novel approach that simplifies nested multilevel structure, was devised and im-
plemented in OpenMx. This implementation is of the quality required by applied
researchers. A latent regression parameter recovery simulation study was conducted
to demonstrate the correctness of the implementation. The implementation allows
for unbalanced and missing data, and definition variables. To highlight the flexibility
of the new relational SEM interface, popular mixed model regression specifications
were re-expressed in OpenMx.

To further demonstrate Rampart, a reanalysis of Boker et al. (2009) was conducted
using a multivariate model to more closely match the theoretical data generating
process. In a simulation study, the multivariate model exhibited significantly higher
statistical power than the original mixed model. In a comparison of the estimates
obtained, most parameters did not change to a large extent except for a weaker effect
of sex on head movement vigor. While the new model was an improvement on the
2009 model, the data are still highly summarized and could be modeled in greater
detail given the computational efficiency of Rampart.

The join operator in OpenMx supports one-to-many relationships but omits support
for unlimited many-to-many relationships such as can be recorded in a relational
database using a linking table. For example, with a linking table, a teacher can have
many students and a student can have many teachers. There is no problem with
linking tables from the standpoint of the join operator, but it is not clear how to
specify models that can adapt to the combination of two arbitrary sets of units.

Rampart provides a huge boost in performance, but opportunities still remain to

improve performance further. For example, it is not yet clear how best to parallelize
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evaluation of the likelihood. The dimension of the covariance of independent groups
can be large or small. The number of observations per identical covariance can be large
or just a single mean vector. Further research is needed to determine the thresholds
when the benefit of parallel computation outweighs the overhead of coordinating
multiple threads.

Relational SEM models do not take into account the loss of degrees of freedom
from constant coefficients (Patterson & Thompson, 1971). Most research to date on
addressing this bias has focused on the mixed model where there is a clear delineation
between constant and varying coefficients. Due to the efficiency of Rampart, it is now
feasible to create relational SEM models that are nested many levels deep with some
observations at each level. It is not clear whether the distinction between constant
and varying coefficients applies in the circumstance where a middle level coefficient
is somewhat varying and somewhat constant. The use of a Wishart prior to correct
bias seems like a promising line of investigation (Chung et al., 2015). More research
is needed to establish whether this approach can be profitably applied to relational
SEM or whether a different approach is more suitable.

While large sample inference can rely on the asymptotic results of large sample
theory, much prior research on small sample inference is limited to the mixed model
(univariate with no latent factors). It is unclear whether prior research on small
sample inference generalizes to relational SEM. More simulation studies are needed
to provide guidance about how perform inference with small samples.

OpenMx, a freely available open-source statistical software package, is now capable
of estimating multilevel relational structural equation models using the Rampart op-
timization. SEM models of large data sets, such as entire school districts, had been
considered intractable due to the required estimation time. With Rampart, these

data sets may now be revisited and estimated with relative efficiency.
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Appendix A

UnivariateRandomInterceptWide.R

Copyright 2007—2016 The OpenMz Project

Licensed under the Apache License, Version 2.0 (the "License');

DI NI N NN

you may not use this file except in compliance with the License.
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You may obtain a copy of the License at
http ://uwww. apache. org/licenses/LICENSE—2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

Program: UniRandomlIntTest—120815.R

Author: Steve Boker
Date: Wed Aug 15 10:50:12 CEST 2012

This program simulates some univariate multilevel data with random
intercepts only, fits it with Ime(), fits a naive wide format

multilevel OpenMz model and checks the results

Rewvision History

Steve Boker — Wed Aug 15 10:50:14 CEST 2012
Created UniRandomlIntTest—120815.R

# Read libraries and set options.

options (width=110)
library (nlme)
library (OpenMx)

#

# Set constants.

sdLevelOneE <— sqrt (.2)
sdIntercepts <— sqrt (.5)
sdX <— sqrt (1)

N <— 400 # number of participants

P <— 100 # number of observations per participant
b0 <— .5 # Fized effect intercept
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50

51

52

53

54

55

bl <— .8 # Fized effect slope

set.seed (1)

#
# Simulate the data.

56 X <— rnorm (NP, 0, sd=sdX)

57

58

ID <— rep(1:N, each=P)
b0i <— b0 + rnorm (N, 0, sd=sdIntercepts)

59 Y <— rep(b0i, each=P) + bl«X + rnorm (N«P, 0, sd=sdLevelOneE)

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

SimUniRandomIntFrame <— data.frame(ID, X, Y)

#
# Test with Ime().

ImeOut <— summary (lme(Y ~ X, random= list(~ 1 | ID),
data=SimUniRandomIntFrame))

# For lme/, wuse:
# lmerOut <— Ilmer(Y ~ X + (1 | ID), data=SimUniRandomIntFrame)

#
# Set constants.

theIDs <— unique (SimUniRandomIntFrame$ID)
totalN <— length (thelDs)
totalVars <— 2

maxP <— 0
for (tID in theIDs) {
tmask <— SimUniRandomIntFrame$ID=—=tID
tLen <— length (SimUniRandomIntFrame$ID [tmask])
if (tLen > maxP)
maxP <— tLen

#
# Wide—format the data frame from tall format.

wideMatrix <— matrix (NA, nrow=totalN, ncol=1 + (maxPxtotalVars))
colnames (wideMatrix) <— ¢("ID", paste('"Y",l:maxP, sep=""),

52
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paste ("X" ;1:maxP, sep=""))

i<—1

for (tID in thelIDs) {
wideMatrix [i, 1] <— tID
tY <— SimUniRandomIntFrame$Y[SimUniRandomIntFrame$ID==tID ]
wideMatrix [i, 2:(length(tY)+1)] <— tY
tX <— SimUniRandomIntFrame$X[SimUniRandomIntFrame$ID==tID ]
wideMatrix [i, (2+maxP):(length (tY)+1+maxP)] <— tX
i<—1i+4+1

}

wideFrame <— data.frame(wideMatrix)

manifestNames <— colnames (wideFrame)[2:dim(wideFrame )[2]]
xNames <— paste ('X" ,1:maxP, sep="")

yNames <— paste ("Y' ,1:maxP, sep="")

latentNames <— c¢("b0i")

#
# Build the OpenMz wide model.

OpenMxModelUniRandomIntModell <—
mxModel (" OpenMxModelUniRandomIntModell" |
type="RAM" ,
manifestVars=manifestNames ,

latentVars=latentNames ,

mxPath (from=xNames, to=yNames, connect="single", arrows=1,
free=TRUE, values=.2, labels="bl"),

mxPath (from=xNames, to=xNames, connect="single", arrows=2,
free=TRUE, values=.8, labels="vX"),

mxPath (from=yNames, to=yNames, connect="single", arrows=2,

free=TRUE, values=.8, labels="eY"),

mxPath (from=latentNames , to=yNames, arrows=1, free=FALSE, values=1),

mxPath (from=latentNames , to=latentNames, connect="single", arrows=2,

free=TRUE, values=.8, labels="vb0i"),

mxPath (from="one", to=c(xNames), arrows=1,
free=TRUE, values=1, labels="mX"),
mxPath (from="one", to=c(latentNames), arrows=1,

free=TRUE, values=1, labels="mb0i"),

mxData (observed=wideFrame, type="raw')

#

# Fit the model and examine the summary results.
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135

136

138

139

140

141

142

143

144

145

146

147

148

149

omxFit <— mxRun(OpenMxModelUniRandomIntModell)
summary (omxFit)

omxCheckCloseEnough (IlmeOut$ coefficients$fixed [1],
mxEval (mb0i, model=omxFit), 0.001)

omxCheckCloseEnough (lmeOut$ coefficients$fixed [2],
mxEval(bl, model=omxFit), 0.001)

omxCheckCloseEnough (lmeOut$sigma ,
mxEval(sqrt (eY), model=omxFit), 0.001)

omxCheckCloseEnough (sd (¢ (lmeOut$coefficients $random$ID)) ,
mxEval(sqrt (vb0i), model=omxFit), 0.001)

it (0) {
omxCheckCloseEnough (lmeOut$ coefficients$fixed ,
fixef (lmerOut), le—4)
omxCheckCloseEnough (lmeOut$sigma , sigma (lmerOut), le—4)
omxCheckCloseEnough (¢ (lmeOut$coefficients$random$ID) ,
ranef (lmerOut)$ID [[1]], le—4)

Appendix B

Imer sleepstudy example

library (lme4)
fml <— lmer(Reaction ~ Days + (Days | Subject), sleepstudy , REMI=FALSE)

library (OpenMx)

if (is.factor (sleepstudy$Subject)) {
subjnum <— unclass(sleepstudy$Subject)
sleepstudy$Subject <— as.integer(levels(sleepstudy$Subject)[ subjnum |)

bySubj <— mxModel(
model="bySubj", type="RAM",
latentVars=c("slope", "intercept"),
mxData(data . frame (Subject=unique (sleepstudy$Subject)),
type="raw", primaryKey = "Subject"),
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mxPath (from=c("intercept", "slope"), arrows=2, values=1),

mxPath (from="intercept", to="slope", arrows=2, values=.25, labels="covl"))

sleepModel <— mxModel(

model="sleep", type="RAM", bySubj,

manifestVars="Reaction", latentVars = "Days",

mxData(sleepstudy , type="raw', sort=FALSE),

mxPath (from="one", to="Reaction", arrows=1, free=IRUE),

mxPath (from="one", to="Days"', arrows=1, free=FALSE, labels="data.Days"),

mxPath (from="Days", to="Reaction", arrows=1, free=IRUE),

mxPath (from="Reaction", arrows=2, values=1),

mxPath (paste0('bySubj."', c¢('intercept', 'slope')),
'Reaction', arrows=1, free=FALSE, values=c(1,NA),
labels=c(NA, "data.Days"), joinKey="Subject"))

ml <— mxRun(sleepModel)

omxCheckCloseEnough (logLik (ml), logLik (fml), le—6)

Appendix C

Imer Orthodont example

libraries <— rownames(installed .packages())
if (lall(c("lmed" ,"nlme") %in% libraries)) stop("SKIP")

library (lme4)

data (Orthodont, package="nlme")

Orthodont$nsex <— as.numeric(Orthodont$Sex="Male")

Orthodont$nsexage <— with (Orthodont, nsexxage)

fml <— lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) +
(0 + nsexage|Subject), data=Orthodont, REMI=FALSE)

library (OpenMx)

if (is.factor (Orthodont$Subject)) {
Orthodont$Subject <— as.integer (unclass(Orthodont$Subject))

bySubj <— mxModel(
model="subj", type="RAM",
latentVars = c¢('intercept', pasteO(c("age", 'msex', "nsexage"'), "L")),
mxData (data . frame (Subject=unique (Orthodont$Subject)),
type="raw", primaryKey="Subject"),
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mxPath (from=c('intercept', 'ageL'), to=c('intercept', 'ageL'),
arrows=2, "unique.pairs", values=c(1,.1,1),
labels=c('subjInt', 'subjIntAge', 'subjAge')),

mxPath (from=c( 'nsexL', 'nsexageL'), arrows=2, values=1))

ortho <— mxModel(
model="ortho", bySubj, type="RAM', manifestVars=c("distance"),
latentVars = c¢("ageL"),

! !

age
"Subject ', 'msex', "mnsexage')], sort = FALSE),

mxData (type="raw", observed=Orthodont[,c('distance"',

mxPath (from=c("one"), to="distance"),

mxPath (from=c ("one"), to="ageL", free=FALSE, labels="data.age"),

mxPath (from="ageL", to="distance"),

mxPath (from="distance", arrows=2, values=1),

mxPath (from="subj.intercept", to="distance", values=1, free=FALSE,
joinKey="Subject"),

mxPath (from=paste0 ("subj.", c("ageL", "nsexL", "nsexageL')),
to="distance",
labels=paste0("data.", c("age", "nsex', "nsexage")),
free=FALSE, joinKey="Subject"))

it (1) {
# load Ime4's parameters

pl <— ortho

pl$subj$S$values|[c('intercept ', 'ageL'),c('intercept', 'ageL')] <—
VarCorr (fm1)$Subject

pl¥subj$S$values[c('nsexL"'),c('nsexL')] <—
VarCorr (fm1)$Subject .1

pl$subj$S$values|[c('nsexagel ') ,c('nsexageL')] <—
VarCorr (fm1)$Subject .2

pl3A$values|'distance', 'agelL'] <— fixef(fml)['age']
pl8M$values [, 'distance'] <— fixef(fml)['(Intercept)']
pl$S$values|'distance', 'distance'] <— getME(fml, "sigma") 2
ptl <— mxRun(mxModel(pl, mxComputeSequence(list (
mxComputeOnce (' fitfunction', 'fit '),

mxComputeReportExpectation ()))))

omxCheckCloseEnough (logLik (ptl), logLik (fml), le—6)

orthoFit <— mxRun(ortho)
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# OpenMz finds a better solution
omxCheckCloseEnough (orthoFit$output$fit , 436.73, le—2)

#

fm2 <— lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) +
(0 + nsexage|Subject ), data=Orthodont, REMI=TRUE)

ortho$fitfunction$profileOut <— c("ortho.A[1,2]", "ortho.M[1,1]")

(1) 1
# load Ilmed's parameters

pl <— ortho

pl$subj$S$values|[c('intercept', 'ageL'),c('intercept', 'ageL')] <—
VarCorr (fm2)$Subject

pl$subj$S$values|[c('nsexL'),c('nsexL')] <—
VarCorr (fm2)$Subject .1

pl$subj$S$values|[c( 'nsexageL'),c( 'nsexagelL')] <—
VarCorr (fm2)$Subject .2

pl3A$values|'distance', 'ageL'] <— fixef (fm2)['age']
pl$M$values [, 'distance'] <— fixef(fm2)['(Intercept)']
pl§S$values['distance','distance'] <— getME(fm2, "sigma") 2
ptl <— mxRun(mxModel(pl, mxComputeSequence(list (
mxComputeOnce( ' fitfunction', 'fit '),

mxComputeReportExpectation ()))))

omxCheckCloseEnough (logLik (ptl), logLik (fm2), le—6)

orthoFit <— mxRun(ortho)

omxCheckCloseEnough (orthoFit$output$fit , 440.43, .01)

Appendix D
MultilevelUniRandomSlopelnt.R

Copyright 2007—2016 The OpenMx Project

DI NI NN

Licensed under the Apache License, Version 2.0 (the "License');
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you may mnot use this file except in compliance with the License.

You may obtain a copy of the License at
http ://uwww. apache. org/licenses/LICENSE—2.0

Unless required by applicable law or agreed to in writing, software

distributed wunder the License is distributed on an "AS IS" BASIS,

See the License for the specific language governing permissions and

DT TR TR TR T TR N N i NI N

limitations wunder the License.

require (OpenMx)

require (nlme)

# Multilevel Long Format Test
# Author: Steve Boker
# Date: Sun Nov 29 14:06:07 EST 2009

# This script is used to test the multilevel long format
# functionality using definition wvariables as indices.
totalOccasions <— 100
totalSubjects <— 10L
set .seed (42) # repeatibility
tID <— rep(l:totalSubjects, each=totalOccasions)
trueX <— rep(rnorm(totalOccasions, mean=0, sd=2), each=totalSubjects) +
rnorm (totalOccasionsxtotalSubjects , mean=0, sd=.2)
trueB <— rep (rnorm(totalSubjects , mean=.8, sd=.3), each=totalOccasions)
tDataFrame <— data.frame(
ID=tID, X=trueX, Y=trueBxtrueX +
rnorm (totalOccasionsxtotalSubjects ,mean=0, sd=.1),trueB=trueB)

summary (tDataFrame)

manifestVars <— ¢('X", "Y")
numSubjects <— length (unique (tDataFrame$ID))

# Estimates the sum of the random and fized effects
multilevelModel2 <— mxModel("Multilevel 2",
mxMatrix ("Full", nrow=numSubjects, ncol=2,
values=c(.2,0),
free=c (TRUE, TRUE) ,
name="Rand" ,

byrow=TRUE

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
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)
mxMatrix ("Full", 2, 2,
labels=c(NA, NA,
"randrow [1,1]", NA),

free=FALSE,
name="A",
byrow=TRUE

)

mxMatrix ("Symm" , 2, 2,
values=c(.9,0,.9),
free=c(T,

F, T),
labels=c("varX",
NA, '"varY'),

name="S" ,

byrow=ITRUE

mxMatrix ("Full", 2, 2,

values=c (1,0,

0 al) )
free=FALSE,
byrow=TRUE, name="F")
mxMatrix ("Iden", 2, name="1"),
mxAlgebra (F %% solve (I-A) %% S %% t(solve(I-A)) %% t(F),
name="R" |
dimnames = list (manifestVars, manifestVars)
)
mxMatrix (" Full", nrow=1, ncol=length (manifestVars),
values=0,
free=FALSE,

labels=c(NA, "randrow [1,2]"),
dimnames=1ist (NULL, manifestVars),
name="M"
)
mxAlgebra(Rand[data.ID,] , name="randrow"),
mxFitFunctionML () ,mxExpectationNormal (covariance="R", means="M"),

mxData (tDataFrame, type="raw')

#

# Fit the model and examine the summary results.

multilevelModel2Fit <— mxRun(multilevelModel2)
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summary (multilevelModel2Fit)

lmeOut <— lme(Y~X, random= ~ X | ID, data=tDataFrame)

cbind (multilevelModel2Fit$output$estimate [1: numSubjects],
IlmeOut$coef$random$ID[,2] + ImeOut$coef§fixed [2],
trueB[seq(1,totalOccasionsx*(totalSubjects), by=totalOccasions)])

mean ( multilevelModel2Fit$output$estimate [1: numSubjects])

est <— multilevelModel2Fit$output$estimate

omxCheckCloseEnough (mean( est [1: numSubjects]) ,
IlmeOut$coef$fixed [2], 0.001)

omxCheckCloseEnough (mean( est [(1: numSubjects) 4+ (lxnumSubjects)]),
ImeOut$coef$fixed [1], 0.001)

#
# An OpenMz equivalent to the mized model

perID <— mxModel(
"perID", type="RAM", latentVars=c('int', 'slope'),
mxData(data . frame (ID=1L: totalSubjects), "raw', primaryKey="ID"),
!

mxPath(c('int', 'slope'),c('int', 'slope'), 'unique.pairs',

arrows=2,values=c(1,0,1)))

occa <— mxModel(
"occa", type="RAM", perID, manifestVars="Y", latentVars="IX",

mxData (tDataFrame, 'raw', sort=FALSE),

mxPath('Y', arrows=2, values=1),

mxPath('one', 'Y'),

mxPath('one', 'lIX', labels='data.X', free=FALSE),

mxPath('IX', 'Y'),

mxPath( 'perID.int "', 'Y', values=1, free=FALSE, joinKey='ID'),

mxPath( 'perID.slope', 'Y', labels='data.X', free=FALSE, joinKey='ID'"))
it (0) {

require (lme4)

lmerl <— lmer(Y~X + (X | ID), data=tDataFrame, REMI=FALSE)
ptl <— occa

#pt1$perID$ cholSSvalues[,] <— chol(VarCorr(lmerl)$ID)
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134 ptl1$perID$S$values|[,] <— VarCorr(lmerl)$ID

135 pt13A$values['Y', 'IX'] <— fixef (lmerl)['X']

136 pt1$M$values|,'Y'] <— fixef(lmerl)['(Intercept)"']
137 pt1$S$values|['Y', 'Y'] <— getME(lmerl, "sigma"') 2
138

139 ptl <— mxRun(mxModel(ptl, mxComputeSequence(list (
140 mxComputeOnce (' fitfunction', 'fit'),

141 mxComputeReportExpectation ()))))

142

143 omxCheckCloseEnough (logLik (pt1), logLik (lmerl), le—6)
144}

145

146 occa <— mxRun(occa)

147 # a tad better than Ilme, same as Imer

14s  omxCheckCloseEnough (occa$output$fit ,

Rampart proof-of-concept test script ported from June 2013 prototype

1 # This is the original

3 #options(error = utils

4 library (OpenMx)

5 library (mvtnorm)
7 set.seed (1)
9 more.noise <— 0

10 #more.noise <— 1

11

Appendix E

test case that Timo & I wrote back in Spring 2013.

sirecover)

12 gen.data <— function(n) {
13 data.cov <— matrix(c(1l, .2, .2, 1), byrow=TRUE, nrow=2)

—1725.954, le—2)

14 latent <— rmvnorm(n, mean=c(0,0), sigma=data.cov)
15 colnames(latent) <— c("A","'B")
16 latent <— as.data.frame(latent)

17 df <— data.frame(C=latent$A + latent $B,

18

D=latent$A — latent $B)

19 if (more.noise) {

20 df$C <— df$C + rnorm (1, sd=more.noise)
21 df$D <— df$D 4 rnorm (1, sd=more.noise)
22 }'

23 df

24}

61

# uncomment for more help with debugging
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fanout <— 5

school.data <— cbind (id=1:fanout, gen.data(fanout))
#school.data$C <— school.data$id x 1000
teacher.data <— cbind(schoolld=1:fanout, id=seq(1l,fanout™2),
gen.data (fanout™2))
#teacher.data$3C <— teacher.data$id * 100
student .data <— cbind (teacherId=seq(1,fanout”™2),
id=seq (1,fanout™3), gen.data(fanout™3))

stack.data <— function (key, upper, lower) {
for (pk in upper$id) {

mask <— lower [[key]] = pk
for (col in c¢('C','D")) {
lower [mask, col] <—
lower [mask, col] + upper[upper$id = pk,

}

lower
}
teacher.data <— stack.data("schoolld", school.data, teacher.data)
student . data <— stack.data("teacherId", teacher.data, student.data)

manifests<—c("C","'D")
latents<—c("A","B")
student <— mxModel(
"student", type="RAM",
manifestVars = manifests ,
latentVars = latents ,
mxPath (from="A" jto=c("'C",'D"), free=c(FALSE,FALSE),
value=c(1,1), arrows=1,
label=c("A TO C',"A. TOD") ),
mxPath (from="B" ;to=c("C","D"), free=c(FALSE,FALSE), value=c(1,—-1) ,
arrows=1, label=c("B. TO C","B TOD") ),
mxPath (from="A" jto=c("A","B"), free=c(TRUE,TRUE),
value=c(1,0), arrows=2,
label=c('"VAR A" ,"COV_A B") ),
mxPath (from="B" ;to=c('B"), free=c(TRUE), value=c(1l) , arrows=2,
label=c("VAR B") ),
mxPath (from="C" jto=c("'C"), free=as.logical (more.noise),
value=more . noise , arrows=2, label=c("VAR C") ),

mxPath (from="D" ;to=c('D"), free=as.logical (more.noise),

ICI]
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value=more. noise , arrows=2, label=c("VARD") ),

mxPath (from="one", to=c(manifests, latents), value=0, free=FALSE)

)s

relabel <— function(m, prefix) {
for (mat in c¢('"A","S")) {
lab <— m[[mat]]$labels
lab[!is.na(lab)] <— pasteO(prefix, lab[!is.na(lab)])
m[[mat]|]$labels <— lab

}

m

teacher <— relabel (mxModel(student , name="teacher"), "tea ")
school <— relabel (mxModel(student , name="school"), "sch ")

student <— relabel (student, "st_")

school <— mxModel(
school ,

mxData(school.data, type="raw', primaryKey="id", sort=FALSE))

teacher <— mxModel(
teacher , school,
mxData(teacher.data, type="raw", primaryKey="id", sort=FALSE),
mxPath('school .C', 'A', free=FALSE, value=1, joinKey="schoolld"))

student <— mxModel(
student , teacher ,
mxData(student .data, type="raw", primaryKey="id", sort=FALSE),
mxPath('teacher .C', 'A', free=FALSE, value=1, joinKey="teacherId"))

#student$ezpectationSverbose <— 1L

student$expectation$.rampart <— OL
ptl <— mxRun(mxModel(
student ,
mxComputeSequence (list (
mxComputeOnce( ' fitfunction', 'fit '),
mxComputeNumericDeriv (checkGradient=FALSE,
iterations=2, hessian=FALSE),
mxComputeReportDeriv (),

mxComputeReportExpectation ()))))
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student$expectation$.rampart <— as.integer (NA)
pt2 <— mxRun(mxModel(
student ,
mxComputeSequence (list (
mxComputeOnce( ' fitfunction', 'fit '),
mxComputeNumericDeriv (checkGradient=FALSE,
iterations=2, hessian=FALSE),
mxComputeReportDeriv (),
mxComputeReportExpectation ()))))

omxCheckCloseEnough (pt2$expectation$debug$rampartUsage ,
c¢((fanout —1)xfanout ™2, (fanout—1)xfanout), 1)

omxCheckCloseEnough (pt2$expectation$debug$numGroups, 3)

if (0) {
layout <— pt2$expectation$debug$layout
head (layout [layout $group==3, | ,n=20)

omxCheckCloseEnough (ptl1$output$fit , pt2foutput$fit , le—7)
omxCheckCloseEnough (pt1$output$gradient , pt2$output$gradient , le—6)

student <— mxRun(student)
if (!more.noise) {
omxCheckCloseEnough (student$output$fit , 1055.161, le—2)

} else {
omxCheckCloseEnough (student$output$fit , 1132.713, le—2) # but code RED

¥
#print (student$expectation$debug$rampartUsage)
it (0) 1

ex <— student$expectation

eo = ex$output

ed = ex$debug

ed$layout

got <— mxGenerateData (student)
omxCheckEquals (names(got), c¢("school", "teacher"', "student"))
omxCheckEquals (colnames (got [[ 'school ']]),

colnames (student$school$data$observed))
omxCheckTrue(all (got [[ 'school']]$C != student$school$data$observed$C))
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omxCheckError (mxGenerateData (student , 10, returnModel=TRUE),
paste (" Specification of the number of rows",

"is not supported for,relational models"))

got <— mxGenerateData (student, returnModel=TRUE)
omxCheckTrue(is (got, "MxModel"))

omxCheckTrue(all (got$school$data$observed$C != student$school$data$observed$C))

Appendix F

univACErSEM.R
#
# Copyright 2007—2016 The OpenMx Project
#
# Licensed under the Apache License, Version 2.0 (the "License');
# you may mot use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http ://uwww. apache. org/licenses/LICENSE—2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed wunder the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#

# Author: Michael D. Hunter

# Date: 2016—02—-03

# Filename: univACErSEM.R

# Purpose: Define a behavior genetics single—trait ACE model as a
# Relational SEM (rSEM)

#

#

require (OpenMx)

#*
# Prepare Data
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33 data("twinData", package="OpenMx")

3 selVars <— c¢('bmil', 'bmi2', 'zyg')

35 wideData <— subset (twinData, zyg %in% c(1, 3), selVars)

36 wideData$rel <— c¢(1, NA, .5)[wideData$zyg]

37 wideData$famID <— 1:nrow(wideData)

33 tallData <— reshape(wideData, varying=c('bmil', 'bmi2'), v.names='bmi',

39 timevar="twin', times=1:2, idvar='famID', direction="'long")
40 tallDataS$personlD <— Il:nrow(tallData)

a1 tallData$relsqrt <— sqrt(tallData$rel)

a2 tallData$relu <— sqrt(l—tallData$rel)

43 tallData <— tallData[order(tallData$famID, tallData$twin),

44 c('famID', 'personID', 'twin', 'rel',

45 "relsqrt ', 'relu', 'bmi')]

46 wData <— tallData

a7 bData <— tallData[!duplicated (tallData$famID),

48 c('famID', 'rel', 'relsqrt')]

49

50

51 #
52 # Between Model
53

54 bModel <— mxModel(

55 "between', type="RAM" ,

56 mxData(type="raw", observed=bData, primaryKey="famID"),

57 latentVars = ¢('C", "AC"),

58 mxPath("C", arrows=2, values=1, labels="v_C", lbound=le—6),
59 mxPath ("AC", arrows=2, values=1, labels="v_A" 6 lbound=le—6))
60

61

62 #

63 # Within Model

64

65 wModel <— mxModel(

66 "within', type="RAM", bModel,

67 mxData(type="raw", observed=wData, sort=FALSE),

68 manifestVars = 'bmi',

69 latentVars = ¢('E", "AU"),

70 mxPath (from="one" , to="bmi", arrows=1, free=TRUE, values=20, labels="mean"),
71 mxPath('E', arrows=2, values=1, labels="v_E", lbound=le—6),

(
72 mxPath ('AU', arrows=2, values=1, labels="v_A" 6 lbound=le-6),
73 mxPath('AU', 'bmi', values=1, labels='data.relu', free=FALSE),
('E'", '"bmi', free=FALSE, values=1),

(

'between.C', 'bmi', values=1,

74 mxPath

75 mxPath



MULTILEVEL SEM

76

77

78

79

80

81

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

111

112

113

114

115

116

117

118

free=FALSE, joinKey="famID"),
mxPath( 'between . AC', 'bmi', values=1, arrows=1, free=FALSE,
labels='data.relsqrt', joinKey="famID"))

#

67

# Run 'em
wRun <— mxRun(wModel)

#
# Take a look

summary (wRun)
# Cf. inst/models/passing/univACEP.R

#Mx answers hard—coded
#1: Heterogeneity Model
Mx.A <— 0.6173023

Mx.C <— 5.595822e—14
Mx.E <— 0.1730462

Mx.M <— 21.39293

Mx.LL ACE <— 4067.663

wparam <— mxEval(rbind (v_A, v_C, v_E, mean), wRun)
mparam <— rbind (Mx.A, Mx.C, Mx.E, Mx.M)

omxCheckCloseEnough (wparam, mparam, .001)

omxCheckCloseEnough(—2%logLik (wRun), Mx.LL ACE, .001)

#

# Same model, but with constant between—level transition matrix

bLatent <— ¢('C', 'AC")

bModel2 <— mxModel(
"between ',
mxData(type="raw"', observed=bData, primaryKey="famID"),
latentVars = bLatent,

mxMatrix (name="F" | nrow=0, ncol=2, dimnames=1list (NULL, bLatent)),

mxAlgebra(data.rel *x v_A, name="rel_v_A"),

mxMatrix ( "Symm" , name="S", nrow=2, ncol=2, dimnames=list (bLatent,bLatent),



MULTILEVEL SEM 68

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

free=c (TRUE,FALSE ,FALSE), labels=c("v_C", NA, "rel v A[1,1]"),
values=c(1,0,1), lbound=c(le—6,NA,1e—6)),

mxMatrix (name="A" | nrow=2, ncol=2, values=0,
dimnames=1ist (bLatent ,bLatent)),

mxFitFunctionML (),

mxExpectationRAM () )

#
# Within Model

wModel2 <— mxModel (
'"within', type="RAM", bModel2,
mxData(type="raw", observed=wData, sort=FALSE),

manifestVars = 'bmi',
latentVars = ¢('E", "AU"),
mxPath (from="one" , to="bmi", arrows=1, free=TRUE,

values =20, labels="mean"),
mxPath('E', arrows=2, values=1, labels="v_E", lbound=le—6),
mxPath( 'AU', arrows=2, values=1, labels="v_A", lbound=le—6),
mxPath('AU', 'bmi', values=1, labels='data.relu', free=FALSE),
mxPath('E', 'bmi', free=FALSE, values=1),
mxPath( 'between.C', 'bmi', values=1,

free=FALSE, joinKey="famID"),
mxPath( 'between . AC', 'bmi', values=1,

free=FALSE, joinKey="famID"))

# This isn 't a huge speed—up because the per—cluster covariance matric
# 1s already small in the wversion above.
wRun2 <— mxRun(wModel2)

wparam <— mxEval(rbind (v_A, v_C, v_E, mean), wRun2)
mparam <— rbind (Mx.A, Mx.C, Mx.E, Mx.M)

omxCheckCloseEnough (wparam, mparam, .001)
omxCheckCloseEnough(—2+logLik (wRun2), Mx.LL ACE, .001)

omxCheckCloseEnough (wRun2$ expectation$debug$rampartUsage, 867, 1)

Appendix G

mplus-ex9.6.R

# MPLUS: TWO-LEVEL CFA WITH CONTINUOUS FACTOR INDICATORS AND COVARIATES
# See https://www. statmodel.com/usersguide/chapter9.shtml
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4 library (OpenMx)

6 set.seed (1)
7 ex96 <— suppressWarnings(try (read.table("models/nightly/data/ex9.6.dat")))
s if (is(ex96, "try—error")) ex96 <— read.table("data/ex9.6.dat")

10 ex963V8 <— as.integer (ex963V8)

11 bData <— ex96[!duplicated (ex968V8), c('V7', 'V8')]

12 colnames(bData) <— c('w', 'clusterID")

13 wData <— ex96[,—match(c('V7"'), colnames(ex96))]

14 colnames (wData) <— c(pasteO('y"', 1:4), paste0('x', 1:2), 'clusterID")
15

16 bModel <— mxModel(

17 '"between ', type="RAM'",

18 mxData(type="raw"' , observed=bData, primaryKey="clusterID"),
19 latentVars = c¢("lw", "fb"),

20 mxPath("one", "lw'", labels="data.w"', free=FALSE),

21 mxPath("fb", arrows=2, labels="psiB"),

22 mxPath("lw", 'fb', labels="phil"))

23

24 wModel <— mxModel(

25 "within', type="RAM", bModel,

26 mxData(type="raw", observed=wData, sort=FALSE),

27 manifestVars = paste0('y', 1:4),

28 latentVars = c¢('fw', paste0("xe", 1:2)),

29 mxPath("one", paste0('y', 1:4), values=runif(4),

30 labels=paste0("gam0", 1:4)),

31 mxPath("one", paste0('xe', 1:2),

32 labels=paste0('data.x',1:2), free=FALSE),

33 mxPath (paste0('xe', 1:2), "fw",

34 labels=paste0 ('gam', 1:2, '1'")),

35 mxPath('fw', arrows=2, values=1.1, labels="varFW"),

36 mxPath('fw', pasteO('y', 1:4), free=c(FALSE, rep(TRUE, 3)),
37 values=c(1,runif(3)), labels=paste0("loadW",6 1:4)),

38 mxPath( 'between.fb', paste0('y', 1:4), values=c(l,runif(3)),
39 free=c(FALSE, rep(TRUE, 3)), labels=paste0("loadB", 1:4),
40 joinKey="clusterID")

a1 mxPath (paste0('y', 1:4), arrows=2, values=rlnorm (4),

42 labels=paste0 ("thetaW", 1:4)))

43

44 mle <— structure (c(
45 0.9989, 0.9948, 1.0171, 0.9809, 0.9475, 1.0699,
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1.0139, 0.9799, —-0.0829, —0.0771, —0.0449, —-0.0299, 0.9728, 0.5105,
0.9595, 0.9238, 0.9489, 0.361, 0.3445),
.Names = c¢("loadW2", "loadW3", "loadW4" 6 "thetaW1l",
"thetaW2", "thetaW3"', "thetaW4', 'varFW",
"gam01" | "gam02', "gam03", "gam04', "gamll"' 6 "gam2l',
"loadB2", "loadB3", "loadB4"', "psiB', "phil"))

if (1) {

ptl <— omxSetParameters(wModel, labels=names(mle), values=mle)
# ptiSexpectation$. forceSingleGroup <— TRUFE
# ptiSexpectation$.rampart <— 0L

plan <— mxComputeSequence (list (

mxComputeOnce (' fitfunction', 'fit'),

# mzComputeNumericDeriv(checkGradient=FALSE,
# hessian=FALSE, iterations=2),

mxComputeReportDeriv (),
mxComputeReportExpectation ()

))

ptl <— mxRun(mxModel(ptl, plan))

omxCheckCloseEnough (ptl1$output$fit , 13088.373, le—2)

if (1) {
# wModel <— mzRun(mzModel(wModel, mxzComputeGradientDescent(verbose=2L)))
wModel <— mxRun(wModel)

summary (wModel )

omxCheckCloseEnough (wModel$output$fit , 13088.373, le—2)
omxCheckCloseEnough (mle [names (coef (wModel) )], coef(wModel), le—3)
omxCheckCloseEnough (wModel$expectation$debug$rampartUsage, 890)
} else {
options (width=120)
plan <— mxComputeSequence (list (
mxComputeOnce( ' fitfunction', 'fit'),
mxComputeNumericDeriv (checkGradient=FALSE,
hessian=FALSE, iterations=2),
mxComputeReportDeriv (),
mxComputeReportExpectation ()

)

wModel$expectation$.rampart <— 2L
# wModel$ expectation$ scaleOverride <— c(6, 1)
rotated <— mxRun(mxModel (wModel, plan))
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wModel$expectation$.rampart <— OL
square <— mxRun(mxModel (wModel, plan))

ex <— rotated$expectation

eo <— ex$output

ed <— ex$debug

print (ed$rampartUsage)

print (abs(rotated$output$fit — squareSoutput$fit))

print (max(abs(rotated$output$gradient — square$output$gradient)))

Appendix H

multilevelLatentRegression2.R

library (OpenMx)
set.seed (1)
numlIndicators <— 4

numDistricts <— 5
numSchools <— 4

numTeachers <— 3
numStudents <— 5

genData <— function (upper, fanout, keyname) {
lowerData <— NULL
for (sx in 1l:nrow(upper)) {

extraFanout <— sample.int (fanout, 1)

# extraFanout <— 0L
lowerData <— rbind (lowerData, data.frame (
upper=upper [sx,1], skill=rnorm(fanout + extraFanout
mean=upper [sx, 'skill'])))

}

colnames (lowerData )[[1]] <— colnames(upper )[[1]]
lowerData [[ keyname]] <— l:nrow(lowerData)
lowerData <— lowerData[,c(3,1,2)]

lowerData

districtData <— data.frame(districtID=1:numDistricts ,

skill=rnorm (numDistricts))
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schoolData <— genData(districtData , numSchools, 'schoolID"')
teacherData <— genData(schoolData, numTeachers, 'teacherID')
studentData <— genData(teacherData, numStudents, 'studentID')

createlndicators <— function(latentSkill , indicatorVariance) {

if (missing(indicatorVariance)) {

}

ind <— matrix(NA, length(latentSkill), length(indicatorVariance))

indicatorVariance <— rep(l, numlndicators)

#rinorm (numlIndicators) | 8

for (ix in 1l:length(latentSkill)) {

}

ind [ix ,] <—
sapply (indicatorVariance ,

function (sd) rnorm (1, mean=latentSkill [ix],

# per indicator mean
# ind <— t(t(ind) + runif(numliIndicators,min=—1maz=1))

colnames (ind) <— pasteO('i', 1l:length(indicatorVariance))

as.data.frame (ind)

districtData <— cbind(districtData ,

schoolData <— cbind (schoolData, createlndicators(schoolData$skill))
teacherData <— cbind (teacherData, createlndicators(teacherData$skill))
studentData <— cbind (studentData, createlndicators(studentData$skill))

studentData$i4 [runif (nrow (studentData)) > .8] <— NA
#teacherData$ij [runif(nrow(teacherData)) > .8] <— NA

mkSingleFactor <— function (latent=c()) {
mxModel ( 'template ', type="RAM',

manifestVars = paste0('i', l:numlndicators),
latentVars = c¢("skill",latent),
mxPath (from="skill ', arrows=2, labels="Var",

values=rlnorm (1), lbound=.01),
mxPath (from=paste0('i',l:numlndicators), arrows=2,

values=rlnorm (1), labels="Err", lbound=.01),

mxPath (from="one" , to=paste0('i',l:numlIndicators),
free=TRUE, values=rnorm(4)),
mxPath (from="'skill ', to=paste0('i',l:numlndicators),

labels=paste0 ('L',l:numlIndicators), lbound=0,
values=c (1, runif(numlIndicators—1, .5,1.5)),
free=c(FALSE, rep (TRUE, numIndicators —1)))

72

sd=sd))

createIndicators (districtData$skill))
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singleFactor <— mkSingleFactor (NULL)

relabel <— function(m, prefix) {
for (mat in c("A","S")) {
lab <— m[[mat]]$labels
lab[!is.na(lab)] <— pasteO(prefix, lab[!is.na(lab)])
m[[mat]|]$labels <— lab

}

mxModel (m, name=prefix)

}

dMod <— mxModel(relabel (mkSingleFactor (), "district"),
mxData (type="raw" , observed=districtData ,
primaryKey="districtID", sort=FALSE))

schMod <— mxModel(relabel (mkSingleFactor (), "school"), dMod,
mxData(type="raw" , observed=schoolData ,
primaryKey="schoolID" , sort=FALSE),
mxPath (from="'district.skill', to='skill',
joinKey="districtID", values=runif(1)))

tMod <— mxModel (relabel (singleFactor , "teacher"), schMod,
mxData(type="raw" , observed=teacherData ,
primaryKey="teacherID" | sort=FALSE),
mxPath (from="'school. skill ', to='skill',
joinKey="schoollD", values=runif(1)))

sMod <— mxModel(relabel (singleFactor , "student"), tMod,
mxData(type="raw"' , observed=studentData ,
primaryKey="studentID" , sort=FALSE),
mxPath (from="'teacher.skill ', to='skill "',
joinKey="teacherID", values=runif(1)))

it (0)
options (width=120)
plan <— mxComputeSequence (list (
mxComputeOnce (' fitfunction', 'fit'),
mxComputeNumericDeriv (checkGradient=FALSE,
hessian=FALSE, iterations=2),
mxComputeReportDeriv (),
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mxComputeReportExpectation ()

)

sMod$expectation$.rampart <— OL
square <— mxRun(mxModel(sMod, plan))

sMod$expectation$.rampart <— 2L
rotated <— mxRun(mxModel(sMod, plan))

ex <— square$expectation

ex <— rotated$expectation

eo <— ex$output

ed <— ex$debug

print (ed$layout)

print (ed$rampartUsage)

print (ed$numGroups)

table (ed$layout$group)

head (ed$layout [ed$layout$group =— 1, ], n=20)
#print (round (ed$A[1:20,1:20],2))
#print (round (ed$rA[1:20,1:20],2))
#print (ed$mean)

#omzxCheckCloseEnough (ed$rampartUsage, c¢(11064L, 817L, 198L, 2L), 1L)
print (abs(rotated$output$fit — square$output$fit))
print (max(abs(rotated$output$gradient — square$output$gradient)))
# omzCheckCloseEnough (rotated$output$gradient ,
# square$outputSgradient , 1le—4)
¥

fitl <— mxRun(sMod)

summary (fit1)

omxCheckCloseEnough ( fit1$output$fit , 17212.46, .01)
omxCheckCloseEnough (max(abs (fitl$output$gradient)), 0, .01)
ed <— fitl$expectation$debug
omxCheckCloseEnough (ed$rampartUsage, ¢(902, 97, 21))
omxCheckCloseEnough (ed$numGroups, 8L)
omxCheckCloseEnough (
sapply (unique (ed$layout$group),
function (x) length (unique(ed$layout [ed$layout$group=x, 'copy']))),
¢(1L, 805L, 97L, 94L, 15L, 4L, 6L, 3L))

plan <— mxComputeSequence (list (
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mxComputeOnce( 'expectation ', 'distribution', 'flat'),

mxComputeReportExpectation ()
)
slow <— sMod
slow$expectation$.rampart <— OL
slowEx <— mxRun(mxModel(slow, plan))
ed <— slowEx$expectation$debug
omxCheckTrue(length (ed$rampartUsage)==0)
# each (entire) district is an independent unit
omxCheckCloseEnough (sapply (
unique (ed$layout$group),

5

function (x) length (unique(ed$layout[ed$layout$group=—x, 'copy']))),

rep(1L,5))

if (0) { # this takes about 1.5 hours

#options (width=120)

plan <— mxComputeSequence (list (
mxComputeOnce (' fitfunction', 'fit'),
mxComputeNumericDeriv (checkGradient=FALSE,

iterations=2, verbose=2L),

mxComputeReportDeriv (),
mxComputeReportExpectation ()

)

slow <— omxSetParameters(sMod, labels=names(coef(fitl)),

values=coef (fitl))
slow$expectation$.rampart <— OL
slowFit <— mxRun(mxModel(slow, plan))

omxCheckTrue(all (eigen (slowFit$output$hessian)$val > 0))
omxCheckCloseEnough (slowFit$output$fit , fitl$output$fit, 65)

omxCheckCloseEnough (max(abs (slowFit$output$gradient)), 0, 60)

omxCheckCloseEnough (max(abs (slowFit$output$hessian %%

solve (fitl1$output$hessian))), 0,

Appendix I

rampart.R

library (OpenMx)

library (mvtnorm)

#set.seed (1) # $\theta_1$

1.5)
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set.seed (3) # $\|theta 2%
numlIndicators <— 5

numSchools <— 7
numTeachers <— 3
numStudents <— 5

genStructure <— function (upper, fanout, keyname) {

lowerData <— NULL
for (sx in 1:nrow(upper)) {

extraFanout <— sample.int (fanout, 1)

lowerData <— rbind (lowerData, data.frame(

upper=upper [sx,1], skill=rnorm(fanout + extraFanout,
mean=upper [sx, 'skill'])))

}
colnames (lowerData )[[1]] <— colnames(upper)[[1]]
lowerData [[ keyname || <— 1l:nrow(lowerData)
lowerData <— lowerData[,c(3,1,2)]

lowerData

dataEnv <— new.env ()

assign ("schoolData", data.frame(schoolID=1:numSchools,

skill=rnorm (numSchools)), envir=dataEnv)

assign ("teacherData", genStructure(dataEnv$schoolData ,

numTeachers, 'teacherID'), envir=dataEnv)
assign ("studentData", genStructure(dataEnv$teacherData ,

numStudents, 'studentID'), envir=dataEnv)

createlndicators <— function(latentSkill , indicatorMean, indicatorVariance) {

if (missing(indicatorMean)) {

indicatorMean <— runif(numlIndicators ,min=—1max=1)
}
if (missing(indicatorVariance)) {

indicatorVariance <— rlnorm(numlndicators) / 8
}
ind <— matrix (NA, length(latentSkill), length(indicatorVariance))
for (ix in 1:length(latentSkill)) {

ind [ix ,] <— sapply(
indicatorVariance ,

function (sd) rnorm (1, mean=latentSkill [ix], sd=sd))
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}
ind <— t(t(ind) + indicatorMean)

colnames (ind) <— paste0('i', 1l:length(indicatorVariance))

as.data.frame(ind)

for (tbl in pasteO(c('school', 'teacher', 'student'), 'Data')) {
dataEnv [[tbl]] <— cbind(dataEnv [[tbl]],
createlndicators (dataEnv [[tbl]]$skill))

dataEnv$studentData$il [runif (nrow(dataEnv$studentData)) > .8] <— NA
#teacherData$if [runif(nrow(teacherData)) > .8] <— NA

mkSingleFactor <— function (latent=c()) {
mxModel ( 'template ', type='RAM',

manifestVars = paste0('i', l:numlndicators),
latentVars = c¢("skill",latent),
mxPath (from="skill ', arrows=2, labels="Var",

values=rlnorm (1), lbound=.01),
mxPath (from=paste0 ('i',l:numIndicators), arrows=2,

values=rlnorm (1), labels="Err", lbound=.01),

mxPath (from="one", to=paste0('i',l:numlndicators),
free=TRUE, values=rnorm(4)),
mxPath (from="'"skill ', to=paste0('i',l:numlndicators),

labels=paste0 ('L',1:numlIndicators), lbound=0,
values=c (1, runif(numlIndicators—1, .5,1.5)),
free=c(FALSE, rep (TRUE, numIndicators —1)))

singleFactor <— mkSingleFactor (NULL)

relabel <— function(m, prefix) {
for (mat in c('"A","S")) {
lab <— m[[mat]]$labels
lab[!is.na(lab)] <— pasteO(prefix, lab[!is.na(lab)])
m[[mat]|]$labels <— lab

}

mxModel (m, name=prefix)

}

schMod <— mxModel(relabel (mkSingleFactor (), "school"),

7
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mxData(type="raw", observed=dataEnv$schoolData ,
primaryKey="schoollD", sort=FALSE))

tMod <— mxModel (relabel (singleFactor , "teacher"), schMod,
mxData(type="raw"' , observed=dataEnv$teacherData ,
primaryKey="teacherID" , sort=FALSE),
mxPath (from="school. skill ', to='skill',
joinKey="schoolID", values=runif(1)))

sMod <— mxModel(relabel (singleFactor , "student'), tMod,
mxData(type="raw"' , observed=dataEnv$studentData ,
primaryKey="studentID" | sort=FALSE),
mxPath (from="'teacher.skill ', to='skill',
joinKey="teacherID", values=runif(1)))
interest <— c¢('wallTime', 'infoDefinite ',

"conditionNumber ', 'fit', 'timestamp')

if (1) {
result <— expand.grid (rampart=c (TRUE,FALSE), rep=1:200, gradient=NA)
for (el in names(coef(sMod))) result[[el]] <— NA
for (il in interest) result[[il]] <— NA

} else {

load (" /tmp/rampart.rda")

plan <— mxComputeSequence (list (
mxComputeGradientDescent () ,
mxComputeNumericDeriv(iterations=2L),
mxComputeHessianQuality () ,
mxComputeReportDeriv ()

for (rrow in l:nrow(result)) {

if (!is.na(result[rrow, 'wallTime'])) next

# if ('result[rrow, 'rampart']) next

if (result[rrow, 'rampart'|==FALSE &&
Iresult [result$rep = result [rrow, 'rep'] &
result $rampart==TRUE, 'infoDefinite']) {
print ("skip")

next



MULTILEVEL SEM 79

134

135

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

160

161

162

163

164

165

166

167

168

170

171

172

173

174

175

176

set.seed (result [rrow, 'rep'])
trial <— mxGenerateData(sMod, returnModel=TRUE)

if (result[rrow, 'rampart']) {
trial$expectation$.rampart <— as.integer (NA)
} else {
trial$expectation$.rampart <— OL
trial$fitfunction$parallel <— TRUE

}

trialFit <— mxRun(mxModel(trial , plan))

result [rrow, names(coef(trialFit))] <— coef(trialFit)
result [rrow, interest] <— trialFit$output|[interest ]

result [rrow, 'gradient'] <— max(abs(trialFit$output$gradient))

save (result , file="/tmp/rampart.rda")

sum(!is.na(result [result$rampart=—TRUE, 'conditionNumber']))
!

sum(!is.na(result [result $rampart=—FALSE, 'conditionNumber']))

cnMask <— (result$conditionNumber <
median (result $conditionNumber , na.rm=TRUE) +
5 x mad(result$conditionNumber, na.rm=TRUE))
bothOkay <— cnMask[result$rampart==TRUE] & cnMask[result$rampart=FALSE]
length (which (bothOkay))

good <— result [result$rep %in% which (bothOkay) ,]

good[,c("rep", 'rampart', "conditionNumber", 'gradient')]

cor (good [ good$rampart=TRUE, "conditionNumber"],
good [good $rampart=FALSE, " conditionNumber" |)

cor (good [ good$rampart=—TRUE, " fit "],

[

good [good$rampart=—FALSE, " fit "])

ood [ good$rampart=—TRUE,
]) — coef(sMod), "2"),

summary <— c(rMean=norm (colMeans (g
)
good [ good$rampart=—FALSE,
)
[
)
[

names ( coef (sMod
fMean=norm (colMeans
]) — coef(sMod), "2"),
good$rampart=—TRUE,
], 2, var), "2"),
good$rampart=—FALSE,

(

)

(

names ( coef (sMod )
rVar=norm (apply (good
)

d

(
names ( coef (sMod
fVar=norm (apply (goo
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names (

print (summary)

it (0) {
library (ggplot2

80

coef(sMod))], 2, var), "2"))

)

ggplot (good) 4+ geom histogram (aes(wallTime)) +

facet_wrap (

~rampart , scales="free_x")

}
Appendix J
boker2009Compare.R
library (nlme)
library (OpenMx)
options (width=120)
mxOption (NULL, 'Optimality tolerance', "le—13")

load ("e2Pairing.rda")
load ("tFrame.rda")

if (1) {
# otherwise OpenMzx

has trouble finding the same mode as nlme

for (f in c('selfyRotFV ', 'otheryRotFV ', 'selfxRotFV ', 'otherxRotFV')) {

tFrame [[f]] <—

log(1+tFrame [[f]])

#

original analysis

# table 1: head anterior—posterior RMS angular wvelocity
headAPlme <— lme(selfyRotFV ~ selfSex + otherSex + isConfed +
dampHead + dampFace 4+ dampVoice +
otheryRotFV + confedByOtherSex + confedByDampHead +

random= ~ 1

# table 2: head lateral

confedByDampFace + confedByDampVoice,
| naivelD, data=tFrame, method="ML")

RMS angular wvelocity

headLlme <— lme (selfxRotFV ~ selfSex + otherSex + isConfed +
dampHead + dampFace 4+ dampVoice +
otherxRotFV + confedByOtherSex + confedByDampHead +
confedByDampFace + confedByDampVoice,

random= ~ 1

| naiveID, data=tFrame, method="ML")
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# rSEM

for (col in c('naivelD', 'confedID')) {
e2Pairing [[col]] <— as.integer (e2Pairing [[col]])

pairHash <— e2Pairing$confedID x 100L + e2Pairing$naivelD
pairData <— e2Pairing|[!duplicated (pairHash),
c¢('naivelD', 'confedID', 'naiveSex'
pairData <— c¢bind (pairID=pairData$confedID x 100L +
pairData$naivelD , pairData)
pairData$oppositeSex <—

81

, 'confedSex')]

as.numeric (pairData[, 'naiveSex'] != pairData|, 'confedSex'])

response <— c("selfxRotFV" 6 "selfyRotFV")
zeroVarPred <— c¢(paste0('damp', c('Head', 'Face','Voice'))

)

paste0 (c('self', 'other'), 'Sex'), 'isConfed',

"confedByOtherSex", "confedByDampHead" ,
"confedByDampFace", "confedByDampVoice")

tFrame$pairID <— as.integer (tFrame$confedID % 100L + tFrame$naivelD)

naiveIndModel <— mxModel(

model="naive", type="RAM",

latentVars=c('xIntercept', 'yIntercept'),

mxData(e2Pairing [ ! duplicated (e2Pairing$naivelD),

¢('naivelD "), drop=FALSE],

type="raw", primaryKey="naivelD"),

mxPath('xIntercept', arrows=2, values=1,
lbound=le—3, labels="naiveVarylnt_x"),

mxPath('yIntercept', arrows=2, values=1,

lbound=le—3, labels="naiveVarylnt_y"))

confedEmptyModel <— mxModel (
model="confed", type="RAM",
latentVars=c('xIntercept', 'yIntercept'),
mxData(e2Pairing [ ! duplicated (e2Pairing$confedID),
c¢('confedID "), drop=FALSE],
type="raw", primaryKey="confedID"),
mxPath('xIntercept', arrows=2, values=0, free=FALSE,
mxPath('yIntercept', arrows=2, values=0, free=FALSE,

pairModelOrig <— mxModel(

lbound=le—3),
lbound=1le—3))
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model="pair", type="RAM", naivelndModel, confedEmptyModel,
latentVars=c( 'naiveXIntercept', 'confedXIntercept',
'naiveYIntercept', 'confedYIntercept',
"oppositeSex "),

mxData(pairData, type="raw', primaryKey="pairID"),

mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
mxPath( 'naive.xIntercept', 'naiveXIntercept',

free=FALSE, values=1, joinKey="naivelD"),
mxPath( 'naive.yIntercept', 'naiveYIntercept',

free=FALSE, values=1, joinKey="naivelD"),
mxPath('confed.xIntercept', 'confedXIntercept',

free=FALSE, values=1, joinKey="confedID"),
mxPath('confed.yIntercept', 'confedYIntercept',

free=FALSE, values=1, joinKey="confedID"))

oneMinuteOrig <— mxModel(
model="original", type="RAM", pairModelOrig,
manifestVars=response ,
latentVars=c (zeroVarPred, "otheryRotFV"', "otherxRotFV"),
mxData (tFrame, type="raw', sort=FALSE),
mxPath('one', zeroVarPred, free=FALSE,
labels=paste0( 'data.', zeroVarPred)),
mxPath('one', c¢("otheryRotFV", "otherxRotFV"), free=FALSE,
labels=paste0('data.', c("otheryRotFV", "otherxRotFV"))),
mxPath( 'pair.naiveXIntercept', 'selfxRotFV', free=FALSE,
values=1, joinKey="pairID"),
mxPath (' pair.naiveYIntercept', 'selfyRotFV ', free=FALSE,
values=1, joinKey="pairID"),
mxPath (response , arrows=2, connect="single"),
mxPath('one', response, labels=paste((response, ' _int")),
mxPath ( 'otherxRotFV', 'selfxRotFV ', labels="otherxRotFV_on_x"),
mxPath ('otheryRotFV ', 'selfyRotFV ', labels="otheryRotFV_on_ y"),
mxPath (zeroVarPred, c("selfyRotFV"), connect="all.pairs",
_on_y")),
mxPath (zeroVarPred, c¢("selfxRotFV"), connect="all.pairs",

labels=paste0 (zeroVarPred ,
labels=paste0 (zeroVarPred, " on x")))

oneMinuteOrig$§S$values [response ,response| <— diag(length(response))
oneMinuteOrig$expectation$.ignoreDefVarsHack <— TRUE

oneMinuteOrigFit <— mxRun(oneMinuteOrig) #, checkpoint=TRUE)
#summary (oneMinuteOrigFit)
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omxCheckCloseEnough (logLik (oneMinuteOrigFit ),
—1207.711, le-2)
omxCheckCloseEnough (logLik (oneMinuteOrigFit) —

83

(logLik (headLlme) + logLik (headAPlme)), 0, le—6)

# comparison models
# covariance between x & y but mo wvarying intercept for naive

oneMinuteV2 <— mxModel (
model="xyCov", type="RAM", pairModelOrig,
manifestVars=response ,
latentVars=c(zeroVarPred, "otheryRotFV"' 6 "otherxRotFV"),
mxData (tFrame, type="raw', sort=FALSE),
mxPath('one', zeroVarPred, free=FALSE,
labels=paste0('data.', zeroVarPred)),
mxPath('one', c¢("otheryRotFV", "otherxRotFV"), free=FALSE,
labels=paste0('data.', c("otheryRotFV", "otherxRotFV")))
mxPath('pair.naiveXIntercept', 'selfxRotFV ', free=FALSE,
values=1, joinKey="pairID"),
mxPath ('pair.naiveYIntercept', 'selfyRotFV ', free=FALSE,
values=1, joinKey="pairID"),
mxPath (response , arrows=2, connect="unique.pairs"),
mxPath('one', response, labels=paste0(response, " _int")),
mxPath ( 'otherxRotFV', 'selfxRotFV ', labels="otherxRotFV_on_x"),
mxPath ( 'otheryRotFV', 'selfyRotFV ', labels="otheryRotFV_on_y"),
mxPath (zeroVarPred , c("selfyRotFV"), connect="all.pairs",
_on_y")),
mxPath (zeroVarPred, c("selfxRotFV"), connect="all.pairs",

labels=paste0 (zeroVarPred ,
labels=paste0 (zeroVarPred, "_on_x")))

oneMinuteV2§S$values [response ,response| <— diag(length(response))
oneMinuteV2§S$labels [1,2] <— 'xyCov'

oneMinuteV2§S$labels [2,1] <— 'xyCov'
oneMinuteV2$expectation$.ignoreDefVarsHack <— TRUE
oneMinuteV2Fit <— mxRun(oneMinuteV2) #, checkpoint=TRUE)

naiveModel <— mxModel(
model="naive", type="RAM",
latentVars=c('xIntercept', 'ylIntercept'),
mxData(e2Pairing [ ! duplicated (e2Pairing$naivelD),
c¢('naivelD '), drop=FALSE],

type="raw", primaryKey="naivelD"),
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161 mxPath('xIntercept', arrows=2, values=1,
162 lbound=le—3, labels="naiveVarylnt_x"),
163 mxPath('yIntercept', arrows=2, values=1,
164 lbound=le—3, labels="naiveVarylnt_y"))
165
166 confedModel <— mxModel(
167 model="confed", type="RAM",
168 latentVars=c('xIntercept', 'ylIntercept'),
169 mxData(e2Pairing [ ! duplicated (e2Pairing$confedID),
170 c¢('confedID '), drop=FALSE],
171 type="raw", primaryKey="confedID"),
172 mxPath('xIntercept', arrows=2, values=1,
173 lbound=le—3, labels="confedVarylnt_x"),
174 mxPath('yIntercept', arrows=2, values=1,
175 Ibound=le—3, labels="confedVarylnt_y"))
176
177 pairModel <— mxModel (
178 model="pair", type="RAM", naiveModel, confedModel,
179 latentVars=c( 'naiveXIntercept', 'confedXIntercept',
180 'naiveYIntercept', 'confedYIntercept',
181 "oppositeSex "),
182 mxData(pairData, type="raw', primaryKey="pairID"),
183 mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
184 mxPath( 'naive.xIntercept', 'naiveXIntercept',
185 free=FALSE, values=1, joinKey="naivelD"),
186 mxPath( 'naive.yIntercept', 'naiveYIntercept',
187 free=FALSE, values=1, joinKey="naivelD"),
188 mxPath( 'confed.xIntercept', 'confedXIntercept',
189 free=FALSE, values=1, joinKey="confedID"),
190 mxPath('confed.yIntercept', 'confedYIntercept',
191 free=FALSE, values=1, joinKey="confedID"))
192
193 # naive & confed varying intercept and covariance between z & y
194
195 oneMinuteV1 <— mxModel (
196 model="xyCov_confed", type="RAM" 6 pairModel,
197 manifestVars=response ,
198 latentVars=c(zeroVarPred , "otheryRotFV"' 6 "otherxRotFV"),
199 mxData (tFrame, type="raw', sort=FALSE),
200 mxPath('one', zeroVarPred, free=FALSE,
201 labels=paste0('data.', zeroVarPred)),
202 mxPath('one', c("otheryRotFV", "otherxRotFV"), free=FALSE,
203 labels=paste0('data.', c¢("otheryRotFV", "otherxRotFV"'))),
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mxPath (' pair.confedXIntercept', 'selfxRotFV ', free=FALSE,
values=1, joinKey="pairlD"),
mxPath( 'pair.confedYIntercept', 'selfyRotFV', free=FALSE,
values=1, joinKey="pairID"),
mxPath (' pair.naiveXIntercept', 'selfxRotFV ', free=FALSE,
values=1, joinKey="pairID"),
mxPath('pair.naiveYIntercept', 'selfyRotFV ', free=FALSE,
values=1, joinKey="pairID"),
mxPath (response , arrows=2, connect="unique.pairs"),
mxPath (
mxPath ('otherxRotFV ', 'selfxRotFV ', labels="otherxRotFV_on x"),
(
(

! !

one', response, labels=paste0(response, " int")),

mxPath ( 'otheryRotFV ', 'selfyRotFV ', labels="otheryRotFV_on y"),
mxPath (zeroVarPred, c("selfyRotFV"), connect="all.pairs",

labels=paste0 (zeroVarPred, "_on_y")),
mxPath (zeroVarPred, c("selfxRotFV"), connect="all.pairs",
labels=paste0 (zeroVarPred, "_on_x")))

oneMinuteV1§S$values [response ,response| <— diag(length(response))
oneMinuteV1$S$labels [1,2] <— 'xyCov'

oneMinuteV1$S$labels [2,1] <— 'xyCov'
oneMinuteV1$expectation$.ignoreDefVarsHack <— TRUE
oneMinuteV1Fit <— mxRun(oneMinuteV1) #, checkpoint=TRUE)

# naive & confed varying intercept but no covariance between z & vy

oneMinuteV3 <— mxModel (
model="only_confed", type="RAM

"

, pairModel ,

manifestVars=respounse ,

latentVars=c(zeroVarPred, "otheryRotFV"' 6 "otherxRotFV"),

mxData (tFrame, type="raw', sort=FALSE),

mxPath('one', zeroVarPred, free=FALSE,
labels=paste0('data.', zeroVarPred)),

mxPath('one', c¢("otheryRotFV", "otherxRotFV"), free=FALSE,
labels=paste0('data.', c("otheryRotFV", K6 "otherxRotFV"))),

mxPath('pair.confedXIntercept', 'selfxRotFV ', free=FALSE,
values=1, joinKey="pairID"),

mxPath( 'pair.confedYIntercept', 'selfyRotFV ', free=FALSE,
values=1, joinKey="pairID"),

mxPath ('pair.naiveXIntercept', 'selfxRotFV ', free=FALSE,
values=1, joinKey="pairlD"),

mxPath('pair.naiveYIntercept', 'selfyRotFV ', free=FALSE,
values=1, joinKey="pairID"),

mxPath (response , arrows=2, connect="single"),
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mxPath('one', response, labels=paste0(response, " int")),
mxPath ( 'otherxRotFV ', 'selfxRotFV ', labels="otherxRotFV_on x"),
mxPath ( 'otheryRotFV', 'selfyRotFV ', labels="otheryRotFV_on_y"),
mxPath (zeroVarPred, c("selfyRotFV"), connect="all.pairs",

labels=paste0 (zeroVarPred, " _on y")),
mxPath (zeroVarPred, c("selfxRotFV"), connect="all.pairs",
labels=paste0 (zeroVarPred, "_on x")))

oneMinuteV3$S$values [response ,response| <— diag(length(response))
oneMinuteV3$expectation$.ignoreDefVarsHack <— TRUE
oneMinuteV3Fit <— mxRun(oneMinuteV3) #, checkpoint=TRUE)

# add covariance for wvarying intercepts

naiveCModel <— mxModel(

model="naive", type="RAM",

latentVars=c('xIntercept', 'yIntercept'),

mxData(e2Pairing [ ! duplicated (e2Pairing$naivelD),

c¢('naivelD '), drop=FALSE],

type="raw", primaryKey="naiveIlD"),

mxPath('xIntercept', arrows=2, values=1,
lbound=le—3, labels="naiveVaryIlnt_x"),

mxPath('xIntercept', 'yIntercept', arrows=2,
labels="naiveVarylInt_cov"),

mxPath('yIntercept', arrows=2, values=1,

Ilbound=le—3, labels="naiveVaryInt_y"))

confedCModel <— mxModel(
model="confed", type="RAM",
latentVars=c('xIntercept', 'ylIntercept'),
mxData(e2Pairing [ ! duplicated (e2Pairing$confedID),
c¢('confedID '), drop=FALSE],
type="raw", primaryKey="confedID"),

mxPath('xIntercept', arrows=2, values=1,
lbound=le—3, labels="confedVarylnt_x"),
mxPath('xIntercept', 'yIntercept', arrows=2,

labels="confedVaryInt_cov"),
mxPath('yIntercept', arrows=2, values=1,
lbound=le—3, labels="confedVaryInt_y"))

pairCModel <— mxModel(
model="pair", type="RAM", naiveCModel, confedCModel,

latentVars=c( 'naiveXIntercept', 'confedXIntercept',

86
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'naiveYIntercept', 'confedYIntercept',
"oppositeSex '),
mxData (pairData, type="raw', primaryKey="pairID"),

mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
mxPath( 'naive.xIntercept', 'maiveXIntercept',

free=FALSE, values=1, joinKey="naivelD"),
mxPath( 'naive.yIntercept', 'naiveYIntercept',

free=FALSE, values=1, joinKey="naivelD"),
mxPath( 'confed.xIntercept', 'confedXIntercept',

free=FALSE, values=1, joinKey="confedID"),
mxPath('confed.yIntercept', 'confedYIntercept',

free=FALSE, values=1, joinKey="confedID"))

oneMinuteV4 <— mxModel (

model="full", type="RAM", pairCModel,

manifestVars=response ,

latentVars=c(zeroVarPred, "otheryRotFV"' 6 "otherxRotFV"),

mxData (tFrame, type="raw', sort=FALSE),

mxPath('one', zeroVarPred, free=FALSE,
labels=paste0('data.', zeroVarPred)),

mxPath('one', c¢("otheryRotFV", "otherxRotFV"), free=FALSE,
labels=paste0('data.', c("otheryRotFV", K6 "otherxRotFV"))),

mxPath('pair.confedXIntercept', 'selfxRotFV ', free=FALSE,
values=1, joinKey="pairlD"),

mxPath( 'pair.confedYIntercept', 'selfyRotFV ', free=FALSE,
values=1, joinKey="pairID"),

mxPath (' pair.naiveXIntercept', 'selfxRotFV ', free=FALSE,
values=1, joinKey="pairID"),

mxPath('pair.naiveYIntercept', 'selfyRotFV ', free=FALSE,
values=1, joinKey="pairID"),

mxPath (response , arrows=2, connect="unique.pairs"),

mxPath (

mxPath ('otherxRotFV ', 'selfxRotFV ', labels="otherxRotFV_on x"),
(
(

! !

one', response, labels=paste0(response, " int")),

mxPath ( 'otheryRotFV', 'selfyRotFV ', labels="otheryRotFV_on y"),
mxPath (zeroVarPred, c("selfyRotFV"), connect="all.pairs",

labels=paste0 (zeroVarPred, "_on_y")),
mxPath (zeroVarPred, c("selfxRotFV"), connect="all.pairs",
labels=paste0 (zeroVarPred, "_on_x")))

oneMinuteV4$S$values [response ,response| <— diag(length(response))
oneMinuteV4$S$labels [1,2] <— 'xyCov'

oneMinuteV4$S$labels [2,1] <— 'xyCov'
oneMinuteV4$expectation$.ignoreDefVarsHack <— TRUE
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oneMinuteV4Fit <— mxRun(oneMinuteV4) #, checkpoint=TRUE)

save (oneMinuteV4Fit , oneMinuteV1Fit, oneMinuteV2Fit,
oneMinuteV3Fit, oneMinuteOrigFit, file="boker2009Compare.rda")

mxCompare (oneMinuteV4Fit , list (oneMinuteV1Fit, oneMinuteV2Fit
oneMinuteV3Fit , oneMinuteOrigFit))

Appendix K
boker2009Sim.R
library (OpenMx)
options (width=120)
mxOption (NULL, 'Optimality tolerance', "le—13")

load ("e2Pairing.rda")
load ("tFrame.rda")

if (1) {
for (f in c¢('selfyRotFV ', 'otheryRotFV',
'selfxRotFV ', 'otherxRotFV')) {
tFrame [[f]] <— log(l+tFrame[[f]])

for (col in c¢('naiveID', 'confedID')) {
e2Pairing [[col]] <— as.integer (e2Pairing [[col]])

pairHash <— e2Pairing$confedID * 100L + e2Pairing$naivelD
pairData <— e2Pairing[!duplicated (pairHash),
c¢('naivelD ', 'confedID', 'maiveSex', 'confedSex')]
pairData <— cbind (pairID=pairData$confedID x 100L +
pairData$naivelD , pairData)
pairData$oppositeSex <—

as.numeric (pairData[, 'naiveSex'] != pairData|, 'confedSex'])

response <— c("selfxRotFV" 6 "selfyRotFV")

zeroVarPred <— c(paste0('damp', c('Head', 'Face', 'Voice')),
paste0(c('self', 'other'), 'Sex'), 'isConfed',
"confedByOtherSex", "confedByDampHead",
"confedByDampFace", "confedByDampVoice")
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tFrame$pairlD <— as.integer (tFrame$confedID % 100L + tFrame$naivelD)

naiveIndModel <— mxModel(

model="naive", type="RAM",

latentVars=c('xIntercept', 'yIntercept'),

mxData(e2Pairing [ ! duplicated (e2Pairing$naivelD),

¢('naivelD "), drop=FALSE],

type="raw", primaryKey="naivelD"),

mxPath('xIntercept', arrows=2, values=1,
lbound=1le—3, labels="naiveVaryInt_x"),

mxPath('yIntercept', arrows=2, values=1,

lbound=le—3, labels="naiveVarylnt_ y"))

confedEmptyModel <— mxModel(
model="confed", type="RAM",
latentVars=c('xIntercept', 'yIntercept'),
mxData(e2Pairing [ ! duplicated (e2Pairing$confedID),
c¢('confedID "), drop=FALSE],
type="raw", primaryKey="confedID"),
mxPath('xIntercept', arrows=2, values=0, free=FALSE, lbound=le-3),
mxPath('yIntercept', arrows=2, values=0, free=FALSE, lbound=le—3))

pairModelOrig <— mxModel(
model="pair", type="RAM", naivelndModel, confedEmptyModel,
latentVars=c('naiveXIntercept', 'confedXIntercept',
'naiveYIntercept', 'confedYIntercept',
"oppositeSex "),
mxData (pairData, type="raw', primaryKey="pairID"),

mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
mxPath( 'naive.xIntercept', 'naiveXIntercept',

free=FALSE, values=1, joinKey="naivelD"),
mxPath( 'naive.yIntercept', 'maiveYIntercept',

free=FALSE, values=1, joinKey="naivelD"),
mxPath('confed.xIntercept', 'confedXIntercept',

free=FALSE, values=1, joinKey="confedID"),
mxPath( 'confed.yIntercept', 'confedYIntercept',

free=FALSE, values=1, joinKey="confedID"))

oneMinuteOrig <— mxModel(

n

model="original ", type="RAM", pairModelOrig,
manifestVars=response ,
latentVars=c (zeroVarPred, "otheryRotFV"', "otherxRotFV"),

mxData (tFrame, type="raw', sort=FALSE),
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mxPath('one', zeroVarPred, free=FALSE,
labels=paste0('data.', zeroVarPred)),
mxPath('one', c¢("otheryRotFV", "otherxRotFV"), free=FALSE,
labels=paste0('data.', c("otheryRotFV", k6 "otherxRotFV"))),
mxPath('pair.naiveXIntercept', 'selfxRotFV ', free=FALSE,
values=1, joinKey="pairID"),
mxPath('pair.naiveYIntercept', 'selfyRotFV ', free=FALSE,
values=1, joinKey="pairID"),
mxPath (response , arrows=2, connect="single"),
mxPath (
mxPath ('otherxRotFV ', 'selfxRotFV ', labels="otherxRotFV_on x"),
(
(

! !

one', response, labels=paste0(response, " int")),

mxPath ('otheryRotFV', 'selfyRotFV ', labels="otheryRotFV_on y"),
mxPath (zeroVarPred, c("selfyRotFV"), connect="all.pairs",

labels=paste0 (zeroVarPred, "_on_y")),
mxPath (zeroVarPred, c("selfxRotFV"), connect="all.pairs",
labels=paste0 (zeroVarPred, "_on_x")))

oneMinuteOrig$S$values [response ,response] <— diag(length (response))
oneMinuteOrig$expectation$.ignoreDefVarsHack <— TRUE

oneMinuteOrigFit <— mxRun(oneMinuteOrig) #, checkpoint=TRUE)

# comparison model

naiveModel <— mxModel(

model="naive", type="RAM",

latentVars=c('xIntercept', 'yIntercept'),

mxData(e2Pairing [ ! duplicated (e2Pairing$naivelD),

¢('naivelD "), drop=FALSE],

type="raw", primaryKey="naivelD"),

mxPath('xIntercept', arrows=2, values=1,
lbound=1le—3, labels="naiveVaryInt_x"),

mxPath('yIntercept', arrows=2, values=1,

lbound=le—3, labels="naiveVarylnt_ y"))

confedModel <— mxModel(

model="confed", type="RAM",

latentVars=c('xIntercept', 'yIntercept'),

mxData(e2Pairing [ ! duplicated (e2Pairing$confedID),

c¢('confedID "), drop=FALSE],

type="raw", primaryKey="confedID"),

mxPath('xIntercept', arrows=2, values=1,
lbound=1le—3, labels="confedVaryInt_x"),

90
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119 mxPath('yIntercept', arrows=2, values=1,
120 lbound=le—3, labels="confedVarylnt_y"))
121

122 pairModel <— mxModel(

123 model="pair", type="RAM", naiveModel, confedModel,
124 latentVars=c( 'naiveXIntercept', 'confedXIntercept',
125 'naiveYIntercept', 'confedYIntercept',

126 "oppositeSex "),

127 mxData (pairData, type="raw', primaryKey="pairID"),
128 mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
129 mxPath( 'naive.xIntercept', 'maiveXIntercept',

130 free=FALSE, values=1, joinKey="naivelD"),

131 mxPath( 'naive.yIntercept', 'naiveYIntercept',

132 free=FALSE, values=1, joinKey="naivelD"),

133 mxPath( 'confed.xIntercept', 'confedXIntercept',

134 free=FALSE, values=1, joinKey="confedID"),
135 mxPath('confed.yIntercept', 'confedYIntercept',

136 free=FALSE, values=1, joinKey="confedID"))

137
138 # naive & confed varying intercept and covariance between x & y
139

140 oneMinuteSat <— mxModel(

141 model="oneMinute" , type="RAM', pairModel,

142 manifestVars=response ,

143 latentVars=c (zeroVarPred, "otheryRotFV"', "otherxRotFV"),

144 mxData (tFrame, type="raw', sort=FALSE),

145 mxPath('one', zeroVarPred, free=FALSE,

146 labels=paste0('data.', zeroVarPred)),

147 mxPath('one', c¢("otheryRotFV", "otherxRotFV"), free=FALSE,

148 labels=paste0('data.', c("otheryRotFV", "otherxRotFV"'))),
149 mxPath( 'pair.confedXIntercept', 'selfxRotFV ', free=FALSE,

150 values=1, joinKey="pairID"),

151 mxPath (' pair.confedYIntercept', 'selfyRotFV ', free=FALSE,

152 values=1, joinKey="pairID"),

153 mxPath('pair.naiveXIntercept', 'selfxRotFV ', free=FALSE,

154 values=1, joinKey="pairID"),

155 mxPath( 'pair.naiveYIntercept', 'selfyRotFV ', free=FALSE,

156 values=1, joinKey="pairID"),

157 mxPath (response , arrows=2, connect="unique.pairs"),

158 mxPath('one', response, labels=paste0(response, " int")),

159 mxPath ( 'otherxRotFV', 'selfxRotFV ', labels="otherxRotFV_on x"),
160 mxPath ( 'otheryRotFV', 'selfyRotFV ', labels="otheryRotFV_on_y"),
161 mxPath (zeroVarPred, c("selfyRotFV"), connect="all.pairs",
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labels=paste0 (zeroVarPred, "_on y")),
mxPath (zeroVarPred, c¢("selfxRotFV"), connect="all.pairs",

labels=paste0 (zeroVarPred, "_on_x")))

oneMinuteSat$S$values [response ,response]| <— diag(length(response))
oneMinuteSat$S$labels [1,2] <— 'xyCov'

oneMinuteSat$S$labels [2,1] <— 'xyCov'
oneMinuteSat$expectation$.ignoreDefVarsHack <— TRUE
oneMinuteSatFit <— mxRun(oneMinuteSat) #, checkpoint=TRUE)

# simulation

set.seed (1)
zScore <— oneMinuteSatFit$output$estimate /
oneMinuteSatFit$output$standardErrors

candidate <— matrix (NA, ncol=length(zScore), nrow=5,
dimnames=1list (c('absent', 'small+', 'small-"',
"large+', 'large—"'),
names ( coef (oneMinuteSatFit))))

# don't care about means
for (par in pasteO('self', c('x','y'), 'RotFV_int')) {

candidate [, par] <— coef(oneMinuteSatFit)[par]

# don't care about variances
for (par in 1:2) {

pname <— paste0('oneMinute.S[', par,'

) ' 7par Y '] ')
candidate [ ,pname] <— coef(oneMinuteSatFit )[pname]

isLarge <— abs(zScore) > 2

for (pl in c¢('naive','confed')) {
for (p2 in c('VaryInt_x', 'Varylnt_y')) {

par <— pasteO(pl, p2)

if (isLarge[par,]) {
small <— 1.5 % oneMinuteSatFit$output$standardErrors[par, 1]
large <— coef(oneMinuteSatFit)[par]

} oelse {
small <— coef(oneMinuteSatFit)[par]
large <— 3 * oneMinuteSatFit$output$standardErrors|[par,1]
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205 }
206 candidate [c¢('absent', 'small-', 'small+'), par]| <— small
207 candidate [c¢('large—"', 'large+'), par] <— large
208 }
209}
210
211 for (par in names(coef(oneMinuteSatFit))[is.na(candidate['absent' ,])])
212 if (isLarge[par,]) {
213 large <— abs(coef(oneMinuteSatFit)[par])
214 small <— 1.5 % oneMinuteSatFit$output$standardErrors[par,1]
215 } else {
216 large <— 3 * oneMinuteSatFit$output$standardErrors[par,1]
217 small <— abs(coef(oneMinuteSatFit)[par])
218 }
219 candidate [ 'large+' ,par| <— large
220 candidate [ 'large—"',par] <— —large
221 candidate [ 'small+',par] <— small
222 candidate [ 'small—' par] <— —small
223 candidate [ 'absent',par] <— 0
224 }
225
226 paramOflnterest <— candidate['small+',] != candidate|'large+',]
227
228 save(candidate, paramOflnterest, file="boker2009—sim.rda")
229
230 require ("pROC")
231
232 startSeed <— 1
233 rda <— "/tmp/oneMinuteSim.rda"
234 if (1) {
235 result <— NULL
236 } else {
237 load (rda)
238 startSeed <— 1L + max(result$seed)
239}
240
221 for (rep in startSeed:100) {
242 print (rep)
243 set .seed (rep)
244 sl <— sample.int (5, ncol(candidate), replace=IRUE)
245 parVec <— candidate [matrix(1:5, nrow=5, ncol=ncol(candidate)) =
246 matrix (sl, byrow=ITRUE, nrow=5,
247 ncol=ncol (candidate))]
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names (parVec) <— colnames(candidate)

simModell <— mxGenerateData(omxSetParameters (
oneMinuteSat , labels=names(coef(oneMinuteSatFit)), values=parVec),
returnModel=TRUE)

simFitl <— mxRun(simModell, checkpoint=TRUE)

simModel2 <— omxSetParameters (
oneMinuteOrig, labels=names(coef(oneMinuteSatFit)),
values=parVec, strict=FALSE)
simModel2$data$observed <— simModell$data$observed
simFit2 <— mxRun(simModel2, checkpoint=TRUE)

# could fit them as a group of independent models TODO

fits <— list ("sat"=simFitl, "orig"=simFit2)
for (mx in 1:2) {
fit <— fits [[mx]]
evidence <— (fit$output$estimate / fit$output$standardErrors)|,]
if (fitSoutput$status$code != 0 || any(is.na(evidence))) {
cat (paste (names(fits )[mx], rep, "gotustatus",
fit$output$status$code), fill=TRUE)
next
}
evidence <— evidence| names(evidence) %in%
colnames (candidate )[paramOfInterest] |
mask <— match(names(evidence), names(parVec))

wrongSign <— c(sign(evidence)) != sign(parVec[mask]) & (sl[mask] >= 4)

df <— data.frame(model=names( fits )[mx],
seed=rep ,
found=(ifelse (wrongSign, —1.0, 1.0) x abs(evidence)),
effect=(sl >= 4)[mask])

result <— rbind(result, df)

save (result , file=rda)

pdf(file="roc.pdf")
roc(effect ~ found, result[result$model="orig" ,],
plot=T, col="red")

roc(effect ~ found, result[result$model="sat" ],
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291 plot=T,
292 dev. off ()

203}

col="green", add=TRUE)
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