Unbelievably Fast Estimation of Nested Multilevel Structural Equation Models

Joshua Nathaniel Pritikin Charlottesville, VA

M.A. Psychology, University of Virginia, 2013 B.S. Psychology, University of Oregon, 2009

A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy

Department of Psychology

University of Virginia April, 2016

i

Abstract

We introduce relational SEM, an adaptation of structural equation modeling to relational databases. Relational SEM is a superset of the mixed model and multilevel SEM. In addition, we introduce Rampart, a new computational strategy for frequently encountered relational SEM models with all continuous indicators. Rampart is inspired by the fact that the multivariate normal density is transparent to orthogonal rotation. Well suited to big data, Rampart becomes more effective as the size of the data set increases. When data are strictly nested then there are usually fewer variables in the upper level connected to many more variables in the lower levels. A regression from teacher skill to student performance has this characteristic. In such a model, under typical conditions, a rotation can be applied to eliminate all but one of the links from teacher to student with a corresponding rotation applied to the observations. This transformation leaves the likelihood function unchanged, but offers a major benefit: dramatically increased independence in the model implied covariance matrix. Rampart requires strictly nested structure and identical sub-models. Rampart can be applied locally to the part of a model that meets these criteria. Rampart is implemented in OpenMx. OpenMx is free and open software that runs on all major operating systems.

Contents

Introduction	1
Gaussian Models	1
Linear Regression	2
Analysis of Variance (ANOVA)	3
The Mixed Model	5
Path Diagrams	7
Multilevel structure	11
Relational algebra	14
Mixed model, details	16
Inference	18
The mixed model in $OpenMx$	19
Speeding up nested multilevel	23
Topological sort	23
Gaussian density rotation	25
QR decomposition	25
Rampart rotation	28
Rampart: History and name	33
Sufficient statistic formula for the Gaussian density	34
Rampart and definition variables	34
Latent regression parameter recovery simulation study	35
Application	38
Discussion	44

Introduction

Many non-statisticians have an intuitive notion of variability of a indicator and association between two indicators. We cannot entertain causal theories without these notions. When an infant learns that crying will cause her parents to offer her water, food, and a diaper change, these statistical engines are probably at work. Not all processes are best described by a Gaussian distribution. However, the non-Gaussian part is often confined to the outer vertices of a casual graph while the central part of the graph remains Gaussian. The Gaussian distribution is of central importance in statistics and causal reasoning (Pearl, 2000; Voelkle & Oud, 2013).

Gaussian Models

Let parameter vector $\boldsymbol{\theta} \equiv \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$ with $\boldsymbol{\mu}$ as a K dimensional mean vector (1st moment) and $\boldsymbol{\Sigma}$ as a $K \times K$ covariance matrix (2nd moment). For data \boldsymbol{y} and with some regularity assumptions, the Gaussian log density can be written as,

$$\ell(\boldsymbol{y}|\boldsymbol{\theta}) = \sum_{i} \left[-\frac{1}{2} \left[K \log(2\pi) + \log(|\boldsymbol{\Sigma}|) \right] - \frac{1}{2} (\boldsymbol{\mu} - \boldsymbol{y}_i)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu} - \boldsymbol{y}_i) \right]. \tag{1}$$

It is no overstatement to say that this model has a rich history in the annals of statistics.

Similar to the way that some countries that were slow to implement a wired phone system have skipped directly to wireless phones, we are now at a stage of Gaussian model development where great swaths of less productive detours can be skipped. The history of the Gaussian model has grown sprawling and convoluted. Diverse special purpose models once conceived independently can now be re-expressed as variations of a general model. We introduce the general model with a judicious review of the essential building blocks.

Figure 1. Data are shown as points with the least squared residual regression line.

Table 1 Example data for linear regression.

	predictor	response
	0.12	-0.68
	1.73	0.58
	1.25	0.96
	0.51	0.21
	-1.13	-1.54
	-0.93	-0.68
	0.19	-0.70
	-0.22	0.21
	2.70	1.46
	0.77	0.55
$\mu =$	0.5	0.04
$\sigma =$	1.18	0.92

Linear Regression

In the 1870s, Galton and colleagues devised linear regression (Stanton, 2001). Linear regression answers questions of the form, given n independent measurements of predictor x and response y, what approximation to

$$\boldsymbol{y} = \alpha + \beta \boldsymbol{x} \tag{2}$$

minimizes the squared residual.¹ The solution is

$$\beta = \frac{\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})}{\operatorname{Var}(\boldsymbol{x})} \tag{3}$$

$$\alpha = \bar{x} - \bar{y}\beta. \tag{4}$$

For example, given data in Table 1 (n = 10),

$$\beta = \frac{0.96}{1.38} = 0.69 \tag{5}$$

$$\alpha = 0.04 + (-0.5)\beta = -0.31. \tag{6}$$

The data and regression line are plotted in Figure 1.

Developed in the olden days before computers, regression was originally framed in terms of squared residuals because computational simplicity was the overriding concern. The modern day statistical engine, Bayes' Theorem (Equation 16), had been disseminated in 1763 but would not blossom until Fisher conceived the method of maximum likelihood in the 1920s. Fortuitously, if we specify a Gaussian model for the data and assume that the residual is independently, identically, and normally distributed then the least squared residual criterion identifies the the same estimates as would be found using Fisher's modern maximum likelihood approach.

Analysis of Variance (ANOVA)

Analysis of variance is concerned with detection of group differences. The simplest version was formally introduced by Fisher in the 1920s. Like linear regression, ANOVA was originally framed in terms of squared differences instead of in terms of Bayes' Theorem. Suppose we want to determine if two groups are different on some

¹We use the term *residual* instead of *error* because the connotations of *error* are not always appropriate.

Table 2
Example data for one-way analysis of variance with groups 1 and 2 in columns.

	1	2
	1.18	-0.52
	0.32	0.86
	0.88	1.29
	1.46	1.13
	-0.31	-0.30
	-0.91	1.37
	0.42	-0.15
	0.14	1.89
	-0.17	0.69
	-0.06	-0.32
$\mu =$	0.3	0.6
$\sigma =$	0.72	0.85

measure y. An F statistic can be obtained with,

$$SS_{between} = \sum_{j=1}^{2} (\bar{y}_j - \bar{y})^2 \tag{7}$$

$$SS_{within} = \sum_{j=1}^{2} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2$$
 (8)

$$F = \frac{SS_{between}/1}{SS_{within}/(N-2)}. (9)$$

For example, given the data in Table 2,

$$SS_{between} = 0.44 \tag{10}$$

$$SS_{within} = 11.22 \tag{11}$$

$$F = \frac{0.44}{0.62} = 0.71. \tag{12}$$

While convenient for hand calculation, the method framed in terms of squared differences obscures the relationship between ANOVA and linear regression. The two models are almost the same (compare with Equation 2) except that here x is a binary

indicator of group membership,

$$\boldsymbol{y} = \alpha + \beta \boldsymbol{x}.\tag{13}$$

If we code group 2 as x = 1 then

$$\alpha = \bar{y}_1 = 0.3 \tag{14}$$

$$\beta = \bar{y}_1 - \bar{y}_2 = 0.3 \tag{15}$$

The t value for the null hypothesis that $\beta = 0$ is not such a simple calculation, but it can be obtained with R to cross-check the magnitude of $\sqrt{F} = 0.84$

```
summary(lm(y~group, aovData))$coefficients['group2','t value']
## [1] 0.84
```

The Mixed Model

Linear regression and ANOVA models introduce two different kinds of coefficients. In linear regression (Equation 2), β helps predict every observation whereas in ANOVA (Equation 13), β only helps predict a subset of observations. This is an important distinction. Historically, coefficients that help predict all observations are called *fixed effects* whereas the other type of coefficient has been called a *random effect*. These are an unfortunate terminology. In the statistical literature, there are at least five definitions of these phrases, all of which differ from each other (Gelman, 2005). Moreover, in computer science, the term *random* is usually associated with draws from a uniform random number generator, not synonymous with *stochastic* that does not suppose a particular distribution. Here we follow Gelman (2005) and use the terms *constant* and *varying*. For example, the model $y_{ij} = \alpha_j + \beta x_{ij}$ has

varying intercepts α_j and a constant slope β . Models with both kinds of coefficients, constant and varying, are called *mixed* models.

As foreshadowed, the squared residuals or squared differences approach to model estimation imposes inconvenient restrictions. To perform ANOVA using squared differences, all combinations of conditions must have an equal number of samples and there is no simple way to cope with missing data. There are some ways to finesse the problem (e.g., Henderson, 1953), but a much more robust solution is to embrace Bayes' Theorem. Let θ be a vector of model parameters. Bayes' Theorem is,

$$\Pr(\boldsymbol{\theta}|data) = \frac{\Pr(data|\boldsymbol{\theta})\Pr(\boldsymbol{\theta})}{\Pr(data)}.$$
 (16)

Since Pr(data) does not depend on the parameters θ , we can omit it, leaving

$$\Pr(\boldsymbol{\theta}|data) \propto \Pr(data|\boldsymbol{\theta}) \Pr(\boldsymbol{\theta}).$$
 (17)

This equation is of such paramount importance that special names are assigned to each term. The density $\Pr(\boldsymbol{\theta})$ is the prior, $\Pr(data|\boldsymbol{\theta})$ is the likelihood, and $\Pr(\boldsymbol{\theta}|data)$ is the posterior.² For even modestly complex models, the posterior $\Pr(\boldsymbol{\theta}|data)$ can be impractical to understand directly. To explore and summarize the posterior, at least two popular approaches are available. One approach is to sample from the posterior, typically using some kind of Markov-Chain Monte Carlo (MCMC) method (e.g., Plummer, 2013; Stan Development Team, 2014). From these samples, mean point estimates and their marginal distributions can be obtained. The second approach is to treat the likelihood or posterior as an arbitrary function and find its mode. This method was introduced by Fisher in the 1920s under the name $maximum\ likelihood$ (Efron, 1998). Some controversy surrounds the prior $\Pr(\boldsymbol{\theta})$ (e.g., Gelman, 2008),

²Likelihood is not synonymous with probability. Consider P(A|B), a function of both A and B. For fixed B, P(A|B) is the probability of A conditional on B. For fixed A, P(A|B) is the likelihood of B (MacKay, 2003, p. 28).

but we have no qualms about it and consider maximum likelihood synonymous with maximum posterior.

Different ways of summarizing the posterior have strengths and weaknesses. The MCMC approach can obtain posterior means that are more stable than posterior modes when the posterior has multiple peaks of nearly equal height. However, unresolved questions remain about how to infer MCMC convergence (Gelman & Shirley, 2011). The present article focuses on the mode instead of mean.

A desire for models with arbitrary combinations of constant and varying coefficients without onerous restrictions on data structure culminated in a maximum likelihood estimation method for the mixed model (Hartley & Rao, 1967). For a column vector of observations \boldsymbol{Y} , covariates \boldsymbol{X} associated with constant coefficients $\boldsymbol{\beta}$, covariates \boldsymbol{Z} associated with varying coefficients \boldsymbol{u} , and a column vector of residuals \boldsymbol{e} , the mixed model can be written as,

$$Y = \underbrace{X\beta}_{\text{constant}} + \underbrace{Zu + e}_{\text{varying}}.$$
 (18)

To better appreciate the flexibility of this model, we suspend our presentation here without discussion of the distributional assumptions. A mixed model is often specified as a regression formula. A weakness of regression formulae are that they only specify the model for the first moment (μ of Equation 1). Specification of the second moment (Σ of Equation 1) is assumed as a well known default. As an alternative, both moments of a model can be specified simultaneously using a path diagram.

Path Diagrams

In the 1970s, two different Gaussian model specification languages emerged, LIS-REL (Jöreskog & Van Thillo, 1972) and COSAN (McDonald, 1978). In the process of reconciling these two different specifications, the Reticular Action Model (RAM) was distilled (McArdle, 2005; McArdle & McDonald, 1984). Although LISREL, COSAN,

Figure 2. Equation 2 drawn as a RAM path diagram. The triangle acts like an observed variable that is always 1. The square and circle denote observed and latent variables, respectively. The black square on the path from the triangle to the circle is a definition variable. Single-headed arrows are regressions and double-headed arrows are variances. The diagram takes up more space on the page compared to Equation 2, but it also makes the covariance model explicit. The variance for x is not estimated. σ_y^2 is regarded as the residual variance.

and RAM offer equivalent expressive power, the RAM model is the most parsimonious of the three. Moreover, there is a one-to-one correspondence between the RAM model and intuitive path diagrams. In contrast to regression formulae, RAM path diagrams incorporate specification of both the first and second moments.

The RAM model consists of 4 matrices, traditionally called \boldsymbol{A} (asymmetric), \boldsymbol{S} (symmetric), \boldsymbol{F} (filter), and \boldsymbol{M} (mean). The RAM matrices are related to the model's Gaussian distribution by,

$$\boldsymbol{\mu} = \boldsymbol{F}(\boldsymbol{I} - \boldsymbol{A})^{-1} \boldsymbol{M} \tag{19}$$

$$\Sigma = F(I - A)^{-1}S(I - A)^{-T}F^{T}.$$
(20)

These equations may appear daunting, but note that when \boldsymbol{A} is zero and \boldsymbol{F} is the identity matrix then $\boldsymbol{\mu} = \boldsymbol{M}$ and $\boldsymbol{\Sigma} = \boldsymbol{S}$. So what is the purpose of \boldsymbol{A} and \boldsymbol{F} ? The \boldsymbol{A} matrix comes into play in the specification of regression relationships. Our linear regression (Equation 2) can be diagrammed as in Figure 2. The multivariate generalization of Equation 4 is implemented by the products that involve $(\boldsymbol{I} - \boldsymbol{A})^{-1}$.

Table 3 Example data for latent factor model.

	x1	x2	x3
	-0.99	-0.79	-0.67
	0.05	-2.48	-0.64
	-1.30	-0.82	-1.06
	-1.49	-1.76	-1.28
	1.14	1.18	1.06
	0.96	0.62	0.91
	-0.26	-0.17	-0.25
	-0.83	1.33	-0.00
$\mu =$	-0.34	-0.36	-0.24
$\sigma =$	1	1.37	0.86

The F matrix is used to filter out variables from the model, permitting these variables to be latent (not measured). Latent variables were devised by Spearman in the early 1900s (P. Lovie & A. D. Lovie, 1996). For example, Figure 3 exhibits a latent factor model with 3 observed indicators. To clarify how this model works, the corresponding RAM matrices are given along with the model expected covariance Σ ,

$$\mathbf{F} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \tag{21}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & \lambda_{x2} \\ 0 & 0 & 0 & \lambda_{x3} \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{22}$$

$$\mathbf{F} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & \lambda_{x2} \\ 0 & 0 & 0 & \lambda_{x3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} \sigma_{x1}^2 & 0 & 0 & 0 \\ 0 & \sigma_{x2}^2 & 0 & 0 \\ 0 & 0 & \sigma_{x3}^2 & 0 \\ 0 & 0 & 0 & \sigma_g^2 \end{pmatrix}$$
(21)

Figure 3. A latent factor model given the observed data in Table 3. The latent factor is drawn with a circle. The regression from g to x_1 has a fixed loading of 1. Note that σ_{x1}^2 , σ_{x2}^2 , and σ_{x3}^2 are unique factor variances.

$$\Sigma = \mathbf{F} (\mathbf{I} - \mathbf{A})^{-1} \mathbf{S} (\mathbf{I} - \mathbf{A})^{-T} \mathbf{F}^{T} =$$

$$\begin{pmatrix} \sigma_g^2 + \sigma_{x1}^2 & \sigma_g^2 \lambda_{x2} & \sigma_g^2 \lambda_{x3} \\ \sigma_g^2 \lambda_{x2} & \sigma_g^2 \lambda_{x2}^2 + \sigma_{x2}^2 & \sigma_g^2 \lambda_{x2} \lambda_{x3} \\ \sigma_g^2 \lambda_{x3} & \sigma_g^2 \lambda_{x2} \lambda_{x3} & \sigma_g^2 \lambda_{x3}^2 + \sigma_{x3}^2 \end{pmatrix}.$$
(24)

There are 6 parameters. Since the observed covariance matrix has 6 non-redundant entries, this model is just specified. In modeling, latent factors can be treated as if they represent regular observed scores. If factor scores are desired then various ways are available to estimate them (e.g., Estabrook & Neale, 2013) as long as identifying assumptions are made. In summary, latent factors are an ingenious user interface. Without the RAM parameterization, it would be more difficult to learn how to specify Equation 24.

A Gaussian parameterization that is well suited for estimation of latent factors and regressions is often called a *structural equation model* (SEM; Fan, 1997). We regard RAM as an SEM parameterization of the Gaussian model. To review, using RAM we can specify constant coefficients (1st and 2nd moment) in covariance or regression form with respect to observed variables or latent factors. Originally, RAM

J	ane	Joe	
Teachers			upper
Students	Noah Sophia Liam Emma	Jacob Olivia Mason Isabella	lower

Figure 4. Students nested within teachers. For example, Noah is Jane's student and Jacob is Joe's student. There is a one-to-many relationship between teachers and students. A different model would be needed to accommodate students that spent some proportion of their time with each teacher.

did not provide any special support for varying coefficients. Recently, at least one proposal to extend RAM path diagrams to arbitrarily varying coefficients has been advanced (Curran & Bauer, 2007). Circles, traditionally used to represent latent factors, were re-purposed to represent varying coefficients. This makes sense because varying coefficients are a more general concept than latent factors. A latent factor is equivalent to a coefficient varying by individual with constant estimated loadings to indicators. At this stage, it may be difficult to judge the merit of Curran and Bauer's proposal due to the potential diverse uses of varying coefficients. To better focus our user interface concerns, we introduce a major application of varying coefficients: multilevel structure.

Multilevel structure

The simple aggregation of observations (Equation 1) is contingent on the assumptions that observations are independent and identically distributed. For example, students within a single classroom may exhibit independent performance. However, students drawn from two different classrooms may exhibit some classroom specific effect. Across classrooms, we can no longer consider the individual student as an independent unit of analysis (Kenny & Judd, 1986).

Data with complex structure are often stored in relational databases. Typically, data are normalized into *first normal form*, eliminating redundant or repeating data.

Primary keys are assigned to uniquely identify entities. Foreign keys refer to primary keys, allowing the relationships between the data tables to be recovered by the join of primary and foreign keys (e.g., Maier, 1983). Data are considered multilevel when an independent unit of analysis must span across two or more normalized database tables. For example, data on students and teachers would be stored in at least two tables. These data must be stored in separate normalized tables because there is not a 1-to-1 relationship between students and teachers. Since there are fewer teachers than students, teachers are regarded as the *upper* level and students as the *lower* level (see Figure 4).

To describe model structure when there are more than 2 levels we need to introduce two more terms, nested and crossed. Data are nested when each lower level partition is contained within its upper level. When data are not nested then they are crossed. Crossed varying coefficients need not be organized in relation to other varying coefficients. Crossed coefficients may partition observations in arbitrary ways. For example, suppose a school reassigns some of its students to different classrooms halfway through the year. If we study the whole year, some students will have single teachers but some will have two teachers. Students with two teachers involve a crossed assignment of varying coefficients. The distinction between nested and crossed data is useful because nested data are easier to process than crossed data.

Modeling multilevel data is one of the major applications of varying coefficients. Suppose the focus of our analysis is students. We want to estimate a few constant regression coefficients to learn how student performance depends on socioeconomic status and some intervention. We would like to specify our relationships in terms of latent factors because we cannot measure any of the constructs of interest directly. However, we need to incorporate varying coefficients in the model to properly account for teacher effects within a school, school effects within a district, and district effects within a state. If we proceed along these lines, the independent units of analysis are

the highest level units, perhaps entire states.

The bottleneck in the evaluation of Equation 1 is the matrix inverse of the model implied covariance matrix Σ . Gauss-Jordan matrix inverse requires $O(n^3)$ operations. To fit multilevel models quickly, it is essential to analyze the structure of this matrix and devise some way to reduce its dimension or complexity. Before we discuss optimization techniques, it will be helpful to sketch out more concretely the structure of our hypothetical multilevel student model covariance matrix. To keep things simple, assume the data are nested (not crossed). We introduce the direct sum operator,

$$egin{aligned} oldsymbol{B}_1 igoplus oldsymbol{B}_2 &= egin{pmatrix} oldsymbol{B}_1 & oldsymbol{0} & oldsymbol{B}_2 \end{pmatrix} \ egin{pmatrix} oldsymbol{B}_1 & oldsymbol{0} & \cdots & oldsymbol{0} & oldsymbol{B}_2 & & dots \ dots & \ddots & oldsymbol{0} & \cdots & oldsymbol{0} & oldsymbol{B}_k \end{pmatrix} \end{aligned}$$

to conveniently construct these matrices. Suppose we build a covariance model S for a particular student. A classroom of s students will have covariance matrix

$$T = \begin{pmatrix} T_{1,1} & T_{1,2} \\ T_{2,1} & \bigoplus_{i=1}^{s} S_i \end{pmatrix}.$$
 (25)

That is, each student is independent of other students, $T_{1,1}$ is square, and $T_{1,2}$ and $T_{2,1}$ are rectangular. The quadrants labeled with T represent classroom or teacher relationships with each student. This pattern continues as we move up levels. A

Employee	Dept
Harry	Sales
Sally	Finance
George	Finance
Harriet	Sales

Dept	Manager
Sales	George
Finance	Harriet
Production	Charles

Employee \bowtie (Dept) Manager

Employee	Dept	Manager
Harry	Sales	George
Sally	Finance	Harriet
George	Sales	George
Harriet	Finance	Harriet

Figure 5. An employee table (a.k.a relation or data frame) and manager table are given (upper tables). The employee and manager tables are joined by department (lower table).

school of t classrooms will have covariance matrix

$$\boldsymbol{H} = \begin{pmatrix} \boldsymbol{H}_{1,1} & \boldsymbol{H}_{1,2} \\ \\ \boldsymbol{H}_{2,1} & \bigoplus_{i=1}^{t} \boldsymbol{T}_{i} \end{pmatrix}$$
 (26)

and a district of h schools will have covariance matrix

$$\mathbf{D} = \begin{pmatrix} \mathbf{D}_{1,1} & \mathbf{D}_{1,2} \\ \\ \mathbf{D}_{2,1} & \bigoplus_{i=1}^{h} \mathbf{H}_i \end{pmatrix}. \tag{27}$$

Without working out the exact shape of such a covariance matrix, it should be clear that it can be very large and very sparse.

Relational algebra

Before we proceed to other topics, this is a good point to formally describe how data is combined in multilevel models and the corresponding OpenMx user interface. Let R and S be tables (or data frames) that contain rows. A row is a single unit of data like the data for one teacher or one student. Following standard relational

database theory (e.g., Maier, 1983), the join operator (\bowtie) is defined as,

$$R\bowtie(F)$$
 $S\equiv\{r\cup s\land r\in R\land s\in S\land F(r\cup s)\}$

where F is a boolean valued function. Without loss of generality, here F tests whether primary and foreign keys match. We will omit F and write $\bowtie(k)$ where k is the name of the key. An example join of employee and department tables is given in Figure 5. The result of the join of two tables can itself be joined against another table allowing an unlimited number of tables to be joined together.

In OpenMx, joins were facilitated by a modest change to the user interface. Two parameters, joinKey and joinModel, were added to mxMatrix and mxPath, and primaryKey was added to mxData. MxMatrix objects are always contained in an MxModel. We will call this model the MxMatrix's home model. When a join is performed, the specified joinModel is joined against the home model using the joinKey column in the home model to match against the primaryKey column in the joinModel. For mxPath, a more friendly interface was devised, naming the join model in the from parameter (i.e., from='joinModel.column').

An alternate way to store associations in a relational database is to use a separate linking table. For example, a *classroom membership* table might contain foreign keys for both teacher and student. A linking table facilitates many-to-many relationships. A teacher can have many students and a student can have many teachers. Although there is no problem with linking tables from the standpoint of the join operator, it problematic from a modeling point of view because the maximum number of teachers per student is not fixed. How can the student model be specified? We leave this question to future research.

Mixed model, details

Although the user interface is less flexible and convenient compared to RAM, the mixed model is important because a great deal of research has gone into its efficient estimation (e.g., Bates & DebRoy, 2004; Harville, 1977; Lindstrom & Bates, 1990; Searle, Casella, & McCulloch, 1992; Wolfinger, Tobias, & Sall, 1994). Recent work has generalized the mixed model to non-Gaussian distributions (Rabe-Hesketh, Skrondal, & Pickles, 2004; Skrondal & Rabe-Hesketh, 2004), but we restrict our focus to Gaussian models. More detailed expositions of the mixed model are available from many sources (e.g., Bates, Mächler, Bolker, & Walker, 2014; West, Welch, & Galecki, 2014). The essentials are as follows.

In matrix notation, for column vector of observations Y, covariates X associated with constant coefficients β , covariates Z associated with varying coefficients u, and column vector of residuals e, the mixed model can be written as,

$$Y = \underbrace{X\beta}_{\text{constant}} + \underbrace{Zu + e}_{\text{varying}}.$$
 (28)

We assume u and e are normally distributed with

$$E \begin{pmatrix} u \\ e \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
 \tag{29}$$

$$\operatorname{Cov} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{e} \end{pmatrix} = \begin{pmatrix} \boldsymbol{G} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R} \end{pmatrix}. \tag{30}$$

The design matrix, X, is not estimated. The matrix Z can be used in two distinct ways: as a design matrix for varying coefficients (not estimated) or as estimated factor loadings for latent factors (Skrondal & Rabe-Hesketh, 2004, p. 107).

Although Equation 28 builds intuition, it actually describes the distribution of \boldsymbol{Y}

conditional on a particular realization of $u \sim \mathcal{N}(\mathbf{0}, \mathbf{G})$. The unconditional distribution is

$$Y = X\beta + e \tag{31}$$

which is essentially linear regression (c.f. Equation 2) where

$$e \sim \mathcal{N}(\mathbf{0}, \mathbf{Z}\mathbf{G}\mathbf{Z}^T + \mathbf{R}).$$
 (32)

Univariate models typically use $\mathbf{R} = \sigma^2 \mathbf{I}$. Independent units of analysis in multivariate models typically use a block diagonal \mathbf{R} with each block as the independent unit. Once covariance components \mathbf{R} and \mathbf{G} are estimated, analytic solutions are available for constant $\hat{\boldsymbol{\beta}}$ and varying $\hat{\boldsymbol{u}}$ coefficients (Henderson Jr, 1982),

$$\begin{pmatrix} X^T \hat{R}^{-1} X & X^T \hat{R}^{-1} Z \\ Z^T \hat{R}^{-1} X & Z^T \hat{R}^{-1} Z + \hat{G}^{-1} \end{pmatrix} \begin{pmatrix} \hat{\beta} \\ \hat{u} \end{pmatrix} = \begin{pmatrix} X^T \hat{R}^{-1} Y \\ Z^T \hat{R}^{-1} Y \end{pmatrix}.$$
(33)

That is, varying coefficients u need not be estimated directly but can be obtained as an analytic function of the covariance. The solutions of Equation 33 can be written as,

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \hat{\boldsymbol{V}}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \hat{\boldsymbol{V}}^{-1} \boldsymbol{Y}$$
 (34)

$$\hat{\boldsymbol{u}} = \hat{\boldsymbol{G}} \boldsymbol{Z}^T \hat{\boldsymbol{V}}^{-1} \left(\boldsymbol{Y} - \boldsymbol{X} \hat{\boldsymbol{\beta}} \right)$$
 (35)

where

$$V \equiv Z\hat{G}Z^T + \hat{R}. \tag{36}$$

For parameter vector $\boldsymbol{\theta}$, the -2 log-likelihood of n independent observations is,

$$-2\ell(\boldsymbol{\beta}, \boldsymbol{\theta}) = nk \log(2\pi) + \log|\boldsymbol{V}| + (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T \boldsymbol{V}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$
(37)

where k is the size of V. This likelihood can be simplified by plugging Equation 34 in for β (using provisional estimates). The resulting profile -2 log-likelihood is,

$$-2\ell(\boldsymbol{\theta}) = nk \log(2\pi) + \log|\boldsymbol{V}| + \boldsymbol{r}^T \boldsymbol{V}^{-1} \boldsymbol{r}$$
(38)

where

$$r = Y - X \left[\left(X^T V^{-1} X \right)^{-1} X^T V^{-1} Y \right]. \tag{39}$$

This likelihood does not take into account the loss of degrees of freedom from constant coefficients $\boldsymbol{\beta}$ in the estimation of covariance parameters $\boldsymbol{\theta}$. Uncorrected, covariance parameters tend to exhibit bias. A solution was proposed to obtain unbiased covariance parameters estimates (known as REML; Patterson & Thompson, 1971). The REML approach can be implemented in OpenMx (Cheung, 2013). However, when REML is used, the likelihood ratio test cannot be used for constant coefficients $\boldsymbol{\beta}$ (West et al., 2014, p. 35). Fortunately, the addition of a Wishart prior to the likelihood corrects bias even more accurately than REML (Chung, Gelman, Rabe-Hesketh, Liu, & Dorie, 2015). The addition of a Bayesian prior is an elegant solution that corrects for bias without impairing the posterior ratio test.

Inference

Large sample theory provides a number of ready tools for inference such as the Wald test (including the sandwich estimator), the likelihood ratio test (including profile likelihood confidence intervals), the bootstrap, and the jackknife (Pawitan, 2001; Pek & Wu, in press; White, 1982). Results established using the mixed model apply to corresponding relational SEM models. For example, improvement in precision is possible by conditioning on the type of inference being considered. For constant coefficients, adjustments are advised to improve calibration of the false positive rate (e.g., Manor & Zucker, 2004). Inference on variance components can be divided into

two cases. When the null hypothesis does not involve a parameter space boundary then standard asymptotic results apply. An example is a test between heterogeneous and homogeneous residual variance. The second case arises when a parameter space boundary is involved. This commonly occurs in the test of whether to include a varying coefficient because varying coefficients are not tested directly but by restriction of their variance (and covariances) to zero (e.g., Crainiceanu & Ruppert, 2004).

While inference for relational SEM builds on prior research, new model structures may require new inference guidelines. Inference in multilevel models is an evolving area. More research is needed.

The mixed model in OpenMx

Instead of following notation similar to that in use by relational databases, a model specification syntax inspired by conditional probability notation evolved in some popular R packages that implement the mixed model (e.g., Bates et al., 2014; Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2016). Formula notation (Wilkinson & Rogers, 1973) for specifying a regression equation was augmented with a vertical bar clause,

lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

The left part of the regression equation, up to the parenthesis enclosing the vertical bar, follows standard formula notation. The vertical bar clause is used to specify varying coefficients. The part after the vertical bar (Subject) names a factor (a column in the data frame) that partitions the data set. The formula before the vertical bar (Days) is joined to the base model according to this factor. The implied relational model may be clarified by translation to an equivalent OpenMx model. While the model specification will be longer and more laborious, OpenMx will offer greater flexibility and permit models that are impossible with lmer.

bySubj <- mxModel(</pre>

```
model="bySubj", type="RAM",
       latentVars=c("slope", "intercept"),
3
       mxData(data.frame(Subject=unique(sleepstudy$Subject)),
4
              type="raw", primaryKey = "Subject"),
       mxPath(c("intercept", "slope"), arrows=2, values=1),
6
       mxPath("intercept", "slope", arrows=2, values=.25, labels="cov1"))
8
   ss <- mxModel(
       model="sleep", type="RAM", bySubj,
10
       manifestVars="Reaction", latentVars = "Days",
11
       mxData(sleepstudy, type="raw", sort=FALSE),
12
       mxPath("one", "Reaction", arrows=1, free=TRUE),
13
       mxPath("one", "Days", arrows=1, free=FALSE, labels="data.Days"),
14
       mxPath("Days", "Reaction", arrows=1, free=TRUE),
15
       mxPath("Reaction", arrows=2, values=1),
16
       mxPath(paste0('bySubj.', c('intercept', 'slope')),
17
              'Reaction', arrows=1, free=FALSE, values=c(1,NA),
18
              labels=c(NA, "data.Days"), joinKey="Subject"))
19
```

We create an mxModel to contain the per-Subject model (line 1). Traditionally, the mixed model does not permit manifest observations in upper levels. Hence, upper levels only contain latent variables (line 3). The Subject model's data contains no observations, only primary keys (line 4). Conceptually, we would like to allow a per-Subject coefficient for intercept and slope. It may be surprising that this is accomplished by estimating the variance of those varying coefficients and not the coefficients themselves (line 6). We estimate the covariance between varying intercept and slope (line 7).

We include the upper level model as a submodel of the base model (line 10). The rationale for this organization and other possible organizations are discussed in Figure 6. The lme4 package offers a double vertical bar notation to indicate that the

Figure 6. Two equivalent model specifications for students nested within teachers nested within schools. Each rectangle corresponds to an mxModel. The prototype used organization (a) to specify nested multilevel models. We finalized on (b) for mxPath specified models. Scheme (b) may seems backwards, but it offers the advantage that each submodel is also a valid model. This is due to the constraint that outer models cannot depend on inner models. For example, a school cannot depend on a teacher and a teacher cannot depend on a student. This structure is only required for mxPath specified models. No particular model nesting is required for mxMatrix specified models.

varying coefficient covariance should be fixed to zero. The constant coefficients are specified starting at line 13. The predictor Days is included in the model as a zero variance regression (line 14). This warrants a brief digression.

In structural equation modeling, it is customary to assume a normal distribution for both predictor and response variables. In contrast, regression models assume only that the residual is normally distributed. No distributional assumption is made about predictors. There are pros and cons to both approaches.

A major advantage of assuming a distribution for predictors is that missing data are less of a problem (Enders & Bandalos, 2001). However, when predictors are not missing and predictor covariance is not of substantive interest then modeling predictors can add extra parameters for little gain. For example, a script from the

OpenMx test suite, UnivariateRandomInterceptWide.R, implements a single predictor univariate random intercept model. The standard regression approach estimates 4 parameters (residual variance, intercept, constant regression coefficient, and varying intercept variance), but UnivariateRandomInterceptWide.R also estimates the mean and variance of predictor X, adding 2 parameters for a total of 6 (see Appendix A). The parameters that are common among these two models have matching estimates, but why estimate an extra 2 parameters unless they are of substantive interest? For optimal performance, the analyst should think carefully about whether a predictor needs to be modeled as normally distributed or can be included in the model as a zero variance regression.

The connections between the per-Subject and base models are set up at line 17. These connections correspond to the Z matrix in Equation 28. An executable version of this code is available in Appendix B. While the OpenMx is not as succinct as lmer, the OpenMx model could easily be extended to incorporate multivariate data such as digit span in addition to reaction time. Another lmer example using the Orthodont data set is available in Appendix C.

All mixed models can be similarly translated into OpenMx models. Each vertical bar clause is implemented with a latent mxModel of extra variance to account for the varying coefficients. These latent OpenMx models are joined to the corresponding constant coefficients in the base model using fixed loadings. Although standard practice is to estimate varying coefficients with a variance, one script in the OpenMx test suite, MultilevelUniRandomSlopeInt.R, estimates the varying coefficients themselves. A corresponding model that estimates a varying coefficient variance has been added to this script (Appendix D).

Upper to lower level transition matrices can take advantage of the usual OpenMx capabilities. A transition matrix can contain free parameters, definition variables, or populated values using square bracket notation. Or for maximum flexibility, transition

matrices can be specified as the result of an mxAlgebra.

Speeding up nested multilevel

We will trace through in more technical detail the steps involved in optimization of nested multilevel structure. Nested varying coefficients produce a sparse covariance matrix with a pattern amenable to an efficient inverse (Goldstein & McDonald, 1988), but we will do better. We review how the Gaussian distribution is invariant to orthogonal rotation, show how to use the QR decomposition algorithm to create a rotation to specific axis vectors, and introduce the novel Rampart rotation to dramatically improve independence in multilevel covariance matrices. Rampart performance benefits and limitations are described. To validate the implementation, we finish with a simulation study.

Rampart can only be applied to nested multilevel structure. Crossed varying coefficients create less orderly covariance patterns. When Rampart is not applicable to a sub-problem, OpenMx uses sparse matrix algebra to compute inverses for arbitrarily crossed models (Fellner, 1987).

Topological sort

Once a relational SEM is specified, each row must be assigned to a location in a model-wide covariance matrix (Goldstein & McDonald, 1988). There are many possible assignments of rows to covariance locations. One type of ordering that offers a computational advantage is a topological sort. We can regard a relational SEM as a directed graph. If we add the restriction that cycles are not allowed then we can sort the graph by dependency. Units without dependency on other units can come first and then dependent units. For example, refer to Figure 7. This ordering allows us to compute the model expected mean unit-wise instead of model-wise.

Figure 7. Topological sort is accomplished by depth-first search (Tarjan, 1976) in the opposite direction of the arrows starting from each of the lowest level units (students in this example). Units are assigned a location (the number in red) as soon as all the units that they depend upon are assigned a location. This algorithm is linear in time with the number of units.

Figure 8. Observations (represented by points) in a Gaussian density. The likelihood of these points is unaffected by axis rotation. For example, the axis could be rotated to the red dashed lines without affecting the likelihood.

Gaussian density rotation

An intuitive argument is given in Figure 8. Here we work through the equations to understand exactly how an orthogonal rotation Q fits into the Gaussian likelihood. The -2 log density of a single observation x from the K dimensional Gaussian distribution is,

$$K\log(2\pi) + \log(|\mathbf{\Sigma}|) + (\boldsymbol{\mu} - \boldsymbol{x})^T \mathbf{\Sigma}^{-1} (\boldsymbol{\mu} - \boldsymbol{x}). \tag{40}$$

Suppose we want to apply an orthogonal rotation Q to x. The rotated Q density is,

$$K \log(2\pi) + \log(|\mathbf{Q}\boldsymbol{\Sigma}\mathbf{Q}^{T}|) + (\mathbf{Q}(\boldsymbol{\mu} - \boldsymbol{x}))^{T} \mathbf{Q}\boldsymbol{\Sigma}^{-1} \mathbf{Q}^{T} (\mathbf{Q}(\boldsymbol{\mu} - \boldsymbol{x})). \tag{41}$$

We know that $|\mathbf{Q}\Sigma\mathbf{Q}^T|$ is equal to $|\mathbf{\Sigma}|$ because \mathbf{Q} is an orthogonal transformation and eigenvalues are preserved. For the term on the right, we can expand the transpose, regroup, and use the fact that $\mathbf{Q}^{-1} = \mathbf{Q}^T$,

$$\left(\boldsymbol{Q}(\boldsymbol{\mu} - \boldsymbol{x})\right)^{T} \boldsymbol{Q} \boldsymbol{\Sigma}^{-1} \boldsymbol{Q}^{T} \left(\boldsymbol{Q}(\boldsymbol{\mu} - \boldsymbol{x})\right) \tag{42}$$

$$((\boldsymbol{\mu} - \boldsymbol{x})^T \boldsymbol{Q}^T) \boldsymbol{Q} \boldsymbol{\Sigma}^{-1} \boldsymbol{Q}^T (\boldsymbol{Q} (\boldsymbol{\mu} - \boldsymbol{x}))$$
(43)

$$(\boldsymbol{\mu} - \boldsymbol{x})^T (\boldsymbol{Q}^T \boldsymbol{Q}) \boldsymbol{\Sigma}^{-1} (\boldsymbol{Q}^T \boldsymbol{Q}) (\boldsymbol{\mu} - \boldsymbol{x})$$
(44)

$$(\boldsymbol{\mu} - \boldsymbol{x})^T I \boldsymbol{\Sigma}^{-1} I (\boldsymbol{\mu} - \boldsymbol{x}) \tag{45}$$

$$(\boldsymbol{\mu} - \boldsymbol{x})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu} - \boldsymbol{x}). \tag{46}$$

QR decomposition

QR decomposition is a versatile procedure that can be used to accomplish a variety of goals. QR decomposition expresses matrix \boldsymbol{A} as the product of orthogonal matrix \boldsymbol{Q} and upper triangular matrix \boldsymbol{R} . Matrix \boldsymbol{A} must be m-by-n with $m \geq n$. Here we describe how to use the QR decomposition algorithm to create an orthogonal axis

rotation that we can plug into the Gaussian density (Equation 41). Hence, \boldsymbol{A} will always be m-by-m (square) and full rank. Let \boldsymbol{x} be an arbitrary column vector of \boldsymbol{A} of length $|\alpha|$. One Householder reflection consists of,

$$\boldsymbol{u} = \boldsymbol{x} + \operatorname{sign}(x_1)\alpha \left[1, 0, \dots, 0\right]^T \tag{47}$$

$$v = \frac{u}{||u||} \tag{48}$$

$$\mathbf{Q} = \mathbf{I} - 2\mathbf{v}\mathbf{v}^T. \tag{49}$$

In Equation 47, we choose the sign to increase the magnitude of the first entry of \boldsymbol{x} . This ensures the length of \boldsymbol{u} is at least α . Vector \boldsymbol{u} can be regarded as the average of the direction of \boldsymbol{x} and the target axis. Vector \boldsymbol{v} is the reflection pivot. The obtained \boldsymbol{Q} will zero out all except the first row of \boldsymbol{x} such that,

$$\mathbf{Q}\mathbf{A} = \begin{bmatrix} \alpha_1 & \star & \dots & \star \\ 0 & & & \\ \vdots & \mathbf{A}' & & \\ 0 & & & \end{bmatrix}. \tag{50}$$

The process is repeated on A' until QA is upper triangular, generating a series of rotations Q_1, Q_2, \ldots, Q_m .

To illustrate the process, let us perform a rotation to an arbitrary basis,

$$\mathbf{A} = \begin{bmatrix} 2.87 \\ 2.55 & 2.88 \\ 1.27 & 2.88 & 0.91 \end{bmatrix} . \tag{51}$$

We place the basis vectors in the lower triangle because the QR algorithm is blind to

the upper triangle. The first reflection obtains,

$$\boldsymbol{x_1} = \begin{bmatrix} 2.87 \\ 2.55 \\ 1.27 \end{bmatrix} \tag{52}$$

$$\alpha_1 = ||\boldsymbol{x_1}|| = 4.04 \tag{53}$$

$$\mathbf{u} = \mathbf{x_1} + \text{sign}(x_{1,1})\alpha_1 [1, 0, \dots, 0]^T = \begin{bmatrix} 6.91 \\ 2.55 \\ 1.27 \end{bmatrix}$$

$$\begin{bmatrix} 0.92 \end{bmatrix}$$

$$\boldsymbol{v} = \frac{\boldsymbol{u}}{||\boldsymbol{u}||} = \begin{bmatrix} 0.92\\0.34\\0.17 \end{bmatrix}$$
 (55)

$$\mathbf{Q_1} = \mathbf{I} - 2\mathbf{v}\mathbf{v}^T = \begin{bmatrix} -0.71 & -0.63 & -0.31 \\ -0.63 & 0.77 & -0.12 \\ -0.31 & -0.12 & 0.94 \end{bmatrix}.$$
 (56)

As expected, Q_1 zeros all but the first entry of the first column of A,

$$\mathbf{Q_1A} = \begin{bmatrix} -4.04 & -2.72 & -0.29 \\ & 1.88 & -0.11 \\ & 2.38 & 0.86 \end{bmatrix}.$$

We continue with the second reflection,

$$\boldsymbol{x_2} = \begin{bmatrix} 1.88 \\ 2.38 \end{bmatrix} \tag{57}$$

$$\alpha_2 = ||x_2|| = 3.04 \tag{58}$$

$$\boldsymbol{u} = \boldsymbol{x_2} + \operatorname{sign}(x_{2,1})\alpha_2 \begin{bmatrix} 1, 0, \dots, 0 \end{bmatrix}^T = \begin{bmatrix} 4.92 \\ 2.38 \end{bmatrix}$$

$$\boldsymbol{v} = \frac{\boldsymbol{u}}{||\boldsymbol{u}||} = \begin{bmatrix} 0.90 \\ 0.44 \end{bmatrix}$$
(60)

$$\boldsymbol{v} = \frac{\boldsymbol{u}}{||\boldsymbol{u}||} = \begin{vmatrix} 0.90\\0.44 \end{vmatrix} \tag{60}$$

$$Q_2 = I - 2vv^T = \begin{bmatrix} 1.00 \\ -0.62 & -0.79 \\ -0.79 & 0.62 \end{bmatrix}.$$
 (61)

 Q_2 is 2-by-2, but we fill it with the identity matrix to expand it back to m-by-m. Ais fully decomposed. We obtain,

$$Q = Q_{2}Q_{1} = \begin{bmatrix} -0.71 & -0.63 & -0.31 \\ 0.64 & -0.38 & -0.67 \\ 0.30 & -0.67 & 0.67 \end{bmatrix}$$

$$R = Q_{2}Q_{1}A = \begin{bmatrix} -4.04 & -2.72 & -0.29 \\ -3.04 & -0.61 \\ 0.62 \end{bmatrix}$$
(62)

$$\mathbf{R} = \mathbf{Q_2} \mathbf{Q_1} \mathbf{A} = \begin{bmatrix} -4.04 & -2.72 & -0.29 \\ -3.04 & -0.61 \\ 0.62 \end{bmatrix}$$
(63)

However, this Q is the inverse of what we want. We want the rotation from the identity axis to the axis described by A. Hence, the desired rotation is Q^T . With a deeper understanding of axis rotation, we have the tools we need to describe the Rampart rotation.

Rampart rotation

Let us take a close look at the model in Figure 9. This model is identified with only two teachers. With only 8 observations, the matrices are compact enough to investigate the full model. First we examine the model implied covariance (Equation 20). Our model has no latent variables so the F matrix is set to the identity.

Parameters are assigned arbitrary values.

$$\mathbf{A} = \begin{bmatrix} 1.07 \\ 1.07 \\ 1.07 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} 0.29 \\ 0.70 \\ 0.70 \end{bmatrix}$$

$$\mathbf{\Sigma} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{S} (\mathbf{I} - \mathbf{A})^{-T} = \begin{bmatrix} 0.29 \\ 1.06 & 0.70 \\ 1.06 & 0.70 \\ 1.06 & 0.70 \end{bmatrix}$$

$$(64)$$

We obtain a 4-by-4 covariance matrix instead of 8-by-8 since both sets of teacherand-students have the same model. However, this efficiency gain of grouping by independence does not help much if we add more students. A classroom with a few hundred students is going to require a large covariance matrix.

Observe that λ , the regression from teacher to student, is a single parameter that is some function of the mean of the students. This is true regardless of the number of students. Instead of distributing the information about the mean across all the students, suppose we could rotate the data such that the mean was already computed and readily available. In fact, we can.

Let us use a QR decomposition find an orthogonal rotation to basis vectors,

$$\begin{bmatrix} 1.00 & 2.00 \\ 1.00 & -1.00 & 1.00 \\ 1.00 & -1.00 & -1.00 \end{bmatrix} . \tag{67}$$

These vectors are not normalized to unit length to make it easier to understand the construction. The first column vector obtains a value proportional to the mean. The remaining basis vectors consist of an arbitrary orthogonal contrast, Helmert contrasts in this case. QR decomposition obtains

$$\mathbf{Q}^{T} = \begin{bmatrix} -0.58 & -0.58 & -0.58 \\ 0.82 & -0.41 & -0.41 \\ & -0.71 & 0.71 \end{bmatrix} . \tag{68}$$

We apply this rotation to the 3 student values associated with the first teacher,

$$\mathbf{Q}^{T} \begin{bmatrix} 0.69 \\ -2.03 \\ -0.98 \end{bmatrix} = \begin{bmatrix} 1.34 \\ 1.79 \\ 0.74 \end{bmatrix}. \tag{69}$$

The mean of the first 3 students is -0.77. The value obtained (1.34) is $-\sqrt{3}$ times the mean. The wrong sign is due to rotational indeterminacy. We can take $-\mathbf{Q}^T$ instead of \mathbf{Q}^T . The $\sqrt{3}$ factor results from the need to preserve the length of the original vector, $\sqrt{3} = \sqrt{1^2 + 1^2 + 1^2}$. The remaining values reflect the variance,

$$\frac{\left[1.79 \quad 0.74\right] \left[\begin{array}{c} 1.79\\ 0.74 \end{array}\right]}{3-1} = \text{Var} \begin{bmatrix} 0.69\\ -2.03\\ -0.98 \end{bmatrix} = 1.88.$$
(70)

With the data rotated, a corresponding rotation to the covariance matrix is required to leave the density function unchanged. We rotate the teacher-to-student regression weights. Note that the value of these weights are constant for all students, in other words, the weights have zero variance. Therefore, all of the links to the students, besides the first, get zeroed and the first link is multiplied by $\sqrt{3}$ (see Figure 10). Since S remains as in Equation 65 and the rotated asymmetric matrix

$$\mathbf{A}^* = \begin{bmatrix} 1.85 \\ 0.29 & 0.54 \\ 0.54 & 1.71 \\ 0.70 \end{bmatrix}, \tag{71}$$

$$\Sigma = (\mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{S} (\mathbf{I} - \mathbf{A}^*)^{-T} = \begin{bmatrix} 0.29 & 0.54 \\ 0.54 & 1.71 \\ 0.70 \end{bmatrix}. \tag{72}$$

This rotation dramatically increases the independence in the model implied distribution. Regardless of the number of students, interdependent blocks of the covariance matrix need never be larger than 2-by-2 (and most of them are 1-by-1). Moreover, this algorithm can be applied recursively in more complex models with many levels such that most of the nonzero regions in a very large multilevel covariance structure (e.g., Equation 27) become independent. Note that the rotated A^* matrix (Equation 71) is only used to compute the covariance (Equation 20). Although A also appears in the computation of the expected means (Equation 19), this equation uses the unrotated A. The residuals are rotated, not (somehow) the predicted means (refer to Equation 41).

To extend this univariate approach to multiple indicators per students, we can rotate each indicator independently. Since the orthogonal contrasts are identical and

Figure 9. A simple multilevel model with 5 parameters: $\sigma_{teacher}^2$, $\mu_{teacher}$, $\sigma_{student}^2$, and λ . The three students have exactly the same model implied distribution.

Figure 10. Figure 9 after Rampart rotation is applied to unlink all but one student from the teacher. Note that the student data (not shown) requires a corresponding rotation to preserve the value of the likelihood.

in the same order for each indicator, not only is the variance preserved but also the covariance! Hence, there is no limit on the complexity of the student model. The only requirement is that all student models must be identical and have the same single parent.

Rampart: History and name

The idea for Rampart developed out of discussions among Timo von Oertzen, Steven M. Boker, and Timothy R. Brick during the summer of 2012. During spring 2013, Rampart was prototyped in OpenMx (see merge v2.3.1-294-g9968ddc in the source code repository). The prototype was limited to the situation where there are exactly the same number of lower level units for each upper level unit and no missing data. Such perfectly balanced data are unlikely to occur in practice. Moreover, the prototype did not allow definition variables. Definition variables are an important OpenMx feature that users expect to be implemented consistently throughout OpenMx. These deficiencies were remedied in the present implementation. The original proof-of-concept test script was brought up-to-date with the current syntax (Appendix E).

A rotation that was a conceptual precursor to Rampart was named pre-processed maximum likelihood in the title of von Oertzen and Hackett (submitted). However, the phrase pre-processed is remarkably non-specific. Furthermore, there is nothing about the algorithm that requires maximum likelihood as a fit function as opposed to, say, unweighted least squares. Hence, none of the elements of the original name provide helpful semantic cues. We propose Rampart. The name rampart lexically emphasizes the connection with the RAM parameterization. Colloquially, a rampart is a wall built for defense. The Rampart algorithm partitions, or places a wall between, repeated identical elements to defend against poor performance.

Sufficient statistic formula for the Gaussian density

A challenge with evaluation of the Gaussian density (Equation 1) is that the covariance dimension is very large, the total number of observations in the model. Inversion of the covariance is a computationally expensive operation, roughly $O(N^3)$. One common way to speed up evaluation of the Gaussian likelihood function is to use the sufficient statistic formula. Suppose we have data of N independent observations of K-variate units. Let μ and Σ be the model expected mean vector and covariance matrix, respectively. Let m and S be the mean vector and covariance matrix of the data, respectively. The sufficient statistic formula is,

$$-2 \log L(\text{data}|\boldsymbol{\theta}) = NK \log(2\pi) + N \log(|\boldsymbol{\Sigma}|) + (N-1)\text{tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{S}) + N(\boldsymbol{\mu} - \boldsymbol{m})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu} - \boldsymbol{m})).$$
(73)

The derivation of this formula is given in many textbooks and omitted here. The advantage of this formula is that the maximum dimension of the covariance matrix is K regardless of the number of units N. However, this formula is only applicable when the units are independent and identical. Fortunately, Rampart dramatically improves the prospects for application of the sufficient statistic formula.

Rampart and definition variables

To apply Rampart, the upper to lower level transition matrix must be exactly the same for all lower level units. Constant transition matrices, possibly with free parameters, pose no difficulty. However, no attempt is made to check whether this condition holds when the transition matrix is an mxAlgebra or contains square bracket populated values. If definition variables appear in the transition matrix then an attempt is made to group them by value. For example, a univariate twin model can be specified such that the upper to lower level link is either 1 or $\sqrt{0.5}$ (Appendix F).

Figure 11. A 3-level latent regression model. All levels use an identical 5 indicator factor model with the loading to the first indicator fixed to 1.0, freely estimated means, free factor variance, and homogeneous error variance. Regressions are estimated from school to teacher and from teacher to school. There are 11 parameters per level and 2 between level regressions for a total of 35 parameters. Indicator error variance does not need to be homogeneous. More complex error structures are possible, but were not included in this study. Manifest indicators are not shared by levels, but are unique to their level. For example, teacher indicators might include level of education and years of service.

Rampart automatically groups same values together and transforms as many units as possible. Another common use for definition variables is to specify zero variance regressions. Since these regressions do not affect the covariance, units that differ only in mean structure are Rampart rotated and evaluated using the sufficient statistic formula (Equation 73). A model that greatly benefits from automatic identification of zero variance regressions is given in Appendix G.

Latent regression parameter recovery simulation study

To validate the accuracy of Rampart, a parameter recovery simulation study was conducted on a 3-level latent regression model. Figure 11 exhibits the per-level model structure. In addition, the first student indicator was set to missing with 20% prob-

Table 4
Euclidean norm of Monte Carlo bias and variance of parameter estimates by algorithm
and parameter set. Rampart exhibits slightly less bias and variance on θ_1 . Both
algorithms exhibit roughly equal performance on θ_2 .

$\boldsymbol{\theta}$	replications	method	bias	$ \sigma^2 $
1	174	rampart	1.686	0.769
		regular	1.702	0.780
2	171	rampart	2.336	0.557
		regular	2.335	0.560

Figure 12. Scatterplot of deviance at the maximum likelihood for θ_1 (a) and θ_2 (b). In replications of θ_1 , it was not uncommon for the deviance difference to be greater than 10 points. For one replication of θ_1 , the regular algorithm got stuck in a local minimum more than 1000 deviance points from a better minimum found by Rampart.

ability. With observations at multiple levels, this model was outside the capability of freely available mixed model software and would be challenging to specify in SEM software without a relational join operator. The simulation study focused on validation of Rampart, comparing Rampart with the standard, unoptimized approach (i.e., simple application of Equation 1).

Two sets of true parameters (θ_1 and θ_2) were randomly chosen and data generated. Random numbers of students were assigned to each class and random numbers of teachers assigned per school. Parameter θ_1 was paired with 7 schools, 38 teachers, and 293 students. Parameter θ_2 was paired with 7 schools, 37 teachers, and 296 students. This was the smallest 3-level data set that we found empirically identified

Figure 13. Seconds required per replication by algorithm for θ_1 . As expected, Rampart exhibits a huge efficiency advantage on this type of model. Note the difference in scale on the x axis. Timing data for θ_2 is similar, and therefore, is omitted.

for most replications. A 4-level model (adding district as a higher level) was prepared to further validate the Rampart implementation (see Appendix H), but evaluation of this model using the standard algorithm required so much CPU time that a simulation study was deemed impractical.

Two hundred Monte Carlo replications were run for each condition (Algorithm $\times\theta$). For each replication, data were generated from the true parameters. The number of units, which lower level units were linked to which upper level units, and data missingness patterns were identical for all replications. The model was optimized against these data to obtain $\hat{\boldsymbol{\theta}}$, using the true parameters as starting values. For R replications, Monte Carlo bias and variance are

$$MC_{bias} \equiv \left[R^{-1} \sum_{r=1}^{R} \hat{\boldsymbol{\theta}}_r \right] - \boldsymbol{\theta}_{true}$$
 (74)

$$MC_{var} \equiv Var(\hat{\boldsymbol{\theta}}).$$
 (75)

After every replication, the information matrix was estimated by 2-iteration Richardson extrapolation of the central difference. The condition number of the information matrix is the maximum singular value divided by the minimum singular value and provides a rough gauge of the stability of a solution (Luenberger & Ye, 2008, p. 239). Replications were excluded from further analysis when the condition number of the

information matrix was larger than 5 median absolute deviations from the median.

Results are summarized in Table 4. Rampart performed no worse than the standard algorithm. Additional insight into the performance of Rampart can be gleaned by plotting the fit values at the mode of the likelihood against each other (Figure 12). The mode found by Rampart can match the standard algorithm closely or differ by a considerable amount depending on the model. Another way to examine model stability is to take the difference between regular and Rampart condition numbers for the included replications. These means were 46.6 (SE = 46.53) and 5.24 (SE = 1.84) for θ_1 and θ_2 , respectively. That the means were positive suggest that the Rampart rotation may improve model stability. As expected, Rampart exhibited a huge efficiency advantage (Figure 13), mean time regular = 176.97s, mean time Rampart = 6.5s, Rampart/regular ratio = 0.04. Complete source code for the simulation study is included in Appendix I.

Application

In order to demonstrate the efficacy of the Rampart algorithm, we reanalyzed data from a facial expression tracking experiment (Boker et al., 2009). When two people engage in conversation, prior research indicates that the style of their head movements tend to become more similar. In this experiment, confederates engaged in conversation with naïve participants over a video conferencing system. However, naïve participants (n = 27) did not see the unfiltered confederates (n = 6) but a computer generated avatar. To produce a convincing portrayal, confederates' facial expressions were meticulously tracked in real-time. The portrayals were sufficiently convincing that no naïve participants guessed that the computer generated faces were not unmodified live video.

In a crossed experimental design, damping was applied to confederate facial expressions, vocal inflections, and head movements. Confederates were familiar with

the nature of the manipulations and their probable effects, but were blind to order and timing. The head movements of both participants in the conversation were motion tracked at 81.6 Hz. The dependent variables were anterior-posterior (A-P) and lateral head angle. These correspond to nods of affirmation (pitch) and head shakes of disagreement (yaw), respectively. Vigor of angular velocity was taken as a metric. Based on prior research, it was hypothesized that women would nod and shake their head with greater vigor than men. In addition, it was hypothesized that each of the manipulations would increase the vigor of nods and shakes. The notion of vigor was operationalized as the root mean square (RMS) of the angular velocity during a condition.

For each 1 minute condition, there were 4860 velocity measurements ($81.6 \cdot 60 \approx 4860$). Conversations were described as lasting 8 minutes (Boker et al., 2009, p. 3488) with a different condition every minute. However, conversations ranged from 6 to 10 minutes with a median of 9 minutes. Conditions always lasted 1 whole minute so conversations shorter than 8 minutes did not include all conditions and conversations longer than 8 minutes included some repeated conditions.

Table 5
Comparison between a variety of modeling options. Model original fits both anterior-posterior and lateral RMS angular velocity in a single model but leaves them independent (as a multiple group model). This matches the original model from Boker et al. (2009). Model only_confed adds a varying intercept for confederates. Model xyCov is the same as Model original but adds a covariance between anterior-posterior and lateral RMS angular velocity. Model xyCov_confed adds a varying intercept for confederates, and a covariance between anterior-posterior and lateral RMS angular velocity. Model full is similar to Model xyCov_confed but allows covariance between varying intercepts. See Appendix J for source code.

			-					
base	comparison	ер	${\rm minus} {\rm 2LL}$	df	AIC	diffLL	diffdf	p
full		33	2275.2	1603	-930.8			
full	$xyCov_confed$	31	2275.7	1605	-934.3	0.5	2	0.79
full	xyCov	29	2329.1	1607	-884.9	53.9	4	0.00
full	$only_confed$	30	2373.0	1606	-839.0	97.8	3	0.00
full	original	28	2415.4	1608	-800.6	140.2	5	0.00

Figure 14. Anterior-posterior (a) and lateral (c) RMS angular velocity log(1 + x) transformed to (b) and (d), respectively.

The models used in the original analysis were loosely based on the Actor-Partner Interdependence Model (Cook & Kenny, 2005). These models included a varying intercept per naïve participant, but all confederates were assumed to produce equally vigorous head movements. Hence, the original model violated the assumption of independent observations since minutes involving the same confederate should be more similar than minutes involving different confederates. Another weakness in the analysis was the assumption that anterior-posterior (A-P) and lateral head angle were independent. No author believed that these two axes of head motion were independent, but no software was available to conveniently specify a multivariate model (S. Boker, personal communication, March 2015).

Before proceeding, we note that the RMS statistics are skewed and leptokurtic. The distribution can be improved by a $\log(1+x)$ transformation (Figure 14). These raw data were carefully documented and published (Pritikin, 2016). A variety of modeling options were explored (Table 5). We selected Model $xyCov_confed$ to compare against the original model.

Figure 15. Generating parameters for power simulation study. For each replication, data were generated using Model $xyCov_confed$ with each parameter randomly selected (with a uniform distribution) from absent, small+, small-, large+, or large-. Parameter values were set to correspond in magnitude with empirical parameter estimates found with Model $xyCov_confed$. An empirical parameter estimate was used in two different ways. If the parameter value divided by the standard error was 2.0 or less then it was assigned to small and large was set to 3 times the standard error. Otherwise, the parameter value was assigned to large and small was set to 1.5 the standard error. Variance parameters only used positive values. A few parameters were not of interest and used the same data generating value for all replications: the constant variances of x (lateral) and y (anterior-posterior) and their constant intercepts.

Figure 16. ROC plots for original (82.05% area under curve) and Model $xyCov_confed$ (88.09% area under curve). DeLong's test of the null hypothesis that the area under the curves are equal is rejected, D = -5.55, df = 4544.23, p- $value = 3.05 \times 10^{-8}$.

A simulation study was conducted to determine how much power we might gain from Model $xyCov_confed$. Data were generated according to the scheme detailed in Figure 15. Both models were fit on 100 replications. For the original model, all replications converged but only 88 converged for Model $xyCov_confed$. Replications that failed to converge were excluded from the analysis. For each replication, the absolute parameter value divided by its standard error was taken as the quantity of evidence and the true effect was whether the corresponding generating parameter was large. An incorrect sign, which appeared for 12 parameter estimates throughout the simulation, was scored by negating the evidence quantity. Simulation results are summarized in Figure 16. Model $xyCov_confed$ demonstrated significantly greater power on these data than the original model. Some confidence was gained that Model $xyCov_confed$ can accurately recover parameters from simulated data. See

Figure 17. Parameter estimates for original and new model. Error bars represent $\pm 2SE$. Parameter otherSex became non-significant and the effect size of selfSex declined. Otherwise, most parameter estimates seemed to change little.

Appendix K for the simulation source code.

Figure 17 exhibits the original parameter estimates together with estimates from the new model. Some doubt is cast on the effect of sex on RMS angular velocity, but otherwise, most of the estimates remained stable. Although our contribution is a step forward, much more could be done to analyze these data in greater depth. For example, it is now feasible to decompose the one minute conditions into 2s chunks and estimate both within and between condition contributions. This would be computationally difficult without Rampart.

Discussion

We reviewed the development of Gaussian modeling from its beginnings in intuitive theories of causation to relational structural equation modeling. The optimization of nested multilevel models pose particular computational challenges. Rampart, a novel approach that simplifies nested multilevel structure, was devised and implemented in OpenMx. This implementation is of the quality required by applied researchers. A latent regression parameter recovery simulation study was conducted to demonstrate the correctness of the implementation. The implementation allows for unbalanced and missing data, and definition variables. To highlight the flexibility of the new relational SEM interface, popular mixed model regression specifications were re-expressed in OpenMx.

To further demonstrate Rampart, a reanalysis of Boker et al. (2009) was conducted using a multivariate model to more closely match the theoretical data generating process. In a simulation study, the multivariate model exhibited significantly higher statistical power than the original mixed model. In a comparison of the estimates obtained, most parameters did not change to a large extent except for a weaker effect of sex on head movement vigor. While the new model was an improvement on the 2009 model, the data are still highly summarized and could be modeled in greater detail given the computational efficiency of Rampart.

The join operator in OpenMx supports one-to-many relationships but omits support for unlimited many-to-many relationships such as can be recorded in a relational database using a linking table. For example, with a linking table, a teacher can have many students and a student can have many teachers. There is no problem with linking tables from the standpoint of the join operator, but it is not clear how to specify models that can adapt to the combination of two arbitrary sets of units.

Rampart provides a huge boost in performance, but opportunities still remain to improve performance further. For example, it is not yet clear how best to parallelize

evaluation of the likelihood. The dimension of the covariance of independent groups can be large or small. The number of observations per identical covariance can be large or just a single mean vector. Further research is needed to determine the thresholds when the benefit of parallel computation outweighs the overhead of coordinating multiple threads.

Relational SEM models do not take into account the loss of degrees of freedom from constant coefficients (Patterson & Thompson, 1971). Most research to date on addressing this bias has focused on the mixed model where there is a clear delineation between constant and varying coefficients. Due to the efficiency of Rampart, it is now feasible to create relational SEM models that are nested many levels deep with some observations at each level. It is not clear whether the distinction between constant and varying coefficients applies in the circumstance where a middle level coefficient is somewhat varying and somewhat constant. The use of a Wishart prior to correct bias seems like a promising line of investigation (Chung et al., 2015). More research is needed to establish whether this approach can be profitably applied to relational SEM or whether a different approach is more suitable.

While large sample inference can rely on the asymptotic results of large sample theory, much prior research on small sample inference is limited to the mixed model (univariate with no latent factors). It is unclear whether prior research on small sample inference generalizes to relational SEM. More simulation studies are needed to provide guidance about how perform inference with small samples.

OpenMx, a freely available open-source statistical software package, is now capable of estimating multilevel relational structural equation models using the Rampart optimization. SEM models of large data sets, such as entire school districts, had been considered intractable due to the required estimation time. With Rampart, these data sets may now be revisited and estimated with relative efficiency.

References

- Bates, D. & DebRoy, S. (2004). Linear mixed models and penalized least squares.

 Journal of Multivariate Analysis, 91(1), 1–17.
- Bates, D., Mächler, M., Bolker, B. M., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. ArXiv e-print; submitted to *Journal of Statistical Software*. Retrieved from http://arxiv.org/abs/1406.5823
- Boker, S. M., Cohn, J. F., Theobald, B.-J., Matthews, I., Brick, T. R., & Spies, J. R. (2009). Effects of damping head movement and facial expression in dyadic conversation using real-time facial expression tracking and synthesized avatars. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1535), 3485–3495.
- Cheung, M. W.-L. (2013). Implementing restricted maximum likelihood estimation in structural equation models. *Structural Equation Modeling*, 20(1), 157–167.
- Chung, Y., Gelman, A., Rabe-Hesketh, S., Liu, J., & Dorie, V. (2015). Weakly informative prior for point estimation of covariance matrices in hierarchical models. *Journal of Educational and Behavioral Statistics*, 40(2), 136–157. doi:10.3102/1076998615570945
- Cook, W. L. & Kenny, D. A. (2005). The Actor-Partner interdependence model: A model of bidirectional effects in developmental studies. *International Journal of Behavioral Development*, 29(2), 101–109.
- Crainiceanu, C. & Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. *Journal of the Royal Statistical Society B*, 66, 165–185.
- Curran, P. J. & Bauer, D. J. (2007). Building path diagrams for multilevel models.

 Psychological Methods, 12(3), 283–297.
- Efron, B. (1998). R. A. Fisher in the 21st Century. Statistical Science, 95–114.

Enders, C. K. & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models.

Structural Equation Modeling, 8(3), 430–457.

- Estabrook, R. & Neale, M. C. (2013). A comparison of factor score estimation methods in the presence of missing data: Reliability and an application to nicotine dependence. *Multivariate Behavioral Research*, 48(1), 1–27.
- Fan, X. (1997). Canonical correlation analysis and structural equation modeling: what do they have in common? *Structural Equation Modeling: A Multidisciplinary Journal*, 4(1), 65–79. doi:10.1080/10705519709540060
- Fellner, W. H. (1987). Sparse matrices, and the estimation of variance components by likelihood methods. *Communications in Statistics-Simulation and Computation*, 16(2), 439–463.
- Gelman, A. (2005). Analysis of variance—why it is more important than ever. The Annals of Statistics, 33(1), 1–53.
- Gelman, A. (2008). Objections to Bayesian statistics. Bayesian Analysis, $\Im(3)$, 445–449.
- Gelman, A. & Shirley, K. (2011). Inference from simulations and monitoring convergence. In S. Brooks, A. Gelman, G. Jones, & X.-L. Meng (Eds.), *Handbook of Markov Chain Monte Carlo* (pp. 163–174). CRC press.
- Goldstein, H. & McDonald, R. P. (1988). A general model for the analysis of multilevel data. *Psychometrika*, 53(4), 455–467.
- Hartley, H. O. & Rao, J. N. (1967). Maximum-likelihood estimation for the mixed analysis of variance model. *Biometrika*, 54(1-2), 93–108.
- Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. *Journal of the American Statistical Association*, 72(358), 320–338.

Henderson Jr, C. R. (1982). Analysis of covariance in the mixed model: Higher-level, nonhomogeneous, and random regressions. *Biometrics*, 623–640.

- Henderson, C. R. (1953). Estimation of variance and covariance components. Biometrics, g(2), 226-252.
- Jöreskog, K. G. & Van Thillo, M. (1972). LISREL: A general computer program for estimating a linear structural equation system involving multiple indicators of unmeasured variables. [Computer software].
- Kenny, D. A. & Judd, C. M. (1986). Consequences of violating the independence assumption in analysis of variance. *Psychological Bulletin*, 99(3), 422.
- Lindstrom, M. J. & Bates, D. (1990). Nonlinear mixed effects models for repeated measures data. *Biometrics*, 673–687.
- Lovie, P. & Lovie, A. D. (1996). Charles Edward Spearman, F.R.S. (1863–1945). *Notes* and Records of the Royal Society, 50(1), 75–88. doi:10.1098/rsnr.1996.0007
- Luenberger, D. G. & Ye, Y. (2008). *Linear and nonlinear programming*. Springer-Verlag.
- MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.
- Maier, D. (1983). The theory of relational databases. Computer Science Press.
- Manor, O. & Zucker, D. M. (2004). Small sample inference for the fixed effects in the mixed linear model. *Computational Statistics & Data Analysis*, 46, 801–817. doi:10.1016/j.csda.2003.10.005
- McArdle, J. J. (2005). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), *Contemporary advances in psychometrics* (pp. 225–273). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

McArdle, J. J. & McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures. *British Journal of Mathematical and Statistical Psychology*, 37(2), 234–251.

- McDonald, R. P. (1978). A simple comprehensive model for the analysis of covariance structures. *British Journal of Mathematical and Statistical Psychology*, 31(1), 59–72.
- Patterson, H. D. & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. *Biometrika*, 58(3), 545–554.
- Pawitan, Y. (2001). In all likelihood: Statistical modelling and inference using likelihood. Oxford University Press.
- Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge University Press.
- Pek, J. & Wu, H. (in press). Profile likelihood-based confidence intervals and regions for structural equation models. *Psychometrika*.
- Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2016). nlme: linear and nonlinear mixed effects models. R package version 3.1-124. Retrieved from http://CRAN.R-project.org/package=nlme
- Plummer, M. (2013). JAGS version 3.4.0 user manual. Retrieved from http://mcmc-jags.sourceforge.net/
- Pritikin, J. N. (2016, March). Data for Boker et al (2009). Open Science Framework. doi:10.17605/OSF.IO/TJQ24
- Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. *Psychometrika*, 69(2), 167–190.
- Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. John Wiley & Sons, Inc.
- Skrondal, A. & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. CRC Press.

Stan Development Team. (2014). Stan modeling language users guide and reference manual, version 2.5.0. Retrieved from http://mc-stan.org/

- Stanton, J. M. (2001). Galton, Pearson, and the peas: A brief history of linear regression for statistics instructors. *Journal of Statistics Education*, 9(3).
- Tarjan, R. E. (1976). Edge-disjoint spanning trees and depth-first search. Acta Informatica, 6(2), 171-185.
- Voelkle, M. C. & Oud, J. H. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. *British Journal of Mathematical and Statistical Psychology*, 66(1), 103–126.
- von Oertzen, T. & Hackett, D. C. (submitted). Pre-processing for efficient maximum likelihood estimation in structural equation models with fixed loadings. submitted.
- West, B. T., Welch, K. B., & Galecki, A. T. (2014). Linear mixed models: A practical guide using statistical software. CRC Press.
- White, H. (1982). Maximum likelihood estimation of misspecified models. *Econometrica: Journal of the Econometric Society*, 1–25.
- Wilkinson, G. N. & Rogers, C. E. (1973). Symbolic description of factorial models for analysis of variance. Applied Statistics, 392–399.
- Wolfinger, R., Tobias, R., & Sall, J. (1994). Computing Gaussian likelihoods and their derivatives for general linear mixed models. SIAM Journal on Scientific Computing, 15(6), 1294–1310.

Appendix A

Univariate Random Intercept Wide. R

```
1 #
2 # Copyright 2007-2016 The OpenMx Project
3 #
4 # Licensed under the Apache License, Version 2.0 (the "License");
5 # you may not use this file except in compliance with the License.
```

```
You may obtain a copy of the License at
   #
7
             http://www.apache.org/licenses/LICENSE-2.0
   #
   #
       Unless required by applicable law or agreed to in writing, software
   #
10
       distributed under the License is distributed on an "AS IS" BASIS,
   #
11
       WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   #
12
       See the License for the specific language governing permissions and
   #
13
       limitations under the License.
14
15
16
   \# Program: UniRandomIntTest-120815.R
      Author: Steve Boker
        Date: Wed Aug 15 10:50:12 CEST 2012
19
20
   # This program simulates some univariate multilevel data with random
21
   # intercepts only, fits it with lme(), fits a naive wide format
   # multilevel OpenMx model and checks the results
24
   # -
25
   # Revision History
26
       Steve Boker — Wed Aug 15 10:50:14 CEST 2012
27
          Created\ UniRandomIntTest-120815.R
28
29
30
31
32
   # Read libraries and set options.
33
34
   options (width=110)
35
   library (nlme)
   library (OpenMx)
37
39
   # Set constants.
40
41
   sdLevelOneE <- sqrt(.2)
42
   sdIntercepts <- sqrt(.5)
   sdX \leftarrow sqrt(1)
44
45
  N < -400
               # number of participants
46
  P <- 100
              # number of observations per participant
              # Fixed effect intercept
  b0 < -.5
```

```
b1 < -.8
                 # Fixed effect slope
50
   set.seed(1)
51
52
53
   # Simulate the data.
54
55
   X \leftarrow \operatorname{rnorm}(N*P, 0, \operatorname{sd=sd}X)
56
   ID <- rep(1:N, each=P)
   b0i <- b0 + rnorm(N, 0, sd=sdIntercepts)
   Y \leftarrow rep(b0i, each=P) + b1*X + rnorm(N*P, 0, sd=sdLevelOneE)
59
   SimUniRandomIntFrame <- data.frame(ID, X, Y)
61
62
63
   # Test with lme().
64
65
   lmeOut <- summary(lme(Y ~ X, random= list(~ 1 | ID),
66
                             data=SimUniRandomIntFrame))
67
68
   # For lme4, use:
69
   \# lmerOut \leftarrow lmer(Y \sim X + (1 \mid ID), data=SimUniRandomIntFrame)
71
72
   # Set constants.
73
74
   theIDs <- unique(SimUniRandomIntFrame$ID)
75
   totalN <- length(theIDs)
76
   totalVars <- 2
77
   \max P < -0
79
   for (tID in theIDs) {
80
        tmask \leftarrow SimUniRandomIntFrame\$ID = tID
81
        tLen <- length (SimUniRandomIntFrame$ID[tmask])
82
        if (tLen > maxP)
83
            \max P < - t Len
84
   }
85
87
   # Wide-format the data frame from tall format.
88
89
   wideMatrix <- matrix (NA, nrow=totalN, ncol=1 + (maxP*totalVars))
90
   colnames(wideMatrix) <- c("ID", paste("Y",1:maxP, sep=""),
```

```
paste("X",1:maxP, sep=""))
92
   i <- 1
93
    for (tID in theIDs) {
94
        wideMatrix[i, 1] <- tID
        tY <- SimUniRandomIntFrame$Y[SimUniRandomIntFrame$ID==tID]
96
        wideMatrix[i, 2:(length(tY)+1)] \leftarrow tY
97
        tX <- SimUniRandomIntFrame$X[SimUniRandomIntFrame$ID=tID]
98
        wideMatrix[i, (2+maxP): (length(tY)+1+maxP)] < -tX
99
        i < -i + 1
100
101
   wideFrame <- data.frame(wideMatrix)
102
103
   manifestNames <- colnames (wideFrame) [2:dim(wideFrame) [2]]
104
   xNames <- paste("X",1:maxP, sep="")
105
   yNames <- paste("Y",1:maxP, sep="")
106
   latentNames <- c("b0i")
107
108
109
   # Build the OpenMx wide model.
110
111
   OpenMxModelUniRandomIntModel1 <-
112
      mxModel("OpenMxModelUniRandomIntModel1",
113
            type="RAM",
114
            manifestVars=manifestNames,
115
        latentVars=latentNames,
116
        mxPath(from=xNames, to=yNames, connect="single", arrows=1,
117
                free=TRUE, values=.2, labels="b1"),
118
        mxPath(from=xNames, to=xNames, connect="single", arrows=2,
119
                free=TRUE, values=.8, labels="vX"),
120
        mxPath(from=yNames, to=yNames, connect="single", arrows=2,
121
                free=TRUE, values=.8, labels="eY"),
122
        mxPath(from=latentNames, to=yNames, arrows=1, free=FALSE, values=1),
123
        mxPath(from=latentNames, to=latentNames, connect="single", arrows=2,
124
                free=TRUE, values=.8, labels="vb0i"),
125
        mxPath(from="one", to=c(xNames), arrows=1,
126
                free=TRUE, values=1, labels="mX"),
127
        mxPath(from="one", to=c(latentNames), arrows=1,
128
                free=TRUE, values=1, labels="mb0i"),
129
        mxData(observed=wideFrame, type="raw")
130
131
132
133
   # Fit the model and examine the summary results.
```

```
135
   omxFit <- mxRun(OpenMxModelUniRandomIntModel1)
136
137
   summary(omxFit)
138
139
   omxCheckCloseEnough(lmeOut$coefficients$fixed[1],
140
                         mxEval(mb0i, model=omxFit), 0.001)
141
142
   omxCheckCloseEnough(lmeOut$coefficients$fixed[2],
                         mxEval(b1, model=omxFit), 0.001)
144
145
   omxCheckCloseEnough(lmeOut$sigma,
146
                          mxEval(sqrt(eY), model=omxFit), 0.001)
147
148
   omxCheckCloseEnough(sd(c(lmeOut$coefficients$random$ID)),
149
                          mxEval(sqrt(vb0i), model=omxFit), 0.001)
150
151
    if (0) {
152
            omxCheckCloseEnough(lmeOut$coefficients$fixed,
153
                                  fixef(lmerOut), 1e-4)
154
      omxCheckCloseEnough(lmeOut$sigma, sigma(lmerOut), 1e-4)
155
      omxCheckCloseEnough(c(lmeOut$coefficients$random$ID),
156
                            ranef(lmerOut)$ID[[1]], 1e-4)
157
   }
158
```

Appendix B

lmer sleepstudy example

```
library (lme4)
  fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy, REML=FALSE)
  library (OpenMx)
   if (is.factor(sleepstudy$Subject)) {
6
     subjnum <- unclass(sleepstudy$Subject)</pre>
     sleepstudy $Subject <- as.integer(levels(sleepstudy $Subject)[ subjnum ])
  }
9
10
  bySubj <- mxModel(
11
       model="bySubj", type="RAM",
12
       latentVars=c("slope", "intercept"),
13
       mxData(data.frame(Subject=unique(sleepstudy$Subject)),
14
               type="raw", primaryKey = "Subject"),
15
```

```
mxPath(from=c("intercept", "slope"), arrows=2, values=1),
16
       mxPath(from="intercept", to="slope", arrows=2, values=.25, labels="cov1"))
17
18
   sleepModel <- mxModel(
19
       model="sleep", type="RAM", bySubj,
20
       manifest Vars="Reaction", latent Vars = "Days",
21
       mxData(sleepstudy, type="raw", sort=FALSE),
22
       mxPath(from="one", to="Reaction", arrows=1, free=TRUE),
23
       mxPath(from="one", to="Days", arrows=1, free=FALSE, labels="data.Days"),
       mxPath(from="Days", to="Reaction", arrows=1, free=TRUE),
25
       mxPath(from="Reaction", arrows=2, values=1),
26
       mxPath(paste0('bySubj.', c('intercept', 'slope')),
27
               'Reaction', arrows=1, free=FALSE, values=c(1,NA),
28
              labels=c(NA, "data.Days"), joinKey="Subject"))
29
30
   m1 <- mxRun(sleepModel)
31
32
   omxCheckCloseEnough(logLik(m1), logLik(fm1), 1e-6)
```

Appendix C

lmer Orthodont example

```
libraries <- rownames(installed.packages())
   if (!all(c("lme4", "nlme") %in% libraries)) stop("SKIP")
3
   library (lme4)
   data(Orthodont, package="nlme")
   Orthodont$nsex <- as.numeric(Orthodont$Sex=="Male")
   Orthodont$nsexage <- with(Orthodont, nsex*age)
   fm1 \leftarrow lmer(distance \sim age + (age | Subject) + (0+nsex | Subject) +
                    (0 + nsexage | Subject), data=Orthodont, REML=FALSE)
10
   library (OpenMx)
11
12
   if (is.factor(Orthodont$Subject)) {
13
       Orthodont $Subject <- as.integer(unclass(Orthodont $Subject))
14
   }
15
16
   bySubj <- mxModel(
17
       model="subj", type="RAM",
18
       latentVars = c('intercept', paste0(c("age", 'nsex', "nsexage"), "L")),
19
       mxData(data.frame(Subject=unique(Orthodont$Subject)),
20
               type="raw", primaryKey="Subject"),
21
```

```
mxPath(from=c('intercept', 'ageL'), to=c('intercept', 'ageL'),
22
               arrows=2, "unique.pairs", values=c(1,.1,1),
23
               labels=c('subjInt', 'subjIntAge', 'subjAge')),
24
       mxPath(from=c('nsexL', 'nsexageL'), arrows=2, values=1))
25
26
   ortho <- mxModel(
27
       model="ortho", bySubj, type="RAM", manifestVars=c("distance"),
28
       latent Vars = c("ageL"),
29
       mxData(type="raw", observed=Orthodont[,c('distance', 'age',
30
                                'Subject', 'nsex', "nsexage")], sort = FALSE),
31
       mxPath(from=c("one"), to="distance"),
32
       mxPath(from=c("one"), to="ageL", free=FALSE, labels="data.age"),
33
       mxPath(from="ageL", to="distance"),
34
       mxPath(from="distance", arrows=2, values=1),
35
       mxPath(from="subj.intercept", to="distance", values=1, free=FALSE,
36
              joinKey="Subject"),
37
       mxPath(from=paste0("subj.", c("ageL", "nsexL", "nsexageL")),
38
               to="distance",
39
               labels=paste0("data.", c("age", "nsex", "nsexage")),
40
               free=FALSE, joinKey="Subject"))
41
42
   if (1) {
43
     # load lme4's parameters
44
       p1 <- ortho
45
       p1$subj$S$values[c('intercept', 'ageL'),c('intercept', 'ageL')] <-
46
           VarCorr(fm1)$Subject
47
       p1$subj$S$values[c('nsexL'),c('nsexL')] <-
48
           VarCorr(fm1)$Subject.1
49
       p1$subj$S$values[c('nsexageL'),c('nsexageL')] <-
50
           VarCorr(fm1)$Subject.2
51
52
       p1$A$values['distance', 'ageL'] <- fixef(fm1)['age']
53
       p1$M$values[,'distance'] <- fixef(fm1)['(Intercept)']
54
       p1$S$values['distance','distance'] <- getME(fm1, "sigma")^2
55
56
       pt1 <- mxRun(mxModel(p1, mxComputeSequence(list(
57
           mxComputeOnce('fitfunction', 'fit'),
58
           mxComputeReportExpectation())))
59
60
       omxCheckCloseEnough(logLik(pt1), logLik(fm1), 1e-6)
61
   }
62
63
   orthoFit <- mxRun(ortho)
```

```
# OpenMx finds a better solution
66
   omxCheckCloseEnough(orthoFit$output$fit, 436.73, 1e-2)
67
  # -
69
70
   fm2 <- lmer(distance ~ age + (age | Subject) + (0+nsex | Subject) +
71
                    (0 + nsexage | Subject), data=Orthodont, REML=TRUE)
72
73
   ortho$fitfunction$profileOut <- c("ortho.A[1,2]", "ortho.M[1,1]")
74
75
   if (1) {
76
     # load lme4's parameters
77
       p1 <- ortho
78
       p1$subj$S$values[c('intercept', 'ageL'),c('intercept', 'ageL')] <-
79
           VarCorr(fm2)$Subject
80
       p1$subj$S$values[c('nsexL'),c('nsexL')] <-
            VarCorr(fm2)$Subject.1
82
       p1$subj$S$values[c('nsexageL'),c('nsexageL')] <-
83
           VarCorr(fm2)$Subject.2
85
       p1$A$values['distance', 'ageL'] <- fixef(fm2)['age']
86
       p1$M$values[,'distance'] <- fixef(fm2)['(Intercept)']
87
       p1$S$values['distance','distance'] <- getME(fm2, "sigma")^2
88
       pt1 <- mxRun(mxModel(p1, mxComputeSequence(list(
90
           mxComputeOnce('fitfunction', 'fit'),
91
           mxComputeReportExpectation())))
92
93
       omxCheckCloseEnough(logLik(pt1), logLik(fm2), 1e-6)
94
   }
95
96
   orthoFit <- mxRun(ortho)</pre>
98
   omxCheckCloseEnough(orthoFit$output$fit, 440.43, .01)
```

Appendix D

MultilevelUniRandomSlopeInt.R

```
1 #
2 # Copyright 2007-2016 The OpenMx Project
3 #
4 # Licensed under the Apache License, Version 2.0 (the "License");
```

```
#
       you may not use this file except in compliance with the License.
       You may obtain a copy of the License at
   #
   #
             http://www.apache.org/licenses/LICENSE-2.0
   #
   #
9
       Unless required by applicable law or agreed to in writing, software
   #
10
       distributed under the License is distributed on an "AS IS" BASIS,
   #
11
       WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   #
12
       See the License for the specific language governing permissions and
   #
13
       limitations under the License.
   #
14
15
   require (OpenMx)
16
   require (nlme)
17
18
   # Multilevel Long Format Test
19
   # Author: Steve Boker
20
   # Date: Sun Nov 29 14:06:07 EST 2009
22
23
   # This script is used to test the multilevel long format
24
   # functionality using definition variables as indices.
25
   totalOccasions <- 100
26
   totalSubjects <- 10L
27
   set.seed (42) # repeatibility
28
   tID <- rep(1:totalSubjects, each=totalOccasions)
29
   trueX <- rep(rnorm(totalOccasions, mean=0, sd=2), each=totalSubjects) +
30
       rnorm(totalOccasions*totalSubjects, mean=0, sd=.2)
31
   trueB <- rep(rnorm(totalSubjects, mean=.8, sd=.3), each=totalOccasions)
32
   tDataFrame <- data.frame(
33
       ID=tID, X=trueX, Y=trueB*trueX +
34
           rnorm(totalOccasions*totalSubjects, mean=0, sd=.1), trueB=trueB)
35
   summary (tDataFrame)
36
37
   manifestVars \leftarrow c("X", "Y")
38
   numSubjects <- length(unique(tDataFrame$ID))</pre>
39
40
   # Estimates the sum of the random and fixed effects
41
   multilevelModel2 <- mxModel("Multilevel_2",
42
       mxMatrix("Full", nrow=numSubjects, ncol=2,
43
            values=c(.2,0),
44
            free = c(TRUE, TRUE),
45
           name="Rand",
46
           byrow=TRUE
47
```

```
),
48
       mxMatrix("Full", 2, 2,
49
            labels=c(NA, NA,
50
                     "randrow [1,1]", NA),
51
            free=FALSE,
52
            name="A",
53
            byrow=TRUE
54
       ),
55
       mxMatrix("Symm", 2, 2,
56
            values=c(.9,0,.9),
57
            free=c(T,
58
                    F, T),
59
            labels=c("varX",
60
                      NA, "varY"),
61
            name="S",
62
            byrow=TRUE
63
       ),
64
            mxMatrix("Full", 2, 2,
65
                      values=c(1,0,
66
                                     0,1),
                           free=FALSE,
68
                           byrow=TRUE, name="F"),
69
       mxMatrix("Iden", 2, name="I"),
70
       mxAlgebra (F %*% solve (I-A) %*% S %*% t (solve (I-A)) %*% t (F),
71
            name="R",
72
            dimnames = list (manifestVars, manifestVars)
73
       ),
74
       mxMatrix("Full", nrow=1, ncol=length(manifestVars),
75
            values=0,
76
            free=FALSE,
77
            labels=c(NA, "randrow[1,2]"),
78
            dimnames=list (NULL, manifestVars),
79
            name="M"
       ),
81
            mxAlgebra (Rand [data.ID,], name="randrow"),
82
       mxFitFunctionML(), mxExpectationNormal(covariance="R", means="M"),
83
       mxData(tDataFrame, type="raw")
84
   )
85
86
87
   # Fit the model and examine the summary results.
89
   multilevelModel2Fit <- mxRun(multilevelModel2)
```

```
91
   summary(multilevelModel2Fit)
92
93
   lmeOut <- lme(Y~X, random= ~ X | ID, data=tDataFrame)
94
95
   cbind (multilevelModel2Fit $output $estimate [1:numSubjects],
96
          lmeOut$coef$random$ID[,2] + lmeOut$coef$fixed[2],
97
          trueB[seq(1,totalOccasions*(totalSubjects), by=totalOccasions)])
98
   mean(multilevelModel2Fit$output$estimate[1:numSubjects])
100
101
   est <- multilevelModel2Fit$output$estimate
102
103
   omxCheckCloseEnough(mean(est[1:numSubjects]),
104
        lmeOut$coef$fixed[2], 0.001)
105
106
   omxCheckCloseEnough (mean (est [(1:numSubjects) + (1*numSubjects)]),
107
        lmeOut$coef$fixed[1], 0.001)
108
109
110
   # An OpenMx equivalent to the mixed model
111
112
   perID <- mxModel(
113
        "perID", type="RAM", latentVars=c('int', 'slope'),
114
        mxData(data.frame(ID=1L:totalSubjects), "raw", primaryKey="ID"),
115
        mxPath(c('int', 'slope'),c('int', 'slope'),'unique.pairs',
116
               arrows=2, values=c(1,0,1))
117
118
    occa <- mxModel(
119
        "occa", type="RAM", perID, manifestVars="Y", latentVars="lX",
120
        mxData(tDataFrame, 'raw', sort=FALSE),
121
        mxPath('Y', arrows=2, values=1),
122
        mxPath('one', 'Y'),
123
        mxPath('one', 'lX', labels='data.X', free=FALSE),
124
        mxPath('lX', 'Y'),
125
        mxPath('perID.int', 'Y', values=1, free=FALSE, joinKey='ID'),
126
        mxPath('perID.slope', 'Y', labels='data.X', free=FALSE, joinKey='ID'))
127
    if (0) {
129
            require (lme4)
130
            lmer1 <- lmer(Y~X + (X | ID), data=tDataFrame, REML=FALSE)
131
            pt1 <- occa
132
            \#pt1\$perID\$cholS\$values[,] \leftarrow chol(VarCorr(lmer1)\$ID)
133
```

```
pt1$perID$S$values[,] <- VarCorr(lmer1)$ID
134
            pt1$A$values['Y', 'lX'] <- fixef(lmer1)['X']
135
            pt1$M$values[, 'Y'] <- fixef(lmer1)['(Intercept)']
136
            pt1$S$values['Y', 'Y'] <- getME(lmer1, "sigma")^2
137
138
            pt1 <- mxRun(mxModel(pt1, mxComputeSequence(list(
139
                mxComputeOnce('fitfunction', 'fit'),
140
                mxComputeReportExpectation()))))
141
142
            omxCheckCloseEnough(logLik(pt1), logLik(lmer1), le-6)
143
   }
144
145
   occa <- mxRun(occa)
146
   # a tad better than lme, same as lmer
   omxCheckCloseEnough(occa$output$fit, -1725.954, 1e-2)
```

Appendix E

Rampart proof-of-concept test script ported from June 2013 prototype

```
# This is the original test case that Timo & I wrote back in Spring 2013.
   \#options(error = utils::recover)
                                         # uncomment for more help with debugging
   library (OpenMx)
   library (mvtnorm)
   set.seed(1)
7
   more.noise <- 0
   \#more.noise <-1
10
   gen.data <- function(n) {
12
     data.cov \leftarrow matrix(c(1, .2, .2, .1), byrow=TRUE, nrow=2)
13
     latent \leftarrow rmvnorm(n, mean=c(0,0), sigma=data.cov)
14
     colnames(latent) <- c("A", "B")
15
     latent <- as.data.frame(latent)</pre>
16
     df <- data.frame(C=latent$A + latent$B,
17
                        D=latent $A - latent $B)
18
     if (more.noise) {
19
       df$C <- df$C + rnorm(1, sd=more.noise)
20
       df D \leftarrow df D + rnorm (1, sd=more.noise)
21
     }
22
     df
23
   }
24
```

```
25
   fanout <-5
26
27
   school.data <- cbind(id=1:fanout, gen.data(fanout))
28
   \#school.data\$C \leftarrow school.data\$id * 1000
29
   teacher.data <- cbind(schoolId=1:fanout, id=seq(1,fanout^2),
30
                           gen.data(fanout^2))
31
   \#teacher.data\$C \leftarrow teacher.data\$id*100
32
   student.data <- cbind(teacherId=seq(1,fanout^2),
                           id=seq(1,fanout^3), gen.data(fanout^3))
34
35
   stack.data <- function(key, upper, lower) {
36
            for (pk in upper$id) {
37
                    mask \leftarrow lower[[key]] = pk
38
                     for (col in c('C', 'D')) {
39
                             lower [mask, col] <-
40
                                      lower [mask, col] + upper [upper $id == pk, 'C']
41
                    }
42
43
            lower
44
45
   teacher.data <- stack.data ("schoolId", school.data, teacher.data)
46
   student.data <- stack.data("teacherId", teacher.data, student.data)
47
48
   manifests<-c("C", "D")
49
   latents<-c("A", "B")
50
   student <- mxModel(
51
       "student", type="RAM",
52
       manifestVars = manifests,
53
       latentVars = latents,
54
       mxPath(from="A", to=c("C", "D"), free=c(FALSE, FALSE),
55
               value=c(1,1), arrows=1,
56
               label=c("A\_TO\_C", "A\_TO\_D")),
57
       mxPath(from="B", to=c("C", "D"), free=c(FALSE, FALSE), value=c(1, -1),
58
               arrows=1, label=c("B TO C", "B TO D")),
59
       mxPath(from="A",to=c("A","B"), free=c(TRUE,TRUE),
60
               value=c(1,0), arrows=2,
61
               label=c("VAR\_A","COV\_A\_B")),
62
       mxPath(from="B",to=c("B"), free=c(TRUE), value=c(1), arrows=2,
63
               label=c("VAR B")),
64
       mxPath(from="C", to=c("C"), free=as.logical(more.noise),
65
               value=more.noise, arrows=2, label=c("VAR C")),
66
       mxPath(from="D", to=c("D"), free=as.logical(more.noise),
67
```

```
value=more.noise, arrows=2, label=c("VAR_D")),
68
        mxPath(from="one", to=c(manifests, latents), value=0, free=FALSE)
69
    );
70
71
    relabel <- function (m, prefix) {
72
      for (mat in c("A", "S")) {
73
        lab \leftarrow m[[mat]] $labels
74
        lab[!is.na(lab)] <- paste0(prefix, lab[!is.na(lab)])
75
        m[[mat]] $labels <- lab
76
      }
77
     \mathbf{m}
78
   }
79
80
    teacher <- relabel(mxModel(student, name="teacher"), "tea_")</pre>
81
    school <- relabel(mxModel(student, name="school"), "sch ")</pre>
82
    student <- relabel(student, "st")</pre>
83
    school <- mxModel(
85
        school,
86
        mxData(school.data, type="raw", primaryKey="id", sort=FALSE))
88
    teacher <- mxModel(
89
        teacher, school,
90
        mxData(teacher.data, type="raw", primaryKey="id", sort=FALSE),
91
        mxPath('school.C', 'A', free=FALSE, value=1, joinKey="schoolId"))
92
93
    student <- mxModel(
94
        student, teacher,
95
        mxData(student.data, type="raw", primaryKey="id", sort=FALSE),
96
        mxPath('teacher.C', 'A', free=FALSE, value=1, joinKey="teacherId"))
97
   #student$ expectation$ verbose <- 1L
99
100
    student $expectation $.rampart <- 0L
101
    pt1 <- mxRun(mxModel(
102
        student,
103
        mxComputeSequence(list(
104
            mxComputeOnce('fitfunction', 'fit'),
105
             mxComputeNumericDeriv(checkGradient=FALSE,
106
                                     iterations=2, hessian=FALSE),
107
            mxComputeReportDeriv(),
108
             mxComputeReportExpectation())))
109
110
```

```
student $expectation $.rampart <- as.integer (NA)
    pt2 <- mxRun(mxModel(
112
        student,
113
        mxComputeSequence(list(
114
            mxComputeOnce('fitfunction', 'fit'),
115
            mxComputeNumericDeriv(checkGradient=FALSE,
116
                                     iterations=2, hessian=FALSE),
117
            mxComputeReportDeriv(),
118
            mxComputeReportExpectation())))
119
120
   omxCheckCloseEnough(pt2$expectation$debug$rampartUsage,
121
                          c((fanout-1)*fanout^2, (fanout-1)*fanout), 1)
122
   omxCheckCloseEnough(pt2$expectation$debug$numGroups, 3)
123
124
    if (0) {
125
             layout <- pt2$expectation$debug$layout
126
            head (layout | layout \$group==3, |, n=20)
128
129
   omxCheckCloseEnough(pt1$output$fit, pt2$output$fit, 1e-7)
130
   omxCheckCloseEnough(pt1$output$gradient, pt2$output$gradient, 1e-6)
131
132
    student <- mxRun(student)</pre>
133
    if (!more.noise) {
134
            omxCheckCloseEnough(student$output$fit, 1055.161, 1e-2)
   } else {
136
            omxCheckCloseEnough(student$output$fit, 1132.713, 1e-2) # but code RED
137
138
   \#print(student\$expectation\$debug\$rampartUsage)
139
140
    if (0) {
141
            ex <- student $ expectation
142
            eo = ex$output
143
            ed = ex\$debug
144
            ed$layout
145
146
147
    got <- mxGenerateData(student)
148
    omxCheckEquals(names(got), c("school", "teacher", "student"))
149
    omxCheckEquals(colnames(got[['school']]),
150
                    colnames(student$school$data$observed))
151
    omxCheckTrue(all(got[['school']] $C != student$school$data$observed$C))
152
153
```

```
omxCheckError(mxGenerateData(student, 10, returnModel=TRUE),

paste("Specification_of_the_number_of_rows",

"is_not_supported_for_relational_models"))

got <- mxGenerateData(student, returnModel=TRUE)

omxCheckTrue(is(got, "MxModel"))

omxCheckTrue(all(got$school$data$observed$C != student$school$data$observed$C))
```

Appendix F

univACErSEM.R

```
1
   #
   #
       Copyright 2007-2016 The OpenMx Project
2
   #
   #
       Licensed under the Apache License, Version 2.0 (the "License");
4
       you may not use this file except in compliance with the License.
   #
       You may obtain a copy of the License at
   #
   #
7
             http://www.apache.org/licenses/LICENSE-2.0
   #
   #
9
        Unless required by applicable law or agreed to in writing, software
   #
10
        distributed under the License is distributed on an "AS IS" BASIS,
   #
11
  #
       WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
       See the License for the specific language governing permissions and
   #
13
       limitations under the License.
   #
14
15
17
   # Author: Michael D. Hunter
18
   # Date: 2016-02-03
   # Filename: univACErSEM.R
   # Purpose: Define a behavior genetics single-trait ACE model as a
   # Relational SEM (rSEM)
22
23
24
25
26
   require (OpenMx)
27
28
29
30
   # Prepare Data
31
32
```

```
data ("twinData", package="OpenMx")
   selVars <- c('bmi1','bmi2','zyg')
34
   wideData <- subset(twinData, zyg %in% c(1, 3), selVars)
35
   wideData$rel <- c(1, NA, .5)[wideData$zyg]
   wideData$famID <- 1:nrow(wideData)
37
   tallData <- reshape(wideData, varying=c('bmi1', 'bmi2'), v.names='bmi',
38
                        timevar='twin', times=1:2, idvar='famID', direction='long')
39
   tallData$personID <- 1:nrow(tallData)
40
   tallData$relsqrt <- sqrt(tallData$rel)
   tallData$relu <- sqrt(1-tallData$rel)
42
   tallData <- tallData [order(tallData $famID, tallData $twin),
43
                         c('famID', 'personID', 'twin', 'rel',
                           'relsqrt', 'relu', 'bmi')]
45
   wData <- tallData
46
   bData <- tallData[!duplicated(tallData$famID),
47
                      c('famID', 'rel', 'relsqrt')]
48
49
50
51
   # Between Model
53
   bModel <- mxModel(
54
       'between', type="RAM",
55
       mxData(type="raw", observed=bData, primaryKey="famID"),
56
       latentVars = c("C", "AC"),
57
       mxPath("C", arrows=2, values=1, labels="v C", lbound=1e-6),
58
       mxPath("AC", arrows=2, values=1, labels="v A", lbound=1e-6))
59
60
61
62
   # Within Model
63
64
   wModel <- mxModel(
       'within', type="RAM", bModel,
66
       mxData(type="raw", observed=wData, sort=FALSE),
67
       manifest Vars = 'bmi',
68
       latentVars = c("E", "AU"),
69
       mxPath(from="one", to="bmi", arrows=1, free=TRUE, values=20, labels="mean"),
70
       mxPath('E', arrows=2, values=1, labels="v E", lbound=1e-6),
71
       mxPath('AU', arrows=2, values=1, labels="v A", lbound=1e-6),
72
       mxPath('AU', 'bmi', values=1, labels='data.relu', free=FALSE),
73
       mxPath('E', 'bmi', free=FALSE, values=1),
74
       mxPath('between.C', 'bmi', values=1,
75
```

```
free=FALSE, joinKey="famID"),
76
        mxPath('between.AC', 'bmi', values=1, arrows=1, free=FALSE,
77
                labels='data.relsqrt', joinKey="famID"))
78
79
80
81
   \# Run 'em
82
   wRun <- mxRun(wModel)
83
85
86
   # Take a look
88
   summary (wRun)
89
   # Cf. inst/models/passing/univACEP.R
91
92
   #Mx answers hard-coded
93
   #1: Heterogeneity Model
94
   Mx.A < -0.6173023
   Mx.C < -5.595822e-14
96
   Mx.E < -0.1730462
   Mx.M < -21.39293
   Mx.LL ACE <- 4067.663
99
100
   wparam <- mxEval(rbind(v A, v C, v E, mean), wRun)
101
   mparam <- rbind (Mx.A, Mx.C, Mx.E, Mx.M)
102
   omxCheckCloseEnough (wparam, mparam, .001)
103
104
   omxCheckCloseEnough(-2*logLik(wRun), Mx.LL_ACE, .001)
105
106
107
108
   # Same model, but with constant between-level transition matrix
109
110
   bLatent <- c('C', 'AC')
111
   bModel2 <- mxModel(
112
        'between',
113
        mxData(type="raw", observed=bData, primaryKey="famID"),
114
        latentVars = bLatent,
115
        mxMatrix(name="F", nrow=0, ncol=2, dimnames=list(NULL, bLatent)),
116
        mxAlgebra (data.rel * v A, name="rel v A"),
117
        mxMatrix("Symm", name="S", nrow=2, ncol=2, dimnames=list(bLatent, bLatent),
118
```

```
free=c(TRUE, FALSE, FALSE), labels=c("v_C", NA, "rel_v_A[1,1]"),
119
                  values=c(1,0,1), lbound=c(1e-6,NA,1e-6)),
120
        mxMatrix(name="A", nrow=2, ncol=2, values=0,
121
                 dimnames=list (bLatent, bLatent)),
        mxFitFunctionML(),
123
        mxExpectationRAM())
124
125
126
   # Within Model
128
   wModel2 <- mxModel(
129
        'within', type="RAM", bModel2,
130
        mxData(type="raw", observed=wData, sort=FALSE),
131
        manifest Vars = 'bmi',
132
        latentVars = c("E", "AU"),
133
        mxPath(from="one", to="bmi", arrows=1, free=TRUE,
134
                values=20, labels="mean"),
135
        mxPath('E', arrows=2, values=1, labels="v_E", lbound=1e-6),
136
        mxPath('AU', arrows=2, values=1, labels="v A", lbound=1e-6),
137
        mxPath('AU', 'bmi', values=1, labels='data.relu', free=FALSE),
138
        mxPath('E', 'bmi', free=FALSE, values=1),
139
        mxPath('between.C', 'bmi', values=1,
140
                free=FALSE, joinKey="famID"),
141
        mxPath('between.AC', 'bmi', values=1,
142
                free=FALSE, joinKey="famID"))
143
144
   # This isn't a huge speed-up because the per-cluster covariance matrix
145
   # is already small in the version above.
146
   wRun2 <- mxRun(wModel2)
147
148
   wparam <- mxEval(rbind(v_A, v_C, v_E, mean), wRun2)
149
   mparam <- rbind (Mx.A, Mx.C, Mx.E, Mx.M)
150
   omxCheckCloseEnough (wparam, mparam, .001)
152
   omxCheckCloseEnough(-2*logLik(wRun2), Mx.LL ACE, .001)
153
154
   omxCheckCloseEnough(wRun2$expectation$debug$rampartUsage, 867, 1)
155
```

Appendix G

mplus-ex9.6.R

MPLUS: TWO-LEVEL CFA WITH CONTINUOUS FACTOR INDICATORS AND COVARIATES

See https://www.statmodel.com/usersguide/chapter9.shtml

```
3
   library (OpenMx)
4
   set.seed(1)
   ex96 <- suppressWarnings(try(read.table("models/nightly/data/ex9.6.dat")))
   if (is(ex96, "try-error")) ex96 < - read.table("data/ex9.6.dat")
   \exp 96\$V8 \leftarrow \text{as.integer}(\exp 96\$V8)
10
   bData <- ex96[!duplicated(ex96$V8), c('V7', 'V8')]
   colnames(bData) <- c('w', 'clusterID')
12
   wData \leftarrow \exp 6[-\operatorname{match}(c('V7'), \operatorname{colnames}(\exp 6))]
13
   colnames(wData) <- c(paste0('y', 1:4), paste0('x', 1:2), 'clusterID')
15
   bModel <- mxModel(
16
        'between', type="RAM",
17
       mxData(type="raw", observed=bData, primaryKey="clusterID"),
18
       latentVars = c("lw", "fb"),
19
       mxPath("one", "lw", labels="data.w", free=FALSE),
20
       mxPath("fb", arrows=2, labels="psiB"),
21
       mxPath("lw", 'fb', labels="phi1"))
22
23
   wModel <- mxModel(
24
       'within', type="RAM", bModel,
25
       mxData(type="raw", observed=wData, sort=FALSE),
26
       manifestVars = paste0('y', 1:4),
27
       latentVars = c('fw', paste0("xe", 1:2)),
28
       mxPath("one", paste0('y', 1:4), values=runif(4),
29
               labels=paste0("gam0", 1:4)),
30
       mxPath("one", paste0('xe', 1:2),
31
               labels=paste0('data.x',1:2), free=FALSE),
32
       mxPath(paste0('xe', 1:2), "fw",
33
               labels=paste0('gam', 1:2, '1')),
34
       mxPath('fw', arrows=2, values=1.1, labels="varFW"),
35
       mxPath('fw', paste0('y', 1:4), free=c(FALSE, rep(TRUE, 3)),
36
               values=c(1,runif(3)), labels=paste0("loadW", 1:4)),
37
       mxPath('between.fb', paste0('y', 1:4), values=c(1,runif(3)),
38
               free=c(FALSE, rep(TRUE, 3)), labels=paste0("loadB", 1:4),
39
               joinKey="clusterID"),
40
       mxPath(paste0('y', 1:4), arrows=2, values=rlnorm(4),
41
               labels=paste0("thetaW", 1:4)))
42
43
   mle <- structure (c(
44
       0.9989, 0.9948, 1.0171, 0.9809, 0.9475, 1.0699,
45
```

```
1.0139, 0.9799, -0.0829, -0.0771, -0.0449, -0.0299, 0.9728, 0.5105,
46
       0.9595, 0.9238, 0.9489, 0.361, 0.3445),
47
                      . Names = c ("loadW2", "loadW3", "loadW4", "thetaW1",
48
                           "thetaW2", "thetaW3", "thetaW4", "varFW",
49
                           "gam01", "gam02", "gam03", "gam04", "gam11", "gam21",
50
                           "loadB2", "loadB3", "loadB4", "psiB", "phi1"))
51
52
   if (1) {
53
            pt1 <- omxSetParameters(wModel, labels=names(mle), values=mle)
            pt1\$expectation\$.forceSingleGroup <- TRUE
   #
55
            pt1\$expectation\$.rampart <- 0L
   #
56
            plan <- mxComputeSequence(list(
57
                mxComputeOnce('fitfunction', 'fit'),
58
                mxComputeNumericDeriv(checkGradient=FALSE,
   #
59
                                         hessian = FALSE, iterations = 2),
   #
60
                mxComputeReportDeriv(),
61
                mxComputeReportExpectation()
62
            ))
63
            pt1 <- mxRun(mxModel(pt1, plan))
64
            omxCheckCloseEnough(pt1$output$fit, 13088.373, 1e-2)
65
   }
66
67
   if (1) {
68
      wModel \leftarrow mxRun(mxModel(wModel, mxComputeGradientDescent(verbose=2L)))
69
     wModel <- mxRun(wModel)
70
     summary (wModel)
71
72
     omxCheckCloseEnough(wModel$output$fit, 13088.373, 1e-2)
73
     omxCheckCloseEnough(mle[names(coef(wModel))], coef(wModel), 1e-3)
74
     omx Check Close Enough \, (\,w Model \$\, expectation \$\, debug \$\, rampart Usage \,\,, \quad 890)
75
   } else {
76
            options (width=120)
77
            plan <- mxComputeSequence(list(</pre>
                mxComputeOnce('fitfunction', 'fit'),
79
                mxComputeNumericDeriv(checkGradient=FALSE,
80
                                         hessian=FALSE, iterations=2),
                mxComputeReportDeriv(),
82
                mxComputeReportExpectation()
            ))
84
85
            wModel$expectation$.rampart <- 2L
86
            wModel expectation scale Override <- c(6, 1)
87
            rotated <- mxRum(mxModel(wModel, plan))
88
```

```
89
           wModel$expectation$.rampart <- 0L
90
            square <- mxRun(mxModel(wModel, plan))
91
           ex <- rotated $ expectation
93
            eo <- ex$output
94
            ed <- ex$debug
95
            print(ed$rampartUsage)
96
            print(abs(rotated$output$fit - square$output$fit))
            print(max(abs(rotated$output$gradient - square$output$gradient)))
98
   }
99
```

Appendix H

multilevelLatentRegression2.R

```
library (OpenMx)
   set.seed(1)
   numIndicators <- 4
   numDistricts <- 5
   numSchools <- 4
   numTeachers <- 3
   numStudents < -5
11
   genData <- function (upper, fanout, keyname) {
12
            lowerData <- NULL
13
            for (sx in 1:nrow(upper)) {
14
                     extraFanout <- sample.int(fanout, 1)</pre>
                     extraFanout <- 0L
   #
16
                     lowerData <- rbind(lowerData, data.frame(
17
                         upper=upper[sx,1], skill=rnorm(fanout + extraFanout,
18
                                                   mean=upper[sx, 'skill'])))
19
            }
            colnames (lowerData) [[1]] <- colnames (upper) [[1]]
21
            lowerData [[keyname]] <- 1:nrow(lowerData)</pre>
22
            lowerData \leftarrow lowerData[,c(3,1,2)]
23
            lowerData
24
25
26
   districtData <- data.frame(districtID=1:numDistricts,
27
                                 skill=rnorm(numDistricts))
```

```
schoolData <- genData(districtData, numSchools, 'schoolID')
   teacherData <- genData(schoolData, numTeachers, 'teacherID')
30
   studentData <- genData(teacherData, numStudents, 'studentID')</pre>
31
32
   createIndicators <- function(latentSkill, indicatorVariance) {
33
            if (missing(indicatorVariance)) {
34
                    indicatorVariance <- rep(1, numIndicators)
35
                                              #rlnorm(numIndicators) / 8
36
           }
37
           ind <- matrix (NA, length (latent Skill), length (indicator Variance))
38
            for (ix in 1:length(latentSkill)) {
39
                    ind [ix,] <-
                      sapply (indicator Variance,
41
                              function (sd) rnorm (1, mean=latentSkill[ix], sd=sd))
42
43
           # per indicator mean
44
            ind \leftarrow t(t(ind) + runif(numIndicators, min=-1, max=1))
45
            colnames(ind) <- paste0('i', 1:length(indicatorVariance))
46
            as.data.frame(ind)
47
   }
48
49
   districtData <- cbind(districtData, createIndicators(districtData$skill))
50
   schoolData <- cbind(schoolData, createIndicators(schoolData$skill))</pre>
51
   teacherData <- cbind(teacherData, createIndicators(teacherData$skill))
52
   studentData <- cbind(studentData, createIndicators(studentData$skill))
54
   studentData$i4 [runif(nrow(studentData)) > .8] <- NA
55
   \#teacherData\$i4[runif(nrow(teacherData)) > .8] <- NA
56
57
   mkSingleFactor <- function(latent=c()) {
58
           mxModel('template', type='RAM',
59
                    manifestVars = paste0('i', 1:numIndicators),
60
                    latentVars = c("skill", latent),
61
                    mxPath(from='skill', arrows=2, labels="Var",
62
                            values=rlnorm(1), lbound=.01),
63
                    mxPath(from=paste0('i',1:numIndicators), arrows=2,
                            values=rlnorm(1), labels="Err", lbound=.01),
65
                    mxPath(from="one", to=paste0('i',1:numIndicators),
66
                            free=TRUE, values=rnorm(4)),
67
                    mxPath(from='skill', to=paste0('i',1:numIndicators),
68
                            labels=paste0('L',1:numIndicators), lbound=0,
69
                            values=c(1, runif(numIndicators -1, .5, 1.5)),
70
                            free=c(FALSE, rep(TRUE, numIndicators -1)))
71
```

```
)
72
   }
73
    singleFactor <- mkSingleFactor(NULL)
75
76
    relabel <- function (m, prefix) {
77
      for (mat in c("A", "S")) {
78
        lab \leftarrow m[[mat]] $labels
79
        lab[!is.na(lab)] <- paste0(prefix, lab[!is.na(lab)])
        m[[mat]] $labels <- lab
81
82
      mxModel(m, name=prefix)
83
84
85
   dMod <- mxModel(relabel(mkSingleFactor(), "district"),</pre>
86
                     mxData(type="raw", observed=districtData,
87
                             primaryKey="districtID", sort=FALSE))
88
89
   schMod <- mxModel(relabel(mkSingleFactor(), "school"), dMod,</pre>
90
                       mxData(type="raw", observed=schoolData,
91
                               primaryKey="schoolID", sort=FALSE),
92
                       mxPath(from='district.skill', to='skill',
93
                               joinKey="districtID", values=runif(1)))
94
95
   tMod <- mxModel(relabel(singleFactor, "teacher"), schMod,
96
                     mxData(type="raw", observed=teacherData,
97
                             primaryKey="teacherID", sort=FALSE),
98
                       mxPath(from='school.skill', to='skill',
99
                               joinKey="schoolID", values=runif(1)))
100
101
   sMod <- mxModel(relabel(singleFactor, "student"), tMod,
102
                       mxData(type="raw", observed=studentData,
103
                               primaryKey="studentID", sort=FALSE),
104
                       mxPath(from='teacher.skill', to='skill',
105
                               joinKey="teacherID", values=runif(1)))
106
107
    if (0) {
108
             options (width=120)
109
             plan <- mxComputeSequence(list(
110
                 mxComputeOnce('fitfunction', 'fit'),
111
                 mxComputeNumericDeriv(checkGradient=FALSE,
112
                                         hessian=FALSE, iterations=2),
113
                 mxComputeReportDeriv(),
114
```

```
mxComputeReportExpectation()
115
             ))
116
117
            sMod$expectation$.rampart <- 0L
118
             square <- mxRun(mxModel(sMod, plan))
119
120
            sMod$expectation$.rampart <- 2L
121
             rotated <- mxRun(mxModel(sMod, plan))
122
123
            ex <- square $ expectation
124
             ex <- rotated $expectation
125
             eo <- ex$output
126
             ed <- ex$debug
127
             print(ed$layout)
128
             print(ed$rampartUsage)
129
             print (ed$numGroups)
130
             table (ed$layout$group)
131
            head(ed\$layout[ed\$layout\$group == 1, ], n=20)
132
            \#print(round(ed\$A/1:20,1:20/,2))
133
            \#print(round(ed\$rA/1:20,1:20/,2))
134
            \#print(ed\$mean)
135
136
            \#omxCheckCloseEnough(ed\$rampartUsage, c(11064L, 317L, 198L, 2L), 1L)
137
             print(abs(rotated$output$fit - square$output$fit))
138
             print(max(abs(rotated$output$gradient - square$output$gradient)))
139
             omxCheckCloseEnough (rotated \$ output \$ gradient,
   #
140
                    square \$ output \$ gradient, 1e-4)
   #
141
   }
142
143
    fit1 <- mxRun(sMod)
144
   summary (fit1)
145
146
   omxCheckCloseEnough(fit1$output$fit, 17212.46, .01)
147
   omxCheckCloseEnough(max(abs(fit1$output$gradient)), 0, .01)
148
   ed <- fit1$expectation$debug
149
   omxCheckCloseEnough(ed$rampartUsage, c(902, 97, 21))
150
   omxCheckCloseEnough (ed$numGroups, 8L)
151
   omxCheckCloseEnough (
152
        sapply (unique (ed$layout$group),
153
                function(x) length(unique(ed$layout[ed$layout$group==x, 'copy']))),
154
        c(1L, 805L, 97L, 94L, 15L, 4L, 6L, 3L))
155
156
    plan <- mxComputeSequence(list(
157
```

```
mxComputeOnce('expectation', 'distribution', 'flat'),
158
        mxComputeReportExpectation()
159
    ))
160
   slow \leftarrow sMod
161
   slow $expectation $.rampart <- 0L
162
   slowEx <- mxRun(mxModel(slow, plan))
163
   ed <- slowEx$expectation$debug
164
   omxCheckTrue(length(ed\$rampartUsage)==0)
165
   # each (entire) district is an independent unit
166
   omxCheckCloseEnough(sapply(
167
        unique (ed$layout$group),
168
        function(x) length(unique(ed$layout[ed$layout$group==x, 'copy']))),
169
                          rep(1L,5))
170
171
    if (0) { # this takes about 1.5 hours
172
            \#options(width=120)
173
            plan <- mxComputeSequence(list(
174
                 mxComputeOnce('fitfunction', 'fit'),
175
                 mxComputeNumericDeriv(checkGradient=FALSE,
176
                                         iterations=2, verbose=2L),
                 mxComputeReportDeriv(),
178
                 mxComputeReportExpectation()
179
            ))
180
181
            slow <- omxSetParameters (sMod, labels=names (coef (fit1)),
182
                                        values=coef(fit1))
183
             slow $ expectation $ . rampart <- 0L
184
             slowFit <- mxRun(mxModel(slow, plan))</pre>
185
186
            omxCheckTrue(all(eigen(slowFit$output$hessian)$val > 0))
187
            omxCheckCloseEnough(slowFit$output$fit, fit1$output$fit, 65)
188
            omxCheckCloseEnough(max(abs(slowFit$output$gradient)), 0, 60)
189
            omxCheckCloseEnough(max(abs(slowFit$output$hessian %*%
190
                                                solve (fit 1 $output $hessian))), 0, 1.5)
191
192
                                    Appendix I
                                    rampart.R
   library (OpenMx)
   library (mvtnorm)
 4 #set.seed(1) # $\theta_1$
```

```
set.seed(3)
                  \# \$ \setminus theta_2\$
6
   numIndicators <- 5
   numSchools <- 7
9
   numTeachers < -3
10
   numStudents < -5
11
12
   genStructure <- function(upper, fanout, keyname) {
13
            lowerData <- NULL
14
            for (sx in 1:nrow(upper)) {
15
                     extraFanout <- sample.int(fanout, 1)
16
                     lowerData <- rbind(lowerData, data.frame(</pre>
17
                         upper=upper[sx,1], skill=rnorm(fanout + extraFanout,
18
                                                  mean=upper[sx, 'skill'])))
19
            }
20
            colnames (lowerData) [[1]] <- colnames (upper) [[1]]
            lowerData [[keyname]] <- 1:nrow(lowerData)
22
            lowerData < -lowerData[,c(3,1,2)]
23
            lowerData
24
25
26
   dataEnv <- new.env()
27
28
   assign ("schoolData", data.frame(schoolID=1:numSchools,
29
                                      skill=rnorm(numSchools)), envir=dataEnv)
30
   assign ("teacherData", genStructure (dataEnv$schoolData,
31
                                          numTeachers , 'teacherID') , envir=dataEnv)
32
   assign ("studentData", genStructure (dataEnv$teacherData,
33
                                          numStudents, 'studentID'), envir=dataEnv)
34
35
   createIndicators <- function(latentSkill, indicatorMean, indicatorVariance) {
36
       if (missing(indicatorMean)) {
37
            indicatorMean <- runif(numIndicators,min=-1,max=1)
38
39
       if (missing(indicatorVariance)) {
40
            indicator Variance <- rlnorm (numIndicators) / 8
41
42
       ind <- matrix (NA, length (latent Skill), length (indicator Variance))
43
       for (ix in 1:length(latentSkill)) {
44
                ind [ix,] <- sapply (
45
                     indicator Variance,
46
                     function(sd) rnorm(1, mean=latentSkill[ix], sd=sd))
47
```

```
}
48
       ind <- t(t(ind) + indicatorMean)
49
       colnames(ind) <- paste0('i', 1:length(indicatorVariance))</pre>
50
       as.data.frame(ind)
51
   }
52
53
   for (tbl in paste0(c('school', 'teacher', 'student'), 'Data')) {
54
       dataEnv[[tbl]] <- cbind(dataEnv[[tbl]],
55
                                  createIndicators (dataEnv[[tbl]] $ skill))
56
   }
57
58
   dataEnv$studentData$i1[runif(nrow(dataEnv$studentData)) > .8] <- NA
   \#teacherData\$i4[runif(nrow(teacherData)) > .8] <- NA
60
61
   mkSingleFactor <- function(latent=c()) {
62
            mxModel('template', type='RAM',
63
                    manifestVars = paste0('i', 1:numIndicators),
64
                    latentVars = c("skill", latent),
65
                    mxPath(from='skill', arrows=2, labels="Var",
66
                            values=rlnorm(1), lbound=.01),
                    mxPath(from=paste0('i',1:numIndicators), arrows=2,
68
                            values=rlnorm(1), labels="Err", lbound=.01),
69
                    mxPath(from="one", to=paste0('i',1:numIndicators),
70
                            free=TRUE, values=rnorm(4)),
71
                    mxPath(from='skill', to=paste0('i',1:numIndicators),
72
                            labels=paste0('L',1:numIndicators), lbound=0,
73
                            values=c(1, runif(numIndicators -1, .5, 1.5)),
74
                            free = c(FALSE, rep(TRUE, numIndicators - 1)))
75
                    )
76
77
78
   singleFactor <- mkSingleFactor(NULL)
79
   relabel <- function(m, prefix) {
81
     for (mat in c("A", "S")) {
82
       lab \leftarrow m[[mat]] $labels
83
       lab[!is.na(lab)] \leftarrow paste0(prefix, lab[!is.na(lab)])
84
       m[[mat]] $labels <- lab
85
86
     mxModel(m, name=prefix)
87
   }
88
89
   schMod <- mxModel(relabel(mkSingleFactor(), "school"),
```

```
mxData(type="raw", observed=dataEnv$schoolData,
91
                               primaryKey="schoolID", sort=FALSE))
92
93
   tMod <- mxModel(relabel(singleFactor, "teacher"), schMod,
94
                       mxData(type="raw", observed=dataEnv$teacherData,
95
                               primaryKey="teacherID", sort=FALSE),
96
                       mxPath(from='school.skill', to='skill',
97
                               joinKey="schoolID", values=runif(1)))
98
   sMod <- mxModel(relabel(singleFactor, "student"), tMod,
100
                     mxData(type="raw", observed=dataEnv$studentData,
101
                             primaryKey="studentID", sort=FALSE),
102
                       mxPath(from='teacher.skill', to='skill',
103
                               joinKey="teacherID", values=runif(1)))
104
105
    interest <- c('wallTime', 'infoDefinite',
106
                   'conditionNumber', 'fit', 'timestamp')
107
108
    if (1) {
109
        result <- expand.grid(rampart=c(TRUE, FALSE), rep=1:200, gradient=NA)
110
        for (e1 in names(coef(sMod))) result[[e1]] <- NA
111
        for (i1 in interest) result [[i1]] <- NA
112
   } else {
113
        load ("/tmp/rampart.rda")
114
   }
115
116
   plan <- mxComputeSequence(list(
117
        mxComputeGradientDescent(),
118
        mxComputeNumericDeriv(iterations=2L),
119
        mxComputeHessianQuality(),
120
        mxComputeReportDeriv()
121
   ))
122
123
    for (rrow in 1:nrow(result)) {
124
        if (!is.na(result[rrow, 'wallTime'])) next
125
         if (! result | rrow, 'rampart'|) next
126
127
        if (result [rrow, 'rampart']==FALSE &&
128
            !result[result$rep == result[rrow, 'rep'] &
129
                          result $rampart=TRUE, 'infoDefinite']) {
130
            print ("skip")
131
            next
132
        }
133
```

```
134
        set.seed(result[rrow, 'rep'])
135
        trial <- mxGenerateData(sMod, returnModel=TRUE)
136
137
        if (result[rrow, 'rampart']) {
138
             trial \ expectation \ \ . rampart <- as. integer (NA)
139
        } else {
140
             trial $expectation $.rampart <- 0L
141
             trial $fitfunction $parallel <- TRUE
142
143
        trialFit <- mxRun(mxModel(trial, plan))
144
145
        result [rrow, names (coef (trialFit))] <- coef (trialFit)
146
        result[rrow, interest] <- trialFit$output[interest]</pre>
147
        result [rrow, 'gradient'] <- max(abs(trialFit $output $gradient))
148
149
        save(result, file="/tmp/rampart.rda")
150
    }
151
152
   sum(!is.na(result [result $rampart=TRUE, 'conditionNumber']))
153
   sum(!is.na(result [result $rampart=FALSE, 'conditionNumber']))
154
155
   cnMask <- (result $conditionNumber <
156
                    median (result $conditionNumber, na.rm=TRUE) +
157
                         5 * mad(result$conditionNumber, na.rm=TRUE))
   bothOkay <- cnMask[result$rampart=TRUE] & cnMask[result$rampart=FALSE]
159
    length (which (bothOkay))
160
161
    good <- result [result $rep \%in\% which (bothOkay),]
162
    good[,c("rep",'rampart', "conditionNumber", 'gradient')]
163
164
    cor (good [good $rampart=TRUE, "conditionNumber"],
165
        good [good$rampart=FALSE, "conditionNumber"])
166
    cor(good[good$rampart=TRUE, "fit"],
167
        good [good $rampart=FALSE, "fit"])
168
169
   summary <- c(rMean=norm(colMeans(good[good$rampart=TRUE,
170
                      names (coef(sMod)) - coef(sMod), "2"),
171
                  fMean=norm(colMeans(good[good$rampart=FALSE,
172
                      names (coef(sMod))) - coef(sMod), "2"),
173
                  rVar=norm(apply(good[good$rampart==TRUE,
174
                      names(coef(sMod))], 2, var), "2"),
175
                  fVar=norm(apply(good[good$rampart==FALSE,
176
```

Appendix J

boker2009Compare.R

```
library (nlme)
   library (OpenMx)
   options (width=120)
   mxOption(NULL, 'Optimality_tolerance', "1e-13")
   load ("e2Pairing.rda")
   load ("tFrame.rda")
   if (1) {
9
       # otherwise OpenMx has trouble finding the same mode as nlme
10
       for (f in c('selfyRotFV', 'otheryRotFV', 'selfxRotFV', 'otherxRotFV')) {
11
           tFrame[[f]] \leftarrow log(1+tFrame[[f]])
12
       }
13
   }
14
15
                               ----- original analysis
16
17
   # table 1: head anterior-posterior RMS angular velocity
   headAPlme <- lme(selfyRotFV ~ selfSex + otherSex + isConfed +
19
                         dampHead + dampFace + dampVoice +
20
                       otheryRotFV + confedByOtherSex + confedByDampHead +
21
                            confedByDampFace + confedByDampVoice,
22
                random= ~ 1 | naiveID, data=tFrame, method="ML")
23
24
   # table 2: head lateral RMS angular velocity
25
   headLlme \leftarrow lme(selfxRotFV \sim selfSex + otherSex + isConfed +
26
                        dampHead + dampFace + dampVoice +
27
                      otherxRotFV + confedByOtherSex + confedByDampHead +
28
                           confedByDampFace + confedByDampVoice,
29
                random= ~ 1 | naiveID, data=tFrame, method="ML")
30
31
```

```
33
   for (col in c('naiveID', 'confedID')) {
34
       e2Pairing [[col]] <- as.integer(e2Pairing[[col]])
35
   }
36
37
   pairHash <- e2Pairing$confedID * 100L + e2Pairing$naiveID
38
   pairData <- e2Pairing[!duplicated(pairHash),
39
                          c('naiveID', 'confedID', 'naiveSex', 'confedSex')]
   pairData <- cbind(pairID=pairData$confedID * 100L +
41
                          pairData$naiveID, pairData)
42
   pairData$oppositeSex <-
43
       as.numeric(pairData[, 'naiveSex'] != pairData[, 'confedSex'])
44
45
   response <- c("selfxRotFV", "selfyRotFV")
46
   zeroVarPred <- c(paste0('damp', c('Head', 'Face', 'Voice')),
47
                     paste0(c('self', 'other'), 'Sex'), 'isConfed',
48
                     "confedByOtherSex"\;,\;\;"confedByDampHead"\;,
49
                     "confedByDampFace", "confedByDampVoice")
50
   tFrame$pairID <- as.integer(tFrame$confedID * 100L + tFrame$naiveID)
52
53
   naiveIndModel <- mxModel(
54
       model="naive", type="RAM",
55
       latentVars=c('xIntercept', 'yIntercept'),
56
       mxData(e2Pairing[!duplicated(e2Pairing$naiveID),
57
                         c('naiveID'), drop=FALSE],
58
               type="raw", primaryKey="naiveID"),
59
       mxPath('xIntercept', arrows=2, values=1,
60
              lbound=1e-3, labels="naiveVaryInt_x"),
61
       mxPath('yIntercept', arrows=2, values=1,
62
              lbound=1e-3, labels="naiveVaryInt y"))
63
64
   confedEmptyModel <- mxModel(
65
       model="confed", type="RAM",
66
       latentVars=c('xIntercept', 'yIntercept'),
67
       mxData(e2Pairing[!duplicated(e2Pairing$confedID),
68
                         c('confedID'), drop=FALSE],
69
               type="raw", primaryKey="confedID"),
70
       mxPath('xIntercept', arrows=2, values=0, free=FALSE, lbound=1e-3),
71
       mxPath('yIntercept', arrows=2, values=0, free=FALSE, lbound=1e-3))
72
73
   pairModelOrig <- mxModel(
```

```
model="pair", type="RAM", naiveIndModel, confedEmptyModel,
75
        latentVars=c('naiveXIntercept', 'confedXIntercept',
76
            'naiveYIntercept', 'confedYIntercept',
77
            'oppositeSex'),
78
       mxData(pairData, type="raw", primaryKey="pairID"),
79
        mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
80
        mxPath('naive.xIntercept', 'naiveXIntercept',
81
               free=FALSE, values=1, joinKey="naiveID"),
82
       mxPath('naive.yIntercept', 'naiveYIntercept',
83
               free=FALSE, values=1, joinKey="naiveID"),
84
       mxPath('confed.xIntercept', 'confedXIntercept',
85
               free=FALSE, values=1, joinKey="confedID"),
86
        mxPath('confed.yIntercept', 'confedYIntercept',
87
               free=FALSE, values=1, joinKey="confedID"))
88
89
   oneMinuteOrig <- mxModel(
90
        model="original", type="RAM", pairModelOrig,
91
        manifest Vars=response,
92
        latentVars=c(zeroVarPred, "otheryRotFV", "otherxRotFV"),
93
        mxData(tFrame, type="raw", sort=FALSE),
94
        mxPath('one', zeroVarPred, free=FALSE,
95
               labels=paste0('data.', zeroVarPred)),
96
       mxPath('one', c("otheryRotFV", "otherxRotFV"), free=FALSE,
97
               labels=paste0('data.', c("otheryRotFV", "otherxRotFV"))),
98
        mxPath('pair.naiveXIntercept', 'selfxRotFV', free=FALSE,
               values=1, joinKey="pairID"),
100
        mxPath('pair.naiveYIntercept', 'selfyRotFV', free=FALSE,
101
               values=1, joinKey="pairID"),
102
        mxPath(response, arrows=2, connect="single"),
103
       mxPath('one', response, labels=paste0(response, "_int")),
104
       mxPath('otherxRotFV', 'selfxRotFV', labels="otherxRotFV_on_x"),
105
       mxPath('otheryRotFV', 'selfyRotFV', labels="otheryRotFV_on_y"),
106
       mxPath(zeroVarPred, c("selfyRotFV"), connect="all.pairs",
107
               labels=paste0(zeroVarPred, "_on_y")),
108
        mxPath(zeroVarPred, c("selfxRotFV"), connect="all.pairs",
109
               labels=paste0(zeroVarPred, "on x")))
110
111
   oneMinuteOrig$S$values[response, response] <- diag(length(response))
112
   oneMinuteOrig$expectation$.ignoreDefVarsHack <- TRUE
113
114
   oneMinuteOrigFit <- mxRum(oneMinuteOrig) #, checkpoint=TRUE)
115
   #summary(oneMinuteOrigFit)
116
117
```

```
omxCheckCloseEnough(logLik(oneMinuteOrigFit),
118
                           -1207.711, 1e-2)
119
   omxCheckCloseEnough(logLik(oneMinuteOrigFit) -
120
                               (\log \text{Lik} (\text{headLlme}) + \log \text{Lik} (\text{headAPlme})), 0, 1e-6)
121
122
                      ---- comparison models
123
124
   # covariance between x & y but no varying intercept for naive
125
126
   oneMinuteV2 <- mxModel(
127
        model="xyCov", type="RAM", pairModelOrig,
128
        manifest Vars=response,
129
        latentVars=c(zeroVarPred, "otheryRotFV", "otherxRotFV"),
130
        mxData(tFrame, type="raw", sort=FALSE),
131
        mxPath('one', zeroVarPred, free=FALSE,
132
                labels=paste0('data.', zeroVarPred)),
133
        mxPath('one', c("otheryRotFV", "otherxRotFV"), free=FALSE,
134
                labels = paste0 \left( \text{'data.'}, \text{ } c\left( \text{"otheryRotFV"}, \text{ "otherxRotFV"} \right) \right) \right),
135
        mxPath('pair.naiveXIntercept', 'selfxRotFV', free=FALSE,
136
                values=1, joinKey="pairID"),
137
        mxPath('pair.naiveYIntercept', 'selfyRotFV', free=FALSE,
138
                values=1, joinKey="pairID"),
139
        mxPath(response, arrows=2, connect="unique.pairs"),
140
        mxPath('one', response, labels=paste0(response, "_int")),
141
        mxPath('otherxRotFV', 'selfxRotFV', labels="otherxRotFV_on_x"),
142
        mxPath('otheryRotFV', 'selfyRotFV', labels="otheryRotFV on y"),
143
        mxPath(zeroVarPred, c("selfyRotFV"), connect="all.pairs",
144
                labels=paste0(zeroVarPred, "_on_y")),
145
        mxPath(zeroVarPred, c("selfxRotFV"), connect="all.pairs",
146
                labels=paste0(zeroVarPred, "_on_x")))
147
148
   oneMinuteV2$S$values[response, response] <- diag(length(response))
149
   oneMinuteV2$S$labels[1,2] <- 'xyCov'
150
    oneMinuteV2$S$labels [2,1] <- 'xyCov'
151
   oneMinuteV2$expectation$.ignoreDefVarsHack <- TRUE
152
    oneMinuteV2Fit <- mxRun(oneMinuteV2) #, checkpoint=TRUE)
153
154
    naiveModel <- mxModel(
155
        model="naive", type="RAM",
156
        latentVars=c('xIntercept', 'yIntercept'),
157
        mxData(e2Pairing[!duplicated(e2Pairing$naiveID),
158
                           c('naiveID'), drop=FALSE],
159
                type="raw", primaryKey="naiveID"),
160
```

```
mxPath('xIntercept', arrows=2, values=1,
161
               lbound=1e-3, labels="naiveVaryInt x"),
162
        mxPath('yIntercept', arrows=2, values=1,
163
               lbound=1e-3, labels="naiveVaryInt_y"))
164
165
    confedModel <- mxModel(
166
        model="confed", type="RAM",
167
        latentVars=c('xIntercept', 'yIntercept'),
168
        mxData(e2Pairing[!duplicated(e2Pairing$confedID),
169
                          c('confedID'), drop=FALSE],
170
               type="raw", primaryKey="confedID"),
171
        mxPath('xIntercept', arrows=2, values=1,
172
               lbound=1e-3, labels="confedVaryInt_x"),
173
        mxPath('yIntercept', arrows=2, values=1,
174
               lbound=1e-3, labels="confedVaryInt_y"))
175
176
    pairModel <- mxModel(</pre>
177
        model="pair", type="RAM", naiveModel, confedModel,
178
        latentVars=c('naiveXIntercept', 'confedXIntercept',
179
            'naiveYIntercept', 'confedYIntercept',
180
            'oppositeSex'),
181
        mxData(pairData, type="raw", primaryKey="pairID"),
182
        mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
183
        mxPath('naive.xIntercept', 'naiveXIntercept',
184
               free=FALSE, values=1, joinKey="naiveID"),
185
        mxPath('naive.yIntercept', 'naiveYIntercept',
186
               free=FALSE, values=1, joinKey="naiveID"),
187
        mxPath('confed.xIntercept', 'confedXIntercept',
188
               free=FALSE, values=1, joinKey="confedID"),
189
        mxPath('confed.yIntercept', 'confedYIntercept',
190
               free=FALSE, values=1, joinKey="confedID"))
191
192
   \# naive & confed varying intercept and covariance between x \& y
193
194
   oneMinuteV1 <- mxModel(
195
        model="xyCov confed", type="RAM", pairModel,
196
        manifest Vars=response,
197
        latentVars=c(zeroVarPred, "otheryRotFV", "otherxRotFV"),
198
        mxData(tFrame, type="raw", sort=FALSE),
199
        mxPath('one', zeroVarPred, free=FALSE,
200
               labels=paste0('data.', zeroVarPred)),
201
        mxPath('one', c("otheryRotFV", "otherxRotFV"), free=FALSE,
202
               labels=paste0('data.', c("otheryRotFV", "otherxRotFV"))),
203
```

```
mxPath('pair.confedXIntercept', 'selfxRotFV', free=FALSE,
204
                values=1, joinKey="pairID"),
205
        mxPath('pair.confedYIntercept', 'selfyRotFV', free=FALSE,
206
               values=1, joinKey="pairID"),
207
        mxPath('pair.naiveXIntercept', 'selfxRotFV', free=FALSE,
208
               values=1, joinKey="pairID"),
209
        mxPath('pair.naiveYIntercept', 'selfyRotFV', free=FALSE,
210
                values=1, joinKey="pairID"),
211
        mxPath(response, arrows=2, connect="unique.pairs"),
212
        mxPath('one', response, labels=paste0(response, "_int")),
213
        mxPath('otherxRotFV', 'selfxRotFV', labels="otherxRotFV_on_x"),
214
        mxPath('otheryRotFV', 'selfyRotFV', labels="otheryRotFV_on_y"),
215
        mxPath(zeroVarPred, c("selfyRotFV"), connect="all.pairs",
216
                labels=paste0(zeroVarPred, "_on_y")),
217
        mxPath(zeroVarPred, c("selfxRotFV"), connect="all.pairs",
218
                labels=paste0(zeroVarPred, " on x")))
219
220
   oneMinuteV1$S$ values [response, response] <- diag(length(response))
221
   oneMinuteV1$S$labels[1,2] <- 'xyCov'
222
   oneMinuteV1$S$labels[2,1] <- 'xyCov'
223
   oneMinuteV1$expectation$.ignoreDefVarsHack <- TRUE
224
   oneMinuteV1Fit <- mxRun(oneMinuteV1) #, checkpoint=TRUE)
225
226
   \# naive & confed varying intercept but no covariance between x \& y
227
228
   oneMinuteV3 <- mxModel(
229
        model="only confed", type="RAM", pairModel,
230
        manifest Vars=response,
231
        latentVars=c(zeroVarPred, "otheryRotFV", "otherxRotFV"),
232
        mxData(tFrame, type="raw", sort=FALSE),
233
        mxPath('one', zeroVarPred, free=FALSE,
234
               labels=paste0('data.', zeroVarPred)),
235
        mxPath(\ 'one\ '\ ,\ \ c(\ "otheryRotFV\ "\ ,\ \ "otherxRotFV\ "\ )\ ,\ \ free=\!\!FALSE,
236
                labels=paste0('data.', c("otheryRotFV", "otherxRotFV"))),
237
        mxPath('pair.confedXIntercept', 'selfxRotFV', free=FALSE,
238
               values=1, joinKey="pairID"),
239
        mxPath('pair.confedYIntercept', 'selfyRotFV', free=FALSE,
240
               values=1, joinKey="pairID"),
241
        mxPath('pair.naiveXIntercept', 'selfxRotFV', free=FALSE,
242
                values=1, joinKey="pairID"),
243
        mxPath('pair.naiveYIntercept', 'selfyRotFV', free=FALSE,
244
                values=1, joinKey="pairID"),
245
        mxPath(response, arrows=2, connect="single"),
246
```

```
mxPath('one', response, labels=paste0(response, "_int")),
247
        mxPath('otherxRotFV', 'selfxRotFV', labels="otherxRotFV_on_x"),
248
        mxPath('otheryRotFV', 'selfyRotFV', labels="otheryRotFV_on_y"),
249
        mxPath(zeroVarPred, c("selfyRotFV"), connect="all.pairs",
250
               labels=paste0(zeroVarPred, "_on_y")),
251
        mxPath(zeroVarPred, c("selfxRotFV"), connect="all.pairs",
252
               labels=paste0(zeroVarPred, "_on_x")))
253
254
   oneMinuteV3$S$values[response, response] <- diag(length(response))
   oneMinuteV3$expectation$.ignoreDefVarsHack <- TRUE
256
    oneMinuteV3Fit <- mxRun(oneMinuteV3) #, checkpoint=TRUE)
257
258
   # add covariance for varying intercepts
259
260
   naiveCModel <- mxModel(</pre>
261
        model="naive", type="RAM",
262
        latentVars=c('xIntercept', 'yIntercept'),
263
        mxData(e2Pairing[!duplicated(e2Pairing$naiveID),
264
                          c('naiveID'), drop=FALSE],
265
               type="raw", primaryKey="naiveID"),
266
        mxPath('xIntercept', arrows=2, values=1,
267
               lbound=1e-3, labels="naiveVaryInt x"),
268
        mxPath('xIntercept', 'yIntercept', arrows=2,
269
               labels="naiveVaryInt cov"),
270
        mxPath('yIntercept', arrows=2, values=1,
271
               lbound=1e-3, labels="naiveVaryInt y"))
272
273
   confedCModel <- mxModel(
274
        model="confed", type="RAM",
275
        latentVars=c('xIntercept', 'yIntercept'),
276
        mxData(e2Pairing[!duplicated(e2Pairing$confedID),
277
                          c('confedID'), drop=FALSE],
278
               type="raw", primaryKey="confedID"),
279
        mxPath('xIntercept', arrows=2, values=1,
280
               lbound=1e-3, labels="confedVaryInt x"),
281
        mxPath('xIntercept', 'yIntercept', arrows=2,
282
               labels="confedVaryInt cov"),
283
        mxPath('yIntercept', arrows=2, values=1,
284
               lbound=1e-3, labels="confedVaryInt y"))
285
286
    pairCModel <- mxModel(
287
        model="pair", type="RAM", naiveCModel, confedCModel,
288
        latentVars=c('naiveXIntercept', 'confedXIntercept',
289
```

```
'naiveYIntercept', 'confedYIntercept',
290
            'oppositeSex'),
291
        mxData(pairData, type="raw", primaryKey="pairID"),
292
        mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
293
        mxPath('naive.xIntercept', 'naiveXIntercept',
294
               free=FALSE, values=1, joinKey="naiveID"),
295
        mxPath('naive.yIntercept', 'naiveYIntercept',
296
               free=FALSE, values=1, joinKey="naiveID"),
297
        mxPath('confed.xIntercept', 'confedXIntercept',
               free=FALSE, values=1, joinKey="confedID"),
299
        mxPath('confed.yIntercept', 'confedYIntercept',
300
               free=FALSE, values=1, joinKey="confedID"))
301
302
   oneMinuteV4 <- mxModel(
303
        model="full", type="RAM", pairCModel,
304
        manifest Vars=response,
305
        latentVars=c(zeroVarPred, "otheryRotFV", "otherxRotFV"),
306
        mxData(tFrame, type="raw", sort=FALSE),
307
        mxPath('one', zeroVarPred, free=FALSE,
308
               labels=paste0('data.', zeroVarPred)),
309
        mxPath('one', c("otheryRotFV", "otherxRotFV"), free=FALSE,
310
               labels=paste0('data.', c("otheryRotFV", "otherxRotFV"))),
311
        mxPath('pair.confedXIntercept', 'selfxRotFV', free=FALSE,
312
               values=1, joinKey="pairID"),
313
        mxPath('pair.confedYIntercept', 'selfyRotFV', free=FALSE,
314
               values=1, joinKey="pairID"),
315
        mxPath('pair.naiveXIntercept', 'selfxRotFV', free=FALSE,
316
               values=1, joinKey="pairID"),
317
        mxPath('pair.naiveYIntercept', 'selfyRotFV', free=FALSE,
318
               values=1, joinKey="pairID"),
319
        mxPath(response, arrows=2, connect="unique.pairs"),
320
        mxPath('one', response, labels=paste0(response, "_int")),
321
        mxPath('otherxRotFV', 'selfxRotFV', labels="otherxRotFV_on_x"),
322
        mxPath('otheryRotFV', 'selfyRotFV', labels="otheryRotFV_on_y"),
323
        mxPath(zeroVarPred, c("selfyRotFV"), connect="all.pairs",
324
               labels=paste0(zeroVarPred, "on y")),
325
        mxPath(zeroVarPred, c("selfxRotFV"), connect="all.pairs",
326
               labels=paste0(zeroVarPred, "_on_x")))
327
328
   oneMinuteV4$S$values[response, response] <- diag(length(response))
329
   oneMinuteV4$S$labels[1,2] <- 'xyCov'
330
   oneMinuteV4$S$labels [2,1] <- 'xyCov'
331
   oneMinuteV4$expectation$.ignoreDefVarsHack <- TRUE
332
```

```
oneMinuteV4Fit <- mxRun(oneMinuteV4) #, checkpoint=TRUE)

save(oneMinuteV4Fit, oneMinuteV1Fit, oneMinuteV2Fit,
oneMinuteV3Fit, oneMinuteOrigFit, file="boker2009Compare.rda")

mxCompare(oneMinuteV4Fit, list(oneMinuteV1Fit, oneMinuteV2Fit,
oneMinuteV3Fit, oneMinuteOrigFit))
```

Appendix K

boker2009Sim.R

```
library (OpenMx)
   options (width=120)
   mxOption(NULL, 'Optimality_tolerance', "1e-13")
4
   load ("e2Pairing.rda")
   load("tFrame.rda")
   if (1) {
       for (f in c('selfyRotFV', 'otheryRotFV',
9
                     'selfxRotFV', 'otherxRotFV')) {
10
            tFrame[[f]] \leftarrow log(1+tFrame[[f]])
11
       }
12
   }
13
14
   for (col in c('naiveID', 'confedID')) {
15
       e2Pairing [[col]] <- as.integer(e2Pairing[[col]])
16
   }
17
18
   pairHash <- e2Pairing$confedID * 100L + e2Pairing$naiveID
   pairData <- e2Pairing[!duplicated(pairHash),</pre>
20
                           c('naiveID', 'confedID', 'naiveSex', 'confedSex')]
21
   pairData <- cbind(pairID=pairData$confedID * 100L +
22
                           pairData$naiveID , pairData)
23
   pairData$oppositeSex <-
       as.numeric(pairData[, 'naiveSex'] != pairData[, 'confedSex'])
25
26
   response <- c("selfxRotFV", "selfyRotFV")</pre>
27
   zeroVarPred <- c(paste0('damp', c('Head', 'Face', 'Voice')),</pre>
28
                      paste0(c('self', 'other'), 'Sex'), 'isConfed',
29
                      "confedByOtherSex", "confedByDampHead",
30
                      "confedByDampFace", "confedByDampVoice")
31
32
```

```
tFrame$pairID <- as.integer(tFrame$confedID * 100L + tFrame$naiveID)
34
   naiveIndModel <- mxModel(
35
       model="naive", type="RAM",
36
       latentVars=c('xIntercept', 'yIntercept'),
37
       mxData(e2Pairing[!duplicated(e2Pairing$naiveID),
38
                         c('naiveID'), drop=FALSE],
39
              type="raw", primaryKey="naiveID"),
40
       mxPath('xIntercept', arrows=2, values=1,
41
              lbound=1e-3, labels="naiveVaryInt_x"),
42
       mxPath('vIntercept', arrows=2, values=1,
43
              lbound=1e-3, labels="naiveVaryInt y"))
44
45
   confedEmptyModel <- mxModel(
46
       model="confed", type="RAM",
47
       latentVars=c('xIntercept', 'yIntercept'),
48
       mxData(e2Pairing[!duplicated(e2Pairing$confedID),
49
                         c('confedID'), drop=FALSE],
50
              type="raw", primaryKey="confedID"),
51
       mxPath('xIntercept', arrows=2, values=0, free=FALSE, lbound=1e-3),
52
       mxPath('yIntercept', arrows=2, values=0, free=FALSE, lbound=1e-3))
53
54
   pairModelOrig <- mxModel(</pre>
55
       model="pair", type="RAM", naiveIndModel, confedEmptyModel,
56
       latentVars=c('naiveXIntercept', 'confedXIntercept',
            'naiveYIntercept', 'confedYIntercept',
58
           'oppositeSex'),
59
       mxData(pairData, type="raw", primaryKey="pairID"),
60
       mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
61
       mxPath('naive.xIntercept', 'naiveXIntercept',
62
               free=FALSE, values=1, joinKey="naiveID"),
63
       mxPath('naive.yIntercept', 'naiveYIntercept',
64
               free=FALSE, values=1, joinKey="naiveID"),
65
       mxPath('confed.xIntercept', 'confedXIntercept',
66
               free=FALSE, values=1, joinKey="confedID"),
67
       mxPath('confed.yIntercept', 'confedYIntercept',
               free=FALSE, values=1, joinKey="confedID"))
69
   oneMinuteOrig <- mxModel(
71
       model="original", type="RAM", pairModelOrig,
72
       manifest Vars=response,
73
       latentVars=c(zeroVarPred, "otheryRotFV", "otherxRotFV"),
74
       mxData(tFrame, type="raw", sort=FALSE),
75
```

```
mxPath('one', zeroVarPred, free=FALSE,
76
               labels=paste0('data.', zeroVarPred)),
77
        mxPath('one', c("otheryRotFV", "otherxRotFV"), free=FALSE,
78
               labels=paste0('data.', c("otheryRotFV", "otherxRotFV"))),
        mxPath('pair.naiveXIntercept', 'selfxRotFV', free=FALSE,
80
               values=1, joinKey="pairID"),
81
        mxPath('pair.naiveYIntercept', 'selfyRotFV', free=FALSE,
82
               values=1, joinKey="pairID"),
83
        mxPath(response, arrows=2, connect="single"),
        mxPath('one', response, labels=paste0(response, "_int")),
85
        mxPath('otherxRotFV', 'selfxRotFV', labels="otherxRotFV_on_x"),
86
        mxPath('otheryRotFV', 'selfyRotFV', labels="otheryRotFV_on_y"),
87
        mxPath(zeroVarPred, c("selfyRotFV"), connect="all.pairs",
88
               labels=paste0(zeroVarPred, "_on_y")),
89
        mxPath(zeroVarPred, c("selfxRotFV"), connect="all.pairs",
90
               labels=paste0(zeroVarPred, "on x")))
91
92
   oneMinuteOrig$S$values[response, response] <- diag(length(response))
93
    oneMinuteOrig$expectation$.ignoreDefVarsHack <- TRUE
94
   oneMinuteOrigFit <- mxRun(oneMinuteOrig) #, checkpoint=TRUE)
96
97
                       -\ comparison\ model
98
99
   naiveModel <- mxModel(</pre>
100
        model="naive", type="RAM",
101
        latentVars=c('xIntercept', 'yIntercept'),
102
        mxData(e2Pairing[!duplicated(e2Pairing$naiveID),
103
                          c('naiveID'), drop=FALSE],
104
               type="raw", primaryKey="naiveID"),
105
        mxPath('xIntercept', arrows=2, values=1,
106
               lbound=1e-3, labels="naiveVaryInt x"),
107
        mxPath('yIntercept', arrows=2, values=1,
108
               lbound=1e-3, labels="naiveVaryInt_y"))
109
110
    confedModel <- mxModel(
111
        model="confed", type="RAM",
112
        latentVars=c('xIntercept', 'yIntercept'),
113
        mxData(e2Pairing[!duplicated(e2Pairing$confedID),
114
                          c('confedID'), drop=FALSE],
115
               type="raw", primaryKey="confedID"),
116
        mxPath('xIntercept', arrows=2, values=1,
117
               lbound=1e-3, labels="confedVaryInt_x"),
118
```

```
mxPath('yIntercept', arrows=2, values=1,
119
               lbound=1e-3, labels="confedVaryInt y"))
120
121
    pairModel <- mxModel(</pre>
122
        model="pair", type="RAM", naiveModel, confedModel,
123
        latentVars=c('naiveXIntercept', 'confedXIntercept',
124
            'naiveYIntercept', 'confedYIntercept',
125
            'oppositeSex'),
126
        mxData(pairData, type="raw", primaryKey="pairID"),
127
        mxPath('one', 'oppositeSex', free=FALSE, labels="data.oppositeSex"),
128
        mxPath('naive.xIntercept', 'naiveXIntercept',
129
               free=FALSE, values=1, joinKey="naiveID"),
130
        mxPath('naive.yIntercept', 'naiveYIntercept',
131
               free=FALSE, values=1, joinKey="naiveID"),
132
        mxPath('confed.xIntercept', 'confedXIntercept',
133
               free=FALSE, values=1, joinKey="confedID"),
134
        mxPath('confed.yIntercept', 'confedYIntercept',
135
               free=FALSE, values=1, joinKey="confedID"))
136
137
   \# naive & confed varying intercept and covariance between x \& y
138
139
   oneMinuteSat <- mxModel(
140
        model="oneMinute", type="RAM", pairModel,
141
        manifest Vars=response,
142
        latentVars=c(zeroVarPred, "otheryRotFV", "otherxRotFV"),
143
        mxData(tFrame, type="raw", sort=FALSE),
144
        mxPath('one', zeroVarPred, free=FALSE,
145
               labels=paste0('data.', zeroVarPred)),
146
        mxPath('one', c("otheryRotFV", "otherxRotFV"), free=FALSE,
147
               labels=paste0('data.', c("otheryRotFV", "otherxRotFV"))),
148
        mxPath('pair.confedXIntercept', 'selfxRotFV', free=FALSE,
149
               values=1, joinKey="pairID"),
150
        mxPath('pair.confedYIntercept', 'selfyRotFV', free=FALSE,
151
               values=1, joinKey="pairID"),
152
        mxPath('pair.naiveXIntercept', 'selfxRotFV', free=FALSE,
153
               values=1, joinKey="pairID"),
154
        mxPath('pair.naiveYIntercept', 'selfyRotFV', free=FALSE,
155
               values=1, joinKey="pairID"),
156
        mxPath(response, arrows=2, connect="unique.pairs"),
157
        mxPath('one', response, labels=paste0(response, "_int")),
158
        mxPath('otherxRotFV', 'selfxRotFV', labels="otherxRotFV_on_x"),
159
        mxPath('otheryRotFV', 'selfyRotFV', labels="otheryRotFV_on_y"),
160
        mxPath(zeroVarPred, c("selfyRotFV"), connect="all.pairs",
161
```

```
labels=paste0(zeroVarPred, "_on_y")),
162
        mxPath(zeroVarPred, c("selfxRotFV"), connect="all.pairs",
163
                labels=paste0(zeroVarPred, "_on_x")))
164
165
   oneMinuteSat$S$values[response, response] <- diag(length(response))
166
    oneMinuteSat$S$labels[1,2] <- 'xyCov'
167
    oneMinuteSat$S$labels [2,1] <- 'xyCov'
168
    oneMinuteSat$expectation$.ignoreDefVarsHack <- TRUE
169
    oneMinuteSatFit <- mxRum(oneMinuteSat) #, checkpoint=TRUE)
171
                                       - simulation
172
173
    set.seed(1)
174
    zScore <- oneMinuteSatFit$output$estimate /
175
        one Minute Sat Fit \$ output \$ standard Errors
176
177
    candidate <- matrix (NA, ncol=length (zScore), nrow=5,
178
                          dimnames=list(c('absent', 'small+', 'small-',
179
                               'large+', 'large-'),
180
                               names(coef(oneMinuteSatFit))))
181
182
   # don't care about means
183
    for (par in paste0('self', c('x','y'), 'RotFV_int')) {
184
        candidate [, par] <- coef (oneMinuteSatFit) [par]
185
   }
186
187
   # don't care about variances
188
    for (par in 1:2) {
189
        pname <- paste0('oneMinute.S[',par,',',par,']')</pre>
190
        candidate[,pname] <- coef(oneMinuteSatFit)[pname]</pre>
191
   }
192
193
   isLarge <- abs(zScore) > 2
194
195
    for (p1 in c('naive', 'confed')) {
196
        for (p2 in c('VaryInt x', 'VaryInt y')) {
197
             par \leftarrow paste0(p1, p2)
198
             if (isLarge [par,]) {
199
                 small <- 1.5 * oneMinuteSatFit$output$standardErrors[par,1]
200
                 large <- coef(oneMinuteSatFit)[par]</pre>
201
             } else {
202
                 small <- coef(oneMinuteSatFit)[par]</pre>
203
                 large <- 3 * oneMinuteSatFit$output$standardErrors[par,1]
204
```

```
205
             candidate [c('absent', 'small-', 'small+'), par] <- small
206
             candidate[c('large-', 'large+'), par] <- large
207
        }
208
    }
209
210
    for (par in names(coef(oneMinuteSatFit))[is.na(candidate['absent',])]) {
211
        if (isLarge [par,]) {
212
             large <- abs(coef(oneMinuteSatFit)[par])</pre>
213
             small <- 1.5 * oneMinuteSatFit$output$standardErrors[par,1]
214
        } else {
215
             large <- 3 * oneMinuteSatFit$output$standardErrors[par,1]
216
             small <- abs(coef(oneMinuteSatFit)[par])</pre>
217
218
        candidate['large+',par] <- large
219
        candidate ['large-', par] <- -large
220
        candidate ['small+',par] <- small
221
        candidate \left[ \ 'small-' \ ,par \ \right] \ <- \ -small
222
        candidate ['absent', par] <- 0
223
    }
224
225
    paramOfInterest <- candidate['small+',] != candidate['large+',]</pre>
226
227
    save(candidate, paramOfInterest, file="boker2009-sim.rda")
228
229
    require("pROC")
230
231
    startSeed <- 1
232
    rda <- "/tmp/oneMinuteSim.rda"
233
    if (1) {
234
        result <- NULL
235
    } else {
236
        load (rda)
237
        startSeed <- 1L + max(result$seed)
238
    }
239
240
    for (rep in startSeed:100) {
241
        print (rep)
242
        set.seed(rep)
243
        s1 <- sample.int(5, ncol(candidate), replace=TRUE)
244
        parVec <- candidate [matrix (1:5, nrow=5, ncol=ncol (candidate)) ==
245
                                    matrix(s1, byrow=TRUE, nrow=5,
246
                                            ncol=ncol(candidate))]
247
```

```
names (parVec) <- colnames (candidate)
248
249
         simModel1 <- mxGenerateData(omxSetParameters(
250
              oneMinuteSat, labels=names(coef(oneMinuteSatFit)), values=parVec),
251
                                           returnModel=TRUE)
252
253
         simFit1 <- mxRun(simModel1, checkpoint=TRUE)
254
255
         simModel2 <- omxSetParameters(
              oneMinuteOrig, labels=names(coef(oneMinuteSatFit)),
257
              values=parVec, strict=FALSE)
258
         simModel2$data$observed <- simModel1$data$observed
259
         simFit2 <- mxRun(simModel2, checkpoint=TRUE)
260
261
         # could fit them as a group of independent models TODO
262
263
         fits <- list("sat"=simFit1, "orig"=simFit2)
264
         for (mx in 1:2) {
265
              fit \leftarrow fits [[mx]]
266
              evidence <- (fit $output $estimate / fit $output $standardErrors)[,]</pre>
267
              if (fit $output $status $code != 0 || any(is.na(evidence))) {
268
                   cat(paste(names(fits)[mx], rep, "gotustatus",
269
                               fit $output$status$code), fill=TRUE)
270
                   next
271
272
              evidence <- evidence [ names (evidence) %in%
273
                                       colnames (candidate) [paramOfInterest] ]
274
              mask <- match(names(evidence), names(parVec))
275
              \operatorname{wrongSign} \leftarrow \operatorname{c}(\operatorname{sign}(\operatorname{evidence})) := \operatorname{sign}(\operatorname{parVec}[\operatorname{mask}]) \& (\operatorname{s1}[\operatorname{mask}] >= 4)
276
277
              df <- data.frame(model=names(fits)[mx],
278
279
                                  found=(ifelse(wrongSign, -1.0, 1.0) * abs(evidence)),
280
                                   effect = (s1 >= 4) [mask]
281
              result <- rbind(result, df)
282
         }
283
284
         save(result, file=rda)
285
286
         pdf(file="roc.pdf")
287
         roc(effect ~ found, result[result$model="orig",],
288
              plot=T, col="red")
289
         roc(effect ~ found, result[result$model="sat",],
290
```