

Neural Networks to Assist Music Composition

A Capstone Report

presented to the faculty of the

School of Engineering and Applied Science

University of Virginia

by

Conor Monaghan

May 12, 2021

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Conor Monaghan

Capstone advisors: Madhav Marathe, Department of Computer Science, and Worthy N. Martin, Department of

Computer Science

Neural Networks to Assist Music Composition

 Conor Monaghan

 University of Virginia

 cm4uw@virginia

ABSTRACT

When writing music, new composers can have trouble

expanding their ideas into a cohesive piece. I propose a

program that, using Machine Learning and AI, would

provide composers suggestions on how to complete parts of

a piece based on a database of music. The program would

work by analyzing features of a database of music, such as

chord progressions, instrument usage, and song structure.

Then, given the section of music that the composer has

created, the program would suggest continuations of the

material, such as contrasting sections or new chords, not

writing the song for the composer, but giving the composer

potential options on where to take the song. This program

could function as a teaching tool for new composers, as well

as speeding up the composing process.

1 Introduction

The question of “how do I turn my musical idea into a full

song” is one that composers often struggle with. Newer

composers, who aren’t as proficient in concepts such as song

structure and chord progressions, especially have this

problem. The main way musicians learn is simply practice

and studying music. But it can take years of writing music

for composers to learn how to extend their compositions

without merely repeating the same material. And if the

musician cannot afford to go to music school, the process

will take even longer. As a composer myself, I have dozens

of unfinished songs that I gave up on because I didn’t know

how to complete them. After years of composing, my ideas

went from fifteen seconds, to thirty, to still just a minute

long. A program based in music theory that lets composers

learn while they write could drastically speed up the learning

process. Even experienced musicians sometimes struggle

with expanding songs, and can take a while to find the

inspiration to develop their piece. A program that suggests

melodic or harmonic material could kickstart that

inspiration.

2 Background

Sophisticated music generation has been greatly improved

with machine learning and AI. Similar to how text

generation works, computer scientists train models that try

to predict the next note that will be played in a song. And

just like text generation, neural networks and deep learning

models have shown to be extremely effective at learning

how to create music.

3 Related Work

The application of machine learning to music composition is

hardly a new concept; many programs have been written that

can take a few notes and extend them into a full song. Wang,

Benson, and Sigler created MuseNet, a deep neural network

that generates music given prompts such as the start of a

melody, a collection of instruments, or a musical genre [1].

Biles made GenJam, a system that can learn to improvise

over a chord progression [2]. Adding chords to existing

melodic phrases has also been the subject of research. Chuan

and Chew created a probabilistic system to assign chords to

a melody line [3]. Cunha and Ramalho found that predicting

chords partially based on prior sequences in a song led to

more accurate results [4].

Although there are many models that can write music or add

chords, commercial software that applies this to the

composing process is rare. Two somewhat related examples

are CAPO and Songsmith. CAPO is an app that attempts to

identify the chords in audio to help musicians learn to play

that song [5]. It primarily targets guitar players, promising

musicians a faster and easier way to learn songs [5].

Songsmith, which cannot currently be purchased, was

originally created in 2008 as “MySong” by three Microsoft

researchers [6]. Given a sung melody as audio, it generates

a chord progression for the user that harmonizes their song

[6]. The user can change the “jazz factor” and “happy factor”

to influence the type of chords that are chosen [6].

Songsmith seems to be the only tool that specifically assists

songwriters with music creation.

4 System Design

4.1 Scope

The goal of the program is to suggest material that the

composer can use to complete a musical piece. It is

therefore worth considering, what is a song composed of?

Since we are focusing on the composition of the music,

lyrics will be left to the composer. There are also the

different instruments in the piece, the structure of the

composition, tempo, and genre. Finally, there is the

melody, harmony, and rhythm, all of which are dictated by

the notes in the composition. Because this program is

mailto:email@email.com

adding material to an existing prototype, not creating a

song from scratch, the instruments, tempo, and genre will

already be either specified or implied from the

composition. To add melody, harmony, and rhythm, the

program will suggest notes, whether they be in a single

musical line (to create a melody or rhythm), or stacked on

top of each other to create harmony. As the program

suggests notes to be added to the song, structure will

naturally arise as the neural network learns from the

existing material. An example of this is how MuseNet can

return to melodies throughout its generated songs [1].

Because suggesting notes to create melody, rhythm, and

harmony is enough to help with the majority of the

composing process, this program will focus on continuing

melodies and assigning chords to the song, with rhythm

resulting from how the melody is made and where the

chords are assigned.
4.2 Input

The program’s two primary features, melody

continuation and chord assignment, would use a neural

network to choose notes/chords that fit the song, so the

program needs to have access to the notes of the

composition. As there are many popular music

composition applications, it makes the most sense to

make the program take input through midi data, which

almost every music composition program can output.

Midi data is also quite low in file size compared to other

music formats, and there are multiple libraries made to

interpret midi data for machine learning. Since the

program would take exported midi files as input, the

program would need be separate from the music

composition environment, which could be cumbersome

for the user to switch between. In the future, the

program could potentially be made into a plugin that

accessed directly through composition software.

4.3 Architecture

The program would likely be a web-based, client-server

implementation. Since the neural network could

potentially take a while to add notes or chords, it would

be best to have users access it through the cloud. This

way, users with slower computers could receive timely

results. Since the database and size of the model would

also be large, it would also help to store it externally.

Finally, if the model needed to be updated, to improve

accuracy for example, it would be easier to update the

online model rather than needing each user to download

new software. The main downside of this

implementation is that it would only be accessible

online, which would decrease accessibility and

usefulness in some situations.

The open-source machine learning library TensorFlow,

which is particularly suited for deep neural networks, is

often used with Amazon’s cloud service Amazon

SageMaker to deploy machine-learning models in the

cloud. This would be a good fit for the project, since

splitting up the training among multiple computers

decreases training time. Additionally, using Amazon’s

cloud services to host the model and program would

allow the service to be dynamically scaled up or down

as composers increase or decrease their usage,

preventing overload as well as unnecessary costs.

Figure 1: Software Architecture and Process

The final architecture would have client-side software that

takes in a midi file, and requests musical material from a

neural network model hosted in the cloud, sending the

current state of the song to the model. The model then

sends back the new material, which is displayed in the

software and can be exported to a new midi file.

4.4 Training

As the music will be represented in midi form, an

expansive dataset of midi music will be needed for the

model to train on. Fortunately, midi datasets are

numerous, only a few examples of which are the

Musical AI MIDI Dataset, which contains over 77,000

songs [7], and the MAESTRO Dataset, which was used

for MuseNet [1] [8].

The neural network would train by trying to predict the

next note in a given sequence from a midi file. These

predictions would be evaluated by how they compared

with the actual next note. As the model develops, the

sequences given to the network can be shortened, and

the number of notes guessed by the model lengthened.

Each note can be thought of as having two main

features: the pitch of the note, and the length of the note.

The model would try to predict both, with notes closer

to the correct pitch and lengths closer to the correct

length prioritized. Rests, the periods of silence between

notes, can also be thought of as a type of note for note

prediction purposes. They simply have no pitch, and can

be any length that a note can.

As more composers use the tool to assist with

composing, the neural network could further learn by

taking into account what suggestions composers build

off of and which suggestions composers discard. This

could be unreliable, however, since as the tool is

separate from the musician’s composing application, it

would have no way of knowing whether a suggested

note or chord was actually used. It could only know

which suggestions were immediately rejected for new

ones. Perhaps a better way of increasing the accuracy

and precision of the model over time would be to update

the database with new midis, and tweak the model if

certain unwanted patterns are discovered.

4.5 Melody Generation

Midi music is broken up into multiple channels, where

each channel has its own sequence of notes, and

typically its own instrument. A typical use case for

melody generation in this program is to add some length

of musical content to the end of a channel. To do this,

the model would take various features representing the

current state of the song: the pitch and placement of each

note for each channel, the chords and harmony being

used across channels, the key signature, tempo, and

instruments, are all features that would be considered.

Due to the somewhat impenetrable nature of deep neural

networks, it would be hard to know how each feature

actually influenced melody generation. But as the model

is trained on a large database of music, these features

should all impact the melody in a reasonable way. For

example, the instrument for the melody to be written in

is important, since each instrument has its own rules in

which it can play a melody. Each instrument has a

different pitch range, and some instruments can play

much faster than others, for example a piano compared

to a tuba. Since these examples will be present in the

database, they will influence melody generation, and in

fact examples of this can be found in the music

produced by MuseNet, where the instrument choice can

heavily dictate the notes produced by the computer.

Given all these features, and the previous notes on the

channel that the model is writing for, the model would

predict the next note in the sequence, one at a time. Each

time the program predicts a new note, it takes into

account the entire song so far, including any notes it has

just placed. This means that the song stays coherent as

musical content is added. This also means that the

program needs something to start with. This would

usually be a short, unfinished sequence of notes that the

model will expand upon.

Each note has a pitch and a length. Notes can also have

individual volumes, but this is less likely to be desired

by the composer, as it is generally reserved for certain

effects that the composer wishes to include.

An advantage of using this method to generate notes is

that the melodic line doesn’t actually need to be a

melody—the musician could already have the melody

completed, but wants a counter line, for instance.

Depending on the instrument, previous notes, and the

other channels in the song, the program could generate

all kinds of lines, from melodies to accompaniment to

basslines.

4.6 Chord Generation

Because of this versatility, chord generation is closer to

melody generation than one might initially think. If we

add in the ability to generate more than one note at a

time, there is now a new feature in a “note”: the number

of different notes played at the same time. Letting the

model predict more than one note at a time, where each

note is predicted based on the song and any previously

predicted notes placed on the same beat, opens up the

possibility of chord generation.

This method of chord generation, while effective in

theory, may need some support. Since the model is only

predicting notes based on features in the song, it is not

necessarily creating chords that are understandable. The

program may create a line of chords, but the user will

not know what those chords actually are. Furthermore,

the actual placement of chords may be sporadic and not

actually define a chord progression for the song.

To improve on this system, the system should be able to

actually predict what the harmony for a certain section

of music should be. This is because musicians,

especially ones such as guitarists, tend to think of music

in terms of chords. Chords play a large part in music

theory, and as such, beginner composers have a lot to

learn by analyzing the chords of a piece.

The model needs to assign chords to clusters of notes. It

can train for this by predicting the chords associated

with the melody and accompaniment lines of the midi

song files. This is harder than predicting notes, because

there needs to be some way of actually knowing what

the correct chord for a section of music is. This can be

somewhat inferred from the key signature and notes in

relation to that key signature, but even then, the key

signature must be identified, and the chords will still

sometimes be incorrect. The best way to train in

identifying chords is through human-labeled datasets.

This requires humans to label the correct chords for the

midi files, which is a large amount of work. An

alternative would be to find musical datasets that

already contain chord labeling, but these may be smaller,

or not contain as much note data as the midi files.

Without this labeling, the model might be able to get

close, but will often be slightly inaccurate.

If the model does learn to classify chords, then

combining the approach of predicting multiple notes to

create a chord, and then classifying that chord, would be

effective. And if the composer has already created some

chords before the program is asked to create more, the

accuracy would increase further.

Overall, the chord generation is likely the hardest part

of this project. Though the program could generate

chords without labeling to accompany the melody,

unlabeled chords would not be as conducive to

educating the composer.

4.7 User Experience

To use the program, a composer would first create a partial

song in their favorite music composition application, then

export it to midi format. They would then open the client

software for the program that allows them to connect to the

neural network hosted on cloud servers. After opening their

midi file in the software, the program displays a simple

sheet music representation of the music contained in the

midi file.

Figure 2: Sample User Interface

The user is able to do some minor editing, such as moving

around notes and changing instruments.

To get new melodic material, the composer selects the

portion of a channel containing an incomplete melody that

is to be completed, and clicks a button. The program then

sends a request to the neural network, which takes in the

current state of the song, and outputs a sequence of notes to

complete the section, which the program converts into

sheet music and replaces the selected portion. The user

must make a selection; the model needs to have a stopping

point to end predicting notes. The model will also produce

better material the more material there already is in the

song. The user can easily request a new melody in place of

the previously-generated one, they just need to press the

button again.

For the program the generate chords, the user again has to

select a portion of the song. When they press a button to

generate chords, the software sends a request to the neural

network, which takes in the current state of the song, and

outputs a sequence of chords that correspond with the

sections selected by the user. The names of the chords are

shown below their placement. The user can request new

chords to overwrite the old ones.

The software should be made to encourage experimentation

and learning, and not laziness. This is part of the reason

why the user has to select a specific section to be

generated; the whole song cannot be generated at once by

the program. This is also why chords are labeled, and why

it is easy to replace generated material.

The user can download the changed song into a midi

format. The transition to and from midi back into their

preferred composition software may lose some information,

which is why the program is better as a platform to

generate ideas than as an assistant to write the song.

4.8 Monetization

Because of the continual cost of hosting the service in

the cloud, and the nature of the neural network being

updated and improved over time, a subscription-based

payment model makes sense for this project. Users

would pay each month to have access to the music

generation model. Without it, they could use the client

software but it wouldn’t be able to generate music.

There could be a free trial period, as new users would

likely be skeptical if the program could actually produce

worthwhile material, and would want to be able to try

the program first.

5 Challenges

This proposal has both computational and musical

challenges. The model needs to generate material fast

enough so that the user can try out several variations in

succession without extensive waiting. For this to be

achieved, the neural network needs to produce results in

a timely fashion, which requires a fast model, in

addition to powerful remote servers. The model may

take a while to train as well, requiring more time and

resources up front.

The musical challenges of the project mostly fall under

the model needing to produce acceptable material. This

means more time and effort is needed to fine-tune the

model. The model also needs to be trained on a variety

of music to avoid repetitive or homogenous output.

6 Risks

This project has a high potential risk. It would take a

good deal of time and effort to train the neural network

model to produce useful melodies and chords, so if the

resulting software was not successful, there would be

wasted effort. The main reason why the software might

not be successful is if the quality of the produced

material was simply not enough for composer to make

use of it. If composers felt like the software didn’t

actually help the music composition process, the

software would fail. Also, since novice composers are

the main target for this software, the price of the

subscription could easily turn them away if it was too

high.

7 Broader Impact

This tool could help teach and inspire many new

composers to pursue careers in composing, but it needs

to not let composers be reliant on it. If too many

composers because reliant on the software to produce

music, they could actually be crippling their skill. The

program needs to primarily made to assist with ideas

and teaching for musicians who are still learning how to

compose. Although this is a tool many composers could

use, it needs to not replace human creativity.

There is some algorithmic bias to watch for as well.

Since the neural network would be mostly trained on

western music, and western music theory, the tool could

end up being unsuitable for other styles of music. The

program shouldn’t make people assume this is the only

right way to compose music. Since music from different

countries can have very different rules, including

different scales and harmony, the program might not

work well with all types of music.

8 Conclusions

AI-assisted composing is currently an untapped market.

There is great potential for computers to spark the creativity

of humans and expose patterns that no one had seen before.

A program that suggests continuation of musical phrases and

chord progressions could progress the careers of many

composers. But although there is great potential, there is also

possibility of failure or even harm to new composer’s

creativity, if the program is not made with the right goals in

mind. If it is, however, it could break new ground in machine

learning music.

9 Future Work

Future work on this project would include an

implementation of all that was mentioned so far. New

features would likely include a more useful midi editor;

although they exist, users would likely want to edit

suggested material and use the client-side software in more

ways. Another feature could be the ability to suggest

instruments that the composer could use in their piece.

Finally, the program could be made into a plugin that works

within a music composition application, allowing machine

learning music generation within a typical workflow.

REFERENCES
[1] Justin Jay Wang, Nicholas Benson, and Eric Sigler, 2019. MuseNet. OpenAI.

https://openai.com/blog/musenet/

[2] John A. Biles, 1994. GenJam: A Genetic Algorithm for Generating Jazz Solos.

In Conference: International Computer Music Conference (ICMC), (July 1994),

131-137. https://www.researchgate.net/publication/

2342018_GenJam_A_Genetic_Algorithm_for_Generating_Jazz_Solos

[3] Ching-Hua Chuan, Eliane Chew, 2007. A hybrid system for automatic generation

of style-specific accompaniment. https://www.researchgate.net/publication/

228698591_A_hybrid_system_for_automatic_generation_of_style-

specific_accompaniment

[4] Uraquitan Sidney Cunha, Geber Ramalho, 1999. An Intelligent Hybrid Model for

Chord Prediction. In Organised Sound 4(2), 115-119. DOI: 10.1.1.68.6047

[5] CAPO. SuperMegaUltraGroovy. http://supermegaultragroovy.com/

products/capo/

[6] Ian Simon, Dan Morris, Sumit Basu, 2008. MySong: Automatic Accompaniment

Generation for Vocal Melodies. In ACM CHI 2008 (the 26th SIGCHI Conference

on Human Factors in Computing Systems), p725-724.

https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/mysongchi2008.pdf

[7] Yifei Teng, An Zhao, Camille Goudeseune, 2016. MIDI Dataset.

https://composing.ai/dataset

[8] Curtis Hawthorne, et al., 2019. Enabling Factorized Piano Music Modeling and

Generation with the MAESTRO Dataset. In arXiv:1810.12247v5.

