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ABSTRACT 

When writing music, new composers can have trouble 

expanding their ideas into a cohesive piece. I propose a 

program that, using Machine Learning and AI, would 

provide composers suggestions on how to complete parts of 

a piece based on a database of music. The program would 

work by analyzing features of a database of music, such as 

chord progressions, instrument usage, and song structure. 

Then, given the section of music that the composer has 

created, the program would suggest continuations of the 

material, such as contrasting sections or new chords, not 

writing the song for the composer, but giving the composer 

potential options on where to take the song. This program 

could function as a teaching tool for new composers, as well 

as speeding up the composing process. 

1 Introduction 

The question of “how do I turn my musical idea into a full 

song” is one that composers often struggle with. Newer 

composers, who aren’t as proficient in concepts such as song 

structure and chord progressions, especially have this 

problem. The main way musicians learn is simply practice 

and studying music. But it can take years of writing music 

for composers to learn how to extend their compositions 

without merely repeating the same material. And if the 

musician cannot afford to go to music school, the process 

will take even longer. As a composer myself, I have dozens 

of unfinished songs that I gave up on because I didn’t know 

how to complete them. After years of composing, my ideas 

went from fifteen seconds, to thirty, to still just a minute 

long. A program based in music theory that lets composers 

learn while they write could drastically speed up the learning 

process. Even experienced musicians sometimes struggle 

with expanding songs, and can take a while to find the 

inspiration to develop their piece. A program that suggests 

melodic or harmonic material could kickstart that 

inspiration. 

2 Background 

Sophisticated music generation has been greatly improved 

with machine learning and AI. Similar to how text 

generation works, computer scientists train models that try 

to predict the next note that will be played in a song. And 

just like text generation, neural networks and deep learning 

models have shown to be extremely effective at learning 

how to create music. 

3 Related Work 

The application of machine learning to music composition is 

hardly a new concept; many programs have been written that 

can take a few notes and extend them into a full song. Wang, 

Benson, and Sigler created MuseNet, a deep neural network 

that generates music given prompts such as the start of a 

melody, a collection of instruments, or a musical genre [1]. 

Biles made GenJam, a system that can learn to improvise 

over a chord progression [2]. Adding chords to existing 

melodic phrases has also been the subject of research. Chuan 

and Chew created a probabilistic system to assign chords to 

a melody line [3]. Cunha and Ramalho found that predicting 

chords partially based on prior sequences in a song led to 

more accurate results [4]. 

Although there are many models that can write music or add 

chords, commercial software that applies this to the 

composing process is rare. Two somewhat related examples 

are CAPO and Songsmith. CAPO is an app that attempts to 

identify the chords in audio to help musicians learn to play 

that song [5]. It primarily targets guitar players, promising 

musicians a faster and easier way to learn songs [5]. 

Songsmith, which cannot currently be purchased, was 

originally created in 2008 as “MySong” by three Microsoft 

researchers [6]. Given a sung melody as audio, it generates 

a chord progression for the user that harmonizes their song 

[6]. The user can change the “jazz factor” and “happy factor” 

to influence the type of chords that are chosen [6]. 

Songsmith seems to be the only tool that specifically assists 

songwriters with music creation. 

4 System Design 

4.1 Scope 

The goal of the program is to suggest material that the 

composer can use to complete a musical piece. It is 

therefore worth considering, what is a song composed of? 

Since we are focusing on the composition of the music, 

lyrics will be left to the composer. There are also the 

different instruments in the piece, the structure of the 

composition, tempo, and genre. Finally, there is the 

melody, harmony, and rhythm, all of which are dictated by 

the notes in the composition. Because this program is 
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adding material to an existing prototype, not creating a 

song from scratch, the instruments, tempo, and genre will 

already be either specified or implied from the 

composition. To add melody, harmony, and rhythm, the 

program will suggest notes, whether they be in a single 

musical line (to create a melody or rhythm), or stacked on 

top of each other to create harmony. As the program 

suggests notes to be added to the song, structure will 

naturally arise as the neural network learns from the 

existing material. An example of this is how MuseNet can 

return to melodies throughout its generated songs [1]. 

Because suggesting notes to create melody, rhythm, and 

harmony is enough to help with the majority of the 

composing process, this program will focus on continuing 

melodies and assigning chords to the song, with rhythm 

resulting from how the melody is made and where the 

chords are assigned. 
4.2 Input 

The program’s two primary features, melody 

continuation and chord assignment, would use a neural 

network to choose notes/chords that fit the song, so the 

program needs to have access to the notes of the 

composition. As there are many popular music 

composition applications, it makes the most sense to 

make the program take input through midi data, which 

almost every music composition program can output. 

Midi data is also quite low in file size compared to other 

music formats, and there are multiple libraries made to 

interpret midi data for machine learning. Since the 

program would take exported midi files as input, the 

program would need be separate from the music 

composition environment, which could be cumbersome 

for the user to switch between. In the future, the 

program could potentially be made into a plugin that 

accessed directly through composition software. 

4.3 Architecture 

The program would likely be a web-based, client-server 

implementation. Since the neural network could 

potentially take a while to add notes or chords, it would 

be best to have users access it through the cloud. This 

way, users with slower computers could receive timely 

results. Since the database and size of the model would 

also be large, it would also help to store it externally. 

Finally, if the model needed to be updated, to improve 

accuracy for example, it would be easier to update the 

online model rather than needing each user to download 

new software. The main downside of this 

implementation is that it would only be accessible 

online, which would decrease accessibility and 

usefulness in some situations. 

The open-source machine learning library TensorFlow, 

which is particularly suited for deep neural networks, is 

often used with Amazon’s cloud service Amazon 

SageMaker to deploy machine-learning models in the 

cloud. This would be a good fit for the project, since 

splitting up the training among multiple computers 

decreases training time. Additionally, using Amazon’s 

cloud services to host the model and program would 

allow the service to be dynamically scaled up or down 

as composers increase or decrease their usage, 

preventing overload as well as unnecessary costs. 

 

Figure 1: Software Architecture and Process 

The final architecture would have client-side software that 

takes in a midi file, and requests musical material from a 

neural network model hosted in the cloud, sending the 

current state of the song to the model. The model then 

sends back the new material, which is displayed in the 

software and can be exported to a new midi file. 

4.4 Training 

As the music will be represented in midi form, an 

expansive dataset of midi music will be needed for the 

model to train on. Fortunately, midi datasets are 

numerous, only a few examples of which are the 

Musical AI MIDI Dataset, which contains over 77,000 

songs [7], and the MAESTRO Dataset, which was used 

for MuseNet [1] [8]. 

The neural network would train by trying to predict the 

next note in a given sequence from a midi file. These 

predictions would be evaluated by how they compared 

with the actual next note. As the model develops, the 

sequences given to the network can be shortened, and 

the number of notes guessed by the model lengthened. 

Each note can be thought of as having two main 

features: the pitch of the note, and the length of the note. 

The model would try to predict both, with notes closer 

to the correct pitch and lengths closer to the correct 

length prioritized. Rests, the periods of silence between 

notes, can also be thought of as a type of note for note 

prediction purposes. They simply have no pitch, and can 

be any length that a note can. 



 

As more composers use the tool to assist with 

composing, the neural network could further learn by 

taking into account what suggestions composers build 

off of and which suggestions composers discard. This 

could be unreliable, however, since as the tool is 

separate from the musician’s composing application, it 

would have no way of knowing whether a suggested 

note or chord was actually used. It could only know 

which suggestions were immediately rejected for new 

ones. Perhaps a better way of increasing the accuracy 

and precision of the model over time would be to update 

the database with new midis, and tweak the model if 

certain unwanted patterns are discovered. 

4.5 Melody Generation 

Midi music is broken up into multiple channels, where 

each channel has its own sequence of notes, and 

typically its own instrument. A typical use case for 

melody generation in this program is to add some length 

of musical content to the end of a channel. To do this, 

the model would take various features representing the 

current state of the song: the pitch and placement of each 

note for each channel, the chords and harmony being 

used across channels, the key signature, tempo, and 

instruments, are all features that would be considered. 

Due to the somewhat impenetrable nature of deep neural 

networks, it would be hard to know how each feature 

actually influenced melody generation. But as the model 

is trained on a large database of music, these features 

should all impact the melody in a reasonable way. For 

example, the instrument for the melody to be written in 

is important, since each instrument has its own rules in 

which it can play a melody. Each instrument has a 

different pitch range, and some instruments can play 

much faster than others, for example a piano compared 

to a tuba. Since these examples will be present in the 

database, they will influence melody generation, and in 

fact examples of this can be found in the music 

produced by MuseNet, where the instrument choice can 

heavily dictate the notes produced by the computer. 

Given all these features, and the previous notes on the 

channel that the model is writing for, the model would 

predict the next note in the sequence, one at a time. Each 

time the program predicts a new note, it takes into 

account the entire song so far, including any notes it has 

just placed. This means that the song stays coherent as 

musical content is added. This also means that the 

program needs something to start with. This would 

usually be a short, unfinished sequence of notes that the 

model will expand upon. 

Each note has a pitch and a length. Notes can also have 

individual volumes, but this is less likely to be desired 

by the composer, as it is generally reserved for certain 

effects that the composer wishes to include. 

An advantage of using this method to generate notes is 

that the melodic line doesn’t actually need to be a 

melody—the musician could already have the melody 

completed, but wants a counter line, for instance. 

Depending on the instrument, previous notes, and the 

other channels in the song, the program could generate 

all kinds of lines, from melodies to accompaniment to 

basslines. 

4.6 Chord Generation 

Because of this versatility, chord generation is closer to 

melody generation than one might initially think. If we 

add in the ability to generate more than one note at a 

time, there is now a new feature in a “note”: the number 

of different notes played at the same time. Letting the 

model predict more than one note at a time, where each 

note is predicted based on the song and any previously 

predicted notes placed on the same beat, opens up the 

possibility of chord generation. 

This method of chord generation, while effective in 

theory, may need some support. Since the model is only 

predicting notes based on features in the song, it is not 

necessarily creating chords that are understandable. The 

program may create a line of chords, but the user will 

not know what those chords actually are. Furthermore, 

the actual placement of chords may be sporadic and not 

actually define a chord progression for the song. 

To improve on this system, the system should be able to 

actually predict what the harmony for a certain section 

of music should be. This is because musicians, 

especially ones such as guitarists, tend to think of music 

in terms of chords. Chords play a large part in music 

theory, and as such, beginner composers have a lot to 

learn by analyzing the chords of a piece. 

The model needs to assign chords to clusters of notes. It 

can train for this by predicting the chords associated 

with the melody and accompaniment lines of the midi 

song files. This is harder than predicting notes, because 

there needs to be some way of actually knowing what 

the correct chord for a section of music is. This can be 

somewhat inferred from the key signature and notes in 

relation to that key signature, but even then, the key 

signature must be identified, and the chords will still 

sometimes be incorrect. The best way to train in 

identifying chords is through human-labeled datasets. 

This requires humans to label the correct chords for the 

midi files, which is a large amount of work. An 

alternative would be to find musical datasets that 

already contain chord labeling, but these may be smaller, 

or not contain as much note data as the midi files. 

Without this labeling, the model might be able to get 

close, but will often be slightly inaccurate. 

If the model does learn to classify chords, then 

combining the approach of predicting multiple notes to 

create a chord, and then classifying that chord, would be 



 

 

effective. And if the composer has already created some 

chords before the program is asked to create more, the 

accuracy would increase further. 

Overall, the chord generation is likely the hardest part 

of this project. Though the program could generate 

chords without labeling to accompany the melody, 

unlabeled chords would not be as conducive to 

educating the composer. 

4.7 User Experience 

To use the program, a composer would first create a partial 

song in their favorite music composition application, then 

export it to midi format. They would then open the client 

software for the program that allows them to connect to the 

neural network hosted on cloud servers. After opening their 

midi file in the software, the program displays a simple 

sheet music representation of the music contained in the 

midi file.  

 

Figure 2: Sample User Interface 

The user is able to do some minor editing, such as moving 

around notes and changing instruments. 

To get new melodic material, the composer selects the 

portion of a channel containing an incomplete melody that 

is to be completed, and clicks a button. The program then 

sends a request to the neural network, which takes in the 

current state of the song, and outputs a sequence of notes to 

complete the section, which the program converts into 

sheet music and replaces the selected portion. The user 

must make a selection; the model needs to have a stopping 

point to end predicting notes. The model will also produce 

better material the more material there already is in the 

song. The user can easily request a new melody in place of 

the previously-generated one, they just need to press the 

button again. 

For the program the generate chords, the user again has to 

select a portion of the song. When they press a button to 

generate chords, the software sends a request to the neural 

network, which takes in the current state of the song, and 

outputs a sequence of chords that correspond with the 

sections selected by the user. The names of the chords are 

shown below their placement. The user can request new 

chords to overwrite the old ones. 

The software should be made to encourage experimentation 

and learning, and not laziness. This is part of the reason 

why the user has to select a specific section to be 

generated; the whole song cannot be generated at once by 

the program. This is also why chords are labeled, and why 

it is easy to replace generated material. 

The user can download the changed song into a midi 

format. The transition to and from midi back into their 

preferred composition software may lose some information, 

which is why the program is better as a platform to 

generate ideas than as an assistant to write the song. 

4.8 Monetization 

Because of the continual cost of hosting the service in 

the cloud, and the nature of the neural network being 

updated and improved over time, a subscription-based 

payment model makes sense for this project. Users 

would pay each month to have access to the music 

generation model. Without it, they could use the client 

software but it wouldn’t be able to generate music. 

There could be a free trial period, as new users would 

likely be skeptical if the program could actually produce 

worthwhile material, and would want to be able to try 

the program first. 

5 Challenges 

This proposal has both computational and musical 

challenges. The model needs to generate material fast 

enough so that the user can try out several variations in 

succession without extensive waiting. For this to be 

achieved, the neural network needs to produce results in 

a timely fashion, which requires a fast model, in 

addition to powerful remote servers. The model may 

take a while to train as well, requiring more time and 

resources up front.  

The musical challenges of the project mostly fall under 

the model needing to produce acceptable material. This 

means more time and effort is needed to fine-tune the 

model. The model also needs to be trained on a variety 

of music to avoid repetitive or homogenous output.  

6 Risks 

This project has a high potential risk. It would take a 

good deal of time and effort to train the neural network 

model to produce useful melodies and chords, so if the 

resulting software was not successful, there would be 

wasted effort. The main reason why the software might 

not be successful is if the quality of the produced 

material was simply not enough for composer to make 

use of it. If composers felt like the software didn’t 

actually help the music composition process, the 

software would fail. Also, since novice composers are 

the main target for this software, the price of the 

subscription could easily turn them away if it was too 

high. 



 

7 Broader Impact 

This tool could help teach and inspire many new 

composers to pursue careers in composing, but it needs 

to not let composers be reliant on it. If too many 

composers because reliant on the software to produce 

music, they could actually be crippling their skill. The 

program needs to primarily made to assist with ideas 

and teaching for musicians who are still learning how to 

compose. Although this is a tool many composers could 

use, it needs to not replace human creativity. 

There is some algorithmic bias to watch for as well. 

Since the neural network would be mostly trained on 

western music, and western music theory, the tool could 

end up being unsuitable for other styles of music. The 

program shouldn’t make people assume this is the only 

right way to compose music. Since music from different 

countries can have very different rules, including 

different scales and harmony, the program might not 

work well with all types of music. 

8 Conclusions 

AI-assisted composing is currently an untapped market. 

There is great potential for computers to spark the creativity 

of humans and expose patterns that no one had seen before. 

A program that suggests continuation of musical phrases and 

chord progressions could progress the careers of many 

composers. But although there is great potential, there is also 

possibility of failure or even harm to new composer’s 

creativity, if the program is not made with the right goals in 

mind. If it is, however, it could break new ground in machine 

learning music. 

9 Future Work 

Future work on this project would include an 

implementation of all that was mentioned so far. New 

features would likely include a more useful midi editor; 

although they exist, users would likely want to edit 

suggested material and use the client-side software in more 

ways. Another feature could be the ability to suggest 

instruments that the composer could use in their piece. 

Finally, the program could be made into a plugin that works 

within a music composition application, allowing machine 

learning music generation within a typical workflow. 
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