
PoetryWordle 

 

A Technical Report submitted to the Department of Computer Science 

 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

Noah Holloway 

Spring, 2022 

Technical Project Team Members 

Noah Holloway 

 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 

assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

Nathan Brunelle, Department of Computer Science 

 



PoetryWordle
Noah Holloway

University of Virginia

Abstract - PoetryWordle is an interactive poetry puzzle
game, usable by novice poets to gain a more fluent
understanding of how critically acclaimed poems are
structured and written. PoetryWordle challenges users to
reassemble a shuffled poem, and much like the recently
popular internet game of the same name, provides users
with intermediate feedback regarding the closeness of
their solution.

MOTIVATION

This concept for this project originated from the
"Puzzle Poetry" group, led by CS Professor Nate Brunelle
and English Professor Brad Pasanek. The group includes
many other current students and alumni who have all
contributed towards projects that present poetry in a novel
way. One example of such a project that inspired this one
was a physical jigsaw-style puzzle whose correct assembly
yielded a fully correct poem. Each jigsaw piece spanned
anywhere from one to three lines of a sonnet, and had
roughly 5 words on it. The goal of this project was to create
a digital tool that accomplished a similar function. The
major success of this project (enabled by a digital medium)
is the ability to judge "closeness" on more than just physical
proximity of words. By incorporating advancements in
natural language processing, PoetryWordle is able to judge
semantic correctness as well, adding an entirely new layer to
the yellow and green squares that mark the predecessor.

IMPLEMENTATION

The application is presented in the form of a node.js
hosted web application. The front-end of the web app uses
pure HTML/CSS/JS, the only external libraries used are
jQuery and Socket.IO. The web server uses express and both
Socket.IO client and server code; it runs a socket server to
communicate with the HTML page, and it acts as a socket
client to communicate with a Python script running
Word2Vec. Word2Vec is an external library that uses
machine learning on "word embeddings" to provide
illuminating connections between words in the English
language. The idea behind word embeddings is to
"vectorize" English words, transforming each word into an
N-dimensional list of numbers, where the dimensions in this
vector space correspond to learned similarities when trained
on an arbitrary dataset. With words treated as vectors, it
becomes possible to perform semantically meaningful math
operations on words in a poem. Two words are highly
similar if their vector representations are close (think: if the
cosine of the angle between them in space is large). The user
is able to freely shuffle words in the poem, and query the
similarity script whenever they like. Depending on the

settings the user has flagged, the backend Python script will
evaluate the similarity in a particular way, then return it to
the Node server (which in turn sends the data back to the
webpage). When received back, all of the words in the
puzzle are recolored according to their similarity. Highly
similar words are colored in blue, unsimilar words are
colored in orange. The user has a few options when it comes
to coloring/evaluating words: firstly, they can compare every
word in their arrangement against the word in the
corresponding position in the correct ordering of the poem –
this is probably the comparison that is most faithful to the
original Wordle. The user can also use a "middleman" word
M, where the word in the user's position X is compared to
M, then the word in the actual poem's position X is also
compared to M, and the two similarities are compared with
one another. This is by far the most interesting metric, even
if it is a little convoluted – it challenges the user to think
outside the box to parse the data they receive back, and to
come up with illustrative middleman words. The user can
also blindly compare the words in the poem (regardless of
position) directly to the middleman word. This is less useful
when it comes to "solving" the poem, but quite interesting
when the poem is actually solved. The benefit here is to
generate a "sentiment heatmap" of sorts – asking questions
like "what is the typical position of a happy word?" "What
about a passionate word?"

DEMO

I. Sample Execution

The following figure is an example run of
PoetryWordle. The poem here is Shakespeare's Sonnet 29,
with random colors applied for visual effect. The main
window shows all of the words put individually on buttons.
The buttons can be freely rearranged. The buttons along the
bottom control some of the application settings.

● New Poem: Grabs a random poem from the
database and renders it.

● Comparator: The "middleman" word referenced
earlier.

● Ignore Comparator: "Wordle mode" If checked,
naively compare the user's poem to the correct
poem, rather than using the middleman approach.

● Compare to Original Poem: Should be checked by
default. If this is turned off, the poem will only be
compared uniformly to the comparator word.

● Scale Colors: Exaggerate the colors to make the
brightness more extreme. Loses out on precision
but makes it easier to see differences between
words.



Fig. 1. Sample run of PoetryWordle. The colors in this case are
random for visual effect, but the poem is shown in correct order.

FUTURE WORK

There are a few improvements that could be made to this
project to make it work more effectively and efficiently. A
larger database of poems is definitely needed, for two
reasons. Firstly, it makes the user experience more
interesting to have a variety of poems, but in addition being
able to train Word2Vec on a custom poetry-specific dataset
would likely help the library to work better. At present,
Word2Vec is running on an existing dataset, and has to use
very generic word meanings pulled from wikipedia or the
like. As such it tends to miss out on many poetry-specific
usages (or even entire words, see the white words in Fig. 1
that were unprocessed due to a lack of context).
Additionally, at its present stage the project is little more
than a tool, rather than a "game" – in order to make it one
some form of objective would need to be added, whether

that is solving the puzzle with the minimal number of word
comparisons, or something similar.
I also believe it would be extremely interesting to adapt this
project to some form of Virtual Reality game – in order to
have the maximum overlap between this tool and solving a
real world puzzle. A 2D grid of words can only go so far,
whereas seeing the puzzle pieces as actual puzzle pieces
would do a lot to improve usability and further the end goal
of developing poem literacy.

CODE

I. Github Repository

https://github.com/KarelTheRobot/PoetryWordle

ACKNOWLEDGMENT

Thanks to Professors Brunelle and Pasanek for
being involved in every step of this process, from
brainstorming to prototyping to final review. Combining the
perspectives of Computer Science and English gave
insightful background when it came to assembling this tool.

https://github.com/KarelTheRobot/PoetryWordle

