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Abstract

The spatial distribution of sensed objects strongly influences the behavior of mobile

robots. Yet, as robots evolve in complexity to operate in increasingly rich environ-

ments, it becomes much more difficult to specify the underlying relations between

sensed object spatial distributions and robot behaviors. This thesis aims to address

this challenge by leveraging system trace data to automatically infer relations that

help to better characterize these spatial associations. In particular, we introduce

SpRInG, a framework for the unsupervised inference of system specifications from

traces that characterize the spatial relationships under which a robot operates. Our

method builds on a parameterizable notion of reachability to encode relationships of

spatial neighborship, which are used to instantiate a language of patterns. These

patterns provide the structure to infer, from system traces, the connection between

such relationships and robot behaviors. We show that SpRInG can automatically infer

spatial relations over two distinct domains: autonomous vehicles in traffic and a sur-

gical robot. Our results demonstrate the power and expressiveness of SpRInG, in its

ability to learn existing specifications as machine-checkable first-order logic, uncover

previously unstated specifications that are rich and insightful, and reveal contextual

differences between executions.
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Chapter 1

Introduction

Robot behavior is often guided by the spatial distribution of sensed objects in its

environment. For example, consider a scenario in which autonomous vehicles (AVs)

are tasked to navigate through highway traffic (see Figure 1-1). In this scenario, we

expect an AV to change lanes only if it senses that there are no vehicles blocking its

target lane. We may also observe that an AV will decelerate to allow a nearby vehicle

to pass, or operate with more caution in dense traffic (e.g. decelerates, performs fewer

lane changes). Furthermore, we may observe that a sudden deceleration by a lead

vehicle would cause the AV to brake.

As robot systems and their operating environments grow in complexity, the under-

lying relation between the spatial distributions of sensed objects and robot behavior

becomes increasingly difficult to specify. This challenge is compounded by several

factors. First, there is a high dimensional input space, yielding an extensively large

quantity of potential distributions of objects. In the traffic scenario, each AV contains

a wide array of state variables (e.g. pose, velocities, sensor readings) and potential

values, so manually defining relevant relationships between all entities and variables

5



Figure 1-1: Autonomous vehicles operating in a traffic scenario. The boxed vehicles (bottom lane)
are those that are detected by the AV in the top lane, and the yellow lines represent their sensed
distances. If a vehicle is detected within one of the shaded green regions around the AV, then it is
determined to have direct influence over the AV’s behavior (green box) or negligible influence (red
box). The white arrows indicate the direction of traffic.

quickly becomes infeasible. Second, the increasing number of learned components

in robots tends to obscure such spatial relationships. In the traffic scenario, the

behavior of each AV may not be explicitly stated in the code, but rather governed

by a black-box DNN that accepts a LiDAR reading as input, detects relevant ob-

jects, and outputs control signals. For such a model, the decision-making process is

not always evident or explainable. Third, complex scenarios introduce highly unpre-

dictable factors, including the variability of the operating environment (e.g. weather,

road conditions), the heterogeneity of sensor capabilities and equipment, and, with a

human in the loop, the unpredictability of human behavior.

Each of these complexities greatly exacerbates the cost of specifying the behaviors

of robot systems, leading many to remain unspecified. Yet, since the misbehavior of

robots can lead to catastrophic outcomes, it is important to define these specifications
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to enable the verification and validation of such systems. To address this challenge,

we aim to automatically infer relations that help to characterize how sensed object

spatial distributions and robot behaviors are related, by leveraging the increasingly

rich sensor data collected by deployed robots.

In the context of the traffic scenario, the following is an example of a relation that

we would want to capture:

• If an AV senses a nearby vehicle in its left lane, then the AV would not per-

form a left lane change.

This relation defines expected lane change behavior, and would likely be included

as a safety specification for an AV. When operating safely, we would expect this

relation to never be violated. In Figure 1-2, we provide two sequences of traffic

scenarios. The first outlines the expected lane change behavior, which abides by the

relation outlined above, and the second demonstrates a violation.

We may also want to capture relations like:

• If an AV senses that its lead vehicle decelerates, then the AV will decelerate.

• When an AV senses a red traffic light ahead, then the AV will stop.

• If an AV senses an active emergency vehicle, then it will pull over to the side
of the road.

Such inferred relations have two desirable attributes. First, they possess a higher

level of abstraction than the robot code implementation, one that explicitly connects

object spatial distributions and the physical behaviors of the robots. Second, they

can be inferred with no prior knowledge of system specifications, as they are learned

solely from system traces of sensing and actuation data.
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Figure 1-2: Example of expected AV lane change behavior (left) and unsafe AV lane change
behavior (right).

1.1 Thesis Objective

To automatically infer such spatial relations, we introduce the Spatial Relation In-

ference Generator (SpRInG). This framework abstracts a trace of logged data into

a sequence of graphs that encode parameterizable notions of reachability, and then

utilizes a rich language of patterns to instantiate spatial relations. While existing ap-

proaches either lack the infrastructure to learn spatial parameters [1] or have limited

applicability for the inference of rich spatial relations from complex robot systems

[2], SpRInG generates spatial relations that consider the inherent complexities and

restrictions underlying such systems.

Another objective of this thesis is to provide an extensive and detailed overview of

SpRInG. While portions of this thesis were formed into a paper that will be appearing
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at the 2023 IEEE International Conference on Robotics and Automation [3], many

details were excluded to satisfy the page limit constraint. For this reason, this thesis

is an extension of the conference paper, as it provides examples and details of our

approach, additional figures, implementation details, and a discussion of avenues for

future work. The primary contributions of this work are:

• A novel framework (SpRInG) for characterizing the spatial relationships between

sensed object distributions and physical robot behaviors.

• A publicly available implementation of SpRInG, along with additional documen-

tation and implementation details.1

• An assessment of SpRInG over two distinct domains, to demonstrate its ability

to automatically generate insightful spatial relations over diverse systems.

1.2 Thesis Structure

The remainder of this thesis will be structured as follows: In Chapter 2, we dis-

cuss related work in the field of relation inference and usage. Chapter 3 provides a

thorough description of the inner workings of the SpRInG framework, along with a

running example from the traffic scenario. We then explore two research questions

through a study of two distinct systems in Chapter 4, to demonstrate the power and

expressiveness of SpRInG. In the final chapter, we provide ideas for future extensions

and applications of the SpRInG framework.
1Our complete implementation is provided in our GitHub repository: https://github.com/less-

lab-uva/SpRInG.
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Chapter 2

Related Work

The inference of spatial relations for robot systems spans across several fields of study.

These include the inference from traces, the characterization of spatial relationships,

and the way in which spatial models are encoded.

2.1 Inference from Variable-Value Traces

The work on automated inference from variable-value traces can be organized along

three dimensions.

First, by the types of relations inferred and the logic by which they are encoded.

Some approaches, such as Daikon [4], infer stateless linear relations in first-order

logic that reflect the state of a system at a single point in time. Others, such as DIG

[5], can infer stateless non-linear properties. More sophisticated methods can infer

stateful temporal properties that account for the ordering of events, through the use

of simple pattern matching [6], or genetic algorithms to infer signal temporal logic

(STL) parameters [7].
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Second, by the information that the user must provide to the inference process.

In general, uncovering more complex relations (e.g. multi-variate, multi-entity, tem-

poral) requires a more expensive approach, since the analysis must explore a much

larger set of potential relationships. This implies that, in order to be tractable, ap-

proaches that can encode these sophisticated relationships tend to require guiding

information from the user. This information provides the inference process with the

contents or structure that are likely to form desirable relations. For example, while

Daikon and DIG can operate directly on traces by instantiating their entire set of

predefined patterns, they are more efficient if the user provides a set of target trace

variables. In approaches that infer temporal relations, the user may be required to

bound the analysis by providing their own set of (at times, partially-instantiated)

patterns [8, 9, 1].

Third, by the way in which inferred relations are used. Software developers have

used such relations for testing [10, 11], verification [12], debugging [13], robot system

monitoring [14], predictive monitoring [15, 16, 17], and to characterize uncertainty in

robot systems [15].

2.2 Characterization of Spatial Relationships

Despite this body of research, there is limited work on characterizing the relationship

between sensed object spatial distributions and robot behaviors. There have been

efforts to specify and monitor spatial aspects of physical systems with spatial logics

(e.g. SSTL [18], STREL [19], SpaTeL [20], and SaSTL [21]), but these approaches
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do not perform inference. The only existing work that makes inferences over spatial-

temporal data constructs a spatial model as a graph, and aims to infer time and

distance parameters for PSTREL formulae that are satisfied by all relevant nodes [2].

While this approach demonstrates its applicability for distributed stationary systems,

the extension of their approach to mobile robots is limited. First, their inferred

relations are limited by the inexpressiveness of STREL, which has been shown to

capture only a small subset of complex specifications, relative to modern spatial logics

[21]. Even further, our approach can extract spatial relationships that are much richer

than distance bounds on spatial operators. Second, their approach requires the user

to have substantial domain knowledge to provide patterns and parameter ordering. In

contrast, our approach addresses these issues and offers a greater level of automation

and control. By automatically instantiating a generated library of patterns while

permitting the user to provide their own, our approach balances automated discovery

with pattern-query specificity.

2.3 Spatial Model Encodings

Another core limitation for existing methods of characterizing spatial relationships,

in the context of mobile robotics, is their modeling of spatial relationships. In the

approach discussed above [2], the authors use minimum-spanning graphs as their

spatial model, which preserves connectivity between nodes. This poses an assumption,

however, that does not hold for mobile robots. For example, if the spatial relationship

between two AVs is solely determined through their sensing equipment (e.g. cameras,
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LiDAR), failure to detect one another (e.g. out of sensor range, an obstruction, etc.)

should disconnect the nodes in the spatial model.

Alternatively, the connectivity graphs underlying Mobile Ad-Hoc Networks

(MANETs) [22] do not assume spatial continuity, but still lack direct applicability

to mobile robot systems for two reasons. First, MANETs are not multi-edge graphs,

and therefore cannot account for complex relationships between nodes. For example,

to capture the rich spatial relationships between two AVs, multiple edges are required

to adequately describe their spatial relationship (e.g. sensed distance, relative ori-

entation, relative velocity). Second, MANETs are bi-directional. However, due to

the heterogeneity of sensing equipment and capabilities, the spatial models for mo-

bile robot systems should also account for uni-directional relationships. For example,

there may be a case in which one AV senses another, but not vice versa (e.g. due to

sensor range, sensor placement, environmental factors).

13



Chapter 3

Approach

The goal of SpRInG is to leverage rich system traces to automatically learn the un-

derlying relations between the spatial distribution of sensed objects and the resulting

robot behaviors. The framework consists of three main components (see Figure 3-

1). The Spatial Encoder component converts a raw trace into a sequence of graphs,

which encode relevant spatial information. The Inference Engine component then

infers spatial relations over these graphs, in the form of predicates, implications, and

generalizations. These inferred relations then pass through a Filter prior to reporting.

Figure 3-1: The SpRInG framework. Its three main components are shown: Spatial Encoder,
Inference Engine, and the Filter. In the Reachability Encoder subcomponent, neighbor relationships
between entities are visualized with highlighted edges.
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3.1 Spatial Encoder

The objective of the Spatial Encoder is to convert the trace into a sequence of graphs

that succinctly encode relevant spatial information and align with existing spatial

logics [18, 19, 21] (see Figure 3-1: “Spatial Encoder"). A trace contains a time-

ordered sequence of observations, where each observation holds state and perception

information for each entity in the system (e.g. drone, autonomous vehicle, person).

This information is stored as a set of variable-value pairs.

Example 1. Consider the traffic scenario with three AVs: car1, car2, and car3. Each

observation will contain state and perception information for each entity. Assume

that the following state variables and perception information have been logged at

each observation from car1: {(x,y) position, velocity, LiDAR detections}, and car2,3:

{(x,y) position, velocity, battery_level, camera detections}.

The conversion of trace T into a sequence of graphs Tr is accomplished through

two subcomponents: the Spatial Model Constructor and the Reachability Encoder.

3.1.1 Spatial Model Constructor

The purpose of the Spatial Model Constructor is to initialize all possible spatial rela-

tionships between entities, which will later be used to discern and encode only those

that are deemed the most valuable.

Each graph gi is instantiated from an observation oi 2 T by abstracting each

system entity as a node nj 2 V = {n1, n2, ...nn}. Each node is assigned information

15



from oi regarding its identifying information and state (e.g. ID, class, velocities,

battery level). A directed edge is then constructed between each pair of entities (nj,

nk), as in ejk 2 E = {e12, e21, ...emn}. Each edge ejk contains a set of attributes, wjk 2

W , that relates the paired entities by their relative state information and relevant

perception information from nj. For example, an edge’s attribute set could contain the

Euclidean distance between entities, relative orientations, sensing information (e.g.

detections from LiDAR, cameras, IR), or shared occupancy regions in an environment

(e.g. being in the same lane on a highway).

Example 2. Assume that this component is constructing a directed edge from car1

to car2 at observation oi. To fill this edge’s attribute set, the component tries to spa-

tially relate this pair of entities using the data provided in the trace. First, relative

state variables are computed by first finding the intersection of their state variable

sets. Since {(x,y) position, velocity, LiDAR detections} \ {(x,y) position, velocity,

battery_level, camera detections} = {(x,y) position, velocity}, this component com-

putes and stores the Euclidean distance and relative velocity between the AVs in their

corresponding edge. Next, since perception information from car1 is provided within

the trace, this component adds another edge attribute that indicates whether car1

sensed car2, along with other relevant information (e.g. detection confidence).

After iterating this process for all observations in trace T , each oi 2 T has been

abstracted into a fully-connected graph, gi 2 Tf .

16



3.1.2 Reachability Encoder

The objective of the Reachability Encoder is to prune irrelevant relationships es-

tablished in each fully-connected graph, such that the Inference Engine only learns

relations over the most meaningful relationships. In particular, this subcomponent

encodes the reachability between entities, a special form of spatial relationship in

which one entity can be influenced by another (directly or indirectly). The conditions

that must be met for one entity’s behavior to be directly influenced by another are

provided through a logical formula, called a neighbor definition.

Definition 1 (Neighbor Definition). Given an entity nj 2 {n1, n2, ...nn}, its neigh-

bor definition �j 2 � = {�1,�2, ...�n} is a propositional formula that must be sat-

isfied by edge attributes from wjk, for the behavior of nj to be directly influenced

by any other entity nk. Due to the heterogeneity of sensing equipment and their

limitations (e.g. range, noise), it is reasonable to assign each entity a unique neighbor

definition. To evaluate such a formula, this component considers the following map-

ping: z : (�⇥ 2W ) ! True|False, where W is the set of all edge attributes from some

graph gi 2 Tf . This mapping is used to determine whether a set of edge attributes

wjk ✓ W satisfies �j. After retrieving relevant values from wjk, the entire neighbor

definition is evaluated as either True (edge is preserved) or False (edge is removed).

More generally, each entity can have multiple neighbor definitions to accommodate

different types of neighbors (e.g. one for leftNeighbors, another for rightNeighbors).

17



Example 3. In the traffic scenario, assume that the user provides the following neigh-

bor definition as part of the input: �car1 = (distance < 10) ^ (detect_confidence >

0.8) This states that the edge between car1 and another entity cark will only be pre-

served if cark is less than 10 meters away and is detected with over 80% confidence.

After each subformula is evaluated, this subcomponent evaluates the entire neigh-

bor definition. If the formula evaluates as True, then the associated edge is preserved

in the graph. Otherwise, it is removed. The preserved relationships between pairs of

entities form the basis for the construction of reachability graphs, where each graph

encodes two abstract relationships for inference: neighbors and neighborhoods.

Definition 2 (Reachability Graph). A reachability graph g
r

i
2 Tr is a subgraph of

gi = (V,E,W ), denoted by g
r

i
= (V 0

, E
0
,W

0) with V
0 = V , E 0 ✓ E, and W

0 ✓ W ,

where the set of attributes w0
jk

✓ W
0 for each edge e0

jk
2 E

0 satisfies z(�j, w
0
jk
) = True.

Definition 3 (Neighborship). Let g
r

i
2 Tr be a reachability graph. The neighbors

of some node nj at timestep i is the set of all entities that are adjacent to nj in g
r

i

(i.e. “directly reachable"). Intuitively, this is equivalent to the set of entities that do

not violate �j at timestep i. The neighborhood of some node nj at timestep i is the

set of all entities that are returned from a graph search starting from nj (i.e. “directly

or indirectly reachable"), in the reachability graph g
r

i
. Both definitions are optionally

predicated under the type of neighbor (e.g. leftNeighbors, rightNeighbors).

The notion of reachability, which is entirely encoded within each reachability graph

g
r

i
2 Tr through the neighbor and neighborhood relationships, are fundamental to the

inference procedure.
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3.2 Inference Engine

The goal of the inference engine component (see Figure 3-1: “Inference Engine") is to

learn spatial relations from the sequence of reachability graphs. Since these graphs

encode the reachability between entities through neighborship, the learned relations

are based on the neighbor and neighborhood relationships.

3.2.1 Pattern Library

The objective of the Pattern Library is to automatically generate and compile re-

lation patterns such that they can be instantiated, evaluated, and refined by the

Predicate Inference subcomponent. While a library of patterns can be automatically

constructed with entity data from Tr, the user may choose to connect through an API

to provide their own patterns. In either case, each relation must abide by a grammar.

In Table 3.1, we provide the full grammar supported by SpRInG.

This grammar consists of a start symbol (Pmain), non-terminal symbols (P1..6),

terminal symbols (see “Supporting Definitions"), and production rules (see “Produc-

tions"). The final relation patterns will contain tokens CONST and N, that are

later filled by the engine with a value or entity, respectively, in accordance with the

provided grammar rules. The pattern structure and all other information are either

provided by the user or constructed by the generator.
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Productions
Pmain := P1 | P2 | P3 | P4 | P5 | P6

P1 := Pmain OP Pmain

P2 := CONST
P3 := N .VAR
P4 := N .Relation.Attribute
P5 := Aggregator(Pmain)
P6 := Quantifier(Members; Pmain)
Supporting Definitions
OP: � |  | == | ⇢ | � | ) | 2 | /2
CONST: R | Class | System.state

N : System.entity | Group

VAR: System.variable

Relation: neighbors | neighborhood | "
Attribute: size | "
Aggregator: min | max | avg
Quantifier: 8 | 9
Members: Group | Relation

Table 3.1: Grammar for instantiating relation patterns.

Example 4. The relation pattern (N .Neighbors .size � CONST ) is constructed by

(Pmain) ! (P1) ! (Pmain OP Pmain) ! (P4 OP P2 ) ! (N .Relation.Attribute �

CONST ) ! (N .Neighbors .Size � CONST ). Each (a) ! (b) signifies that string (b)

is a direct derivation from string (a), per the production rules.

3.2.2 Predicate Inference

The objective of the Predicate Inference subcomponent is to use the relation patterns,

the sequence of reachability graphs Tr, and a set of inference parameters for engine
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configuration, to produce a set of relations, R, that are either reported as stand-alone

relations, R> ✓ R, or used as predicates by the subsequent Implication Inference sub-

component. High-level pseudocode for the Predicate Inference procedure is provided

in Algorithm 1.

Algorithm 1 Predicate Inference
1: procedure InferenceEngine(Tr, patterns, params)
2: R = set()
3: g

r

i�1 = None
4: for g

r

i
in Tr do

5: // –- Instantiate new relations –-
6: n = findNewEntities(gr

i
, g

r

i�1)
7: pairs = findPairings(n, g

r

i
)

8: Rk = instantiateRels(n, pairs, patterns)
9: R.update(Rk)

10: // –- Evaluation and refinement –-
11: for ri in R do
12: ! = evaluate(ri, g

r

i
, params)

13: ri.evals[gri ] = !

14: if ! == False then
15: r

<

i
= refine(ri, g

r

i
)

16: R.add(r<
i
)

17: r
<

i
.evals = refineEvals(ri.evals)

18: g
r

i�1 = g
r

i

19: R> = extractTruePredicates(R)
20: return (R,R>)

For each reachability graph g
r

i
2 Tr (line 4), the engine starts by instantiating

relation patterns with previously unseen permutations of entities from g
r

i
(lines 6-

9). To do so, this component retrieves new entities from g
r

i
and constructs all new

pairings of nodes. This is necessary to account for systems in which entity informa-
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tion is occasionally inaccessible (e.g. observations are collected by n local observers,

information is only accessible within a subset of a map).

Example 5. In the traffic scenario, consider the first reachability graph in the se-

quence, gr0. Since all permutations of single and paired entities have not been used

to instantiate patterns, every pattern is filled with a corresponding set of entities.

Consider the following pattern: ENTITY .Neighbors .size � CONST . To instantiate

relations from this pattern, the engine first replaces the ENTITY token with an

entity name (e.g. for car1 : car1 .Neighbors .size � CONST ). Upon evaluation of the

new left-hand term (car1 .Neighbors .size), the CONST token is replaced with the re-

sulting value. For example, if car2 and car3 are adjacent to car1 in the reachability

graph g
r

0, then the component determines that car1 .Neighbors .size = 2 at timestep

0. Upon replacing the CONST token with this value, the fully-instantiated relation

is obtained: car1 .Neighbors .size � 2.

After all new instantiations have been made from the current reachability graph g
r

i
,

all relations are evaluated under gr
i

as True,False, or Unknown (line 12). The result

is Unknown when the relation cannot be evaluated, due to an entity’s absence from

the current observation. This may occur when the observations are not global (e.g.

information is only accessible over a subset of the map, or for a subset of the system’s

entities). A pair of inference parameters are used to determine how these Unknown

evaluations should be handled, and would ideally be based on the user’s assumption

regarding the variability of the system and environment. The first parameter dictates

the proportion of allowed Unknown evaluations before the relation is removed. The

second parameter restricts the number of consecutive Unknown evaluations allowed.
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To enable the engine to later infer implications between relations, each relation

object contains a dictionary that stores the evaluation from each timestep. This

mapping is of the form ⌦ : (R⇥G
r) ! True|False|Unknown, where R is the set of all

generated relations and G
r is the set of all reachability graphs. Finally, if a relation is

evaluated as False, then a refined version is generated to make it True under gr
i
. This

relaxed relation is then marked as True in its evaluations for all graphs g
r

k
in which

its parent was evaluated as True, in addition to the current graph g
r

i
(lines 15-17).

Example 6. In the traffic scenario, assume that the graph associated with the sub-

sequent timestep, gr1, shows that car2 is no longer a neighbor of car1. In this case,

since car3 is now the only entity that is adjacent to car1, the component finds that

car1 .Neighbors .size = 1. Therefore, the relation that was instantiated at the previous

step, car1 .Neighbors .size � 2, is now False and should be relaxed. To do so, the left-

hand term is re-evaluated and the right-hand term is updated, thereby generating a

newly refined relation: car1 .Neighbors .size � 1.

After this iterative process of instantiation, evaluation, and refinement, the set of

all relations are passed to the Implication Inference subcomponent as R, and the set

of relations that were never violated are stored as R> ✓ R.

3.2.3 Implication Inference

The goal of the Implication Inference subcomponent is to use the evaluations saved

from each relation (at each timestep) to infer implications between pairs of relations

in R. Prior to forming such implications, this subcomponent reduces the input space
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by excluding relations that were evaluated as True or False for all timesteps. In

essence, this step removes predicates that would weaken the implication and thereby

introduce noise into the subcomponent’s output.

For each eligible pair of predicate relations (rj, rk), this subcomponent checks

the implication between their evaluations ⌦(rj, gri ) ) ⌦(rk, gri ) for each timestep i.

If a contradiction (i.e. True ) False) is found at any timestep, the implication

is flagged such that the subsequent Relation Generalizer will not report its general

form. Afterward, all generated implications are passed to the Relation Generalizer

subcomponent as the set Rimp.

3.2.4 Relation Generalizer

The objective of the Relation Generalizer is to make generalizations about various

groups of entities for the extraction of broader spatial relations. Generalizations are

made across all entities by default, but the user may provide specific groupings (e.g.

by type, behavioral class, region), given that the associated entity classifications are

provided in the trace (e.g. nj.class = “ambulance”, nk.class = “bus”). For each rela-

tion in R> and Rimp, the general form is extracted by replacing each entity name with

its group name. Next, these group names are replaced with every viable permutation

of its members. The generalized relation is only reported if none of its instantiations

are violated at any timestep in the sequence of reachability graphs.

Example 7. For example, consider the relation (car1.neighbors.size � 2) 2 R>.

When generalizing over a class grouping, this relation would be converted to the gen-

eralized form (CAR.neighbors.size � 2). The generalized form is reported only if it
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is never evaluated as False for any permutation of the group’s members. For example,

for (CAR.neighbors.size � 2) to be reported, the relation (car⇤.neighbors.size � 2)

must never be false for any member of the car class.

Finally, the set of generalized true predicates (RG

>) and the set of generalized

implication relations (RG

imp
) are passed through the filter.

3.3 Filter

Prior to reporting, all candidate relations are filtered by means of a tautological model

and through logical subsumption and exclusion. The tautological model is a lattice

that describes which neighborship distinctions are contained within another through

ancestor/descendant relationships. By default, to help remove redundant relations,

this lattice informs the filter that ENTITY .Neighbors ✓ ENTITY .Neighborhood .

Additionally, the user may provide more complex distinctions between sets of neigh-

bors, which is beneficial to remove even more relations that would not be caught by

standard logical subsumption (e.g. ENTITY .LeftNeighbors ✓ ENTITY .Neighbors).

Example 8. In the traffic scenario, consider the case in which the user makes the

distinction between Front, Back, Left, and Right neighbors, by defining the tauto-

logical model shown in Figure 3-2. With these relationships defined, the relation

(CAR.LeftNeighbors.size)  (CAR.Neighbors.size) is tautological, since the set

in the left hand term (a descendant) is a subset of the set in the right hand term (an

ancestor).
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Figure 3-2: Example tautological model for the traffic scenario.

For implications that follow the pattern (N.Neighbors.size OP CONST ) )

(N.Neighbors.size OP CONST ), the filtering step examines restrictions on the pred-

icates that were set by the tautological model. This process is guided by three rules

to remove tautological implications. First, if an ancestor is in the antecedent and a

descendant is in the consequent (i.e. Ancestor ) Descendant), both predicates use

the same operator “" as OP , and their CONST values are the same, then the impli-

cation is removed. Second, if the implication is of the form Ancestor ) Descendant

and the antecedent has a CONST value of 0, then it is removed. Third, if the

implication has the form Descendant ) Ancestor, the predicates share the same

operator OP (“==" or “�"), and their CONST values are equal but not zero, then

it is removed.

26



Example 9. In the traffic scenario, consider the relation (CAR.Neighbors.size ==

0) ) (CAR.FrontNeighbors.size == 0). Since the descendant’s value is restricted

by the ancestor, the implication would be removed by the filter (per the second rule).

Additionally, the relation (CAR.FrontNeighbors.size � 1) ) (CAR.Neighbors.size

� 1) would be removed by the third rule, since the ancestor’s value is constrained by

the descendant.

After these tautological relations are removed, the filter checks whether each re-

lation can be logically subsumed by another. For instance, in the case that an impli-

cation (A ) B) and its contrapositive (¬B ) ¬A) are part of the filter’s input, the

latter is removed by logical equivalency. Additionally, greater specificity is favored by

the filter through exclusion. For example, if relations ENTITY .Neighbors .size = 3

and ENTITY .Neighbors .size  3 are passed through filter, then the latter is removed.

After the filtering step, all remaining relations are reported in the set Rk.

3.4 Tool Implementation

SpRInG was implemented in Python 3.7.6. The reachability graph abstraction, ma-

nipulation, and analysis, all heavily rely on the NetworkX package [23]. The trace,

neighbor definitions (optional), and tautological model (optional), are all inputted

into SpRInG as separate JSON files. Users also have the option to modify inference

parameters through the command line or a JSON file to better configure the infer-

ence engine for their target system. While our approach does not generate highly

complex relation patterns by default (e.g. nested implications), the user can alterna-
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tively provide their own set of relation patterns. Most notably, our implementation is

structured as independent subcomponents, which are easily modifiable. For example,

since the inference engine only operates on a sequence of reachability graphs, the user

can modify the Spatial Encoder as needed, independently from the inference engine.

The generated relations are outputted as text files.
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Chapter 4

Study

Through this study, we aim to assess the power and expressiveness of SpRInG by

providing evidence that it can uncover relevant spatial relations over two distinct and

complex physical systems, with minimal input required from the user. We seek to

answer two research questions:

• RQ1: How effective is SpRInG at discovering new and existing spatial relation

specifications from traces?

• RQ2: How capable is SpRInG in its ability to produce relations that reflect

contextual changes?

We hypothesize that if the collected traces are rich enough to capture spatial pat-

terns between entities, then both new and existing spatial relations, along with their

underlying context, will be captured by SpRInG. We answer RQ1 through a study

of simulated traffic scenarios and answer RQ2 through a study of surgical robot tri-

als. We select the inference parameters and relationships guiding spatial abstraction

based on the system, while the core inference framework remains unchanged.
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Figure 4-1: SUMO highway (top) and intersection (bottom) scenarios.

4.1 RQ1: Traffic

Understanding how AVs react to their sensed environment is essential for the safety

and understanding of such systems. Due to their complexity, however, manually

defining a robust set of specifications is often infeasible. Therefore, we seek to answer

our first research question, which gauges the effectiveness of SpRInG to infer new

and existing system specifications, from simulated traffic scenarios. We target the

SUMO (“Simulation of Urban MObility") system [24], which has seen frequent use

in the analysis of AV behaviors in traffic [25, 26].
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4.1.1 Setup

To capture diverse traffic behaviors, we construct highway and intersection scenarios

(see Figure 4-1). We used the SUMO Traffic Control Interface (TraCI) to extract

traces of observations that contain the current lane, pose, velocities, turn signals,

brake, etc. for each vehicle. Each trace contains 1000 observations, collected at 1Hz.

4.1.2 Instantiation of Approach

We, as the user, define a set of domain-specific notions of neighborship to better

capture the reachability between vehicles. For example, we may want to leverage

the fact that a lead vehicle will likely have a different effect on an AV’s behavior

than a vehicle from an adjacent lane. More specifically, we extract and utilize lane

data from SUMO to discern between vehicles from the same lane (i.e. frontNeighbors

and backNeighbors) and vehicles that block adjacent lanes (i.e. leftNeighbors and

rightNeighbors). These distinctions form each vehicle’s set of neighbor definitions,

and were included in the tautological model for filtering. In this case, the following

neighbor definitions were defined for each vehicle. The leader and follower distances

(20 meters, 2 meters) were determined by 5 and 0.5 times an approximate average

vehicle length, in meters, respectively:

• �(vehicle, front) = ((rellane == 0) ^ (relroadID == 1) ^ (�20 < distA < 0))

• �(vehicle, back) = ((rellane == 0) ^ (relroadID == 1) ^ (0 < distB < 2))

• �(vehicle, left) = ((rellane == �1)^(relroadID == 1)^((distA > 0)^(distB < 0)))

• �(vehicle, right) = ((rellane == 1)^(relroadID == 1)^((distA > 0)^(distB < 0)))
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The variables rellane, relroadID, distA, and distB are defined as follows:

• rellane = ENTITY1[‘laneID’] - ENTITY2[‘laneID’]

• relroadID = 1 if ENTITY1[‘edge’] == ENTITY2[‘edge’] else 0

• distA = ENTITY1[‘frontBumperPos’] - ENTITY2[‘backBumperPos’]

• distB = ENTITY1[‘backBumperPos’] - ENTITY2[‘frontBumperPos’]

Since we can extract the ID (integer value) of the road and lane for all vehicles

at each timestep, the relroadID and rellane variables extract information regarding

whether the two vehicles are on the same road and their relative lane position. This

information is used as part of the conditional to determine whether the vehicle should

be considered as a front, back, left, or right neighbor. We can also extract the front and

back bumper positions for each vehicle, which are effectively longitudinal distances

along the vehicle’s current road. With this information, the distA variable contains

the longitudinal space between the ego vehicle’s front bumper and the target vehicle’s

back bumper. This value (in meters) is negative when the target vehicle is ahead of it

and and positive otherwise. In the neighbor definition for front neighbors, this value

is used to ensure that a candidate lead vehicle is close enough to the ego vehicle to

potentially influence its behavior. The distB variable is similar, but used to compute

the distance to candidate back neighbors. Both of these variables form a condition in

the neighbor definitions for left and right neighbors, as they are used to determine if

there is any overlap in the longitudinal direction.
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4.1.3 Evaluation

We seek to show that SpRInG is expressive enough to generate relations that capture

existing system specifications. In this study, SpRInG has no prior knowledge of the

structure or contents of existing specifications. After manually compiling a small

sample of real SUMO specifications from its official documentation [24] , we examined

the output of SpRInG applied to traces extracted from two traffic scenarios (see Figure

4-1). A sample of real and inferred specifications are provided in Table 4.1.

These results demonstrate that SpRInG can reasonably capture underlying rela-

tionships that govern SUMO vehicle behavior. Since each original English specifica-

tion is now paired with a formula in first-order logic, these can be mathematically

checked and monitored. We find that inferred relations R1A, R1B, and R2 accurately

reflect their associated SUMO specifications, and are unlikely to be violated by the

system. Inferred relation R3, however, is weaker in that a counterexample is likely

to be found under more observations (e.g. it would be violated if the traffic light

changes to red while a vehicle is yielding within the intersection). To capture a more

robust version of this specification, the user would need to provide a custom pattern

of greater specificity.

Next, we explore the power of SpRInG to uncover useful system specifications

that were previously unstated. We determine that an inferred specification is useful

(i.e. a likely “true positive") if it is likely to never be violated by similar scenarios.

To evaluate the usefulness of the specifications reported by SpRInG, we collect two

clusters of traces: C1 includes traces from three highway scenarios (comprised of 3, 4,

and 5 lanes, while all other simulation parameters are held constant), and C2 includes

33



SUMO Specifications Learned Relations

[Reng1]: “A vehicle may only change its

lane if there is enough physical space on

the target lane...”

[R1A]: (vehicle.LaneChangeLeft) )
(vehicle.LeftNeighbors.size == 0)

[R1B]: (vehicle.LaneChangeRight) )
(vehicle.RightNeighbors.size == 0)

[Reng2]: “[When an emergency vehicle

has its siren on,] traffic participants

[must let] the emergency vehicle pass."

[R2]: (ambulance.sirenOn) )
(ambulance.FrontNeighbors.size == 0)

[Reng3]: “[Vehicles] are not permitted to

enter the intersection. . . if there is a red

traffic light.”

[R3]: (vehicle.inJunction) )
(vehicle.SensedTLState == “green”)

Table 4.1: Specifications provided by SUMO documentation (left), associated relations inferred by
SpRInG (right).

traces from three intersection scenarios in which the only modified parameter is a seed

to randomize vehicle departures (e.g. timestep, lane) and behaviors (e.g. maximum

acceleration and deceleration) for the traffic generator. We then make inferences over

each cluster’s traces with SpRInG, and compute the rate of “likely true positives".

This rate, TP (Ci), is the proportion of inferred relations that were never violated by

any of the traces in cluster Ci:

TP (Ci) =
# Unique relations never violated by Ci

# Unique relations reported by Ci

We observe that cluster C1 reports a total of 383 generalized relations with

TP (C1) = 79.4%, and cluster C2 reports 574 generalized relations with TP (C2) =

93.6%.
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We now provide examples of previously unstated specifications that were reported

by SpRInG as “likely true positives" over the scenario clusters. First, it is reported that

(9[vehicle.FrontNeighbors , v ] : v .in_junction) ) (vehicle.SensedTLState == ‘green 0).

This relation states that if an ego vehicle observes one of its lead vehicles v to be

within a traffic junction, then the ego vehicle should also observe that the traffic

light is green. This follows our intuition for two reasons: we would expect a vehi-

cle to only enter a junction when the traffic light is green, and its followers should

also observe that the light is green. It is also reported that (vehicle.in_junction) )

(8[vehicle.FrontNeighbors , v ] : v .brake == False), which states that if an ego vehicle

is within a junction, then none of its leaders are braking. This also follows our intu-

ition, since vehicles will rarely decelerate through intersections, particularly in cases

of light traffic.

These results illustrate how SpRInG can be powerful enough to uncover known

and unknown specifications.

4.2 RQ2: da Vinci Surgical System

To answer our second research question and to demonstrate the broad applicability

of SpRInG, we evaluate its ability to learn spatial relations from the JHU-ISI Gesture

and Skill Assessment Working Set (JIGSAWS ) dataset. JIGSAWS contains data

collected at 30Hz from a da Vinci Surgical System (dVSS ), teleoperated by eight

surgeons with varying levels of experience. Each surgeon performed five separate

trials of three common procedures (needle-passing, suturing, and knot-tying). Each
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Figure 4-2: Examples of gestures from the JIGSAWS “Suturing" procedure.

trial was assigned a Global Rating Score (GRS) through a manual assessment of

demonstrated skills. Finally, each timestep was manually labeled with the current

gesture (e.g. “Orienting needle") [27].

4.2.1 Setup

To capture a broad range of gestures, we selected the suturing procedure for this study

(see Figure 4-2). We first convert the raw data into a format that is compatible with

the Spatial Encoder. As a pre-processing step, to form a richer trace of reachability

graphs, we modified the dataset to include the approximate position of the tissue. Our
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final traces contain information regarding the position, rotational and linear velocities,

and gripper angle for each of the robot manipulators, the location of the tissue, and

the current gesture.

4.2.2 Instantiation of Approach

To infer relations that more precisely capture the vertical configuration of the manip-

ulators, we utilize entity positions on the z-axis to distinigush between aboveNeighbors

and belowNeighbors. We then include these distinctions in the set of neighbor def-

initions for each robot manipulator and in the tautological model. The neighbor

definitions for the robot manipulators and the tissue are provided below. Note that

the tissue is always positioned below the manipulators along the z-axis, so distinctions

for above and below in its neighbor definition were deemed unnecessary.

• �(manipulator, above) = (dist < 0.055) ^ (relz < 0)

• �(manipulator, below) = (dist < 0.055) ^ (relz > 0)

• �(tissue) = (dist < 0.055)

The variables dist and relz are defined as follows:

• dist = d(ENTITY 1, ENTITY 2)

• relz = ENTITY 1[‘pos0
z
]� ENTITY 2[‘pos0

z
]

The dist variable is the Euclidean distance (in meters) between two entities in

3D space, and the relz variable indicates the relative position along the z-axis. The

values in the conditionals defined in the neighbor definitions were selected based on the
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estimated length of the needle. These distinctions were included in the tautological

model for filtering.

4.2.3 Evaluation

We evaluate SpRInG in its ability to reveal contextual differences between similar trials

through its learned relations. To do so, we compare relations learned from trials with

the lowest and highest GRS scores (snovice and sexpert, respectively), over the same

suturing procedure. We provide a comparison of the relations reported by SpRInG

over these scenarios in Table 4.2. The left column provides four spatial relations

inferred from snovice, but violated by sexpert, and the right column contains relations

that were inferred from sexpert, but violated by snovice. These results reveal that the

expert operator exhibits quicker movements than the novice while the needle is near

the tissue (RA, RB) and that there are differences between operators in the vertical

configuration of the robot manipulators during the procedure (RC , RD). We also find

Relations reported by snovice, violated by
sexpert

Relations reported by sexpert, violated by
snovice

[RA]: (tissue 2 robot_right.Neighbors) )
(robot_right.velocity  0.05)

[RE]: (robot_right.open) ) (robot_right /2
tissue.Neighbors)

[RB]: (tissue 2 robot_right.Neighbors) )
(robot_right.rot_velocity  3.10)

[RF]: “Pushing needle through tissue" )
(tissue.Neighbors.size == 2)

[RC]: “Orienting needle" ) (robot_left 2
robot_right.aboveNeighbors)

[RG]: “Orienting needle" ) (tissue 2
robot_left.belowNeighbors)

[RD]: (robot_right.open) ) (robot_left 2
robot_right.belowNeighbors)

[RH]: (robot_left.open) )
(robot_left.Neighbors.size == 2)

Table 4.2: Difference in reported relations between novice and expert operators.
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that, unlike the novice operator, the expert passes the needle to the right while away

from the tissue (RE) and uses both arms to aid with insertion (RF ), among other

distinctions in their techniques (RG, RH).

These results demonstrate that SpRInG can capture subtle contextual differences

in its reported relations.

4.3 Summary of Findings

In this study, we examined our two research questions through simulated traffic data

and real traces collected from a surgical robot. Our first research question targets the

effectiveness of SpRInG at relation discovery. To show that SpRInG can uncover real

specifications, we compared SpRInG-generated relations to specifications outlined in

the official SUMO documentation. We then demonstrated that SpRInG can uncover

valuable specifications that were not provided in this documentation. We showed that

many of these relations are applicable to the system by checking them against a cluster

of similar scenarios. Through our second research question, we demonstrated that the

relations generated by SpRInG can reflect changes in context within a system. To do

so, we used data from the JIGSAWS dataset to compare relations generated from

novice and expert operators. While the task is the same between operators, SpRInG

reveals subtle differences in the spatial configuration of the robot manipulators during

the procedure. Overall, these results show that SpRInG is able to uncover relevant

relations with ideal specificity over diverse systems, both real and simulated.
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Chapter 5

Conclusion and Future Work

This thesis presents SpRInG, a framework for the unsupervised inference of system

specifications that characterize the relationship between the sensed distribution of

objects and resulting robot behaviors. The SpRInG framework accepts a trace of

variable-value pairs from the user, converts the trace into a sequence of spatial mod-

els, instantiates a library of patterns, and infers relations over the sequence. The tool

is highly configurable, with parameters to adjust the neighbor definitions, tautological

model, and inference settings. We then demonstrate the power and expressiveness

of SpRInG through two studies. The first demonstrates that SpRInG can learn ex-

isting specifications and uncover those that were previously unstated. The second

shows that SpRInG can reveal subtle contextual differences between traces, through

its reported relations.

We highlight that there are various paths for future extensions of SpRInG and its

potential applications. These are provided below:

1. Most complex robot systems provide raw, unprocessed, and local data that are

difficult to parse into a form that is meaningful for spatial relation inference.
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To infer spatial relations from such systems, it is necessary to extend SpRInG to

infer relations from more complex data types (e.g. images, point clouds). This

would require a prefix to the SpRInG framework, to extract spatial models from

such data.

2. The vast majority of mobile robot behaviors in response to sensed surroundings

are not single-state, but often take a window of time to both react and respond.

To account for this, it is necessary to extend SpRInG to infer spatial-temporal

relations from event sequences. This would require SpRInG’s Pattern Library to

generate relation patterns that introduce linear temporal logic operators (e.g.

Next, Finally, Globally, Until, etc.). This also requires infrastructural changes

to the Inference Engine component, which could be modified to slide a window

over a sequence of graphs, to check whether a given relation holds. Without

restrictions on time bounds, there may be an intractably large search space.

Therefore, to accelerate the inference process, it would likely be necessary for

the user to provide some of this information to SpRInG.

3. Since real-world systems and their operating environments are highly uncertain

(e.g. sensor noise, external conditions), the values in each observation have

some level of noise. We would like to model this uncertainty and characterize

robot behavior over such observations. This would require any uncertainty to

be provided as input, and to be encoded in the reachability graphs constructed

by the Spatial Encoder component. This also leads to three types of relation-

ships between nodes: neighbors (certain), not neighbors (certain), and uncertain
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neighbors. In the Inference Engine, this would require the edges to be evaluated

with ternary logic, and the engine may output relations marked as uncertain.

With this information, it may be worthwhile to study how an autonomous robot

behaves when it is faced with high uncertainty in its detections.

4. For the safety of autonomous mobile robot systems, it is imperative to ensure

that they can safely navigate through complex environments. Some existing

motion planning frameworks utilize hierarchical “rulebooks" that govern how

robots should navigate space [28]. However, these rules are manually defined,

which means that they are a small subset of the full set of applicable rules for

the system. For this reason, it would be valuable to use SpRInG to infer relations

from existing data, and include them in such rulebooks.
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