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Abstract

The Schur-Jimbo duality is one of the most fundamental topics in representation theory,

bridging the irreducible representations of a Hecke algebra with those of a Drinfeld-Jimbo

quantum group. Evolving alongside the advancements in the field, the Schur-Jimbo duality

has been extended in tandem with the emergence of ıquantum groups, which are a natural

generalization of quantum groups arising from the theory of quantum symmetric pairs.

In this dissertation, we construct various ıSchur dualities stemming from quantum sym-

metric pairs of types AI, AII, and AIII. Particularly, the ıSchur duality of type AIII, ac-

commodating black nodes in its Satake diagram, presents a unified extension of Jimbo-Schur

duality and Bao-Wang’s quasi-split ıSchur duality.

Moreover, expanding the classic works of Kazhdan-Lusztig and Deodhar, we establish bar

involutions and canonical bases on quasi-permutation modules over the type B Hecke algebra,

where the bases are parameterized by cosets of (possibly non-parabolic) reflection subgroups of

the Weyl group of type B. The quasi-parabolic KL bases on quasi-permutation Hecke modules

are shown to match with the ıcanonical basis on the tensor space.

Finally, we establish two specific families of quantum supersymmetric pairs, denoted as

type AIII and type AI-II, respectively. We elucidate their fundamental properties, including

the coideal algebra property and the quantum Iwasawa decomposition, which ensure that the

ıquantum supergroups attain the expected sizes. Within the framework of these quantum

supersymmetric pairs, we provide super generalizations of the aforementioned dualities.
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Chapter 1

Introduction

1.1 Background

Schur-Jimbo duality

Let slm be the type A simple Lie algebra and Sn be the symmetric group on n letters. In

the classical Schur duality, the actions of the enveloping algebra U(slm) and the group algebra

C[Sn] on the tensor space (Cm)⊗n commute with each other and satisfy the double centralizer

property. In this way, the Schur duality connects the irreducible representations of slm and

Sn.

Independently in the mid-1980s, Drinfeld and Jimbo introduced the quantum groups,

which are q-deformations of complex simple Lie algebras. The universal R-matrix introduced

by Drinfeld [Dr86] provides solutions to the Yang-Baxter equation. The quantum groups have

led to many advances in mathematical physics, representation theory, algebraic geometry, and

algebraic combinatorics.

Inspired by Ringel’s Hall algebra realization of half a quantum group [R90], Lusztig intro-

duced the canonical basis [Lus90] arising from quantum groups (see also Kashiwara [Ka91]

for another approach). Additionally, Lusztig developed canonical bases for tensor products of
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modules in [Lus92].

A quantum analog of the Schur duality [Jim86] is naturally provided by the quantum

group Uq(slm) and the type A Iwahori-Hecke algebra HSn . In this context, the vector space

Cm is replaced by the natural representation V of Uq(slm). The actions of HSn are realized

by the R-matrix. Moreover, the type A (parabolic) Kazhdan-Lusztig basis ([KL79], [De87])

can be identified with the canonical basis on V⊗n when viewed as a direct sum of permutation

modules over the Hecke algebra, see [FKK98] (cf. [LW20]).

Quantum symmetric pairs and ıSchur dualities

Let g be a finite-dimensional semisimple or reductive Lie algebra over C, and let θ be an

involution on g. The classification of irreducible symmetric pairs (g, gθ) is given by the Satake

diagrams [Ara62], which are bi-colored Dynkin diagrams I = I• ∪ I◦ together with a diagram

involution τ .

The theory of quantum symmetric pairs (Uq(g),U
ı), which provides a quantization of

the symmetric pair (g, gθ), was systematically developed by Letzter [Let99, Let02]. In this

context, Uq(g) represents the Drinfeld-Jimbo quantum group associated with g, while Uı a

coideal subalgebra of Uq(g), nowadays known as an ıquantum group. Kolb [Ko14] further

expanded and generalized this theory to cover the Kac-Moody case.

Generalizing Lusztig’s approach on canonical basis in [Lus92, Lus93], Bao and Wang

[BW18a, BW18b] have developed a theory of ıcanonical basis for ıquantum groups arising

from quantum symmetric pairs. They showed that any based module M of a quantum group

of finite type (cf. [Lus93, Chapter 27]) when viewed as a module over an ıquantum group with

suitable parameters can be endowed with a new bar map ψı and a distinguished ψı-invariant

basis (called ıcanonical basis).

In [BW18a], the authors demonstrate that the Hecke algebra of type B, denoted by HBd
,

and the ıquantum group of type AIII satisfy a double centralizer property (see also [Bao17]).
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Furthermore, it was shown that the Kazhdan-Lusztig basis of type B coincides with the

ıcanonical bases [BW18b] arising from tensor product modules of ıquantum groups. This

result was later generalized to a multi-parameter setting [BWW18].

Bao and Wang in [BW18a, §2.3] also introduced the quasi K-matrix for a quantum sym-

metric pair as an analogue of the quasi R-matrix; a proof for the existence of quasi K-matrix

for general quantum symmetric pairs was given in [BK19]. This quasi K-matrix serves as the

intertwiner between the embedding of the ıquantum group into the underlying quantum group

and its bar-conjugated embedding, subject to certain parameter conditions (cf. [BK19]). In

the quasi-split ıSchur duality, the action of the additional generator H0 of HBd
was realized

via the K-matrix by Bao and Wang [BW18a, Theorems 2.18, 5.4] (this is the first construction

of a K-matrix built on the notion of quasi K-matrix therein).

Brauer algebra

In [Br37] Brauer introduced the so-called Brauer algebra, and established the double

centralizer property between it and the orthogonal group Om or symplectic group Sp2m. The

Brauer algebra was further studied in [Br56a], [Br56b] and so on. The Birman-Murakami-

Wenzl algebra (or BMW algebra for short), as a two-parameter deformation of the Brauer

algebra, was algebraically defined by Birman and Wenzl [BW89], and independently by Mu-

rakami [Mu87].

In the Schur-Jimbo duality, when Uq(slm) is replaced by Uq(om) or Uq(sp2m), the role of

HSn was played by the BMW algebra with the parameters being appropriately specialized;

see [CP94] or [Ha92]. In [FG95] a canonical basis of the BMW algebra has been constructed

and the associated cell structure has been studied. However, the Iwahori-Hecke algebra HSn

is not naturally a subalgebra of the BMW algebra while the algebras Uq(om) and Uq(sp2m)

are not isomorphic to subalgebras of the type A quantum groups either.

Besides the BMW algebra, another multi-parameter deformation of the Brauer algebra,
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which depends on two indeterminates q and z, was introduced by Molev [M03]; moreover,

Molev showed that the action of his algebra (specializing z to qm) on V⊗n commutes with

that of the twisted quantized enveloping algebra Utw
q (som) introduced by Noumi in [No96],

where V is the natural representation of Uq(slm) (also cf. [We12b]).

Later on, in [We12a], Wenzl defined a quotient of Molev’s algebra called the q-Brauer

algebra, which will be the main object of Part II. Many properties of the q-Brauer algebra

have been studied by Nguyen. For example, in [N14], Nguyen constructed a standard basis

for the q-Brauer algebra which is labeled by a natural basis of Brauer algebras; the q-Brauer

algebra contains HSn as a natural subalgebra under the standard basis. Moreover, in [N14]

and [N18], it was shown that the q-Brauer algebra is a cellular algebra and its irreducible

representations can be classified using the general theory of cellular algebras in [GL96].

Lie superalgebra and quantum supersymmetric pairs

Now suppose g is a basic Lie superalgebra of any finite type. In general, the funda-

mental systems of the root system Φ associated with g are not conjugated under the Weyl

group actions due to the existence of odd isotropic roots. Consequently, the Dynkin diagrams

associated with g depend on the choice of positive roots Φ+.

In [Ya94], Yamane has constructed quantized enveloping algebras U = Uq(g) as well as

their universal R-matrices associated with arbitrary Dynkin diagrams. In his subsequent work

[Ya99], he further quantized the odd reflections into algebra isomorphisms of U associated with

different presentations, providing a super analogue of Lusztig’s braid group operators.

In this thesis, we will be interested in quantum symmetric pairs for Lie superalgebras

in Part III. Recently, examples of quantum symmetric pairs for Lie superalgebras has been

constructed. Kolb and Yakimov’s work in [KY20] studied Drinfeld doubles of pre-Nichols

algebras of diagonal type, which include as an example the quantum supersymmetric pair

of type AIII, with I• = ∅. Moreover, Chung [Ch19] has studied quantum symmetric pairs
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(Uπ,U
ı
π) for quantum covering algebras Uπ which is introduced in [CHW13] and specializes

to the Lusztig quantum group when π = 1 and quantum supergroups of anisotropic type when

π = −1; see also [Ch21].

The super analogue of the Schur duality is given by Sergeev [S85] between gl(m|n) and

the symmetric group. Moreover, it was shown in [Mi06] that the type A quantum supergroup

associated to the standard Dynkin diagram and the Hecke algebra of type A satisfy a double

centralizer property.

1.2 Goal

In this dissertation, we construct and study in depth various ıSchur dualities emerging

from ıquantum groups of different types. We also study the canonical bases arising from such

dualities. Additionally, we construct two families of quantum supersymmetric pairs (for gen-

eral constructions of basic types, refer to [SW24]) and establish their fundamental properties,

including the quasi K-matrix. As an application, we also extend the aforementioned dualities

to the super setting using the quantum supersymmetric pairs.

The work presented in this thesis relies extensively on the following framework, originating

from [BW18a],

U ↷ V⊗n ↶ HSn

↪→
↪→

Uı ↷ V⊗n ↶ HBd

(1.1)

where Uı of quasi-split type AIII (I• = ∅) is a natural subalgebra of U while HSn is a natural

subalgebra of HBd
.

In Part I, we extend the ıquantum group Uı in (1.1) by allowing black nodes to appear in

the corresponding Satake diagram of type AIII. The ıSchur duality we formulate in this case

can be viewed as a common generalization of Jimbo-Schur duality and Bao-Wang’s quasi-split

ıSchur duality. The results presented in this part have appeared in a joint paper with Wang
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[SW23].

In Part II, we focus on Uı of type AI and AII. The type AI ıquantum group serves as

a quantization of the special orthogonal Lie algebra, while the type AII ıquantum group

quantizes the symplectic Lie algebra. In this case, the place of HBd
in (1.1) is replaced by

Wenzl’s q-Brauer algebra. Additionally, we construct a bar involution and a KL-type basis

for the q-Brauer algebra. The results presented in this part have appeared in the joint paper

with W. Cui [CS22].

In Part III, we delve into the study of quantum supersymmetric pairs. We first explore

a super generalization of the type AIII quantum symmetric pairs, allowing black nodes. For

suitable Satake diagrams associated with the type A Lie superalgebra (7.12), we construct the

pair (U,Uı) along with its fundamental properties, including a quantum Iwasawa decomposi-

tion and quasi K-matrix. Within the framework (1.1), we establish an ıSchur duality between

the ıquantum supergroup Uı and HBd
.

Additionally, we consider a super Satake diagram (9.1) that combines the Satake diagrams

of type AI and AII. In this scenario, we construct the pair (U,Uı) of super type AI-II, where

the classical limit of Uı corresponds to the ortho-symplectic Lie superalgebra. Under the

framework (1.1), we establish an ıSchur duality of super type AI-II, which merges the ıSchur

dualities of type AI and AII discussed in Part II. The results presented in this part on super

type AIII have appeared in [Sh22] and on super type AI-II will appear in [SW24].

1.3 Main results for Part I

In this part we establish bar involutions and canonical bases on quasi-permutation modules

over the type B Hecke algebra. We also formulate an ıSchur duality between an ıquantum

group of type AIII (allowing black nodes in its Satake diagram) and the Hecke algebra of type

B.
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Type B Kazhdan-Lusztig, expanded

Let W = Wd be the Weyl group of type Bd generated by the simple reflections

s0, s1, . . . , sd−1, which contains the symmetric group Sd naturally as a subgroup. Let HBd

be its associated Hecke algebra generated by H0, H1, . . . , Hd−1 in 2 parameters q, p, which

contains the Hecke algebra HSd
as a subalgebra. (In the introduction, we shall assume that

p is an integer power of q; a reader can take p = q.)

Consider reflection subgroups of Wd of the form

Wf = Wm1 × . . .×Wmk
× Smk+1

× . . .× Sml
. (1.2)

where m1+ . . .+ml = d, k ≤ l and all mi are positive. Clearly, Wf is a parabolic subgroup of

Wd if and only if k ≤ 1. For k ≤ 1, there exists a right HBd
-module Mf , the induced module

from the trivial module of the subalgebra HWf
, parameterized by the set fW of right minimal

length representatives of Wf . The celebrated Kazhdan-Lusztig (KL) basis on the regular

representation of HBd
(see [KL79] for p = q, and [Lus03] for p ∈ qZ) admits a parabolic

generalization in terms of Mf (see Deodhar [De87]); that is, Mf admits a bar involution and

a distinguished bar-invariant basis, known as the parabolic KL basis.

Our first main result is to extend the above classic works of Kazhdan, Lusztig and Deodhar

to construct canonical bases (also called quasi-parabolic KL bases) of type B associated to

arbitrary reflection subgroups Wf of the form (1.2). By definition, our modules Mf depend

only on the reflection subgroup Wf of Wd, and each Mf comes with a standard basis {Mf ·σ},

where σ runs over the set fW of minimal length representatives of right cosets of Wf in Wd.

We denote by < the Chevalley-Bruhat order on fW .

Theorem A (Proposition 3.2.12, Theorem 3.2.13). (1) There exists an anti-linear bar invo-

lution ψı on Mf such that ψı(Mf ) =Mf , which is compatible with the bar operator on HBd
,

i.e., ψı(xh) = ψı(x)h̄, for all x ∈ Mf , h ∈ HBd
.

(2) The module Mf admits a canonical basis {Cσ|σ ∈ fW} such that Cσ is bar invariant
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and Cσ ∈Mf ·σ +
∑

w∈fW,w<σ q
−1Z[q−1]Mf ·w.

The module Mf also admits a dual canonical basis {C∗
σ|σ ∈ fW} such that C∗

σ is bar

invariant and C∗
σ ∈Mf ·σ +

∑
w∈fW,w<σ qZ[q]Mf ·w; see Proposition 3.2.14.

Theorem A is totally unexpected when Wf is not parabolic, given the fundamental impor-

tance of Kazhdan-Lusztig bases and how well they have been studied from various viewpoints

since 1970’s. We are led to the formulation of this result from a new ıSchur duality and the

corresponding ıcanonical bases, which we shall explain below momentarily.

As Wf may not be parabolic, the Hecke algebra H (Wf ) is not a subalgebra of HBd
in any

natural manner, and hence Mf is not an induced module from an H (Wf )-module in general.

Accordingly, it is more difficult to establish a key property (see Theorem 3.2.6) concerning

the action of the simple reflections si on the poset fW , generalizing the parabolic case in

[De77, De87]. This leads to explicit formulas (see Proposition 3.2.8) for the actions of the

generators Hi of HBd
on the standard basis of Mf parametrized by the minimal length coset

representatives forWf\W ; remarkably, these formulas look identical to those forWf parabolic.

The self-contained proof of Theorem A (which is independent of ıSchur duality below) will

occupy Section 3.2.

The canonical bases in Theorem A include parabolic KL bases of type A (besides those of

type B) as special cases. For example, consider the non-parabolic subgroupWf = W1×. . .×W1

(generated by the d sign reflections). In this case, fW = Sd, and the canonical basis of Mf in

Theorem A is identified with the KL basis of HSd
. See Example 3.2.15(2) where an arbitrary

parabolic KL basis of type A arises as a canonical basis of type B.

ıSchur duality

Let V be the natural representation of the Drinfeld-Jimbo quantum group U = Uq(sl2r+m).

Let (U,Uı) be the quantum symmetric pair of type AIII (§ 2.2), where Uı is a coideal

subalgebra of U whose q 7→ 1 limit is the enveloping algebra of sl(r +m)⊕ gl(r).
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When V is viewed as a representation of Uı, its standard basis {vi|i ∈ Ir|m|r} is naturally

bicolored (where the m indices in the middle are colored as •, while the remaining 2r indices

are colored as ◦). When m = 0 or 1, Uı is quasi-split, and on the other extreme when r = 0,

we have Uı = U.

We endow the tensor space V⊗d with a (right) HBd
-module structure. The aforementioned

HBd
-modules Mf arise as direct summands of the tensor module V⊗d of HBd

, and are called

quasi-permutation modules. Each Mf is spanned by a standard basis Mg where g runs over a

Wd-orbit. (We have chosen to parametrize Mf by “anti-dominant weights" f .)

Our second main result is the following.

Theorem B (Theorem 4.1.6). The actions of Uı and HBd
on V⊗d commute with each other,

and form double centralizers.

The ıquantum group Uı comes with parameters § 2.2, and for our purpose, the parameters

are fixed once for all by the double centralizer property in Theorem B.

Note that in the extreme case when r = 0 and Uı = U, we (somewhat surprisingly) claim

to have an action on V⊗d by HBd
, not by HSd

which one is familiar with. The puzzle is

resolved when we note that the action of the generator H0 of HBd
reduces to p · Id, and we

recover Jimbo duality [Jim86] (q-Schur duality of type A) in disguise in this extreme case.

On the other hand, when m = 0 or 1, (U,Uı) is quasi-split, and we recover the (quasi-split)

ıSchur duality due to [BW18a] for p = q (and generalized to p = 1 in [Bao17] and to general p

in [BWW18]). The action of H0 in general is a suitable mixture of the actions in the 2 special

cases.

Recall that in the quasi-split ıSchur duality [BW18a], the action of the additional genera-

tor H0 of HBd
was realized via the K-matrix. We show that the action of H0 in the setting of

Theorem B is again realized by a K-matrix, which has been available in greater generality in

Balagovic-Kolb [BK19]. This can be viewed as a distinguished example that the K-matrix pro-

vides solutions to the reflection equation, a property of the K-matrix in general as established
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in [BK19].

Compatible canonical bases

Apply the general constructions of ıcanonical bases in [BW18b] to the quantum symmetric

pair (U,Uı) of type AIII, and M = V⊗d, as in the setting of Theorem B. Denote by {Cg |

g ∈ Idr|m|r} and {C∗
g | g ∈ Idr|m|r} the ıcanonical and dual ıcanonical basis on V⊗d.

Theorem C (Proposition 4.2.7, Theorem 4.2.9). (1) There exists a bar involution on V⊗d

which is compatible with the bar involutions on Uı and HBd
.

(2) The (dual) ıcanonical basis on V⊗d viewed as a Uı-module coincide with the (dual)

quasi-parabolic KL basis on V⊗d viewed as an HBd
-module (see Theorem A.

In the extreme case when r = 0 and Uı = U (i.e., in the setting of [Jim86]), Theorem C

recovers the main result of I. Frenkel, Khovanov and Kirillov [FKK98]. In the special case

when m = 0 or 1, it reduces to the (quasi-split) ıSchur duality in [BW18a] (as well as the gen-

eralizations in [Bao17, BWW18]). In the general case (for arbitrary r and m), the ıcanonical

basis elements in V⊗d parameterized by all black nodes • (respectively, by all white nodes ◦)

can be identified with parabolic KL of type A (respectively, B), but there are other ıcanonical

basis elements of mixed colors without such identifications.

An inversion formula

An inversion formula for KL polynomials originated in [KL79] and was subsequently

generalized to the parabolic setting by Douglass [Do90]; also see [So97] for an exposition. In

type A, the inversion formula can be reformulated and reproved using a symmetric bilinear

form on the tensor product U-module V⊗d; see Brundan [Br06] and Cao-Lam [CL16]. We

generalize the approach in [CL16] via the ıSchur duality by formulating a bilinear form ⟨·, ·⟩

on V⊗d as a Uı-module.

Theorem D (Theorems 4.3.7–4.3.8). (1) The bilinear form ⟨·, ·⟩ on V⊗d is symmetric.
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(2) The ıcanonical basis and dual ıcanonical basis on V⊗d are dual with respect to ⟨·, ·⟩,

i.e., ⟨Cg, C
∗
−h⟩ = δg,h, for g, h ∈ f ·Wd.

Theorem D can be reformulated as a duality between (dual) quasi-parabolic KL polyno-

mials; see Corollary 4.3.9. It can be extended easily to a useful duality between super KL

polynomials introduced in [BW18a]; see Remark 4.3.10. The proof of Theorem D(1) uses some

old and new properties of the quasi R-matrix Θı introduced in [BW18a] (and generalized by

Kolb [Ko20]) and an anti-involution σi on Uı in [BW21].

1.4 Main results for Part II

In this part, we construct a bar involution and the canonical basis on the q-Brauer algebra

introduced by Wenzl. We also formulate ıSchur dualities between the q-Brauer algebra and

the ıquantum groups of type AI and AII respectively.

Canonical bases of the q-Brauer algebra

Fix an integer N ∈ Z \ {0}. Let Dn(N) denote the Brauer algebra which is a Z-algebra

with a linear basis consisting of all partitions of the set

{1, 2, . . . , n, 1′, 2′, . . . , n′}

into two-element subsets.

Let In denote the set of all basis diagrams of the Brauer algebra. Proposition 5.2.6 gives a

standard basis of the q-Brauer algebra Bn(q, z) that is labeled by the basis diagrams, denoted

by {Hd | d ∈ In}.

Theorem E. (1)(Lemma 5.3.2) There is a unique involutive homomorphism · on Bn(q, z)

which is Q-linear and satisfies q = q−1, z = z−1, Hi = H−1
i and e = e.
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(2)(Theorems 5.4.7) The q-Brauer algebra admits a canonical basis {Cd | d ∈ In} such

that Cd is bar invariant and Cd ∈ Hd +
∑

d′∈In,ℓ(d′)<ℓ(d) q
−1Z[q−1]Hd′ .

The bar involution · is shown to be compatible with the one on its natural subalgebra

HSn . A direct consequence of the compatibility of the bar involutions is that the usual type A

Kazhdan-Lusztig basis is a part of the canonical basis we obtain. Moreover, one can see that

the coefficients, when expanding the canonical basis as a sum of the standard basis elements,

are polynomials in q, which do not depend on z. A similar phenomenon was found in [FG95,

§5.2].

ıSchur duality of type AI and AII

Let Uı(som) denote the ıquantum group of type AI and Uı(sp2m) denote the ıquantum

group of type AII; cf. § 2.2. Let V be the natural representation of Uq(slm) and W be the

one of Uq(sl2m). Enlightened by the pioneering work about ıSchur dualities in [BWW18], we

construct explicit actions of the q-Brauer algebra Bn(q, z) on the tensor modules V⊗n and

W⊗n respectively; cf. Proposition 6.2.2 and Proposition 6.4.1.

Theorem F (Theorems 6.2.4–6.4.2). (1) The left action of Uı(som) on V⊗n commutes with

the right action of Bn(q, q
m). Moreover, when m is odd or m is even with m− 1 ⩾ 2n, they

form double centralizers.

(2) The left action of Uı(sp2m) on W⊗n commutes with the right action of Bn(−q−1, q2m)

and they form double centralizers.

The commuting action in the case of type AI was also formulated in [M03] with a restriction

on the parameters of the ıquantum group and using the R-matrix presentation of the quantum

group Uq(glm). Both commuting actions were also discovered in [ST19, (7.10)–(7.11)] through

the Web category but not explicitly constructed.
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1.5 Main results for Part III

In this part we introduce the framework of quantum supersymmetirc pairs associated

with Lie superalgebras by constructing two explicit families of them. Moreover, we formulate

various ıSchur dualities in the super setting, providing a generalization of the dualities in

Part I and II.

Quantum supersymmetric pair of type AIII

Let (g, gθ) be a supersymmetric pair of type AIII; see (7.12). To define a quantum

supersymmetric pair associated with (g, gθ), we start with a diagram X of the form (7.12)

that satisfies the conditions (7.14), where the index set is denoted as I = I◦ ∪ I•. Taking into

account the presence of odd reflections, we can mimic the non-super case to define a longest

element w• associated with the Weyl groupoid of the Levi subalgebra corresponding to I• (cf.

[HY08]). Applying w• to X results in another diagram Y that satisfies (7.14) and is indexed

by I as well. The algebra U(Y ) (resp. U(X)) is generated by Ej, Fj (resp. EX
j , F

X
j ) along

with the Cartan part. The ıquantum group Uı(Y ) in the pair (U(Y ),Uı(Y )) is generated by

Ej, Fj (j ∈ I•),

Bj = Fj + ςjTw•(E
X
j )K

−1
j , for j ∈ I◦

together with certain Cartan elements. Set Uı = Uı(Y ) and U = U(Y ).

Theorem G. (1)(Proposition 7.2.6) Uı is a right coideal subalgebra of U and (U,Uı) forms

a quantum supersymmetric pair.

(2)(Theorem 7.2.17) The quantum Iwasawa decomposition holds for (U,Uı) of type AIII.

(Hence Uı has the expected size.)

The coideal subalgebra property of Uı in U generalizes the non-super constructions in

[Let99, Let02, Ko14]. We note that the original methods used in [Let99, Let02, Ko14] do not

directly apply to the super case. As a result, we provide a new proof specifically tailored for
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the super type AIII case.

Subsequently, we establish new quantum ıSerre relations (Proposition 7.2.14) by employing

the projection technique introduced in [Ko14]. This allows us to obtain a natural filtration on

Uı (Proposition 7.2.16), where the associated graded algebra grUı is essentially isomorphic to

a parabolic subalgebra of U modulo the Cartan part. Hence we obtain the quantum Iwasawa

decomposition of U with respect to Uı in Theorem 7.2.17.

Type AIII ıSchur duality revisited

Sergeev [S85] has extended the Schur duality in the setting of gl(m|n). The quantum

supergroup U, as a Drinfeld-Jimbo quantization of g, has been defined in [Ya94] associated

to any Dynkin diagram of g. Moreover, it was shown in [Mi06] that the type A quantum

supergroup associated to the standard Dynkin diagram and the Hecke algebra of type A

satisfy a double centralizer property.

Having established the quantum supersymmetric pair (U,Uı), we proceed to establish a

multi-parameter ıSchur duality of type AIII between Uı and HBd
in the same flavor of The-

orem B. Let W be the natural representation of U. We show that W⊗d possesses a right

HBd
-module structure (Proposition 8.1.1) and a left Uı-module structure via the comultipli-

cation in the same time.

Theorem H (Theorem 8.1.8). Under the assumption on the parameters (4.4), the actions of

Uı and HBd
on W⊗d commute with each other and form a double centralizer property.

In the extreme case when Uı = U, the duality in Theorem H recovers the Schur-Sergeev

duality for the quantum supergroup of type A. On the other hand, when I• = ∅, we obtain a

super analogue of the two-parameter ıSchur duality due to [BWW18].
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Construction of the (quasi) K-matrix

For the construction of the quasi K-matrix Υ and the K-matrix T we impose one more

condition (8.4); i.e. I• consists of even simple roots only. We also define Bi := Fi for i ∈ I•.

Theorem I (Theorem 8.2.18). There exists a quasi-K matrix Υ =
∑

Υµ in the completion

of U with Υ0 = 1 and Υµ ∈ U+
µ , such that the equality

BiΥ = Υ(τ ◦ σ(Bτi))

holds for all i ∈ I.

The construction of Υ follows from intertwining relations of [WZ22] and strategies of

[BW18a, BK19]. With the quasiK-matrix Υ being established, we impose one more constraint

on the parameters and construct a unique bar involution ψı on Uı (Corollary 8.2.19), which

is a super analogue of the bar involution established in [BW18b, Ko22]. The bar involution ψ

on the quantum supergroup U and ψı on Uı is intertwined by Υ such that ψı(x)Υ = Υψ(x),

for all x ∈ Uı.

Finally, following the construction presented in [BW18b], we formulate the K-matrix T .

In Proposition 8.3.6, we demonstrate that T induces an Uı-isomorphism on W and compute

its action on W, which coincides with the H0-action. Consequently, the H0-action on W⊗d is

realized by T ⊗ 1⊗d−1.

ıSchur duality of type AI-II

Consider the following Satake diagram I:

1 m− 1
· · · ⊗

m m+ 1 m+ 2
· · ·

m+ 3 m+ 2n− 2 m+ 2n− 1
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where I1 = {m}, I• = {m+ 2a− 1 | 1 ≤ a ≤ n} and I◦ = I\I•. In the case n = 0, we obtain

a Satake diagram of type AI; when m = 0, we obtain a Satake diagram of type AII.

A theory of quantum supersymmetric pairs (U,Uı) associated with super Satake diagrams

was developed in [SW24] for most of the Lie superalgebras of basic types. Here, we refer to

[SW24] for details regarding the construction of quantum supersymmetric pairs associated

with this specific (super) Satake diagram and their fundamental properties as outlined below.

Theorem J (Proposition 9.1.2). Let (U,Uı) be the quantum supersymmetric pair of type

AI-II. Then we have

1. Uı is a right coideal subalgebra of U.

2. There exists a quantum Iwasawa decomposition of U with respect to Uı.

3. There exists a unique quasi K-matrix for (U,Uı).

The classical limit of Uı in this case goes back to the ortho-symplectic Lie superalgebra,

which forms a Schur type duality together with the Brauer algebra.

Let V denote the natural representation of U.

Theorem K (Theorem 9.3.1). With a suitable parameter, the actions of Uı and the q-Brauer

algebra Bd(q, q
m−2n) on V⊗d commute with each other. Moreover, when Bd(q, q

m−2n) is

semisimple, they form a double centralizer property.

This duality can be viewed as a common super generalization of the ıSchur dualities of

type AI and AII in Part II.

1.6 Notations

We list the notations which are often used throughout the dissertation.

▷ N,Z,Q,C–sets of non-negative integers, integers, rational and complex numbers
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▷ (Y,X, ⟨·, ·⟩, · · · )–root datum of finite type (I, ·)

▷ (·, ·)–symmetric bilinear form on Z[I]

▷ (aij)–Cartan matrix

▷ Sn–Symmetric group on n letters

▷ Wd–type B Coxeter group on d-letters

▷ HSn–Hecke algebra of type A

▷ HBd
–Hecke algebra of type B

▷ Mf–quasi-permutation module

▷ Wf–fixed point subgroup of weight f in Wd

▷ fW–the set of minimal length right coset representative of Wf in Wd

▷ (I = I• ∪ I◦, τ)– admissible pairs (aka Satake diagrams)

▷ Ti–Braid group operators

▷ W•–Weyl group associated to the Levi subalgebra corresponding to I•

▷ w•–longest element in W•

▷ U = Uq(g)–quantum group

▷ ∆, ϵ, S–comultiplication, counit, antipode

▷ V,W–natural representations of U

▷ Uı–ıquantum group

▷ ςi, κi–parameters of Uı
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▷ Υ–quasi K-matrix

▷ ψ–a bar involution on U

▷ ψı–a bar involution on Uı; see Lemma 4.2.1 and Corollary 8.2.19

▷ Θı–quasi R-matrix associated to (U,Uı); see (4.21)

▷ Dn(N)–Brauer algebra

▷ Bn(q, z)–q-Brauer algebra

▷ In–set of basis Brauer diagrams

▷ In,k–set of basis Brauer diagrams with exactly k pairs of horizontal edges

▷ Bk, B
∗
k, Bk,n, B

∗
k,n–specific subsets of In

▷ Uı(som)–ıquantum group of type AI

▷ Uı(sp2m)–ıquantum group of type AII

▷ p(·)–parity function

▷ ϱ–parity operator of the quantum supergroup

▷ , , and
⊗

–white even roots, black even roots, black odd roots and white odd

roots

▷ ir, ri–skew derivations; see (8.7)
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Chapter 2

Preliminaries

In this chapter, we set up notations for quantum groups, and quantum symmetric pairs in the

finite dimensional setting following [BW18b].

2.1 Quantum groups

Let (Y,X, ⟨·, ·⟩, · · · ) be a root datum of finite type (I, ·); cf. [Lus93, §2.2]. We have a symmetric

bilinear form (ν, ν ′) on Z[I]. We also have an embedding I ⊂ X (i 7→ i′), an embedding

I ⊂ Y (i 7→ i), and a perfect pairing ⟨·, ·⟩ : Y × X → Z such that ⟨i, j′⟩ = 2(i,j)
(i,i)

for

i, j ∈ I. The matrix (⟨i, j′⟩) = (aij) is the corresponding Cartan matrix. The Weyl group W

is generated by the simple reflections si : Z[I] → Z[I], for i ∈ I.

Let q be an indeterminate and Q(q) be the field of rational functions in q with coefficients

in Q, the field of rational numbers. For any i ∈ I, we set qi = q
(i,i)
2 . For a ∈ Z and b ∈ N, we

define

[a]i =
qai − q−a

i

qi − q−1
i

, [b]i! =
b∏

h=1

[h]i,

 a

b

 =
[a]i!

[b]i![a− b]i!
.

When qi = q, we often omit the lower script i.

We denote by U the associated quantum group. By definition, U is the associative algebra

23



over Q(q) with generators Ei, Fi for i ∈ I and Kµ for µ ∈ Y , subject to the following relations:

K0 = 1, KµK
′
µ = Kµ+µ′ for all µ, µ′ ∈ Y,

KµEj = q⟨µ,j
′⟩EjKµ, KµFj = q−⟨µ,j′⟩FjKµ,

EiFj − FjEi = δi,j
Ki −K−1

i

qi − q−1
i

,

1−aij∑
s=0

(−1)s

 1− aij

s


j

E
1−aij−s
i EjE

s
i = 0 for i ̸= j,

1−aij∑
s=0

(−1)s

 1− aij

s


j

F
1−aij−s
i FjF

s
i = 0 for i ̸= j.

Let U+,U0 and U− be the Q(q)-subalgebra of U generated by Ei (i ∈ I), Kµ, (µ ∈ Y )

and Fi, (i ∈ I) respectively. Then U admits the triangular decomposition U = U+U0U−.

It is well known that U is a Hopf algebra with the comultiplication ∆ as follows:

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei,

∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi,

∆(Kµ) = Kµ ⊗Kµ.

We also recall the braid group action Ti = T ′′
i,+1 : U → U and its inverse from [Lus93,

5.2.1], whose the action on U+ is given as follows: for i ̸= j ∈ I,

Ti(Ei) = −FiKi, Ti(Ej) =
∑

r+s=−aij

(−1)rq−r
i E

(s)
i EjE

(r)
i ;

T−1
i (Ei) = −K−1

i Fi, T−1
i (Ej) =

∑
r+s=−aij

(−1)rq−r
i E

(r)
i EjE

(s)
i .

(2.1)

For any Weyl group element w, an automorphism Tw of U is defined via a reduced expression

24



of w. This applies in particular to the longest element in the Weyl group.

As an extension of a bar involution on Q(q) such that q = q−1, there exists a bar involution

ψ on the algebra U given by ψ(q) = q−1, ψ(Ei) = Ei, ψ(Fi) = Fi, ψ(Kµ) = K−µ.

2.2 Quantum symmetric pairs

Let (Y,X, ⟨·, ·⟩, · · · ) be a root datum of finite type (I, ·). A permutation τ of the set I is an

involution of the Cartan datum (I, ·) if τ 2 = id and (τ(i), τ(j)) = (i, j) for all i, j ∈ I. We

further assume that τ extends to an involution on both X and Y such that the perfect pairing

is invariant under the involution τ .

Given a subset I• ⊂ I, let WI• denote the parabolic subgroup of W generated by simple

reflections si with i ∈ I•. Let w• denote the longest element in WI• . Let R∨
• denote the set of

coroots associated to the simple coroots I• ↪→ Y , and let R• denote the set of roots associated

to the simple roots I• ↪→ X. Let ρ∨• (resp. ρ•) denote the half sum of all positive coroots

(resp. roots) in the set R∨
• (resp. R•). We shall write I◦ = I\I•.

An admissible pair (I•, τ) (cf. [Ko14]) consists of a partition I = I◦ ∪ I• and an involution

τ of (I, ·) (where τ = id is allowed) such that

1. τ(I•) = I•;

2. −w• ◦ τ = id on I•;

3. If j ∈ I◦ and τ(j) = j, then ⟨ρ∨• , j′⟩ ∈ Z.

We define

Xı = X
/
{µ+ w•τ(µ) | µ ∈ X},

Y ı = {ν − w•τ(ν) | ν ∈ Y }.
(2.2)
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We call an element in Xı an ı-weight and Xı the ı-weight lattice. Also define θ = −w• ◦ τ and

Ins := {i ∈ I◦ | τ(i) = i, ⟨i, j′⟩ = 0 for all j ∈ I•}.

According to [Ko14], the admissible pairs of finite type are in bijection with the Satake

diagrams [Ara62] arising from classification of real simple Lie algebras. We refer to [BW18b,

Table 4] for a complete list of Satake diagrams.

The ıquantum group Uı associated to the Satake diagram (I◦ ∪ I•, τ) with parameters

ςi,∈ Q(q), κi ∈ Q(q) is the Q(q)-subalgebra of U generated by the following elements:

Fi + ςiTw•(Eτi)K
−1
i + κiK

−1
i , (i ∈ I◦),

Kµ (µ ∈ Y ı), Fi, Ei, (i ∈ I•).

The parameters are required to satisfy the following conditions:

κi = 0 unless i ∈ Ins and ⟨i, j′⟩ ∈ 2Z for all j ∈ Ins\{i},

ςi = ςτi if (i, θ(i)) = 0.

The theory of quantum symmetric pairs (U,Uı), as developed by Letzter in [Let99, Let02],

offers a natural quantization of these symmetric pairs (g, gθ). Kolb further extended Letzter’s

work to symmetric pairs related to symmetrizable Kac-Moody Lie algebras; see [Ko14].

2.3 Quantum supergroups of type A

In Part III we will be mainly interested in Lie superalgebras and their quantum analogues,

especially in type A. Hence we We adopt basic notations from [CW12] here.
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The general linear Lie superalgebra

Let V = V0⊕V1 be a vector superspace such that End(V ) is an associative superalgebra. Then

End(V ), equipped with the supercommutator, forms a Lie superalgebra, called the general

linear Lie superalgebra and is denoted by gl(V ) or gl(m|n) where dimV0 = m, dimV1 = n.

Choose bases for V0 and V1 such that they combine to a homogeneous basis of V . We will

make it a convention to parameterize such a basis by the set

I(m|n) = {1, . . . ,m, 1, . . . , n} (2.3)

with total order

1 < · · · < m < 0 < 1 < · · ·n.

Here 0 is inserted for convention. With such an ordered basis, gl(m|n) can be realized as

(m+ n)× (m+ n) complex matrices of the block form

g =

a b

c d

 (2.4)

where a, b, c and d are respectively m×m,m× n, n×m and n× n matrices.

The even subalgebra g0 consists of matrices of the form (2.4) with b = c = 0, while the odd

subspace g1 consists of those with a = d = 0. For each element g, we define the supertrace to

be

str(g) = tr(a)− tr(d).

The supertrace str on the general linear Lie superalgebra gives rise to a non-degenerate

supersymmetric bilinear form

(·, ·) : gl(m|n)× gl(m|n) → C, (x, y) = str(xy).
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Root system of gl(m|n)

Let g = gl(m|n) and h be the Cartan subalgebra of diagonal matrices.

Restricting the supertrace to the Cartan subalgebra h, we obtain a non-degenerate sym-

metric bilinear form on it. Denote by {ϵa}a∈I(m|n) the basis of h∗ dual to the set of standard

matrices {Ea,a}a∈I(m|n). Its root system Φ = Φ0 ⊕ Φ1 is given by

Φ0 ={ϵa − ϵb | a ̸= b ∈ I(m|n), a, b > 0 or a, b < 0},

Φ1 ={±(ϵa − ϵb) | a < 0 < b}.
(2.5)

A fundamental system of gl(m|n) consists of m+ n− 1 roots

ϵi1 − ϵi2 , . . . , ϵim+n−1 − ϵim+n ,

where {i1, . . . , im+n} = I(m|n). We denote even simple roots by • and odd simple roots by⊗
. Then the corresponding Dynkin diagram is of the form

.

ϵi1 − ϵi2

.

ϵi2 − ϵi3

· · · . .

ϵim+n−1 − ϵim+n (2.6)

where
⊙

is either • or
⊗

.

Example 2.3.1. The standard Dynkin diagram is given by

ϵ1 − ϵ2 ϵ2 − ϵ3

· · · ⊗
ϵm − ϵ1

· · ·
ϵn−1 − ϵn

Given a Dynkin diagram of the form (2.6). Let

Π = {αj = ϵij − ϵij+1
| j = 1, · · · ,m+ n− 1}
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denote the set of simple roots with the index set I = {1, . . . ,m + n− 1}. We see that I is a

disjoint union of two subsets I = I0 ∪ I1 where I0 (resp. I1) consists of all even (resp. odd)

simple roots. Let p be the parity function on I(m|n) such that

p(ϵa) := p(a) =


0 if a > 0, a ∈ I(m|n),

1 if a < 0, a ∈ I(m|n).
(2.7)

We define the weight lattice P = ⊕b∈I(m|n)Zϵb while the symmetric bilinear form on P is

given by

(ϵa, ϵa′) =


1 if a = a′ < 0,

−1 if a = a′ > 0,

0 else.

(2.8)

Then the parity function p extends to a function on P linearly. We also define

p(k) := p(αk) =


0 if k ∈ I0,

1 if k ∈ I1.

We define the coweight lattice P∨ = ⊕b∈I(m|n)Zϵ∨b and we have the pairing ⟨·, ·⟩ : P∨×P →

Z with ⟨ϵ∨a , ϵb⟩ = δa,b. Then Π∨ = {hj | j ∈ I}, the set of simple coroots, is given by

hj = ϵ∨ij − (−1)p(j)ϵ∨ij+1
. (2.9)

The generalized Cartan matrix A = (aij)i,j∈I associated with g is defined by aij = ⟨hj, αi⟩.

We observe that A is symmetrizable, meaning that there exist non-zero integers ℓj satisfying

ℓj⟨hj, λ⟩ = (αj, λ) for any λ ∈ P. (2.10)

When p(j) = 0, we see that ℓj =
(αj ,αj)

2
.
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Quantum supergroup of type A

Following [Ya94], we define a quantum supergroup associated to any fixed Dynkin diagram of

the form (2.6).

It will be convenient for us to introduce the following notation. We will say i, j ∈ I are

connected if i = j ± 1 and write i ∼ j. Likewise, we say not connected if i ̸= j, j ± 1 and write

i ≁ j.

Let Ki = qℓihi , we recall the definition of Uq(gl(m|n)) to be the unital associative algebra

over Q(q) with generators qh (h ∈ P∨), Ei, Fi (i ∈ I) which satisfy the following defining

relations:

(R1) qh = 1, for h = 0,

(R2) qh1qh2 = qh1+h2 ,

(R3) qhEj = q⟨h,αj⟩Ejq
h for j ∈ I,

(R4) qhFj = q−⟨h,αj⟩Fjq
h, for j ∈ I,

(R5) [Ej, Fk] = EjFk − (−1)p(j)p(k)FkEj = δj,k
Kj −K−1

j

qℓj − q−ℓj
, for j, k ∈ I,

(R6) E2
j = F 2

j = 0, for j ∈ I1,

(R7) EjEk = (−1)p(j)p(k)EkEj, FjFk = (−1)p(j)p(k)FkFj, for j ≁ k,

(R8) E2
jEk − [2]EjEkEj + EkE

2
j = 0, for j ∼ k, p(j) = 0,

(R9) F 2
j Fk − [2]FjFkFj + FkF

2
j = 0, for j ∼ k, p(j) = 0,

(R10) Sp(k),p(ℓ)(Ek, Ej, Eℓ) = 0, for k ∼ j ∼ ℓ, k < ℓ, p(j) = 1,

(R11) Sp(k),p(ℓ)(Fk, Fj, Fℓ) = 0, for k ∼ j ∼ ℓ, k < ℓ, p(j) = 1.

(2.11)

where St1,t2(x1, x2, x3) ∈ Q(q)⟨x1, x2, x3⟩ is the polynomial in three non-commuting variables
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for t1, t2 ∈ {0, 1} given by

St1,t2(x1, x2, x3) = [2]x2x3x1x2 − [((−1)t1x2x3x2x1 + (−1)t1+t1t2x1x2x3x2)

+ ((−1)t1t2+t2x2x1x2x3 + (−1)t2x3x2x1x2)].

(2.12)

Moreover, let qj := qℓj , we define maps σ, ℘, · on Uq(gl(m|n)) satisfying:

σ(Ej) = Ej, σ(Fj) = Fj, σ(Kj) = (−1)p(j)K−1
j , σ(xy) = σ(y)σ(x),

℘(Ej) = qjKjFj, ℘(Fj) = q−1
j EjK

−1
j , ℘(Kj) = Kj, ℘(xy) = ℘(y)℘(x),

Ej = Ej, Fj = Fj, Kj = K−1
j , q = q−1, xy = x · y.

(2.13)

In general, Uq(gl(m|n)) is a Hopf superalgebra (cf. [C16, Lemma 2.1]) but not a Hopf

algebra. We define an involutive operator ϱ of parity 0 on it by

ϱ(qh) = qh, ϱ(Ej) = (−1)p(j)Ej and ϱ(Fj) = (−1)p(j)Fj, ∀j ∈ I. (2.14)

Let

U = Uq(gl(m|n))⊕Uq(gl(m|n))ϱ.

Then U is an algebra with the additional multiplication law given by

ϱ2 = 1, ϱ−1xϱ = ϱ(x) for any x ∈ Uq(gl(m|n)). (2.15)

As established in [Ya94], U is a Hopf algebra whose comultiplication ∆, counit ϵ, antipode S
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are given by

∆(qh) = qh ⊗ qh for h ∈ P∨,

∆(Ej) = Ej ⊗ 1 + ϱp(j)Kj ⊗ Ej for j ∈ I,

∆(Fj) = Fj ⊗K−1
j + ϱp(j) ⊗ Fj for j ∈ I,

∆(ϱ) = ϱ⊗ ϱ,

ϵ(ϱ) = ϵ(qh) = 1, for h ∈ P∨, ϵ(Ej) = ϵ(Fj) = 0, for j ∈ I,

S(ϱ) = ϱ, S(qh) = q−h for h ∈ P∨,

S(Fj) = −ϱp(j)FjKj, S(Ej) = −ϱp(j)K−1
j Ej for j ∈ I.

(2.16)

We naturally extend the maps in (2.13) from Uq(gl(m|n)) to U by setting

σ(ϱ) = ℘(ϱ) = ϱ = ϱ.

Remark 2.3.2. The choice of the comultiplication we made here is different from [Mi06]. When

g is a Lie algebra, our ∆ is compatible with the comultipication in [Lus93].

As in [Lus93], the multiplication map gives a triangular decomposition of U:

U ∼= U+ ⊗U0 ⊗U−. (2.17)

where U+ (resp. U−) denotes the subalgebra of U generated by Ej (resp. Fj), j ∈ I and U0

denotes the subalgebra of U generated by {qµ, ϱ | j ∈ I, µ ∈ P∨}.
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Part I

ıSchur duality and Kazhdan-Lusztig bases
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Chapter 3

Quasi-permutation modules

In this chapter, we extend the seminal works of Kazhdan-Lusztig and Deodhar to establish

bar involutions and canonical bases, termed quasi-parabolic KL bases, on quasi-permutation

modules over the type B Hecke algebra. These bases are characterized by their parameter-

ization through cosets of reflection subgroups of the Weyl group of type B, which may not

necessarily be parabolic. Moreover, both type A and type B (parabolic) KL bases emerge as

special cases of our quasi-parabolic KL bases.

3.1 Modules over Hecke algebra of type B

In this section we introduce the Hecke algebra HBd
of type B and its action on a tensor space.

This leads to quasi-permutation modules of HBd
.

3.1.1 Weyl group and Hecke algebra of type B

The Weyl group W = Wd of type Bd is generated by si, for 0 ≤ i ≤ d − 1, subject to the

Coxeter relations: s2i = 1, (sisi+1)
3 = 1, (s0s1)

4 = 1, and (sisj)
2 = 1 (|i − j| > 1). The

symmetric group Sd is a subgroup of Wd generated by si, for 1 ≤ i ≤ d − 1. The length

function l : Wd → N is defined such that l(σ) = k if σ has a reduced expression σ = si1 · · · sik .

34



For a real number x ∈ R and m ∈ N, we denote [x, x +m] = {x, x + 1, . . . , x +m}. For

a ∈ Z≥1, we denote by

Ia =
[
1− a

2
,
a− 1

2

]
.

For r,m ∈ N (not both zero), we introduce a new notation for I2r+m to indicate a fixed set

partition:

Ir|m|r := I2r+m, Ir|m|r = I−◦ ∪ I• ∪ I+◦ (3.1)

where the subsets

I+◦ =

[
m+ 1

2
, r +

m− 1

2

]
. I• =

[
1−m

2
,
m− 1

2

]
, I−◦ = −I+◦ , (3.2)

have cardinalities r,m, r, respectively.

We view f ∈ Idr|m|r as a map f : {1, . . . , d} → Ir|m|r, and identify f = (f(1), . . . , f(d)), with

f(i) ∈ Ir|m|r. We define a right action of the Weyl group Wd on Idr|m|r such that, for f ∈ Idr|m|r

and 0 ≤ j ≤ d− 1,

f sj = f · sj =


(· · · , f(j + 1), f(j), · · · ), if j > 0;

(−f(1), f(2), · · · , f(d)), if j = 0, f(1) ∈ I−◦ ∪ I+◦ ;

(f(1), f(2), · · · , f(d)), if j = 0, f(1) ∈ I•.

(3.3)

The only nontrivial relation (s0s1)
4 = 1 can be verified by case-by-case inspection depending

on whether or not f(1), f(2) ∈ I•. We sometimes write

fσ = f · σ = (f(σ(1)), · · · , f(σ(d))),
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where it is understood that

f(σ(i)) =


f(σ(i)), if σ(i) > 0;

f(−σ(i)), if σ(i) < 0, f(−σ(i)) ∈ I•;

−f(−σ(i)), if σ(i) < 0, f(−σ(i)) ∈ I−◦ ∪ I+◦ .

Let p, q be two indeterminates. We denote qi = q for 1 ≤ i ≤ d−1 and q0 = p. The Iwahori-

Hecke algebra of type B, denoted by HBd
, is a Q(p, q)-algebra generated by H0, H1, · · · , Hd−1,

subject to the following relations:

(Hi − qi)(Hi + q−1
i ) = 0, for i ≥ 0;

HiHi+1Hi = Hi+1HiHi+1, for i ≥ 1;

HiHj = HjHi, for |i− j| > 1;

H0H1H0H1 = H1H0H1H0.

The subalgebra generated by Hi, for 1 ≤ i ≤ d− 1, can be identified with Hecke algebra HSd

associated to the symmetric group Sd. If σ ∈ Wd has a reduced expression σ = si1 · · · sik ,

we denote Hσ = Hi1 · · ·Hik . It is well known that {Hσ | σ ∈ Wd} form a basis for HBd
, and

{Hσ | σ ∈ Sd} form a basis for HSd
.

3.1.2 A tensor module of HBd

Consider the Q(p, q)-vector space

V =
⊕

a∈Ir|m|r

Q(p, q)va. (3.4)
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Given f = (f(1), . . . , f(d)) ∈ Idr|m|r, we denote

Mf = vf(1) ⊗ vf(2) ⊗ . . .⊗ vf(d).

We shall call f a weight and {Mf | f ∈ Idr|m|r} the standard basis for V⊗d.

In cases |I•| = 0 or 1 (i.e., m = 0 or 1), the following lemma reduces to [BW18a, (6.8)] or

[BWW18, (4.4)] in different notations.

Lemma 3.1.1. There is a right action of the Hecke algebra HBd
on V⊗d as follows:

Mf ·Hi =



Mf ·si + (q − q−1)Mf , if f(i) < f(i+ 1), i > 0;

Mf ·si , if f(i) > f(i+ 1), i > 0;

qMf , if f(i) = f(i+ 1), i > 0;

Mf ·si + (p− p−1)Mf , if f(1) ∈ I+◦ , i = 0;

Mf ·si , if f(1) ∈ I−◦ , i = 0,

pMf , if f(1) ∈ I•, i = 0.

Proof. It is a well known result of Jimbo [Jim86] that the first 3 formulas above for Hi with

i > 0 define a right action of Hecke algebra HSd
.

It is clear that (H0 − p)(H0 + p−1) = 0 and H0Hi = HiH0, for i ≥ 2.

Hence, it remains to verify the braid relation H0H1H0H1 = H1H0H1H0. To that end, we

only need to consider the case d = 2 and verify the braid relation when acting on vi ⊗ vj.

If i, j ∈ I•, then H0 acts on the span of vi⊗vj and vj⊗vi as p · Id, and so the braid relation

H0H1H0H1 = H1H0H1H0 trivially holds.

Assume now that at most one of i, j lies in I•. If we formally regard this possible index in I•

as 0, then we are basically reduced to the setting of the action of Hecke algebra HBd
[BW18a,

(6.8)] or [BWW18, (4.4)] (except a different partial ordering on Idr|m|r was used therein, and

q, p here correspond to q−1, p−1 therein). In any case, the braid relation can be verified directly
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case-by-case, and we provide some details below.

For i < j ∈ I−◦ , we have

(vi ⊗ vj)H0H1H0H1 = v−i ⊗ v−j + (q − q−1)v−j ⊗ v−i

= (vi ⊗ vj)H1H0H1H0.

For i ∈ I−◦ , j ∈ I•, we have

(vi ⊗ vj)H0H1H0H1 = pv−i ⊗ vj + p(q − q−1)vj ⊗ v−i

= (vi ⊗ vj)H1H0H1H0.

For i ∈ I−◦ , j ∈ I+◦ such that −i > j, we have

(vi ⊗ vj)H0H1H0H1

= v−i ⊗ v−j + (q − q−1)v−j ⊗ v−i + (p− p−1)v−i ⊗ vj + (p− p−1)(q − q−1)vj ⊗ v−i

= (vi ⊗ vj)H1H0H1H0.

The remaining cases are similar and skipped.

3.1.3 Quasi-permutation modules

Recall Idr|m|r from (3.1). A weight f ∈ Idr|m|r is called anti-dominant if

m− 1

2
≥ f(1) ≥ f(2) ≥ · · · ≥ f(d). (3.5)

Note that f(j) ∈ I−◦ ∪ I•, for 1 ≤ j ≤ d, if f is anti-dominant. We denote

Id,−r|m|r = {f ∈ Idr|m|r | f is anti-dominant}.
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We can decompose V⊗d into a direct sum of cyclic submodules generated by Mf , for

anti-dominant weights f , as follows:

V⊗d =
⊕

f∈Id,−
r|m|r

Mf , where Mf =MfHBd
. (3.6)

Denote by Of the orbit of f under the action of Wd on Idr|m|r. The following is immediate

from the formulas for the action of HBd
in Lemma 3.1.1.

Lemma 3.1.2. The right HBd
-module Mf admits a Q(q)-basis {Mg | g ∈ Of}. (It will be

called the standard basis.)

By (3.5), we can suppose that f ∈ Id,−r|m|r is of the form

f = (a1, . . . , a1︸ ︷︷ ︸
m1

, . . . , ak, . . . , ak︸ ︷︷ ︸
mk

, ak+1, . . . , ak+1︸ ︷︷ ︸
mk+1

, . . . , al, . . . , al︸ ︷︷ ︸
ml

), (3.7)

where a1 > . . . > ak > ak+1 > . . . > al, {a1, . . . , ak} ⊂ I•, {ak+1, . . . , al} ⊂ I−◦ , and

m1 + . . .+ml = d. The stabilizer subgroup of f in Wd is

Wf = Wm1 × . . .×Wmk
× Smk+1

× . . .× Sml
. (3.8)

Note the stabilizer subgroup Wf is not a parabolic subgroup of Wd when 2 or more of the

integers m1, . . . ,mk are positive. (This phenomenon does not occur in the setting of [BW18a,

BWW18].) We shall call the summand Mf in (3.6) quasi-permutation modules. Clearly, for

f, f ′ ∈ Id,−r|m|r, we have

Mf
∼= Mf ′ , if Wf = Wf ′ .

If Wf is not parabolic, Mf is in general not an induced module as those considered in parabolic

Kazhdan-Lusztig theory [De87]; see [So97, LW20].

Remark 3.1.3. The quasi-permutation modules have appeared earlier in different formulations

39



in [DJM98] and [DS00] independently. In our setting it is straightforward to write down

the Hecke action and bases for the quasi-permutation modules Mf starting from V⊗d, but

it takes some nontrivial efforts to achieve this in [DJM98, DS00]. In their approaches, the

q-permutation modules are cyclic submodules of the right regular representation of HBd
with

generators constructed by Jucys-Murphy elements. The quasi-permutation modules here are

isomorphic to those loc. cit.; this follows by comparing the formulas in Lemma 3.1.1 and (3.6)

with those in [DJM98, Lemmas 3.9, 3.11].

3.2 Canonical bases on quasi-permutation modules

In this section, the minimal length representatives of the reflection subgroup Wf of Wd are

studied. We construct a bar involution on the quasi-permutation modules Mf which are

compatible with the bar involution on HBd
. Then we construct a canonical basis on Mf .

3.2.1 Basic properties of Wd

There is a natural left action of the Weyl group Wd on the set

[±d] := {−d, . . . ,−2,−1, 1, 2, . . . , d}.

such that

σ(−i) = −σ(i), ∀σ ∈ Wd, i ∈ [±d].

In one line notation we write

σ = [σ(1), . . . , σ(d)].

Let f ∈ Id,−r|m|r. The stabilizer of f in the symmetric group Sd is always a parabolic

subgroup generated by some subset J(f) ⊂ {s1, . . . , sd−1}. We continue the notation (3.7) for
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f ∈ Id,−r|m|r. Denote

d• = m1 + . . .+mk, d◦ = d− d•. (3.9)

That is, among f(j), for 1 ≤ j ≤ d, the first d• of them belong to I•. Denote

t1 = s0, ti = si−1ti−1si−1, for 1 ≤ i ≤ d. (3.10)

Then ti is the swap (sign change) of i and −i while fixing j ∈ [±d] with j ̸= ±i.

Lemma 3.2.1. Let f ∈ Id,−r|m|r. Then the stabilizer Wf in Wd is generated by

Jf := {ti | 1 ≤ i ≤ d•} ∪ J(f).

Proof. Recall f from (3.7). The lemma follows since elements in Wf are compositions of

permutations in Sd that fix f and sign changes that fix each aj, 1 ≤ j ≤ k.

For σ ∈ Wd, the type B inversion number invB(σ) is defined to be (cf. [BB05])

invB(σ) = inv(σ) + nB(σ), (3.11)

where

inv(σ) = #{(i, j) | 1 ≤ i < j ≤ d, σ(i) > σ(j)}; (3.12)

nB(σ) = −
∑

{1≤j≤d|σ(j)<0}

σ(j). (3.13)

For σ ∈ Sd, invB(σ) = inv(σ) coincides with the inversion number of Sd.

Lemma 3.2.2. [BB05, Proposition 8.1.1] For any σ ∈ Wd, we have l(σ) = invB(σ).
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3.2.2 Minimal length representatives

Let f ∈ Id,−r|m|r. Recall the stabilizer subgroup Wf (3.8) of Wd is a (not-necessarily parabolic)

reflection subgroup in general.

Lemma 3.2.3. [Lus84, Lemma 1.9] [DS00, Theorem 2.2.5] Every right coset of Wf in the

Weyl group Wd has a unique minimal length representative.

Denote by fW the set of minimal length right coset representatives for Wf in Wd, for

f ∈ Id,−r|m|r. We shall establish a basic property for fW .

Lemma 3.2.4. Let 1 ≤ i ≤ d and σ ∈ fW . If |σ(i)| ≤ d•, then σ(i) > 0.

Proof. We prove by contradiction. Suppose this were not true, then there exists 1 ≤ i• ≤ d

such that σ(i•) < 0 and u• = |σ(i•)| ≤ d•. By Lemma 3.2.1 we have tu• ∈ Wf and thus

tu•σ ∈ Wfσ. Now by (3.13) we have nB(tu•σ) = nB(σ) − u•. On the other hand, since there

are at most u• − 1 indices less than u•, we have inv(wu•σ) ≤ inv(σ) + u• − 1. Hence by the

above 2 identities, (3.11) and Lemma 3.2.2, we have

l(tu•σ) = inv(tu•σ) + nB(tu•σ)

≤ inv(σ) + nB(σ)− 1 = l(σ)− 1,

which is a contradiction to the minimal length property of σ.

Example 3.2.5. If Wf is non-parabolic, the equality l(ww′) = l(w)l(w′) may fail for w ∈ Wf

and w′ ∈ fW . For example, take Wf = ⟨s0, s1s0s1⟩ ⊂ WB2 and s1 is the minimal length

representative of Wfs1. Note (s1s0s1)s1 = s1s0, but l(s1s0s1) + l(s1) = 4 ̸= 2 = l(s1s0).

The example above indicates [De87, Lemma 2.1(i)-(ii)] may fail for non-parabolic reflection

subgroups. The next theorem, which is a generalization of [De87, Lemma 2.1(iii)] to reflection

subgroups, is more difficult to establish. It will play a key role in constructing the bar

involution and canonical bases for quasi-permutation modules.
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Theorem 3.2.6. Let σ ∈ fW , and 0 ≤ i ≤ d − 1. Then exactly one of the following

possibilities occurs:

(i) l(σsi) < l(σ). In this case, σsi ∈ fW ;

(ii) l(σsi) > l(σ) and σsi ∈ fW ;

(iii) l(σsi) > l(σ) and σsi /∈ fW , for i ̸= 0. In this case, σsi = s′σ, for some s′ ∈ J(f);

(iii0) l(σs0) > l(σ) and σs0 /∈ fW . In this case, σs0 = tσ, for some t ∈ Jf\J(f).

(More precisely, in case (iii), we have f(σ(i)) = f(σ(i + 1)) and s′ = (|σ(i)|, |σ(i + 1)|); in

case (iii0), σ(1) > 0 and t = tσ(1).)

Proof. We shall compare σ ∈ fW with σsi. Our argument below uses the action of Wd on

V⊗d crucially. We separate the proof into 2 cases depending on whether or not i = 0.

(1) Assume i = 0. We separate into 3 subcases (i0)-(iii0) below by the range of fσ(1).

(i0) fσ(1) ∈ I+◦ ⇒ Case (i) for i = 0.

In this case, we have σ(1) < 0 since f(σ(1)) = fσ(1) ∈ I+◦ while f(j) ̸∈ I+◦ (for 1 ≤ j ≤ d)

thanks to f being anti-dominant.

Claim 1. l(σs0) = l(σ)− 1.

Indeed, by Lemma 3.2.2 it suffices to show that invB(σs0) < invB(σ). Note that σs0(j) =

σ(j), for 2 ≤ j ≤ d, and σs0(1) > 0 > σ(1). By (3.13) we have nB(σs0) = nB(σ) + σ(1). On

the other hand, we have inv(σs0) ≤ inv(σ) − σ(1) − 1 since there are at most (−σ(1) − 1)

indices smaller than −σ(1). Hence by (3.11), invB(σs0) ≤ invB(σ)− 1, and Claim 1 follows.

It remains to verify that σs0 ∈ fW . If this were not true, there exists τ ∈ Wfσs0 such

that l(τ) < l(σs0) = l(σ) − 1. Hence l(τs0) ≤ l(τ) + 1 < l(σ); this is a contradiction since

τs0 ∈ Wfσ and σ is a minimal length representative of Wfσ.

(ii0) fσ(1) ∈ I−◦ ⇒ Case (ii) for i = 0.
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In this case, fσs0(1) ∈ I+◦ , and σ(1) > 0, thanks to f being anti-dominant. Arguing as

in (i0) for Claim 1, we have l(σs0) = l(σ) + 1. It remains to verify that σs0 ∈ fW . If this

were not true, we choose the minimal length representative τ ∈ Wfσs0. Since τ ∈ fW and

f τ (1) ∈ I+◦ , by (i0) we know that l(τs0) = l(τ)− 1 < l(σs0)− 1 = l(σ); this is a contradiction

since τs0 ∈ Wfσ and σ is a minimal length representative of Wfσ.

(iii0) fσ(1) ∈ I• ⇒ Case (iii0).

Thanks to fσ(1) ∈ I•, we obtain fσ = fσs0 , that is, σs0 ∈ Wfσ. Then l(σs0) > l(σ) and

σs0 /∈ fW , since σ is a minimal length representative in Wfσ. Also, we have σs0σ−1 = t|σ(1)|,

and thus, σs0 = t|σ(1)|σ; cf. (3.10). Since fσ(1) ∈ I•, we have |σ(1)| ≤ d•; cf. (3.9). By

Lemma 3.2.4, we know that σ(1) > 0. Hence, tσ(1) ∈ Jf\J(f).

(2) Assume i > 0. We compare σ ∈ fW with σsi. By using inversion numbers, we see

that l(σsi) > l(σ) if and only if fσ(i) ≥ fσ(i+ 1). We separate into 3 subcases (i)-(iii) below

depending on whether fσ(i)− fσ(i+ 1) is negative, positive or zero.

(i) (fσ(i) < fσ(i+ 1)) ⇒ Case (i) for i > 0.

In this case, l(σsi) < l(σ). It remains to verify that σsi ∈ fW . If this were not true, then

there exists τ ∈ Wfσsi such that l(τ) < l(σsi) = l(σ)− 1. Thus l(τsi) ≤ l(τ) + 1 < l(σ); this

is a contradiction since σ has the minimal length and τsi ∈ Wfσ.

(ii) (fσ(i) > fσ(i+ 1)) ⇒ Case (ii) for i > 0.

In this case, l(σsi) > l(σ). Let us verify σsi ∈ fW . If this were not true, choose the

minimal length representative τ ∈ Wfσsi. Since f τ (i) < f τ (i + 1), by (i) we have l(τsi) =

l(τ)− 1 < l(σsi)− 1 ≤ l(σ), which is again a contradiction.

(iii) (fσ(i) = fσ(i+ 1)) ⇒ Case (iii).

In this case, fσsi = fσ, and σsi ∈ Wfσ. Without loss of generality we assume that

|σ(i)| < |σ(i + 1)|. It follows from the anti-dominance of f that σ(i) and σ(i + 1) have the

same sign if fσ(i) = fσ(i + 1) ∈ I−◦ ∪ I+◦ ; On the other hand, if fσ(i) = fσ(i + 1) ∈ I•, then
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σ(i) and σ(i+ 1) have the same + sign by Lemma 3.2.4.

Therefore, we have f(|σ(i)|) = f(|σ(i+ 1)|), and thus,

σsiσ
−1 = (|σ(i)|, |σ(i)|+ 1), (3.14)

that is,

σsi = s|σ(i)|s|σ(i)|+1 · · · s|σ(i+1)|−1 · · · s|σ(i)|+1s|σ(i)|σ ∈ Wfσ. (3.15)

Since f is anti-dominant (cf. (3.5)), we must have

{s|σ(i)|, s|σ(i)|+1, · · · , s|σ(i+1)|−1} ⊂ J(f).

Claim. We have |σ(i+ 1)| = |σ(i)|+ 1.

Let us prove the Claim. Let σ = s′1s
′
2 · · · s′k be a reduced expression. Assume to the

contrary that |σ(i + 1)| > |σ(i)| + 1. Then we can reduce the length of the RHS of (3.15)

by deleting a pair of simple reflections, at least one of which is some s′i from σ; otherwise, it

would contradict the identity (3.14). Now the element in the RHS of (3.15) after the deletion

contradicts the minimality of σ as a representative of Wfσ. Thus the Claim holds.

Hence, setting s′ = (|σ(i)|, |σ(i+ 1)|) ∈ J(f), we have s′σ = σsi.

Remark 3.2.7. The conditions in Theorem 3.2.6 have their counterparts in terms of fσ listed

in the proof above, and they are useful in later applications. For instance, for σ ∈ fW and

i > 0, we have σsi ∈ fW if and only if fσ(i) ̸= fσ(i+ 1).

3.2.3 The Hecke modules Mf revisited

Recall the action of Hecke algebra on V⊗d from Lemma 3.1.1 and hence on Mf from (3.6).

Applying Theorem 3.2.6 and its proof, we shall obtain explicit descriptions for the action of

45



the Hecke generators Hi on the standard basis {Mf ·σ | σ ∈ fW} for Mf , which is independent

of the tensor module V⊗d. Clearly, the length inequalities in Theorem 3.2.6 can be replaced

by the Chevalley-Bruhat order ≤ on Wd.

Proposition 3.2.8. Let f ∈ Id,−r|m|r, σ ∈ fW , and 0 ≤ i ≤ d− 1. Then

Mf ·σHi =



Mf ·σsi + (qi − q−1
i )Mf ·σ, if σsi < σ;

Mf ·σsi , if σsi > σ and σsi ∈ fW ;

qMf ·σ, if i ̸= 0, σsi > σ and σsi ̸∈ fW ;

pMf ·σ, if i = 0, σs0 > σ and σs0 ̸∈ fW.

Proof. In this proof we label the four cases in the proposition as (i), (ii), (iii), (iii0), as they

exactly correspond to the 4 cases in the same labelings in Theorem 3.2.6.

We first assume i ̸= 0. Then the cases (i), (ii), (iii) here match with the cases (i), (ii),

(iii) in the proof of Theorem 3.2.6 in the same order, which correspond to the 3 conditions

fσ(i) < fσ(i + 1), fσ(i) > fσ(i + 1), and fσ(i) = fσ(i + 1) therein, respectively. Hence, the

formulas in the proposition (with i ̸= 0) follow by the first 3 formulas in Lemma 3.1.1.

Now we assume i = 0. Then the cases (i), (ii), (iii0) here match with the cases (i0), (ii0),

(iii0) in the proof of Theorem 3.2.6 in the same order, which correspond to the 3 conditions

fσ(1) ∈ I+◦ , fσ(1) ∈ I−◦ , and fσ(1) ∈ I• therein, respectively. Hence the formulas in the

proposition (with i = 0) follow by the last 3 formulas in Lemma 3.1.1.

Remark 3.2.9. The formulas in Proposition 3.2.8 miraculously take the same form as in the

parabolic case [De87, So97]. However, in contrast to loc. cit. it seems difficult to verify

directly these formulas define a representation of HBd
in such a general reflection subgroup

setting. The proof of Theorem 3.2.6 provides us a crucial identification as posets between

the orbit f ·Wd (used in Lemma 3.1.1) and the set of minimal length representatives fW for

Wf\Wd (used in Proposition 3.2.8).
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3.2.4 The bar involution on Mf

We prepare some lemmas toward the construction of the bar involution on Mf .

Lemma 3.2.10. For f ∈ Id,−r|m|r and σ ∈ fW , we have MfHσ =Mf ·σ.

Proof. We use induction on l(σ). The case for l(σ) = 0 is trivially true. If l(σ) = 1, then

σ = si for some i. If i = 0, we have f(1) ∈ I−◦ , as otherwise we would have s0 ∈ Wf

(contradicting σ = s0 ∈ fW ). Hence, MfH0 =Mf ·s0 , by Lemma 3.1.1. If σ = si for i > 0, we

must have f(i) > f(i+ 1). Thus MfHi =Mf ·si , again by Lemma 3.1.1.

Suppose l(σ) > 0. We have a reduced expression σ = si1 · · · sik . Denote σ′ = si1 · · · sik−1
,

and note l(σ′) < l(σ). By Theorem 3.2.6(i), σ′ ∈ fW . By the inductive assumption, MfHσ′ =

Mf ·σ′ . Now if sik = s0, then this only happens when fσ′
(1) ∈ I−◦ , by case (i0) in the proof

of Theorem 3.2.6. Thus, we have MfHσ = MfHσ′H0 = Mf ·σ′H0 = Mf ·σ, by Lemma 3.1.1.

If sik = sj for some j ≥ 1, similarly we must have fσ′
(j) > fσ′

(j + 1), by case (i) in the

proof of Theorem 3.2.6. Thus we have MfHσ = MfHσ′Hj = Mf ·σ′Hj = Mf ·σ, again by

Lemma 3.1.1.

Lemma 3.2.11. Suppose that σ ∈ fW satisfies that 1 ̸= |σ(1)| ≤ d•. Then σ(1) > 1, and σ

must have a reduced expression which starts with sσ(1)−1sσ(1)−2 · · · s2s1.

Proof. Lemma 3.2.4 is applicable by the assumption, and so we must have σ(1) > 0, and then

σ(1) > 1, thanks to the assumption 1 ̸= |σ(1)|.

Set u = σ(1). We prove the lemma by induction on the length of σ. If l(σ) = 1, then

σ = s1 (thanks to σ(1) > 1), and the lemma holds trivially.

Now suppose that l(σ) > 1. There exists 1 ≤ a ≤ d such that σ(a) = u−1 by Lemma 3.2.4.

Then we have su−1σ(1) = u− 1, su−1σ(a) = u and thus

l(su−1σ) = invB(su−1σ) = invB(σ)− 1 = l(σ)− 1.
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By the inductive assumption, su−1σ has a reduced expression which starts with sσ(1)−2 · · · s2s1.

Therefore, σ has a reduced expression which starts with sσ(1)−1sσ(1)−2 · · · s2s1.

The bar involution on HBd
, denoted by −, is the Q-algebra automorphism such that

H̄i = H−1
i , q̄ = q−1, p̄ = p−1, ∀0 ≤ i ≤ d− 1.

(We shall refer to a map such that qm 7→ q−m and pm 7→ p−m anti-linear.)

Let f ∈ Id,−r|m|r. We define a Q-linear map ψı on the module Mf (which has a basis Mf ·σ,

for σ ∈ fW ) by

ψı(q) = q−1, ψı(p) = p−1, ψı(Mf ·σ) =MfH̄σ, ∀σ ∈ fW. (3.16)

Now we can establish the existence of bar involution on Mf , generalizing the parabolic

case [De87, So97].

Proposition 3.2.12. Let f ∈ Id,−r|m|r,. The map ψı on Mf in (3.16) is compatible with the bar

operator on the Hecke algebra, i.e.,

ψı(xh) = ψı(x)h, for all x ∈ Mf , h ∈ HBd
. (3.17)

In particular, ψ2
ı = Id. (We shall call ψı the bar involution on Mf .)

Proof. Note ψı(Mf ) =Mf , by definition (3.16).

A simple induction on l(w) reduces the proof of (3.17), for h = Hw with w ∈ Wd, to

proving the following formula:

ψı(xHi) = ψı(x)H̄i, for all x ∈ Mf , 0 ≤ i ≤ d− 1. (3.18)

It suffices to verify (3.18) for the basis elements of Mf , x = MfHσ (that is, x = Mf ·σ by
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Lemma 3.2.10), for σ ∈ fW . We proceed case-by-case following Theorem 3.2.6.

(i) Assume l(σsi) < l(σ). In this case σsi ∈ fW , and thus

ψı(MfHσHi) = ψı(MfHσsi + (qi − q−1
i )MfHσ)

=MfH̄σsi + (q−1
i − qi)MfH̄σ

=Mf (Hσsi + (qi − q−1
i )Hσ) =MfH̄σH̄i = ψı(MfHσ)H̄i.

(ii) If l(σsi) > l(σ) and σsi ∈ fW , then

ψı(MfHσHi) = ψı(MfHσsi) = ψı(Mf )H̄σsi = ψı(Mf )H̄σH̄i = ψı(MfHσ)H̄i.

(iii) Assume l(σsi) > l(σ) and σsi /∈ fW , for i > 0. In this case, we have σsi = s′σ for

some s′ ∈ J(f), and MfHs′ = qMf by Lemma 3.1.1. Thus, we have

ψı(MfHσHi) = ψı(MfHσsi) = ψı(MfHs′σ) = ψı(qMfHσ) = q−1MfH̄σ.

On the other hand, we have

ψı(MfHσ)H̄i =MfH̄σH̄i =MfH̄σsi =MfH̄s′σ =MfH
−1
s′ H̄σ = q−1MfH̄σ.

Hence (3.18) holds for x =MfHσ in this case.

(iii0) Assume i = 0, l(σs0) > l(σ), and σs0 /∈ fW . By Theorem 3.2.6(iii0) and its proof in

case (iii0), we have fσ(1) ∈ I• and thus |σ(1)| ≤ d•. By Lemma 3.2.4, σ(1) > 0. We separate

into 2 subcases (iii0-1) and (iii0-2).

Subcase (iii0-1): σ(1) = 1. Then f(1) ∈ I• and s0σ = σs0, by Theorem 3.2.6(iii0) and its

proof in case (iii0). Thus we have

ψı(MfHσH0) =ψı(MfHσs0) = ψı(MfHs0σ) = ψı(MfH0Hσ) = p−1MfH̄σ.
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On the other hand, ψı(MfHσ)H̄0 = MfH̄σs0 = MfH̄s0σ = p−1MfH̄σ. So ψı(MfHσH0) =

ψı(MfHσ)H̄0, proving (3.18) for x =MfHσ in this case.

Subcase (iii0-2): σ(1) > 1. Set u = σ(1) ≤ d•. We have σs0 = tuσ by Theorem 3.2.6(iii0);

see (3.10) for tu. By Lemma 3.2.11, σ has a reduced expression of the form

σ = su−1su−2 · · · s2s1si1 · · · sim .

Hence, tuσ = su−1 · · · s1s0si1 · · · sim , also a reduced expression for length reason. Thus

ψı(MfHσH0) = ψı(MfHσs0) = ψı(MfHtuσ)

= ψı(MfHsu−1···s1H0Hsi1 ···sim )

(u ≤ d•,Lemma 3.1.1 for H0) ⇒ = p−1ψı(MfHsu−1···s1Hsi1 ···sim )

= p−1MfH̄σ.

On the other hand, we have

ψı(MfHσ)H̄0 =MfH̄σH̄0 =MfH̄σs0 =MfH̄tuσ

=MfHsu−1···s1H̄0Hsi1 ···sim

(u ≤ d•,Lemma 3.1.1 for H0) ⇒ = p−1MfHsu−1···s1 Hsi1 ···sim

= p−1MfH̄σ.

Therefore, the proof of (3.18) is completed, for all x =MfHσ.

Finally, we have ψ2
ı (MfHσ) =Mf

¯̄Hσ =MfHσ, i.e., ψ2
ı = Id.

3.2.5 Canonical basis on Mf

For the formulation of canonical basis on Mf , we shall specialize to a one-parameter setting.

Our assumption below that p ∈ qZ below amounts to choosing distinguished weight functions
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à la Lusztig [Lus03]. (The general weight functions therein work here too, but it would require

additional notations to set up properly.)

Suppose p ∈ qZ. Then HBd
becomes a Q(q)-algebra, and Mf becomes a Q(q)-vector space

and an HBd
-module. The bar involution ψı on Mf remain valid. With Proposition 3.2.8

and Proposition 3.2.12 at our disposal, the proof of the next theorem follows by standard

arguments.

Theorem 3.2.13. Suppose p ∈ qZ, and let f ∈ Id,−r|m|r. Then for each σ ∈ fW , there exists a

unique element Cσ ∈ Mf such that

(i) ψı(Cσ) = Cσ;

(ii) Cσ ∈Mf ·σ +
∑

w∈fW

q−1Z[q−1]Mf ·w.

Moreover, we have

(ii′) Cσ ∈Mf ·σ +
∑

w∈fW,w<σ

q−1Z[q−1]Mf ·w.

The set {Cσ|σ ∈ fW} is called a canonical basis or quasi-parabolic KL basis for Mf .

Proof. Let σ ∈ fW . Assume p ∈ qZ>0 , and set bi = Hi + q−1
i , which is bar invariant.

Proposition 3.2.8 can be rewritten as

Mf ·σbi =



Mf ·σsi + qiMf ·σ, if σsi < σ;

Mf ·σsi + q−1
i Mf ·σ, if σsi > σ and σsi ∈ fW ;

(q + q−1)Mf ·σ, if σsi > σ and σsi ̸∈ fW, i ̸= 0;

(p+ p−1)Mf ·σ, if σs0 > σ and σs0 ̸∈ fW.

(3.19)

Now the existence of Cσ satisfying Conditions (i) and (ii′) can be proved using (3.19) by an

induction on the Chevalley-Bruhat order for σ, following exactly the same argument as for

[So97, Theorem 3.1].
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(For p ∈ qZ<0 , one reruns the argument therein by using a variant of (3.19) with b0 = H0−p;

for p = 1, one uses b0 = H0 instead.)

The uniqueness of the basis {Cσ} follows from the following (cf. [So97]).

Claim. Suppose z =
∑

w∈fW hwMf ·w with all hw ∈ q−1Z[q−1] satisfies ψı(z) = z. Then

z = 0.

Indeed, if z ̸= 0, we can choose w′ with maximal length such that hw′ ̸= 0. Then it follows

by the existence of {Cσ} satisfying (i) and (ii′) above and z = ψı(z) that hw′ = h̄w′ , which

forces hw′ = 0 (since hw′ ∈ q−1Z[q−1]), which is a contradiction. The Claim follows.

Set b′i = Hi − qi. Proposition 3.2.8, for f ∈ Id,−r|m|r, σ ∈ fW , can be rewritten as

Mf ·σb
′
i =



Mf ·σsi − q−1
i Mf ·σ, if σsi < σ;

Mf ·σsi − qiMf ·σ, if σsi > σ and σsi ∈ fW ;

0, if σsi > σ and σsi ̸∈ fW, i ̸= 0;

0, if σs0 > σ and σs0 ̸∈ fW.

(3.20)

The following counterpart of Theorem 3.2.13 (with q−1 replaced by q) can be proved in the

same way using (3.20).

Proposition 3.2.14. Suppose p ∈ qZ. There exists a basis {C∗
σ|σ ∈ fW} (called dual canon-

ical basis) for Mf which is characterized by ψı(C
∗
σ) = C∗

σ and C∗
σ ∈Mf ·σ +

∑
w∈fW qZ[q]Mf ·w.

Moreover, we have C∗
σ ∈Mf ·σ +

∑
w∈fW
w<σ

qZ[q]Mf ·w.

The set {C∗
σ|σ ∈ fW} is called a dual canonical or dual quasi-parabolic KL basis for Mf .

Example 3.2.15.

1. If f ∈ Id,−r|m|r satisfies f(i) ∈ I−◦ , for all 1 ≤ i ≤ d (or more generally, if k ≤ 1 in

(3.7)–(3.8)), then the subgroup fW is parabolic. In this case, the canonical basis of Mf

is exactly the parabolic Kazhdan-Lusztig basis of type B [KL79, De87].
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2. If f ∈ Id,−r|m|r satisfies f(i) ∈ I•, for all 1 ≤ i ≤ d, then the action of H0 is given by p · Id

on Mf , and the HBd
-module Mf essentially reduces to an HSd

-module. In this case,

Wf = Bm1 × . . .× Bmk
with m1 + . . . +mk = d, the canonical basis of Mf is identified

with the parabolic KL basis of HSd
associated to (Sm1 × . . .×Smk

)\Sd. (This follows by

the uniqueness of a canonical basis, since Mf as an HBd
-module and as an HSd

-module

has the same standard basis and the same bar map.)

Example 3.2.16. For non-parabolic Wf , the canonical basis on Mf may not be a (usual) KL

basis. Consider V⊗3 for V of dimension 5 with standard basis {vi}−2≤i≤2, where I• = {−1, 0, 1}

(i.e., m = 3, r = 1 and d = 3). We consider f = (0,−1,−2) and Wf = B1 × B1 = ⟨s0, s101⟩;

here and below we shall write sisjsk · · · = sijk···. Then

fW = {e, s1, s2, s12, s21, s121, s210, s2101, s1210, s12101, s21012, s121012}.

We have the following 12 canonical basis elements in Mf (as linear combinations of the 12

standard basis elements Mf ·σ, for σ ∈ fW ):
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Cf =Mf , Cf ·s1 =Mf ·s1 + q−1Mf , Cf ·s2 =Mf ·s2 + q−1Mf ,

Cf ·s12 =Mf ·s12 + q−1Mf ·s1 + q−1Mf ·s2 + q−2Mf ,

Cf ·s21 =Mf ·s21 + q−1Mf ·s2 + q−1Mf ·s1 + q−2Mf ,

Cf ·s121 =Mf ·s121 + q−1Mf ·s12 + q−1Mf ·s21 + q−2Mf ·s1 + q−2Mf ·s2 + q−3Mf ,

Cf ·s210 =Mf ·s210 + q−1Mf ·s21 + q−2Mf ·s2 + q−2Mf ·s1 + (q−3 − q−1)Mf ,

Cf ·s2101 =Mf ·s2101 + q−1Mf ·s210 + q−2Mf ·s21

+ (q−3 − q−1)Mf ·s1 + q−3Mf ·s2 + (q−4 − q−2)Mf ,

Cf ·s1210 =Mf ·s1210 + q−1Mf ·s210 + q−1Mf ·s121 + q−2Mf ·s21 + q−2Mf ·s12

+ q−3Mf ·s1 + q−3Mf ·s2 + q−4Mf ,

Cf ·s21012 =Mf ·s21012 + q−1Mf ·s2101 + q−1Mf ·s1210 + q−2Mf ·s210 + q−2Mf ·s121

+ q−3Mf ·s21 + (q−3 − q−1)Mf ·s12 + (q−4 − q−2)Mf ·s1 + q−4Mf ·s2 + q−5Mf ,

Cf ·s12101 =Mf ·s12101 + q−1Mf ·s1210 + q−1Mf ·s2101 + q−2Mf ·s210 + q−2Mf ·s121

+ q−3Mf ·s21 + q−3Mf ·s12 + q−4Mf ·s2 + q−4Mf ·s1 + q−5Mf ,

Cf ·s121012 =Mf ·s121012 + q−1Mf ·s21012 + q−1Mf ·s12101 + q−2Mf ·s2101 + q−2Mf ·s1210

+ q−3Mf ·s210 + q−3Mf ·s121 + q−4Mf ·s21 + q−4Mf ·s12

+ q−5Mf ·s2 + q−5Mf ·s1 + q−6Mf .

Note that some polynomials in q−1 above do not have positive coefficients.
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Chapter 4

ıSchur duality of type AIII and ıcanonical

bases

In this chapter, we formulate a double centralizer property for the actions of Uı of type AIII

and HBd
on the tensor space V⊗d. The quasi-parabolic KL bases on quasi-permutation Hecke

modules are shown to match with the ıcanonical basis on the tensor space. An inversion

formula for quasi-parabolic KL polynomials is established via the ıSchur duality.

Within this chapter, fix r,m ∈ N (as in the previous sections), it is convenient to introduce

n =
m

2
∈ 1

2
N,

and denote

I := I2r+2n−1 = [1− n− r, n+ r − 1] .

4.1 ıSchur duality of type AIII

Recall the basic set up about quantum groups in § 2.1. Since the underlying Dynkin diagram

of a type AIII Satake diagram is of type A (see [BW18b]), we have qi = q for all i ∈ I and

55



hence we omit the lower script i whenever there it is clear in the context.

Denote the set of simple roots and the weight lattice for sl2r+m by

Π = {αi = ϵi− 1
2
− ϵi+ 1

2
| i ∈ I}, P =

⊕
i∈Ir|m|r

Zϵi.

Define the symmetric bilinear form on P , (·, ·) : P × P → Z, such that (ϵi, ϵj) = δij.

We also recall the braid group action Ti = T ′′
i,+1 : U → U and its inverse from § 2.1.

4.1.1 ıQuantum group of type AIII

We consider the Satake diagram of type AIII with m− 1 = 2n− 1 black nodes and r pairs of

white nodes, together with a diagram involution τ :

◦
−n− r + 1

· · · ◦
−n

•
−n+ 1

· · · •
n− 1

◦
n

· · · ◦
n+ r − 1

(In case n = 0, the black nodes are dropped; the nodes n and −n are identified and fixed by

τ .) The involution τ on I sends i 7→ τ(i) = −i, for all i, and it induces an involution of U,

denoted again by τ , by permuting the indices of its generators Ei, Fi, K
±1
i .

Let

I• = [1− n, n− 1]

be the set of all black nodes in I so that

I = I• ∪ I◦, where I◦ := I\I•.

Denote by w• the longest element in the Weyl group of the Levi subalgebra associated to

I•. Recall from § 2.2 that the ıquantum group of type AIII, denoted by Uı, depends on the

parameters ςi ∈ Q(q), for i ∈ I◦, which satisfy the conditions ςi = ς−i, for i ∈ I◦\{±n}.
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More precisely, Uı is the Q(q)-subalgebra of U generated by Kµ (µ ∈ Y ı), Ei (i ∈ I•), and

Bi = Fi + ςiTw•(Eτ(i))K
−1
i , for i ∈ I◦. (4.1)

(In case n = 0, B0 will be allowed to take a more general form B0 = F0 + ς0E0K
−1
0 + κ0K

−1
0 ,

for an additional parameter κ0 ∈ Q(q).)

Moreover, the algebra Uı satisfies the relations

KµBi = q−(µ,αi)BiKµ, ∀i ∈ I◦,

KµFi = q−(µ,αi)FiKµ, KµEi = q(µ,αi)EiKµ, ∀i ∈ I•, µ ∈ Y ı,

and additional Serre type relations.

4.1.2 ıSchur duality

In this subsection we will construct an ıSchur duality between type B Hecke algebra with

two parameters p, q and Uı. To avoid considering a field extension of Q(q), we shall assume

p ∈ Q(q). Then HBd
is a Q(q)-algebra. The Q(q)-vector space V = ⊕a∈Ir|m|rQ(q)va from (3.4)

can be identified with the natural representation of U, where

Eiva = δi+1,ava−1, Fiva = δi,ava+1,

Kava = qva, Kava+1 = q−1va+1, Kavb = vb (b ̸= a, a+ 1).

(4.2)

The tensor product V⊗d is naturally a U-module via the comultiplication ∆. Recall V⊗d

is a right HBd
-module (and hence a right HSd

-module) from Lemma 3.1.1.

Proposition 4.1.1. [Jim86] The actions of U and HSd
on V⊗d commute with each other,

and their images in End (V⊗d) form double centralizers.

We shall compute explicitly the action of Bi, for i ∈ I◦, on V in the following 2 lemmas.
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Recall m = 2n ∈ N.

Lemma 4.1.2. For a ∈ Ir|m|r and i ∈ I◦ = [1− n− r,−n] ∪ [n, n+ r − 1], we have

Tw•(Eτ(i))(va) =


E−i(va), |i| > n;

E−n+1E−n+2 · · ·En−1En(va), i = −n;

(−1)m−1q−m+1E−nE−n+1 · · ·En−2En−1(va), i = n.

Proof. For i < −n and i > n, we have Tw•(Eτ(i)) = E−i.

Let i = −n. We choose the following reduced expression of w•:

w• = (s−n+1s−n+2 · · · sn−1)(s−n+1s−n+2 · · · sn−2) · · · (s−n+1s−n+2)(s−n+1).

Thus we compute

Tw•(Eτ(−n))(va) = Ts−n+1 · · ·Tsn−1(En)(va) (4.3)

= Ts−n+1 · · ·Tsn−2(En−1En − q−1EnEn−1)va

= Ts−n+1 · · ·Tsn−2(En−1)En(va)− q−1Ts−n+1 · · ·Tsn−2(EnEn−1)va.

The second term on the RHS (4.3) vanishes since Tw(EnEn−1)va = zTw(EnEn−1vw(a)), for

some scalar z, and EnEn−1vw(a) = 0 by (4.2), for any w, a. Thus we derive that

Tw•(Eτ(−n))(va) = Ts−n+1 · · ·Tsn−1(En)(va) = Ts−n+1 · · ·Tsn−2(En−1)En(va).

Hence by a simple induction on n we obtain

Tw•(Eτ(−n))(va) = E−n+1E−n+2 · · ·En−1En(va).
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Similarly, using another reduced expression

w• = (sn−1sn−2 · · · s−n+1) · · · (sn−1sn−2)(sn−1),

we compute Tw•(Eτ(n))(va) as follows:

Tw•(Eτ(n))(va) = Tsn−1 · · ·Ts−n+1(E−n)(va)

= Tsn−1 · · ·Ts−n+2(E−n+1E−n − q−1E−nE−n+1)va

= −q−1E−nTsn−1 · · ·Ts−n+2(E−n+1)(va).

Again by induction on n, recalling m = 2n we have

Tw•(Eτ(n))(va) = (−1)m−1q−m+1E−nE−n+1 · · ·En−2En−1(va).

The lemma is proved.

Lemma 4.1.2 together with the formula for Bi in (4.1) immediate imply the following.

Lemma 4.1.3. Let a ∈ Ir|m|r and i ∈ I◦. The action of Bi on V is given by:

B−n(va) =


v−n+ 1

2
, if a = −n− 1

2
;

ς−nv−n+ 1
2
, if a = n+ 1

2
;

0, else,

Bi(va) =


vi+ 1

2
, if a = i− 1

2
;

ςiv−i− 1
2
, if a = −i+ 1

2
;

0, else,

for |i| > n,
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and (recall m = 2n)

Bn(va) =


vn+ 1

2
+ (−1)m−1q−mςnv−n− 1

2
, if a = n− 1

2
;

0, else.

From now on, we shall fix the parameters to be


ςi = 1, if i ̸= ±n,

ς−n = p, if m = 2n ∈ Z≥1,

ςn = (−1)m−1qmp−1,

(4.4)

and


ςi = 1, if i ̸= 0,

ς0 = q−1, if m = 0.

κ0 =
p− p−1

q − q−1
,

(4.5)

That is, for m = 0, we take B0 = F0 + q−1E0K
−1
0 + p−p−1

q−q−1K
−1
0 , following [BWW18].

Introduce the Q(q)-subspaces of V:

V− =
⊕
a∈I+◦

Q(q)(va − pv−a), V• =
⊕
a∈I•

Q(q)va,

V+ =
⊕
a∈I+◦

Q(q)(va + p−1v−a).

Lemma 4.1.4. Assume (4.4)–(4.5). Then V− and V• ⊕V+ are Uı-submodules of V. Hence,

we have a Uı-module decomposition V = (V• ⊕ V+)⊕ V−.

Proof. Follows by a direct computation using the formulas (4.2) and Lemma 4.1.3.

The decomposition of V above is also compatible with the H0-action.
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Lemma 4.1.5. The Hecke generator H0 acts on V− as (−p−1)Id and acts on V• ⊕ V+ as

p · Id.

Proof. Follows by Lemma 3.1.1.

Theorem 4.1.6. Suppose the parameters satisfy (4.4)–(4.5). Then the actions of Uı and HBd

on V⊗d commutes with each other:

Uı Ψ↷ V⊗d Φ↶ HBd
.

Moreover, Ψ(Uı) and Φ(HBd
) form double centralizers in End (V⊗d).

Proof. As the case for m = 0 was covered in [BWW18], we shall assume m ≥ 1 below.

By the Jimbo duality (see Proposition 4.1.1), we know that the action of U commutes

with the action of Hi, for 1 ≤ i ≤ d − 1. Thus, to show the commuting actions of Uı and

HBd
, it remains to check the commutativity of the actions of H0 and the generators of Uı.

To that end, it suffices to consider d = 1 (thanks to the coideal property of Uı and the fact

that the action of H0 depends solely on the first tensor factor). In this case, the commutativity

between Uı-action and H0-action on V follows directly from Lemmas 4.1.4 and 4.1.5.

The double centralizer property is equivalent to a multiplicity-free decomposition of V⊗d

as an Uı ⊗ HBd
-module, which reduces by a deformation argument to the q = 1 setting.

At the specialization q 7→ 1, Uı becomes the enveloping algebra of sl(r + m) ⊕ gl(r), V =

(V•⊕V+)⊕V− becomes the natural representation of sl(r+m)⊕gl(r), on which s0 ∈ Wd acts

as (IdV•⊕V+ ,−IdV−). The multiplicity-free decomposition of V⊗d at q = 1 can be established

by a standard approach where the simples are parameterized by ordered pairs of partitions

(λ, µ) such that l(λ) ≤ r +m, l(µ) ≤ r and |λ|+ |µ| = d.

Remark 4.1.7. Theorem 4.1.6 is a common generalization of q-Schur dualities of type A and

B. It specializes to Jimbo duality (Proposition 4.1.1) when r = 0. (In this case, Uı = U, and

H0 acts as p · Id and so the action of HBd
reduces to the action of HSd

.)
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On the other hand, for m = 0, 1, Theorem 4.1.6 reduces to [BW18a, Theorems 5.4, 6.27]

(for p = q), [Bao17, Theorem 3.4] (for p = 1), and [BWW18, Theorems 2.6, 4.4] for general

p. The conventions loc. cit. are consistent with each other, while a different comultiplication

for U is used in this part; this has led to a different partial ordering on Idr|m|r and a switch of

q, p from loc. cit. to q−1, p−1 for the action of Hecke algebra; cf. Lemma 3.1.1.

4.1.3 Realizing H0 via K-matrix

For quantum symmetric pair (U,Uı) of quasi-split type AIII, an Uı-module isomorphism T

on any weight U-module M was constructed [BW18a, Theorem 2.18] by twisting the quasi

K-matrix Υ by a weight function ξ : X → C. This construction has been generalized to

general quantum symmetric pairs [BK19, Corollary 7.7], who referred to it as a K-matrix and

changed the notation to be K. Let us quickly review it.

Let γ : I → Q(q) be a function defined by

γ(i) =


1, if i ∈ I•

− ςi, if i ∈ I◦.

Define a function ξ : X → Q(q) by the following recursion:

ξ(µ+ αi) = γ(i)q(αi,w•τ(αi))−(µ,αi−w•τ(αi))ξ(µ), ∀µ ∈ X, i ∈ I. (4.6)

The function ξ induces a linear map ξ̃ on any weight module M =
∑

µ∈X Mµ by letting

ξ̃(z) = ξ(λ)z, for z ∈Mλ.

From now on, we fix the function ξ with ξ(ϵn+r− 1
2
) = 1.
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Lemma 4.1.8. Let ξ(ϵn+r− 1
2
) = 1. Then we have

ξ(ϵa) =


(−q)n+r− 1

2
−a, a ≤ −n− 1

2
;

(−q)m+r−1p−1, −n+
1

2
≤ a ≤ n+

1

2
;

(−q)n+r− 1
2
−a, a ≥ n+

3

2
.

Proof. The function ξ is completely determined by the recursion (4.6) and the fixed value for

ξ(ϵn+r− 1
2
). Note that ξ(ϵa) = ξ(ϵa+1 + αa+ 1

2
). Thus by (4.6), for a ≤ −n− 3

2
, we have

ξ(ϵa) = γ(a+
1

2
)q

(α
a+1

2
,w•τ(αa+1

2
))−(ϵa+1,αa+1

2
−w•τ(αa+1

2
))
ξ(ϵa+1) = −qξ(ϵa+1).

The remaining cases of the recursion can be similarly made explicit.

Proposition 4.1.9. [BW18a, Theorem 2.18] [BK19, Corollary 7.7] For any finite dimensional

U-module M and any ξ which satisfies the recursion in (4.6), the element K = Υξ̃T−1
w• T

−1
w0

defines an Uı-module isomorphism:

K : M −→M, z 7→ Υ ◦ ξ̃ ◦ T−1
w• T

−1
w0

(z).

We compute the action of K on the natural U-module V.

Lemma 4.1.10. The Uı-isomorphism K on V acts as (−p)Id on the submodule V− and as

p−1Id on V+ ⊕ V•.

Proof. First one computes that the actions of Tw0 and Tw• on V are given by

Tw0(va) = (−q)r+m−a−n− 1
2v−a, ∀a ∈ Ir|m|r,

Tw•(va) =


(−q)m−a−n− 1

2v−a, if a ∈ I•;

va, else.
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Hence by a direct computation using these 2 formulas and Lemma 4.1.8 we have

ξ̃ ◦ T−1
w• T

−1
w0

(va) =


v−a, a ∈ I−◦ ∪ I+◦ ;

p−1va, a ∈ I•.
(4.7)

By Lemma 4.2.5 we have

K(vn+ 1
2
− pv−n− 1

2
) = −p(vn+ 1

2
− pv−n− 1

2
),

K(vn+ 1
2
+ p−1v−n− 1

2
) = p−1(vn+ 1

2
+ p−1v−n− 1

2
).

Again by Lemma 4.2.5 we have K(va) = p−1va, ∀a ∈ I•. Now the lemma follows.

The action of the generators Hi for HSd
, for 1 ≤ i ≤ d − 1, on V⊗d are realized via

R-matrix [Jim86] (also see [LW20]). This has the following generalization for the generator

H0 in HBd
.

Proposition 4.1.11. The action of H−1
0 on V⊗d in Lemma 3.1.1 is realized via the K-matrix

as K ⊗ Id⊗d−1.

In case m = 0 or 1, Proposition 4.1.11 is established in [BW18a, BWW18]. The property of

a K-matrix in Proposition 4.1.9 also provides a conceptual explanation for the commutativity

of H0 and Uı acting on V⊗d.

4.2 ıCanonical basis on the tensor module

In this section, we fix the parameters ςi (i ∈ I◦) as in (4.4)–(4.5) as for Theorem 4.1.6, and

further assume that p ∈ qZ. We show that the bar involution on the tensor space is compatible

with the bar involutions on the algebras Uı and HBd
. We further show that the ıcanonical

bases on the tensor space arising from the ıquantum group and from Hecke algebra coincide.
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4.2.1 Generalities of ıcanonical bases

In this subsection we review several constructions in the theory of ıcanonical basis [BW18a,

BW18b].

A bar involution ψı on Uı was given in [BW18a] of the quasi-split type AIII (i.e., m = 0, 1);

it was stated therein that a bar involution exists for general ıquantum groups, and this was

subsequently established in [BK15]. In any case, the existence of the bar involution for Uı of

type AIII under the assumption on parameters (4.4)–(4.5) can be checked directly from the

known presentation of Uı.

Lemma 4.2.1. There is a unique bar involution on Uı, denoted by ψı, such that

ψı(q) = q−1, ψı(Bj) = Bj, ψı(Ei) = Ei, ψı(Fi) = Fi, ψı(Kµ) = K−µ,

for j ∈ I◦, i ∈ I•, and µ ∈ Y ı.

Note that ψı(p) = p−1 as p ∈ qZ. The two bar maps on Uı and U are not compatible

under the inclusion map Uı → U. As a generalization of quasi R-matrix [Lus93, 4.1.2], a

notion of quasi K-matrix (also known earlier as intertwiner), denoted by Υ, was formulated

in [BW18a]; a proof in greater generality was subsequently given in [BK19]; also cf. [BW18b].

Proposition 4.2.2. [BW18a, BK19, BW18b] There exists a unique family of elements Υµ ∈

U+
µ , such that Υ0 = 1 and Υ =

∑
µΥµ satisfies

ψı(u)Υ = Υψ(u), ∀u ∈ Uı.

Moreover, Υµ = 0 unless w•τ(µ) = µ.

Given based U-modules Mi (i = 1, 2) with bar involution ,̄ Lusztig [Lus93, 27.3.1] defined

a bar involution on ψ : M1 ⊗M2 → M1 ⊗M2 by ψ(x1 ⊗ x2) = Θ(x̄1 ⊗ x̄2), where Θ is the
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quasi-R matrix. The natural representation V of U admits a bar involution such that v̄i = vi,

for all i. Inductively, we obtain a bar involution ψ on V⊗d.

The U-weight of f ∈ Idr|m|r is defined to be wt(f) =
∑d

i=1 ϵf(i). Recall the ıweight lattice

Xı from (2.2). Define the Uı-weight of f to be

wtı(f) =
d∑

i=1

ϵ̄f(a) ∈ Xı,

which is the image of wt(f) in Xı. Following [BW18b, (5.2)] we define the following partial

order ⪯ı on Idr|m|r:

g ⪯ı f ⇔ wtı(g) = wtı(f) and wt(g)− wt(f) ∈ N[I] ∩ N[w•I]. (4.8)

We also write g ≺ı f if g ⪯ı f and g ̸= f . A Uı-module M equipped with a bar involution ψı

is called ı-involutive if

ψı(uz) = ψı(u)ψı(z), ∀u ∈ Uı, z ∈M.

Proposition 4.2.3. [BW18b] The U-module V⊗d is an ı-involutive Uı-module with the bar

involution

ψı := Υ ◦ ψ. (4.9)

Moreover, for f ∈ Idr|m|r, we have

Υ(Mf ) ∈Mf +
∑
g≺ıf

Z[q, q−1]Mg. (4.10)

Proof. The first statement is a special case of [BW18b, Proposition 5.1]. The formula (4.10)

follows by Proposition 4.2.2 and the definition of the partial order ⪯ı in (4.8).

Below is a very special case of [BW18b, Theorem 5.7] concerning about V⊗d.

Proposition 4.2.4. (1) The Uı-module V⊗d admits a unique ıcanonical basis {Cg|g ∈ Idr|m|r}
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which is characterized by 2 properties: (i) Cg is ψı-invariant; (ii) Cg is of the form:

Cg ∈Mg +
∑

g′∈Id
r|m|r

q−1Z[q−1]Mg′ . (4.11)

(2) The V⊗d admits a unique dual ıcanonical basis {C∗
g |g ∈ Idr|m|r} such that (i) C∗

g is ψı-

invariant; (ii) C∗
g ∈Mg +

∑
g′∈Id

r|m|r
qZ[q]Mg′ .

It was then shown that the Cg satisfy a stronger property: Cg ∈Mf+
∑

g′≺ıg
q−1Z[q−1]Mg′ .

4.2.2 ıCanonical basis on V

Recall the notations I−◦ , I+◦ , I• from (3.2) and m = 2n.

Lemma 4.2.5. We have

ψı(va) = Υ(va) = va, a ∈ I−◦ ∪ I•; (4.12)

ψı(va) = Υ(va) = va + (p−1 − p)v−a, a ∈ I+◦ . (4.13)

Proof. As va is bar invariant (i.e., ψ-invariant), the equality ψı(va) = Υ(va), for all a, follows

by definition ψi = Υψ in (4.9).

Let a ∈ I−◦ ∪ I•. The equality Υ(va) = va is a direct consequence of (4.10).

It remains to prove the formula (4.13), for a ∈ I+◦ (i.e., a ∈ Ir|m|r with a ≥ n + 1
2
). By a

simple induction on a, we have

Ba− 1
2
· · ·Bn+1Bn(vn− 1

2
) = va + p−1v−a. (4.14)

The element (4.14) is ψı-invariant, since the Bk’s are ψı-invariant by Lemma 4.2.1, vn− 1
2

is

ψı-invariant by (4.12), and V is ı-involutive by Proposition 4.2.3. On the other hand, thanks
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to −a ∈ I−◦ , we have v−a is ψı-invariant by (4.12). Hence, it follows that

ψı(va) = ψı

(
(va + p−1v−a)− p−1v−a

)
= (va + p−1v−a)− pv−a

= va + (p−1 − p)v−a.

This proves the lemma.

Proposition 4.2.6. The ıcanonical basis of V is given by

1. {va | a ∈ I−◦ ∪ I•} ∪ {va + p−1v−a, a ∈ I+◦ }, if p = qZ>0;

2. {va | a ∈ Ir|m|r}, if p = 1;

3. {va | a ∈ I−◦ ∪ I•} ∪ {va − pv−a, a ∈ I+◦ }, if p = qZ<0.

Proof. It follows by Lemma 4.2.5 that these elements are ψı-invariant, and they are clearly of

the form (4.11). Hence the proposition follows by the characterization of ıcanonical basis in

Proposition 4.2.4.

4.2.3 Compatible bar involutions and canonical bases

We formulate a compatibility between several bar involutions, which generalizes [BW18a,

Theorem 5.8]; the same proof therein carries over.

Proposition 4.2.7. There exists a unique anti-linear bar involution ψı : V⊗d → V⊗d such that

ψı(Mf ) = Mf , for f ∈ Id,−r|m|r, and it is compatible with the bar involutions on HBd
and Uı;

that is, for u ∈ Uı, v ∈ V⊗d, and h ∈ HBd
,

ψı(uvh) = ψı(u)ψı(v)h̄.
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Remark 4.2.8. Thanks to the compatibility with the bar map on HBd
and M f = Mf , the

bar map ψı on V⊗d when restricted to Mf , for anti-dominant f , coincides with ψı in Proposi-

tion 3.2.12.

Recall from (3.6) that V⊗d is a direct sum of the quasi-permutation modules Mf of HBd
.

The union of the (dual) quasi-parabolic KL bases on the direct summands Mf (see Theo-

rem 3.2.13 and Proposition 3.2.14) provide us a (dual) KL basis on V⊗d.

Theorem 4.2.9. The (dual) ıcanonical bases on V⊗d (viewed as a Uı-module) coincides with

the (dual) KL bases on V⊗d = ⊕fMf (viewed as an HBd
-module). More precisely, we have

the identifications of bases in Mf : Cf ·σ = Cσ and C∗
f ·σ = C∗

σ, for f ∈ Id,−r|m|r and σ ∈ fW .

(See Theorem 3.2.13, Proposition 3.2.14 and Proposition 4.2.4 for notations.)

Proof. We only need to consider the ıcanonical basis as the dual version follows by the same

argument. Both bases are invariant under the same bar map ψı (thanks to Proposition 4.2.7)

and are of the form Cg ∈ Mg +
∑

g′∈Id
r|m|r

q−1Z[q−1]Mg′ . Now by the uniqueness in Propo-

sition 4.2.4 the ıcanoical basis coincides with the KL basis. The precise formula Cf ·σ = Cσ

follows as both sides have the same leading term Mf ·σ.

Remark 4.2.10.

1. In case m = 0 (the case m = 1 is similar), Proposition 4.2.7 and Theorem 4.2.9 reduce

to [BW18b, Theorem 5.8, Remark 5.9] and [BWW18, Proposition 3.9, Theorem 3.10].

Here we choose not to use general weight functions as in [BWW18] to avoid clumsy

notations thought there is no difficulty in setting up in such a generality.

2. In case r = 0, the ıSchur duality reduces to Jimbo duality by Remark 4.1.7. Accordingly

Proposition 4.2.7 and Theorem 4.2.9 recover the main results in [FKK98].

3. The ıcanonical basis on the space V⊗d
• coincides with Lusztig’s canonical basis. By

Theorem 4.2.9 and Example 3.2.15, parts of the ıcanonical basis on V⊗d can be identified

with (parabolic) Kazhdan-Lusztig bases of type A or type B, but not always.
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4.3 An inversion formula for quasi-parabolic KL polyno-

mials

In this section we prove an inversion formula for quasi-parabolic KL polynomials, generalizing

[KL79] and [Do90]; also cf. [So97]. Inspired by the type A works [Br06] and [CL16], our

approach is based on the tensor module formulation and uses the ıSchur duality.

4.3.1 Symmetries ϱ, σ′ı and σı

Let (·, ·) denote the standard symmetric bilinear form on V⊗d defined by

(Mf ,Mg) = δf,g, ∀f, g ∈ Idr|m|r. (4.15)

We recall several symmetries of U; cf. [Lus93].

Lemma 4.3.1. (1) There is an anti-involution ϱ of U such that, for i ∈ I, µ ∈ Y ,

ϱ(Ei) = q−1FiKi, ϱ(Fi) = q−1EiK
−1
i , ϱ(Kµ) = Kµ. (4.16)

(2) There is an anti-involution σ of U such that, for i ∈ I, µ ∈ Y ,

σ(Ei) = Ei, σ(Fi) = Fi, σ(Kµ) = K−µ. (4.17)

The bilinear form (·, ·) on V⊗d defined by (4.15) satisfies (cf. [Lus93])

(ux, y) = (x, ϱ(u)y), (4.18)

for all x, y ∈ V⊗d, and u ∈ U.
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Following [BW21, §3.6.2], we consider an anti-linear anti-involution σ′
ı of U such that

σ′
ı = σ ◦ τ ◦ ψ. (4.19)

Note the (anti-)involutions σ, τ, and ψ commute with each other.

Lemma 4.3.2. The maps σ′
ı and ϱ are coalgebra morphisms, that is,

(σ′
ı ⊗ σ′

ı)∆(u) = ∆(σ′
ı(u)),

(ϱ⊗ ϱ)∆(u) = ∆(ϱ(u)), for all u ∈ U.

Proof. It is straightforward to check on generators u ∈ U that

(σψ ⊗ σψ)∆(u) = ∆(σψ(u)),

(τ ⊗ τ)∆(u) = ∆(τ(u)).

Hence these 2 identities hold for all u ∈ U since σψ and τ are (anti-)involutions on U. The

lemma now follows from by definition of σ′
ı = σψτ in (4.19) and these identities.

The (well known) statement that ϱ is a coalgebra morphism (cf. [CL16]) can also be

checked on the generators of U directly.

By the proof of [BW21, Proposition 3.13], σ′
ı defined in (4.19) preserves the subalgebra Uı

of U. Note that ψı and σ′
ı commute on Uı.

Lemma 4.3.3. [BW21, Proposition 3.13] We have an anti-linear anti-involution σ′
ı of Uı by

restriction and a Q(q)-linear anti-involution σı of Uı given by

σı = ψı ◦ σ′
ı. (4.20)
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4.3.2 Quasi R-matrix Θı

Recall the quasi K-matrix Υ from Proposition 4.2.2. As in [BW18a, (3.1)], we define the quasi

R-matrix Θı associated to the quantum symmetric pair (U,Uı) by

Θı = ∆(Υ)Θ(Υ−1 ⊗ 1). (4.21)

We also define

∆ :Uı −→ Uı ⊗U,

∆(u) = (ψı ⊗ ψ)∆(ψı(u)), ∀u ∈ Uı.

(4.22)

The fundamental properties of Θı in Proposition 4.3.4 (1)-(2) below were established in

[BW18a, Propositions 3.2, 3.5] and generalized in [Ko20, Propositions 3.9-3.10]. The unique-

ness below can be found in the proof of [BW18a, Propositions 3.7], and in general can be

derived from a variant of the interwining property given by [Ko20, (3.28)].

Proposition 4.3.4. (cf. [BW18a, Ko20])

1. We have Θı =
∑

µ∈NI Θ
ı
µ, where Θı ∈ Uı ⊗U+

µ and Θı
0 = 1⊗ 1.

2. Θı satisfies that ∆(u)Θı = Θı∆(u).

Moreover, an element Θı of the form (1) satisfying the intertwining property (2) is unique.

The following new property of Θı is actually valid for a general quantum symmetric pair

as in [BW21]. It will play a role in the proof of Theorem 4.3.7 below.

Lemma 4.3.5. We have (σı ⊗ στ)(Θı) = Θı.

Proof. Denote Θ̌ı = (σı ⊗ στ)(Θı), which is well defined thanks to Lemma 4.3.3 and Proposi-

tion 4.3.4(1).
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Applying the anti-involution σı ⊗ στ to the identity ∆(u)Θı = Θı∆(u) (see Proposi-

tion 4.3.4), we obtain

Θ̌ı (σı ⊗ στ)∆(u) = (σı ⊗ στ)∆(u) Θ̌ı,

which can be rewritten as

Θ̌ı (ψı ⊗ ψ)(σ′
ı ⊗ σ′

ı)∆(u) = (σ′
ı ⊗ σ′

ı)∆(ψı(u)) Θ̌
ı.

Applying Lemma 4.3.2 to the above identity, we obtain

Θ̌ı (ψı ⊗ ψ)∆(σ′
ı(u)) = ∆(σ′

ıψı(u)) Θ̌
ı.

Setting x = σ′
ıψı(u) = ψıσ

′
ı(u), the above identity can be read in the notation of (4.22) as

Θ̌ı ∆(x) = ∆(x) Θ̌ı,

that is, Θ̌ı satisfies the intertwining property in Proposition 4.3.4(2). Clearly, Θ̌ı also satisfies

Proposition 4.3.4(1). It follows by the uniqueness (see Proposition 4.3.4) that Θ̌ı = Θı.

4.3.3 A bilinear form ⟨·, ·⟩

We introduce an anti-linear map

ℑ : V⊗d −→ V⊗d, (4.23)

ℑ(Mf ) =M−f , for f ∈ Idr|m|r.
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We define a new bilinear form ⟨·, ·⟩ on V⊗d in terms of the standard one (·, ·) in (4.15) by

letting

⟨x, y⟩ := (x,ℑ ◦ ψı(y)), ∀x, y ∈ V⊗d. (4.24)

The following lemma will also be used in the proof of Theorem 4.3.7.

Lemma 4.3.6. For all x ∈ V⊗d and u ∈ U, we have ℑ(ux) = ϱ(σ′
ı(u))ℑ(x).

Proof. The formula in case of d = 1 can be verified directly on u being generators and x = va.

The formula in general follows by induction on d by noting by Lemma 4.3.2 that ϱ and σ′
ı are

coalgebra morphisms.

Theorem 4.3.7. The bilinear form ⟨·, ·⟩ on V⊗d given in (4.24) is symmetric.

Proof. For d = 1, by definition (4.24) and using the formulas ψı(va) in Lemma 4.2.5, we

compute that ⟨va, v−a⟩ = 1, for all a ∈ I; ⟨va, va⟩ = 1, for all a ∈ I+◦ ; and otherwise ⟨va, vb⟩ = 0.

Therefore, ⟨·, ·⟩ is symmetric on V.

We proceed by induction on d. Given f, g ∈ Idr|m|r, write f ′ = (f(1), · · · , f(d − 1)), f ′′ =

(f(d)) and similarly for g′, g′′. Hence Mg = Mg′ ⊗ Mg′′ . We use to denote ψ and ı to

denote ψı below. The bar map ψı on a tensor product U-module such as V⊗d can be defined

inductively via Θı as (cf. [BW18a, (3.17), Remark 3.14])

ψı(Mg) = Θı(Mg′
ı ⊗Mg′′). (4.25)

Denote Θı =
∑
a′ ⊗ a′′ with a′ ∈ Uı, a′′ ∈ U. Then we have

⟨Mf ,Mg⟩ =
(
Mf ′ ⊗Mf ′′ ,ℑ(Θı(Mg′

ı ⊗Mg′′))
)

(4.26)

=
∑(

Mf ′ ,ℑ(a′Mg′
ı
)
) (
Mf ′′ ,ℑ(a′′Mg′′)

)
.
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By Lemma 4.3.6 and the adjunction formula (4.18), we have

(
Mf ′ ,ℑ(a′Mg′

ı
)
)
=
(
Mf ′ , ϱσ′

ı(a
′)ℑ(Mg′

ı
)
)

=
(
σ′
ı(a

′)Mf ′ ,ℑ(Mg′
ı
)
)

= ⟨σ′
ı(a

′)Mf ′ ,Mg′⟩,

which, thanks to the symmetry of ⟨·, ·⟩ on V⊗d−1 by the inductive assumption and Proposi-

tion 4.2.7, is equal to

(
Mf ′ ,ℑ(a′Mg′

ı
)
)
= ⟨Mg′ , σ

′
ı(a

′)Mf ′⟩ =
(
Mg′ ,ℑ ◦ ψıσ

′
ı(a

′)(Mf ′
ı
)
)
. (4.27)

Similarly, we have

(
Mf ′′ ,ℑ(a′′Mg′′)

)
=
(
Mg′′ ,ℑ ◦ στ(a′′)(Mf ′′)

)
. (4.28)

The formula (4.28) on V can be verified directly by definitions for a′′ being generators of U.

(Such a formula is valid in general on V⊗d; cf. [CL16, Proposition 3.3] and its proof.)

Plugging (4.27)–(4.28) into (4.26), we obtain

⟨Mf ,Mg⟩ =
∑(

Mg′ ,ℑ ◦ ψıσ
′
ı(a

′)(Mf ′
ı
)
)(
Mg′′ ,ℑ ◦ στ(a′′)(Mf ′′)

)
=
(
Mg′ ⊗Mg′′ ,ℑ

∑
(ψıσ

′
ı(a

′)⊗ στ(a′′))(Mf ′
ı ⊗Mf ′′)

)
=
(
Mg,ℑ(σı ⊗ στ)(Θı)(Mf ′

ı ⊗Mf ′′)
)
,

which, by Lemma 4.3.5 and (4.25), can be rewritten as

⟨Mf ,Mg⟩ =
(
Mg,ℑΘı(Mf ′

ı ⊗Mf ′′)
)

=
(
Mg,ℑψı(Mf ′ ⊗Mf ′′)

)
= ⟨Mg,Mf⟩.
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This completes the proof of the theorem.

4.3.4 An inversion formula

By Proposition 4.2.4 (also see Theorem 4.2.9), we can write

Cg =
∑

y∈Id
r|m|r

ly,g(q)My, (4.29)

for ly,g(q) ∈ Z[q−1]; these polynomials ly,g(q) are called (quasi-parabolic) KL polynomials. Note

lg,g = 1, and ly,g = 0 unless y ⪯ı g.

Similarly, we have

C∗
g =

∑
y∈Id

r|m|r

l∗y,g(q)My, (4.30)

for l∗y,g(q) ∈ Z[q]; these polynomials l∗y,g are called (quasi-parabolic) dual KL polynomials. Note

l∗g,g = 1, and l∗y,g = 0 unless y ⪯ g.

Theorem 4.3.8. We have ⟨Cg, C
∗
−h⟩ = δg,h, for g, h ∈ f ·Wd.

Proof. Since C∗
−h is ψı-invariant, by (4.30) we have

Cg =
∑

y∈Id
r|m|r

ly,g(q)My, C∗
−h =

∑
−y∈Id

r|m|r

l∗−y,−h(q
−1)ψı(My). (4.31)

Similarly, since Cg is ψı-invariant, we have

C∗
−h =

∑
y∈Id

r|m|r

l∗−y,−h(q)M−y, Cg =
∑

y∈Id
r|m|r

ly,g(q
−1)ψı(M

∗
−y). (4.32)

By definition of ⟨·, ·⟩ we have

⟨My, ψı(M−y′)⟩ = (My,My′) = δy,y′ .
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Therefore, by (4.31) and (4.32) we obtain

⟨Cg, C
∗
−h⟩ =

∑
y

ly,g(q)l
∗
−y,−h(q

−1) ≡ δg,h (mod q−1Z[q−1]),

⟨C∗
−h, Cg⟩ =

∑
y

l∗−y,−h(q)ly,g(q
−1) ≡ δg,h (mod qZ[q]).

By Theorem 4.3.7, ⟨Cg, C
∗
−h⟩ = ⟨C∗

−h, Cg⟩, and so the above two congruence identities imply

that ⟨Cg, C
∗
−h⟩ = δg,h.

We obtain the following inversion formula for quasi-parabolic KL polynomials as a refor-

mulation of Theorem 4.3.8; this generalizes [KL79, Do90].

Corollary 4.3.9. For all g, h ∈ Idr|m|r, we have

∑
y∈Id

r|m|r

ly,g(q)l
∗
−y,−h(q

−1) = δg,h.

Remark 4.3.10. The bilinear form ⟨·, ·⟩ defined by (4.24) still makes sense for a U-module

V⊗m ⊗ V∗⊗n as studied in [BW18a]. Theorem 4.3.7 and a version of Corollary 4.3.9 remain

valid in such a generality, and it provides an inversion formula for the super Kazhdan-Lusztig

polynomials of osp type loc. cit. This generalizes the results in super type A in [CL16].
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Part II

Canonical bases of the q-Brauer algebra

and ıSchur dualities of type AI and AII
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Chapter 5

Canonical bases of the q-Brauer algebra

In this chapter we study the q-Brauer algebra Bn(q, z) and define a bar involution on it.

The bar involution is shown to be compatible with the one on its natural subalgebra HSn .

Applying the bar involution to the standard basis of Bn(q, z) constructed in [N14], we are able

to construct a Kazhdan-Lusztig-type basis (called the canonical basis) on Bn(q, z) through

a standard approach due to Lusztig. A direct consequence of the compatibility of the bar

involutions is that the usual type A Kazhdan-Lusztig basis is a part of the canonical basis we

obtain.

5.1 Brauer algebras

Recall Dn(N) to be the Brauer algebra with a linear basis consisting of all partitions of the

set

{1, 2, . . . , n, 1′, 2′, . . . , n′}

into two-element subsets. As usual, we can represent each basis element by a diagram with two

rows, where the top row has n vertices marked by 1, 2, . . . , n, and the bottom row is numbered

by 1′, 2′, . . . , n′; the vertex i is joined to j by an edge if they are in the same subset. We will

call an edge horizontal if it connects two vertices on the same row, and vertical otherwise. Two

79



diagrams d1 and d2 are multiplied by concatenation, that is, d1 · d2 is defined to be Nγ(d1,d2)d,

where γ(d1, d2) counts the number of cycles produced by forming the concatenation and d is

the resulting diagram after removing all cycles.

In fact, we have the following presentation for the Brauer algebra Dn(N).

Definition 5.1.1. (cf. [N14, §2.1.1]) The Brauer algebra Dn(N) is the unital associative

Z-algebra generated by s1, . . . , sn−1, together with elements e(1), e(2), . . . , e(⌊n
2
⌋), which satisfy

the following relations:

(S1) s
2
i = 1 for 1 ≤ i ≤ n− 1,

(S2) sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2,

(S3) sisj = sjsi for |i− j| ≥ 2,

(1) e(k)e(i) = e(i)e(k) = N ie(k) for 1 ≤ i ≤ k,

(2) e(i)s2je(k) = e(k)s2je(i) = N i−1e(k) for 1 ≤ j ≤ i ≤ k,

(3) s2i+1e(k) = e(k)s2i+1 = e(k) for 0 ≤ i < k,

(4) sie(k) = e(k)si for i ≥ 2k + 1,

(5) s2i−1s2ie(k) = s2i+1s2ie(k) for 1 ≤ i < k,

(6) e(k)s2is2i−1 = e(k)s2is2i+1 for 1 ≤ i < k,

(7) e(k+1) = e(1)s2 · · · s2k+1s1 · · · s2ke(k) for 1 ≤ k < ⌊n
2
⌋,

Observe that the subalgebra of Dn(N) generated by s1, . . . , sn−1 is isomorphic to ZSn. It

is spanned by the basis diagrams which only have vertical edges. In [Br37, §2] Brauer points

out that each basis diagram in Dn(N) which has exactly 2k horizontal edges can be obtained

in the form w1e(k)w2, where w1 and w2 are two permutations in Sn and e(k) is a diagram of
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the following form:

· · · · · ·

where each row has exactly k horizontal edges.

For each w ∈ Sn, let ℓ(w) be the smallest integer r ∈ Z⩾0 such that w = si1si2 · · · sir ;

we then say that si1si2 · · · sir is a reduced expression of w and ℓ(w) is the length of w. By

using the length function on Sn, Wenzl [We12a, §1.4] defined a length function on Dn(N) as

follows: for each basis diagram d ∈ Dn(N) with exactly 2k horizontal edges, the length ℓ(d)

of it is defined by

ℓ(d) = min{ℓ(ω1) + ℓ(ω2) | d = ω1e(k)ω2, ω1, ω2 ∈ Sn}.

For 1 ≤ i, j ≤ n− 1, let

si,j =


sisi+1 · · · sj if i ≤ j,

sisi−1 · · · sj if i > j.

It is easy to prove that

Sn = Sn−1

⊔
(
n−1⊔
r=1

sr,n−1Sn−1) (a disjoint union),

and moreover, ℓ(sr,n−1w) = ℓ(sr,n−1)+ ℓ(w) for any w ∈ Sn−1. Hence, we see that for any w ∈

Sn, there exist unique elements tn−1, tn−2, . . . , t1 such that w = tn−1tn−2 · · · t1, where tj = 1 or

tj = sij ,j with 1 ≤ j ≤ n−1 and 1 ≤ ij ≤ j, and moreover, ℓ(w) = ℓ(tn−1)+ℓ(tn−2)+· · ·+ℓ(t1).

For each 0 ≤ k ≤ ⌊n
2
⌋, we set

B∗
k = {tn−1tn−2 · · · t2kt2k−2t2k−4 · · · t2 | ∀ j, tj = 1 or tj = sij ,j for some 1 ≤ ij ≤ j}, (5.1)
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where B∗
0 is understood as the entire symmetric group Sn. We set Bk := {ω−1 | ω ∈ B∗

k}.

Observe that B∗
k has n!

2kk!
elements (cf. [N14, Remark 2.1(3)]).

5.2 q-Brauer algebras

Let q and z be two invertible indeterminates.

Definition 5.2.1. (cf. [We12a, Definition 3.1], [N14, Definition 3.1]) Fix n ∈ Z⩾2. We define

the q-Brauer algebra Bn(q, z) over Q(q, z) with generators H1, . . . , Hn−1, e and the following

relations:
(Q1) (Hi − q)(Hi + q−1) = 0,

(Q2) HiHi+1Hi = Hi+1HiHi+1,

(Q3) HiHj = HjHi for |i− j| > 1,

(Q4) e2 =
z − z−1

q − q−1
e,

(Q5) H1e = eH1 = qe,

(Q6) eH2e = ze,

(Q7) Hie = eHi for i > 2,

(Q8) H2H3H
−1
1 H−1

2 e(2) = e(2) = e(2)H2H3H
−1
1 H−1

2 ,

where e(2) = e(H2H3H
−1
1 H−1

2 )e.

The following proposition gives the dimension of the q-Brauer algebra Bn(q, z).

Proposition 5.2.2. ([We12a, Theorem 3.8]) The q-Brauer algebra Bn(q, z) is a free Q(q, z)-

module of rank (2n− 1)!! = (2n− 1)(2n− 3) · · · 1.

Let

H+
l,r =


HlHl+1 · · ·Hr if l ≤ r,

HlHl−1 · · ·Hr if l > r,
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and

H−
l,r =


H−1

l H−1
l+1 · · ·H−1

r if l ≤ r,

H−1
l H−1

l−1 · · ·H−1
r if l > r,

for 1 ≤ l, r ≤ n.

We make the convention that e(0) = 1. For each 1 ≤ k ≤ ⌊n
2
⌋, we define the elements e(k)

in Bn(q, z) inductively by

e(1) = e and e(k+1) = eH+
2,2k+1H

−
1,2ke(k) for k ≥ 1.

Remark 5.2.3. We will abuse the notation by denoting e(k) both a basis diagram in the Brauer

algebra Dn(N) and an element in the q-Brauer algebra Bn(q, z).

In the following lemma we shall collect a few identities in Bn(q, z) which will be used in

the sequel.

Lemma 5.2.4. (cf. [We12a, Lemmas 3.2-3.3], [N14, Lemmas 3.3-3.4], [N18, Lemma 3.1],

[N14, Remark 3.10(1)]) In Bn(q, z) we have

(1) e(2) = e(H−1
2 H−1

1 H3H2)e = e(H−1
2 H−1

3 H1H2)e,

(2) H2j+1e(k) = e(k)H2j+1 = qe(k) and H−1
2j+1e(k) = e(k)H

−1
2j+1 = q−1e(k) for 0 ≤ j < k,

(3) e(k)H2jH2j−1 = e(k)H2jH2j+1 and e(k)H−1
2j H

−1
2j−1 = e(k)H

−1
2j H

−1
2j+1 for 1 ≤ j < k,

(4) H2j−1H2je(k) = H2j+1H2je(k) and H−1
2j−1H

−1
2j e(k) = H−1

2j+1H
−1
2j e(k) for 1 ≤ j < k,

(5)
(

z−z−1

q−q−1

)j−1

e(k+1) = e(j)H
+
2j,2k+1H

−
2j−1,2ke(k) for 1 ≤ j < k,

(6) e(j)e(k) = e(k)e(j) =
(

z−z−1

q−q−1

)j
e(k) for 1 ≤ j ≤ k,

(7) e(j)H2je(k) = e(k)H2je(j) = z
(

z−z−1

q−q−1

)j−1

e(k) for 1 ≤ j ≤ k,

(8) e(i)Hj = Hje(i) for i ≥ 1 and j ≥ 2i+ 1.

Let w ∈ Sn and let w = si1 · · · sir be a reduced expression of w. It is well-known that the

element Hw := Hi1 · · ·Hir does not depend on the choice of the reduced expression of w. Let
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S2k+1,n be the subgroup of Sn generated by elements s2k+1, s2k+2, . . . , sn−1. In [N14, §3.2] it

has been show that each basis diagram d ∈ Dn(N) with exactly 2k horizontal edges can be

uniquely represented by a triple (ω1, ω(d), ω2) with ω1 ∈ B∗
k, ω2 ∈ Bk and ω(d) ∈ S2k+1,n such

that Nkd = ω1e(k)ω(d)e(k)ω2 and ℓ(d) = ℓ(ω1) + ℓ(ω(d)) + ℓ(ω2). We call such a unique triple a

reduced expression of d.

Definition 5.2.5. ([N14, Definition 3.12]) For each diagram d of Dn(N), we define a cor-

responding element Hd in Bn(q, z) as follows: if d has exactly 2k horizontal edges and

(ω1, ω(d), ω2) is a reduced expression of d with ω1 ∈ B∗
k, ω2 ∈ Bk and ω(d) ∈ S2k+1,n, then

we define

Hd := Hω1e(k)Hω(d)
Hω2 .

If the diagram d has no horizontal edge, then d is regarded as a permutation ω(d) of Sn, and

in this case, we define Hd := Hω(d)
.

Let In denote the set of all basis diagrams of the Brauer algebra Dn(N). The next propo-

sition gives a standard basis of Bn(q, z) that is labeled by the basis diagrams of Dn(N), which

can be used to define a cellular structure on Bn(q, z).

Proposition 5.2.6. ([N14, Theorem 3.13]) The set {Hd | d ∈ In} forms a basis of Bn(q, z)

over Q(q, z).

Let D∗
k,n be the set of all diagrams d∗ satisfying the following three properties:

(1) d∗ has exactly k horizontal edges on each row,

(2) the bottom row of d∗ is the same as that of e(k),

(3) there is no crossing between any two vertical edges of d∗.

Set

B∗
k,n := {ω ∈ B∗

k | d∗ = ωe(k) ∈ D∗
k,n and ℓ(d∗) = ℓ(ω)},
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and

Bk,n := {ω−1 | ω ∈ B∗
k,n}.

Note that B∗
k,n has n!

2k(n−2k)!k!
elements (cf. [N14, Remark 3.18(1)]).

The following lemma gives a decomposition of each element in B∗
k in terms of B∗

k,n and

S2k+1,n.

Lemma 5.2.7. ([N14, Corollary 4.3 and Lemma 4.4]) Let σ be a permutation of B∗
k. Then

there exist unique elements ω′ ∈ B∗
k,n and π′ ∈ S2k+1,n such that σ = ω′π′ and ℓ(σ) =

ℓ(ω′) + ℓ(π′). Similarly, for each element ϱ ∈ Bk, there exist unique elements τ ′ ∈ S2k+1,n

and ϖ′ ∈ Bk,n such that ϱ = τ ′ϖ′ and ℓ(ϱ) = ℓ(τ ′) + ℓ(ϖ′).

For each 0 ≤ k ≤ ⌊n
2
⌋, let Ik,n denote the set of all diagrams in In which has exactly k

horizontal edges both on the top and bottom rows. By [N14, Lemmas 4.1 and 4.7], we obtain

the following result.

Lemma 5.2.8. There exists a bijection ρ : B∗
k,n×S2k+1,n×Bk,n → Ik,n. Under this bijection,

if (ω1, ω(d), ω2) ∈ B∗
k,n ×S2k+1,n × Bk,n and d ∈ Ik,n are such that ρ((ω1, ω(d), ω2)) = d, then

we have Hω1e(k)Hω(d)
Hω2 = Hd, and moreover, ℓ(d) = ℓ(ω1) + ℓ(ω(d)) + ℓ(ω2).

5.3 A bar involution

The following lemma provides an involutive anti-automorphism on Bn(q, z), which is necessary

for establishing its cellularity.

Lemma 5.3.1. ([N14, Proposition 3.14]) The map ȷ which is defined by

ȷ(e) = e and ȷ(Hw) = Hw−1 for each w ∈ Sn
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can be uniquely extended to a Q(q, z)-linear involutive anti-automorphism on Bn(q, z). More-

over, it satisfies that ȷ(e(k)) = e(k) for each k.

The following lemma provides an involutive automorphism ·, called the bar involution, on

Bn(q, z), which is necessary for constructing its canonical basis.

Lemma 5.3.2. There is a unique involutive homomorphism · on Bn(q, z) which is Q-linear

and satisfies q = q−1, z = z−1, Hi = H−1
i and e = e.

Proof. It is easy to check that the homomorphism · preserves the relations except (Q8) in

Definition 5.2.1. Thus, if suffices to prove that

e(H−1
2 H−1

3 H1H2)e = e(H−1
2 H−1

3 H1H2)eH
−1
2 H−1

3 H1H2, (5.2)

and

e(H−1
2 H−1

3 H1H2)e = H−1
2 H−1

3 H1H2e(H
−1
2 H−1

3 H1H2)e.

We only prove (5.2), and the second one can be proved similarly.

Since H2H3H
−1
1 H−1

2 e(2) = e(2), by Lemma 5.3.1 we have

e(H−1
2 H−1

1 H3H2)e = e(H−1
2 H−1

1 H3H2)eH
−1
2 H−1

1 H3H2.

By Lemma 5.2.4(1), we have

e(2) = e(H−1
2 H−1

1 H3H2)e = e(H−1
2 H−1

3 H1H2)e.

In order to prove (5.2), it suffices to show that

e(H−1
2 H−1

3 H1H2)eH
−1
2 H−1

3 H1H2 = e(H−1
2 H−1

3 H1H2)eH
−1
2 H−1

1 H3H2. (5.3)
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We have

e(H−1
2 H−1

3 H1H2)eH
−1
2 H−1

3 H1H2

=e(2)H
−1
2 (H3 + (q−1 − q))(H−1

1 + (q − q−1))H2

=e(2)H
−1
2 (H−1

1 H3 + (q − q−1)H3 + (q−1 − q)H−1
1 + (q−1 − q)(q − q−1))H2

=e(2)H
−1
2 H−1

1 H3H2 + (q − q−1)e(2)H
−1
2 H3H2+

(q−1 − q)e(2)H
−1
2 H−1

1 H2 − (q − q−1)2e(2)

=e(2)H
−1
2 H−1

1 H3H2 + (q − q−1)e(2)H3H2H
−1
3 + (q−1 − q)e(2)H1H

−1
2 H−1

1

− (q − q−1)2e(2).

Therefore, in order to prove (5.3) it suffices to show that

(q − q−1)e(2)H3H2H
−1
3 + (q−1 − q)e(2)H1H

−1
2 H−1

1 − (q − q−1)2e(2) = 0. (5.4)

By Lemma 5.2.4(2), we have e(2)H3 = e(2)H1 = qe(2). By Lemma 5.2.4(3), we have

e(2)H2H3 = e(2)H2H1. Therefore we have

(q − q−1)e(2)H3H2H
−1
3 + (q−1 − q)e(2)H1H

−1
2 H−1

1 − (q − q−1)2e(2)

=(q2 − 1)e(2)H2H
−1
3 + (1− q2)e(2)H

−1
2 H−1

1 − (q − q−1)2e(2)

=(q2 − 1)e(2)H2(H3 + (q−1 − q)) + (1− q2)e(2)(H2 + (q−1 − q))(H1 + (q−1 − q))

− (q − q−1)2e(2)

=(q2 − 1)e(2)H2H3 − q−1(1− q2)2e(2)H2 + (1− q2)e(2)H2H1 + q−1(1− q2)2e(2)H2

+ (1− q2)(q−1 − q)e(2)H1 + (1− q2)(q−1 − q)2e(2) − (q − q−1)2e(2)

=0.

Thus, (5.4) holds and we are done.
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Lemma 5.3.3. For each 1 ≤ k ≤ ⌊n
2
⌋, we have e(k) = e(k).

Proof. We first prove that

e(l+1) =
(q − q−1

z − z−1

)l−1

e(l)H2lH2l+1H
−1
2l−1H

−1
2l e(l) (5.5)

for l ≥ 1. We shall prove (5.5) by induction on l. When l = 1, (5.5) holds by definition. We

assume (5.5) holds for l − 1. By Lemma 5.2.4(5) we have

e(l+1) =
(q − q−1

z − z−1

)l−2

e(l−1)H2l−2H2l−1H2lH2l+1H
−1
2l−3H

−1
2l−2H

−1
2l−1H

−1
2l e(l). (5.6)

By Lemma 5.2.4(8) we have e(i)Hj = Hje(i) for j ≥ 2i+ 1. Moreover, by Lemma 5.2.4(6) we

have e(l) =
(
q−q−1

z−z−1

)l−1
e(l−1)e(l). Therefore, by (5.6) and the assumption that (5.5) holds for

l − 1, we have

e(l+1)

=
(q − q−1

z − z−1

)l−1(q − q−1

z − z−1

)l−2

e(l−1)H2l−2H2l−1H
−1
2l−3H

−1
2l−2e(l−1)

×H2lH2l+1H
−1
2l−1H

−1
2l e(l)

=
(q − q−1

z − z−1

)l−1

e(l)H2lH2l+1H
−1
2l−1H

−1
2l e(l).

Next we prove the lemma by induction on k. By Lemma 5.3.2 and Lemma 5.2.4(1), we

have e(1) = e(1)and e(2) = e(2), that is, the lemma holds for k = 1, 2. We assume that it is true

for k and want to show that e(k+1) = e(k+1). By (5.5) we have

e(k+1) =
(q − q−1

z − z−1

)k−1

e(k)H
−1
2k H

−1
2k+1H2k−1H2ke(k).
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By Lemma 5.3.1 and (5.5) we have

e(k+1) = ȷ(e(k+1)) =
(q − q−1

z − z−1

)k−1

e(k)H
−1
2k H

−1
2k−1H2k+1H2ke(k).

Therefore, in order to prove that e(k+1) = e(k+1), it suffices to show that

e(k)H
−1
2k H

−1
2k+1H2k−1H2ke(k) = e(k)H

−1
2k H2k+1H

−1
2k−1H2ke(k). (5.7)

We have

e(k)H
−1
2k H

−1
2k+1H2k−1H2ke(k)

=e(k)H
−1
2k (H2k+1 + (q−1 − q))(H−1

2k−1 + (q − q−1))H2ke(k)

=e(k)H
−1
2k H2k+1H

−1
2k−1H2ke(k) + (q − q−1)e(k)H

−1
2k H2k+1H2ke(k)

+ (q−1 − q))e(k)H
−1
2k H

−1
2k−1H2ke(k) − (q − q−1)2e2(k)

=e(k)H
−1
2k H2k+1H

−1
2k−1H2ke(k) + (q − q−1)e(k)H2k+1H2kH

−1
2k+1e(k)

+ (q−1 − q))e(k)H2k−1H
−1
2k H

−1
2k−1e(k) − (q − q−1)2e2(k).

By Lemma 5.2.4(7) and (8), we have

e(k)H2k+1H2kH
−1
2k+1e(k) =H2k+1e(k)H2ke(k)H

−1
2k+1

=z
(z − z−1

q − q−1

)k−1

H2k+1e(k)H
−1
2k+1

=e(k)H2ke(k).

By Lemma 5.2.4(2), we have

e(k)H2k−1H
−1
2k H

−1
2k−1e(k) = e(k)H

−1
2k e(k).
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Therefore, we have

e(k)H
−1
2k H

−1
2k+1H2k−1H2ke(k)

=e(k)H
−1
2k H2k+1H

−1
2k−1H2ke(k) + (q − q−1)e(k)(H2k −H−1

2k )e(k) − (q − q−1)2e2(k)

=e(k)H
−1
2k H2k+1H

−1
2k−1H2ke(k).

Thus, (5.7) holds and we are done.

5.4 Canonical bases

In this subsection we shall construct a Kazhdan-Lusztig-type basis on the q-Brauer algebra

Bn(q, z).

Lemma 5.4.1. ([We12a, Lemma 1.2(a)]) For any w ∈ Sn and 1 ≤ k ≤ ⌊n
2
⌋, there exists a

unique element σ ∈ B∗
k such that we(k) = σe(k) and ℓ(σe(k)) = ℓ(σ) ≤ ℓ(w).

In fact, the element σ ∈ B∗
k in Lemma 5.4.1 can be constructed as follows (refer to the

proof of [We12a, Lemma 1.2(a)]). We set d = we(k). Using exactly the same arguments

as those before (5.1), we see that there exist unique elements tn−1, tn−2, . . . , t2k such that

d′ = (tn−1tn−2 · · · t2k)−1d is a diagram in S2ke(k), and moreover, ℓ(tn−1tn−2 · · · t2ky) = ℓ(tn−1)+

ℓ(tn−2) + · · · + ℓ(t2k) + ℓ(y) for any y ∈ S2k. Let i2k−2 be the label of the vertex of d′ which

is connected with the 2k-th vertex on the top row. If i2k−2 = 2k − 1, we set t2k−2 = 1; if

i2k−2 ≤ 2k−2, then we set t2k−2 = si2k−2,2k−2. Then in the diagram d′′ = t−1
2k−2d

′, the (2k−1)-st

and 2k-th vertices on the top row are connected by a horizontal edge. Proceeding in this way,

we see that there exist some elements t2k−2, t2k−4, . . . , t2 such that e(k) = t−1
2 · · · t−1

2k−4t
−1
2k−2d

′,

that is, d′ = t2k−2t2k−4 · · · t2e(k). Set

σ := tn−1tn−2 · · · t2kt2k−2t2k−4 · · · t2.
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Then σ is just the required element in Lemma 5.4.1, that is, σ ∈ B∗
k is such that we(k) = σe(k)

and ℓ(σe(k)) = ℓ(σ) ≤ ℓ(w). From the above process, we see that the choices of the elements

t2k−2, t2k−4, . . . , t2 depend only on the defining relations (S1)-(S3), (3) and (5) in Definition

5.1.1 (refer to the last paragraph on [N14, p. 1385]).

In an analogous way, by using the corresponding relations (Q1)-(Q3) on the generators Hi

in Definition 5.2.1 as well as two relations (2) and (4) in Lemma 5.2.4, we see that the element

Hwe(k) transforms into the form ∑
σ′∈B∗

k
ℓ(σ′)≤ℓ(w)

rσ′,wHσ′e(k)

for some rσ′,w ∈ Z[q, q−1] (refer to the proof of [N14, Lemma 4.10]).

Let us look at an example.

Example 5.4.2. Fix n = 7 and k = 3. Assume that w = s6s1,5s2,4s2 ∈ S7.

We set t6 = s6. Then t−1
6 we(3) ∈ S6e(3) and

t−1
6 we(3) =

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′

In the diagram t−1
6 we(3), we see that the label of its vertex which is connected with the 6-th

vertex on the top row is 4. Thus, we set t4 = s4,4 = s4. Then we have

t−1
4 t−1

6 we(3) =

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′
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In the diagram t−1
4 t−1

6 we(3), the 5-th and 6-th vertices on the top row are connected by a

horizontal edge and the label of its vertex which is connected with the 4-th vertex on the top

row is 2. Thus we set t2 = s2,2 = s2. Then we have

t−1
2 t−1

4 t−1
6 we(3) =

1 2 3 4 5 6 7

1′ 2′ 3′ 4′ 5′ 6′ 7′

Therefore t−1
2 t−1

4 t−1
6 we(3) = e(3). We set σ = t6t4t2 = s6s4s2. Then, σ ∈ B∗

3 satisfies that

we(3) = σe(3) and ℓ(σe(3)) = ℓ(σ) < ℓ(w).

We can give an equivalent description of the above procedure using relations (S1)-(S3), (3)

and (5) in Definition 5.1.1. We have

we(3)
(S3)
= s6s1,4s2,3s2(s5s4e(3))

(5)
= s6s1,4s2,3s2(s3s4e(3))

(S2)
= s6s1,4s2(s2s3s2)s4e(3)

(S1),(S3)
= s6s1,3(s4s3s4)s2e(3)

(S1),(S2)
= s6s1,2s4(s3s2e(3))

(S3),(5)
= s6s4s1s2(s1s2e(3))

(S1),(S2)
= s6s4s2(s1e(3))

(3)
= s6s4s2e(3).

We set σ = s6s4s2. Then σ ∈ B∗
3 is the desired element.
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In an analogous way, in B7(q, z) we have

Hwe(3) = H6H
+
1,5H

+
2,4H2e(3)

(Q3)
= H6H

+
1,4H

+
2,3H2(H5H4e(3))

Lemma 5.2.4(4)
= H6H

+
1,4H

+
2,3H2(H3H4e(3))

(Q2)
= H6H

+
1,4H2(H2H3H2)H4e(3)

(Q2),(Q3)
= H6H

+
1,3H

2
2 (H3H4H3)H2e(3)

(Q1),Lemma 5.2.4(4)
= H6H

+
1,3((q − q−1)H2 + 1)H3H4(H1H2e(3))

= (q − q−1)H6H
+
1,2(H2H3H2)H4H1H2e(3) +H6H

+
1,2((q − q−1)H3 + 1)H4H1H2e(3)

= (q − q−1)H6H1((q − q−1)H2 + 1)H3H4H1H2H1e(3)

+ (q − q−1)H6H
+
1,4H

+
1,2e(3) +H6H4((q − q−1)H1 + 1)H2H1e(3)

Lemma 5.2.4(2)
= q(q − q−1)2H6H

+
1,4H

+
1,2e(3) + q(q − q−1)H6H

+
3,4((q − q−1)H1 + 1)H2e(3)

+ (q − q−1)H6H
+
1,4H

+
1,2e(3) + q(q − q−1)H6H4H

+
1,2e(3) + qH6H4H2e(3)

= q2(q − q−1)H6H
+
1,4H

+
1,2e(3) + q(q − q−1)2H6H

+
3,4H

+
1,2e(3)

+ q(q − q−1)H6H
+
3,4H2e(3) + q(q − q−1)H6H4H

+
1,2e(3) + qH6H4H2e(3).

Thus, we see that the element Hwe(3) can be written as a Z[q, q−1]-linear combination of

elements Hσj
e(3) (1 ≤ j ≤ 5), where each σj satisfies that σj ∈ B∗

3 and ℓ(σj) < ℓ(w).

Summarizing, we obtain the following lemma.

Lemma 5.4.3. For any w ∈ Sn, we have

Hwe(k) =
∑
σ′∈B∗

k
ℓ(σ′)≤ℓ(w)

rσ′,wHσ′e(k)

for some rσ′,w ∈ Z[q, q−1].

Applying Lemma 5.3.1, we immediately get the following lemma.
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Lemma 5.4.4. For any y ∈ Sn, we have

e(k)Hy =
∑

ϖ′∈Bk
ℓ(ϖ′)≤ℓ(y)

sϖ′,ye(k)Hϖ′

for some sϖ′,y ∈ Z[q, q−1].

Lemma 5.4.5. For each w, y ∈ Sn and ω(d) ∈ S2k+1,n, we have

Hwe(k)Hω(d)
Hy =

∑
a∈Ik,n

ℓ(a)≤ℓ(w)+ℓ(ω(d))+ℓ(y)

raHa

for some ra ∈ Z[q, q−1].

Proof. By Lemma 5.2.4(8) we see that e(k)Hw = Hwe(k) for any w ∈ S2k+1,n. By Lemma

5.2.4(6), we have e2(k) =
(
z−z−1

q−q−1

)k
e(k). Thus, by Lemmas 5.2.7, 5.4.3 and 5.4.4, we have

Hwe(k)Hω(d)
Hy =

(q − q−1

z − z−1

)k
×

∑
(ω′,π′)∈B∗

k,n×S2k+1,n

ℓ(ω′)+ℓ(π′)≤ℓ(w)

rω′,π′Hω′Hπ′e(k)

×Hω(d)
×

∑
(τ ′,ϖ′)∈S2k+1,n×Bk,n

ℓ(τ ′)+ℓ(ϖ′)≤ℓ(y)

sτ ′,ϖ′e(k)Hτ ′Hϖ′

for some rω′,π′ , sτ ′,ϖ′ ∈ Z[q, q−1].

For any π′, τ ′ ∈ S2k+1,n as above, we have

Hπ′Hω(d)
Hτ ′ =

∑
χ∈S2k+1,n

ℓ(χ)≤ℓ(π′)+ℓ(ω(d))+ℓ(τ ′)

tχπ′,τ ′Hχ
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for some tχπ′,τ ′ ∈ Z[q, q−1]. Thus, we have

Hwe(k)Hω(d)
Hy =

∑
(ω′,χ,ϖ′)∈B∗

k,n×S2k+1,n×Bk,n

ℓ(ω′)+ℓ(χ)+ℓ(ϖ′)≤ℓ(w)+ℓ(ω(d))+ℓ(y)

rω′sϖ′tχHω′e(k)HχHϖ′

for some rω′ , sϖ′ , tχ ∈ Z[q, q−1].

By Lemma 5.2.8, we see that Hwe(k)Hω(d)
Hy =

∑
a∈Ik,n

ℓ(a)≤ℓ(w)+ℓ(ω(d))+ℓ(y)

raHa for some ra ∈

Z[q, q−1].

Lemma 5.4.6. For each diagram d ∈ Ik,n, we have

Hd = Hd +
∑

d′∈Ik,n
ℓ(d′)<ℓ(d)

rd′,dHd′

for some rd′,d ∈ Z[q, q−1].

Proof. For k = 0, that is, d has no horizontal edge, it is well known. Assume 1 ≤ k ≤ ⌊n
2
⌋. By

Lemma 5.2.8, if (ω1, ω(d), ω2) ∈ B∗
k,n ×S2k+1,n × Bk,n is such that ρ((ω1, ω(d), ω2)) = d, then

we have Hd = Hω1e(k)Hω(d)
Hω2 and ℓ(d) = ℓ(ω1) + ℓ(ω(d)) + ℓ(ω2). We have

Hd =Hω1e(k)Hω(d)
Hω2

=

(
Hω1 +

∑
ω′
1;ℓ(ω

′
1)<ℓ(ω1)

rω′
1,ω1

Hω′
1

)
e(k)

(
Hω(d)

+
∑

ω(d′)∈S2k+1,n

ℓ(ω(d′))<ℓ(ω(d))

rω(d′),ω(d)
Hω(d′)

)

×
(
Hω2 +

∑
ω′
2;ℓ(ω

′
2)<ℓ(ω2)

rω′
2,ω2

Hω′
2

)
.

By Lemma 5.4.5, we obtain the desired result.

By Proposition 5.2.6, Lemma 5.4.6 and Lusztig’s lemma (cf. [Lus93, Lemma 24.2.1]), we

obtain the canonical and dual canonical basis for Bn(q, z) over Q(q, z).

95



Theorem 5.4.7. There exists a unique basis {Cd | d ∈ Ik,n, 0 ≤ k ≤ ⌊n
2
⌋} of Bn(q, z) over

Q(q, z), called the canonical basis, such that

(1) Cd = Cd,

(2) Cd = Hd +
∑

d′∈Ik,n
ℓ(d′)<ℓ(d)

pd′,dHd′ , where pd′,d ∈ q−1Z[q−1].

Theorem 5.4.8. There exists a unique basis {C∗
d | d ∈ Ik,n, 0 ≤ k ≤ ⌊n

2
⌋} of Bn(q, z) over

Q(q, z), called the dual canonical basis, such that

(1) C∗
d = C∗

d ,

(2) C∗
d = Hd +

∑
d′∈Ik,n

ℓ(d′)<ℓ(d)

p∗d′,dHd′ , where p∗d′,d ∈ qZ[q].

Remark 5.4.9. Note that in the above theorems, the coefficients pd′,d (resp. p∗d′,d) are polyno-

mials in q−1 (resp. q), which do not depend on z (compare with [FG95, §5.2]).

Remark 5.4.10. Fix some 0 ≤ k ≤ ⌊n
2
⌋ and d ∈ Ik,n. Assume by Lemma 5.2.8, (ω1, ω(d), ω2)

is the unique element in B∗
k,n ×S2k+1,n ×Bk,n such that ρ((ω1, ω(d), ω2)) = d. It is clear from

the definition that (ω−1
2 , ω−1

(d), ω
−1
1 ) also belongs to B∗

k,n ×S2k+1,n × Bk,n, and we can assume

that d′ ∈ Ik,n is such that ρ((ω−1
2 , ω−1

(d), ω
−1
1 )) = d′.

It is easy to check that the bar involution · on Bn(q, z) commutes with the anti-involution

ȷ, and moreover, ȷ is Q(q, z)-linear. Therefore, we have ȷ(Cd) = Cd′ and ȷ(C∗
d) = C∗

d′ .

Finally, let us look at some examples.

Example 5.4.11. (1) When n = 2, the canonical basis of B2(q, z) is given by {1, e,H1+q
−1}.
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(2) When n = 3, the canonical basis of B3(q, z) is given by

C0 = 1, C1 = H1 + q−1, C2 = H2 + q−1,

C12 = H1H2 + q−1H1 + q−1H2 + q−2,

C21 = H2H1 + q−1H1 + q−1H2 + q−2,

C121 = H1H2H1 + q−1H1H2 + q−1H2H1 + q−2H1 + q−2H2 + q−3,

Ce = e, C2e = H2e+ q−1e, Ce2 = eH2 + q−1e,

C2e2 = H2eH2 + q−1H2e+ q−1eH2 + q−2e,

C12e = H1H2e+ q−1H2e+ q−2e,

Ce21 = eH2H1 + q−1eH2 + q−2e,

C12e2 = H1H2eH2 + q−1H2eH2 + q−1H1H2e+ q−2H2e+ q−2eH2 + q−3e,

C2e21 = H2eH2H1 + q−1H2eH2 + q−1eH2H1 + q−2H2e+ q−2eH2 + q−3e,

C12e21 = H1H2eH2H1 + q−1H1H2eH2 + q−1H2eH2H1 + q−2H1H2e

+q−2H2eH2 + q−2eH2H1 + q−3H2e+ q−3eH2 + q−4e.

Moreover, we can compute the structure constants of B3(q, z) with respect to the above basis.

For example, we have

C1 · C2e = C12e + Ce,

C2e · Ce2 =
z − z−1

q − q−1
C2e2,

Ce · C12e =
q2z − q−2z−1

q − q−1
Ce.
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Chapter 6

ıSchur dualities of type AI and AII

As the title suggested, in this chapter we develop the duality between the q-Brauer algebra

and the ıquantum group of type AI and AII, respectively.

Recall again the basic set up about quantum groups in § 2.1. Since the underlying Dynkin

diagram of a type AI and AII Satake diagrams are still of type A (see [BW18b]), we have

qi = q for all i ∈ I and hence we omit the lower script i whenever there it is clear in the

context.

6.1 ıquantum group of type AI

In this section we fix m ∈ Z≥2 and focus on the quantum symmetric pair of type AI with the

Satake diagram as below (cf. [BW18b, Table 4]):

1 2
· · ·

m− 2 m− 1

Let U = Uq(slm) denote the quantum group of type Am−1. According to § 2.2, we have

Definition 6.1.1. The ıquantum group Uı(som) of type AI, with a set of parameters {ςi |

98



1 ≤ i ≤ m− 1} ⊂ Z[q, q−1], is the Q(q)-subalgebra of U generated by the following elements:

Bi = Fi + ςiEiK
−1
i for 1 ≤ i ≤ m− 1. (6.1)

Remark 6.1.2. Suppose ςi = −1 for 1 ≤ i ≤ m − 1. When taking the q → 1 limit in

Uı(som), we see that the generator Bi specializes to Ei+1,i−Ei,i+1, where Ej,k’s are the m×m

elementary matrices. Therefore, Uı(som) specializes to the enveloping algebra U(som) of the

special orthogonal Lie algebra som.

6.2 ıSchur duality of type AI

Let V =
∑m

i=1Q(q)vi be the natural representation of U with the action of the generators as

follows:

Ei · vr = δr,i+1vr−1,

Fi · vr = δr,ivr+1,

Ki · vr =


qvi if r = i,

q−1vi+1 if r = i+ 1,

vr else.

Therefore, the action of Bi on V can be computed by (6.1):

Bi · vr =


vi+1 if r = i,

qςivi if r = i+ 1,

0 else.

Lemma 6.2.1. V⊗n is a left Uı(som)-module via ∆.
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For i = 2, . . . ,m, we set

τi :=
i−1∏
j=1

(−ςj)

and τ1 = 1. Then we have the following lemma.

Proposition 6.2.2. V⊗n is a right Bn(q, q
m)-module with the action given by

va1 ⊗ · · · ⊗ van ·Hj

=


qva1 ⊗ · · · ⊗ van if aj = aj+1,

· · · ⊗ vaj+1
⊗ vaj ⊗ · · · if aj > aj+1,

· · · ⊗ vaj+1
⊗ vaj ⊗ · · ·+ (q − q−1)va1 ⊗ · · · ⊗ van if aj < aj+1,

va1 ⊗ va2 ⊗ · · · ⊗ van · e = δa1,a2τa1

(
m∑
i=1

τ−1
i qm−2i+1vi ⊗ vi

)
⊗ va3 ⊗ · · · ⊗ van .

Proof. By [Jim86], the action of Hi satisfies relations (Q1)-(Q3) in Definition 5.2.1. In order

to verify the relation (Q4), noting that the action of e depends solely on the first two tensor

factors, it suffices to show that

va1 ⊗ va2 · e2 =
qm − q−m

q − q−1
va1 ⊗ va2 · e.
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We have

va1 ⊗ va2 · e2

=δa1,a2τa1

(
m∑
i=1

τ−1
i qm−2i+1vi ⊗ vi

)
· e

=δa1,a2τa1

m∑
i=1

τ−1
i qm−2i+1

(
τi

m∑
j=1

τ−1
j qm−2j+1vj ⊗ vj

)

=δa1,a2τa1

m∑
j=1

τ−1
j qm−2j+1

(
m∑
i=1

qm−2i+1

)
vj ⊗ vj

=
qm − q−m

q − q−1
va1 ⊗ va2 · e.

The relation (Q5) can be easily verified. In order to verify the relation (Q6), it suffices to

show that

va1 ⊗ va2 ⊗ vr · eH2e = qmva1 ⊗ va2 ⊗ vr · e.
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We have

va1 ⊗ va2 ⊗ vr · eH2e

=δa1,a2τa1

(
m∑
i=1

τ−1
i qm−2i+1vi ⊗ vi ⊗ vr

)
·H2e

=δa1,a2τa1

r−1∑
i=1

τ−1
i qm−2i+1

(
vi ⊗ vr ⊗ vi + (q − q−1)vi ⊗ vi ⊗ vr

)
· e

+ δa1,a2τa1τ
−1
r qm−2r+1 · qvr ⊗ vr ⊗ vr · e

+ δa1,a2τa1

m∑
i=r+1

τ−1
i qm−2i+1vi ⊗ vr ⊗ vi · e

=δa1,a2τa1

r−1∑
i=1

τ−1
i qm−2i+1(q − q−1)

(
m∑
j=1

τiτ
−1
j qm−2j+1vj ⊗ vj ⊗ vr

)

+ δa1,a2τa1τ
−1
r qm−2r+2

(
m∑
j=1

τrτ
−1
j qm−2j+1vj ⊗ vj ⊗ vr

)

=δa1,a2

m∑
j=1

τa1τ
−1
j qm−2j+1

(
r−1∑
i=1

qm−2i+1(q − q−1) + qm−2r+2

)
vj ⊗ vj ⊗ vr

=qmva1 ⊗ va2 ⊗ vr · e.

The relation (Q7) can be easily verified. From the action of Hj we can easily obtain the

action of H−1
j as follows:

va1 ⊗ · · · ⊗ van ·H−1
j

=


q−1va1 ⊗ · · · ⊗ van , if aj = aj+1,

· · · ⊗ vaj+1
⊗ vaj ⊗ · · ·+ (q−1 − q)va1 ⊗ · · · ⊗ van , if aj > aj+1,

· · · ⊗ vaj+1
⊗ vaj ⊗ · · · , if aj < aj+1.

In order to verify e(H2H3H
−1
1 H−1

2 )e = e(H2H3H
−1
1 H−1

2 )eH2H3H
−1
1 H−1

2 , it suffices to show
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that

va1 ⊗ va1 ⊗ vk ⊗ vl · e(H2H3H
−1
1 H−1

2 )eH2H1va1 ⊗ va1 ⊗ vk ⊗ vl · e(H2H3H
−1
1 H−1

2 )eH2H3. (6.2)

When k < l, we have

va1 ⊗ va1 ⊗ vk ⊗ vl · e(H2H3H
−1
1 H−1

2 )e

=

(
m∑
i=1

τa1τ
−1
i qm−2i+1vi ⊗ vi ⊗ vk ⊗ vl

)
·H2H3H

−1
1 H−1

2 e

=
k−1∑
i=1

τa1τ
−1
i qm−2i+1

(
vi ⊗ vk ⊗ vi ⊗ vl + (q − q−1)vi ⊗ vi ⊗ vk ⊗ vl

)
·H3H

−1
1 H−1

2 e

+ τa1τ
−1
k qm−2k+1 · qvk ⊗ vk ⊗ vk ⊗ vl ·H3H

−1
1 H−1

2 e

+
m∑

i=k+1

τa1τ
−1
i qm−2i+1vi ⊗ vk ⊗ vi ⊗ vl ·H3H

−1
1 H−1

2 e

=τa1τ
−1
k qm−2k+1 · q(q − q−1)q−2vk ⊗ vk ⊗ vk ⊗ vl · e

+
l−1∑

i=k+1

τa1τ
−1
i qm−2i+1(q − q−1)(q−1 − q)vi ⊗ vi ⊗ vk ⊗ vl · e

+ τa1τ
−1
l qm−2l+1 · q(q−1 − q)vl ⊗ vl ⊗ vk ⊗ vl · e

=
m∑
j=1

τa1τ
−1
j qm−2j+1vj ⊗ vj ⊗ vk ⊗ vl

×

(
qm−2k(q − q−1)− (q − q−1)2

l−1∑
i=k+1

qm−2i+1 + qm−2l+2(q−1 − q)

)

=0.

When k > l, it can be similarly shown that

va1 ⊗ va1 ⊗ vk ⊗ vl · e(H2H3H
−1
1 H−1

2 )e = 0.
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When k = l, we have

va1 ⊗ va1 ⊗ vk ⊗ vk · e(H2H3H
−1
1 H−1

2 )e

=

(
m∑
i=1

τa1τ
−1
i qm−2i+1vi ⊗ vi ⊗ vk ⊗ vk

)
·H2H3H

−1
1 H−1

2 e

=
k−1∑
i=1

τa1τ
−1
i qm−2i+1vk ⊗ vk ⊗ vi ⊗ vi · e+ τa1τ

−1
k qm−2k+1vk ⊗ vk ⊗ vk ⊗ vk · e

+
m∑

i=k+1

τa1τ
−1
i qm−2i+1vk ⊗ vk ⊗ vi ⊗ vi · e

=
m∑
i=1

τa1τ
−1
i sqm−2i+1vk ⊗ vk ⊗ vi ⊗ vi · e

=
m∑

i,j=1

τa1τkτ
−1
i τ−1

j q2m−2i−2j+2vj ⊗ vj ⊗ vi ⊗ vi.

It is straightforward to show that

m∑
i,j=1

τa1τkτ
−1
i τ−1

j q2m−2i−2j+2vj ⊗ vj ⊗ vi ⊗ vi ·H2H1

=
m∑

i,j=1

τa1τkτ
−1
i τ−1

j q2m−2i−2j+2vj ⊗ vj ⊗ vi ⊗ vi ·H2H3.

Therefore, (6.2) holds. The equality

H2H3H
−1
1 H−1

2 e(H2H3H
−1
1 H−1

2 )e = e(H2H3H
−1
1 H−1

2 )e

can be proved similarly. We are done.

Remark 6.2.3. Let Om and SOm denote the orthogonal group and special orthogonal group,

respectively. As shown in [Br37], the Brauer algebra surjects onto EndOm(V
⊗k) for all k ∈ Z>0,

where V is the natural representation of Om. But if one replaces Om by SOm, then we have
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the following result (see [LZ06, §5.1.3]):

If m is odd, then EndOm(V
⊗k) = EndSOm(V

⊗k) for all k.

If m is even, then EndOm(V
⊗k) = EndSOm(V

⊗k) if and only if m− 1 ⩾ 2k.

Theorem 6.2.4. (1) The left action of Uı(som) on V⊗n commutes with the right action of

Bn(q, q
m) defined in Proposition 6.2.2:

Uı(som)
Ψ↷ V⊗n Φ↶ Bn(q, q

m).

(2) When m is odd or m is even with m − 1 ⩾ 2n, the following double centralizer property

holds:

Ψ(Uı(som)) = End Bn(q,qm)(V⊗n),

Φ(Bn(q, q
m)) = End Uı(som)(V⊗n).

Proof. (1) By the Jimbo duality in [Jim86], we know that the action of U commutes with

the action of Hi for 1 ≤ i ≤ n − 1. Thus, to show the commuting actions of Uı(som) and

Bn(q, q
m), it remains to check the commutativity of the actions of Bi (1 ≤ i ≤ m− 1) and e.

Thanks to ∆(Bi) = Bi ⊗ K−1
i + 1 ⊗ Bi and the fact that the action of e depends solely

on the first two tensor factors, it suffices to consider n = 2. By a direct calculation, it can be

shown that

Bi · (va1 ⊗ va2 · e) = 0 = (Bi · va1 ⊗ va2) · e.

We omit the details.

(2) The double centralizer property is equivalent to the multiplicity-free decomposition

of V⊗n as an Uı(som)-Bn(q, q
m)-bimodule. According to [We12a, §4.5] or [N18, §4], the q-
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Brauer algebra Bn(q, q
m) is semisimple when q is generic; moreover, when taking the q → 1

limit, the cell module of Bn(q, q
m) recovers the cell module of the classical Brauer algebra

defined in [GL96]. Thus, the proof of the double centralizer property reduces by a deformation

argument to the q = 1 setting. When taking the q → 1 limit and ςi = −1 (1 ≤ i ≤ m − 1),

Uı(som) becomes the enveloping algebra of the special orthogonal Lie algebra som, V becomes

its natural representation. By lifting, V can also be regarded as a representation of the special

orthogonal group SOm. Moreover, according to Remark 6.2.3, when m is odd or m is even

with m− 1 ⩾ 2n, we have

Endsom(V⊗n) = EndSOm(V⊗n) = EndOm(V⊗n).

The multiplicity-free decomposition of V⊗n in this case has been established in [Br37], [Br56a]

and [Br56b]. We are done.

Remark 6.2.5. The condition on m required in Theorem 6.2.4(2) can be removed if we enlarge

the ıquantum group to an algebra generated by Uı(som) and ϱ over Q(q) with the following

relations:

ϱ2 = 1, ϱBi = (−1)δ1,iBiϱ for 1 ≤ i ≤ m− 1.

We put the action of ϱ on V by

ϱ · vr =


−v1 if r = 1,

vr if r > 1.

One can show this action commutes with the q-Brauer algebra action and when taking the

q → 1 limit, the new algebra specializes to U(som)⊕U(som)ϱ.
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6.3 ıquantum group of type AII

In this section we fix m ∈ Z≥1 and focus on the quantum symmetric pair of type AII with the

Satake diagram as below (cf. [BW18b, Table 4]):

1 2 3
· · ·

2m− 22m− 1

Let Uq(sl2m) denote the corresponding quantum group over Q(q). According to § 2.2, we

have

Definition 6.3.1. The ıquantum group Uı(sp2m) of type AII, with a set of parameters {ςi |

i = 2, 4, . . . , 2m−2} ⊂ Z[q, q−1], is the Q(q)-subalgebra of Uq(sl2m) generated by the following

elements:

Bi = Fi + ςiTi−1Ti+1(Ei)K
−1
i for i = 2, 4, . . . , 2m− 2,

Ej, Fj, K
±1
j for j = 1, 3, . . . , 2m− 1.

Remark 6.3.2. Let Ei,j denote the 2m× 2m elementary matrices and M be a 2m× 2m skew-

symmetric quasi-diagonal matrix M = diag{J, . . . , J} with J =

 0 1

−1 0

.

Suppose ςi = −1 (i even). When taking the q → 1 limit in Uı(sp2m), we see that the

generators Ej and Fj (j odd) specialize to matrices Ej,j+1 and Ej+1,j respectively. Moreover,

Bi (i even) specializes to Ei+1,i + Ei−1,i+2.

Therefore, Uı(sp2m) indeed specializes to the enveloping algebra of the symplectic Lie

algebra sp2m, which is characterized as a Lie algebra consisting of all 2m × 2m matrices X

satisfying the condition X tM +MX = 0.

Let W =
∑2m

i=1Q(q)vi be the natural representation of Uq(sl2m). By a direct calculation
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we see that the action of B2l (l = 1, 2, . . . ,m− 1) on W is given by

B2l · vr =


v2l+1 if r = 2l,

−q−1ς2lv2l−1 if r = 2l + 2,

0 else.

6.4 ıSchur duality of type AII

For i = 2, . . . ,m, we set

ηi :=
i−1∏
j=1

(−ς2j)

and η1 = 1.

Then the following lemma gives a right Bn(−q−1, q2m)-module structure on W⊗n.

Proposition 6.4.1. There is a right action of Bn(−q−1, q2m) on W⊗n via

va1 ⊗ · · · ⊗ van ·Hk

=


qva1 ⊗ · · · ⊗ van if ak = ak+1,

· · · ⊗ vak+1
⊗ vak ⊗ · · · if ak > ak+1,

· · · ⊗ vak+1
⊗ vak ⊗ · · ·+ (q − q−1)va1 ⊗ · · · ⊗ van if ak < ak+1,
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and

va1 ⊗ va2 ⊗ · · · ⊗ van · e

=



m∑
j=1

ηiη
−1
j q2m+1−3i−j(v2j−1 ⊗ v2j − qv2j ⊗ v2j−1)⊗ va3 ⊗ · · · ⊗ van

if a1 = 2i− 1, a2 = 2i,

(−q)va2 ⊗ va1 ⊗ va3 ⊗ · · · ⊗ van · e if a1 = 2i, a2 = 2i− 1,

0 else,

where i = 1, 2, . . . ,m.

Proof. Noting that the action of e depends solely on the first two tensor factors, in order to

verify the relation (Q4) in Definition 5.2.1 it suffices to show that

v1 ⊗ v2 · e2 =
q2m − q−2m

q − q−1
v1 ⊗ v2 · e.

We have

v1 ⊗ v2 · e2 =
m∑
j=1

η1η
−1
j q2m−2−j(v2j−1 ⊗ v2j − qv2j ⊗ v2j−1) · e

=
m∑
j=1

η1η
−1
j q2m−2−j(1 + q2)(v2j−1 ⊗ v2j) · e

=
m∑
j=1

η1η
−1
j q2m−2−j(1 + q2)ηjη

−1
1 q−3(j−1)(v1 ⊗ v2) · e

=(1 + q2)

(
m∑
j=1

q2m+1−4j

)
(v1 ⊗ v2) · e

=
q2m − q−2m

q − q−1
(v1 ⊗ v2) · e.

The relation (Q5) can be easily verified. In order to verify the relation (Q6), it suffices to
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show that

v1 ⊗ v2 ⊗ vr · eH2e = q2mv1 ⊗ v2 ⊗ vr · e.

When r = 2k − 1, we have

v1 ⊗ v2 ⊗ v2k−1 · eH2e

=
m∑
j=1

η1η
−1
j q2m−2−j(v2j−1 ⊗ v2j ⊗ v2k−1 − qv2j ⊗ v2j−1 ⊗ v2k−1) ·H2e

=
k−1∑
j=1

q2m+1−4j(q − q−1)v1 ⊗ v2 ⊗ v2k−1 · e

− q
k−1∑
j=1

q2m+1−4j(q − q−1)(−q)v1 ⊗ v2 ⊗ v2k−1 · e

− q2m+2−4k(−q2)v1 ⊗ v2 ⊗ v2k−1 · e

=

(
(q − q−1)(1 + q2)

k−1∑
j=1

q2m+1−4j + q2m+4−4k

)
v1 ⊗ v2 ⊗ v2k−1 · e

=q2mv1 ⊗ v2 ⊗ vr · e.

When r = 2k, it can be proved similarly. (Q7) can be easily verified.

In order to verify e(H2H3H
−1
1 H−1

2 )e = e(H2H3H
−1
1 H−1

2 )eH2H3H
−1
1 H−1

2 , it suffices to show

that

v1⊗ v2⊗ vp⊗ vq · e(H2H3H
−1
1 H−1

2 )eH2H1 = v1⊗ v2⊗ vp⊗ vq · e(H2H3H
−1
1 H−1

2 )eH2H3. (6.3)
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When p = 2k and q = 2l with k < l, we have

v1 ⊗ v2 ⊗ v2k ⊗ v2l · e(H2H3H
−1
1 H−1

2 )e

=
m∑
j=1

η1η
−1
j q2m−2−j(v2j−1 ⊗ v2j ⊗ v2k ⊗ v2l−

qv2j ⊗ v2j−1 ⊗ v2k ⊗ v2l) ·H2H3H
−1
1 H−1

2 e

=− (q − q−1)2
l−1∑

j=k+1

η1η
−1
j q2m−2−jv2j−1 ⊗ v2j ⊗ v2k ⊗ v2l · e

+ η1η
−1
l q2m−2−l · q(q−1 − q)v2l−1 ⊗ v2l ⊗ v2k ⊗ v2l · e

− η1η
−1
k q2m−1−k(q − q−1)q−1v2k ⊗ v2k−1 ⊗ v2k ⊗ v2l · e

− η1η
−1
k q2m−1−k(q − q−1)2q−1v2k−1 ⊗ v2k ⊗ v2k ⊗ v2l · e

+ (q − q−1)2
l∑

j=k+1

η1η
−1
j q2m−1−jv2j ⊗ v2j−1 ⊗ v2k ⊗ v2l · e

=Av1 ⊗ v2 ⊗ v2k ⊗ v2l · e,

where

A =− (q − q−1)2
l−1∑

j=k+1

q2m+1−4j + (q−1 − q)q2m+2−4l

+ (q − q−1)q2m+2−4k − (q − q−1)2q2m+1−4k − (q − q−1)2
l∑

j=k+1

q2m+3−4j

=− (q − q−1)2(1 + q2)
l−1∑

j=k+1

q2m+1−4j

+ (q − q−1)q2m−4k + (q−1 − q)q2m+4−4l

=0.

Therefore, in this case we have v1 ⊗ v2 ⊗ v2k ⊗ v2l · e(H2H3H
−1
1 H−1

2 )e = 0.

In a similar way, we can show that v1 ⊗ v2 ⊗ v2k ⊗ v2l · e(H2H3H
−1
1 H−1

2 )e = 0 when
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k ≥ l, v1 ⊗ v2 ⊗ v2k−1 ⊗ v2l−1 · e(H2H3H
−1
1 H−1

2 )e = 0 for any k, l, and v1 ⊗ v2 ⊗ v2k ⊗ v2l−1 ·

e(H2H3H
−1
1 H−1

2 )e = 0 = v1 ⊗ v2 ⊗ v2k−1 ⊗ v2l · e(H2H3H
−1
1 H−1

2 )e when k ̸= l.

When p = 2k and q = 2k − 1, we have

v1 ⊗ v2 ⊗ v2k ⊗ v2k−1 · e(H2H3H
−1
1 H−1

2 )e

=
k−1∑
j=1

η1η
−1
j q2m−2−jv2k ⊗ v2k−1 ⊗ v2j−1 ⊗ v2j · e

+ η1η
−1
k q2m−2−kv2k ⊗ v2k−1 ⊗ v2k−1 ⊗ v2k · e

+
m∑

j=k+1

η1η
−1
j q2m−2−jv2k ⊗ v2k−1 ⊗ v2j−1 ⊗ v2j · e

−
k−1∑
j=1

η1η
−1
j q2m−1−jv2k ⊗ v2k−1 ⊗ v2j ⊗ v2j−1 · e

− η1η
−1
k sq2m−1−kv2k ⊗ v2k−1 ⊗ v2k ⊗ v2k−1 · e

−
m∑

j=k+1

η1η
−1
j q2m−1−jv2k ⊗ v2k−1 ⊗ v2j ⊗ v2j−1 · e

=
m∑
j=1

η1η
−1
j q2m−2−jv2k ⊗ v2k−1 ⊗ (v2j−1 ⊗ v2j − qv2j ⊗ v2j−1) · e

=B ·
m∑

i,j=1

η21η
−1
i η−1

j q4m−4−i−j(v2i−1 ⊗ v2i − qv2i ⊗ v2i−1)⊗

(v2j−1 ⊗ v2j − qv2j ⊗ v2j−1),

where B = −q4−3kηkη
−1
1 . By a direct calculation, we can show that

m∑
i,j=1

η21η
−1
i η−1

j q4m−4−i−j(v2i−1 ⊗ v2i − qv2i ⊗ v2i−1)⊗

(v2j−1 ⊗ v2j − qv2j ⊗ v2j−1) ·H2H1

=
m∑

i,j=1

η21η
−1
i η−1

j q4m−4−i−j(v2i−1 ⊗ v2i − qv2i ⊗ v2i−1)⊗

(v2j−1 ⊗ v2j − qv2j ⊗ v2j−1) ·H2H3.
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Therefore, (6.3) holds when p = 2k and q = 2k − 1. Similarly, we can show that (6.3) holds

when p = 2k − 1 and q = 2k. The equality

H2H3H
−1
1 H−1

2 e(H2H3H
−1
1 H−1

2 )e = e(H2H3H
−1
1 H−1

2 )e

can be proved similarly. We are done.

Theorem 6.4.2. The left action of Uı(sp2m) on W⊗n commutes with the right action defined

in Proposition 6.4.1:

Uı(sp2m)
Ψ′

↷ W⊗n Φ′

↶ Bn(−q−1, q2m).

Moreover, the following double centralizer property holds:

Ψ′(Uı(sp2m)) = End Bn(−q−1,q2m)(W⊗n),

Φ′(Bn(−q−1, q2m)) = End Uı(sp2m)(W⊗n).

Proof. By the Jimbo duality in [Jim86], we know that the action of Uq(sl2m) commutes with

the action of Hk for 1 ≤ k ≤ n − 1. Thus, to show the commuting actions of Uı(sp2m)

and Bn(−q−1, q2m), it remains to check the commutativity of the actions of the generators of

Uı(sp2m) and e. Noting that the action of e depends solely on the first two tensor factors, it

suffices to consider n = 2.

We have E1 ·v1⊗v2 = qv1⊗v1, E1 ·v2⊗v1 = v1⊗v1 and E1 ·vk⊗vl = 0 for {k, l} ≠ {1, 2},

which imply that

E1 · (va1 ⊗ va2 · e) = 0 = (E1 · va1 ⊗ va2) · e.

Similarly, we can show that

Ej · (va1 ⊗ va2 · e) = 0 = (Ej · va1 ⊗ va2) · e,
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Fj · (va1 ⊗ va2 · e) = 0 = (Fj · va1 ⊗ va2) · e,

K±1
j · (va1 ⊗ va2 · e) = va1 ⊗ va2 · e = (K±1

j · va1 ⊗ va2) · e

for j = 1, 3, . . . , 2m− 1.

According to [Ko14, Example 7.9] we have

∆(B2l)|W⊗2

=B2l ⊗K−1
2l + 1⊗ F2l + ς2l(q − q−1)E2l+1 ⊗ E2l−1E2l

− ς2l(q
−1 − q−3)E2l−1 ⊗ E2lE2l+1 − ς2lq

−1K2l−1K2l+1 ⊗ E2l−1E2lE2l+1.

Therefore, we have B2 · v1 ⊗ v2 = v1 ⊗ v3, B2 · v2 ⊗ v1 = v3 ⊗ v1, B2 · v3 ⊗ v4 = −ς2v3 ⊗ v1 and

B2 · v4 ⊗ v3 = −ς2v1 ⊗ v3 + ς2(q − q−1)v3 ⊗ v1. Thus,

B2 · (v1 ⊗ v2 · e) =B2 · (q2m−3(v1 ⊗ v2 − qv2 ⊗ v1)− ς−1
2 q2m−4(v3 ⊗ v4 − qv4 ⊗ v3))

=0,

(6.4)

and (B2 · v1 ⊗ v2) · e = v1 ⊗ v3 · e = 0. By (6.4), we have B2 · (va1 ⊗ va2 · e) = 0. By a direct

calculation, we can show that (B2 · va1 ⊗ va2) · e = 0. Similarly, we can show that

B2l · (va1 ⊗ va2 · e) = 0 = (B2l · va1 ⊗ va2) · e,

for any l = 2, . . . ,m− 1. We omit the details.

The proof of the double centralizer property is almost identical to the proof of Proposi-

tion 6.2.4, which is equivalent to the multiplicity-free decomposition of W⊗n as an Uı(sp2m)-

Bn(−q−1, q2m)-bimodule. The proof of the double centralizer property reduces by a deforma-

tion argument to the q = 1 setting. When taking the q → 1 limit and ςi = −1, Uı(sp2m)

becomes the enveloping algebra of the symplectic Lie algebra sp2m, W becomes its natural rep-

resentation, and the multiplicity-free decomposition of W⊗n in this case has been established
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in [Br37], [Br56a] and [Br56b]. We are done.

115



Part III

Quantum supersymmetric pairs and

ıSchur dualities
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Chapter 7

Quantum supersymmetric pairs of type

AIII

Recall basic set ups of g = gl(m|n) and its quantum analogue U from § 2.3. In this chapter we

construct quantum supersymmetric pairs (U,Uı) of type AIII and elucidate their fundamental

properties. An ıSchur duality between the ıquantum supergroup Uı and the Hecke algebra of

type B acting on a tensor space is established, providing a super generalization of the ıSchur

duality of type AIII in Part I.

7.1 Braid group operators

In order to define quantum supersymmetric pairs, we need to study the braid group operators

on U, especially the ones associated with odd simple roots.

7.1.1 Odd reflections

As noted in [Ya99], when fixing a simple root α, the braid operator associated with it extends

the action of sα on the weight data. The key distinction between odd and even reflections lies

in the fact that odd reflections change the generalized Cartan matrix A, while even reflections
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do not; see also [C16, §4].

The fundamental systems of the root system Φ associated to gl(m|n) are not conjugated

under the Weyl group actions because of the existence of odd roots (cf. [CW12, §1.3.6]). In

fact, we have the following lemma,

Lemma 7.1.1. [Ya99, Proposition 2.2.1], [CW12, Lemma 1.26] Let α be an odd simple root

of gl(m|n) in a positive system Φ+. Then,

Φ+
α := {−α} ∪ Φ+\{α}

is a new positive system, whose corresponding fundamental system Πα is given by

Πα = {β ∈ Π | (β, α) = 0, β ̸= α} ∪ {β + α | β ∈ Π, (β, α) ̸= 0} ∪ {−α}. (7.1)

The operation of obtaining Πα from Π is denoted by sα and referred to as an odd reflection.

When β ∈ Π is an even simple root, we abuse the notation sβ to denote the even reflection

associated to β. For a diagram as in (2.6), we let sj := sαj
for all j ∈ I.

Let Dm,n denote the set of all possible Dynkin diagrams for gl(m|n). The following lemma

provides information on how the reflections change parities, which enables us to determine

the matrix units of A. For any diagram X ∈ Dm,n, we denote by pX the corresponding parity

function.

Lemma 7.1.2. If j, k, ℓ ∈ I with j ∼ k and j ≁ ℓ. Then for any X ∈ Dm,n we have

psj(X)(j) = pX(j), psj(X)(k) = pX(k) + pX(j) mod 2, psj(X)(ℓ) = pX(ℓ).

Proof. We always have sj(αj) = −αj, sj(αℓ) = αℓ and sj(αk) = αk + αj for a diagram as in

(2.6).

From Lemma 7.1.2 we see that even reflections will not change the parity of any simple
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root while odd reflections change the parities of the ones adjacent to it.

Example 7.1.3. ⊗
ϵ1 − ϵ1

⊗
ϵ1 − ϵ2

s1=⇒
⊗

ϵ1 − ϵ1 ϵ1 − ϵ2

More precisely, for any two fundamental systems Π and Π′ of a basic Lie superalgebra

of any classical type, there exists a sequence consisting of even and odd reflections s1, . . . , sk

such that s1 · · · sk(Π) = Π′. (cf. [CW12])

7.1.2 Generalized braid group operators

To avoid confusion, X and Y in this chapter represents diagrams in Dm,n rather than the set

of roots and coroots for a root datum.

For each X ∈ Dm,n, we can associate a quantum enveloping algebra U(X) with generators

EX
i , F

X
i , q

µ and ϱX as in § 2.3. Equipped with this family of algebras, the braid group

operators were constructed in [Ya99, Proposition 7.5.1]. In [C16, Theorem 4.5], an equivalent

reformulation of these operators was given in the case of gl(m|1). In Theorem 7.1.4, we adopt

the notations from [C16, Theorem 4.5] and restate the results of [Ya99, Proposition 7.5.1]

specifically for gl(m|n).

Theorem 7.1.4. Let i ∈ I, X ∈ Dm,n, e = ±1 and set Y = si(X). There exist Q(q)-linear

algebra isomorphisms T ′
i,e, T

′′
i,e : U(X) → U(Y ) satisfying

T ′
i,−e(E

X
j ) =


−(−1)pY (i)K−e

Y,i FY,i, if j = i,

EY,jEY,i − (−1)pY (i)pY (j)qe(αY,i,αY,j)EY,iEY,j if j ∼ i,

EY,j if j ≁ i.

(7.2)
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T ′
i,−e(F

X
j ) =


−(−1)pY (i)EY,iK

e
Y,i, if j = i,

FY,iFY,j − (−1)pY (i)pY (j)q−e(αY,i,αY,j)FY,jFY,i if j ∼ i,

FY,j if j ≁ i.

(7.3)

T ′
i,−e(K

X
j ) =


(−1)pY (i)K−1

Y,i , if j = i,

(−1)pY (i)pY (j)KY,iKY,j if j ∼ i,

KY,j if j ≁ i.

(7.4)

T ′
i,−e(ϱX) = ϱY. (7.5)

and

T ′′
i,e(E

X
j ) =


−FY,iK

e
Y,i, if j = i,

EY,iEY,j − (−1)pY (i)pY (j)qe(αY,i,αY,j)EY,jEY,i if j ∼ i,

EY,j if j ≁ i.

(7.6)

T ′′
i,e(F

X
j ) =


−K−e

Y,iEY,i, if j = i,

FY,jFY,i − (−1)pY (i)pY (j)q−e(αY,i,αY,j)FY,iFY,j if j ∼ i,

FY,j if j ≁ i.

(7.7)

T ′′
i,e(KY,j) =


(−1)pY (i)K−1

Y,i , if j = i,

(−1)pY (i)pY (j)KY,iKY,j if j ∼ i,

KY,j if j ≁ i.

(7.8)

T ′′
i,e(ϱX) = ϱY. (7.9)

To ensure self-consistency, we will now present the proof of Theorem 7.1.4 in the remaining
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part of this subsection. To do so succinctly, recall σ and · from (2.13), we observe that

T ′
i,−e = σT ′′

i,eσ, T ′
i,−e = ·T ′

i,e·, T ′′
i,e = (T ′

i,−e)
−1. (7.10)

One can check these identities on the generators of U(X). Thus to establish Theorem 7.1.4, it

is sufficient to focus on the case of T ′
j,−1. Specifically, we need to demonstrate that the images

of the generators of U(X) under T ′
j,−1 satisfy the relations in (2.11) and (2.15). To ensure the

clarity of the proof, we will break down the verification into lemmas and make reference to

relevant results from [C16]. Given the complexity of the calculations involved, we will omit

the subscripts on the generators of U(Y ) for readability. Additionally, we will consistently

omit the subscript on ϱ since it is evident from the context which algebra it belongs to.

First we take a look at (2.15), we have

Lemma 7.1.5. If j, k ∈ I, then

ϱT ′
j,−1(E

X
k)ϱ

−1 = T ′
j,−1(ϱ(E

X
k)) = (−1)pX(k)T ′

j,−1(E
X
k),

ϱT ′
j,−1(F

X
k )ϱ

−1 = T ′
j,−1(ϱ(F

X
k )) = (−1)pX(k)T ′

j,−1(F
X
k ),

ϱT ′
j,−1(K

X
k)ϱ

−1 = T ′
j,−1(ϱ(K

X
k)) = (−1)pX(k)T ′

j,−1(K
X
k).

Proof. We prove for E and the other two are similar.

When j = k or j ≁ k, by a direct computation we have p(k) = pX(k) and

ϱT ′
j,−1(E

X
k)ϱ

−1 = (−1)p(k)T ′
j,−1(E

X
k) = (−1)pX(k)T ′

j,−1(E
X
k).

When j ∼ k, by a direct computation we have p(k) = pX(j)+pX(k) and thus p(k)+p(j) =

pX(k). Hence

ϱT ′
j,−1(E

X
k)ϱ

−1 = (−1)p(k)+p(j)T ′
j,−1(E

X
k) = (−1)pX(k)T ′

j,−1(E
X
k).
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This proves the lemma.

Recall the defining relations of U from (2.11). The relations (R1)–(R4) can be verified

directly. For the relation (R6), we have

Lemma 7.1.6. If j, k ∈ I such that pX(k) = 1, then

T ′
j,−1(E

X
k)

2 = T ′
j,−1(F

X
k )

2 = 0.

Proof. It follows from the same argument as in [C16, Lemma 4.7].

To verify the relation (R5), we split into two cases.

Lemma 7.1.7. If j = k ∈ I, then

T ′
j,−1(E

X
k)T

′
j,−1(F

X
k )− (−1)pX(k)T ′

j,−1(F
X
k )T

′
j,−1(E

X
k)

=
T ′
j,−1(K

X
k)− T ′

j,−1(K
X
k)

−1

qℓk − q−ℓk
.

Proof. It follows from the same argument as in [C16, Lemma 4.9].

To verify the relation (R5) when k ̸= l, note that we need the following lemma.

Lemma 7.1.8. If k = j − 1 and ℓ = j + 1, then we have

pX(k)pX(ℓ) + p(k)p(ℓ) + p(j)p(ℓ) + p(j)p(k) ≡ p(j) mod 2. (7.11)

Proof. This lemma follows from (7.1.2) and a direct computation.

Lemma 7.1.9. (Compare [C16, Lemma 4.8]) If j, k, ℓ ∈ I with k ̸= ℓ, then

T ′
j,−1(E

X
k)T

′
j,−1(F

X
ℓ ) = (−1)pX(k)pX(ℓ)T ′

j,−1(F
X
ℓ )T

′
j,−1(E

X
k)
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Proof. Let ck,ℓ = T ′
j,−1(E

X
k)T

′
j,−1(F

X
ℓ ) − (−1)pX(k)pX(ℓ)T ′

j,−1(F
X
ℓ )T

′
j,−1(E

X
k). We want to prove

ck,ℓ = 0 for all k ̸= ℓ.

If one of them is not connected to j, let us say j ≁ k, then T ′
j,−1(E

X
k) = Ek and p(j) =

pX(j). On the other hand, T ′
j,−1(E

X
ℓ ) is a polynomial in the elements Kj, Fj, Fℓ and Fj with

p(T ′
j,−1(F

X
ℓ )) = pX(ℓ). Since Ek super-commutes with all of those elements, the statement

follows.

The remaining cases involve situations where both k and ℓ are either equal to or connected

with j. For the case where one of them is connected to j and the other is equal to j, the

verification has already been conducted in [C16, Lemma 4.8].

When k and ℓ are both connected to j, without loss of generality, we assume that k = j−1

and ℓ = j + 1. Using (7.11) and the relation (R5) in (2.11) repeatedly we get

ck,ℓ =(EkEj − (−1)p(j)p(k)q(αj ,αk)EjEk)(FjFℓ − (−1)p(j)p(ℓ)q−(αj ,αℓ)FℓFj)

− (−1)pX(k)pX(ℓ)(FjFℓ − (−1)p(j)p(ℓ)q−(αj ,αℓ)FℓFj)

(EkEj − (−1)p(j)p(k)q(αj ,αk)EjEk)

=Ek[Ej, Fj]Fℓ − q(αj ,αk)[Ej, Fj]EkFℓ − q−(αj ,αℓ)EkFℓ[Ej, Fj]

+ (−1)p(k)p(ℓ)q(αj ,αk)−(αj ,αℓ)Fℓ[Ej, Fj]Ek

=
1

qℓj − q−ℓj
Ek((1− q2(αj ,αk) − 1 + q2(αj ,αk))Kj

− (1− 1− q−2(αj ,αℓ) + q−2(αj ,αℓ))K−1
j )Fℓ = 0.

This proves the lemma.

The next lemma checks the relation (R7).

Lemma 7.1.10. If j, k, ℓ ∈ I such that k ≁ ℓ, then

T ′
j,−1(E

X
k)T

′
j,−1(E

X
ℓ ) = (−1)pX(k)pX(ℓ)T ′

j,−1(EX,ℓ)T
′
j,−1(E

X
k),
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T ′
j,−1(F

X
k )T

′
j,−1(F

X
ℓ ) = (−1)pX(k)pX(ℓ)T ′

j,−1(FX,ℓ)T
′
j,−1(F

X
k ).

Proof. We only prove for E. If either k or ℓ is not connected to j, we are done. So we suppose

that k = j − 1 and ℓ = j + 1. We break the proof into two cases:

(Case-1) Assume pX(j) = 0. Observe that in this case we must have (αj, αk) = (αj, αℓ).

Without loss of generality we assume (αj, αk) = (αj, αℓ) = 1. Then we have T ′
j,−1(E

X
k) =

EkEj − qEjEk and T ′
j,−1(E

X
ℓ ) = EℓEj − qEjEℓ and thus

T ′
j,−1(E

X
k)T

′
j,−1(E

X
ℓ ) = EkEjEℓEj − qEjEkEℓEj − qEkE

2
jEℓ + q2EjEkEjEℓ,

T ′
j,−1(E

X
ℓ )T

′
j,−1(E

X
k) = EℓEjEkEj − qEjEℓEkEj − qEℓE

2
jEk + q2EjEℓEjEk.

First we see that EjEkEℓEj = (−1)p(k)p(ℓ)EjEℓEkEj = (−1)pX(k)pX(ℓ)EjEℓEkEj. Thus, by

applying (R8) repeatedly we get

T ′
j,−1(E

X
k)T

′
j,−1(E

X
ℓ )− (−1)pX(k)pX(ℓ)T ′

j,−1(EX,ℓ)T
′
j,−1(E

X
k)

=EkEjEℓEj − q(EkE
2
j − qEjEkEj)Eℓ

− (−1)pX(k)pX(ℓ)[EℓEjEkEj − q(EℓE
2
j − qEjEℓEj)Ek]

=EkEjEℓEj − q(q−1EjEkEj − E2
jEk)Eℓ

− (−1)pX(k)pX(ℓ)[EℓEjEkEj − q(q−1EjEℓEj − E2
jEℓ)Ek]

=
1

q + q−1
[Ek(E

2
jEℓ + EℓE

2
j )− (EkE

2
j + E2

jEk)Eℓ

− (−1)pX(k)pX(ℓ)Eℓ(EkE
2
j + E2

jEk) + (−1)pX(k)pX(ℓ)(E2
jEℓ + EℓE

2
j )Ek]

=0.

(Case-2) Assume pX(j) = 1. In this case we always have (αj, αk) = −(αj, αℓ). Again

we may assume that (αj, αk) = 1. Then (αj, αℓ) = −1. Thus we have T ′
j,−1(E

X
k) = EkEj −
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(−1)p(k)qEjEk and T ′
j,−1(E

X
ℓ ) = EℓEj − (−1)p(ℓ)q−1EjEℓ and thus

T ′
j,−1(E

X
k)T

′
j,−1(E

X
ℓ ) = EkEjEℓEj − (−1)p(k)qEjEkEℓEj + (−1)p(k)+p(ℓ)EjEkEjEℓ,

T ′
j,−1(E

X
ℓ )T

′
j,−1(E

X
k) = EℓEjEkEj − (−1)p(ℓ)q−1EjEℓEkEj + (−1)p(k)+p(ℓ)EjEℓEjEk.

By taking a difference of the above two equations and unravelling the relation (R10) we can

conclude that

T ′
j,−1(E

X
k)T

′
j,−1(E

X
ℓ ) = (−1)pX(k)pX(ℓ)T ′

j,−1(E
X
ℓ )T

′
j,−1(E

X
k).

This proves the lemma.

The verification process for the relations (R8) and (R9) is no different from that in the

gl(m|1) case. Hence we have

Lemma 7.1.11. [C16, Lemma 4.11] If j, k, ℓ ∈ I such that pX(k) = 0 and k ∼ ℓ, then

T ′
j,−1(E

X
k)

2T ′
j,−1(E

X
ℓ )− (q + q−1)T ′

j,−1(E
X
k)T

′
j,−1(E

X
ℓ )T

′
j,−1(E

X
k)

+ T ′
j,−1(E

X
ℓ )T

′
j,−1(E

X
k)

2 = 0,

T ′
j,−1(F

X
k )

2T ′
j,−1(F

X
ℓ )− (q + q−1)T ′

j,−1(F
X
k )T

′
j,−1(F

X
ℓ )T

′
j,−1(F

X
k )

+ T ′
j,−1(F

X
ℓ )T

′
j,−1(F

X
k )

2 = 0.

Finally we need to verify the relations (R10) and (R11).

Lemma 7.1.12. Let z, k, j, ℓ ∈ I with k ∼ j ∼ ℓ, k < ℓ and pX(j) = 1, then

SpX(k),pX(ℓ)(T
′
z,−1(E

X
k), T

′
z,−1(E

X
j ), T

′
z,−1(E

X
ℓ )) = 0,

SpX(k),pX(ℓ)(T
′
z,−1(F

X
k ), T

′
z,−1(F

X
j ), T

′
z,−1(F

X
ℓ )) = 0.

Proof. We only prove the first equality as the second one can be proved similarly. If none of

k, j, ℓ is connected or equal to z, there is nothing to prove.
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Now we first suppose that j ≁ z and k ∼ z. In this case we have T ′
z,−1(E

X
k) = EkEz −

(−1)p(z)p(k)q(αk,αz)EzEk, T
′
z,−1(E

X
j ) = Ej, T

′
z,−1(E

X
ℓ ) = Eℓ. Thus

SpX(k),pX(ℓ)(T
′
z,−1(E

X
k), T

′
z,−1(E

X
j ), T

′
z,−1(E

X
ℓ ))

=SpX(k),pX(ℓ)(EkEz, Ej, Eℓ)− (−1)p(z)p(k)q(αz ,αk)SpX(k),pX(ℓ)(EzEk, Ej, Eℓ)

When p(z) = 0, Ez commutes with Ej and Eℓ. Also we have pX(k) = p(k), pX(ℓ) = p(ℓ).

Hence

SpX(k),pX(ℓ)(EkEz, Ej, Eℓ) = Sp(k),p(ℓ)(Ek, Ej, Eℓ)Ez = 0,

SpX(k),pX(ℓ)(EzEk, Ej, Eℓ) = EzSpX(k),pX(ℓ)(Ek, Ej, Eℓ) = 0.

When p(z) = 1, since EzEj = (−1)p(z)EjEz, EzEℓ = (−1)p(z)p(ℓ)EℓEz, p(k) = pX(k) + 1

and p(ℓ) = pX(ℓ), again we have

SpX(k),pX(ℓ)(EkEz, Ej, Eℓ) = Sp(k),p(ℓ)(Ek, Ej, Eℓ)Ez = 0,

SpX(k),pX(ℓ)(EzEk, Ej, Eℓ) = EzSpX(k),pX(ℓ)(Ek, Ej, Eℓ) = 0.

Note that the case when j ≁ h, ℓ ∼ h is similar.

Next, suppose z ∼ j and without loss of generality that z = k. We further assume that

(αj, αk) = −1, thus (αj, αℓ) = −1. Note that when p(k)p(ℓ) = 0, the proof is already given in

[C16, Lemma 4.12]. So we only need to consider the case when p(z) = p(k) = p(ℓ) = 1. In this

case we have pX(k) = pX(ℓ) = 1, p(j) = 0 and T ′
z,−1(E

X
j ) = EjEz − q−1EzEj, T

′
z,−1(E

X
ℓ ) = EX

ℓ

and T ′
z,−1(E

X
k) = K−1

k Fk. Let

ðabcd = T ′
z,−1(E

X
a)T

′
z,−1(E

X
b )T

′
z,−1(E

X
c )T

′
z,−1(E

X
d).
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The goal is to prove that

(q + q−1)ðjℓkj = −ðjℓjk + ðkjℓj + ðjkjℓ − ðℓjkj.

Note the identities

T ′
z,−1(E

X
k)T

′
z,−1(E

X
ℓ ) = −T ′

z,−1(E
X
ℓ )T

′
z,−1(E

X
k),

T ′
z,−1(E

X
j )T

′
z,−1(E

X
k) = −q−1T ′

z,−1(E
X
k)T

′
z,−1(E

X
j ) + q−1Ej.

With the above identities and Lemma 7.1.6 we see that

ðjℓjk = −q−1ðjℓkj + q−1EjEkEℓEj − q−2EkEjEℓEj,

ðkjℓj = −qðjkℓj + EjEℓEjEk − q−1EjEkEℓEj,

ðjkjℓ = EjEkEjEℓ,

ðℓjkj = EℓEjEkEj

Thus using Serre relation (R8) repeatedly we have

(q + q−1)ðjℓkj = −ðjℓjk + ðkjℓj + ðjkjℓ − ðℓjkj.

Finally we suppose that z = j. Again when p(k)p(ℓ) = 0 the proof is given in [C16,

Lemma 4.12]. So we only need to consider the case when p(k) = p(ℓ) = 1. Thus we have

pX(k) = pX(ℓ) = 0. Without loss of generality we assume that (αk, αj) = −(αj, αℓ) = −1.

Then T ′
z,−1(E

X
k) = EkEj + q−1EjEk, T ′

z,−1(E
X
ℓ ) = EℓEj + qEjEℓ and T ′

z,−1(E
X
j ) = K−1

j Fj. Note
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that we have the identities

T ′
j,−1(E

X
k)T

′
j,−1(E

X
j ) = q−1T ′

j,−1(E
X
j )T

′
j,−1(E

X
k) + q−1Ek,

T ′
j,−1(E

X
ℓ )T

′
j,−1(E

X
j ) = qT ′

j,−1(E
X
j )T

′
j,−1(E

X
ℓ )− qEℓ.

Thus we have

ðjℓjk = −K−1
j Fj(qEℓEkEj + EℓEjEk),

ðkjℓj = −EkEℓ −K−1
j Fj(EkEjEℓ + q−1EjEkEℓ),

ðjkjℓ = K−1
j Fj(q

−1EkEℓEj + EkEjEℓ),

ðℓjkj = −EℓEk +K−1
j Fj(EℓEjEk + qEjEℓEk),

ðjkℓj = ðjℓkj = KjF
−1
j (EkEℓEj − EjEkEℓ).

Then we conclude that

(q + q−1)ðjℓkj = ðjℓjk + ðkjℓj + ðjkjℓ + ðℓjkj.

This proves the lemma.

We have now proved that T ′
j,e and T ′′

j,e are algebra isomorphisms for all j ∈ I and e = ±1.

The next proposition states that the braid group operators in Theorem 7.1.4 satisfy the type

A braid relations.

Proposition 7.1.13. Let j, k, ℓ ∈ I and X ∈ Dm,n.

(1) If j ≁ k, then T ′
j,eT

′
k,e = T ′

k,eT
′
j,e and T ′′

j,eT
′′
k,e = T ′′

k,eT
′′
j,e.
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(2) If j ∼ k and Y = sjsk(X), then

T ′
j,−eT

′
k,−e(E

X
j ) = T ′′

j,eT
′′
k,e(E

X
j ) = EY

k ,

T ′
j,−eT

′
k,−e(F

X
j ) = T ′′

j,eT
′′
k,e(F

X
j ) = F Y

k ,

T ′
j,−eT

′
k,−e(K

X
j ) = T ′′

j,eT
′′
k,e(K

X
j ) = KY

k .

(3) If j ∼ k, then T ′
j,eT

′
k,eT

′
j,e = T ′

k,eT
′
j,eT

′
k,e and T ′′

j,eT
′′
k,eT

′′
j,e = T ′′

k,eT
′′
j,eT

′′
k,e.

Proof. It follows from [Ya99, Lemma 8.1.1]; see also [H10, §6.3].

From now on we denote by Ti the braid operator T ′′
i,1 defined in Theorem 7.1.4. The next

lemma can be proved similarly as in [Jan95, §8.18–§8.20].

Lemma 7.1.14. Let w ∈ W , X ∈ Dm,n, Y = w(X) and α ∈ ΠX . If w(α) > 0 in the root

system associated to X, then Tw(E
X
α) ∈ U(Y )+. If w(α) ∈ ΠX , then Tw(E

X
α) = EY

w(α).

7.2 Quantum supersymmetric pair of type AIII

In this section we define the quantum supersymmetric pairs and the corresponding ıquantum

supergroups of type AIII.

7.2.1 Definition and notations

Recall the notation [x, x+m] = {x, x+ 1, . . . , x+m} and Ia for any real number x ∈ R and

m ∈ N from § 3.1.1.

Fix

n =
m

2
∈ 1

2
N.

We consider the super Satake diagram of type AIII with m − 1 = 2n − 1 black nodes and r
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pairs of white nodes, together with a diagram involution τ indicated by the dashed arrows:

·
−n− r + 1

· · · ·
−n

−n+ 1

...

n− 1·

n
· · ··

n+ r − 1 (7.12)

where
⊙

stands for white dots and ■ stands for black dots. We will denote the white even

roots, black even roots, black odd roots and white odd roots respectively by , , and⊗
.

For any Satake diagram in Dm,n of the form (7.12), we denote the index set by

I = Im+2r−1 = I◦ ∪ I•, (m+ 2r = m+ n), (7.13)

where I◦ is the collection of white dots and I• is the collection of black dots. Switching to

this notation has the advantage of easily identifying the diagram involution τ with −1 on the

index set of the simple roots.

Both white and black dots allow different parities under the following assumption:

#{p(j) = 1 | j ∈ I•} ≡ 0 mod 2,

p(j) = p(τ(j)), ∀i ∈ I◦,

i ∈ I0 if τi = i and i ∈ I◦.

(7.14)

where I• = [1− n, n− 1], I◦ = I\I•. (In case n = 0, the black nodes are dropped; the nodes

n and −n are identified and fixed by τ .)

Let Sm−1 denote the symmetric group associated with m− 1 letters in I• = [1− n, n− 1],
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and let w• represent the longest element of Sm−1. For any reduced expression w• = si1 · · · siℓ

as a product of simple generators, we regard sit as the simple reflection sαit
. Consequently,

we can view w• as a product of even and odd reflections. It follows from [HY08] that w• is

independent of the choice of the reduced expression.

Following [BW18b], we further assume that τ extends to an involution on P and P∨,

respectively, such that the bilinear pairing ⟨·, ·⟩ is invariant under τ . Then we define

Pı = P
/
{µ+ w•τ(µ) | µ ∈ P},

P∨
ı = {ν − w•τ(ν) | ν ∈ P∨}.

(7.15)

For any Satake diagramX in the form of (7.12), without considering the diagram involution

τ , the diagram X corresponds to a Lie superalgebra gl(m|n) for certain non-negative integers

m and n, where m+ n = 2r +m. Recall I(m|n) from (2.3). The simple roots of X are given

by

ΠX = {αX,k = ϵX
k− 1

2
− ϵX

k+ 1
2
| k ∈ I}

where {ϵX
k± 1

2

| k ∈ I} = {ϵa | a ∈ I(m|n)}.

In the remaining part of this section, we fix a diagram X ∈ Dm,n of the form (7.12)

satisfying (7.14). Furthermore, we recall the definition of ℓj from equation (2.10). In addition,

we provide two lemmas that will be useful for future reference.

Lemma 7.2.1. We have

ℓj = (−1)p(j)ℓ−j, ∀j ∈ I.

Proof. By observation we have ℓj = (−1)
p

(
ϵX
j− 1

2

)
. Moreover, since p(j) = p(−j) for all j ∈ I,

we have ℓj = (−1)p(j)ℓ−j, ∀j ∈ I.

Lemma 7.2.2. Suppose that Y = w•(X), then Y ∈ Dm,n and satisfies (7.14).
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Proof. For each k ∈ I, we have

αY,k := w•(αX,k) =



ϵX
k− 1

2

− ϵX
k+ 1

2

if |k| > n,

ϵX−n+ 1
2

− ϵX
n+ 1

2

if k = n,

ϵX−k+ 1
2

− ϵX−k− 1
2

if − n < k < n,

ϵX−n− 1
2

− ϵX
n− 1

2

if k = −n.

(7.16)

From (7.16) we can see that αX,k = αY,k if |k| > n and so is the parity. For |k| = n,

suppose p(αX,−n) = p(αX,n) = 0, then ϵX−n− 1
2

and ϵX−n+ 1
2

have the same parity while ϵX
n− 1

2

and

ϵX
n+ 1

2

have the same parity. Thus p(αY,n) = p(αY,−n). It can be checked similarly that when

p(αX,−n) = p(αX,n) = 1, we still have p(αY,n) = p(αY,−n).

For −n < k < n, we see that αY,k = −αX,−k. Thus the number of black odd roots stays

unchanged. Moreover, if τi = i and i ∈ I◦, then we have I• = ∅. Hence Y = X.

Let Y := w•(X). According to (7.16), we see that αY,k = ϵY
k− 1

2

− ϵY
k+ 1

2

where

ϵYt =


ϵXt , if t > n− 1

2
or t ⩽ −n− 1

2
,

ϵX−t, if − n− 1
2
< t ⩽ n− 1

2

(7.17)

Let U(Y ) represent the quantum supergroup associated with generators ϱ, EY
j , F

Y
j , q

µ,

where j ∈ I and µ ∈ P∨, corresponding to the Dynkin diagram Y . Similarly, let U(X)

denote the same algebra with generators ϱ, EX
j , F

X
j , q

µ, where j ∈ I and µ ∈ P∨, but with a

different presentation corresponding to the Dynkin diagram X. We note that the comultipli-

cation ∆ is dependent on the chosen presentation, as shown in equation (2.16). For simplicity,

we use the same notation ∆ and the parity function p for different presentations, and we omit

the script Y unless necessary.

The ıquantum supergroup of type AIII, denoted by Uı = Uı(Y ), is the Q(q)-subalgebra
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of U(Y ) generated by qµ (µ ∈ P∨
ı ), Ej, Fj (j ∈ I•), ϱ and

Bj = Fj + ςjTw•(E
X
τj)K

−1
j , for j ∈ I◦. (7.18)

where parameters ςj ∈ Q(q), for j ∈ I◦ satisfy the conditions ςj = ς−j, for j ∈ I◦\{±n} [Let02]

(also cf. [BK15, BW21]). (When n = 0, B0 will be allowed to take a more general form

B0 = F0 + ς0E0K
−1
0 + κ0K

−1
0 , for an additional parameter κ0 ∈ Q(q).)

For each reduced expression w• = sj1 · · · sjl , we can write Tw• = Tj1 · · ·Tjl . By Proposition

7.1.13, Tw• is a well-defined operator as a product of braid operators associated to both odd

and even simple roots in I•.

Now (U(Y ),Uı(Y )) forms a quantum supersymmetric pair of type AIII [Let99, Let02] (cf.

[BW18a, BK19]). The algebra Uı satisfies the following relations

qµBj = q−⟨µ,αj⟩Bjq
µ, ∀j ∈ I◦,

qµFj = q−⟨µ,αj⟩Fjq
µ, qµEj = q⟨µ,αj⟩Ejq

µ, ∀j ∈ I•, µ ∈ P∨
ı ,

ϱ(Bj) = (−1)p(j)Bj, ∀j ∈ I.

and additional Serre type relations. By definition we see the following relation holds in Uı.

Lemma 7.2.3. For any j ∈ I•, k ∈ I we have

EjBk − (−1)p(j)p(k)BkEj = δjk
Kj −K−1

j

qℓj − q−ℓj
. (7.19)

For future use, we let U• denote the subalgebra of U generated by {Ej, Fj, K
±1
j , ϱ | j ∈ I•}.

Let Uı0 denote the subalgebra of Uı generated by {qµ, ϱ | µ ∈ P∨
ı }.

The next lemma will help us pin down one of the conditions on the parameters.

Lemma 7.2.4. If ςj ̸= ς−j for j ∈ I◦\{±n}, then (K−1
j K−1

−j ) ∈ Uı0.
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Proof. This claim follows from the relation

BjB−j − (−1)p(j)B−jBj = −ς−j(−1)p(j)
Kj −K−1

j

qℓj − q−ℓj
K−1

−j + ςj
K−j −K−1

−j

qℓ−j − q−ℓ−j
K−1

j

According to Lemma 7.2.1 we have ℓj = (−1)p(j)ℓ−j. Thus qℓ−j − q−ℓ−j = (−1)p(j)(qℓj − q−ℓj).

Hence the lemma follows.

By the above lemma we see that Uı ∩ U0 = Uı0 can only be satisfied if the parameters

satisfy ςj = ς−j for j ∈ I◦\{±n}. From now on we assume the parameters {ςj} always satisfy

this condition.

Furthermore, we determine the action of Tw• on U•.

Lemma 7.2.5. For all j ∈ I•, we have

Tw•(E
X
j ) = −F−jK−j, Tw•(F

X
j ) = −K−1

−jE−j, Tw•(K
X
j ) = K−1

−j ,

T−1
w• (E

X
j ) = −K−1

−jF−j, T−1
w• (F

X
j ) = −E−jK−j, T−1

w• (K
X
j ) = K−1

−j .

(7.20)

Proof. The proof of this lemma follows from the same argument in [Ko14, Lemma 3.4] and

Lemma 7.1.14.

7.2.2 Coideal subalgebra property

One of the key properties of the ıquantum group is that it is a coideal subalgebra of the

underlying Hopf algebra rather than a Hopf subalgebra. Here we observe such a structure for

Uı as well.

Proposition 7.2.6. Uı is a right coideal subalgebra of U.

Proof. It is not hard to show that U• and Uı0 are Hopf subalgebras of U. Thus it suffices to

show that

∆(Bf ) ∈ Uı ⊗U, ∀f ∈ I◦. (7.21)
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Recall ∆ from (2.16). It is straightforward to compute for f ∈ I◦\{±n} that

∆(Bf )−Bf ⊗K−1
f ∈ U+

• U
ı0 ⊗U. (7.22)

Now suppose f = −n. For any reduced expression w(y)
• = sy1 · · · syℓ of w•, we define

Y
(y)
t = syt · · · syℓ(X), 1 ⩽ t ⩽ ℓ.

More specifically, in this case we choose

w(y)
• = (sn−1sn−2 · · · s−n+1) · · · (sn−1sn−2)(sn−1).

For convention we drop (y) in the following proof and we define

αD
k := αD,k, for any D ∈ Dm,n.

Then we observe that

Tw•(E
X
−n) = Tsn−1 · · ·Ts−n+1(E

Y2n
−n )

=Tsn−1 · · ·Ts−n+2(E
Y2n−1

−n+1E
Y2n−1

−n

− (−1)p(α
Y2n−1
−n+1 )p(α

Y2n−1
−n )q(α

Y2n−1
−n+1 ,α

Y2n−1
−n )E

Y2n−1

−n E
Y2n−1

−n+1)

=Tsn−1 · · ·Ts−n+2(E
Y2n−1

−n+1)E−n − zE−nTsn−1 · · ·Ts−n+2(E
Y2n−1

−n+1)

(7.23)

where z = (−1)p(α
Y2n−1
−n+1 )p(α

Y2n−1
−n )q(α

Y2n−1
−n+1 ,α

Y2n−1
−n ).

By (7.23) we see that in order to prove (7.22) for f = −n, it suffices to prove that

∆(Tsn−1 · · ·Ts−n+1(E
Y2n
−n )) ∈ Tsn−1 · · ·Ts−n+1(E

Y2n
−n )⊗ 1 +U+

• U
0Kn ⊗U. (7.24)

We prove (7.24) by proving the following claim.
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Claim: For any 1 ⩽ k ⩽ 2n− 1, we have

∆(Tsn−1 · · ·Ts−n+k
(E

Y2n+1−k

−n+k−1))

∈ Tsn−1 · · ·Ts−n+k
(E

Y2n+1−k

−n+k−1)⊗ 1

+U+
• U

0ϱp(−n+k−1)K−n+k−1 ⊗U.

(7.25)

We prove (7.24) through induction on r = 2n− 1− k. We see that 0 ≤ r ≤ 2n− 2.

When r = 0, we have k = 2n− 1 and

∆(Tsn−1(E
Y2
n−2)) =∆(En−1En−2 − (−1)p(αn−1)p(αn−2)q(αn−1,αn−2)En−2En−1)

∈Tsn−1(E
Y2
n−2)⊗ 1 +U+

• U
0ϱp(n−2)Kn−2 ⊗U.

Now suppose the claim is true for r = j, that is k = 2n− 1− j and

∆(Tsn−1 · · ·Tsn−1−j
(E

Yj+2

n−2−j))

= Tsn−1 · · ·Tsn−1−j
(E

Yj+2

n−2−j)⊗ 1 +
∑
ℓ

xℓϱ
p(n−2−j)Kn−2−j ⊗ yℓ,

(7.26)

for some xℓ ∈ U+
• U

0, yℓ ∈ U.

In view of (2.16), (7.23) and (7.26), we see that

∆(Tsn−1 · · ·Tsn−1−j
(E

Yj+2

n−2−j))∆(En−3−j)

∈Tsn−1 · · ·Tsn−1−j
(E

Yj+2

n−2−j)En−3−j ⊗ 1

+
∑
ℓ

xℓϱ
p(n−2−j)Kn−2−jEn−3−j ⊗ yℓ +U+

• U
0ϱp(n−3−j)Kn−3−j ⊗U,

∆(En−3−j)∆(Tsn−1 · · ·Tsn−1−j
(E

Yj+2

n−2−j))

∈En−3−jTsn−1 · · ·Tsn−1−j
(E

Yj+2

n−2−j)⊗ 1

+
∑
ℓ

En−3−jxℓϱ
p(n−2−j)Kn−2−j ⊗ yℓ +U+

• U
0ϱp(n−3−j)Kn−3−j ⊗U.

(7.27)
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By comparing both sides of (7.26) we see that xℓ is a monomial of the form a(i)Zi1 · · ·Zij+1

where

Zit ∈ {Eit , ϱ
p(it)Kit}, a(i) ∈ Q(q).

and {i1, . . . , ij+1} = {n− 1, . . . , n− 1− j}. Hence we have:

En−3−jxℓϱ
p(n−2−j) = (−1)p(n−3−j)·[p(n−1)+···+p(n−1−j)]xℓEn−3−jϱ

p(n−2−j)ℓ

= (−1)p(n−3−j)·[p(n−1)+···+p(n−2−j)]xℓϱ
p(n−2−j)En−3−j.

(7.28)

Moreover, we compute directly that

p(α
Yj+2

n−2−j) = p(sn−j−2(sn−1 · · · sn−j−1)α
X
n−j−2) = p(n− 1) + · · · p(n− 2− j),

p(α
Yj+2

n−3−j) = p(αn−3−j) = p(n− 3− j),

(α
Yj+2

n−2−j, α
Yj+2

n−3−j) = (αn−2−j, αn−3−j).

(7.29)

Now consider the case r = j + 1, that is to compute ∆(Tw•(E
X
n−3−j)), from (7.23), (7.27),

(7.28) and (7.29) we have

∆(Tw•(E
X
n−3−j)) = ∆(Tsn−1 · · ·Tsn−j−2

(E
Yj+3

n−3−j))

=∆(Tsn−1 · · ·Tsn−1−j
(E

Yj+2

n−2−j))∆(En−3−j)

− (−1)p(α
Yj+2
n−j−2)p(α

Yj+2
n−j−3)q(α

Yj+2
n−j−2,α

Yj+2
n−j−3)∆(En−j−3)∆(Tsn−1 · · ·Tsn−j−1

(E
Yj+2

n−j−2))

∈ Tw•(E
X
n−j−3)⊗ 1 +U+

• U
0ϱp(n−j−3)Kn−j−3 ⊗U.

(7.30)

Thus the claim is proved and (7.24) is exactly the case when r = 2n− 2. Similarly for f = n

we also have

∆(Tw•(E
X
n)) ∈ Tw•(E

X
n)⊗ 1 +U+

• U
0Kn ⊗U (7.31)

137



Thus we conclude from (7.22), (7.30) and (7.31) that

∆(Bf )−Bf ⊗K−1
f ∈ U+

• U
ı0 ⊗U ∀f ∈ I◦. (7.32)

This proves the proposition.

7.2.3 Quantum ıSerre relations

Recall the Serre relations (R5) − (R11) from (2.11). In this subsection we explore the Serre

relations of Uı. For convention, we extend the definition of Bj by setting Bj = Fj for j ∈ I•.

The triangular decomposition (2.17) implies an isomorphism between vector spaces

U+ ⊗U0 ⊗ S(U−) ∼= U. (7.33)

This leads to a direct sum decomposition

U =
⊕
µ∈P∨

U+KµS(U
−)⊕U+KµϱS(U

−). (7.34)

For any µ ∈ P∨, let Pµ : U → U+KµS(U
−) ⊕ U+KµϱS(U

−) denote the projection with

respect to (7.34). We also use the symbol Pλ for λ ∈ Q to denote the projection Pλ : U →

U+KλS(U
−)⊕U+KλϱS(U

−) as above.

On the other hand, let Q+ := NΠ, we also have the decomposition

U =
⊕

α,β∈Q+

U+
α U

0U−
−β (7.35)

We let πα,β : U → U+
α U

0U−
−β denote the projection with respect to (7.35).

The fact that

∆ ◦ Pµ(x) = (id⊗ Pµ)∆(x), ∀µ ∈ P∨, x ∈ U (7.36)
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implies the following lemma.

Lemma 7.2.7. [Ko14, Lemma 5.9] We have Uı =
⊕

µ∈P∨ Pµ(U
ı).

The following lemma gives the first Serre type relation of Uı.

Lemma 7.2.8. For j ∈ I1, we have B2
j = 0.

Proof. It suffices to check for j ∈ I◦ ∩ I1. Because of (7.14), we always have j ̸= −j. Hence

B2
j =(Fj + ςjTw•(E

X
−j)K

−1
j )2

=F 2
j + ςj[Fj, Tw•(E

X
−j)]K

−1
j + ς2j Tw•(E

X
−j)

2K−2
j

= 0.

This proves the lemma.

We define two special weights λj,k = (1+ |(αj, αk)|)αj + αk and λj = 2αj + αj−1 + αj+1 in

order to apply the projection technique in [Ko14]. Furthermore, we define

S(x1, x2) = x21x2 − [2]x1x2x1 + x2x
2
1, ∀x1, x2 ∈ U

and recall St1,t2(x1, x2, x3) from (2.12).

Lemma 7.2.9. (1) Assume j ∈ I•, k ∈ I and j ≁ k ∈ I, then we have [Bj, Bk] = BjBk −

(−1)p(j)p(k)BkBj = 0.

(2) For j ∈ I• ∩ I0 and k ∼ j, we have S(Bj, Bk) = 0.

(3) For j ∈ I• ∩ I1 and k ∼ j ∼ ℓ, we have Sp(k),p(ℓ)(Bk, Bj, Bℓ) = 0.

Proof. (1) In general we have

[Bj, Bk] =[Fj, Fk] + ςk[Fj, Tw•(E
X
−k)K

−1
k ].
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Now if k ∈ I•, there is nothing to prove. If k is in I◦ then in this case we can rewrite Fj as

−Tw•(E
X
−j)K

−1
j according to Lemma 7.2.5 and one computes that

[Tw•(E
X
−j)K

−1
j , Tw•(E

X
−k)K

−1
k ] = Tw•([E

X
−jK

X
−j, E

X
−kK

X
−k]) = 0.

(2) If k ∈ I•, there is nothing to prove. Thus we can assume that k ∈ I◦. In this case we

have

S(Bj, Bk) =S(Fj, ςkTw•(E
X
−k)K

−1
k )

=ςkS(Tw•(E
X
−j)K

−1
j , Tw•(E

X
−k)K

−1
k )

=ςkzS(Tw•(E
X
−j), Tw•(E

X
−k))K

−2
j K−1

k

for some z ∈ Z[q, q−1]. Since Tw• is an algebra homomorphism, we see that S(Bj, Bk) = 0.

(3) Without loss of generality, we assume k = j − 1 and ℓ = j + 1. If both k, ℓ ∈ I•, then

Bk = Fk, Bj = Fj and Bℓ = Fℓ hence there is nothing to prove. Otherwise, we note that only

one of k and ℓ can belong to I◦. Suppose that k ∈ I•, ℓ ∈ I◦, then we have

Sp(k),p(ℓ)(Bk, Bj, Bℓ)

=ςℓSp(k),p(ℓ)(Fk, Fj, Tw•(E
X
−ℓ)K

−1
ℓ )

=− ςℓSp(k),p(ℓ)(Tw•(E
X
−k)K

−1
k , Tw•(E

X
−j)K

−1
j , Tw•(E

X
−ℓ)K

−1
ℓ )

=− ςℓz
′Sp(k),p(ℓ)(Tw•(E

X
−k), Tw•(E

X
−j), Tw•(E

X
−ℓ))K

−1
k K−2

j K−1
ℓ = 0

for some z′ ∈ Z[q, q−1]. The case k ∈ I◦, ℓ ∈ I• can be proved similarly.

The following technical lemmas provide key steps in the proof of Lemma 7.2.12.

Lemma 7.2.10. (1) For any j ≁ k ∈ I, we have π0,0([Bj, Bk]) ∈ Uı0.

(2) For any j ∼ k where j ∈ I0, we have π0,0(S(Bj, Bk)) = 0.

(3) For any k ∼ j ∼ ℓ where j ∈ I1, we have π0,0(Sp(k),p(ℓ)(Bk, Bj, Bℓ)) = 0.
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Proof. (1) If one of j, k is in I•, then [Bj, Bk] = 0. If j, k ∈ I◦ and j ̸= τk, then we also have

[Bj, Bk] = 0. If both j = τk ̸= ±n ∈ I◦, then k = −j and ςj = ς−j. Moreover, we see that

BjB−j − (−1)p(j)B−jBj = −ς−j(−1)p(j)
Kj −K−1

j

qℓj − q−ℓj
K−1

−j + ςj
K−j −K−1

−j

qℓ−j − q−ℓ−j
K−1

j

According to Lemma 7.2.1 we have ℓj = (−1)p(j)ℓ−j. Thus qℓ−j − q−ℓ−j = (−1)p(j)(qℓj − q−ℓj)

and BjB−j − (−1)p(j)B−jBj ∈ Uı0. Now suppose that j = −n = −k. Since j ≁ k, we must

have I• ̸= ∅. Hence for weight reason we have π0,0([Bj, Bk]) = 0.

(2) The case when j ∈ I• follows from Lemma 7.2.9. When j ∈ I◦, for weight reason we

always have π0,0(Sp(k),p(ℓ)(Bk, Bj, Bℓ)) = 0.

(3) Suppose k < j < ℓ. The case when j ∈ I• follows from Lemma 7.2.9. When j ∈ I◦,

at least one of k and ℓ lies in I◦, hence for weight reason we have π0,0(Sp(k),p(ℓ)(Bk, Bj, Bℓ)) =

0.

Lemma 7.2.11. Assume k ∼ j ∼ ℓ and j ∈ I1. Let α, β ∈ Q+, if πα,β(Sp(k),p(ℓ)(Bk, Bj, Bℓ)) ̸=

0, then λj − α /∈ Pı and λj − β /∈ Pı.

Proof. By Lemma 7.2.9, there is nothing to show if j ∈ I•. Hence we may assume that j ∈ I◦.

Without loss of generality we can suppose that k < j < ℓ and k ∈ I◦. Consider first the case

ℓ ∈ I•. We see that

Sp(k),p(ℓ)(Tw•(E
X
−k)K

−1
k , Tw•(E

X
−j)K

−1
j , Fℓ)

=Sp(k),p(ℓ)(Tw•(E
X
−k)K

−1
k , Tw•(E

X
−j)K

−1
j , Tw•(E

X
−ℓ)K

−1
ℓ ) = 0

Hence if πα,β(Sp(k),p(ℓ)(Bk, Bj, Bℓ)) ̸= 0, we have 0 ≤ β ≤ λj − αj and 0 ≤ α ≤ −Θ(λj − αj).

This implies that λj − β /∈ Pı and λj − α /∈ Pı. The case when ℓ ∈ I◦ can be proved similarly

as in [Ko14, Lemma 5.14].
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For any J = (j1, . . . , jr) ∈ Ir define wt(J) =
∑r

i=1 αji and

EJ = Ej1 · · ·Ejr , FJ = Fj1 · · ·Fjr , BJ = Bj1 · · ·Bjr . (7.37)

In this case we also define |J | = r.

Lemma 7.2.12. (1) Assume j ≁ k ∈ I, then we have P−λj,k
([Bj, Bk]) = 0.

(2) Assume j ∼ k and j ∈ I0, then we have P−λj,k
(S(Bj, Bk)) = 0.

(3) Assume k ∼ j ∼ ℓ and j ∈ I1, then we have P−λj
(Sp(k),p(ℓ)(Bk, Bj, Bℓ)) = 0.

Proof. The proofs for all three cases follow the strategy presented in [Ko14, Proposition 5.16].

Therefore, we will provide the proof for case (3) only since the proofs for cases (1) and (2)

can be derived similarly from Lemma 7.2.9, Lemma 7.2.10, and [Ko14, Lemma 5.14].

Assume now k ∼ j ∼ ℓ and j ∈ I1. By Lemma 7.2.9 we can assume that j ∈ I◦.

Set Ξ = Sp(k),p(ℓ)(Bk, Bj, Bℓ) and Z = P−λj
(Ξ). It follows from (7.19) and (7.32) that

∆(Ξ) ∈ Ξ⊗K−λj
+

∑
{J |wt(J)<λj}

U+
• U

ı0BJ ⊗U. (7.38)

Moreover, relations (7.36) and (7.38) imply

∆(Z) ∈ Ξ⊗K−λj
+

∑
{J |wt(J)<λj}

U+
• U

ı0BJ ⊗ P−λ(U). (7.39)

Assume now that Z ̸= 0. Choose α ∈ Q+ maximal such that πα,β(Z) ̸= 0 for some β ∈ Q+.

In this case by (2.16) we have

0 ̸= (id⊗ πα,0)∆(Z) ∈ S(U−)K−λ+α ⊗ U+
αK−λ ⊕ S(U−)ϱK−λ+α ⊗ U+

αK−λ. (7.40)

Now if α ̸= 0, the relations (7.39) and (7.40) imply that K−λ+α ∈ Uı, which is in contradiction

to Lemma 7.2.11.
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Remark 7.2.13. The assumption (7.14) is required for Lemma 7.2.9 and Lemma 7.2.10.

Let J denote a fixed subset of ∪s∈Z⩾0
Is such that {FJ | J ∈ J } is a basis of U−. Now we

can apply the projection technique to conclude that

Proposition 7.2.14. In Uı one has the relation

(1)[Bj, Bk] ∈
∑

{J∈J |wt(J)<λjk}

U+
• U

ı0BJ , for all j ≁ k ∈ I,

(2)S(Bj, Bk) ∈
∑

{J∈J |wt(J)<λj,k}

U+
• U

ı0BJ , for all j ∼ k ∈ I, j ∈ I0,

(3)Sp(k),p(ℓ)(Bk, Bj, Bℓ) ∈
∑

{J∈J |wt(J)<λj}

U+
• U

ı0BJ , for all k ∼ j ∼ ℓ ∈ I, j ∈ I1.

(7.41)

Proof. We only proof for (3) and the proof for (1) and (2) is similar.

Since P−λj
(Ξ) = 0 according to Lemma 7.2.12, by applying the counit to the second tensor

factor in (7.39) we get Sp(k),p(ℓ)(Bk, Bj, Bℓ) ∈
∑

{J |wt(J)<λj}U
+
• U

ı0BJ .

7.2.4 Quantum Iwasawa decomposition

Define a filtration F∗ of U− by

F t(U−) = span{FJ | J ∈ Is, s ⩽ t}, t ∈ Z⩾0.

As the quantum Serre relations for U are homogeneous, the set {FJ | J ∈ J , |J | ⩽ t} forms

a basis for F t(U−).

Proposition 7.2.15. The set {BJ | J ∈ J } is a basis of the left U+U0-module U.

Proof. First for any J ∈ J such that |J | = t we have FJ − BJ ∈ U+U0F t−1(U−). Thus by

induction on t we can conclude that each FJ is contained in the left U+U0-module generated

by {BJ | J ∈ J }.
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It remains to show {BJ | J ∈ J } is linearly independent. Assume there exists a non-empty

finite subset J ′ ⊂ J such that
∑

J∈J ′ aJBJ = 0. Let t0 = max{|J | | J ∈ J ′}. In view of the

definition of Bj, we have ∑
J∈J ′,|J |=t0

aJFJ = 0.

The linear independence of {FJ | J ∈ J } implies aJ = 0 for all J ∈ J ′, |J | = t0. Then

through induction we conclude the desired result.

By Proposition 7.2.15 any element in Uı can be written as a linear combination of elements

in {BJ | J ∈ J } with coefficients in U+U0. We want to further show that the coefficients are

from U+
• U

ı0.

Proposition 7.2.16. The set {BJ | J ∈ J } is a basis of the left U+
• U

ı0-module Uı.

Proof. First of all, since {BJ | J ∈ J } is linearly independent over U+U0, it is also indepen-

dent over U+
• U

ı0.

Secondly, let L ∈ I t. One can apply the Serre relations (R9) and (R11) in (2.11) repeatedly

to write

FL =
∑

J∈J ,|J |=t

aJFJ

for some aJ ∈ C(q). According to Proposition 7.2.14 and Lemma 7.2.8 one sees that

BL −
∑

J∈J ,|J |=t

aJBJ ∈
∑
s<t

∑
J∈Is

U+
• U

ı0BJ .

Thus through induction we see that {BJ | J ∈ J } spans the left U+
• U

ı0-module Uı.

Define a subspace of Uı by

Uı
J :=

∑
J∈J

C(q)BJ . (7.42)
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Then Proposition 7.2.16 can be reformulated by saying that the multiplication map

U+
• ⊗Uı0 ⊗Uı

J → Uı

is an isomorphism of vector spaces.

Fix a subset Iτ ⊂ I◦ consists of exactly one element of each τ -orbit within I◦. Let Uı0
τ

denote the subalgebra generated by {K±1
i | i ∈ Iτ}. Then we have the following algebra

isomorphism

Uı0
τ ⊗Uı0 ∼= U0. (7.43)

Define V +
• to be the subalgebra generated by the elements of all the finite dimensional subspace

ad(U•)(Ei) for i ∈ I◦. It is proved in [K99] that

U+ ∼= V +
• ⊗U+

• . (7.44)

The following proposition gives the quantum Iwasawa decomposition of U associated with Uı.

Theorem 7.2.17. The multiplication map gives an isomorphism of vector spaces

V +
• ⊗Uı0

τ ⊗Uı ∼= U.

Proof. Combining (7.44) with (7.43) we have an isomorphism

U+U0 ∼= V +
• ⊗Uı0

τ ⊗U+
• ⊗Uı0

of vector spaces. Thus Proposition 7.2.16 implies the desired result.
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Chapter 8

ıSchur duality of type AIII in the super

setting

In this chapter, an ıSchur duality between the ıquantum supergroup Uı and the Hecke algebra

of type B acting on a tensor space is established, providing a super generalization of the ıSchur

duality of type AIII. Additionally, we construct a (quasi) K-matrix for arbitrary parameters,

which facilitates the realization of the Hecke algebra action on the tensor space.

8.1 ıSchur duality revisited

In this section, we explore the fundamental representation W of U and establish a commuting

action between the ıquantum supergroup Uı and the Hecke algebra of type B on W⊗d.

8.1.1 Bimodule structure

Recall from (7.16) and (7.17) that

Π = w•(ΠX) = {αi = ϵY
i− 1

2
− ϵY

i+ 1
2
| i ∈ I}
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is the set of simple roots of Y . Recall in (7.13) we switch the index set to I = Im+n−1. Another

advantage of this notation is that we can naturally parameterize the natural representations

of U by Im+n = I2r+m.

Let W denote the natural representation of U. We recall the notations Ir|m|r, I−◦ , I•, I+◦ as

in § 3.1.1.

With these notations, the natural representation W is a vector superspace with an ordered

basis {wa | a ∈ Ir|m|r} such that

wt(wa) = ϵYa, Ej(wa) = δa,j+ 1
2
wa−1, Fj(wa) = δa,j− 1

2
wa+1, ϱ(wa) = (−1)p(wa)wa (8.1)

for all a ∈ Ir|m|r and j ∈ I. Note that p(wa) := p(ϵYa).

Recall basic set ups from § 3.1.1 for the type B Weyl group Wd, Hecke algebra HBd
and

the right action of Wd on Idr|m|r. In this section, we replace the parameter p in the definition

of HBd
with Q to avoid confusion with the parity function p(·).

The following proposition is a multi-parameter version of [CL22, Proposition 2.10].

Proposition 8.1.1. There is an right action of HBd
on W⊗d as follows:

Mf ·Hi =



(−1)p(wf(i))p(wf(i+1))Mf ·si + (q − q−1)Mf , if f(i) < f(i+ 1), i > 0;

(−1)p(wf(i))p(wf(i+1))Mf ·si , if f(i) > f(i+ 1), i > 0;

(−1)p(wf(i))(q + q−1) + q − q−1

2
Mf , if f(i) = f(i+ 1), i > 0;

(−1)p(wf(1))Mf ·si + (Q−Q−1)Mf , if f(1) ∈ I+◦ , i = 0;

(−1)p(wf(1))Mf ·si , if f(1) ∈ I−◦ , i = 0,

QMf , if f(1) ∈ I•, i = 0.

Proof. It has been established in [Mi06] that this defines an action of HSd
on W⊗d. The

remaining nontrivial relation to verify is H0H1H0H1 = H1H0H1H0, which can be confirmed
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through a case-by-case check.

8.1.2 ıSchur(-Sergeev) duality

We first recall results from [Mi06] which establish a type A Schur duality between the quantum

supergroup and the Hecke algebra of type A.

We let stUϱ
q(gl(m|n)) denote the quantum supergroup corresponding to the standard

Dynkin diagram as in Example 2.3.1. The actions we define in Proposition 8.1.1 coincides with

[Mi06, (3.1)(3.2)]. We denote by Φst (resp. Φ) the homomorphism from stUϱ
q(gl(m|n)) (resp.

U) to End(W⊗d). Both images of Φ and Φst equal to the centralizer of HSd
-actions within

End(W⊗d), hence we have Φ(U) = Φst(stUϱ
q(gl(m|n))). Moreover, we have the following

theorem.

Theorem 8.1.2. [Mi06] The actions of U and HSd
on W⊗d commute with each other:

U
Φ↷ W⊗d Ψ↶ HSd

.

Moreover, Φ(U) and Ψ(HSd
) form double centralizers in End (W⊗d).

Following the strategy of [SW23], we develop a type B ıSchur duality between Uı and

HBd
. For any reduced expression w(y)

• = sy1 · · · syℓ of w•, as in the proof of Proposition 7.2.6,

we define

Y
(y)
t = syt · · · syℓ(X), 1 ⩽ t ⩽ ℓ.

Note that Y = Y
(y)
1 for any w(y)

• .

In the next two lemmas we compute explicitly the actions of Bj (j ∈ I◦) on W.
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Lemma 8.1.3. For a ∈ Ir|m|r and i ∈ I◦ = [1− n− r,−n] ∪ [n, n+ r − 1], we have

Tw•(E
X
τ(i))(wa) =


E−i(wa), |i| > n;

E−n+1E−n+2 · · ·En−1En(wa), i = −n;

ℏmE−nE−n+1 · · ·En−2En−1(wa), i = n.

where

ℏm = (−1)m−1+p(α
Y2n−1
−n+1 )p(α

Y2n−1
−n )+···+p(α

Y1
n−1)p(α

Y1
n−2)q(α

X
−n+1,α

X
−n)+···+(αX

n−1,α
X
n−2). (8.2)

Proof. The computation follows similarly as in [SW23, Lemma 4.2].

Take i = n for example. We choose

w(y)
• = (sn−1sn−2 · · · s−n+1) · · · (sn−1sn−2)(sn−1).

For convention we drop (y) in the following proof. Then we compute Tw•(E
X
−n)(wa) as

follows:

Tw•(E
X
−n)(wa)

=Tsn−1 · · ·Ts−n+1(E
Y2n
−n )(wa)

=Tsn−1 · · ·Ts−n+2(E
Y2n−1

−n+1E
Y2n−1

−n

− (−1)p(α
Y2n−1
−n+1 )p(α

Y2n−1
−n )q(α

Y2n−1
−n+1 ,α

Y2n−1
−n )E

Y2n−1

−n E
Y2n−1

−n+1 )wa

=− (−1)p(α
Y2n−1
−n+1 )p(α

Y2n−1
−n )q(α

X
−n+1,α

X
−n)E−nTsn−1 · · ·Ts−n+2(E

Y2n−1

−n+1 )(wa)

By induction on n, we have

Tw•(E
X
−n)(wa) = ℏmE−nE−n+1 · · ·En−2En−1(wa).

This proves the lemma.
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Lemma 8.1.3 together with the formula for Bj immediately imply the following.

Lemma 8.1.4. Let a ∈ Ir|m|r and j ∈ I◦. The action of Bj on W is given by:

B−n(wa) =


w−n+ 1

2
, if a = −n− 1

2
;

ς−nw−n+ 1
2
, if a = n+ 1

2
;

0, else,

Bi(wa) =


wi+ 1

2
, if a = i− 1

2
;

ςiw−i− 1
2
, if a = −i+ 1

2
;

0, else,

for |i| > n,

and (recall m = 2n)

Bn(wa) =


wn+ 1

2
+ q−(−1)

p

(
w
n− 1

2

)
ℏmςnw−n− 1

2
, if a = n− 1

2
;

0, else.

Remark 8.1.5. When p(j) = 0 for all j ∈ I•, the computations can be greatly simplified and

we have ( p(wa) = 0 for all a ∈ Ir|m|r )

ℏm = (−1)m−1q1−m.

For the rest of this section we fix the parameters to be



ςj = (−1)p(j), if j ̸= ±n,

ς−n = (−1)
p

(
w

n+1
2

)
Q, where m = 2n ∈ Z≥1,

ςn = (−1)
p

(
w

n+1
2

)
q(−1)

p

(
w
n− 1

2

)
Q−1ℏ−1

m .

(8.3)
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Introduce the Q(Q, q)-subspaces of W:

W− =
⊕
a∈I+◦

Q(Q, q)(wa − (−1)p(w−a)Qw−a), W• =
⊕
a∈I•

Q(Q, q)wa,

W+ =
⊕
a∈I+◦

Q(Q, q)(wa + (−1)p(w−a)Q−1w−a).

Lemma 8.1.6. Assume (8.3). Then W− and W• ⊕W+ are Uı-submodules of W. Hence, we

have a Uı-module decomposition W = (W• ⊕W+)⊕W−.

Proof. It follows by a direct computation using the formulas (8.1) and Lemma 8.1.4.

The decomposition of W above is also compatible with the H0-action.

Lemma 8.1.7. The Hecke generator H0 acts on W− as (−Q−1)Id and acts on W• ⊕W+ as

Q · Id.

Proof. It follows from a direct computation on the basis vectors.

Theorem 8.1.8. Suppose the parameters satisfy (8.3). Then the actions of Uı and HBd
on

W⊗d commute with each other:

Uı Ψ↷ W⊗d Φ↶ HBd
.

Moreover, Ψ(Uı) and Φ(HBd
) form double centralizers in End (W⊗d).

Proof. By Theorem 8.1.2, we know that the actions of U commute with the action of Hi, for

1 ≤ i ≤ d− 1. Thus, to show the commuting actions of Uı and HBd
, it remains to check the

commutativity of the actions of H0 and the generators of Uı.

To that end, it suffices to consider d = 1 (thanks to the coideal property of Uı and the fact

that the action of H0 depends solely on the first tensor factor). In this case, the commutativity

between Uı-action and H0-action on W follows directly from Lemmas 8.1.6 and 8.1.7.

The double centralizer property is equivalent to a multiplicity-free decomposition of W⊗d

as an Uı ⊗ HBd
-module, which reduces by a deformation argument to the q = 1 setting. At
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the specialization q,Q 7→ 1, Uı becomes the enveloping algebra of a direct sum of two type A

Lie superalgebras (cf. [Se83]), W = (W• ⊕W+)⊕W− becomes the natural representation of

it, on which s0 ∈ Wd acts as (IdW•⊕W+ ,−IdW−). The multiplicity-free decomposition of W⊗d

at q = Q = 1 can be established by a standard approach as in [CW12, Theorem 3.9].

8.2 Quasi K-matrix

From this section on we impose one extra condition on the Satake diagrams we are working

with:

p(j) = 0, ∀j ∈ I•. (8.4)

Under the assumption (8.4), the braid group operators Ti for i ∈ I• reduce to the ones of

Lusztig and we do not need to work with different presentations of U anymore. Hence the

scripts standing for the underlying Dynkin diagrams will be omitted.

In this section, we follow [BK19] and [Ko22, §3.2] to construct the quasi K-matrix under

the assumption (8.4).

8.2.1 Preparation

Suppose Y ∈ Dm,n is of the form (7.12) and satisfies (7.14) and (8.4). Again we let U(Y )

denote the quantum supergroup with generators ϱ, Ej, Fj, Kj, j ∈ I associated to Y . Recall

that Uı(Y ) is the Q(q)-subalgebra of U(Y ) generated by qµ (µ ∈ P∨
ı ), Ej, Fj (j ∈ I•), ϱ and

Bj = Fj + ςjTw•(Eτj)K
−1
j , for j ∈ I◦. (8.5)

Abusing the notation τ , the diagram involution τ gives rise to the following algebra ho-

momorphism on U:
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Proposition 8.2.1. Under the assumption (7.14), there is an involution τ on U such that

τ(Ej) = Eτj, τ(Fj) = Fτj, τ(Kj) = (−1)p(j)Kτj, τ(ϱ) = ϱ (8.6)

for all j ∈ I.

Proof. The proof follows from checking on the generators and Lemma 7.2.1.

The super skew derivations (cf. [CHW13, §1.5]) ir and ri on U+ satisfy the following

relations ri(Ej) = δi,j, ir(Ej) = δi,j, and

ir(xy) = (−1)p(y)p(i)ir(x)y + q(αi,µ)xir(y),

ri(xy) = (−1)p(y)p(i)q(αi,υ)ri(x)y + xri(y)

(8.7)

for all x ∈ U+
µ , y ∈ U+

υ .

Let U≥ (resp. U≤) denote the Hopf subalgebra of U generated by U0 and U+ (resp. U−).

According to [Ya94, §2.4], there is a non-degenerated bilinear pairing ⟨·, ·⟩ on U≤ ×U≥ such

that for all x, x′ ∈ U≥, y, y′ ∈ U≤, µ, υ ∈ P and a, b ∈ {0, 1}, we have

⟨y, xx′⟩ = ⟨∆(y), x′ ⊗ x⟩, ⟨yy′, x⟩ = ⟨y ⊗ y′,∆(x)⟩,

⟨qµϱa, qυϱb⟩ = (−1)abq−(µ,υ), ⟨Fj, Ek⟩ = δj,k,

⟨qµϱa, Ej⟩ = 0, ⟨Fj, q
µϱa⟩ = 0

(8.8)

The next lemma is a super analogue of [Jan95, §6.14].

Lemma 8.2.2. For all x ∈ U+, y ∈ U− and j ∈ I one has

⟨Fiy, x⟩ = (−1)p(x)p(j)⟨Fi, Ei⟩⟨y, ir(x)⟩, ⟨yFi, x⟩ = ⟨Fi, Ei⟩⟨y, ri(x)⟩. (8.9)
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Proof. Suppose x ∈ U+
µ , then we have that

∆(x) = x⊗ 1 +
∑
i∈I

ri(x)ϱ
p(i)Ki ⊗ Ei + (rest)1,

∆(x) = ϱp(x)Kµ ⊗ x+
∑
i∈I

(−1)p(x)p(i)Eiϱ
p(µ−αi)Kµ−αi

⊗ ir(x) + (rest)2

where (rest)1, (rest)2 ∈ ϱU+
µ−υKυ ⊗ U+

υ or U+
µ−υKυ ⊗ U+

υ with υ > 0, υ /∈ Π. Hence the

lemma follows from (8.8).

The next lemma is a crucial ingredient to construct the quasi K-matrix.

Lemma 8.2.3. For all x ∈ U+, we have

[x, Fj] = xFj − (−1)p(x)p(j)Fjx =
1

qℓj − q−ℓj
(rj(x)Kj −K−1

j jr(x)). (8.10)

Proof. We induct on ht(x). When x = Ej for some j ∈ I, (8.10) follows from the definition.

Now if x = uv where ht(u) < ht(x) and ht(v) < ht(x), then we have

uvFj =(−1)p(v)p(i)uFjv +
urj(v)Kj − uK−1

j jr(v)

qℓj − q−ℓj

=(−1)p(uv)p(j)Fjuv +
urj(v)Kj − q(αj ,|u|)K−1

j ujr(v)

qℓj − q−ℓj

+ (−1)p(v)p(j)
rj(u)Kjv −K−1

j jr(u)v

qℓj − q−ℓj

=(−1)p(uv)p(j)Fjuv +
rj(uv)Kj −K−1

j ir(uv)

qℓj − q−ℓj
.

This proves the lemma.

8.2.2 A recursive formula

Define Q+
0
:= {α ∈ Q+ | p(α) = 0}. Extending (7.18), we write Bi = Fi for i ∈ I•. Following

[BK19, §6], we establish the following lemma to give equivalent conditions on the existence of
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the quasi K-matrix.

Let ρ• denote the half sum of positive roots of the Levi subalgebra associated with I• ⊂ I.

Lemma 8.2.4. Let Υ =
∑

µ∈Q+

0

Υµ with Υµ ∈ U+
µ be an element in the completion of U,

then the following are equivalent.

(1) For all i ∈ I, we have (cf. [WZ22, (3.20)])

BiΥ = Υτ ◦ σ(Bτi). (8.11)

(2) For all i ∈ I, we have

BiΥ = Υ(Fi + (−1)(2ρ•,αi)q(αi,2ρ•+w•ατi)ςτiTw•(Eτi)Ki). (8.12)

(3) The element Υ satisfy the following relations:

ri(Υµ) = −(qℓi − q−ℓi)Υµ−αi−w•(ατi)(−1)(2ρ•,αi)q(αi,2ρ•+w•ατi)ςτiTw•(Eτi),

ir(Υµ) = −(qℓi − q−ℓi)q(αi,w•ατi)ςiTw•(Eτi)Υµ−αi−w•ατi
.

(8.13)

Moreover, if these relations hold then additionally we have

xΥ = Υx for all x ∈ Uı0U•. (8.14)

and

Υµ = 0 unless w•τ(µ) = µ. (8.15)

Proof. Note that

τ ◦ σ(Bτi) = Fi + ςτiKiT
−1
w• (Eτi).

Thus the equivalence of (1) and (2) follows from [BW18b, Lemma 4.17]. The equivalence of

(2) and (3) follows from Lemma 8.2.3. Moreover, (8.15) follows from an induction argument
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on ht(µ); cf. [BK19, Proposition 6.1].

The following lemma states that every non-vanishing term of the quasi K-matrix is ex-

pected to have parity 0.

Lemma 8.2.5. For µ ∈ Q+, if w•τ(µ) = µ, then p(µ) = 0.

Proof. Let’s use induction on ht(µ). Now we can write µ =
∑ℓ

t=1 atαjt where at > 0 for

1 ⩽ t ⩽ ℓ. Now if all αjt are even roots, then we have p(µ) = 0. On the other hand, suppose

p(αj1) = 1. Since w•τ(µ) = µ, we have µ′ = µ − (αj1 + w•τ(αj1)) ∈ Q+ and w•τ(µ
′) = µ′

and ht(µ′) < ht(µ). Thus by the inductive hypothesis we have p(µ′) = 0. Also, according to

(7.14), we have p(αj1) = p(w•τ(αj1)). Thus we have p(µ) = 0 as well.

Lemma 8.2.6. For any i, j ∈ I, we have

ri ◦ jr(x) = (−1)p(i)p(j)jr ◦ ri(x), ∀x ∈ U+.

Proof. If u = Ek or 1, then we certainly have ri ◦ jr(u) = (−1)p(i)p(j)jr ◦ ri(u). Thus It is

enough to show that ri ◦ jr(xy) = jr ◦ ri(xy) for any x ∈ U+
µ , y ∈ U+

υ .

We have

ri ◦ jr(xy)

=ri((−1)p(y)p(j)jr(x)y + q(αj ,µ)xjr(y))

=(−1)p(y)p(j)[(−1)p(y)p(i)q(αi,υ)ri ◦ jr(x)y + jr(x)ri(y)]

+ q(αj ,µ)[(−1)p(jr(y))p(i)q(αi,υ−αj)ri(x)jr(y) + xri ◦ jr(y)],

jr ◦ ri(xy)

=jr((−1)p(y)p(i)q(αi,υ)ri(x)y + xri(y))

=(−1)p(y)p(i)q(αi,υ)[(−1)p(y)p(j)jr ◦ ri(x)y + q(αj ,µ−αi)ri(x)jr(y)]

+ [(−1)p(ir(y))p(j)jr(x)ri(y) + q(αj ,µ)xjr ◦ ri(y)].
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Now since p(kr(y)) = p(y)± p(k) for any k ∈ I, we have ri ◦ jr = (−1)p(i)p(j)jr ◦ ri.

The system of equations (8.13) for all i ∈ I provides an equivalent condition for the

existence of Υ, and our objective is to solve it recursively using the following proposition.

Proposition 8.2.7. (cf. [BK19, Proposition 6.3]) Let µ ∈ Q+
0

with ht(µ) ⩾ 2 and fix Ai, iA ∈

U+
µ−αi

for all i ∈ I. The following are equivalent.

(1) There exists an element Ξ ∈ U+
µ such that

ri(Ξ) = Ai, ir(Ξ) = iA, ∀i ∈ I.

(2) The elements Ai and iA satisfy the following properties.

(2a) For all i, j ∈ I, we have

ri(jA) = (−1)p(i)p(j)ir(Aj). (8.16)

(2b) For all i ∈ I1, we have

⟨Fi, Ai⟩ = 0. (8.17)

(2c) For all i ≁ j ∈ I, we have

⟨Fi, Aj⟩ = (−1)p(i)p(j)⟨Fj, Ai⟩. (8.18)

(2d) For all i ∈ I0 and j ∼ i, we have

⟨F 2
i , Aj⟩ − [2]⟨FiFj, Ai⟩+ ⟨FjFi, Ai⟩ = 0. (8.19)

157



(2e) For all i ∈ I1 and j ∼ i ∼ k, we have

[2]⟨FiFkFj, Ai⟩ = (−1)p(j)⟨FiFkFi, Aj⟩+ (−1)p(j)+p(j)p(k)⟨FjFiFk, Ai⟩

+(−1)p(k)⟨FiFjFi, Ak⟩+ (−1)p(k)+p(j)p(k)⟨FkFiFj, Ai⟩.
(8.20)

Proof. The proposition follows by a rerun of proof of [BK19, Proposition 6.3].

8.2.3 Technical Lemmas

Define

ς ′i = (−1)(2ρ•,αi)q(αi,2ρ•+w•ατi)ςτi, for all i ∈ I. (8.21)

Thus we can rewrite (8.13) as

Ai = −(qℓi − q−ℓi)Υµ−αi−w•ατi
ς ′iTw•( Eτi),

iA = −(qℓi − q−ℓi)q(αi,w•ατi)ςiTw•(Eτi)Υµ−αi−w•ατi

(8.22)

In order to construct the quasi K-matrix Υ recursively, it suffices to show (8.22) satisfies

relations (8.16)–(8.20) for all i ∈ I. Following the strategy from [BK19] we develop several

lemmas as follows.

Lemma 8.2.8. For all u ∈ U+
µ , we have

σ ◦ ir(u) = (−1)p(i)(p(u)+1)ri ◦ σ(u). (8.23)

Proof. We prove by induction on ht(µ). When u = Ej or u = 1 the equality holds by

definition. Now suppose x ∈ U+
µ1
, y ∈ U+

µ2
where u = xy, µ = µ1 + µ2 and µ1, µ2 > 0. Then
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we have

σ ◦ ir ◦ σ(xy) =σ((−1)p(x)p(i)ir ◦ σ(y)σ(x) + q(αi,µ2)σ(y)ir ◦ σ(x))

=(−1)p(x)p(i)xσ ◦ ir ◦ σ(y) + q(αi,µ2)σ ◦ ir ◦ σ(x)y

=(−1)p(xy)p(i)+p(i)ri(xy).

This proves the lemma.

Lemma 8.2.9. For all x ∈ U+
µ , we have

ri(x) = q(αi,αi−µ)
ir(x). (8.24)

Proof. We prove by induction on ht(µ). When u = Ej or u = 1 the equality holds by

definition. Now suppose x ∈ U+
µ1
, y ∈ U+

µ2
where u = xy, µ = µ1 + µ2 and µ1, µ2 > 0. Then

we have

ri(xy) =xri(y) + (−1)p(y)p(i)q−(αi,µ2)ri(x)y

=q(αi,αi−µ2)xir(y) + (−1)p(y)p(i)q(αi,αi−µ1−µ2)
ir(x)y

=q(αi,αi−µ)[q(αi,µ1)
ir(y) + (−1)p(y)p(i)ir(x)y]

=q(αi,αi−µ)
ir(xy).

This proves the lemma.

Lemma 8.2.10. For all i ∈ I◦, we have

ri(Tw•(Ei)) = (−1)(αi,2ρ•)q(αi,αi−w•αi−2ρ•)σ ◦ τ(rτi(Tw•(Eτi))). (8.25)

Proof. Follow from a rerun of the proof of [BK15, Lemma 2.9].
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Lemma 8.2.11. For all i ∈ I◦, we have

σ ◦ τ(ri(Tw•(Ei))) = ri(Tw•(Ei)). (8.26)

Proof. Follow from a rerun of the proof of [BK15, Proposition 2.3].

Combining Lemma 8.2.10 and Lemma 8.2.11 we get

Corollary 8.2.12. For all i ∈ I◦, we have

ri(Tw•(Ei)) = (−1)(αi,2ρ•)q(αi,αi−w•αi−2ρ•)rτi(Tw•(Eτi)). (8.27)

8.2.4 Construction of Υ

Now we are ready to check that (8.22) for all i ∈ I indeed satisfy relations (8.16)–(8.20).

Lemma 8.2.13. The relation ri(jA) = (−1)p(i)p(j)jr(Ai) holds for all i, j ∈ I.
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Proof. We calculate that

1

−(qℓj − q−ℓj)
ri(jA)

=q(αj ,w•ατj)ςj[(−1)p(i)p(µ)q(αi,µ−αj−w•ατj)ri(Tw•(Eτj))Υµ−αj−w•ατj

+ Tw•(Eτj)ri(Υµ−αj−w•ατj
)]

=q(αj ,w•ατj)ςj[(−1)p(i)p(µ)q(αi,µ−αj−w•ατj)ri(Tw•(Eτj))Υµ−αj−w•ατj

− (qℓi − q−ℓi)Tw•(Eτj)Υµ−αj−w•ατj−αi−w•ατi
ς ′iTw•(Eτi)],

1

−(qℓi − q−ℓi)
jr(Ai)

=(−1)p(w•ατi)p(j)
jr(Υµ−αi−w•ατi

)ς ′iTw•(Eτi)

+ q(αj ,µ−αi−w•ατi)ς ′iΥµ−αi−w•ατijr(Tw•(Eτi))

=− (−1)p(i)p(j)(qℓj − q−ℓj)q(αj ,w•ατj)ςjTw•(Eτj)·

Υµ−αj−w•ατj−αi−w•ατi
ς ′iTw•(Eτi)

+ q(αj ,µ−αi−w•ατi)ς ′iΥµ−αi−w•ατijr(Tw•(Eτi))

Recall that Υµ vanishes whenever p(µ) = 1. By comparing the two equations we see that the

relation ri(jA) = (−1)p(i)p(j)jr(Ai) holds if and only if

q(αj ,w•ατj)ςjq
(αi,µ−αj−w•ατj)ri(Tw•(Eτj))Υµ−αj−w•ατj

=(−1)p(i)p(j)
qℓj − q−ℓj

qℓi − q−ℓi
q(αj ,µ−αi−w•ατi)ς ′iΥµ−αi−w•ατijr(Tw•(Eτi))

(8.28)

We may assume i = τj, otherwise both sides of (8.28) vanish. According to (8.24) we have

τir(Tw•(Eτi) = q(ατi,w•ατi−ατi)rτi(Tw•(Eτi).
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Substituting this together with Lemma 7.2.1 we see that (8.28) is equivalent to

ςτiq
(αi,µ−ατi+w•ατi−w•αi)ri(Tw•(Ei))Υµ−ατi−w•αi

=q(ατi,µ−αi−ατi)ς ′iΥµ−αi−w•ατi
rτi(Tw•(Eτi))

(8.29)

Observe that µ− ατi −w•αi = µ− αi −w•ατi and w•αi −w•ατi = αi − ατi. We may further

assume that Υµ−ατi−w•αi
̸= 0, thus w•τ(µ) = µ and hence (αi − ατi, µ) = 0. Thus we see

(8.29) is equivalent to

q(ατi,αi)ςτiri(Tw•(Ei)) = ς ′irτi(Tw•(Eτi))

(8.27)
= ς ′i(−1)(ατi,2ρ•)q(ατi,ατi−w•ατi−2ρ•)ri(Tw•(Ei)),

(8.30)

which follows from the definition of ς ′i (8.21).

The next lemma verifies the relation (8.17).

Lemma 8.2.14. For all i ∈ I, we have

⟨Fi, Ai⟩ = 0.

Proof. Since wt(Ai) = µ − αi. We see that ⟨Fi, Ai⟩ is zero unless µ = 2αi. Moreover, we see

that Ai = 0 if i ∈ I•. Assume that i ∈ I◦, in this case we always have µ − αi − w•ατi /∈ Q+

since i ̸= τi. Hence Ai = 0.

To verify the relation (8.18), we have

Lemma 8.2.15. For all i ≁ j ∈ I, we have

⟨Fi, Aj⟩ = (−1)p(i)p(j)⟨Fj, Ai⟩.

Proof. According to [BK19, Lemma 6.4], we can assume that j = τi ∈ I◦\{±n} and µ =

αi + αj, otherwise all terms vanish. In this case we have ςi = ςj, Ai = −(qℓi − q−ℓi)ς ′iEτi, and
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Aj = −(qℓj − q−ℓj)ς ′jE−j. Thus we have

⟨Fi, Aτi⟩ = −(qℓτi − q−ℓτi)ς ′τi = −(−1)p(i)(qℓi − q−ℓi)ς ′i = (−1)p(i)⟨Fτi, Ai⟩.

This proves the lemma.

To verify the relation (8.19), we have

Lemma 8.2.16. For all i ∈ I0 and j ∼ i, we have

⟨F 2
i , Aj⟩ − [2]⟨FiFj, Ai⟩+ ⟨FjFi, Ai⟩ = 0.

Proof. We can assume that µ = 2αi + αj, otherwise all terms in the above sum vanish. But

by [BK19, Lemma 6.4] in this case we have w• ◦ τ(µ) ̸= µ for all j ∼ i ∈ I. Hence all terms

still vanish.

To verify the relation (8.20), we have

Lemma 8.2.17. For all i ∈ I1 and j ∼ i ∼ k, we have

[2]⟨FiFkFj, Ai⟩ = (−1)p(j)⟨FiFkFi, Aj⟩+ (−1)p(j)+p(j)p(k)⟨FjFiFk, Ai⟩

+(−1)p(k)⟨FiFjFi, Ak⟩+ (−1)p(k)+p(j)p(k)⟨FkFiFj, Ai⟩.

Proof. Again we may assume that µ = 2αi + αk + αj otherwise all terms vanish. But in this

case we see that w• ◦ τ(µ) ̸= µ unless τj = k, τ i = i and i, j, k ∈ I◦. However, this is excluded

by (7.14). Hence all terms still vanish.

Therefore, we conclude that

Ai = −(q − q−1)Υµ−αi−w•ατi
ς ′iTw•(Eτi),

iA = −(q − q−1)q(αi,w•ατi)ςiTw•(Eτi)Υµ−αi−w•ατi

163



for all i ∈ I satisfy relations (8.16)–(8.20).

Thus we can conclude the main result of this section.

Theorem 8.2.18. There exists a uniquely determined element Υ =
∑

µ∈Q+

0

Υµ in the com-

pletion of U with Υ0 = 1 and Υµ ∈ U+
µ , such that the equality

BiΥ = Υ(τ ◦ σ(Bτi))

holds for all i ∈ I.

Moreover, Υµ = 0 unless w•τ(µ) = µ.

Once Υ is constructed, we can define a unique bar involution on Uı with certain assumption

on the parameters as follows.

Corollary 8.2.19. Under the assumption that ςj = ς ′j for all j ∈ I, there is a unique bar

involution ψı on Uı, defined by

ψı(x) = ΥxΥ−1, for all x ∈ Uı

and such that

ψı(q) = q−1, ψı(Bj) = Bj, ψı(Ek) = Ek, ψı(Fk) = Fk,

for j ∈ I◦, k ∈ I•.

Proof. For all i ∈ I, it follows from Lemma 8.2.4 that BiΥ = Υ(τ ◦ σ(Bτi)) is equivalent to

(8.12). Under the assumption ς ′i = ς i we see that (8.12) is equivalent to

BiΥ = ΥBi.

This concludes the proof.
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Remark 8.2.20. One can construct Υ associated to more general Satake diagrams. For exam-

ple, one can replace (8.4) by a weaker condition:

p(j) = p(τj), ∀j ∈ I•.

Under this assumption formally we still have w•(Y ) = Y . Thus Tw• can still be treated as

an automorphism on U(Y ) although it is a composition of both even and odd braid group

operators.

In the last of this subsection we give an example of Υ.

Example 8.2.21. Consider the following Satake diagram

⊗
−1

2

⊗
1
2

We have (α 1
2
, α− 1

2
) = 1, ℓ− 1

2
= 1 = −ℓ 1

2
and

B 1
2
= F 1

2
+ ς 1

2
E− 1

2
K−1

1
2

,

B− 1
2
= F− 1

2
+ ς− 1

2
E 1

2
K−1

− 1
2

.

In this case, following the constructions in this section we get

Υ = (
∑
k⩾0

(ς 1
2
)k

{k}!
)(E 1

2
E− 1

2
+ qE− 1

2
E 1

2
)k)(
∑
k⩾0

(ς− 1
2
)k

{k}!
)(E− 1

2
E 1

2
+ qE 1

2
E− 1

2
)k),

where {k} = qk−1[k] and {k}! = {k} · · · {1}.
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8.3 K-matrix and the H0-action

In this section we follow [BW18b] (also cf. [BK19]) to construct a Uı-module intertwiner (or

K-matrix).

8.3.1 K-matrix

Recall the assumption (8.4). We review several basic lemmas from [BW18b] below. Recall σ

and ℘ from (2.13).

Lemma 8.3.1. For all i ∈ I•, j ∈ I and e = ±1, we have

℘(T ′′
i,e(Ej)) = (−q)e(αi,αj)T ′

i,−e(℘(Ej)),

℘(T ′
i,e(Ej)) = (−q)−e(αi,αj)T ′′

i,−e(℘(Ej)).

(8.31)

Proof. It follows from a rerun of the proof of [BW18b, Lemma 4.4].

Lemma 8.3.2. For i ∈ I◦ and e = ±1, we have

℘(T ′′
w•,e(Ei)) = (−1)(2ρ•,αi)qe(2ρ•,αi)T ′

w•,−e(℘(Ei)),

℘(T ′
w•,e(Ei)) = (−1)(2ρ•,αi)q−e(2ρ•,αi)T ′′

w•,−e(℘(Ei)).

(8.32)

Proof. It follows from (8.31) and a rerun of the proof of [BW18b, Corollary 4.5] .

Recall qi = qℓi . Following [BW18b, §4.5], under the assumption (7.14), we define the

following automorphism of U obtained by composition ϑ = σ ◦ ℘ ◦ τ such that

ϑ(Ej) = (−1)p(j)qτjFτjK
−1
τj , ϑ(Fj) = (−1)p(j)q−1

τj KτjEτj,

ϑ(Kj) = K−1
τj , ϑ(ϱ) = ϱ, for all j ∈ I.

(8.33)

For any finite-dimensional U-module M , we define a U-module ϑM twisted by ϑ as follows:

▷ ϑM =M as an Q(q)-vector space,
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▷ We denote a vector in ϑM by ϑm for m ∈M ,

▷ the action of u ∈ U on ϑM is given by ϑ(u)ϑm = ϑ(um).

Let

g : P → Q(q) (8.34)

be a function such that for all µ ∈ P , we have the following two recursive relations of g:

g(µ) = −qjq2(αj ,µ)g(µ+ αj), ∀j ∈ I•. (8.35)

g(µ) = g(µ− αj)(−1)p(j)ςj(−1)(2ρ•,αj)q(2ρ•,αj)qjq
(ατj ,w•µ)q−(αj ,µ), ∀j ∈ I◦. (8.36)

Such a function g exists; cf. [BW18b, (4.15)]. Note that under our assumption (8.4), we have

qj = qτj for all j ∈ I•.

Lemma 8.3.3. For any µ ∈ P , we have

g(µ) = g(µ− w•αj)(−1)p(j)ςjq
(ατj ,µ)qjq

−(αj ,w•µ), ∀j ∈ I◦. (8.37)

Proof. Recall the following identity [BW18b, (4.18)]:

g(µ− αj) = g(µ− w•αj)(−1)(2ρ•,αj)q−(2ρ•,αj)q2(αi−w•αi,µ), ∀j ∈ I◦. (8.38)

Then applying (8.36) to (8.38) we get (8.37).

The function g induces a Q(q)-linear map on any finite dimensional U-module M :

g̃ : M →M, g̃(m) = g(µ)m, m ∈Mµ.

In the next theorem we construction the K-matrix.
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Theorem 8.3.4. (cf. [BW18b, Theorem 4.18]) For any finite-dimensional U-module M , we

have the following isomorphism of Uı-modules

T := Υ ◦ g̃ ◦ T−1
w• :M → ϑM.

Proof. It suffices to verify that T defines a homomorphism of Uı-modules. We shall prove the

following identity

T (ϑ(u) ·m) = u · T (m), for u ∈ Uı, m ∈Mµ. (8.39)

It is straightforward to check (8.39) for u = Kµ, ϱ. Also, for u = Fj, Ej (j ∈ I•), the

proof are essentially the same as those of [BW18b, Case(2)-(3),Theorem 4.18]. Thus we only

verify for u = Bj (j ∈ I◦) as below.

For u = Bi(i ∈ I◦), first we see that

ϑ(Bi) =(−1)p(i)q−1
τi KτiEτi + ςiσ ◦ ϱ ◦ τ ◦ Tw•(Eτi)Kτi

(8.32)
= (−1)p(i)q−1

τi KτiEτi + ςi(−1)(2ρ•,αi)q(2ρ•,αi)Tw•(σ ◦ ϱ(Ei))Kτi

=(−1)p(i)q−1
τi KτiEτi + (−1)p(i)ςi(−1)(2ρ•,αi)q(2ρ•,αi)qiTw•(Fi)Tw•(K

−1
i )Kτi.

Therefore we have

T−1
w• ◦ ϑ(Bi) =(−1)p(i)q−1

τi T
−1
w• (Kτi)T

−1
w• (Eτi)

+ ςi(−1)p(i)(−1)(2ρ•,αi)q(2ρ•,αi)qiFiK
−1
i T−1

w• (Kτi).

168



Now we have

T (ϑ(Bi)(m)) = Υ ◦ g̃ ◦ T−1
w• (ϑ(Bi)m) = Υ ◦ g̃

(
T−1
w• ◦ ϑ(Bi)(T

−1
w• (m))

)
=Υ ◦ g̃((−1)p(i)q−1

τi T
−1
w• (Kτi)T

−1
w• (Eτi)T

−1
w• (m)

+ (−1)p(i)ςi(−1)(2ρ•,αi)q(2ρ•,αi)qiFiK
−1
i T−1

w• (Kτi)T
−1
w• (m))

=Υ(g(w•µ+ w•ατi)(−1)p(i)q−1
τi T

−1
w• (Kτi)T

−1
w• (Eτi)T

−1
w• (m)

+ (−1)p(i)g(w•µ− αi)ςi(−1)(2ρ•,αi)q(2ρ•,αi)qiFiK
−1
i T−1

w• (Kτi)T
−1
w• (m))

=Υ(g(w•µ+ w•ατi)(−1)p(i)q−1
τi q

(ατi,µ+ατi)T−1
w• (Eτi)T

−1
w• (m)

+ (−1)p(i)g(w•µ− αi)ςi(−1)(2ρ•,αi)q(2ρ•,αi)qiq
(ατi,µ)q−(αi,w•µ)FiT

−1
w• (m)).

On the other hand, we have

BiΥ = ΥBστ
τi = Υ(Fi + ςτiKiT

−1
w• (Eτi)).

Thus

Bi · T (m) =Bi

(
Υ ◦ g̃ ◦ T−1

w• (m)
) (8.11)

= Υ(Fi(g̃ ◦ T−1
w• (m)) + ςτiKiT

−1
w• (Eτi)(g̃ ◦ T−1

w• (m)))

=Υ(g(w•µ)FiT
−1
w• (m)

+ g(w•µ)ςτiq
(αi,w•µ+w•ατi)T−1

w• (Eτi)T
−1
w• (m)).

Now the identity (8.39) for u = Bj follows from comparing the coefficients using (8.36) and

(8.37).

8.3.2 Realizing H0 via K-matrix

In this subsection the goal is to realizeH0-action on W as in Proposition 8.1.1 via theK-matrix

T .

We assume the parameters satisfying (8.3) so that the ıSchur duality holds between Uı

and HBd
, and moreover, Υ and ψı in Corollary 8.2.19 uniquely exist. We also assume that
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Q ∈ qZ thus ψı(Q) = Q−1.

Given a U-module M , a U-module ϑM is simple if and only if M is simple itself. Let

λ be a dominant integral weight and L(λ) be the unique irreducible highest weight module

with highest weight vector ηλ. Moreover, we define a lowest weight U-module ωL(λ) of weight

−λ which has the same underlying vector space as L(λ) but with the action twisted by the

automorphism ω where

ω(Ej) = Fj, ω(Fj) = (−1)p(j)Ej, ω(Kµ) = K−µ. (8.40)

When we consider ηλ as a vector in ωL(λ), we shall denote it by ξ−λ. We check by definition

that

ϑL(λ) ∼= ωL(τλ).

A basic example of L(λ) is our fundamental representation W = L(ϵ−n−r+ 1
2
). We check

by definition that

ϑW = ϑL(ϵ−n−r+ 1
2
) ∼= ωL(−ϵn+r− 1

2
) = L(ϵ−n−r+ 1

2
). (8.41)

Recall T = Υ ◦ g̃ ◦ T−1
w• and Theorem 8.3.4. Together with (8.41) we see that T induces

an Uı-automorphism on W and send T−1
w• (ηϵ−n−r+1

2

) to ξϵ
n+r− 1

2

, cf. [BW18b, Theorem 4.18].

Thus we have the following corollary:

Corollary 8.3.5. The K-matrix T is an Uı-module automorphism of W:

T : W → W, w−n−r+ 1
2
7→ (−1)

p

(
w−n−r+1

2

)
wn+r− 1

2
.

Proposition 8.3.6. The action of H0 on W⊗d in Proposition 8.1.1 is realized via the K-matrix

as T ⊗ Id⊗d−1.

Proof. According to Corollary 8.3.5, we have T (w−n−r+ 1
2
) = (−1)

p

(
w−n−r+1

2

)
wn+r− 1

2
. Recall
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the parameters satisfy (8.3).

Suppose a ∈ I−◦ , a simple induction on a shows that

T (wa) =T (Ba− 1
2
Ba− 3

2
· · ·B−n−r+1w−n−r+ 1

2
)

=Ba− 1
2
Ba− 3

2
· · ·B−n−r+1T (w−n−r+ 1

2
) = (−1)p(wa)w−a = wa ·H0.

Now suppose a = −n− 1
2
, we have

T (w−n+ 1
2
) =T (B−nw−n− 1

2
) = B−nT (w−n− 1

2
) = (−1)

p

(
w

n+1
2

)
B−nwn+ 1

2

=Qw−n+ 1
2
= w−n+ 1

2
·H0.

Thus for any a ∈ I•, we have

T (wa) =T (Fa− 1
2
Fa− 3

2
· · ·F−n+1w−n+ 1

2
) = Fa− 1

2
Fa− 3

2
· · ·F−n+1T (w−n+ 1

2
)

=Qwa = wa ·H0.

Next we suppose a = n+ 1
2
, we have

T (wn+ 1
2
) =T (Bn(wn− 1

2
)− (−1)

p

(
w

n+1
2

)
Q−1w−n− 1

2
)

=QBn(wn− 1
2
)−Q−1wn+ 1

2

=(−1)
p

(
w

n+1
2

)
w−n− 1

2
+ (Q−Q−1)wn+ 1

2
= wn+ 1

2
·H0.

Thus for any a ∈ I+◦ , another simple induction on a shows that

T (wa) =T (Ba− 1
2
Ba− 3

2
· · ·Bn+1wn+ 1

2
) = Ba− 1

2
Ba− 3

2
· · ·Bn+1T (wn+ 1

2
)

=(−1)p(wa)w−a + (Q−Q−1)wa = wa ·H0.
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This completes the proof.

In case m = 0 or 1, the non-super specialization of Proposition 8.3.6 is established in

[BW18a, BWW18]. The property of a K-matrix T in Corollary 8.3.5 also provides a concep-

tual explanation for the commutativity of H0 and Uı acting on W⊗d.
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Chapter 9

ıSchur duality of type AI-II

In [SW24], we have formulated super Satake diagrams and the corresponding supersymmetric

pairs, building on arbitrary Dynkin diagrams for basic Lie superalgebras. We develop a theory

of quantum supersymmetric pairs associated to these super Satake diagrams.

The case of type AIII in previous chapters (when I• only contains even simple roots) is

one family of these quantum supersymmetric pairs. In this chapter we introduce another

interesting family of type AI-II. We also formulate an ıSchur duality between the ıquantum

supergroup of type AI-II and the q-Brauer algebra.

9.1 The ıquantum supergroups of type AI-II

We consider the following Satake diagram I:

1 m− 1
· · · ⊗

m m+ 1 m+ 2
· · ·

m+ 3 m+ 2n− 2 m+ 2n− 1 (9.1)

where I1 = {m}, I• = {m+ 2a− 1 | 1 ≤ a ≤ n} and I◦ = I\I•. In the case n = 0, we obtain

a Satake diagram of type AI; when m = 0, we obtain a Satake diagram of type AII.

In [SW24, Definition 2.3], we formulate super admissible conditions. A pair (I = I•∪I◦, τ)
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satisfying these conditions are referred to as a super admissible pair.

Lemma 9.1.1. [SW24, Lemma 8.1] The pair (I = I• ∪ I◦, τ = id) forms a super admissible

pair.

Recall ℓj from (2.10), for the super Satake diagram (9.1) we have

ℓj =


1 1 ≤ j ≤ m,

−1 m+ 1 ≤ j ≤ m+ 2n− 1.

The underlying Dynkin diagram of (9.1) corresponds to a (standard) fundamental system

of the Lie superalgebra gl(m|2n). As in § 2.3, we choose bases for V0 and V1 such that they

combine to a homogeneous basis of V . Such a basis is parameterized by the set I(m|2n).

Let U denote the type A quantum supergroup associated to (9.1). We define Uı to be the

Q(q)-subalgebra of U generated by

Bj = Fj + ςjTw•(Ej)K
−1
j , for j ∈ I◦.

together with K±1
j , Ej, Fj (j ∈ I•), ϱ. In the case m = 0, our Uı specializes to the ıquantum

group of type AII. In the case n = 0, our Uı specializes to the ıquantum group of type AI.

In [SW24], it has been established that quantum supersymmetric pairs (U,Uı) associ-

ated with super admissible pairs possess the desired properties of quantum symmetric pairs.

Specifically, the proof strategy for these properties of quantum supersymmetric pairs of type

AI-II aligns with § 7.2. Therefore, we will not repeat the proof but only list the results here.

Proposition 9.1.2. [SW24]

1. Uı is a right coideal subalgebra of U.

2. There exists a quantum Iwasawa decomposition of U with respect to Uı.

3. There exists a unique quasi K-matrix for (U,Uı).
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9.2 Action of the q-Brauer algebra

Proposition 9.2.1. [RSS22, Theorem A] For any d ≥ 2, the q-Brauer algebra Bd(q, z) is

(split) semisimple if and only if z2 ̸= q2a for a ∈ ♣ where

♣ = {i ∈ Z | 4− 2d ≤ i ≤ d− 2} \ {i ∈ Z | 4− 2n < i < 3− d, 2 ∤ i} . (9.2)

Let V be the natural representation of U, i.e. V is Q(q)-vector superspace with an ordered

basis {vi | i ∈ I(m|2n)}. Let | · | denote the parity function on V where |vi| = 1 for all i < 0

and |vi| = 1 otherwise. Recall from Proposition 8.1.1 that V⊗d endows a right HSd
-module

structure.

For i = 2, . . . ,m and j = 2, . . . , n, we set

τi :=
i−1∏
j=1

(−ςj), ζj :=

j−1∏
k=1

(−ςm+2j), τ1 = ζ1 = 1.

A Q(q)-linear operator Ξ on V⊗ V is defined by

Ξ(v1 ⊗ v1) = q2n

(
m∑
i=1

τ−1
i qm−2i+1vi ⊗ vi

)

− τ−1
m q2n−m

(
n∑

j=1

ζ−1
j q−4j+3(v2j−1 ⊗ v2j − q−1v2j ⊗ v2j−1)

)
,

Ξ(vi ⊗ vi) = τiΞ(v1 ⊗ v1), for all 2 ≤ i ≤ m,

Ξ(v1 ⊗ v2) = τmΞ(v1 ⊗ v1), Ξ(v2 ⊗ v1) = (−q−1)Ξ(v1 ⊗ v2),

Ξ(v2j−1 ⊗ v2j) = ζjΞ(v1 ⊗ v2), for all 2 ≤ j ≤ n,

Ξ(v2j ⊗ v2j−1) = (−q−1)Ξ(v2j−1 ⊗ v2j), for all 2 ≤ j ≤ n,

Ξ(va ⊗ vb) = 0, if (a, b) /∈ {(i, i), (2j − 1, 2j), (2j, 2j − 1) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

(9.3)

Proposition 9.2.2. For d ≥ 2, V⊗d is a right Bd(q, q
m−2n)-module by letting HSd

act as in
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Proposition 8.1.1 and e act as Ξ⊗ 1⊗d−2.

Proof. By [Mi06], the action of Hi satisfies relations (Q1)-(Q3) in Definition 5.2.1. The

verification of the relation (Q4)-(Q7) is very similar to the proof of [CS22, Prpoposition 4.4

and 5.3]. We prove the relation (Q4) for both statements as an example. Noting that the

action of e depends solely on the first two tensor factors, hence it suffices to show that

v1 ⊗ v1 · e2 =
qm−2n − q−m+2n

q − q−1
v1 ⊗ v1 · e.

Indeed we have

v1 ⊗ v1 · e2

=q−2n

(
m∑
i=1

τ−1
i qm−2i+1vi ⊗ vi · e

)

− τ−1
m q2n−m

(
n∑

j=1

ζ−1
j q−4j+3(v2j−1 ⊗ v2j − q−1v2j ⊗ v2j−1) · e

)

=

[
q−2n

(
m∑
i=1

qm−2i+1

)
− q2n−m

(
n∑

j=1

q−4j+3(1 + q−2)

)]
v1 ⊗ v1 · e

=

(
q−2n q

m − q−m

q − q−1
− q−m q

2n − q−2n

q − q−1

)
v1 ⊗ v1 · e

=
qm−2n − q2n−m

q − q−1
v1 ⊗ v1 · e.

This concludes the proof of the relation (Q4).

176



9.3 ıSchur duality of type AI-II

By direct calculation we obtain that

Bi · va =



vi+1 if 1 ≤ i ≤ m− 1, a = i,

qςivi if 1 ≤ i ≤ m− 1, a = i+ 1,

v1 if i = m, a = m,

−qςmvm if i = m, a = 2,

v2k+1 if i = m+ 2k, a = 2k,

−qςm+2kv2k−1 if i = m+ 2k, a = 2k + 2,

0 else.

(9.4)

Via the comultiplication ∆, we naturally view V⊗d as a left Uı-module.

Theorem 9.3.1. (1) If ςm = q−4n+3. then the left action of Uı on V⊗d commutes with the

right action of Bd(q, q
m−2n) defined in Proposition 9.2.2:

Uı Ψ↷ V⊗d Φ↶ Bd(q, q
m−2n).

(2)The following double centralizer property holds if m− 2n, 2n−m /∈ ♣ (9.2):

Ψ(Uı) = End Bd(q,qm−2n)(V⊗d),

Φ(Bd(q, q
m−2n)) = End Uı(V⊗d).

Proof. (1): By [Mi06], we know that the actions of U commute with the action of Hi, for

1 ≤ i ≤ d − 1. Moreover, by [CS22], we know that the actions of Bi for i ̸= m and U•

commutes with the action of Bd(q, q
m−2n). Therefore, to prove (1)&(2) it suffices to show

that the action of Bm commutes with the action of e. Since e acts on V⊗d by Ξ ⊗ 1⊗d−2, it
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suffices to verify the commuting actions on the first two tensor factors.

By definition we have Bm = Fm + qςmK
−1
m Tm+1(Em). We first observe that

Fm[Ξ(v1 ⊗ v1)] = (Fm ⊗K−1
m + ϱ⊗ Fm)[Ξ(v1 ⊗ v1)]

=τ−1
m q−m±2n+1(q−1v1 ⊗ vm + vm ⊗ v1)

(9.5)

Secondly we compute that

EmEm+1[Ξ(v1 ⊗ v1)] = −τ−1
m q2n−m−1EmEm+1(v1 ⊗ v2 − q−1v2 ⊗ v1) = 0,

Em+1Em[Ξ(v1 ⊗ v1)] = −τ−1
m q2n−m−1Em+1Em(v1 ⊗ v2 − q−1v2 ⊗ v1)

=− τ−1
m q2n−m−1(q−1v1 ⊗ vm + vm ⊗ v1).

(9.6)

Combine (9.5) and (9.6) we see that

Bm[Ξ(v1 ⊗ v1)] =τ
−1
m (q−2n−m+1 − q2n−m−2ςm)(q

−1v1 ⊗ vm + vm ⊗ v1),

Ξ[Bm · (v1 ⊗ v1)] = 0.

Therefore by the assumptions on ςm we see that Bm and e commute on the basis vector v1⊗v1.

The verification on other basis vectors are similar.

(2) The double centralizer property is synonymous with the multiplicity-free decomposition

of V⊗d as an Uı-Bd(q, q
m−2n)-bimodule. Proposition 9.2.1 affirms that the q-Brauer algebra

Bd(q, q
m−n) is semisimple given our assumption. Consequently, proving the double centralizer

property is reduced, through a deformation argument, to the case where q = 1. In the limit as

q tends to 1 and ςi takes on −1 for 1 ≤ i ≤ m−1, Uı transforms into the enveloping algebra of

the orthosymplectic Lie algebra osp(m|2n), while V becomes its natural representation. The

multiplicity-free decomposition of V⊗d in this scenario has already been established in [ES16].

This concludes the proof.

Remark 9.3.2. The duality presented in Theorem 9.3.1 merges the ıSchur duality of types AI
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and AII, as established in Part II, by incorporating an odd isotropic simple root
⊗

in between;

cf. [SW24]. This type of duality can be extended to encompass super Satake diagrams formed

by an arbitrary number of alternating Satake diagrams of types AI and AII, interconnected

by odd isotropic simple roots in the same way as above.
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