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Abstract

Sequential decision making is a collection of techniques automating decisions for a given system
model. In general, exact models are unrealistic since real-world behavior may be influenced by
external factors and modeling errors. We focus on methods which model uncertain environments
featuring both stochasticity and non-determinism. This dissertation develops safe sequential
decision making for different types of uncertain environments. We concentrate our efforts on
two types of decision making: multi-agent reinforcement learning (MARL) where agents seek to
learn optimal policies; and probabilistic model checking where the model’s transitions and states
are known. To address safe sequential decision making, we develop a suite of novel techniques
to bring logic guided learning to MARL algorithms and informative distributional algorithms to
probabilistic model checking.

In the first chapter, we introduce two novel shielding approaches for safe MARL synthesized
based on a temporal logic safety specification. For our centralized approach, we synthesize a
single shield to monitor all agents’ joint actions and correct any unsafe actions. We also propose
a factored shield where we synthesize multiple shields based on a factorization of the joint state
space; the set of shields monitors agents concurrently. The factored approach has the advantage
of being more scalable while the centralized shield is closer to optimal.

The shielding methods require general information about the underlying model which is not
always available. Therefore, in the second chapter, we propose a novel framework for designing
reward functions for agents to learn the desired behaviors while avoiding unsafe situations. We
use temporal logic to define which behaviors to encourage or shun. We present a semi-centralized
logic-based learning algorithm for reward shaping that is scalable in the number of agents.

Next, in the third chapter, we extend safe sequential decision making to probabilistic model
checking. Specifically, we design a distributional extension to probabilistic model checking. We
reason about a variety of distributional measures and propose a method to precisely compute the
full distribution. We also approximate the optimal policy using distributional value iteration for
varying levels of risk-sensitivity.

Finally, in the fourth chapter, we extend this work and formulate an algorithm to optimize the
weighted expected value of accumulated rewards in uncertain parametric models. We leverage
the joint distribution over the uncertain parameters using tractable yet expressive distributional
representations to provide less conservative policies.

We evaluate the approaches implemented in this dissertation across a diverse range of relevant
case studies. Experiments demonstrate significant advances in safe yet scalable methods for
multi-agent reinforcement learning and informative safety policy analysis for probabilistic model
checking. Moreover, to facilitate collaboration and future innovation, all frameworks developed
are made publicly available.
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Chapter 1

Introduction

Cyber-physical systems (CPS) are becoming increasingly complex to better integrate
with sensing, control and actuation of multiple devices in the physical world. Many of
these devices provide safety-critical services including autonomous driving, data transfer,
personal robots, and medical equipment. Sequential decision making is a collection of
techniques automating decisions for a given model of a CPS and environment combination.
In general, exact models are unrealistic since both system and environment behavior may
be influenced by external factors and modeling errors. For example, two cars of the same
make and model might still present slightly different behaviors or a drone performing
surveillance might encounter unexpected winds. Therefore, we focus on methods which
model uncertain environments featuring both stochasticity and non-determinism such as
Markov Decision Processes (MDPs). We further concentrate our efforts on the following
two classes of sequential decision making techniques: multi-agent reinforcement learning
(MARL) where agents seek to learn optimal policies when the underlying model is largely
unknown; and probabilistic model checking where the MDP’s transitions and states are
known enabling in-depth analysis. The main goal of this thesis is to help bridge the gaps
between safe policy synthesis methods in MARL and probabilistic model checking.

Multi-agent reinforcement learning addresses sequential decision-making problems where
multiple agents interact with each other in a common environment. In recent years,
MARL methods have been increasingly used in a wide range of safety-critical applications
from traffic management [1] to robotic control [2] to autonomous driving [3]. Existing
MARL methods [4], [5] focus mostly on optimizing policies based on returns, none of
which can guarantee safety (e.g., ensure no unsafe states are ever visited) during the
learning process. Nevertheless, learning with provable safety guarantees is necessary for
many safety-critical MARL applications where the agents (e.g., robots, autonomous cars)
may break during the exploration process, leading to catastrophic outcomes. However,
to accommodate the scale of these problems, recent MARL algorithms often trade safety
for efficiency.
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Probabilistic model checking offers a collection of techniques for modelling systems that
exhibit probabilistic and non-deterministic behavior. It supports not only their verifi-
cation against specifications in temporal logic, but also synthesis of optimal controllers
(policies). Common models such as discrete-time Markov chains (DTMCs) and Markov
decision processes have been used to model network protocols [6], [7], hardware proper-
ties, energy grid management and several robotic applications [8]. A range of verification
techniques for these, and other models, are supported by widely used probabilistic model
checkers such as PRISM [9] and Storm [10]. To capture the range of quantitative cor-
rectness specifications needed in practice, it is common to reason about rewards (or,
conversely, costs) associated with a model. Examples include checking the worst-case
execution time of a distributed coordination algorithm, or synthesizing a controller that
guarantees the minimal energy consumption for a robot to complete a sequence of tasks.
Typically the expected (average) value of these quantities is computed, however in some
situations it is necessary to consider the full probability distribution. Notably, in safety-
critical applications, it can be important to synthesize risk-sensitive policies, that avoid
high-cost, low-probability events, which can still arise when minimizing policies for the
expected value.

Research Questions: How do we ensure safe sequential decision making in uncertain
environments? This topic is especially challenging since the definition of safety varies
across different domains. We further define two sub-questions as follows.

Firstly, how can we provide safety in a multi-agent environment where the underlying MDP
is unknown? If too little information is known about the system it becomes impossible
to prevent worst case outcomes. A key challenge for this direction is to develop methods
that learn to avoid clearly defined unsafe events with a limited amount of information or
none at all while being scalable in the number of agents.

Secondly, how can we extend more rigorous probabilistic model checking methods to ac-
commodate for more notions of safety and risk? One aspect of the difficulty here is to
propose general frameworks that support multiple types of queries and further analysis
of the results. Furthermore, adapting these frameworks to handle more uncertain models
is also important.

1.1 Dissertation Overview

While significant research progress has targeted the scalability of reinforcement learning
and probabilistic model checking tools, only a few aspects of safety have been explored.
Moreover, safety work for MARL and model checking have evolved independently with-
out considering the advances made within the context of the other. MARL has mostly
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Figure 1.1: Dissertation Overview

focused on steering the policies with ad-hoc reward functions, ignoring the provably safe
techniques from synthesis and model checking tools. Recent endeavors in probabilistic
model checking involve scalability of the existing tools and risk sensitivity in the form of
specialized methods that only target a single metric at a time.

Dissertation Statement. In this dissertation, we develop novel safe sequential deci-
sion making methods based on multi-agent reinforcement learning and probabilistic model
checking. For multi-agent reinforcement learning, the main objective is to mitigate the
risk for unsafe behaviors using tools from formal methods. For probabilistic model check-
ing, the aim is to augment the algorithms with additional information to assess the risk
and uncertainty levels of the resulting solutions.

Figure 1.1 highlights the general organization of the methods presented in this thesis.
Each chapter’s methods handles varying levels of uncertainty in the input model and
targets different high-level safety objectives as shown in the corresponding ellipse. In
what follows, we give a brief overview of each chapter presented in this dissertation.

1.1.1 Safe MARL via Shielding

In Chapter 4, we introduce two novel shielding approaches for safe MARL where each is
synthesized based on a Linear Temporal Logic (LTL) safety specification. In both types
of shields, the safety specification represents the set of unsafe behaviors to prevent. We
then solve a safety game based on the provided specification and an abstraction of the
MDP representing the agents’ interactions with the environment. For our centralized
approach, we synthesize a single shield to monitor all agents’ joint actions and correct
any unsafe action only if necessary. However, the centralized nature of this method means
that its scalability in the number of agents is limited. For this reason, we further propose
a factored shield where we synthesize multiple shields based on a factorization of the
joint state space observed by all agents; the set of shields monitors agents concurrently
and each shield is only responsible for a subset of agents at each step. The shields
synthesized for each type allow us to ensure runtime safety by preventing agents’ most
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unsafe behaviors during learning and execution while leveraging the scalable aspects of
MARL. Experimental results show that both approaches can guarantee the safety of
agents during learning without compromising the quality of learned policies.

1.1.2 Logic-guided MARL Reward Shaping

The shielding approaches described above provide strong safety guarantees, but the MDP
abstraction used to synthesize the shields is not always available. For this chapter, we
intend to reliably guide the MARL agents learned policies in environments where the
underlying MDP is entirely unknown. In fact, MARL agents rely heavily on exploration
to learn from their environment and maximize observed rewards. It is, therefore, essential
to design reward functions which lead each agent to learn the desired behaviors defined as
an LTL specification. In this case, the specification represents the desired behavior rather
than the unsafe behavior as is done in Chapter 4. Previous work has combined automata
and logic based reward shaping with environment assumptions to provide an automatic
mechanism to synthesize the reward function based on the task specification. However,
there is limited work on how to expand logic-based reward shaping to the multi-agent
setting. Chapter 5 presents a novel method for semi-centralized logic-based MARL reward
shaping that is scalable in the number of agents. Experiments in multiple environments
and multiple tasks show improved learning performance using our method.

1.1.3 Distributional Probabilistic Model Checking

While multi-agent reinforcement learning proposes algorithms supporting large unknown
environments, it is not currently very compatible with rigorous analysis of the output
policy. Verifying and providing formal guarantees for reinforcement learning is currently
ongoing research. On the contrary, probabilistic model checking allows for in-depth anal-
ysis of MDPs through a wide range of quantitative properties. However, most methods
usually work with respect to the expected value of these quantities, which can mask im-
portant aspects of the full probability distribution such as the risk of high cost events.
In Chapter 6, we present a distributional extension of probabilistic model checking, for
discrete-time Markov chains and Markov decision processes. We formulate distributional
queries, which can reason about a variety of distributional measures, such as variance,
value-at-risk or conditional value-at-risk, for the accumulation of reward or cost until a
co-safe linear temporal logic formula is satisfied. For DTMCs, we propose a method to
compute the full distribution to an arbitrary level of precision. For MDPs, we approximate
the optimal policy using distributional value iteration. We implement our techniques and
investigate their performance and scalability across a range of large benchmark models.
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1.1.4 Distributionally Uncertain Probabilistic Model Checking

Distributional probabilistic model checking allows for a more general framework for as-
sessing a variety of distributional metrics such as risk-specific values. However, requiring
full information about the transitions of the MDP models to be evaluated is impractical
in some cases. Previous work on parametric MDPs shows how uncertainty in the para-
metric transition probabilities of the model can lead to a large set of possible solutions.
Moreover, few methods provide ways to tractably represent and assess the effects of this
uncertainty. In Chapter 7, we introduce an extension to the work in Chapter 6 in the form
of a novel algorithm for uncertain parametric MDP models featuring a joint distribution
over the parameters. A key ingredient to this approach is the use of tractable yet expres-
sive distributional representations for parameter uncertainty. Our approach optimizes
the weighted expected value of the accumulated rewards over these models resulting in
a policy exploiting the probabilities of the parameter realizations. Experimental results
show that our approach can provide additional information about the resulting policies
while being less conservative than comparable baseline methods.

1.2 Summary of Contributions

In this dissertation, we develop several algorithms for safe sequential decision making
using multi-agent reinforcement learning and probabilistic model checking. The main
contributions are summarized as follows:

• Bringing state of the art safe policy synthesis methods to MARL and probabilistic
model checking.

• Developing centralized and factored shielding approaches to prevent unsafe out-
comes in MARL.

• Presenting a scalable semi-centralized logic-based reward shaping method.

• Building a general formal framework for distributional probabilistic model checking
to allow for the assessment of distributional metrics.

• Designing a risk-sensitive distributional value iteration algorithm compatible with
the previously mentioned framework.

• Devising an algorithm for distributionally uncertain parametric MDPs to assess the
weighted possible outcomes based on the parameter uncertainty.
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1.3 Dissertation Structure

An illustration of this dissertation’s structure is provided in Figure 1.1. Chapter 2 reviews
existing research related to that presenting in this dissertation. In Chapter 3, I introduce
the necessary background for the following chapters. My main contributions are presented
in Chapters 4-7. Finally, I summarize my research, discuss future directions and broader
impacts in Chapter 8.

1.4 Other Publications and Credits

Parts of this work was jointly developed with other researchers and published as such.
However, I am the main contributor for the research presented in this dissertation and
credit my collaborators in the following.

Chapter 4 is based on the work in [11] published along with Suda Bharadwaj, Christopher
Amato, Rüdiger Ehlers, Ufuk Topcu and Lu Feng at AAMAS’21. I was solely responsible
for the development of this work while provided with starter synthesis code from Suda
Bharadwaj and instructions on the use of the synthesizer from Rüdiger Ehlers. Christo-
pher Amato, Rüdiger Ehlers, Ufuk Topcu and Lu Feng were instrumental in guiding my
design of the algorithms proposed.

Chapter 5 presents the contents of the technical report [12] under the advisement of Lu
Feng. Haiying Shen, Haifeng Xu and Hongning Wang have also provided feedback for
this work.

Chapter 6 is based on joint work with David Parker and Lu Feng to be published in [13] .
I actively worked with David Parker and Lu Feng to determine the distributional model
checking framework and define the distributional queries. The implementation is based
on the PRISM open-source model checking tool managed by David Parker. David Parker
also developed the algorithm in Section 4. However, I was responsible for implementation
the algorithms in Section 5 and Section 6 as well the evaluation and results.

Chapter 7 is based on joint research with David Parker and Lu Feng which is not yet
published. The implementation is also based on the PRISM open-source model checking
tool managed by David Parker. The code used as a baseline for comparison is part of
the PRISM codebase as well. I was responsible for the design and implementation of the
algorithm presented in Section 7.3.
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Chapter 2

Related Work

In this chapter, we review previous works relevant to the subsequent chapters including
works pertaining to safe reinforcement learning and shielding in Section 2.1, works relevant
to reward shaping and multi-agent reinforcement learning in Section 2.2, works relating
to distributional reinforcement learning and probabilistic model checking in Section 2.3
and finally works pertaining to robust planning and uncertain models in Section 2.4.

2.1 Safe Multi-Agent Reinforcement Learning via Shielding

Safe reinforcement learning (RL) is an active research area, but existing results focus
mostly on the single-agent setting [14], while safe MARL is still relatively uncharted
territory [5]. The survey in [14] classifies safe RL methods into two categories: (1) trans-
forming the optimization criterion with a safety factor, such as the worst case criterion,
risk-sensitive criterion, or constrained criterion; and (2) modifying the exploration process
through the incorporation of external knowledge (e.g., demonstrations, teacher advice)
or the guidance of a risk metric. Our shielding approaches fall into the second category.
In particular, shields act similarly to a teacher who provides information (e.g., safe ac-
tions) to the learner when necessary (e.g., unsafe situations are detected). The concept
of shielding was introduced to RL for the single-agent setting in [15]. In this work, we
adapt the shielding framework for MARL by addressing challenges such as the coupling
of agents and scalabilty issues in the multi-agent setting.

Different safety objectives for RL have been considered in the literature, such as the vari-
ance of the return, or limited visits of error states [14]. In this work, we synthesize shields
that enforce safety specifications expressed in linear temporal logic (LTL) [16], which is a
commonly used specification language in formal methods for safety-critical systems [17],
[18]. For example, LTL has been used to express complex task specifications for robotic
planning and control [19], [20]. Several recent works [21]–[23] have developed reward
shaping techniques that translate logical constraints expressed in LTL to reward func-
tions for RL. However, as we demonstrated in our experiments (Section 4.3), relying on
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reward functions only is not sufficient for MARL methods to learn policies that guarantee
the safety (e.g., no collisions).

The shield synthesis technique based on solving two-player safety games was developed
in [24] for enforcing safety properties of a system at runtime, and was adopted in [15]
to synthesize shields for single-agent RL. We further adapt this technique to synthesize
centralized and factored shields for MARL in this paper. There are a few recent works [25],
[26] considering the shield synthesis for multi-agent (offline) planning and coordination,
none of which are directly applicable for MARL.

2.2 Logic-Guided Reward Shaping

Reward Shaping. Linear Temporal Logic (LTL) is a commonly used specification
language in formal methods for safety-critical systems [17], [18]. For example, LTL has
been used to express complex task specifications for robotic planning and control [19], [20].
Tasks expressed in LTL can be represented as a Limit-Deterministic Büchi Automaton
(LDBA) clearly highlighting accepting states [21]. The product of the obtained LDBA
and the environment MDP can be used to designed a logic based reward function. In
Hasanbeig et al. [21] the reward function is purely based on visiting the accepting states
whereas in Bozkurt et al. [22] the reward function is based on the path that is visited. In
Kuo et al. [27] and in Elbarbari et al. [28], the authors explore different ways to capture
metrics of progress within the logic synthesized automaton in order to help guide the
learning more effectively.

Logic based reward shaping can also be used in continuous control use cases [29], [30].
In the context of RL, logic-based reward shaping has often been augmented by using
control barrier functions to address probabilistic safety guarantees [21], [29], [30]. In the
context of multi-agent systems, there are ways to plan using LTL without learning [19],
[31]. There is one recent work considering safety in MARL by modifying the rewards the
agents receives given the output of a logic-synthesized shield [11]. However, this work
cannot be considered reward shaping because it does not guide the agent towards desired
accepting states.

Some works consider the co-safe fragment of LTL and instead convert the tasks to Mealy
Machines to construct so-called Reward Machines (RM) [32]. The work on RMs has
recently been expanded to include cooperative MARL through task decomposition to
individual agent tasks and decentralized Q-learning [33]. Because of the use of the RMs,
the method is limited to the co-safe fragment of LTL in addition to considering only tasks
that can be fully decentralized. This method also needs to decompose the LTL tasks in
order for each agent to learn one specific task.



Chapter 2. Related Work 9

Multi-agent Reinforcement Learning. In Reinforcement Learning an agent learns
an optimal behavior based on multiple trials. The agent interacts with an unknown
environment usually modeled as an MDP. At each step, the agent chooses some action
a, the environment moves it to the next state based on a transition probability and the
agent receives a reward r. The aim of the agent is to adapt its behavior in order to
maximize the expected return R = Σinf

t=0γ
trt where 0 < γ ≤ 1 is a discount factor [34].

In multi-agent reinforcement learning (MARL), at each time step t, each agent selects an
action simultaneously, this set of all agent actions is called the joint action. The environ-
ment will then return a reward for each agent. In MARL, the reward function may favor
competition or cooperation [35] MARL algorithms can be considered Joint Action learn-
ers or Independent Learners [34], [35]. For Joint Action learning algorithms, each agent
considers all other agents, leading to complete communication but also poor scalability.
In practice, it is unlikely that agents will need to communicate and share information
with all other agents at each step. Independent Learners consider other agents when
they “detect" a need to coordinate or simply consider other agents part of the environ-
ment such in Independent Q-learning [36]. Interestingly, despite Q-functions learned in
Independent Q-Learning relying only on one agent’s awareness, Independent Q-Learning
has successfully been applied in multiple multi-agent settings with some limitations [35],
[37]. In the case of a larger state space, deep learning has proven to be a useful tool to
generalize across states and reduces the need for manual feature design [4], [38].

2.3 Distributional Probabilistic Model Checking

Distributional properties. Some existing probabilistic model checking methods con-
sider distributional properties beyond expected values, notably quantiles [39]–[42], i.e.,
optimal reward thresholds which guarantee that the maximal or minimal probability of a
reward-bounded reachability formula meets a certain threshold. While [39] and [40] focus
on complexity results, [41] and [42] consider practical implementations to compute quan-
tiles, for single- and multi-objective variants, respectively, using model unfoldings over
“cost epochs”; [42] also proposes the use of interval iteration to provide error bounds. By
contrast, our methods derive the full distribution, rather than targeting quantiles specif-
ically, and our DTMC approach derives error bounds from a forward computation. We
also mention [43], which computes probability distributions in a forwards manner, but for
infinite-state probabilistic programs and using generating functions, and [44], which pro-
poses an algorithm (but not implementation) to compute policies that trade off expected
mean payoff and variance.

Risk-aware objectives. For MDPs, we focus in particular on conditional value-at-risk
(CVaR). There are alternatives, such as mean-variance [45] and value-at-risk [46] but, as
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discussed in [47], these are not coherent risk metrics, which may make them unsuitable for
rational decision-making. Other work on the CVaR objective includes: [48], which studies
decision problem complexity, but for mean-payoff rewards and without implementations;
[49], which repeatedly solves piecewise-linear maximization problems, but has limited
scalability, taking over 2 hours to solve an MDP with about 3,000 states; and [50], which
proposes both linear programming and value iteration methods to solve CVaR for MDPs
and DTMCs. Other, not directly applicable, approaches tackle constrained problems
that incorporate the CVaR objective [51]–[53]. Our approach differs from all these in
that it computes the full distribution, allowing multiple distributional properties to be
considered. We also work with temporal logic specifications. Alternative temporal logic
based approaches to risk-aware control include [54], which proposes risk-aware verification
of MDPs using cumulative prospect theory, and [55] which proposes chance constrained
temporal logic for control of deterministic dynamical systems.

Distributional reinforcement learning. Our work is based on probabilistic model
checking, which fully explores known models, but our use of DVI is inspired by distri-
butional reinforcement learning [56], which can be used to learn risk-sensitive policies
and improve sample efficiency (see [57] for a comparison of expected and distributional
methods). We take a formal verification approach and use numerical solution, not learn-
ing, but adopt existing categorical and quantile distributional approximations and our
risk-neutral DVI algorithm is a minimization variant adapted from [56]. Risk-sensitive
DVI is also sketched in [56], based on [58], but only a theoretical analysis of the method
is given, without considering practical implementation aspects, such as how to discretize
slack variables for computational efficiency, and how such approximations would affect the
correctness of model checking. We extend risk-sensitive DVI with a discretized slack vari-
able and show its effects theoretically in Section 6.2.3 and empirically via computational
experiments in Section 6.3.

2.4 Uncertain Probabilistic Model Checking

Robust Planning. Handling uncertainty in sequential decision making has traditionally
involved statistical tools and probability theory. However, uncertainty stems from differ-
ent sources such as errors in system modeling (systemic or epistemic uncertainty) and the
unpredictability of real environmental factors (aleatoric uncertainty) [59], [60]. It stands
to reason that explicitly modeling the two types of uncertainty can help us attempt to
reduce the epistemic uncertainty while considering the irreducible aleatoric uncertainty.
Recent work in Robust RL represents the epistemic uncertainty as a trained adversary to
learn robust policies that perform better when transferred from simulation to real environ-
ments [61]. Additional work uses an MDP augmented with a belief distribution modeling
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the epistemic uncertainty formulation called Bayes-Adaptive MDP to better trade-off ex-
ploration and exploitation [62]. A common objective of solutions considering uncertainty
is to learn or synthesize distributional robust policies that achieve the maximum expected
reward under the most adversarial realization of uncertain parameters. The notion of
targeting worst-case possibilities is further developed in [63] where a risk metric is used
to generate policies that are risk-averse to both aleatoric and epistemic uncertainty. In
[64], the authors use apply a risk-averse metric to model uncertainty in combination with
constrained RL algorithms to propose safer distributionally robust solutions.

Distributionally Robust MDP. One formulation often used for robust MDP planning
is the Distributionally Robust MDP (DR-MDP) [65] which models the uncertainty us-
ing sets of possible distributions corresponding to different confidence levels inspired by
the work on Robust MDPs [66]. [65] proposes a value iteration method with a minimax
form that requires finding the worst-case distributions over the transition models. Sub-
sequent work in that direction includes representing the uncertainty over the transition
models (ambiguity set) using different techniques. [67] uses moment-based ambiguity
sets that stores information related to moments of the distribution over the transitions.
Distance-based ambiguity sets instead use the distributional distance such as the Wasser-
stein distance [68] or the Kullback-Leibler divergence [69] between a reference distribution
and that observed from simulation or samples. There also exists work using confidence
regions for the ambiguity sets [70]. Recent work presented in [71] studies the different
types and provides hybrid methods using ambiguity sets containing both moment-based
and distance-based information. Unfortunately, most methods using DR-MDP formula-
tions tend to be overly conservative. [72] uses Bayesian posterior distributions for the
ambiguity sets in the DR-MDP. They also allow for balancing the posterior expected
performance and the robustness to adversarial realization by minimizing a risk metric on
the possible adversarial distributions. The research around DR-MDPs is related to this
work in the sense that we also explicitly represent the the distribution over the possible
transitions as explained in section 7.2.

Uncertain Markov models. Another related line of work in model checking with
uncertainty involves using uncertain Markov models (uMDP, uDTMC) some of which
represent uncertainty over parameters which can control the transition models (pMDP,
pDTMC). [73] gives an overview of the different techniques used when the objective
is to find out which regions of the parameter space satisfy a temporal logic property
if any. In [74], [75] scenario-based optimization on a pMDP is used to compute the
probability that there exists a policy satisfying the specification for a given confidence
value. In this case, the assumption is that the parameters are somewhat controllable
so that removing certain regions can lead to a desirable outcome. In [76], the authors
tackle the problem of finding the best method to sample from the parameter space to
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obtain enough information about a markov chain. A parametric Markov chain can also
be obtained by using Bayesian Networks where [77] uses model checking to find the
parameter regions that satisfy a probabilistic LTL formula. [78] uses Bayesian Learning
along with to return a satisfaction function over the parameter space based on a (limited)
set of observations for a continuous-time markov chain and a temporal logic property.
Bayesian Learning is also used in [79] to iteratively improve the information gathered
about the parametric uMDP eventually converging to a standard MDP. Specifically, they
use an uncertain MDP where the parameter uncertainty is expressed using intervals.
Robust VI [80] is used to synthesize a policy that maximizes (or minimizes) the worst
case performance for a given metric (e.g., expected reward). RL policies have also been
converted to a DTMC abstraction [81] or to an interval MDP in [82] to determine the
probability of reaching unsafe states. Robust VI is also used in [83] where a discrete
abstraction in the form of an interval MDP models a continuous environment to synthesize
a controller taking into account aleatoric and epistemic uncertainty.

To the best of our knowledge, previous work for robust probabilistic model checking
has taken the approach of either finding the regions in the parameter space that sat-
isfy a property or considered the uncertainty of the parameter to be controllable. This
work leverages the previous model checking advances in Distributional VI [13] which uses
tractable distributional representations of the aleatoric uncertainty to return a distribu-
tion over the costs. Our work extends the distributional VI ideas to the more general
uncertain MDP context while more explicitly modeling the epistemic uncertainty also
using discrete approximations for the parameter distributions. While our work focuses on
synthesizing a policy for given parameter data, this work can be extended to be included
within a learning loop where the uncertainty is refined.
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Chapter 3

Preliminaries

In this chapter, we go over the necessary background for the subsequent chapters relating
to multi-agent reinforcement learning and probabilistic model checking. We let N, R, and
Q denote the sets of naturals, reals and rationals, respectively, and write N∞ = N∪{∞}.

3.1 Multi-Agent Reinforcement Learning (MARL)

We define a discrete probability distribution over a (countable) set S as a function µ :

S → [0, 1] such that
∑

s∈S µ(s) = 1. Let Distr(S) denote the set of distributions over S.

We follow the Markov game formulation of MARL in [5]. A Markov game is a tuple
(N,S, {Ai}i∈N , P, {Ri}i∈N , γ) with a finite set N = {1, · · · , n} of agents, and a finite
state space S observed by all agents; let A := A1 × · · · × An be the set of joint actions
for all agents, where Ai denotes the actions of agent i ∈ N ; the probabilistic transition
function P : S × A→ Distr(S) is defined over the joint states and actions of all agents;
Ri : S × A × S → R is an immediate reward function for agent i under the joint states
and actions; γ ∈ [0, 1] is the discount factor of future rewards. At time step t, each agent
chooses an action ait ∈ Ai based on the observed state st ∈ S. The environment moves to
state st+1 with the probability P (st, at, st+1), where at = (a1t , · · · , ant ) is the joint action
of all agents, and rewards agent i with Ri(st, at, st+1). The goal of an individual agent
i is to learn a policy πi : S → Distr(Ai) that optimizes the expectation of cumulative
future rewards E[

∑∞
t=0 γ

tRi(st, at, st+1)]. The performance of individual agent i is not
only influenced by its own policy, but also the choices of all other agents.

Depending on agents’ goals, MARL algorithms can be categorized as fully cooperative
(i.e., agents collaborate to optimize a common long-term return), fully competitive (i.e.,
zero-sum game among agents), or a mixed setting that involves both cooperative and
competitive agents. In our experiments (Section 4.3), we used the following three mixed-
setting algorithms. Independent Q-learning [84] is a baseline algorithm where agents learn
Q-values over their own action set independently and do not use any information about
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other agents. CQ-learning [85] is an algorithm that allows agents to act independently
most of the time and only accounts for the other agents when necessary (e.g., when conflict
situations are detected). MADDPG [38] is a deep MARL algorithm featuring centralized
training with decentralized execution, in which each agent trains models simulating each
of the other agents’ policies based on its observation of their actions.

Scalability is a key challenge of MARL, due to its combinatorial nature. For example, our
experiments can only use two agents with CQ-learning, but more than four agents with
MADDPG which applies deep neural networks for function approximation to mitigate the
scalability issue. Another key challenge of MARL is the lack of convergence guarantees in
general, except for some special settings [5]. As multiple agents learn and act concurrently,
the environment faced by an individual agent becomes non-stationary, which invalidates
the stationary assumption used for proving convergence in single-agent RL algorithms.

3.2 Probabilistic Model Checking

We begin with some background on random variables, probability distributions, and the
probabilistic models used in chapters 6 and 7.

3.2.1 Random Variables and Probability Distributions

Let X : Ω→ R be a random variable over a probability space (Ω,F ,Pr). The cumulative
distribution function (CDF) of X is denoted by FX(x) := Pr(X ≤ x), and the inverse
CDF is F−1

X (τ) := inf{x ∈ R : FX(x) ≥ τ}. Common properties of interest for X include,
e.g., the expected value E(X), the variance Var(X) which is the square of the standard
deviation (s.d.), or the mode.

We also consider several risk -related measures. The value-at-risk ofX at level α ∈ (0, 1) is
defined by VaRα(X) := F−1

X (α), which measures risk as the minimum value encountered
in the tail of the distribution with respect to a risk level α. The conditional value-at-risk
of X at level α ∈ (0, 1) is given by CVaRα(X) := 1

1−α
∫ 1
α VaRν(X)dν, representing the

expected loss given that the loss is greater or equal to VaRα.

Example 1. Figure 3.1a illustrates an example probability distribution of a random vari-
able X, annotated with its expected value E(X), value-at-risk VaR0.9(X) and conditional
value-at-risk CVaR0.9(X). ■

When working with the probability distributions for random variables, we write distri-
butional equations as X1 :

D
= X2, denoting equality of probability laws (i.e., the random

variable X1 is distributed according to the same law as X2). We use δθ to denote the
Dirac delta distribution that assigns probability 1 to outcome θ ∈ R. In practice, even
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(a) True distribution (b) Categorical (m = 11) (c) Quantile (m = 10)

Figure 3.1: An example distribution with its categorical and quantile
representations.

when distributions are discrete, we require approximate, finite representations for them.
In chapters 6 and 7, we consider categorical and quantile distributional representations,
both of which provide desirable characteristics such as tractability and expressiveness [56].

Definition 1 (Categorical representation). A categorical representation parameterizes
the probability of m atoms as a collection of evenly-spaced locations θ1 < · · · < θm ∈ R.
Its distributions are of the form

∑m
i=1 piδθi where pi ≥ 0 and

∑m
i=1 pi = 1. We define the

stride between successive atoms as ςm = θm−θ1
m−1 .

Definition 2 (Quantile representation). A quantile representation parameterizes the lo-
cation of m equally-weighted atoms. Its distributions are of the form 1

m

∑m
i=1 δθi for

θi ∈ R. Multiple atoms may share the same value.

Next, we introduce two metrics for measuring the distance between probability distribu-
tions. Let p ∈ [1,∞) and µ, µ′ be two distributions. The p-Wasserstein distance wp(µ, µ′)
and the Cramér distance ℓ2(µ, µ′) are defined as:

wp(µ, µ
′) :=

(∫ 1

0
|F−1
µ (τ)−F−1

µ′ (τ)|
pdτ

) 1
p

ℓ2(µ, µ
′) :=

(∫
R
|Fµ(x)−Fµ′(x)|2dx

) 1
2

Given two multi-dimensional distributions η, η′ ∈ Dist(R)S , we define the supremum p-
Wasserstein distance between them as wp(η, η′) := sups∈S wp(η(s), η

′(s)) and the supre-
mum Cramér distance as ℓ2(η, η′) := sups∈S ℓ2(η(s), η

′(s)).

We can then describe how to project a distribution onto a representation.

Proposition 1 (Categorical projection [56]). For a probability distribution µ, there exists
a (unique) projection of µ in the Cramér distance (ℓ2) onto the categorical representation
denoted by ΠCµ =

∑m
i=1 piδθi with parameters pi = EX∼µ

(
hi(

X−θi
ςm

)
)
, where hi(x) are

(half-)triangular kernel functions defined as:
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h1(x) =

1 x ≤ 0

max(0, 1− |x|) x > 0
hm(x) =

max(0, 1− |x|) x ≤ 0

1 x > 0

and hi(x) = max(0, 1− |x|) for i = 2, . . . ,m− 1.

Proposition 2 (Quantile projection [56]). For a probability distribution µ, a projection
of µ in the 1-Wasserstein distance (w1) onto the quantile representation is given by ΠQµ =
1
m

∑m
i=1 δθi with parameters θi = F−1

µ (2i−1
2m ).

Example 2. Figures 3.1b and 3.1c show categorical and quantile representations, respec-
tively, approximating the distribution shown in Figure 3.1a. ■

3.2.2 Markov Chains and Markov Decision Processes

In this dissertation, we work with both discrete-time Markov chains (DTMCs) and Markov
decision processes (MDPs).

Definition 3 (DTMC). A discrete-time Markov chain is a tuple D = (S, s0, P,AP , L),
where S is a set of states, s0 ∈ S is an initial state, P : S × S → [0, 1] is a probabilistic
transition matrix satisfying ∀s ∈ S :

∑
s′∈S P (s, s

′) = 1, AP is a set of atomic propositions
and L : S → 2AP is a labelling function.

A DTMC D evolves between states, starting in s0, and the probability of taking a transi-
tion from s to s′ is P (s, s′). An (infinite) path through D is a sequence of states s0s1s2 . . .
such that si ∈ S and P (si, si+1) > 0 for all i ≥ 0, and a finite path is a prefix of an infinite
path. The sets of all infinite and finite paths in D are denoted IPathsD and FPathsD,
respectively. In standard fashion [86], we define a probability measure PrD over the set
of paths IPathsD.

Definition 4 (MDP). A Markov decision process is a tuple M = (S, s0, A, P,AP , L, ),
where states S, initial state s0, atomic propositions AP and labelling L are as for a
DTMC, and P : S × A × S → [0, 1] is a probabilistic transition function satisfying
∀s ∈ S, ∀a ∈ A :

∑
s′∈S P (s, a, s

′) ∈ {0, 1}.

In each state s of an MDP M, there are one or more available actions which can be
taken, denoted A(s) = {a ∈ A |P (s, a, s′) > 0 for some s′}. If action a is taken in s, the
probability of taking a transition from s to s′ is P (s, a, s′), also denoted P (s′|s, a). Paths
are defined in similar fashion to DTMCs but are now alternating sequences of states and
actions s0a0s1a1s2 . . . where ai ∈ A(si) and P (si, ai, si+1) > 0 for all i ≥ 0, and the sets
of all infinite and finite paths are IPathsM and FPathsM, respectively.
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The choice of actions in each state is resolved by a policy (or strategy), based on the
execution of the MDP so far. Formally, a policy takes the form π : FPaths → A. We say
that π is memoryless if the mapping π(ω) depends only on last(ω), the final state of ω,
and finite-memory if it depends only on last(ω) and the current memory value, selected
from a finite set and updated at each step of execution. The set of all policies for MDP
M is denoted ΣM.

Under a given policy π, the resulting set of (infinite) paths has, as for DTMCs, an
associated probability measure, which we denote PrπM. Furthermore, for both memoryless
and finite-memory policies, we can build a (finite) induced DTMC which is equivalent to
M acting under π.

Rewards. We associate both DTMCs and MDPs with reward structures, which are an-
notations of the states or transitions of a model with numerical values. For consistency
with the literature on probabilistic model checking and temporal logics, we use the ter-
minology rewards although in practice these can (and often do) represent costs, such as
time elapsed or energy consumed. For the purposes of our algorithms, we assume that
rewards are integer-valued, but we note that these could be defined as rationals, using
appropriate scaling.

Definition 5 (Reward structure). A reward structure is, for a DTMC D, a function
r : S → N and, for an MDPM, a function r : S ×A→ N.

For an infinite path ω, we also write r(ω, k) for the sum of the reward values over the first
k steps of the path, i.e., r(s0s1s2 . . . ) =

∑k−1
i=0 r(si) for a DTMC and r(s0a0s1a1s2 . . . ) =∑k−1

i=0 r(si, ai) for an MDP. To reason about rewards, we define random variables over the
executions (infinite paths) of a model, typically defined as the total reward accumulated
along a path, up until some event occurs. Formally, for a DTMC D, such a random
variable is defined as a function of the form X : IPathsD → R, with respect to the
probability measure PrD over IPathsD. For an MDP M and policy π ∈ ΣM, a random
variable is defined as a function X : IPathsM → R, with respect to the probability
measure PrπM.

3.2.3 Linear Temporal Logic

We use linear temporal logic (LTL) [16] to express safety specifications. In addition to
propositional logical operators, LTL employs temporal operators such as X (next), U

(until), G (always), and F (eventually). The set of words that satisfies an LTL formula
ϕ represents a language L(ϕ) ⊆ (2AP)ω, where AP is a given set of atomic propositions.
LTL formulas can be used to express a wide variety of requirements.
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Definition 6 (Co-safe LTL [87]). Formulae in (syntactically) co-safe LTL, over a set of
atomic propositions AP , are defined by the grammar:

ψ := true | a | ¬a | ψ ∧ ψ | ψ ∨ ψ | Xψ | F ψ | ψ U ψ

where a ∈ AP is an atomic proposition.

We use the temporal operators Xψ (ψ holds from the next state), F ψ (ψ eventually holds)
and ψ1 U ψ2 (ψ2 eventually holds and ψ1 holds until that point); see, e.g., [88] for the
formal semantics. LTL formulae are evaluated over infinite paths of a model labelled with
atomic propositions from the set AP but, for use with cumulative reward, we restrict our
attention to the co-safe fragment, containing formulae which are satisfied in finite time.
Formally, this means that any satisfying path (ω |=ψ) has a good prefix i.e., a finite path
prefix ω′ such that ω′ω′′ |=ψ for any suffix ω′′. For simplicity, Definition 6 defines a
syntactic subset of LTL (where negation occurs only at the level of atomic propositions
and the globally operator is omitted) which is guaranteed to be co-safe.
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Chapter 4

Safe Multi-Agent Reinforcement
Learning

With the rise of cyber-physical systems (CPS) and the age of the Internet of Things (IoT)
more multi-agent systems will need to be controlled using advanced techniques [89]. Multi-
agent reinforcement learning (MARL) is a group of learning based methods where multiple
agents interact with each other in a common environment for several sequential steps. In
recent years, MARL methods have been increasingly used in a wide range of safety-critical
applications from traffic management [1] to robotic control [2] to autonomous driving [3].

Existing MARL methods [4], [5] focus mostly on optimizing policies based on returns,
none of which can guarantee safety (e.g., no unsafe states are ever visited) during the
learning process. Nevertheless, learning with provable safety guarantees is necessary for
many safety-critical MARL applications where the agents (e.g., robots, autonomous cars)
may break during the exploration process and lead to catastrophic outcomes. In this
chapter, the objective is to guarantee that no states deemed unsafe are ever visited.

A recent work [15] developed a shielding framework for single-agent reinforcement learning
(RL), which synthesizes a shield to enforce the correctness of safety specifications in linear
temporal logic (LTL) [16]. The shield guarantees safety during learning by monitoring
the RL agent’s actions and preventing the exploration of any unsafe action that violates
the LTL safety specification. In this chapter, we adapt the shielding framework to the
multi-agent setting. Guaranteeing safety for multiple agents with potentially competing

Figure 4.1: Overall architecture for shielding in MARL.
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goals is more challenging than the single-agent setting, because safety is an emergent
property that concerns the coupling of all agents. In addition, the combinatorial nature
of MARL (i.e., the joint state space and joint action space increase exponentially with the
number of agents) poses scalability issues to the computation of shields. Furthermore, we
focus on safety specifications, which are informally interpreted as “something bad should
never happen”. For example, the LTL formula G ¬unsafe expresses that “unsafe states
should never be visited”. An LTL safe specification can be translated into a safe language
accepted by a deterministic finite automaton (DFA) [90].

We present in this chapter the first work to provide safety guarantees (expressed as LTL
specifications) for MARL. Our contributions are threefold. First, we develop a centralized
shielding approach for MARL, where we synthesize a single shield to centrally monitor
the joint actions of all agents. The shield determines that a joint action is safe if all agents
satisfy the safety specification. We follow the minimal interference principle proposed in
[15]; that is, a shield should restrict the agents as infrequently as possible and only corrects
the actions that violate the safety specification. Moreover, we introduce an additional
interpretation of minimal interference in the multi-agent setting: a shield should change
the actions of as few agents as possible when correcting an unsafe joint action. The
centralized shielding approach has limited scalability, because the computational cost of
synthesizing shields depends on the number of MARL agents and the complexity of the
safety specification.

Second, we develop a factored shielding approach for MARL to address the aforementioned
scalability issues. The factored shielding offers a divide-and-conquer approach: multiple
shields are computed based on a factorization of the joint state space observed by all
agents. The set of factored shields monitors agents concurrently and each shield is only
responsible for a subset of agents at each step. Agents can join or leave a factored
shield at any time depending on their states. Factored shields enforce the correctness of
safety specification by preventing unsafe actions similarly to the centralized shield. While
each individual factored shield can only monitor a limited number of agents due to the
restriction of shield computation, we can employ as many shields as needed; and together
the set of factored shields can monitor a large number of MARL agents.

Third, we showcase the performance of the two shielding approaches via experimental
evaluation on six benchmark problems in a grid world [91] and a cooperative naviga-
tion [92] environment. We used two MARL algorithms, CQ-learning [85] and MAD-
DPG [38], in our experiments to demonstrate that the shielding approaches are com-
patible with different MARL algorithms. Experimental results show that the shielding
approaches can both guarantee the safety of agents during learning without compromis-
ing the quality of learned policies; moreover, factored shielding is more scalable in the
number of agents than centralized shielding.
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4.1 Background

In this section, we go over relevant notation and preliminaries needed for this chapter.
Given an alphabet Σ, we denote by Σω and Σ∗ the set of infinite and finite words over Σ,
respectively.

4.1.1 Safety Specifications and Safety Games

Formally, a deterministic finite automaton is a tuple (Q, q0,Σ, δ, F ) with a finite set of
statesQ, an initial state q0 ∈ Q, a finite alphabet Σ, the transition function δ : Q×Σ→ Q,
and a finite set of accepting states F ⊆ Q. Let q0σ0q1σ1 · · · ∈ (Q × Σ)ω be a run of the
DFA. The word σ0σ1 . . . is in the safety language accepted by the DFA if the run only
visits accepting states of the DFA, i.e., qi ∈ F for all i ≥ 0.

We use Mealy machines to represent shields. Formally, a Mealy machine is a tuple
(Q, q0,ΣI ,ΣO, δ, λ) with a finite set of states Q, an initial state q0 ∈ Q, finite sets of
input alphabet ΣI and output alphabet ΣO, the transition function δ : Q × ΣI → Q,
and the output function λ : Q × ΣI → ΣO. For a given input trace σ0σ1 · · · ∈ ΣωI , the
Mealy machine generates a corresponding output trace λ(q0, σ0)λ(q1, σ1) · · · ∈ ΣωO where
qi+1 = δ(qi, σi) for all i ≥ 0.

As we will describe later, we synthesize shields by solving two-player safety games. For-
mally, a two-player safety game is a tuple (G, g0,Σ1,Σ2, δ, F ) with a finite set of game
states G, an initial state g0 ∈ G, finite sets of alphabet Σ1 and Σ2 for Player 1 and Player
2 respectively, the transition function δ : G×Σ1×Σ2 → G, and a set of safe states F ⊆ G
defines the winning condition such that a play g0g1 . . . of the game is winning iff gi ∈ F
for all i ≥ 0. At each game state gi ∈ G, Player 1 chooses an action a1i ∈ Σ1, then Player
2 chooses an action a2i ∈ Σ2, and the game moves to the next state gi+1 = δ(gi, a

1
i , a

2
i ). A

memoryless strategy for Player 2 is a function κ : G×Σ1 → Σ2. A winning region W ⊆ F
is the set of states from which there exists a winning strategy (i.e., all plays constructed
using the strategy satisfy the winning condition).

4.2 Approach

4.2.1 Centralized Shielding

We introduce a centralized shield (i.e., a single shield for all agents) into the traditional
MARL process. In the following, we first describe how the centralized shield interacts
with the learning agents and the environment to achieve safe MARL, then we present our
method for synthesizing the centralized shield.
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Algorithm 1: Centralized shielding at time step t
Input : Shield S, MARL agents’ joint action at = (a1t , · · · , ant ) and joint state

st = (s1t , · · · , snt ), a constant punishment cost c
Output: Safe joint action āt, punishment ρt

1 ρt ← 0
2 ā← safe action output by the shield S
3 forall agent k such that āk ̸= ak do
4 ρkt ← c

5 return āt, ρt

Figure 4.1 illustrates the interaction of the centralized shield, the MARL agents, and the
environment. Algorithm 1 summarizes the centralized shield’s behavior at time step t.
The shield monitors the joint action at = (a1t , · · · , ant ) chosen by the MARL agents. If the
shield detects that at is unsafe (i.e., violates the safety specification) at the agents’ joint
state st ∈ S, the shield substitutes at with a safe joint action āt; otherwise, the shield for-
wards at to the environment directly (i.e., āt = at). The environment receives the action
āt output by the shield, moves to state st+1 ∈ S, and provides reward Rk(st, āt, st+1) for
each agent k to update its policy. Meanwhile, the shield assigns a punishment ρkt to agent
k (where ākt ̸= akt ) to help the MARL algorithm learn about the cost of unsafe actions.

A centralized shield enforces the safety specification during the learning process (i.e.,
any unsafe action is corrected to a safe action before being sent to the environment).
Moreover, we require the shield to restrict MARL agents as rarely as possible via the
minimal interference criteria: (1) the shield only corrects the joint action at if it violates
the safety specification, and (2) the shield seeks a safe joint action āt that changes as few
of the agents’ actions as possible from at.

Our approach synthesizes a centralized shield based on the safety specification and a
coarse environment abstraction. Note that we do not require the environment dynamics
to be completely known in advance. The shield can be synthesized based on a coarse
abstraction of the environment that is sufficient to reason about the potential violations
of safety specifications. For example, before deploying a team of robots for a disaster
search and rescue mission, we may use some low-resolution satellite imagery to build a
coarse, high-level abstraction about the terrain environment for shield synthesis. However,
such a coarse environment abstraction is not sufficient for planning algorithms that rely
on complete models of the environment. Therefore, MARL agents still need to learn the
concrete environment dynamics.

We describe how to synthesize centralized shields as follows. We assume some coarse
environment abstraction has been given as a DFA Ae = (Qe, qe0,Σ

e, δe, F e) with the
alphabet Σe = L × A, where an observation function f : S → L maps the MARL
agents’ joint state space S to some observation set L, and A is the joint action set of
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all agents. We translate the safety specification expressed as an LTL formula to another
DFA As = (Qs, qs0,Σ

s, δs, F s) with the same alphabet Σs = L × A. We combine Ae

and As into a two-player safety game G = (G, g0,Σ1,Σ2, δ
g, F ) where G = Qe × Qs,

g0 = (qe0, q
s
0), Σ1 = L, Σ2 = A, δg((qe, qs), l, a) = (δe(qe, (l × a)), δs(qs, (l × a)) for all

(qe, qs) ∈ G, l ∈ L, and a ∈ A, and F = Qe × F s. We solve the two-player safety game
G and compute the wining region W ⊆ F using the techniques described in [24]. We
construct the centralized shield represented as a Mealy machine S = (Q, q0,ΣI ,ΣO, δ, λ),
where the state space is given by the game states Q = G = Qe × Qs, the initial state
q0 = g0 = (qe0, q

s
0), the input alphabet ΣI = L × A, the output alphabet ΣO = A; the

transition function δ(g, (l, a)) = δg(g, l, λ(g, (l, a))) for all g ∈ G, l ∈ L, and a ∈ A; the
output function λ(g, (l, a)) = a if δg(g, l, a) ∈ W , and λ(g, (l, a)) = ā if δg(g, l, a) ̸∈ W ,
where ā ∈ A is a safe action with δg(g, l, ā) ∈W and only differs from the unsafe action a
in terms of the minimal number of agents’ actions. We also define a (negative) constant
c as punishment for unsafe actions. The computational cost of synthesizing centralized
shields grows exponentially as the number of agents increases, and also depends on the
complexity of the safety specification and environment abstraction.

(a) (b)

Figure 4.2: Left. Example grid map with two agents. Right. (a)
An example environment abstraction DFA Ae. (b) An example safety

specification DFA As.

Figure 4.3: An example safety game given by the product of Ae and As

shown in Figure 4.2b. Double circles denote safe states.

To exemplify the shield synthesis method, let us consider two agents (blue and orange)
in the grid map shown in Figure 4.2a. Each agent can move left or right, or stay in
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the same grid. An agent receives a reward of 10 if it reaches grid 1 or 6, and receives
a negative reward of −1 if it collides with the other agent. The discount factor being
γ = 1. Each agent tries to learn an optimal policy based on the observed rewards.
However, the negative reward cannot completely prevent collisions during the learning
process of traditional MARL algorithms. Because the agents need to explore different
(even unsafe) actions to learn about states and rewards from the environment. Now we
show how to construct a shield that can block unsafe actions and guarantee collision
free. We use an observation set L that measures the distance d between blue and orange
agents. For example, d = −1 for agents’ positions shown in Figure 4.2a. We build a
coarse environment abstraction DFA Ae that captures the relation of agents’ distances
and joint actions. Figure 4.2b(a) shows a fragment of Ae (double circle denotes accepting
states of DFAs, * refers to any action). We can express the safety specification of collision
avoidance using the following LTL formula:

G ¬
(
(d = 0) ∨

(
(d = −1) ∧ ((stay, left) ∨ (right, left) ∨ (right, stay))

)
∨
(
(d = 1) ∧ ((stay, right) ∨ (left, right) ∨ (left, stay))

))
which indicates that the following bad scenarios should never occur: two agents being

in the same grid (d = 0), or taking certain unsafe joint actions that would make them
collide into each other when d = −1 or d = 1. We can translate the LTL formula into the
DFA As shown in Figure 4.2b(b). We build a two-player safety game from the product
of Ae and As. Figure 4.3 shows a fragment of the safety game (double circles denote safe
states). For example, in the game state (qe0, q

s
0), the blue and orange agents should not

choose a joint action (stay, left) that leads to an unsafe game state (qe1, q
s
1) where two

agents collide into each other. The synthesized centralized shield prevents the collision
by correcting the unsafe action (stay, left) with a safe action (stay, stay) and assigns a
punishment cost of −1 to the orange agent.

Correctness. We show that the synthesized centralized shields can indeed enforce safety
specifications for MARL agents as follows. Given a trace s0a0s1a1 · · · ∈ (S × A)ω

jointly produced by MARL agents, the centralized shield, and the environment, there
is a corresponding run q0q1 · · · ∈ Qω of the shield S = (Q, q0,ΣI ,ΣO, δ, λ) such that
qi+1 = δ(qi, (f(si), ai)) and ai = λ(qi, (f(si), ai)) for all i ≥ 0, where f : S → L is the
observation function. By the construction of the shield, we have Q = Qe ×Qs, where Qe

and Qs are the state space of the environment abstraction DFA Ae and the safety spec-
ification DFA As, respectively. Thus, we can project the run q0q1 . . . of the shield onto
a trace qs0(f(s0), a0)qs1(f(s1), a1) . . . on As. The shield is constructed from the winning
region of the safety game, which ensures that only safe states are ever visited along the
trace qs0(f(s0), a0)qs1(f(s1), a1) . . . of As (i.e., qsi ∈ F s for all i ≥ 0). Thus, the centralized
shield S can guarantee that the safety specification As is never violated.
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Figure 4.4: Safe MARL with factored shielding.

Impact on Learning Performance. The centralized shielding approach is agnostic to
the choice of a MARL algorithm, because the shield interacts with the learner only via
inputs and outputs, and does not rely on the inner-workings of the learning algorithm.
As explained in Section 3.1, there is a lack of theoretical convergence guarantees for
MARL algorithms in general. Thus, a full theoretical analysis of the shielding approach’s
impact on MARL convergence is out of scope for this chapter. We show empirically in our
experiments (Section 4.3) that (1) MARL with and without centralized shielding both
converge; (2) centralized shielding can guarantee the safety in all examples, while MARL
without shielding does not prevent agents’ unsafe behavior; (3) centralized shielding learns
more optimal policies with better returns than non-shielded MARL in some examples
(e.g., due to the removal of unsafe actions that may destabilize learning).

4.2.2 Factored Shielding

The centralized shielding approach has limited scalability, because the computational
cost of shield synthesis grows exponentially with the number of agents. To address this
limitation, we develop a factored shielding approach that synthesizes multiple shields to
monitor MARL agents concurrently, as illustrated in Figure 4.4.

Let us consider a finite set of factored shields {S1, · · · ,Sm} where each shield is syn-
thesized based on a factorization of the joint state space observed by all agents. We can
leverage problem-specific knowledge to achieve an efficient factorization scheme (e.g., how
many shields to use, what is the state space covered by each shield). For example, we
synthesize two factored shields S1 and S2 for monitoring agents’ behavior in grids 1-3 and
4-6 of Figure 4.2a, respectively. A factored shield monitors a subset of agent actions at
each time step. A shield is not tied to any specific agent; instead, an agent can request
to join or leave a shield from border states at any time. For example, if the orange agent
in Figure 4.2a wants to move from grid 4 to grid 3, it would request to join S1 and leave
S2.

Algorithm 2 describes how the factored shielding works at each time step t. There are
three phases: (1) factorization, (2) shielding, and (3) coordination. In the factorization
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phase (line 5-14), the algorithm identifies the factored shields that are responsible for
monitoring each agent k in the current time step t, based on a mapping between the
agent state skt and the factored state space assigned to each shield Si. Thus, there must
exist at least one factored shield monitoring each agent. If agent k happens to be in a
border state skt within the shield Si and, by taking action akt , the agent would cross the
border to another shield Sj , the algorithm relates agent k with both shields and renames
its actions in shield Si and Sj as leave and join, respectively. Next, in the shielding
phase (line 16-33), each factored shield checks if the set of related agents act safely (i.e.,
not violating the safety specification within it) and substitutes any unsafe action with a
default safe action (e.g., stay in our running example). In the coordination phase (line
35-47), the algorithm checks the output of all shields to make sure compatible decisions
are made for each agent. For example, if an agent action akt is translated to requests of
leaving Si and joining Sj , then both requests need to be approved by the shields; however,
if Sj considers join as unsafe at this time and substitutes with a default safe action stay,
then the algorithm corrects the agent action akt and output with safe action ākt = stay,
Finally, the algorithm assigns a punishment cost ρkt = c for any unsafe action akt with
ākt ̸= akt .

We synthesize factored shields using a similar method as the synthesis of centralized
shields. However, instead of building a safety game that accounts for the joint states S
and joint actions A = A1×· · ·×An of all MARL agents, we only consider a factorization
of states and actions for the synthesis of each factored shield. Let Si ⊆ S be the factored
state space of shield Si. We factor the coarse environment abstraction DFA Ae into a
DFA Aei = (Qei , q

e
0,i,Σ

e
i , δ

e
i , F

e
i ) with the alphabet Σei = Li × Ai, where an observation

function f : Si → Li maps the factored states Si to some observation set Li, and Ai =

(A1 ∪ · · · ∪An ∪ {join, leave})× · · · × (A1 ∪ · · · ∪An ∪ {join, leave}) is the joint action
in shield Si with |Ai| determined by the maximum number of agents that shield Si can
monitor at once. Note that we need to translate the agent actions at border states
of a shield to join or leave requests. Intuitively, since any agent may request to join
or leave shield Si at any time, the joint action Ai needs to account for any possible
combination of agents. This allows us to synthesize factored shields offline with a fixed
alphabet, instead of re-computing shields for different agents at each step during learning.
Similarly, we can factor the safety specification DFA As = (Qs, qs0,Σ

s, δs, F s) into a DFA
Asi = (Qsi , q

s
0,i,Σ

s
i , δ

s
i , F

s
i ) with the alphabet Σsi = Li × Ai. We obtain the shield Si as

a Mealy machine by solving the two-player safety game Gi built from Aei and Asi , in a
similar way as described in Section 4.2.1.
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Algorithm 2: Factored shielding at time step t
Input : A set of factored shields {S1, · · · ,Sm}, MARL agents’ joint action

at = (a1t , · · · , ant ) and joint state st = (s1t , · · · , snt ), a default safe action b, a
constant punishment cost c

Output: Safe joint action āt, punishment ρt
1 Init int array A2S : n× 2 // related shield index
2 Init string array Act : n× 2 // actions
3 Init Boolean array S2A : m× n // agents in each shield
4 // Factorization phase
5 forall agent k ∈ {1, · · · , n} do
6 find a factored shield Si related to the agent state skt
7 if (skt , a

k
t ) may leave shield Si and join shield Sj then

8 A2S[k][0]← i, A2S[k][1]← j

9 Act[k][0]← “leave”, Act[k][1]← “join”

10 S2A[i][k]← True, S2A[j][k]← True

11 else
12 A2S[k][0]← i, Act[k][0]← akt , S2A[i][k]← True

13 // Shielding phase
14 forall shield Si with i ∈ {1, · · · ,m} do
15 a← {}
16 forall k with S2A[i][k] = True do
17 if A2S[k][0] = i then
18 a← append Act[k][0]

19 else
20 a← append Act[k][1]

21 ā← safe action output by the shield Si
22 forall agent k such that āk ̸= ak do
23 if A2S[k][0] = i then
24 Act[k][0]← āk

25 else
26 Act[k][1]← āk

27 // Coordination
28 forall agent k ∈ {1, · · · , n} do
29 if A2S[k][1] ̸= null then
30 if Act[k][0] = “leave” and Act[k][1] = “join” then
31 Act[k][0]← akt

32 else
33 Act[k][0]← b

34 ākt ← Act[k][0], ρkt ← 0

35 if ākt ̸= akt then
36 ρkt ← c

37 return āt, ρt
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Figure 4.5 shows an example safety game for synthesizing the shield S1 that monitors
agents’ actions in grid 1-3 of our running example. To simplify the graphic notation, we
put observations inside each state which should be labeled on all outgoing transitions from
that state. The observations are about agents’ grid positions, with ∞ denoting outside.
∗ refers to any action except “join”. The initial game state observes that the blue agent is
in grid 3 and the orange agent is outside the shield. If the blue and orange agents ask for
a pair of actions (stay, join), then the game would move to an unsafe state where both
agents collide into each other in grid 3. In this case, shield S1 substitutes (stay, join)
with safe actions (stay, stay). Since the orange agent is involved in two shields S1 and
S2, we need to coordinate the output of both shields. For example, if S1 rejects orange
agent’s join request but S2 accepts the same agent’s leave request, then there is conflict
among the output of S1 and S2. In such case, our coordination algorithm chooses the
default safe action stay for the orange agent. Note that, if there is another agent in shield
S2, then it should not be allowed to move to grid 4 before the orange agent successfully
leaves S2 to avoid collision. Such safety constraints can be encoded in the safety game
for synthesizing the shield S2.

Correctness. We show that the factored shielding algorithm can guarantee safety for
MARL agents. Given a trace s0a0s1a1 · · · ∈ (S×A)ω jointly produced by MARL agents,
the factored shielding, and the environment, we prove that the state-action pair (st, at)

is safe at every time step t. There are several cases. First, suppose none of the agents
requests to switch shields at time step t. By the construction of factored shields, each
shield Si monitors a subset of agents based on the factored state space st,i and outputs a
safe joint action at,i that does not violate the safety specification. Thus, the joint state
st = st,1 ∪ · · · ∪ st,m and joint action at = at,1 ∪ · · · ∪ at,m output by all shields are safe
for all agents. Second, suppose there is some agent k requesting to leave shield Si and
join shield Sj . If both shields accept agent k’s requests, which means that agent k does
not cause a violation of safety specification with either shield. So we still have st and at
safe for all agents. If Sj rejects agent k’s joining request and substitutes with a default

Figure 4.5: An excerpt of the safety game for constructing shield S1 of
our running example. Double lines indicate safe states.
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safe action, then the factored shielding algorithm coordinates with the output of Si and
corrects agent k’s leaving request with the default safe action as well. Such a correction
does not affect the safety of other agents in shield Si, because by construction the shield
accounts for the worst case scenario of leaving request being rejected. Therefore, we have
the joint state-action pair (st, at) safe at every time step t for all agents.

Impact on Learning Performance. Similarly to centralized shielding, the factored
shielding approach is agnostic to the choice of a MARL algorithm. We show empirically
via our experiments that adding factored shields does not prevent MARL algorithms from
converging. In addition, our experiments show that the factored shielding approach can
be applied to examples where the synthesis of centralized shields is not feasible due to a
large number of agents. While the two shielding approaches can both guarantee the safety
during learning in all examples, factored shielding sometimes leads to less optimal policies
than centralized shielding (e.g., due to the delay caused by agents switching shields).

4.3 Experiments

We implemented both the centralized shielding and factored shielding approaches in
Python and used the Slugs tool [93] to synthesize shields via solving two-player safety
games. We applied our prototype implementation to six benchmark problems in the grid
world (Figure 4.6a) and a cooperative navigation environment (Figure 4.6b). We used two
MARL algorithms CQ-learning [85] and MADDPG [38] in experiments to show that our
shielding approaches are agnostic to the choice of MARL algorithms. The experiments
were run on a computer with Intel i5 CPU and 16 GB of RAM. Each experiment was split
into training phase (linearly decreasing exploration) and evaluation phase (immediately
following the training phase and with an exploration rate of 5%). All experiments were
conducted for 10 independent runs whose results were averaged to reduce the impact of
outliers. The shields in all examples were synthesized within two minutes.

(a) Grid world maps [91]. (b) Cooperative navigation maps [92].

Figure 4.6: Map visualizations
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Figure 4.7: Collision variation experiments results.

Problem Setup. Figure 4.6a shows four maps of benchmark grid world examples
adapted from [91]. Each map has two agents (blue and orange), where each agent aims to
learn its own optimal policy for navigating from the start position (circles) to the target
position (squares) while trying to avoid collisions. Each agent has five possible actions:
stay, up, down, left, right. Once an agent reaches its target position, it stays there. A
learning episode ends when both agents have reached their target positions. Both agents
have the same reward function: −1 for a valid move, −10 for a collision with a wall, −30
for collision with the other agent, 100 for arriving at the agent’s target position.

Figure 4.6b shows two benchmark cooperative navigation examples adapted from [92].
Each example has four agents (blue, orange, green, and grey) represented as particles.
Their start positions are shown as large circles. The goal is for agents to cooperate and
reach their designated target (small circles) positions as fast as possible while avoiding
collisions. We discretize the fully continuous environment in [92] by restricting agents
only take positions with a precision of 0.1. An agent receives a higher reward when it
gets closer to its target position (i.e., negation of the distance value), and a negative
reward −1 for any collision.

Collision Variation Experiments. We conducted a set of experiments using the grid
world examples to highlight why relying on the reward function only is not sufficient
to achieve safety (i.e., collision avoidance in our examples). To prevent collisions, the
traditional practice of reinforcement learning is to assign a negative reward (we refer to
its absolute value as the cost of collision) whenever a collision occurs, and increase the
cost until the probability of collision happening becomes negligible. Figure 4.7 shows the
results (avg. of 10 evaluation episodes conducted after 1,000 training episodes, across
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IQL CQ CQ with centralized shield CQ with factored shield
Maps Opt. Steps Steps Reward Coll. Steps Reward Coll. Steps Reward Coll. Steps Reward Coll.

ISR 5 30.35 -10.20 20.30 8.66 89.53 0.40 7.03 93.85 0.00 7.31 93.74 0.00
Pentagon 10 46.58 -19.17 11.60 10.96 88.96 0.20 12.08 88.44 0.00 13.20 84.88 0.00
MIT 18 20.84 77.33 0.00 42.93 30.38 0.90 28.38 73.94 0.00 29.96 37.96 0.00
SUNY 10 34.80 -160.175 72.60 13.97 84.78 0.30 11.97 88.44 0.00 14.02 83.77 0.00

Table 4.1: Results comparing the independent Q-learning, CQ-learning
with and without shields (mean of 10 evaluation episodes conducted after

1,000 training episodes, across 10 independent runs).

10 independent runs) of our experiments using the independent Q-learning [84] and CQ-
learning[85]. The left side of the figure shows that, for the independent Q-learning,
increasing the cost of collision cannot guarantee that the evaluation phase will be com-
pletely collision free; moreover, the increased cost of collision leads to a significant agent
performance degradation measured by a larger number of steps to reach target positions.
In the MIT and SUNY maps, agents even learn policies that give up the primary task of
reaching target positions in order to avoid the high collision cost. The results of the CQ-
learning (shown in the right side of the figure) are better than those of the independent
Q-learning. The number of collisions drops quickly with a relatively low cost. However,
CQ-learning cannot guarantee zero collision either (see Table 4.1).

Figure 4.8: Comparison of CQ-learning without shielding, with central-
ized or factored shielding (1,000 training episodes, across 10 runs).

Centralized Shielding Evaluation. We integrated CQ-learning with centralized shield-
ing and applied it to the four grid world examples shown in Figure 4.6a. The results in
Table 4.1 show that centralized shielding can guarantee collision free learning in all cases.
Moreover, in three out of four maps, CQ-learning with centralized shield obtained better
policies with higher rewards and smaller number of steps to reach the target, compared to
no shielding. Figure 4.8 shows that centralized shielding achieves the highest accumulated
reward in most times; moreover, the blue shaded area (standard deviation of no shielding)
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tends to stretch lower than others, indicating that CQ-learning without shielding obtains
lower rewards than with centralized shielding on average. The learning curves also show
that the centralized shielding does not prevent the learner from converging across differ-
ent examples. However, we failed to synthesize centralized shields with more than two
agents in these grid maps, due to scalability issues of shield synthesis.

Figure 4.9: Comparison of MADDPG without and with factored shield-
ing (20,000 training episodes, across 10 independent runs).

MADDPG MADDPG with Shield
Cross 207.20 0.00
Antipodal 14,419.20 0.00

Table 4.2: Total number of collisions over 20,000 training episodes for
the cooperative navigation examples.

Factored Shielding Evaluation. First, we applied CQ-learning with factored shield-
ing to the four grid world examples. We adopted a factorization scheme such that each
shield monitors agent actions occurring within a 3 × 3 grid block in each map. Results
in Table 4.1 show that CQ-learning with factored shielding can guarantee zero collisions
in all examples, while learned policies have similar quality as those obtained from CQ-
learning with centralized shielding. Figure 4.8 shows that factored shielding achieves
similar performance in terms of the accumulated rewards per episode, compared to cen-
tralized shielding and without shielding. Due to the scalability limitation of CQ-learning,
we can only consider two agents in these examples.

Additionally, we integrated a different algorithm MADDPG [38] with factored shielding
and applied it to the cooperative navigation examples shown in Figure 4.6b with a 5× 5

shield size where one unit of distance corresponds to 0.1 in the environment. There
are four agents in each example, which is not feasible for centralized shielding approach
to handle. Table 4.2 shows that MADDPG with factored shielding can guarantee zero
collisions over the training period of 20, 000 episodes for both examples. By contrast,
MADDPG without shielding leads to about 207 and 14, 419 occurrences of collisions for
the cross and antipodal examples, respectively. Figure 4.9 shows that in the cross example,
MADDPG without and with factored shielding have comparable learning performance
in terms of the accumulated rewards per episode; in the antipodal example, MADDPG
without shielding achieves higher rewards than MADDPG with factored shielding, though
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this comes at a trade-off of more collisions. The learning curves in Figure 4.9 also show
that the factored shielding do not have negative impact on the learner’s ability to converge.

Summary. Our experiments demonstrate that the two shielding approaches can guaran-
tee the safety, without compromising the learning performance in terms of the convergence
rate and the quality of learned policies. Moreover, factored shielding is more scalable in
the number of agents than centralized shielding.

4.4 Summary

In this chapter, we present two shielding approaches that guarantee the safety specifi-
cations expressed in linear temporal logic (LTL) during the learning process of MARL.
The centralized shielding approach synthesizes a single shield to centrally monitor the
joint actions of all agents and only corrects any unsafe action that violates the LTL safety
specification. However, the scalability of centralized shielding is restricted because the
computational cost of shield synthesis grows exponentially with the number of agents.
The factored shielding approach addresses this limitation by synthesizing multiple fac-
tored shields with each shield monitoring a subset of agents at each time step. Our exper-
imental results show that both shielding approaches can guarantee the safety specification
(e.g., collision avoidance) during learning, and achieve similar learning performance (e.g.,
convergence speed, quality of learned policies) as non-shielded MARL.

One of the downsides is that we manually devise factorization schemes for the factored
shielding approach in our experiments based on problem-specific knowledge. A possible
solution would be to use learning to have adaptive and efficient factorization schemes.
However, learning a factorization still needs to maintain our safety objectives. Further
investigation of this idea is necessary to determine its feasibility. The methods presented
here is such that the shield is guaranteed at all times to monitor the actions. While
our approach attempts to guide the learning as well as block unsafe behavior, there is
insufficient evidence to suggest that the policy learned would be safe without the shield.
Recent work for shielding in partially observable environments looks at ways to gradually
remove the shield [94]. Additionally, the abstraction used to synthesized the shield limits
the amount of non-determinism and probabilistic that can be present in the environment.
Currently, the shield cannot recover from unexpected violations. In the next chapter, we
present an approach where we directly use the logic specification to fashion the reward
function to guide the learning process. We explore the feasibility of using logic-based
reward shaping as an alternative to shielding.
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Chapter 5

Logic-Guided MARL Reward
Shaping

In the previous chapter, we investigated how to synthesize shields preventing unsafe be-
havior and how to integrate them in the learning process. However, the creation of the
shields relies on an MDP abstraction of certain aspects of the environment. In some cases,
not even an abstraction is available. In this chapter, we seek to answer the following re-
search question. How can we better guide MARL agents towards safe policies when the
underlying MDP is completely unknown?

While MARL algorithms themselves are appealing for their capability to adapt and learn
in an unknown environment, this is only possible if the reward function is designed cor-
rectly for the problem the agent is attempting to solve. Designing the reward function is
still mostly done manually in most cases and is often hard to interpret [14], [30]. For this
reason, logic-based reward shaping is a promising technique which uses the flexibility of
Linear Temporal Logic (LTL) to automate the reward function design process based on
the task. LTL has also proven to be an expressive and widely used task specification lan-
guage in robotic applications as well as a possible candidate for translation from natural
language [95]. Furthermore, we believe that this could be very useful in the multi-agent
case where it becomes even more tricky to design the reward function. In MARL, agents’
interactions can affect each other’s rewards and make it harder to train. In addition, the
joint state space and joint action space increase exponentially with the number of agents
which poses scalability issues.

Logic-based reward shaping with single agent RL demonstrates efficient task learning as
well as flexible task expression thanks to LTL [18]. Once a Limit-Deterministic Büchi Au-
tomaton (LDBA) is synthesized based on the LTL task, we can obtain a product Markov
Decision Process (MDP) based on the environment MDP and the LDBA automaton.
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Then, we can use the accepting states to reward the agent such that it visits the accept-
ing states infinitely often [21], [22]. With an automated method to synthesize the product
MDP, the reward function only depends on the product MDP state.

To the best of our knowledge there is only one previous work attempting to use logic-
based reward shaping methods in Multi-Agent Systems, which is based on a more limited
fragment of LTL and addresses only tasks that can be fully decomposed into individual
tasks [33]. Furthermore, MARL is notoriously difficult to train because of the interactions
between agents and logic-based reward shaping methods in the single-agent context is
unlikely to work in this setting [35].

In this chapter, we present a semi-centralized approach for reward shaping in multi-agent
systems, where we synthesize a centralized LDBA which monitors the agents’ progress
with respect to a given LTL formula. When a set of observed labels violate the LDBA
specification, the automaton transitions to a trap state and returns a large negative
reward. If the set of observed labels or selected epsilon-actions transition the LDBA to
an accepting state, the agents receives a positive reward. We follow the joint rewards
mechanism for this approach; that is, all agents receive the same rewards based on the
common LDBA state.

This chapter addresses the need for an automated framework converting tasks to reward
functions for their respective agents or a team of agents. Inspired by existing logic-based
reward shaping mechanisms for single agent RL, we develop a novel framework for logic-
based reward shaping for MARL. Our contributions include:

• We develop a semi-centralized approach for multi-agent reward shaping which is
scalable in the number of agents.

• We showcase our approach via experimental evaluation on multiple benchmarks.

Relevant prior work is discussed in section 2.2, then we present important background
knowledge with respect to reward shaping in RL in section 5.1. The rest of this chapter
is structured as follows. We identify a motivating example and problem statement in
section 5.2. In section 5.3, we explain our proposed method in section. We proceed to
evaluate our method and present the relevant results in section 5.4. Finally, we discuss
limitations in section 5.5 before concluding in section 5.6.

5.1 Background

In figure 5.1, is an example taken from [21] showing the product MDP construction
steps. In figure 5.1b, we see the representation of a Limit Deterministic Büchi Automa-
ton (LDBA) which can be automatically generated based on an LTL formula. The main
difference compared to a DFA is that the accepting states and the other states are two



Chapter 5. Logic-Guided MARL Reward Shaping 36

(a) MDP of an example environment (b) LDBA for LTL formula F (G a)∨F (G b)

(c) Resulting product MDP

Figure 5.1: Constructing the Logic-based Structure

disjoint sets separated by non-deterministic ϵ-transitions [22]. In this figure, the formula
intuitively means: “Eventually Always a Or Eventually Always b”. In other words, even-
tually we must only find “a” consistently or only “b” consistently. Here “a” and “b” refer
to labels of certain states in the MDP, they could be alternate goal locations for example.
Thus, the formula would be encouraging the agent to find one of the goal locations and
remain there. Therefore the only accepting states are {q1, q2}, since once you find a state
labeled “b” you have to stick to that label otherwise you violate specification and same
goes for q1 with “a”. Here q3 is a failure state from which you cannot recover because
of the nature of the specification. Figure 5.1c shows how the LDBA from Figure 5.1b
and the MDP from figure 5.1a can be combined into a product MDP. Each state of the
new MDP will correspond to a state in the LDBA and a state of the MDP based on the
transitions that have been taken and the labels that have been encountered. Moreover,
each ϵ-transition in the LDBA gets translated into an action that does not change the
MDP state in the product MDP, only the LDBA state. From state s0q0 the possible
actions are α or the ϵ-transitions (because of q0). In this MDP, the accepting states are
{s0q1, s0q2, s1q1, s1q2} and the states {s0q3, s1q3} form a non-accepting sink component.
In the context of learning, the ϵ-actions can be seen as a guess which may or may not be
taken at the right time, in which case they may lead to a non-accepting sink component.
This is the case if action ϵ2 is taken at state s0q0. However, in the following episodes, the
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(a) Grid representation
of the example MDP

(b) Automaton for agent A1,
ϕ1 = (¬a U b) ∧ F G g1

(c) Automaton for agent A2,
ϕ2 = (¬b U a) ∧ F G g2

Figure 5.2: Motivating Example

agent should learn that taking action ϵ2 from state s1q0 leads to an accepting strongly
connected component (SCC).

The main objective for logic-based reward shaping is to encourage the RL agent to learn
a control policy that maximizes the probability of satisfying the Büchi condition for the
LTL specification in an arbitrary MDP [22]. The Büchi condition is satisfied when the
accepting states of the LDBA automaton are visited infinitely often by the agent’s policy.
They optimize for this behavior by defining the reward function such that the value of
each state in the set of accepting states approaches 1. If an agent visits an accepting
state, the agent receives a reward (1− γB) and uses an accepting state specific discount
value γB. If the agents visits a non-accepting state, the agent receives a reward of 0 with
a discount value of γ. The probability of satisfying the Büchi condition is maximized as
the discount factor γ approaches 1−. In other work, encouraging the agent to visit the
accepting states infinitely is translated into different types of reward functions [21], [27].
In some cases the reward function completely replaces the environment reward and in
others balancing factors are used to quantify the relative weight of the different reward
sources [21], [30].

5.2 Motivating example

In this work, we first introduce a two agent scenario adapted from an example presented
in [33] to motivate our approach. In figure 5.2, agent A1 needs agent A2 to press button b
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Figure 5.3: Semi-centralized Reward Shaping

before proceeding towards its goal g1 and vice versa. Effectively, both agents need to be
pressing the button at the same time before they can reach their goals. In this example,
the environment does not enforce this constraint, only that the agents may not pass the
wall delineated in gray.

The example in figure 5.2 illustrates the kind of problem which cannot be resolved with
a simple independent learners strategy because an agent needs to be aware of labels
triggered by other agents. In this chapter, we demonstrate that this can be solved without
explicitly splitting the task into multiple individual sub-tasks and use the MARL to learn
the sub-tasks.

We consider the problem of learning agent policies in a stochastic multi-agent environment
satisfying a desired specification. The environment is modeled as an MDP which may be
an abstraction of the actual environment but should be completely characterized for each
agent, i.e., one agent’s action and state will not affect the other agents actions and MDP
states. The desired objective is given by an LTL formula which specifies all requirements
to be met and if appropriate in which order. Our goal is for agents to learn policies
such that all tasks and requirements are satisfied independently of the underlying MARL
algorithm A.

5.3 Approach: Semi-centralized Reward Shaping

In this section, we introduce a centralized automaton Aϕ in the MARL learning process.
In the following, we explain how our method can be used to solve problems requiring
agent coordination.

Figure 5.3 illustrates the interaction between each agent, the LDBA Aϕ synthesized from
the LTL specification ϕ and the environment represented as an MDPM from each agent’s
point of view. At time step t, agent i chooses some action ait based on the underlying
algorithm A. Then if the action is an ϵ-action, the epsilon action is forwarded to Aϕ to
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Algorithm 3: Semi-centralized reward shaping at time step t for an agent i
Input : MDP Mi , MARL algorithm A, automaton Aϕ and augmented state ⟨sit, qt⟩

1 ϵt = ∅
2 foreach agent i do
3 ait = A.action_selection(⟨sit, qt⟩,Ai

t) // Check for epsilon actions
4

5 if ait ∈ E then
6 ϵt.append(ait)

7 sit+1 =Mi.environment_step(sit \ {qt}, ait \ {ϵt})
8 lt = get_global_labels(st+1)
9 if ϵt ̸= ∅ then

10 qt+1, rt = Aϕ.update_automaton(qt, lt, ϵt) // Update automaton and get reward

11 A.update(⟨st, qt⟩, ⟨st+1, qt+1⟩, rt, at)

update the automaton state. If it is not an ϵ-action then it is sent along with the actions
of the other agents to the environment. From the environment, we receive the new set
of states and a set of labels. The labeling function need not be part of the environment
but can be determined as part of the current states, actions and new states. The labels
allow us to transition to the next automaton states (i.e., qt+1) in the LDBA Aϕ for non
ϵ-transitions. In this method, the agents’ states are augmented with the automaton state
qt at time t and qt is identical for each agent. In the case of decentralized execution, each
agent may have a copy of the LDBA Aϕ for which the state qt is synced at every time
step. The purpose of the automaton in this approach is to identify the different states of
progress for an LTL specification which can happen regardless of the number of agents
involved while giving agents flexibility in the way that the tasks are assigned. Without
syncing the automaton states with the other agents, the product MDP for any one agent
is incomplete and the agents cannot reach the accepting states.

In algorithm 3, we demonstrate how to implement this method with a generic MARL
algorithm A. Instead of explicitly building product a MDP for each agent, we can track
and synchronize the progress of each agent in the LDBA. We remark that an agent’s state
is an augmented state composed of the original MDP state and the automaton state. We
first choose an action for each agent i from the available actions at state sit which include ϵ
actions if ϵ actions are available at state qt of the automaton. The environment represented
here by MDP Mi from the point of view of an agent i transitions based on the selected
non-ϵ actions. The labels for the new state are then retrieved to transition the automaton
for the label-based transitions. For regular transitions, the automaton progresses based
on a joint set of labels lt which corresponds to the union of labels observed by all the
agents at time t. For ϵ-action based transitions, only one ϵ-action is allowed per time
step in addition to label based transitions where ϵ-actions are resolved before label-based
transitions. This is consistent with the definition of an LDBA for which the ϵ-moves can
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Figure 5.4: Automaton Representing Combined LTL Tasks

be taken at any time as long as they are available at the current state of Aϕ [22]. Finally,
the MARL algorithm A is updated with the augmented state and reward received from
reward shaping. Using one LDBA in combination with not explicitly building a product
MDP enables us to sidestep the issue of exponential increase in the number of product
MDP states proportional to the number of agents n.

In the motivating example (fig.5.2), the first agent’s automaton would check if button b is
triggered to be able to pass towards goal g1. The second agent’s automaton would include
button a that can only be reached by the first agent. The respective LTL formulas can
be expressed as ϕ1 = (¬a U b) ∧ F G g1 and ϕ2 = (¬b U a) ∧ F G g2. In the case of the
running example from fig.5.2, we can now express the tasks as follows:

ϕ3 =((F a ∧ ¬g1) U (a ∧ b))

∧((F b ∧ ¬g2) U (a ∧ b))

∧(F G g1) ∧ (F G g2)

The first line ensures that agents do not attempt to go to g1 without the buttons being
cleared, the second ensures that the agents do not attempt to go to g2 without the buttons
being triggered and the last last line encourages the agents to eventually find the goals g1
and g2. The resulting automaton is displayed in fig. 5.4. Notice that the transition from
state q1 to state q2 requires an epsilon-action. This example demonstrates how using a
common automaton can give us flexibility in the the task assignment. Here the user does
not need to know which agent should carry out which tasks. The user can still prevent the
agents from doing tasks out of order and effectively synchronize the agents. If the buttons
represent doorbells and the goals represent opening the doors, the simulation environment
could allow the agent to open doors without ringing the doorbells first which can be an
undesirable behavior. Furthermore, this example shows that a combined specification ϕ3
does not necessarily result in a large increase in the number of automaton states (fig.5.4).
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Complexity. In terms of time complexity, the main added complexity is the synthesis
of the LDBA Aϕ which can be computed once at the beginning and sent to all agents.
In terms of space complexity, we avoid exponential complexity in the number of agents
by considering the point of view of only one agent at a time. However, instead of the
memory required by agent i being a product ofMi’s state space andMi’s action space, we
now have both an augmented state space and an augmented action space for each agent.
However, we argue that although more complex tasks may require a larger number of
automaton states, the LDBA of the joint specification may exploit symmetry within the
tasks (fig. 5.4). In terms of communication, our method only requires that the value of
the automaton state and selection of ϵ-actions be transmitted which is why our method
can be considered semi-centralized.

Correctness. We show that the reward function obtained is correct with respect to the
joint LTL specification ϕ. Using an LDBA allows us to identify all the different traces
through which the joint LTL specification for the MARL tasks may be satisfied. Thus,
assuming the labels are identified correctly, following the reward function obtained from
the corresponding LDBA is guaranteed to be an accurate representation of the agents’
progress. In other words, if the agents receive a non-zero reward then it is guaranteed
to correspond to an accepting transition of Mx. We further show that our method
is equivalent to building a product MDP Mx =

(
Aϕ ×M0 × . . .×Mn

)
, ∀n agents

after resolving the ϵ-transitions. In our algorithm, we implicitly build the product pairs(
Aϕ ×Mi

)
, ∀i ∈ n where each agent i is responsible for one pairing and the automaton

Aϕ is synchronized.

By definition of a pair product MDP, the actions allowed at a specific state are given by
union of the actions allowed in the MDP state and the ϵ-actions allowed in the automaton
state. So if we consider the larger picture with all the agents, then the allowed actions
at any given state of the product MDP is the union of the action space all pairs for that
state which corresponds to the union of the automaton actions with the MDP action
space of all agent MDPs. In our case here, the ϵ-actions are not repeated since in the
case of multiple ϵ -action only one is selected.

The state space of the pair product MDPs is defined by all the possible combinations
of the state space of Aϕ and the the state space of Mi. If we extend that to all
agents, the joint state space is characterized by

(
Aϕ ×M0

)
× . . .×

(
Aϕ ×Mn

)
. However,

since the LDBA state across all agent pair product MDPs is the same, this reduces to(
Aϕ ×M0 × . . .×Mn

)
, proving it is identical to the product MDPMx state space.

The transition function of the product MDPMx is defined by the product of the automa-
ton transitions and the successive MDP transitions. If labels resulting in an automaton
state transition are identified, the transition of the automaton and the transition of the
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MDP state can be combined (fig. 5.1). Because each MDPMi transition is fully charac-
terized by one agent, the order of the agent environment transitions during a time step
t does not matter (allowing us to take them simultaneously). Therefore, since the set
of observed labels lt at time t is identical for all agents and only one common ϵ action
can be taken, the transition computed by each agent for the automaton is deterministic
and unique. Thus, the product MDPMx transition function reduces to the pair product
MDP transitions.

This proves that all aspects of the product MDPMx are consistent with our implemen-
tation in algorithm 3 of the pair product MDPs for each agent.

Impact on Learning Performance. This method is agnostic to the choice of a MARL
algorithm because the reward shaping interacts with the learner only via inputs and
outputs, and does not rely on the inner-workings of the learning algorithm A. The
convergence of this method may depend on the underlying algorithm. However, there is
a lack of theoretical convergence guarantees for MARL algorithms in general. Thus, we
focus on showing empirical convergence in our experiments in Section 5.4.

Because of the flexibility in the expression of an LTL specification, slightly different ways
of specifying the same general tasks may lead to a different number of accepting transi-
tions. The number of accepting transitions directly impacts the learning performance by
providing more or less guidance with respect to progress in the LDBA. Note for example
that the specifications for the motivating example (ϕ3) and the rendez-vous benchmark
here denoted by ϕ′3 (presented in section 5.4) have similar tasks which consist in having
both agents synchronize at locations a and b then proceeds to the goal locations g1 and g2.
However, the specifications differ with ϕ′3 = F ((a∧ b)∧ X F ((g1 ∨ X F g1)∧ (g2 ∨ X F g2)))
resulting in the automaton shown in figure 5.9 in Section 5.4. Further analysis of both
specifications shows that the winning region w3 of ϕ′3 is covered by the winning region
wr for ϕ′3; formally, w3 ⊆ wr. We show that in our experiments, a larger number of
accepting transitions (i.e. more possible rewards during an accepting run) translates into
better learning performance (fig. 5.5b).

5.4 Experiments

Our method is implemented in Python1 and is built upon the single agent RL tool (CSRL)
developed in [22] which uses the Owl library to synthesize the LDBA from the LTL spec-
ifications [96]. We also use the Spot library [97] to visualize the automata synthesized
for each example in section 5.4. We applied our approach to three benchmarks including
the previously discussed motivating example. The experiments were run on Windows

1The code is available at: https://github.com/IngyN/macsrl

https://github.com/IngyN/macsrl
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(a) Representation of the
Environment

(b) Normalized Mean Return Learning Curve

Figure 5.5: Results for the Motivating Example

Subsystem for Linux (WSL2) running Ubuntu with an AMD Ryzen 7 CPU with 32 GB
of RAM. All experiments terminated within one hour. We have not noticed a signifi-
cant increase in time when running our method vs the same algorithm with no reward
shaping. The main time complexity added by our method is the synthesis of the LDBAs
and/or computation of the product MDP both of which only need to be computed once.
For evaluation, we selected Independent Q-Learning [35] as a baseline but also as the
underlying MARL algorithm for our method. Specifically, we used an ϵ-greedy policy
with γ = 0.999 and γB = 0.99 (accepting transitions discount). Both the probability for
exploration and the learning rate are gradually decreased over the training from 1.0 to
(0.01 and 0.001) respectively. For presented benchmarks, the environments visualized in
Figures 5.5a, 5.6a and 5.7a are non deterministic with a probability p = 0.8 of going to
the desired location and a probability (1 − p) = 0.2 of ending up in another adjacent
location. In all benchmarks, if an agent reaches a goal location (i.e. containing g in
the label), they cannot move for the remainder of the episode. In order to compare the
learning performance we normalized the returns such that the minimum reward received
corresponds to 0 and the maximum corresponds to 1 for each method. Moreover, for all
graphs, we average the normalized returns over the agents and apply smoothing using a
rolling window of 1000 episodes.

Motivating Example. Our first benchmark is the motivating example described previ-
ously in Section 5.2. For the Independent Q-Learning baseline, we setup the independent
reward function as follows: receive a reward of 2 if both agent are at a and b at the same
time, 10 if they reach their goal. Notice that baseline reward function doesn’t directly
encourage agents pressing the buttons before reaching the goal. In contrast with our ap-
proach where the agents do not receive a reward for reaching the goal locations until both
buttons have been pressed simultaneously. The results observed (fig.5.5b) show that for
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(a) Representation of the Environment (b) Normalized Mean Return Learning Curve

Figure 5.6: Results for the Flag Collection Example

both LTL specifications our method learns more reliably than the baseline with no reward
shaping. In Section 5.3, we discuss two possible specifications featuring different automata
structures. The LTL shaping curve in blue corresponds to our initial specification ϕ3 =

((F a∧¬g1) U (a∧b))∧((F b∧¬g2) U (a∧b))∧(F G g1)∧(F G g2). The LTL shaping curve
in green corresponds to the specification ϕ′3 = F ((a∧b)∧X F ((g1∨X F g1)∧(g2∨X F g2))).
The standard deviation over the rolling window is depicted by the shaded area for ϕ′3. We
remark that the standard deviation is larger than the Independent Q-Learning baseline
method. We hypothesize that this is because for the LDBA generated from specification
ϕ there only exists one accepting transition highlighted by a blue dashed line in Figure
5.4 compared to 5 accepting transitions as seen in Figure 5.9 for specification ϕ′3. This
results in the agents either receiving a normalized reward of 1 or 0 in an episode which
explains the larger standard deviation. The learning curve for the reward shaping based
on ϕ′3 shows both better normalized returns per episode and better convergence. This
difference in learning performance demonstrates the importance of choosing an adequate
formats for LTL tasks.

Flag collection. Our second benchmark is a flag collection scenario inspired by [33].
Previous work has demonstrated this kind of scenario to be challenging for RL agents
even in the single agent case [28]. In this scenario (fig.5.6a), the agents must collect flags
a and b then proceed to a goal location (g1, g2). Similarly to the previous example, in
the baseline case agents receive a reward of 2 for collecting a flag and a reward of 10 for
reaching a goal. In this benchmark, no instruction or constraints are given as to which
agent should go to which goal or collect which flags. The LTL specification used for this
example is the following: ϕ = F (a ∧ F (b ∧ (F (g1 ∨ X F g1) ∧ F (g2 ∨ X F g2)))). Using the
(label∨X F label) format helps create a larger number of accepting transitions (6 accepting
transitions, with an automaton with 7 states) guiding the reward shaping progress better
(Figure 5.10 in section 5.4). In Figure 5.6b, our method performs much better than
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(a) Representation of the Environ-
ment

(b) Normalized Mean Return Learning Curve

Figure 5.7: Rendez-vous

the baseline which fails to converge with the same number of training episodes. In our
testing, increasing the number of training episodes has not yielded better convergence for
the Independent Q-Learning baseline. Notice that unlike the previous benchmark, our
method has a much smaller standard deviation after convergence.

Rendez-vous. Our third benchmark is a rendez-vous task where agents must meet
in the adjacent locations a and b then proceed to goal locations g1 and g2 (fig. 5.7a).
Similarly to the first benchmark, baseline agents receive a reward of 2 if both agents are
at locations a and b at the same time step and 10 when each one reaches a goal location.
In this scenario, agents are not assigned to a specific goal or meeting location, it is up to
the learning algorithm to learn the optimal assignment. The LTL specification used for
this benchmark is: ϕ = F ((a ∧ b) ∧ X F ((g1 ∨ X F g1) ∧ (g2 ∨ X F g2))). The synthesized
LDBA is composed of 7 states including the trap state and contains 5 accepting transitions
(fig. 5.9). Figure 5.7b shows that in this slightly larger benchmark both methods converge
but both still have a fairly large standard deviation with the average return for the LTL
shaping method being higher than the baseline method with shaping.

Experiment Automata. We now present the automata synthesized for each bench-
mark in our experiments (Sec. 5.4). The transitions annotated with a blue 0 are the
accepting transitions. The automata seen here do not show the trap state to which
agents would transition in the event of traces violating the specification. For example, in
state 0 for the automaton in Figure 5.8, if either agent went to a goal location (g1 or g2)
that would violate the specification and the common automaton would transition to the
trap state.
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Figure 5.8: Automaton for Motivating Example with LTL specification
ϕ3

Figure 5.9: Automaton for the Rendez-vous Scenario and for the Moti-
vating example with ϕ′3

5.5 Discussion

In order to assign tasks to specific agents, we initially attempted to use separate automa-
tons that would communicate the perceived labels. In the motivating example (fig. 5.2),
the first agent’s automaton would check for button b is triggered to be able to pass towards
goal g1. The second agent’s automaton would include button a that can only be reached
by the first agent. However, without explicitly adding the labels from the other agents
in the automaton, the product MDP for any one agent is incomplete and cannot reach
the accepting states. In our motivating example from fig. 5.2, this would also happen if
agent A2’s LTL task was: ϕ2 = (¬g2 U a) ∧ F G g2. Then the second agent could wait
until label a is triggered and immediately proceed to the goal in which case agent A1 can
never reach its accepting state.

In the case of Independent Q-Learning which is used as the underlying algorithm for
our method, we argue that the augmented state ⟨sit, qit⟩ allows for indirect coordination
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Figure 5.10: Automaton for the Flag Collection Scenario

by abstracting task progression more effectively. We can argue that if the joint LTL
specification includes some task A and some task B, when task A is completed by an
agent i then the automaton state changes, implicitly communicating to the other agents
that task A is complete.

In this method, we assume that if agents choose conflicting ϵ-action then the first agent’s
choice in the agent ordering decides which one is being taken thereby enforcing a priority
scheme based on agent ordering. For example, if we are using the LDBA from figure
5.1b one agent may choose to take the ϵ-action leading to q1 and the other the ϵ-action
leading to q2, which transition should be taken? The more agents, we consider, the more
likely conflicting ϵ-actions will be chosen. This is currently one of our main limitations
and exploring how the use of a more dynamic agent priority scheme could be helpful to
improve this work.

The difference in performance in our experiments shows that to have optimal reward
shaping we may need to formulate the specification in such a way to increase the number
of accepting transitions in the LDBA. Moreover, different methods for reward shaping
create the reward function based on the automaton very differently. For example, in
the approach presented in [28], the authors use heuristics and attempt to estimate the
progress within the LDBA to better guide the learning process.

For the experiments section, we also attempted to demonstrate that this method could
work with another algorithm (we tried with shared-experience Q-learning [98]) in a slightly
modified foraging gym environment [99]. The agents were unable to learn in our attempts.
However, we believe it was an issue with the implementation of the necessary modifications
rather than a failure of our method.
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5.6 Summary

In this chapter, we present an approach to multi-agent reward shaping that can success-
fully learn LTL defined tasks. The semi-centralized reward shaping approach addresses
the issue of scalability and the need for coordination between agents. We also demonstrate
how the use of LTL in this approach can allow for flexible task specification and assign-
ment. In our experimental results, we highlight that our method can achieve encouraging
learning performance when compared to Independent Q-Learning alone.

In the future, we may look into ways to improve the logic-based reward shaping mechanism
further by exploring how this method would perform in the context of lossy or restricted
communication. It is our belief that a slightly modified main approach would be a useful
tool in this context. Another idea would be to use a hierarchical approach for team based
tasks. Furthermore, we may seek to revisit the decentralized approach and analyze how
it can be achieved in a modified problem. Finally, we may explore the use of our method
with a better way of determining progress through the automaton rather than waiting
until agents reach accepting transitions. A denser reward function as presented in [32]
has the potential to improve learning performance and could be adapted to our method.

While MARL excels at supporting a large number agents and expansive continuous en-
vironments, this comes at the cost of precision since many MARL algorithms rely on
functional approximation to be scalable. Alternatively, probabilistic model checking of-
fers logic-based sequential decision making tools resulting in interpretable policies when
provided with an MDP model of the environment. In the following chapters, we explore
informative safe decision-making in probabilistic model checking.
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Chapter 6

Distributional Probabilistic Model
Checking

In the two previous chapters, we have explored scalable methods to achieve both soft
and hard safety constraints in multi-agent reinforcement learning (MARL). Nevertheless,
MARL methods operate as a black-box making it hard to rigorously evaluate the learned
policy. Furthermore, a complete safety guarantee may be overly conservative or unrealistic
when systems (e.g., robotics) exhibit probabilistic and non-deterministic behavior due to
inherent uncertainty (e.g., sensor noise, human interactions, weather).

Probabilistic model checking offers tools to both model and verify this type of challenging
environment. It also supports not only their verification against specifications in temporal
logic, but also synthesis of optimal controllers (policies). Commonly used models include
discrete-time Markov chains (DTMCs) and Markov decision processes (MDPs). A range
of verification techniques for these, and other models, are supported by widely used
probabilistic model checkers such as PRISM [9] and Storm [10]. In this chapter, we aim
to provide safe sequential decision making methods by evaluating the cost distribution of
any given policy and synthesizing risk-sensitive policies.

Risk-aware distributional measures such as conditional value-at-risk (CVaR) [47] address
this by minimizing the costs that occur above a specified point in the tail of distribution.
Within probabilistic model checking, the use of quantiles has been proposed [39]–[42] to
reason about cost or reward distributions.

In this chapter, we develop a distributional probabilistic model checking approach, which
computes and reasons about the full distribution over the reward associated with a DTMC
or MDP. More precisely, we consider the reward accumulated until a specification in co-
safe LTL is satisfied, the latter providing an expressive means to specify, for example,
a multi-step task to be executed by a robot [100], or a sequence of events leading to a
system failure. We propose a temporal logic based specification for such distributional
queries.
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For a DTMC, we perform model checking of these queries by generating a precise rep-
resentation of the distribution, up to an arbitrary, pre-specified level of accuracy (the
distribution is discrete, but with possibly countable infinite support, so at least some
level of truncation is typically required). This is based on a graph analysis followed by
a forward numerical computation. From this, we can precisely compute a wide range of
useful properties, such as the mean, variance, mode or various risk-based measures.

For an MDP, we instead aim to optimize such properties over all policies. In this chapter,
we focus on optimizing the expected value or CVaR, whilst generating the full reward
distribution for each state of the MDP. This is done using distributional value iteration
(DVI) [56], which can be seen as a generalization of classical value iteration. Rather than
computing a single scalar value (e.g., representing the optimal expected reward) for each
MDP state, DVI associates a full distribution with each state, replacing the standard
Bellman equation with a distributional Bellman equation.

We consider two types of DVI algorithms, namely risk-neutral DVI for optimizing the ex-
pected value and risk-sensitive DVI for optimizing CVaR. Risk-neutral DVI can be shown
to converge to a deterministic, memoryless optimal policy, if a unique one exists [56]. For
CVaR, memoryless policies do not suffice for optimality, but risk-sensitive DVI does con-
verge for a product MDP that incorporates a (continuous) slack variable representing a
reward budget [58]. To improve computational efficiency, we present a risk-sensitive DVI
algorithm based on a discretization of the slack variable, and show that the algorithm
converges to a CVaR optimal policy for increasingly precise discretizations.

For both DVI algorithms, in practice it is necessary to use approximate distributional
representations. We consider the use of categorical and quantile representations. This can
impact both optimality and the precision of computed distributions but, for the latter,
we can construct the DTMC induced by generated MDP policies and use our precise
approach to generate the correct distribution. Finally, we implement our distributional
probabilistic model checking framework as an extension of the PRISM model checker [9]
and explore the feasibility and performance of the techniques on a range of benchmarks.

6.1 Distributional Probabilistic Model Checking

We formulate our approach as a distributional extension of probabilistic model check-
ing, which is a widely used framework for formally specifying and verifying quantitative
properties of probabilistic models. In particular, we build upon existing temporal logics
in common use. The core property we consider is the probability distribution over the
amount of reward (or cost) that has been accumulated until some specified sequence of
events occurs (which could constitute, for example, the successful completion of a task by
a robot, or a combination of events that leads to a system failure). To represent events,
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we use the co-safe fragment of linear temporal logic (LTL) as described in Definition 6.
The key ingredient of our temporal logic specifications is a distributional query, which
gives a property (such as the expected value, or variance) of the distribution over the
accumulated reward until an event’s occurrence.

Definition 7 (Distributional query). For a DTMC, a distributional query takes the
form R

f(r)
=? [ψ ], where r is a reward structure, f is a random variable property (e.g.,

E,Var, s.d.,mode,VaR,CVaR), and ψ is a formula in co-safe LTL.

Examples of properties that can be expressed in this framework include:

• R
E(rtime)
=? [ F end ] - the expected time until an algorithm terminates;

• R
Var(renergy )
=? [ F (goal1 ∧ F goal2) ] - the variance in energy consumption until a robot

visits location goal1 followed by location goal2.

• R
mode(rcoll )
=? [ F sent1 ∨ F sent2 ] - the most likely number of packet collisions before a

communication protocol successfully sends one of two messages.

For an MDP, the goal is to optimize some random variable property f over the policies
of the MDP. In this chapter, we restrict our attention to two particular cases, expected
value (E) and conditional value-at-risk (CVaR), and call these distributional optimization
queries.

Definition 8 (Distributional optimization query). For an MDP, a distributional opti-
mization query takes the form R

f(r)
opt=?[ψ ], where r is a reward structure, f ∈ {E,CVaR},

opt ∈ {min,max} and ψ is a formula in co-safe LTL. For the resulting policy, we can
perform policy evaluation on the induced DTMC using one or more other distributional
queries Rf

′(r′)
=? [ψ′ ].

An example optimization query is RCVaR0.9(rtime)
min=? [ F goal ], which minimizes the conditional

value-at-risk with respect to the time for a robot to reach its goal.

Semantics. A distributional query R
f(r)
=? [ψ ] is evaluated on a DTMC D, and a distribu-

tional optimization query R
f(r)
opt=?[ψ ] on an MDP M, in each case via a random variable

for the reward accumulated from its initial state:

R
f(r)
=? [ψ ] = f(Xr,ψ

D )

R
f(r)
min=?[ψ ] = inf

π∈ΣM
f(Xr,ψ

M,π)

R
f(r)
max=?[ψ ] = sup

π∈ΣM

f(Xr,ψ
M,π)
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Figure 6.1: The “mud & nails” example. Left: Map of the terrain to
navigate, with two policies that minimize expected cost and conditional
value-at-risk to visit g1 and then g2. Right: The corresponding distribu-

tions over cost.

where the random variables Xr,ψ
D : IPathsD → R and Xr,ψ

M,π : IPathsM → R are:

Xr,ψ
D (ω) = Xr,ψ

M,π(ω) =

r(ω, kψ − 1) if ω |=ψ

∞ otherwise

and kψ = min{k | (ω, k) |=ψ} is the length of the shortest good prefix for ψ.

Example 3. We illustrate our framework with an example of an autonomous robot
navigating within a risky environment (“mud & nails”), modelled as an MDP. Figure 6.1
illustrates the scenario: the robot starts in the leftmost location (blue circle), and may
pass through two types of terrain, mud (orange zigzag) and ground littered with nails
(purple hatching). Obstacles are drawn as grey blocks. The cost of navigation is, by
default, 1 per step, obstacles incurring an additional cost of 35. In the “nails” terrain,
there is a probability of 0.2 of hitting a nail, which then incurs a cost of 5; navigating
the “mud” terrain is safer but slower: it incurs a cost of 3 per step. Consider the total
cost to visit g1 and then g2. Given a reward structure cost encoding individual costs
as above, we can aim to minimize either the expected cost or the conditional value-at-
risk, using queries R

E(cost)
min=? [ F (g1 ∧ F g2) ] or R

CVaR0.7(cost)
min=? [ F (g1 ∧ F g2) ]. Figure 6.1 also

shows the resulting policies, plotted on the map in purple and orange, respectively, and
the corresponding probability distributions over cost. We can analyze each policy with
further distributional queries, e.g., Rf(cost)=? [ F g1 ] for f = {E,Var} to evaluate the mean
and variance of the cost to reach g1. ■

6.2 Distributional Model Checking Algorithms

We now describe algorithms for distributional probabilistic model checking, i.e., to eval-
uate distributional queries of the form R

f(r)
=? [ψ ] for a DTMC or R

f(r)
opt=?[ψ ] for an MDP.

Following the semantics given in Section 6.1, for a DTMC D, this necessitates generat-
ing the probability distribution of the random variable Xr,ψ

D , corresponding to reward
structure r and LTL formula ψ, on D. The value f(Xr,ψ

D ) can then be evaluated on the
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distribution for any f. For an MDP M, we aim to find a policy π∗ which optimizes the
value f(Xr,ψ

M,π) over policies π.

For both classes of model, in standard fashion, we reduce the problem to the simpler case
where ψ is a reachability formula by constructing an automaton product. More precisely,
we build a deterministic finite automaton (DFA) Aψ representing the “good” prefixes of
co-safe LTL formula ψ, and then construct a DTMC-DFA product D⊗Aψ or MDP-DFA
productM⊗Aψ with state space S×Q, where S is the state space of the original model
and Q the states of the DFA. There is a one-to-one correspondence between paths (and,
for MDPs, policies) in the original model and the product model [101].

Hence, in what follows, we restrict our attention to computing the probability distribu-
tions for random variables defined as the reward to reach a target set of states T ⊆ S,
describing first the case for a DTMC and then the cases for risk-neutral (f = E) and
risk-sensitive (f = CVaR) optimization for an MDP. For the latter two, for presentational
simplicity, we focus on the case of minimization, but it is straightforward to adapt the
algorithms to the maximizing case.

6.2.1 Forward Distribution Generation for DTMCs

We fix a DTMC D, reward structure r and set of target states T . In this section, we
describe how to compute the probability distribution for the reward r accumulated in D
until T is reached, i.e., for the random variable Xr,FT

D . We denote this distribution by µ.
Note that, since individual rewards are integer-valued, and are summed along paths, µ is
a discrete distribution.

We compute the distribution in a forward manner, up to a pre-specified accuracy ε, using
Algorithm 4. First, note that the reward accumulated along a path that never reaches
the target T is defined to be∞ (see Section 6.1). Probabilistic model checking algorithms
typically compute the expected reward to reach a target T from a state s, which is therefore
infinite if s has a non-zero probability of not reaching T . Here, we have to take slightly
more care since there may be states from which there is a non-zero probability of both
accumulating finite and infinite reward. This means that µ is a distribution over N∞.

Algorithm 4 first identifies the states S∞ of D from which the probability of accumulating
infinite reward is 1, which are those in bottom strongly connected components (BSCCs)
of D that do not intersect with T . It then computes a discrete distribution µ× over
S × N∞ where, at the kth iteration, µ×(s, i) is the probability of being in state s and
having accumulated reward i after k steps. A new version µ′× is computed at each step.
Abusing notation, we write distributions as lists {x1 7→ p1, . . . } of the elements xj of their
support and their probabilities pj . We also keep track of the probabilities pT and p∞ of,
by the kth iteration, not having reached the target set T and being in S∞, respectively.
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Algorithm 4: Forward distribution generation for DTMCs
Input : DTMC D = (S, s0, P,AP , L), reward structure r, target set T ⊆ S,

accuracy ε ∈ R>0

Output: The discrete probability distribution µ for Xr,FT
D .

1 S∞ ← {s ∈ S | s is in a BSCC C ⊆ S with C ∩ T = ∅}
2 µ× ← δ(s0,0)
3 pT = 1; p∞ = 0
4 while pT − p∞ > ε do
5 µ′× ← {}
6 pT ← 0
7 for ((s, i) 7→ ps,i) ∈ µ× do
8 if s ∈ T then
9 µ′×(s, i)← µ′×(s, i) + ps,i

10 else
11 for (s′ 7→ ps′) ∈ P (s, ·) do
12 if s′ ̸∈ T then
13 pT ← pT + ps,i · ps′
14 if s′ ̸∈ S∞ then
15 µ′×(s

′, i+ r(s))← µ′×(s
′, i+ r(s)) + ps,i · ps′

16 else
17 p∞ ← p∞ + µ×(s, i) · ps′

18 µ× ← µ′×

19 return {i 7→ pi | pi =
∑

s µ×(s, i)} ∪ {∞ 7→ p∞}

The distribution µ is finally computed by summing µ×(s, i) values over all states and can
be analyzed with additional distributional properties.

Correctness and convergence. Let µ be the exact distribution for Xr,FT
D and µ̂ be the

one returned by Algorithm 4, using accuracy ε > 0. We have:

µ(i) ≤ µ̂(i) ≤ µ(i)+ε for all i ∈ N∞ (6.1)

Note that the support of µ may be (countably) infinite, but µ̂ is finite by construction.
In this case, the total truncation error is also bounded by ε: if k̂ ∈ N is the maximum
finite value in the support of µ̂, then

∑
k̂<i<∞ µ(i) ≤ ε.

To see the correctness of Equation (6.1), observe that µ̂(i) is ultimately computed from the
sum of the values

∑
s µ×(s, i) in Algorithm 4, the total value of which is non-decreasing

since rewards are non-negative. In any iteration, at most pT − p∞ will be added to any
value µ×(s, i) and, on termination, pT − p∞ ≤ ε. Convergence is guaranteed for any
ε > 0: since we separate the states S∞ in non-target BSCCs, within k iterations, the
combined probability of having reached T (i.e., 1 − pT ) or reaching S∞ (i.e., p∞) tends
to 1 as k →∞.
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Algorithm 5: Risk-Neutral Distributional Value Iteration
Input : MDPM = (S, s0, A, P,AP , L, ), reward structure r, target set T ⊆ S, and

convergence threshold ϵ ∈ R>0

Output: optimal policy π∗ for query R
E(r)
min=?[ FT ], distribution µs0 under π∗

1 foreach s ∈ S do
2 µs ← δ0

3 while e > ϵ do
4 foreach s ∈ S \ T do
5 foreach a ∈ A(s) do
6 η(s, a) :

D
= proj(r(s, a) +

∑
s′∈S P (s, a, s

′) · µs′)
7 π∗(s)← argmina∈A(s) E

(
X|X ∼ η(s, a)

)
8 µ′s ← η(s, π∗(s))

9 e← sups∈S\T d(µs, µ
′
s)

10 foreach s ∈ S \ T do
11 µs ← µ′s

12 return π∗ and µs0

6.2.2 Risk-Neutral Distributional Value Iteration for MDPs

In this section, we present a risk-neutral DVI method for computing value distributions
of states of an MDPM under an optimal policy that minimizes the expected cumulative
reward to reach a target set T ⊆ S, i.e., minimizes E(Xr,FT

M,π ) for random variables Xr,FT
M,π

of MDP policies π.

In contrast to the case for DTMCs, since we now consider expected values, we assume
that there exists an optimal policy with finite expected reward, i.e., which reaches the
target set T with probability 1. This can be checked efficiently with an analysis of the
underlying graph of the MDP [102].

The risk-neutral DVI method is shown in Algorithm 5. For each MDP state s ∈ S, it
initializes its value distribution µs to Dirac distribution δ0. The algorithm loops through
lines 3-11 to update value distributions of any non-target state s ∈ S \ T as follows.
For each available action a ∈ A(s) in state s, a value distribution is obtained via the
distributional Bellman equation shown in line 6 then projected to η(s, a) to match the
chosen representation (see Def. 1, 2). The optimal action π∗(s) in state s is the one that
achieves the minimal expected value of η(s, a). The updated value distribution µ′s of state
s is given by η(s, π∗(s)). The algorithm terminates when the supremum of distributional
distance d(µs, µ′s) across all states (the choice of metrics is discussed later) is less than
the convergence threshold ϵ. Unlike the accuracy ε for Algorithm 4, this threshold ϵ does
not provide a guarantee on the precision of the result after convergence (similar issues
occur in classical value iteration for MDPs [103]).
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Example 4. We can check R
E(cost)
min=? [ F (g1 ∧ F g2) ] on our running example using risk-

neutral DVI on a product MDP. The resulting optimal policy and distribution are shown
in purple in Figure 6.1. ■

Distributional approximation. To enable a practical implementation of the algorithm,
we need a probability distribution representation with finitely many parameters to store
value distributions in memory. Here, we can adopt the categorical (see Definition 1) or
quantile (see Definition 2) representations. Specifically, we need to apply the categorical
or quantile projection (see [56]) after each update of the distributional Bellman equation
(line 6). We use the supremum Cramér distance ℓ2 for categorical representations and the
supremum Wasserstein distance w1 for quantile representations as the distance metric in
line 9 (see [56] for distributional distance definitions).

Policy convergence. When there exists a unique risk-neutral optimal policy, Algo-
rithm 5 is guaranteed to converge to it (following [56, Theorem 7.9]). However, when
there are multiple optimal policies, risk-neutral DVI may fail to converge (see [56, Sec-
tion 7.5]). Furthermore, inaccuracies due the use of distributional approximations could
potentially lead to a sub-optimal policy being chosen. To mitigate this, for either cate-
gorical or quantile representations, increasing the number m of atoms used yields tighter
approximation error bounds [56].

6.2.3 Risk-Sensitive Distributional Value Iteration for MDPs

By contrast to risk-neutral policies that seek to minimize the expected reward, risk-
sensitive policies make decisions accounting for risk properties. In this section, we present
a risk-sensitive DVI method for minimizing the conditional value-at-risk of reaching a
target set in an MDP M, i.e., minimizing CVaRα(X

r,FT
M,π ) for random variables Xr,FT

M,π

of MDP policies π. Our method follows a key insight from [58], [104] that conditional
value-at-risk can be represented as the solution of a convex optimization problem.

Lemma 1 (Dual Representation of CVaR [58], [104]). Let [x]+ denote the function that
is 0 if x < 0, and x otherwise. Given a random variable X over the probability space
(Ω,F ,Pr), it holds that:

CVaRα(X) = min
b∈R

{
b+

1

1− α
E
(
[X − b]+

)}
, (6.2)

and the minimum-point is given by b∗ = VaRα(X).

Intuitively, the slack variable b ∈ [Vmin,Vmax] encodes the risk budget and possible
VaRα(X) values. Since VaRα(X) ∈ [Vmin,Vmax], the slack variable is similarly bounded
by the minimum and maximum possible accumulated reward within the MDP, respec-
tively. We assume that the reward values are bounded and the probability of reaching
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Algorithm 6: Risk-Sensitive Distributional Value Iteration
Input : MDPM = (S, s0, A, P,AP , L, ), reward structure r, target set T ⊆ S, risk

level α, slack variable set B, convergence threshold ϵ ∈ R>0

Output: optimal policy π∗ for query R
CVaRα(r)
min=? [ FT ], distribution µs0 under π∗

1 Construct product MDPMb = (S ×B, {s0} ×B,A, P b,AP , Lb)
2 µ⟨s,b⟩ ← δ0, ∀⟨s, b⟩ ∈ S ×B
3 while e > ϵ do
4 foreach ⟨s, b⟩ ∈ (S \ T )×B do
5 foreach a ∈ A(s) do
6 η(⟨s, b⟩, a) :D= proj(r(s, a) +

∑
⟨s′,b′⟩∈S×B P

b(⟨s, b⟩, a, ⟨s′, b′⟩) · µ⟨s′,b′⟩)

7 πb(⟨s, b⟩)← argmina∈A(s) E
(
[X − b]+ |X ∼ η(⟨s, b⟩, a)

)
8 µ′⟨s,b⟩ ← η(⟨s, b⟩, πb(⟨s, b⟩))

9 e← sup⟨s,b⟩∈(S\T )×B d(µ⟨s,b⟩, µ
′
⟨s,b⟩)

10 µ⟨s,b⟩ ← µ′⟨s,b⟩, ∀⟨s, b⟩ ∈ (S \ T )×B

11 b̄∗ ← argminb̄∈B CVaRα(X|X ∼ µ⟨s0,b̄⟩),∀b̄ ∈ B
12 π∗ ← policy πb of the product MDPMb with initial state fixed to ⟨s0, b̄∗⟩
13 return π∗ and µ⟨s0,b̄∗⟩

the target states is 1, therefore Vmin and Vmax are also bounded. To enable efficient
computation, we consider a discrete number of values for b. More precisely, we define a
set B with n evenly-spaced atoms b1 < · · · < bn such that b1 = Vmin, bn = Vmax, and the
stride between two successive atoms is ςn = Vmax−Vmin

n−1 . Based on Lemma 1, determining
the optimal slack variable value b∗ requires computation of VaRα for the distribution,
which cannot be obtained a priori. Thus, we consider all possible risk budgets.

Algorithm 6 illustrates the proposed method. We construct a product MDP modelMb =

(S ×B, {s0} ×B,A, P b,AP , Lb). Unlike the product MDP defined in Section 6.1, this
MDP has multiple initial states, one state ⟨s0, b̄⟩ for each risk budget b̄ ∈ B, where s0 is
the initial state of the MDP M. For each transition s

a−→ s′ in M with P (s, a, s′) > 0,
there is a corresponding transition ⟨s, b⟩ a−→ ⟨s′, b′⟩ inMb, where b′ is obtained by rounding
down the value of b− r(s, a) to the nearest smaller atom in B and P b(⟨s, b⟩, a, ⟨s′, b′⟩) =
P (s, a, s′). The labelling function is given by Lb(⟨s, b⟩) = L(s). Next, in lines 2-10,
Algorithm 6 initializes and updates the value distribution of each augmented state ⟨s, b⟩ ∈
S ×B in the product MDPMb in a similar fashion to the risk-neutral DVI described in
Section 6.2.2. However, when choosing the optimal action (line 7), Algorithm 6 adopts a
different criterion that minimizes E([X − b]+) based on the dual representation of CVaR
(see Equation 6.2).

Different choices of the initial risk budget b̄ lead to various value distributions. Once DVI
on the product MDP Mb converges, the algorithm selects the optimal risk budget, de-
noted by b̄∗, that yields the minimum CVaR of all possible initial value distributions µ⟨s0,b̄⟩.
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Finally, the algorithm returns the optimal policy π∗ resulting from the risk-sensitive DVI
on the product MDPMb with initial state ⟨s0, b̄∗⟩, and returns the distribution µ⟨s0,b̄∗⟩.

Correctness and convergence. Let Xr,FT
M,π be the random variable for accumulation of

reward r until reaching states T under policy π of an MDPM.

We first restate a closely related theorem from [58].

Theorem 1. [58, Theorem 4.5, adapted] Assuming a continuous slack variable b ∈ R,
there exists a solution b̄∗ when minimizing, over values of b, the inner formula Eπ([Xr,FT

M,π−
b]+) of Equation 6.2, for which the optimal policy for CVaRα(X

r,FT
Mb,π

) from initial state
⟨s0, b̄∗⟩ in the augmented MDPMb solves the following optimization problem for a fixed
α ∈ [0, 1] in the original MDPM:

inf
π∈Π

CVaRα(X
r,FT
M,π )

Theorem 1 guarantees that risk-sensitive DVI using the inner formula for the augmented
MDP Mb leads to the optimal policy. Moreover, the optimal policy for the augmented
model Mb is also optimal for the original MDP M. However, this theorem assumes a
continuous slack variable. Algorithm 6, which uses a discretized slack variable (i.e., the
set of atoms B is finite), converges to the same optimal policy πb as |B| increases. In
the following, we prove that, as the number of atoms used for |B| increases (i.e., stride
ςn decreases), the optimal policy for a finite set B becomes closer to the optimal policy
with a continuous slack variable in terms of CVaR values.

Lemma 2. Let π1 denote the optimal policy for minimizing CVaRα(X
r,FT
M,π ), which is

obtained with a continuous slack variable. Let π2 denote the optimal policy returned by
Algorithm 6 where B is a finite set of n evenly-spaced atoms with stride ςn. It holds
that CVaRα(X

r,FT
M,π2

)− CVaRα(X
r,FT
M,π1

) = O(ςn). As ςn tends to 0 (i.e., |B| increases), π2
converges to the CVaR optimal policy.

Proof. Recall that, when building the product MDP in Algorithm 6, we determine the
slack variable value b′ for a successor state by rounding down the value of b − r(s, a) to
the nearest smaller atom in B. More precisely,

b′ = Vmin + ςn ·
⌊
max(Vmin, b− r)−Vmin

ςn

⌋

This is the main source of approximation errors introduced by the discretization of the
slack variable. Following the dual representation of CVaR given in Lemma 1, each slack
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variable value update would introduce the error of:

CVaRα(X
r,FT
M,π2

)− CVaRα(X
r,FT
M,π1

)

=
(
b′ −max(Vmin, b− r)

)
+

1

1− α

(
E(
[
X − b′

]+
)− E([X −max(Vmin, b− r)]+)

)
Let β := max(Vmin, b− r). The first term yields,

b′ − β = Vmin + ςn ·
⌊
β −Vmin

ςn

⌋
− β

= ςn ·
(⌊

β −Vmin

ςn

⌋
− β −Vmin

ςn

)
∈ (−ςn, 0]

Given x1, x2, x3 ∈ R, we have [x1 − x2]+ − [x1 − x3]+ ≤ [x3 − x2]+ based on the triangle
inequality. The second term yields

1

1− α

(
E(
[
X − b′

]+
)− E([X − β]+)

)
=

1

1− α
E
([
X − b′

]+ − [X − β]+
)

≤ 1

1− α
E
([
β − b′

]+)
=

1

1− α
E

([
β −Vmin − ςn ·

⌊
β −Vmin

ςn

⌋]+)

=
ςn

1− α
E

([
β −Vmin

ςn
−
⌊
β −Vmin

ςn

⌋]+)
∈ [0,

ςn
1− α

)

Thus, it holds that CVaRα(X
r,FT
M,π2

)− CVaRα(X
r,FT
M,π1

) = O(ςn). As ςn tends to 0 (i.e., |B|
increases), π2 converges to the CVaR optimal policy.

Finally, we comment on the use of (categorical or quantile) distributional representations
and projections for implementing the above. Note that [56, Proposition 5.28] proves that
using the distributional Bellman update with a distributional representation/projection
combination (categorical or quantile) is guaranteed to converge based on the stride and
the number of iterations.
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6.3 Experiments

6.3.1 Setup

We built and evaluated a prototype implementation1 based on PRISM [9], extending its
Java explicit-state engine. The main benchmarks used are described in Section 6.3.2 and
the experimental results are discussed in the following sections. We focus initially on
solving MDP model using the DVI methods of Sections 6.2.2 and 6.2.3, then evaluate
the resulting policies using the DTMC method (Section 6.2.1). We then further evaluate
the DTMC method on a set of DTMC models from the PRISM Benchmark Suite [8], in
particular comparing this (forward, exact) approach to an alternative solution obtained
via DVI. Finally, we compare our risk-sensitive method to the CVaR techniques from [50],
using the benchmarks from that paper. All experiments were run on a machine with an
AMD Ryzen 7 CPU and 14 GB of RAM allocated to the JVM. We set Vmin = 0 for all
case studies; Vmax varies, as detailed below.

6.3.2 Case Studies

Betting Game. This case study is taken from [51]. The MDP models an agent with
an amount of money, initially set to 5, which can repeatedly place a bet of amount
λ ∈ {0, 1, 2, 3, 4, 5}. The probability of winning a bet is 0.7, the probability of losing a
bet is 0.25, and the probability of hitting a jackpot (i.e., winning 10λ) is 0.05. The game
ends after 10 stages. The reward function is given by the maximal allowance (e.g., 100)
minus the final amount of money that the agent owns. We use Vmax = 100.

Deep Sea Treasure. This case study is also taken from [51]. The model represents
a submarine exploring an area to collect one of several treasures. At each time step,
the agent chooses to move to a neighbouring location; it succeeds with probability 0.6,
otherwise moves to another adjacent location with probability 0.2. The agent stops when
it finds a treasure or has explored for 15 steps. The reward function is defined based on
the travel cost (e.g., 5 per step) and opportunity cost (i.e., maximal treasure value minus
collected treasure value). We set Vmax = 800.

Obstacle. This case study is inspired by the gridworld navigation example in [49]. We
consider an MDP model of an N × N gridworld with a set of scattered obstacles. The
agent’s goal is to navigate to a destination, while avoiding obstacles which would cause a
delay. At each time step, the agent moves in a selected direction with probability 0.9 and
an unintended direction with probability 0.1. The reward function is given by the time
spent to reach the destination. We use Vmax = 600.

1Code and models are at https://www.prismmodelchecker.org/files/nfm24dpmc.

https://www.prismmodelchecker.org/files/nfm24dpmc
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(a) UAV (b) Energy

Figure 6.2: Maps used in the UAV and Energy case studies.

Human-UAV Interaction. This case study is adapted from the MDP model of the
interaction between a human and an unmanned aerial vehicle (UAV) from [105]. A UAV
performs road network surveillance missions with the assistance of a human operator.
The road network is shown in Figure 6.2a, and the UAV is given a mission specified with
LTL formula ψ = (F w2) ∧ (F w5) ∧ (F w6), which translates into covering waypoints w2,
w5 and w6 in any order. The reward function is given by the mission completion time.
We pick Vmax = 500.

Energy. This case study considers a robot navigating an N ×N gridworld with energy
constraints (Figure 6.2b shows an example for N = 5). At each time step, the robot
moves to an adjacent grid location with probability 0.7 or ends up in an unintended
adjacent location with probability 0.3. The robot starts with a fixed amount of energy
and consumes 1 unit per step. The robot can only recharge its battery in the charging
station. When the energy is depleted, the robot is transported with a delay to the
charging station. The robot is asked to complete a mission specified with LTL formula
ψ = (F w1) ∧ (F w2) ∧ (F w3). The reward function represents the mission completion
time. We use Vmax = 500.

6.3.3 Method comparison

Table 6.1 summarizes our experimental results across the benchmarks described above.
For each MDP, we run both the risk-neutral and risk-sensitive variants of distributional
value iteration (DVI), optimizing expected value and CVaR, as described in Section 6.2.2
and Section 6.2.3, respectively. For the risk neutral case we also run standard value
iteration (VI), as implemented in PRISM. For all three methods, we then evaluate the
resulting policy, computing the full reward distribution using the forward distribution
generation method described in Section 6.2.1, allowing us to compute more precise results
for the expected value and CVaR on those policies.
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Table 6.1: Experimental results: Timing and accuracy of each method.

Model Method MDP Time (s) E CVaRα Timedtmc (s) ∆%
E ∆%

CVaR

Betting
Game

risk-neut. VI 8.9 · 102 < 1 61.9 - < 1 - -
risk-neut. DVI 8.9 · 102 < 1 61.9 98.0 < 1 0.0 0.0
risk-sens. DVI 9.0 · 104 36 85.3 92.2 < 1 0.0 0.0

DS
Treasure

risk-neut. VI 1.2 · 103 < 1 359.3 - < 1 - -
risk-neut. DVI 1.2 · 103 < 1 359.3 474.6 < 1 0.0 0.33
risk-sens. DVI 1.2 · 105 72 370.1 458.6 < 1 0.0 0.32

Obstacle
(N = 150)

risk-neut. VI 2.3 · 104 < 1 402.8 - 1,838 - -
risk-neut. DVI 2.3 · 104 97 402.7 479.2 1,838 0.01 1.95
risk-sens. DVI 2.3 · 106 15,051 402.9 478.4 1,673 0.01 2.00

UAV
risk-neut. VI 1.7 · 104 < 1 124.1 - < 1 - -
risk-neut. DVI 1.7 · 104 4 123.8 168.8 < 1 0.2 0.47
risk-sens. DVI 1.7 · 106 2,366 134.9 169.1 < 1 0.0 0.01

Energy
(N = 15)

risk-neut. VI 2.6 · 104 10 184.3 - 251 - -
risk-neut. DVI 2.6 · 104 108 184.0 382.0 234 0.17 0.47
risk-sens. DVI 1.3 · 106 9,384 184.6 380.9 122 0.16 0.33

The table shows the time to run each algorithm and the values computed during opti-
mization (the value for the objective being optimized is shown in bold). Additionally,
the table shows the time to run the forward distribution method on the induced DTMC,
and the (percentage) relative error when comparing the VI/DVI results with the forward
distribution outcomes.

For each case study, we also report the number of states in the (product) MDP that
is solved. The UAV and Energy benchmarks use non-trivial co-safe LTL formulae for
the mission specification (the others are reachability specifications) and so the MDP is a
MDP-DFA product. For risk-sensitive DVI, the state space is also augmented with a slack
variable resulting in larger product MDPs. We set the slack variable size to |B| = 51 for
the Energy model, and |B| = 101 for the rest. We use the the categorical representation
with m = 201 for DVI, with ϵ = 0.01 for the convergence metric. For policy evaluation,
we use precision ε = 10−3 for the Obstacle and Energy case studies and ε = 10−5 for the
others.

Our DVI methods successively optimize their respective objectives on a range of large
MDPs. Generally, the policy resulting from the risk-neutral method has a lower expected
value, while the policy from the risk-sensitive method has a lower CVaRα, and the risk-
neutral method yields the same optimal policy as baseline VI. As expected, DVI methods
are more expensive than VI, since they work with distributions, but the DVI methods
are successfully applied to MDPs with several million states. Additionally, the baseline
VI method can only provide expected reward values, while the distribution returned by
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(a) Categorical Rep. (b) Quantile Rep.

Figure 6.3: Experimental results for variable number of atoms in DVI.

our methods can be used to compute additional distributional properties (variance, VaR,
etc.). Comparing the two variants of DVI, the risk-sensitive version takes considerably
longer to run. This is primarily due to the use of a larger product model, incorporating a
slack variable, rather than the computation required for DVI itself. For the same reason,
risk-neutral DVI scales to larger models, but for clarity Table 6.1 only includes models
that all methods can solve.

The DTMC forward computation also works on all models. It is often very fast (under a
second in 3 cases), but grows expensive on models where the support of the distribution is
large. From its results, we see that both DVI methods produce approximate distributions
that are close to the true distribution.

Note that in the last three case studies, the Vmax value is higher, resulting in a larger
stride and thus more coarse representations for both the value distributions and the
slack variable (for risk-sensitive DVI). This results in more approximation errors when
computing metrics from the value distributions generated using DVI. This can be seen in
the case of the UAV model where the risk-neutral method underestimates CVaRα (168.8
compared to 169.6 from the true distribution generated by the DTMC method for the
same policy). The following experiments aim to evaluate how the parameters of the
distributional representation affect the resulting approximate distributions generated by
DVI.

6.3.4 Effects of using discrete distribution representations

Approximation of the return distribution. Figures 6.3a and 6.3b plot the effects
of varying the number of atoms in categorical and quantile representations, in terms of
the ℓ2 distance between the approximate distribution resulting from the risk-neutral DVI
and the ground truth (obtained via applying the DTMC forward distribution generation
method with ε = 10−5 on the resulting optimal policy). For both representations, the ℓ2
distance approaches 0 as the number of atoms increases, indicating that the approximate
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(a) Deep Sea Treasure (b) Obstacle 10 (c) Energy 10

Figure 6.4: Experimental results of risk-sensitive DVI.

distributions become very close to the ground truth. We observe similar effects with the
risk-sensitive method and thus omit the resulting plot.

A larger number of atoms (m value) leads to a higher computational cost, thus we consider
smaller models for the Obstacle and Energy case studies with N = 10 for plotting. As
an illustration of accuracy/cost trade-off, for Energy 10, the runtime using categorical
representations with 11 atoms (resp. 101 atoms) is 0.3s (resp. 0.63s), while the runtime
when using quantile representations with 10 atoms (resp. 100 atoms) is 0.9s (resp. 5s).
The quantile projection is more expensive than the categorical projection, resulting in
higher runtimes.

Approximation of the slack variable. Figure 6.4 illustrates the effects of varying the
number of atoms used in slack variables (|B|) in risk-sensitive DVI. The results show that
increasing |B| generally leads to better policies with smaller CVaR values. This is in part
because the algorithm would check a larger set of initial risk budgets b̄ ∈ B. But there
is a trade-off since the computational cost grows with an increasing |B|. For example, in
the Energy 10 model, the runtime using the categorical representation with 101 atoms for
|B| = 11 (resp. |B| = 101) is 7.8s (resp. 78.6s), whereas the runtime of using the quantile
representation with 1,000 atoms for |B| = 11 (resp. |B| = 101) is 477s (resp. 5,163s).

6.3.5 DTMC Performance Analysis

Next, we further evaluate the forward computation method for DTMCs from Section 6.2.1
on a range of common DTMC benchmarks from the PRISM benchmark suite [8]. In
particular, we compare to an alternative computation using the risk-neutral DVI method
method of Section 6.2.2, treating DTMCs as a special case of MDPs. Table 6.2 shows
the performance of the two methods. For each model, we indicate the parameters used
for the benchmark and the DTMC size (states and transitions). For the DVI method, we
use the categorical representation with a stride of 1 and a value of Vmax large enough to
represent the distribution (also shown in the table).
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Table 6.2: Performance comparison for DTMC forward computation

Model Param.s States Transitions Vmax DVI(s) DTMC(s) ∆%
E ∆%

CVaR

EGL N=8,L=3 5.4 · 106 5.5 · 106 40 439 1 0.4 0.5
N=8,L=4 7.5 · 106 7.6 · 106 40 897 1 0.4 0.4
N=8,L=5 9.6 · 106 9.7 · 106 50 4,345 1 0.3 0.4

Leader N=8,K=5 2.7 · 106 3.1 · 106 20 41 2 0.0 0.0
N=10,K=4 9.4 · 106 1.0 · 107 30 577 15 0.3 0.6
N=8,K=6 1.2 · 107 1.3 · 107 20 163 9 0.0 0.1

Herman N=13 8.2 · 103 1.6 · 106 100 4 14 0.6 0.9
N=15 3.3 · 104 1.4 · 107 120 57 190 0.5 0.9
N=17 1.3 · 105 1.3 · 108 140 1,234 2,369 0.8 1.2

In two out of the three benchmarks, the DTMC forward computation is much faster.
This is because the DVI method calculates a reward distribution for every state of the
model. However, for the third example, where Vmax is significantly higher, DVI is actually
faster (the same can be seen for the Obstacle and Energy models in Table 6.1). The
DTMC method computes distribution to a pre-specified accuracy, but DVI may incur
approximation errors, primarily due to convergence. The (relative) errors for the expected
value and CVaR metrics are also shown for every benchmark in Table 6.2.

6.3.6 Performance comparison with risk-aware SSP

Lastly, we compare our risk-sensitive DVI method with the “risk-aware SSP” (stochastic
shortest path) methods of MDP CVaR optimisation from [50], which presents both a linear
programming (LP) and a VI approach. Note that these are CVaR-specific, whereas our
approach generates the full reward distribution, allowing for the subsequent computation
of other distributional properties. Moreover, the implementation of [50] focuses on the
case where the reward for every step is one, compared to the more general reward functions
we support and implement. Hence, we cannot compare using the models from Table 6.1
and instead use the benchmarks from [50].

Table 6.3 shows the time for the LP and VI methods of [50] and the time to run our
risk-sensitive DVI method (Section 6.2.3) followed by the DTMC method (Section 6.2.1).
We use the same values of α (correctly resulting in the same CVaRα values) and the
same timeout of 1 hour. Considering VI (the better performing of the two risk-aware
SSP methods), we see that it is significantly faster than our method on the FireWire and
WLAN benchmarks, at least in part because of the larger state space resulting in more
distributions to maintain. However, for the Grid example, as the model size increases,
our approach is faster. In terms of atoms, we used |B| = m = 51, |B| = m = 61 and
|B| = m = 41 for the Grid, FireWire, WLAN models respectively.
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Table 6.3: Performance comparison with risk-aware SSP

Model States Transitions SSP-LP (s) SSP-VI (s) Ours (s)

Grid (x = 4) 1.3 · 103 1.2 · 104 2 0 8
Grid (x = 8) 3.2 · 103 3.8 · 104 159 1 19
Grid (x = 16) 6.4 · 103 8.6 · 104 1,915 6 46
Grid (x = 32) 1.3 · 104 1.8 · 105 timeout 143 101

FireWire 1.4 · 105 1.8 · 105 memout 2 920
WLAN 8.7 · 104 3.0 · 105 memout 1 550

6.4 Summary

In this chapter, we present a distributional probabilistic model checking approach, which
supports a rich set of distributional queries for DTMCs and MDPs. Experiments on
a range of benchmark case studies demonstrate that our approach can be successfully
applied to check various distributional properties (e.g., CVaR, VaR, variances) of large
MDP and DTMC models. The instances used in the experimental section are tailored
to be approachable by both Distributional VI methods but results show that the risk-
sensitive algorithm is significantly less scalable. One way of improving the scalability of
both methods would be to use dynamic Vmin and Vmax values since not all states of the
MDP require the full range of values. Another would be to adapt representations such
as implicit quantile networks [106] to be used for the value distributions at the cost of
slightly less interpretable distributions.

We believe that the work proposed in this chapter paves the way for applying distribu-
tional probabilistic model checking in many safety-critical and risk-averse domains (e.g.,
human-robot interaction, autonomous vehicles). In addition, while the risk-neutral DVI
method does not synthesize a risk-aware policy, it is efficient for even larger models than
those presented in this chapter and can still be used to evaluate a policy’s performance
in terms of risk metrics. Furthermore, when DTMC models that are too large for the
method presented in Section 6.2.1, the risk-neutral method can be used as an efficient
approximation of the distribution. This allows the designer of the system to use our
approach with larger models as well as provide additional safety insights into policies
obtained by our approach or other alternatives. We believe that increased understanding
of policy mechanics provided by our approaches can be beneficial in additional areas of
model checking such as multi-agent or partially observable environments. Many of those
domains feature unique challenges, some with increased risk of undesirable outcomes. In
the next chapter, we explore how to provide a distributional outlook on probabilistic
model checking in uncertain environments.
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Chapter 7

Distributionally Uncertain
Probabilistic Model Checking

In the previous chapter, we proposed a general framework for assessing a variety of dis-
tributional metrics such as risk-specific values. However, requiring full information about
the transitions of the MDP models to be evaluated is impractical in some cases. In addi-
tion, using only the mean of the transition probabilities to construct the MDP or DTMC
can lead to flawed planning and safety analysis. Previous work on parametric MDPs
have shown how uncertainty in the parametric transition probabilities of the model lead
to a large set of possible solutions [73]. Moreover, few methods provide ways to tractably
represent and assess the effects of this uncertainty.

In this chapter, we turn our attention to policy synthesis and evaluation for uncertain
parametric MDPs. We seek to answer the following questions. How can we leverage
the information gathered about parametric uncertainty to synthesize a balanced policy?
How can we give the designer interpretable results showing the uncertainty’s effects on
the obtained policy?

Recent extensions to probabilistic model checking propose ways to represent uncertain
models and handle partially known transition systems [73], [74]. These techniques support
the synthesis of robust policies and verification against temporal logic specifications some
of which are implemented in popular model checkers such as PRISM [9] and Storm [10].
Typically, variations of parametric Markov decision processes (MDPs) such as interval
MDPs [79] and uncertain parametric MDPs [74] are used. In addition, methods support-
ing corresponding variations of discrete-time Markov chains (DTMCs) have also been
developed for verification and policy evaluation [73]. These models are uncertain and
parametric in the sense that they use variable parameters to represent uncertainty.

Rewards (or costs) are commonly used to express the values associated with events which
can be minimized (or maximized) during optimization as well as for quantitative veri-
fication. Relevant examples include checking the minimum expected time for a set of
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messages to be successfully sent with a given network protocol, or finding a policy that
maximizes the amount of money won after a number of gambling rounds. The use of
standard MDPs usually assumes that the designer has complete information about the
probabilistic behavior which can be unrealistic. Data used to model the system might
be based on sampled averages which do not reflect the complete behavior. For example,
when playing a slot machine, each machine will have different probability distributions
for a win. But optimizing based on sampled averages transition functions may lead to
misleading results. Developing methods that can handle a more detailed characterization
of the data to synthesize more robust policies is essential for safety-critical applications.

Interval MDPs mitigate this by using a parameter interval to describe the transition func-
tion [75], [80]. However, approaches targeting Interval MDPs tend to focus on exclusively
the best or worst case resulting in overly conservative policies. Distributionally-Robust
MDPs (DR-MDPs) address this by using a distribution over the transition functions [65],
[107]. Previously proposed methods with DR-MDPs either suffer from intractability or
lack of expressiveness because of their representation of uncertainty.

In this chapter, we leverage uncertain parametric MDPs (upMDPs), where we express the
uncertain parameters using discrete distributional representations. In addition, we design
a tractable algorithm to optimize the weighted expected value. Rather than computing a
scalar value to represent the expected reward for each upMDP state, we return a distribu-
tion of expected accumulated rewards for each state. Specifically, following previous work
from [56] and Chapter 6, we consider the categorical and quantile representation for both
the distribution of rewards and for the joint distribution of uncertain parameters. To
further evaluate our results, we construct the induced DTMC for each of the parameter
realizations and generate a precise distribution using the DTMC method presented in the
previous chapter. Finally, we implement a prototype implementation as an extension of
PRISM [9] and evaluate its performance on a range of case studies.

7.1 Background

Background relating to MDP, DTMC and distributional representations can be found in
Chapter 3. In this section, we focus on relevant definitions for parametric models.

Definition 9 (pDTMC). A parametric discrete-time Markov chain (pDTMC) is a tuple
Dp = (S, s0, P,AP , L,T), where S is a set of states, s0 ∈ S is an initial state, T is a finite
set of admissible parameter values, P : S × S × T → [0, 1] is a probabilistic transition
matrix satisfying ∀s ∈ S :

∑
s′∈S P (s, s

′) = 1, AP is a set of atomic propositions and
L : S → 2AP is a labelling function.
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A pDTMC Dp evolves similarly to a DTMC, starting in s0, and the probability of taking
a transition from s to s′ is P (s, s′) for an instantiation τ ∈ T where τ ∈ R.

Definition 10 (pMDP). A parametric Markov Decision Process (pMDP) is a tuple
Mp = (S, s0, A, P,AP , L,T) where S is a set of states, s0 ∈ S is an initial state, atomic
propositions AP , the parameter set T and labelling function L defined similarly as for a
pDTMC, and P : S × A× S × T → [0, 1] is a probabilistic transition function satisfying
∀s ∈ S,∀a ∈ A :

∑
s′∈S P (s, a, s

′) ∈ {0, 1} for a given τ ∈ T.

Similarly to MDPs, in each state s of a parametric MDP Mp, there are one or more
available actions which can be taken, denoted A(s) = {a ∈ A |P (s, a, s′) > 0 for some s′}.
For any admissible instantiation τ ∈ T, we obtain an MDP Mp[τ ]. At each state, the
choice of actions at a state s ∈ S is determined by a policy π(s)→ A(s). For the targets
considered in this chapter, we focus on memoryless policies for which we can build a
(finite) induced pDTMC which is equivalent toMp acting under π.

Definition 11 (Reward structure). A reward structure is, for a pDTMC Dp, a function
r : S → N and, for an pMDPMp, a function r : S ×A→ N.

We augment both pDTMC and pMDP models with rewards structures which associate
a numerical value to certain states or transitions. For an infinite path ω, we also
write r(ω, k) for the sum of the reward values over the first k steps of the path, i.e.,
r(s0s1s2 . . . ) =

∑k−1
i=0 r(si) for a DTMC and r(s0a0s1a1s2 . . . ) =

∑k−1
i=0 r(si, ai) for an

MDP. Note that while the rewards do not depend on the uncertain parameter, the proba-
bility of receiving the rewards does. In other words, the rewards themselves are indepen-
dent from the uncertain parameters but the expected rewards at a given state depends
on the uncertain transitions affected by the aforementioned parameters.

7.2 Problem Formulation

We base our approach on probabilistic model checking, which is a widely used framework
for formally analyzing properties of uncertain models. We first introduce the problem
formulation for this chapter.

Definition 12 (upMDP [74]). An uncertain parametric Markov Decision Process (up-
MDP ) is a tuple MD = (S, s0, A, P,AP , L,T,U) where S is a set of states, s0 ∈ S is
an initial state, atomic propositions AP , the parameter set T and labelling function L

defined similarly as for a pMDP, and U is a probability distribution over the parameter
space T. For any instantiation of the uncertain parameters τ ∈ T where P (τ |U) > 0, we
have a concrete MDPMD[τ ].

When there are multiple uncertain parameters (|T| > 0), τ takes the form of a tuple with
τ ∈ Rn. In order to effectively handle uncertain parametric models in our computer, we
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(a) An example upMDP MD (b) Example categorical representations for p
and p′ with k = 2 and k = 3 atoms resp.

require the use of discrete distributional representation. Specifically, we implement the
categorical and quantile representations described in Definitions 1 and 2 for the reasons
discussed in the previous chapter and in [56]. Since the representations used are finite, a
dDTMC can be induced from a upMDP MD, a policy π and a parameter combination
τ . For clarity, we distinguish the number of atoms in the input distribution k from the
atoms used in the value distribution representation m.

The core property we consider is the expected rewards (or costs) that are accumulated
until a target is reached (eg. completing a task, or successfully sending messages over a
network). To reason about the accumulation of rewards, we define the reward structure
for a upMDP similarly to the reward structure for MDPs in Definition 11. The different
possible expected returns stem from the different possible combinations of parameter
values based on the finite representations used. We focus on the setting where the choice
of the parameter values is uncontrollable. Intuitively, we are modeling the case where the
parameters model represent uncontrollable phenomenons (wind direction, rain, etc.) or
we are interested in solving the problem for a given amount of information obtained from
collected data.

Problem Statement. Given a upMDPMD and a target set T ⊆ S, we seek to optimize
the weighted expected value of the distribution of possible expected accumulated rewards.
We exploit the probability distributions from U over the parameter space to compute the
weighted expected value and factor it into our policy selection. Furthermore, we return
an approximation of the distribution of possible expected rewards using a distributional
representation for policy evaluation.

Without loss of generality, we focus on the minimization case for the remainder of this
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chapter. Moreover, our approach can directly be extended to more general LTL specifi-
cations by using a product upMDP as is done in Chapter 6.

Example 5.[Motivating Example] We consider a ground robot on a search and rescue
mission after an earthquake influenced by two sources of uncertainty. The first (p) repre-
sents the uncertainty in the motion of the robot due to lack of information about how the
terrain may have shifted. The second (p′) expresses possible perturbations of the cellular
network. In Figure 7.1a, we show a fragment of a possible upMDP for this scenario.
Note that some transitions can be purely probabilistic and independent of the parameter
as seen for the “up” action. The uncertain parameter p in this example influences the
transitions for the “move” action at states s0 and s1. Meanwhile, parameter p′ affects the
success of the “call” action at state s2.

In Figure 7.1b we show the parameters’ true distribution (shaded gray) and the corre-
sponding categorical representations (Definition 1). Parameter p’s true distribution is
multi-modal while p′ follows a normal distribution with a mean of 0.5. The green bars
represent how the continuous underlying distributions are discretized into their distribu-
tional representations.

To compute the distribution for the transition associated with the function f(p) = 1− p,
we evaluate 1− pi where pi is each support of the distribution for p. The probability δθi
(0.6 or 0.4) of a support atom i becomes the probability of 1− pi. For atom i = 0 which
occurs with probability 0.6, the action “move” has a probability 1 − 0.14 to transition
to s1. The same evaluation method applies to parameter p′. Our framework allows for
the definition of general functions of the uncertain parameter which are evaluated during
optimization. ■

7.3 Approach

In this section, we describe our method for computing the distribution of expected cumu-
lative rewards of an upMDP MD under a policy optimizing for the average case of the
input parameter distributions U. We also refer to the distribution of expected cumulative
rewards as the value distribution for a given state. We focus on probabilistic reachability
of a target set T ∈ S. Following standard practice for probabilistic model checking, we
assume that there exists an optimal policy with finite expected rewards which reaches the
target set with probability 1 for each realization of the uncertain parameters. This can
be checked as a preliminary step by a graph analysis of every instantiated MDP MD[τ ]

for each τ ∈ U [102].

The pseudocode for our algorithm is shown in Algorithm 7 which aims to provide a policy
that exploits the probability distributions of the uncertain parameters. The first step is to
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Algorithm 7: Distributionally Uncertain Value Iteration
Input : upMDPMD, |T| parameter distributions, reward structure r, target set

T ⊆ S, and convergence threshold ϵ ∈ R>0

Output: optimal policy π∗, value distribution µs0 under π∗

1 Construct joint distribution U
2 foreach s ∈ S do
3 µs ← δ0

4 while e > ϵ do
5 foreach s ∈ S \ T do
6 foreach a ∈ A(s) do
7 foreach τ ∈ U do

// Evaluate transition function
8 P τ = eval(MD, τ)

// Compute weighted particles
9 particles(τ) = tuple

(
P (τ |U), r(s, a) +

∑
s′∈S P

τ (s, a, s′, τ) · µs′
)

10 η(s, a) :
D
= proj (particles)

11 π∗(s)← argmina∈A(s) E
(
X|X ∼ η(s, a)

)
12 µ′s ← η(s, π∗(s))

13 e← sups∈S\T d(µs, µ
′
s)

14 foreach s ∈ S \ T do
15 µs ← µ′s

16 return π∗ and µs0

construct the joint distribution U using the distributional representations for each of the
uncertain parameters in |T|. For the purpose of this work, we assume that the designer has
already chosen an appropriate distributional representation for each parameter. Thus, the
joint probability distribution represents each possible parameter’s support combination
such that the support has a non-zero probability. We then initialize the distribution of
expected reward to δ0 for each state s ∈ S. In lines 5-12, the algorithm loops through
the non-target states and updates the distribution of expected rewards as follows.

To find the optimal action for each state, we iterate over the available actions A(s)
and compute the value distribution which we use to compare the expected values of
the different actions in line 11. To compute the value distributions, we first need to
compute an intermediate distribution based on the successor states and possible transition
functions. The transition function P is evaluated with a specific τ ∈ U(s, a) in line 8. This
intermediate distribution consists of a set supports and associated probabilities which we
call “particles”. Each particle’s support corresponds to the expected value conditioned by
a parameter combination realization. The probability of a particle is the probability of
the parameter combination instance under the joint distribution U.
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In line 9, the support is the sum of the reward for the current state in addition to the
expected value of the rewards for each successor state s′ ∈ S states. However, for the
particles to be saved efficiently, we need to project them into the chosen distributional
representation for the value distributions. We choose the optimal action based on the
expected value of the value distributions of the admissible actions (line 11). The value
distribution corresponding to the optimal action is saved for the appropriate state (line
12). We check convergence by computing the maximum change in the value distribution at
each state from an iteration to the next (line 13). This change is calculated in the form of
a distributional distance measure such as the Wasserstein distance or the Cramér distance
(see Section 3.2.2). The choice of distance measure depends on the chosen distributional
representation (see discussion in Chapter 6).

Example 6. Figure 7.1b shows the parameter distributions for example 5. The supports
of the joint distribution (or parameter realizations) are:

U = {(0.14, 0.4) (0.14, 0.5) (0.14, 0.6) (0.18, 0.4) (0.18, 0.5) (0.18, 0.6)}

For the first possible realization, its associated probability can be computed by multiply-
ing P (p = 0.14) · P (p′ = 0.4).

Let us assume that the reward for taking the “move” action at state s0 is 2, that the
value distributions computed at the previous iteration are µ(s1) = {(10, 20); (0.3, 0.7)}
and µ(s2) = {(5, 10); (0.8, 0.2)}. The first tuple represents the supports while the second
shows the probabilities.

At line 7, for state s0 at the current iteration, we would first pick τ = (0.14, 0.4) and
P (τ |U) = 0.18. The transition function for the move action would then have two transi-
tions with probabilities P (s0,move, s1) = 0.14 and P (s0,move, s1) = 0.86.

At line 9, we first compute the sum of the successor states values. In this case, the support
of the particle would be:

2 + [0.14 · (10 · 0.3 + 20 · 0.7)] + [0.86 · (5 · 0.8 + 10 · 0.2)] = 9.54

Thus, the first particle has a probability of 0.18 and a support of 9.54. A particle is
calculated for each of the possible parameter realizations. The list of particles is then
projected onto a distributional representation. ■

Correctness. In addition to the approximation introduced by using the distributional
representation, this method computes the expected value using all possible parameter
realizations for the successor states for every given parameter combination. In other
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words, the expected value computed for a given τ uses the values from the successor states
computed including τ ′. In our motivating example, it is unrealistic to consider the results
for the combination (p = 0.14, p′ = 0.6) from state s1 when calculating the expected value
for the combination (p = 0.18, p′ = 0.6) at state s0. Intuitively, when instantiating MDP
MD[τ ] the combination of parameter values τ are consistent throughout. For this reason,
the values reported in the experiments are refined by computing expected value of the
distribution of rewards for the induced DTMCs using the distribution generation method
from Chapter 6. The DTMCs are induced using the policy synthesized with Algorithm 7
and every MDP instantiationMD[τ ] for τ ∈ U.

7.4 Experiments

7.4.1 Setup

We built and evaluated a prototype implementation1 based on PRISM [9], extending its
Java explicit-state engine. The main benchmarks used are described in Section 7.4.2 and
the experimental results are discussed in the following sections. We initially focus on
comparing the policies obtained using the method in Section 7.3 for the MDP model and
the policy from Robust VI. Then we analyze the effects of using a discrete distributional
representation for the distribution of the uncertain parameters. All confidence intervals
computed for the experiments use a confidence level of 0.8. All experiments were run on
a machine with an AMD Ryzen 9 CPU and 14 GB of RAM allocated to the JVM.

7.4.2 Case Studies

Betting Game. This case study is adapted from [58]. The MDP models an agent
with an amount of money, initially set to 5, which can repeatedly place a bet of amount
λ ∈ {0, 1, 2, 3, 4, 5}. This model features two uncertain parameters, the probability of
winning a bet which is within [0.3, 0.7] and the probability of hitting a jackpot (i.e.,
winning 10λ) which is within [0.05, 0.15]. The probability of losing a bet is the remaining
probability based on the joint parameter realization. The game ends after 10 stages. The
reward function is given by the maximal allowance (e.g., 100) minus the final amount of
money that the agent owns.

Drone. This case study is taken [75], models an N × N × N aerial world with several
obstacles where the objective is to reach a target location (N − 1, N − 1, N − 1) ± 1

opposite from the starting location (2,2,2). The uncertainty in this model is area-based
to represent the different weather conditions in different areas. The first parameter ∈
[0.2, 0.7] regulates the strength of the winds pushing the drone in the −x direction. The

1Code and models are available from https://github.com/davexparker/prism/tree/dpmc.

https://github.com/davexparker/prism/tree/dpmc
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Model Information Metrics

Name Instance States Transitions |T| Method |U| Value Std Dev. Difference Time(s)

Consensus N=2,K=2 272 492 2 Robust VI - 339.2 - 641.3 0.3
upMDP 42 50.1 43.9 79.1 17.6

Consensus N=2,K=4 528 972 2 Robust VI - 864.6 - 1,648.8 6.6
upMDP 42 195.2 228.9 588.9 77.5

Betting Game STAGES=10 891 10,740 2 Robust VI - 60.1 - 65.0 0.2
upMDP 20 58.0 19.4 60.0 4.1

Drone N=9 1,744 11,884 2 Robust VI - 59.4 - 64.4 0.8
upMDP 36 52.8 18.9 47.2 271.8

Firewire delay=3 4,093 5,583 1 Robust VI - 137.0 - 37.4 0.8
upMDP 7 138.6 13.3 37.4 3.7

Table 7.1: Experimental results: timing and policy metrics of each
method.

second ∈ [0.4, 0.7] regulates the strength of the wind pushing the drone in the−y direction.
A cost of 1 is accumulated for each time step, hitting an obstacle results in the drone
being reset to the start.

Consensus. This benchmark is adapted from [8] and models the randomized consensus
protocol of Aspnes and Herlihy where the objective is to achieve agreement for N asyn-
chronous distributed processes (eg. N = 2). In each round, the processes check the status
others and attempt to find an agreement which involves a distributed random walk. In
the case where they do not reach an agreement, a coin is flipped to decided their next
choice. The two uncertain parameters (within [0.2, 0.7] and [0.3, 0.6]) used for this model
represent the probability of flipping the coin to head vs tails for each process. A cost of
1 is accumulated for each time step, we are interested in minimizing the time taken to
reach consensus.

Firewire. This case study modeling the FireWire IEEE 1394 root contention protocol
is also taken from [8]. This type of protocol is used in distributed systems to elect a root
node within network nodes. When a new election may be needed, a coin flip is used to
determine whether to wait a short or long delay before checking the network again to
see if a node has claimed leadership. The uncertain parameter ∈ [0.2, 0.7] represents the
probability of choosing the shorter delay. The goal is to minimize the amount of time
units needed to elect a leader node.

7.4.3 Main results

We report our experimental results in table 7.1 for the benchmarks described above. For
each MDP model using the method presented in Section 7.3, then exhaustively evaluate
the resulting policy for each value of the joint parameter distribution using the Distribu-
tional DTMC method from [13] for more precise results. For the Robust VI baseline, we
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first compute confidence bounds over the input distribution which we use as the interval
for the IMDP model.

Table 7.1 shows the constant values used for each benchmark as well as model information
such as the state and transition spaces. We also show the number of uncertain parameters
in T as well as the size of the joint distribution U using the distributional representation.
The higher the number of parameters and the precision used to represent their associated
distributions, the larger the size of the joint distribution. For our method (upMDP),
we show the total time to run the method in Section 7.3 and the Distributional DTMC
method (with ε = 10−5 for the precision). The time reported for Robust VI is the total
time to compute the minimum expected value and the maximum expected value. The
bounds of the Robust VI expected values are used to compute the difference and the
midpoint is used for the value. For upMDP, we calculate the difference using a confidence
bound on the output distribution. We use the the categorical representation for the
distribution of returns with m = Vmax + 1 with ϵ = 0.01 for the convergence metric.

We pick Vmax = 100 for the Betting Game and Drone models, Vmax = 200 for Firewire
and Vmax = 300 for Consensus. For the distribution of the input parameters we pick
k = 7, Vmin = 0.2 and Vmax = 0.8 for all case studies except for Betting Game where
k = 17, Vmin = 0 and Vmax = 0.8.

Our method provides a tractable way to factor in parameter uncertainty to synthesize a
policy. Generally, the policy from our method (upMDP) has a lower difference reflecting
how it helps narrow down the interval of expected behavior. This is because our method
can leverage the information contained in the input parameter distributions instead of
purely maximizing or minimizing. Note that for the Firewire case study, the difference
remains is the same for both methods while the baseline reports a slightly lower value.
Recall that the value is computed using the midpoint of the interval MDP bounds and
does not represent a real policy but a comparison metric only. The two first rows show
two different instances of the consensus protocol. The results show a large standard
deviation and an even larger interval since in this benchmark the uncertain probabilities
are encountered often and highly affect the range of values possible.

The distribution of expected returns from our method also allows for the computation
of additional metrics such as the std deviation. In contrast, the robust VI policies only
gives the expected value for the most optimistic and most conservative policies. Using the
Distributional DTMC method with the synthesized policy is often very fast but requires
more time as the size of the parameters’ joint distribution increases and as the transition
space increases. This is especially the case for the Drone model where the DTMC method
takes 214.1 seconds out of 271.8 total seconds.
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7.4.4 Effects of the input distribution approximation

(a) Input distribution with k = 11 (b) upMDP

Figure 7.2: Output low fidelity

(a) Input distribution with k = 51 (b) upMDP

Figure 7.3: Output high fidelity

Figures 7.2 and 7.3 plot the effect of varying the precision of the input distribution and the
resulting distribution of returns for the Betting Game case study. We fix the probability
of hitting the jackpot to 0.05. We use a continuous normal distribution with a mean of
0.6 and variance of 0.05 to model the probability of winning the bet.

In Figure 7.2, we show the results for a less precise (smaller k) approximation of the
uncertain parameter distribution. Specifically, we pick k = 11 and plot the ensuing
discretization as a bar plot in Figure 7.2a. We also plot the confidence bounds for a
confidence level of 0.8 which we use for as the intervals in the IMDP model sent as an
input to Robust VI. In Figure 7.2b, we plot the output distribution of our method as
a bar plot and the lower and upper bounds for Robust VI as dashed lines. Similarly,
Figures 7.3a and 7.3b show the same plots for k = 51 respectively.

In both setups, our method shows consistent and informative results. While the precision
of the approximation for the input parameter is lower in Figure 7.2 than in Figure 7.3,
the output distributions are consistent (expected values of 71.09 and 71.73 resp.). We
also note that the 0.8 confidence bound for the higher k = 51 case ([47.0, 92.6]) is tighter
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than the lower precision case ([45.0, 93.3]). However, the higher precision is more com-
putationally expensive than the lower precision (8.9s and 2.3s resp.). Finding the right
trade-off between precision vs time and memory is essential for this method.

7.5 Summary

In this chapter, we design a distributionally uncertain MDP which includes a joint distri-
bution over the uncertain parameters using tractable yet expressive distributional repre-
sentations. We also propose an algorithm to optimize the weighted expected value of the
accumulated rewards over these models. Experiments over a varied set of benchmarks
show that it can successfully be applied to medium sized models. Further investigations
would be helpful to evaluate our methods performance and precision on larger bench-
marks. Another avenue of further research includes exploring how this new method can
be adapted to control its sensitivity to risk. We believe the work proposed in this chapter
is a first step towards more balanced and informative approaches to uncertain environ-
ment model checking.

The main disadvantage of this approach is the lack of formal guarantees for the output
distribution. Additional analytical research is required to determine the precision of the
approximate method presented in Section 7.3. It would be interesting to develop stronger
guarantees in the form of policy performance error bounds relative to the true interval of
possible expected rewards. This approach was developed for applications where a large
amount of uncertainty is present in the model as is the case when a model is iteratively
built as more samples become available. Further experiments in this type of application
domain can give a better understanding of our method’s applicability in a real-world
environment as well as future directions for this research.
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Chapter 8

Conclusion

In this dissertation, we proposed several approaches for safer sequential decision-making in
uncertain environments. Initially, we addressed safe policies in multi-agent reinforcement
learning (MARL) where little information is known about the system and environment.
When an abstraction of the environment is available and runtime safety is necessary, we
improved the scalability of shielding techniques as presented in Chapter 4. For soft safety
requirements, we advanced logic-based reward shaping for MARL which guides the train-
ing towards safe behaviors in Chapter 5. However, in certain situations unsafe states are
unavoidable because of a non-deterministic and probabilistic environment. In this case,
probabilistic model checking offers a strong foundation for in-depth analysis. We designed
a distributional framework for probabilistic model checking where we allow for the op-
timization and computation of risk-sensitive metrics thanks to the use of distributions
over the possible returns Chapter 6. The use of distributions naturally extends to the
case when more approximate or varied information is known about the model. Therefore,
we adapted uncertain models to take into account distributions over uncertain parame-
ters. We also developed a tractable algorithm exploiting these distributions describing
uncertainty in Chapter 7.

In summary, this thesis proposes several novel approaches that address different notions
of safe decision making in the face of uncertainty. Furthermore, this thesis makes several
significant advances in bridging the gaps between safe policy synthesis methods in MARL
and probabilistic model checking. It brings logic and safety games from formal model
checking to approximate MARL approaches and brings tractable distributional outlooks
to probabilistic model checking. Experimental results demonstrate our methods with
both sequential decision making classes have the potential to adapt to different notions
of safety and uncertainty.

Safe MARL via Shielding. In Chapter 4, we introduced two novel shielding ap-
proaches for safe MARL where each is synthesized based on a Linear Temporal Logic
(LTL) safety specification. The factored shielding was designed to improve the scalability
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of the centralized method. However, the factored method suffers from unnecessary delays
because of the assumption made about shield to shield communication. One avenue of
improvement includes extending this work to be completely decentralized thereby increas-
ing applicability in real world scenarios. For example, it is more convenient for drones
on a mission to communicate with each other to prevent unsafe situations rather than
waiting on local towers which may be hard to implement in certain circumstances.

Logic-guided MARL Reward Shaping. In Chapter 5, we developed a novel method
for semi-centralized logic-based MARL reward shaping that is scalable in the number
of agents and agnostic to the MARL algorithm. While it is an improvement, as the
number of tasks in the logic specification increases, the agents may start to struggle to
experience the different reward signals which can confuse the learning process. Moreover,
as in Chapter 4, the method is not completely decentralized which means more reliable
communication is required between agents. An interesting direction would be to extend
this method to the context where the signals between agents are not consistent resulting
in additional uncertainty.

Distributional Probabilistic Model Checking. In Chapter 6, we presented a dis-
tributional probabilistic model checking approach, which supports a rich set of distribu-
tional queries for DTMCs and MDPs. The main advantages are two-fold: we provide
a risk-sensitive policy synthesis and more information about any policy to the user. By
returning a distribution over the costs for each state, the user can explore the model while
computing additional information such as the variance, value-at-risk, probability of a tail
event, etc. Additional effort is needed to extend this outlook to other areas of model
checking such as partially observable models or multi-objective specifications.

Distributionally Uncertain Probabilistic Model Checking. In Chapter 7, we de-
signed an algorithm to factor in the distribution of the uncertain parameters for paramet-
ric uncertain MDP. We represent the distribution using tractable yet expressive distribu-
tional representations which can be tuned for better precision. This allows us to better
manipulate models where only partial information is available but detailed information
about the policy synthesized is important. Furthermore, our approach allows us to take
into account both the uncertainty from system modeling errors and that from the un-
predictability of real life. While our work focuses on synthesizing a policy for a certain
amount of fixed uncertainty, this method can be adapted and included within a learning
loop where the uncertainty is gradually refined. This could be helpful for applications
that use approximate modeling methods such as model-based RL and used to provide
additional guidance to the designer.
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8.1 Social and Technological Impact

Achieving the different safety objectives is essential given the AI boom we are currently
experiencing. Automated decision making policies are reaching more people and directly
affecting more lives. For this reason, it is of paramount importance that we ensure that the
risk to users is minimized. Potential applications could include reducing the recommen-
dation of emotionally challenging content when users are experiencing mental struggles.
Distributional methods could be used to analyze the medical trajectories of patients,
quantify their risks and better inform physicians’ decisions. MARL has successfully been
applied to client-host network management where certain information may be critical.
Shielding or reward shaping techniques previously described could allow for better pro-
tection of sensitive data. The various models, methods and the associated safety goals
are potentially relevant to smart cities, patient assistance, autonomous robots, network
management, search and rescue missions, etc. Finally, the underlying cost structures pre-
sented throughout this dissertation can be reformulated for aspects of social responsibility
such as algorithm fairness.
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