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ABSTRACT

Nonlinear functional dependence in temporal data can be challenging to characterize.

Linear methods often oversimplify the structure of data, and imposition of a rigid

framework can be be limiting. A model-based method that is “close enough” usu-

ally works well, but specification of this functional form can be difficult, especially

in dependent, multivariate data and when lacking a deep scientific understanding of

the process. Representation learning methods, employing artificial neural networks,

provide a model agnostic approach to capture even the most complicated and intri-

cate interactions between covariates. These methods, if applied cautiously and when

model recovery is not the main goal, can alleviate the burden of model specifica-

tion and the difficulties that arise from model misspecification. They are applied to

single and multiple change point detection, the adaptation of Granger causality to

nonlinear functional dependence, and discussions of future research include strategic

workarounds for the loss of covariate-specific and relational information.
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Chapter 1

Introduction

Characterizing temporal dependence in data has long been sought from structural

models, like the autoregressive (AR) and moving average (MA) models of the early

20th century (Hooker, 1901; Yule, 1909; Yule, 1921; Yule, 1927; Wold, 1938). The

AR(γ) model examines a stationary time series yt, t = 1, . . . , T , as a function of

past observations, as in Equation 1.1, where γ is the order of the model (the included

number of lagged values in the functional form). The MA(γ) model writes a stationary

time series as a function of past errors, f (εt−1, . . . , εt−γ).

yt = β0 +

γ∑
i=1

βiyt−i + εt (1.1)

These basic building blocks are combined for greater functionality in the ARMA,

autoregressive integrated moving average (ARIMA), and seasonal ARIMA (SARIMA)

models that allow for combined mechanisms of dependence, trends, and seasonal

behavior in time series data (Box and Jenkins, 1970). Further iterations allow for

inclusion of exogenous variables. Adaptation to multivariate time series data yt ∈

Rd generalizes the AR and ARMA forms to vector autoregressive (VAR) models,

with form similar to Equation 1.1 where scalar coefficients are replaced by vector

coefficients, that scale like the above methods to include compound mechanisms of

dependence, trends, and exogenous variables (Sims, 1980).
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An alternative approach examines temporal data in the frequency domain, where

the variation is expressed in terms of regular, periodic components (Shumway and

Stoffer, 2017). Like harmonic analysis, the data can be thought of as a composition

of several sinusoids that constitute the overarching structure. Periodic variations of

the sample data are characterized in a periodogram as an estimate of the spectral

density (Schuster, 1898; Schuster, 1906a; Schuster, 1906b). Spectral analysis can

relate to principal component analysis; for a stationary time series, the density can be

interpreted as an approximation of the eigenvalues of the covariance matrix (Shumway

and Stoffer, 2017).

Nonlinear modifications for serial correlation in variance led to the autoregressive

conditional heteroskedasticity (ARCH) and the generalized ARCH (GARCH) mod-

els (Engle, 1982; Bollerslev, 1986). To account for regime switching behavior, Tong

and Lim (1980) developed the threshold autoregressive (TAR) model, and this was

extended by Chan and Tong (1986) with smooth transition autoregressive (STAR)

models to allow for gradual movement between regimes. In the same vein, state space

representations like Markov switching and hidden Markov (HMM) models look to cap-

ture regime switching behavior, or other behavior when a response is influenced by a

latent state. These models apply when the Markov property is satisfied, where a state

is only influenced by the previous state and independent of any long-term history,

Pr (Yt|Y<t = {yt−1, yt−2, . . .}) = Pr (Yt|Yt−1 = yt−1) (Markov, 1906; Baum and Petrie,

1966). Higher-order Markov chains allow for extension of this dependence structure

to states further in the past, and in a HMM, the process is governed by a discrete

latent quantity, known as the “hidden” state (Baum and Petrie, 1966; Bishop, 2006).

Kalman filtering and particle filtering allow for smoothing of the stochastic process,

somewhat analogous to methods for the TAR above (Kalman, 1960; Del Moral, 1997;
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J. S. Liu and R. Chen, 1998). Differential equation models prove useful tools to

represent the dynamics of a time series, beginning with processes such as Brownian

motion and increasing in complexity depending on the application; however, these

require a comprehensive knowledge of the underlying scientific processes driving the

data (Einstein et al., 1905; Langevin, 1908; Fokker, 1914; Planck, 1917; Schrödinger,

1926; Kolmogorov, 1931; Black and Scholes, 1973).

Despite the breadth of tools available, characterizing nonlinear functional depen-

dence in temporal data can still be challenging. Linear methods, like many listed

above, often oversimplify the structure of data. Imposition of a structure that is

“close enough” usually works well, but specification of this functional form can be

difficult, especially in multivariate data with elaborate dependence. Artificial neural

networks provide model agnostic approaches to represent data; they can capture even

the most complicated intricacies of interactions between covariates. These methods, if

applied cautiously when model recovery is not the main goal, can alleviate the burden

of model specification and the difficulties that arise from model misspecification.

1.1 Artificial Neural Networks

Artificial neural networks (ANN) consist of interconnected nodes, akin to neurons

in the brain, that modify and relay information received from other nodes. These

models have been adapted for use in a broad range of application areas including

function approximation and prediction, classification, pattern recognition and regen-

eration, and data processing (Goodfellow, Bengio, and Courville, 2016). Despite this

wide scope, the primary utility of ANNs remains focused on extracting relational in-

formation between covariates of interest, like some statement about the conditional
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behavior of one variable given another (e.g., E [Y |X = x]).

The emergence of ANNs began with efforts to mathematically model biological

mechanisms, as in some early works by McCulloch and Pitts (1943), Widrow, Hoff, et

al. (1960), Rosenblatt (1961), and Rumelhart, Hinton, and Williams (1986) (Bishop,

2006). Methods of computation and application have rapidly improved in the advent

of the technological age, and network architectures have become more complex to

prioritize certain aspects of behavior. Basic architectures in Section 1.1 are presented

in the context of temporal data; several other frameworks exist for ANNs that in-

corporate unstructured data, or data with spatial components including geographic

applications and image processing (Bishop, 2006; Goodfellow, Bengio, and Courville,

2016).

1.1.1 Artificial Network Architecture

Artificial neural networks can take the basic form in Equations 1.2 and 1.3, where

xt ∈ Rp is a vector of inputs at time t, and yt ∈ Rd a vector of outputs.

ht = g
(
Wixt + b

)
(1.2)

yt = Woht (1.3)

The inputs to the ANN are multiplied by a matrix Wi ∈ RN×p, modified by a bias vec-

tor b ∈ RN , and fed to an activation function g to form the network states ht ∈ RN .

The network states (also called hidden states, hidden units, or reservoir states) are the

individual neurons in the artificial network. The activation function g introduces non-

linear behavior; common choices are the rectified linear unit (ReLU(x) = max {0, x}),

the logistic sigmoid function (σ(x) = [1 + e−x]
−1), and the hyperbolic tangent func-
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tion (tanh(x)). The network states are linearly mapped to the output with matrix

Wo ∈ Rd×N .

Constructed ANNs are characterized by their width and depth. Figure 1.1 displays

a basic illustration of these properties. The width of a network N is the dimension

network 
depth

network 
width

input output

Figure 1.1: Simplified architecture of a basic artificial neural network.

of the network state vector ht, with wider networks containing a larger number of

states. Network depth is fashioned from a repeated function composition of the form

in Equation 1.2. In a deep network, each layer consists of one network state vector

hℓ
t ∈ RN for ℓ = 1, . . . , L, and the number of layers L constitutes the depth. Each

subsequent layer receives the previous as input, like shown in Equation 1.5, and the

final hidden layer in Equation 1.6 maps to the output in a linear fashion, identical to
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Equation 1.3.

h1
t = g1

(
W1ixt + b1) (1.4)

hℓ
t = gℓ

(
Wℓihℓ−1

t + bℓ
)

for ℓ = 2, . . . , L (1.5)

yt = WohL
t (1.6)

Equations 1.2 and 1.3 represent the simplest ANN architecture, known as a feed-

forward neural network (FNN). FNNs consist of a single layer of depth, and arbitrary

width N , like shown in Figure 1.2. All information is “fed forward” from a specific

input xt and there is not any complicating structure present in the architecture.

h
input output

W i Wog

one layer 
of depth

Figure 1.2: Simplified architecture of a feedforward neural network.

Multilayer perceptrons (MLP), extend the simple FNN to some level of network
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depth. MLPs are constructed like shown in Equations 1.4 to 1.6. All information

from a specific input xt is still “fed forward” as in the FNN, but there are a greater

number of intermediate steps (layers) between the input and the output yt.

Recurrent Neural Networks

Recurrent neural networks (RNN) are a type of ANN developed specifically for pro-

cessing sequential data (Rumelhart, Hinton, and Williams, 1986; Goodfellow, Bengio,

and Courville, 2016). Computation of the network state is modified to include depen-

dence on the previous time point, usually through the last hidden state as in Figure

1.3. A generic, single layer RNN system can be described with Equations 1.7 and 1.8,

ht

input output
W i Wog

Wh

Figure 1.3: Simplified architecture of a recurrent neural network.
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with straightforward extension to added depth similar to Equations 1.4 through 1.6.

ht = g
(
Whht−1 + Wixt + b

)
(1.7)

yt = Woht (1.8)

In the architecture of RNNs, matching the other structures above, the parameter

matrices Wh ∈ RN×N , Wi, Wo, and vector b do not change depending on the

time t in the sequence. This can be interpreted as a requirement for a stationary

conditional distribution given the history of the sequence (Goodfellow, Bengio, and

Courville, 2016).

Provided the parameters are set such that the RNN is stable, a recurrent network is

able to capture temporal dependence that diminishes as time points become further

separated. Stability is determined through the propagating gradient over several

time points. A simple example follows that from Goodfellow, Bengio, and Courville

(2016), where the function composition is assumed to lack the activation function g

and resemble a linear transformation ht = Whht−1. This form has an alternative

representation based on the values of the initial network state, ht =
(
Wh)t h0. The

eigenvalues of the matrix Wh that are greater than one will produce an exploding

product, while those that are less than one will vanish (Hochreiter, 1991; Bengio,

Simard, and Frasconi, 1994). In the presence of a contractive activation function

g, or a function that shrinks the L2-norm of the network state vector, the tipping

point for stability grows larger than one (Goodfellow, Bengio, and Courville, 2016).

The “vanishing gradient” problem of stable RNNs makes long-term dependence, as

opposed to a recent memory of previous time steps, difficult to capture (Bengio,

Simard, and Frasconi, 1994).



9

Methods to overcome the issue of capturing long-term dependence include adding

skip dependence or incorporating longer delays in networks (T. Lin et al., 1996) and

inserting “leaky” or “gated” units that accumulate information over longer durations

(Mozer, 1991; El Hihi and Bengio, 1995). One such network that utilizes this architec-

ture is the long short-term memory (LSTM) network of Hochreiter and Schmidhuber

(1997), which contains dynamic self-loops that produce long running paths of de-

pendence that change depending on the input sequence (Gers, Schmidhuber, and

Cummins, 2000; Goodfellow, Bengio, and Courville, 2016).

Reservoir Computing

Parameters in RNNs, particularly as architectures increase in complexity to accom-

modate specific features of the input data, can be challenging and computationally

expensive to learn. Reservoir computing circumvents this problem by defining the

recurrent and input parameter matrices Wh, Wi, and b as fixed values, and only

learning the output weights Wo (Lukoševičius and Jaeger, 2009). Reservoir comput-

ing networks transform the input sequence to a “reservoir” of features that capture

distinct characteristics of the data (Goodfellow, Bengio, and Courville, 2016). The

reservoir is a nonlinear, high-dimensional expansion of the original data, and features

that are not linearly separable in the original input space can become separable in

the reservoir (Lukoševičius, 2012). Echo state networks (ESN) of Jaeger (2001) and

liquid state machines (LSM) of Maass, Natschläger, and Markram (2002) are two

examples of this strategy with continuous and binary network states, respectively,

where the output can be obtained from a simple linear mapping of this advantageous

transformation of the data (Jaeger, 2002; Jaeger, 2007). The challenge is to obtain

a rich enough representation of the data from the generated reservoir; Lukoševičius
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(2012) and Yildiz, Jaeger, and Kiebel (2012) discuss standard practices and tricks to

increase the likelihood of a rich representation.

In a recurrent network of the form shown in Equations 1.7 and 1.8, the input data

xt is commonly scaled such that most values are contained in a relevant domain of

the activation function g, for example [−1, 1] for the hyperbolic tangent. The size of

the reservoir N (the dimension of the network state vector ht) should be as large as

computationally affordable (Lukoševičius, 2012). Reservoir matrices Wh, Wi, and b

are usually randomly generated, with individual matrix elements independent random

Gaussian or uniform observations. The hidden state reservoir matrix Wh should be

sparse to expedite computation, with an approximate fixed number of nonzero values

in each row (Lukoševičius, 2012). This does not limit the capacity of the network,

but reduces computational cost as the reservoir size increases. The input and bias

matrices are often dense. The reservoir matrices are scaled to seek a suitable level

of nonlinear behavior and control relative influence of the input and the previous

network state. Scaling for Wi and b is performed on the standard deviation (limits)

of the random Gaussian (uniform) observations. Higher scaling values will introduce

a larger degree of nonlinearity in the network states as the activation function is

pushed away from the zero neighborhood and toward the limiting values. Further

fine-tuning of this process can allow for scaling of individual columns in the input

xt (Lukoševičius, 2012). Scaling for Wh is done through the spectral radius of the

generated matrix. As in the example from Goodfellow, Bengio, and Courville (2016),

if the largest eigenvalue is too large, the network states will become unstable. A

stable network will eventually wash away (“forget”) any previous states or initial

conditions after a sufficient time length. In reservoir computing, this is also called

the echo state property (Jaeger, 2007). A spectral radius less than one ensures the
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echo state property in most cases, but often the tipping point for stability can be

much larger than one (Lukoševičius, 2012; Yildiz, Jaeger, and Kiebel, 2012). The

spectral radius directly influences how long the network retains information before

it vanishes, and to maximize the quanitity of long-term information preserved, the

spectral radius should be up against this threshold (Yildiz, Jaeger, and Kiebel, 2012).

These network hyperparameters are evaluated based on the ability of the reservoir to

capture the relationship between the input and output (evaluated with mean squared

error) on training and validation sets. The hyperparameters can typically be chosen

on a smaller reservoir than the selected size N and passed forward to the final system

(Lukoševičius, 2012). Output weights Wo are the only learned values in the network;

this is traditionally done with Ridge regression or some form of penalized regression,

guarding against uncertainty due to overfitting or instability concerns (Lukoševičius,

2012). Lukoševičius (2012) also recommends averaging results from several generated

reservoirs, like an ensemble of weak learners (Polikar, 2012).

Conceptors

Jaeger (2014) introduced the conceptor as a regularized identity mapping of reservoir

states in a propagating ESN. A matrix C is added to the update equation that

recognizes, controls, regenerates, and predicts state patterns in a dynamic reservoir

(Jaeger, 2014; Jaeger, 2017). The matrix is placed at the front of Equation 1.7 to

filter the network states in a manner associated with a specific pattern.

ht = g
(

Whh̃t−1 + Wixt + b
)

(1.9)

h̃t = Cht (1.10)

yt = Woh̃t (1.11)
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The conceptor matrix C, defined in Equation 1.12, is computed from column space

of the network states over a training window of data (of integer length Ttrain) that

exhibits a pattern of interest. For states associated with the pattern from the training

window, the conceptor matrix should leave the reservoir state unchanged and act like

the identity, or h̃t ≈ ht (Jaeger, 2017). For states propagating in a fashion atypical

to the pattern from the training window, the conceptor matrix will act like the null

matrix and suppress the reservoir state (Jaeger, 2017).

Over the training window, Htrain ∈ RTtrain×N compiles the network states as in-

dividual rows. The conceptor is a positive semidefinite matrix (0 ⪯ C ⪯ I) that

forms an ellipsoid within the unit sphere. The principal axes of the ellipsoid are the

eigenvectors of the reservoir state second moment matrix R = T−1
trainH⊤

trainHtrain that

have been scaled by their eigenvalues.

C ≡ R
(
R + α−2I

)−1 (1.12)

A regularization parameter α ∈ (0,∞), known as the aperture, influences the degree

of dampening in the reservoir activity (Jaeger, 2014; Jaeger, 2017). Large apertures

introduce small penalties, and the conceptor will tend to the identity with minimal

activity dampening; smaller α shrinks the conceptor to the zero matrix. Figure 1.4

from Jaeger (2017) illustrates the geometry of the conceptor matrix, where the red

and blue dots represent different three-dimensional state patters from two training

windows of interest.

In many applications, conceptors are appealing for prediction and pattern re-

generation tasks because it is possible to remove the input data from the update

equation. Equation 1.9 is modified to ht = g
(

Wh̃t−1 + b
)

, where W is trained from
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Left: The red and blue dots represent three-dimensional state patterns from two training
windows of interest. Each associated conceptor matrix forms an ellipsoid within the gray
unit sphere, and the principal axes are shown. Right: The effects of halving (top) and
doubling (bottom) the aperture.

Figure 1.4: Geometric illustration of a conceptor matrix from Figure 2, Jaeger (2017).

the input and reservoir states, and the conceptor governs the dynamics of the sys-

tem autonomously (Jaeger, 2014; Jaeger, 2017). For example, recognition of reservoir

state patterns lends itself to classification problems where a series of known conceptor

matrices are used to label sections of data (Bao et al., 2016). Control, regeneration,

and prediction of reservoir state dynamics display the ability of the conceptor to learn

patterns present in complex data (C. Kiefer, 2019; A. Zhang and Xu, 2020).
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1.2 Representation Learning

While most artificial networks are focused on relating an input xt to an output yt,

they can also be used to uncover information about a single sequence of interest yt.

ANNs can be thought of as advantageous functional transformations of a dataset

to a higher-dimensional space where the nonlinear features and dependence struc-

tures become linearly separable (see Equation 1.13). Representation learning (also

called feature learning) prioritizes the information encoded in the network states, and

leverages these properties to extract information about the original sequence (Bengio,

Courville, and Vincent, 2013; LeCun, Bengio, and Hinton, 2015; Goodfellow, Bengio,

and Courville, 2016).

Ψ : Y ∈ RT×d → H ∈ RT×N such that N ≫ d (1.13)

This idea is not unique to artificial networks; it is also found in kernel methods and

applied to problems in classification, natural language processing, signal processing,

transfer learning, drug discovery, and genomics (Bishop, 2006; Bengio, Courville, and

Vincent, 2013; LeCun, Bengio, and Hinton, 2015).

1.2.1 Universal Approximation Theorems

Universal approximation theorems, like those in Cybenko (1989) and Hornik (1991),

reflect on the ability of an ANN to map the input sequence xt to the output sequence

yt with any arbitrary degree of accuracy. From the context of representation learning,

these demonstrate the quality of a representation of network states. If the time series

of interest yt can be approximated to an arbitrary degree of reliability, then the
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reservoir states should provide a faithful representation and “linearize” the nonlinear

features present in the data.

These universal approximation theorems hold in several cases. Denote any given

function as f and some approximating artificial network N. In the fixed depth and

arbitrary width case, simple MLPs are universal function approximators provided

the number of network states N is sufficiently large (Cybenko, 1989; Hornik, 1991;

Barron, 1993). For a MLP with fixed depth L ≥ 1, a sigmoidal activation function

g, and any η > 0, there exists some width N such that ∥N − f∥ < η (Cybenko,

1989; Hornik, 1991). For bounded width and arbitrary depth, a similar result holds

provided N has a sufficient number of layers and the width is above some minimum

value (Lu et al., 2017). These results have been extended to fixed width, fixed depth

networks by Maiorov and Pinkus (1999), Guliyev and Ismailov (2018a), and Guliyev

and Ismailov (2018b).

With a sigmoidal activation function g, universal approximation theorems also

apply to RNNs and ESNs of fixed depth and arbitrary width (Schäfer and Zimmer-

man, 2007; Grigoryeva and Ortega, 2018; Hart, Hook, and Dawes, 2020; Gonon and

Ortega, 2021), and fixed width and arbitrary depth provided N > p + d + C, where

the input has dimension p, the output has dimension d, and the constant C = 3, 4

depending on the activation function (tanh(x) or σ(x), respectively) (Hoon Song et

al., 2023).

1.3 Overview and Application

The methods discussed in the following chapters enlist universal approximation theo-

rems as they apply to representation learning. For a single sequence yt, consider
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the representation ht created by an ANN leading to an estimate of the output

ŷt = Woht. If ∥ŷt − yt∥ is arbitrarily small, one can argue ht provides a faith-

ful, higher-dimensional representation of the original data that allows the nonlinear

features to become linearly separable with a convenient mapping. From this advanta-

geous featurization, standard linear techniques and practices are more accessible, and

the challenging problem of specifying a “close enough” functional form for nonlinear

temporal dependence in multivariate time series is avoided.

Chapter 2 applies this perspective to the at most one change point problem in

multivariate time series data with arbitrary dependence, Chapter 3 generalizes the

first to target multiple change points and inches toward an interpretable structure,

and Chapter 4 examines the implications of ANN representation learning on the

notion of Granger causality.
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Chapter 2

Change Point Detection with

Conceptors

This chapter is adapted from the article Change Point Detection with Conceptors

(Gade and Rodu, 2023a).

The offline change point identification problem is widely discussed in the liter-

ature, and used in a broad range of domains like signal processing, human activity

monitoring, and finance (Truong, Oudre, and Vayatis, 2020). For time series data

yt ∈ Rd with t = 1, . . . , T , the goal is to retroactively identify points where the distri-

bution changes. Despite the vast amount of work in this field, most of it is focused on

identifying mean and variance changes, and the challenge of change point detection

in the presence of nonlinear dependence is unresolved. Model based methods assume

a known, rigid structure, and specification of a functional form to fit nonlinearities

present in data can be difficult. Many nonparametric methods are only applicable

to independent and identically distributed (i.i.d.) data, and are applied to cases

where changes would be easily identified from visual inspection of a time series plot.

Unless they target the aforementioned mean and variance scenarios, most nonpara-

metric methods also have an uninterpretable or shrouded definition of the notion of

“change.” The contribution of this chapter is a model agnostic method for detecting

change in multivariate and arbitrarily dependent nonlinear time series data. The con-
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ceptor change point (CCP) methodology builds on prevalent ideas in statistics and

representation learning literature. High-dimensional featurizations from ESNs, and a

conceptor matrix from a specified and interpretable “baseline” state, allows for the

flexibility of change detection in processes with elaborate dependence structures. The

ESN controlled by a conceptor is defined in Equations 1.9 to 1.11 and Equation 1.12.

This methodology should be used as a tool to suggest potential locations of interest

in a dataset where traditional methods and inspection fail.

For this work, the framework is restricted to the at most one change point (AMOC)

problem. The distribution functions for each vector in time y1, . . . ,yτ ∼ F1 and

yτ+1, . . . ,yT ∼ FT are compared with the hypotheses

H0 : F1 = FT

HA : F1 ̸= FT , (2.1)

where F1 and FT are unknown. Rejection of the null leads to the conclusion that

a change took place immediately after time point τ . With sufficient spacing, the

framework provides simple extensions to the sparse, multiple change point problem

and the online, sequential change point problem.

2.1 Background

Change point detection methods can broadly be classified as sequential, agglomer-

ative, or divisive. Sequential change point detection, like that of Lai (1995), best

lends itself to the online problem where changes are identified in sequence while the

data is observed. Online change point detection is not the main focus of this chapter.
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Agglomerative change point methods begin by labelling each data point as a unique

cluster, and proceed by strategically grouping adjacent clusters with an algorithmic

criterion; Fryzlewicz (2018) and Matteson and James (2014) provide two examples of

these criteria.

Divisive algorithms cluster a series of points and algorithmically search for breaks

that best divide into chronological classifications. Many of these algorithms follow

the binary segmentation approach, pioneered by Vostrikova (1981), and identify sub-

sequent change points from each of the divided pieces. Penalized techniques like

Ombao, Sachs, and W. Guo (2005), Lavielle and Teyssiere (2006), and Killick, Fearn-

head, and Eckley (2012) are also prevalent and recent computational work by Haynes,

Eckley, and Fearnhead (2017) and Tickle et al. (2020) build on these methods and

aim to optimize the search process for efficient change point detection. Cumulative

sum (CUSUM) type statistics provide the most common foundation to locate change

points in ordered sequences (Picard, 1985; Gombay and Horváth, 1995; Gombay and

Horváth, 1999; Cho and Fryzlewicz, 2012; Holmes and Kojadinovic, 2021; Kojadinovic

and Verdier, 2021). Many modifications are in the form of the Kolmogorov-Smirnov

and Cramer-von Mises criteria, including the self-normalization method of Shao and

X. Zhang (2010). Most initial work in this field, like wild binary segmentation of Fry-

zlewicz (2014), applies only to univariate sequences, and several extensions of these

methods to multivariate and high-dimensional applications build on the respective

univariate versions (Cho and Fryzlewicz, 2015). Matteson and James (2014) propose

a clustering algorithm based on a hierarchical divergence measure for the multivari-

ate, multiple change point problem. This method imposes the strict assumption of

i.i.d. data and is only asymptotically justified in the AMOC problem (Arlot, Celisse,

and Harchaoui, 2019). Projection of the data into a high-dimensional space by Wang
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and Samworth (2018), the kernel trick for change point estimation by Arlot, Celisse,

and Harchaoui (2019), and Bayesian estimation like Cappello, O. H. M. Padilla, and

Palacios (2023) also import the assumption of independent data. Dehling, Fried, et al.

(2015) and Dehling, Vuk, and Wendler (2022) investigate relaxing the i.i.d. require-

ment by examining the effect of short-term dependence on large sample behavior,

and Gerstenberger (2018) explores only the mean change problem for short-term de-

pendence. Certain types of model based detection like Kirch, Muhsal, and Ombao

(2015) also relax the i.i.d. requirement, but rely on strong parametric assumptions

and impose a rigid structure onto the process. Characterizing nonlinear temporal de-

pendence in change point problems is a challenging, relevant problem with relatively

little progress.

2.2 Methodology

The hypothesis in Equation 2.1 is tested under the condition where at most one change

point τ is present in the data. An initial training section of the time series is labelled

as a “baseline” state from which changes are identified. It is assumed that any change

takes place after this baseline window, and the initial distribution F1 produces a time

series that is at least wide-sense cyclostationary. The second assumption ensures the

training data covers a relevant range of the data and changes are not falsely identified

from unrecognized network dynamics.

The selected training window (of integer length Ttrain) should be sufficiently long

to capture the original dynamics of the time series and include representative values

from the data prior to a suspected change. If the data exhibits a periodic or almost-

periodic type structure, the training length should include at least one full cycle.
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The training window need not be at the beginning of the time series; this can be

generalized to take any section as a baseline state, where the method looks forward

and backward for a potential change.

The proposed method involves three main steps. First, several ESNs are generated

and the specified training window is used to select network parameters that satisfy

an error tolerance εtrain, defined in terms of the normalized root mean square error

(NRMSE) of the reservoir output. In Chapter 2, this is defined as

NRMSE =

[
(yt − ŷt)

2 /

(
1

2
Var (yt) +

1

2
Var (ŷt)

)]1/2
. (2.2)

The ESN featurizations serve as advantageous functional transformations to a high-

dimensional domain where nonlinear relationships are “linearized” without imposing

a rigid structure. For each ESN, a conceptor matrix is computed from the baseline

that encapsulates information about the dynamics of the time series in that window.

The input to the system and its relationship to the conceptor space is exploited;

the conceptor records information about the baseline dynamics, and the relationship

between the projected (filtered) and unprojected reservoir states is used to highlight

differences in the mechanism of evolution. Second, a bisection technique is employed

that estimates the most likely change point from these relative differences. Last, a

moving block bootstrap is used to estimate the strength of evidence for a proposed

change.

2.2.1 ESN Featurization

Along with an integer length for the baseline Ttrain, an integer length Twash is speci-

fied and used to washout the initial conditions of a generated ESN reservoir, where
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generally Twash < Ttrain ≪ T . A training error 0 < εtrain ≪ 1 influences hyperpa-

rameter settings; this error tolerance is the maximum allowable NRMSE between the

conceptor governed ESN output and the original data. Define T0 = Twash+Ttrain, and

the assumption of no distributional change applies to the time points where t ≤ T0,

restricting the identification of any change point τ to the interval [T0 + 1, T − 1].

A reservoir size N is selected where N ≫ d. A series of r = 1, . . . ,R ESNs are ini-

tialized by generating the matrices from Equation 1.9 like in Section 1.1.1. The input

and bias matrices, Wi
r ∈ RN×d and br ∈ RN , are dense with independent random

Gaussian realizations, and the variance is determined from a parameter grid such that

the ESN output best fits the data as measured by NRMSE, like discussed in Section

1.1.1. Scaling of the input matrices is investigated in a range of 0.2 to 1.4, and scaling

of the bias matrices in a range of 0.1 to 0.5 at a small reservoir size. Because the data

is contained in a relevant domain prior to input into the ESNs, these grids remain

constant for each dataset. Each Wh
r ∈ RN×N is a sparse matrix with independent

random Gaussian nonzero entries, and is scaled to a constant spectral radius of 0.8 to

ensure the propagating reservoir states remain stable and wash out (or “forget”) the

information from any initial conditions. The chosen spectral radius is not at the limit

of stability to capture the maximum amount of long-term dependence (Lukoševičius,

2012; Yildiz, Jaeger, and Kiebel, 2012). This is a balance between stability, introduc-

ing adequate temporal dependence, and ensuring the reservoir washout is not so long

that valuable data is wasted. The full procedure for ESN initialization and scaling is

found in Procedure A.1 of Appendix A.

The integer washout length Twash can also be automatically selected from the

data. It should be of sufficient length to allow the ESN to operate independently of

the reservoir states at t = 0. Longer washout periods will remove relevant data from
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the analysis. Unless specified, optimum selection is determined from the differences

between reservoir states of ESNs with different initial values. After the differences are

below a washout error tolerance εwash, the states have forgotten the initial condition;

the network fitting process is not very sensitive to changes in this tolerance and a

default value of 10−6 is used. This method is outlined in Procedure A.2 of Appendix

A.

The reservoir size and aperture of the network are concurrently determined as the

first values large enough to produce a NRMSE below εtrain. The parameter selection

is outlined in Procedure A.3 of Appendix A, and the full ESN featurization procedure

is given in Algorithm 2.1. Selection of εtrain should take place prior to analysis and

Algorithm 2.1 ESN Featurization
Inputs: time series data yt ∈ Rd; training window length Ttrain

Outputs: ESN parameters; ESN network size N ; aperture α; washout length Twash

1: perform Procedure A.1 to obtain ESN scaling : {cinput, cbias, ρ}

2: perform Procedure A.3 to obtain ESN reservoir size N and aperture α

return ESN scaling : {cinput, cbias, ρ}, N , α, Twash

not with iterations of the method on multiple parameter values. Smaller values may

be more sensitive to learning variations in the noise component of the data, while

larger values will extract general behavior. In Section 2.4, the effect of varying εtrain

is demonstrated, but the parameter should take a default of about 4 to 8% NRMSE

unless compelling prior knowledge about the type of change sought suggests otherwise.

For each ESN featurization, the associated conceptor matrix is computed from the

series of training time points after network washout, t ∈ [Twash+1, T0]. The network is

propagated forward in time via Equations 1.9 and 1.10 with C = I, and the reservoir

states h̃t (ht) collected. Conceptor matrices Cr are obtained via Equation 1.12; then,
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each ESN is run with Cr in place, like Equation 1.10, for all time points t ≥ Twash+1.

2.2.2 Change Point Proposal

The angles between the projected (filtered) reservoir states h̃r,t and the unprojected

reservoir states hr,t are examined at each time t after the training period. The cosine

similarities of these angles sr,t, for each featurization r, form univariate sequences

that quantify the proximity of the reservoir states to the space spanned by the cor-

responding conceptor matrix.

sr,t =
h̃⊤
r,thr,t∣∣∣∣∣∣h̃r,t

∣∣∣∣∣∣ ||hr,t||
=

h⊤
r,tC⊤

r hr,t

||Crhr,t|| ||hr,t||
(2.3)

Values in each sequence sr,t are contained in the interval [0, 1] because, by definition,

each Cr is positive semidefinite. A similarity value can be interpreted as a measure

of the strength of relationship between the reservoir state at time t and those in the

period of training data. Values of zero imply the ESN is generating states orthogonal

to the conceptor space, and those equal to one imply the ESN is generating states

exactly in the conceptor space.

Other distance measurements may be used to quantify proximity to the conceptor

space. Cosine similarity is a bounded, interpretable quantity that emphasizes angles

further from zero at an increasing rate. The exact values of these similarities will

vary and their absolute measure is not important; only relative differences are needed

for comparison throughout the time series. Figures 2.6, A.2, and A.3 illustrate the

relative nature of the similarity measure.

Because the networks are randomly generated, there is variation in the computed
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conceptor matrices that extends to the cosine similarities across the ESNs. To extract

a general behavior and reduce the dimension of the information, the average cosine

similarity at each time point t is considered, St = R−1
∑R

r=1 sr,t. The aggregate cosine

similarity sequence acts as an ensemble of weak learners from each generated ESN.

A proposed change point is selected using a modified CUSUM statistic that resem-

bles the two-sample Kolmogorov-Smirnov distributional test (Smirnov, 1933). From

the sequence St, empirical CDFs F̂(T0+1):t(s) and F̂(t+1):T (s) are constructed by divid-

ing the sample at each potential change point in the series.

F̂(T0+1):t(s) =
1

t− T0

t∑
i=T0+1

1 {Si ≤ s} (2.4)

F̂(t+1):T (s) =
1

T − t

T∑
i=t+1

1 {Si ≤ s} (2.5)

A scaled statistic, like that used in Gombay and Horváth (1995) and O. H. M. Padilla,

Y. Yu, et al. (2021), is computed at each observation, and the point of the maximum

is identified as the most likely change point:

K = max
t

(t− T0) (T − t)

q (t) (T − T0)
2 sup

s

∣∣∣F̂(T0+1):t(s)− F̂(t+1):T (s)
∣∣∣ (2.6)

τ̂ = arg max
t

(t− T0) (T − t)

q (t) (T − T0)
2 sup

s

∣∣∣F̂(T0+1):t(s)− F̂(t+1):T (s)
∣∣∣ . (2.7)

The coefficient term in Equation 2.6 ensures the statistic converges in distribution

under stationarity as T → ∞ (Csörgő and Horváth, 1997; Gombay and Horváth,

1999; Holmes, Kojadinovic, and Quessy, 2013; Kojadinovic and Verdier, 2021). The

q(t) scaling function, with form shown in Equation 2.8, increases the sensitivity of the

method near the edges of the sequence (Csörgő and Szyszkowicz, 1994a; Csörgő and

Szyszkowicz, 1994b; Csörgő and Horváth, 1997; Csörgő, Horváth, and Szyszkowicz,
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1997). Further properties of the statistic under the null are discussed in Section 2.3.

q(t) = max
{(

t− T0

T − T0

)ν (
1− t− T0

T − T0

)ν

, κ

}
(2.8)

The statistic given in Equation 2.6 is similar to that discussed in Kojadinovic and

Verdier (2021), where if ν = 1/2 and κ is a small constant near zero, the mean and

variance of the series of statistics remain approximately constant in the limit. Values

ν = 1/2 and κ = 0.01 are chosen for reasons explained in Section 2.3, and the full

algorithmic process for proposing a change point is detailed in the Algorithm 2.2.

2.2.3 Moving Block Bootstrap

Estimating the null distribution of the statistic K from Section 2.2.2 may be of more

importance than the identification of a potential change point. By nature, many

change point detection problems are non-verifiable in real world applications. Thus,

reliable change point algorithms should be robust in their ability to detect both change

and the lack of change in a dataset.

The bootstrap method of Efron (1979) provides a foundation for inference based on

repeated sampling. Several variations of the bootstrap for change point methodology

are reviewed in Hušková (2004). The moving block bootstrap (MBB), developed

by Kunsch (1989) and R. Y. Liu and Singh (1992), samples blocks of consecutive

points to retain the dependence structure within each block. Extending the bootstrap

to applications with dependent data structures, the MBB is able to asymptotically

reproduce the underlying dependence structure (Lahiri, 2003). The block bootstrap

is suggested by Dehling and Philipp (2002) for statistics of empirical processes, and

Synowiecki (2007) describes its application to non-stationary data with periodic or
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Algorithm 2.2 Change Point Proposal
Inputs: time series data yt ∈ Rd; training window length Ttrain; ESN scaling:

{cinput, cbias, ρ}, N , α, Twash from Algorithm 2.1

Outputs: most likely change point τ̂ ; statistic K

Default Parameters: number of featurizations R← 100

1: for r in 1 : R do

2: initialize Wi
r,br,Wh

r where each element N (0, 1), and Wh
r is sparse

3: Wi
r ← cinputWi

r; br ← cbiasbr

4: Wh
r ← ρWh

r/max
{

v⊤Wh
rv : ||v|| = 1

}
5: hr,t ← tanh

(
Wh

rhr,t−1 + Wi
ryt + br

)
for t = 1, . . . , Twash + Ttrain

6: Cr ← 1
Ttrain

H⊤
r Hr

(
1

Ttrain
H⊤

r Hr + α−2I
)−1

where Hr = [hr,Twash+1 · · · hr,Twash+Ttrain ]
⊤

7: hr,t ← tanh
(

Wh
rh̃r,t−1 + Wi

ryt + br

)
; h̃r,t ← Crhr,t for t = Twash+1, . . . , T

8: sr,t ←
h̃⊤
r,thr,t

||h̃r,t||||hr,t||
for t = Twash + Ttrain + 1, . . . , T

9: end for

10: St ←
1

R

R∑
r=1

sr,t for t = Twash + Ttrain + 1, . . . , T

11: for t in (Twash + Ttrain + 1) : (T − 1) do

12: F̂(Twash+Ttrain+1):t(s)←
1

t− Twash − Ttrain

t∑
i=Twash+Ttrain+1

1 {Si ≤ s}

13: F̂(t+1):T (s)←
1

T − t

T∑
i=t+1

1 {Si ≤ s}

14: Kt ← (t−Twash−Ttrain)(T−t)

q(t)(T−Twash−Ttrain)
2 sup

s

∣∣∣F̂(Twash+Ttrain+1):t(s)− F̂(t+1):T (s)
∣∣∣

15: end for

16: K ← max
t

Kt

17: τ̂ ← arg max
t

Kt

return K, τ̂ , all Cr,Wi
r, br, Wh

r
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almost periodic behavior.

Potentially overlapping blocks of length L are selected and combined to form a

bootstrapped time series of the original length T . When data are treated as i.i.d., as

in Matteson and James (2014), the block length parameter reduces to a permutation

of the time series with L = 1. With increasing block length, the estimated null dis-

tribution will exhibit less variation, and null values will tend closer to the statistic

K. Choice of block length is discussed widely in literature, and the cross-validation

like technique of Hall, Horowitz, and Jing (1995) allows for data driven selection

(Bühlmann and Künsch, 1999; Lahiri, 2003; Politis and White, 2004; Lahiri, Fu-

rukawa, and Lee, 2007; Patton, Politis, and White, 2009). A large pilot block length

is used to start the Hall, Horowitz, and Jing (1995) algorithm to ensure a long range

dependence structure is considered, and the process is not iterated as convergence is

not guaranteed (Lahiri, 2003). Adjusting the block length for the power and Type 1

error control trade-off should be considered if the researcher possesses some knowledge

about the dependence structure of the data.

With the assumption of no change in the washout and training windows, the

conceptor matrices do not need to be recomputed: in each bootstrapped series the

points t ≤ T0 are identical to the original data. All remaining points t ≥ T0 + 1 are

equally likely to be chosen as the beginning of a bootstrap interval of length L. To

ensure equal inclusion probability, the series is wrapped such that a block near the

end (a time point within L of T ) will cycle back to the initial time considered, T0+1.

The process to generate bootstrapped data is shown in Procedure A.4 of Appendix

A.

For each generated bootstrap time series b = 1, . . . , B, the corresponding maximum

statistic is computed as in Section 2.2.2, simulating an approximate null distribution.
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A distribution quantile is estimated from the fraction of the B bootstrapped statistics

that exceed the statistic from Equation 2.6, p = B−1
∑B

b=1 1 {Kb > K}. The quantile

estimate provides a notion of the strength of the evidence for a change point. The va-

lidity of applying the MBB to the AMOC problem is investigated through simulation

and evaluation of Type 1 error control in Section 2.4 for a variety of data generating

processes. For a dataset with no change point, the proportion of false rejections in S

simulations is expected to be approximately qS, where q is a predefined threshold of

Type 1 error. The full algorithm for estimating a null distribution from the MBB is

shown in Algorithm 2.3.

2.3 Theory

The hypothesis in Equation 2.1 is tested using the featurization and conceptor matrix

as outlined in Section 2.2. Under the null hypothesis, the cosine similarity values St

are expected to retain a consistent relative structure and fall close to one (i.e., remain

close to the space of the conceptor matrix). Under the alternative, changes in the

relationship between the cosine similarity sequence and the space spanned by the

conceptor matrix are observed. These changes, initiated by a shift in the data, are

not strictly away from the conceptor space; a reduction in variation may lead to

reservoir states that lie closer to the conceptor space.

For clarity, the time index is redefined to T0 = 0 and T as the number of data

points after washout and training. The assumption of any change after washout and

training restricts the domain to t > 0. Suppose St ∼ Ft(s) for all s ∈ [0, 1], where

each Ft is a defined distribution function. The hypothesis is reformulated in terms of
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Algorithm 2.3 Null Distribution Estimate via Moving Block Bootstrap
Inputs: training window length Ttrain; Twash from Algorithm 2.1; K, all Cr,Wi

r, br,

Wh
r, R from Algorithm 2.2

Outputs: null distribution estimate of statistic Kb; quantile estimate at a defined

Type 1 error threshold p

1: perform Procedure A.4 to obtain bootstrapped data yb,t and B

2: for b in 1 : B do

3: for r in 1 : R do

4: hb,r,t ← tanh
(

Wh
rh̃b,r,t−1 + Wi

ryb,t + br

)
; h̃b,r,t ← Crhb,r,t

5: sb,r,t ←
h̃⊤
b,r,thb,r,t

||h̃b,r,t||||hb,r,t|| for t = Twash + Ttrain + 1, . . . , T

6: end for

7: Sb,t ←
1

R

R∑
r=1

sb,r,t for t = Twash + Ttrain + 1, . . . , T

8: for t in (Twash + Ttrain + 1) : (T − 1) do

9: F̂ b
(Twash+Ttrain+1):t(s)←

1

t− Twash − Ttrain

t∑
i=Twash+Ttrain+1

1 {Sb,i ≤ s}

10: F̂ b
(t+1):T (s)←

1

T − t

T∑
i=t+1

1 {Sb,i ≤ s}

11: Kb,t ← (t−Twash−Ttrain)(T−t)

q(t)(T−Twash−Ttrain)
3/2 sup

s

∣∣∣F̂ b
(Twash+Ttrain+1):t(s)− F̂ b

(t+1):T (s)
∣∣∣

12: end for

13: Kb ← max
t

Kb,t

14: end for

15: p← 1

B

B∑
b=1

1 {Kb > K}

return p, all Kb
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these distribution functions.

H0 : F1(s) = · · · = FT (s) for all s ∈ [0, 1]

HA : ∃ τ ∈ Z, 1 ≤ τ < T , such that ∀ s ∈ [0, 1], F1(s) = · · · = Fτ (s) and

Fτ+1(s) = · · · = FT (s), and F1(s0) ̸= FT (s0) for some s0 ∈ [0, 1] (2.9)

Define the corresponding empirical distribution functions at each point in the time

series t, F̂1:t(s) = t−1
∑t

i=1 1 {Si ≤ s} and F̂(t+1):T (s) = (T − t)−1∑T
i=t+1 1 {Si ≤ s}.

By the Glivenko-Cantelli theorem, these empirical CDFs are consistent estimators

of the true distribution functions and they uniformly converge in the limit under

stationarity and ergodicity (Tucker, 1959; H. Yu, 1993; Dehling and Philipp, 2002).

Summarizing the data with the univariate sequence generated by the conceptor space

St, rather than using the original multivariate time series, may also make investigation

and verification of theoretical assumptions more accessible.

2.3.1 Limiting Distribution Under the Null Hypothesis

Asymptotic behavior of empirical processes for i.i.d. sequences stems from J. Kiefer

(1972), that proved almost sure convergence to a Gaussian process. In this work,

the S-mixing definition of Berkes, Hörmann, and Schauer (2009) is used to obtain a

similar result for the statistic in Equation 2.6.

Assume the sequence St is stationary under the null hypothesis, satisfied by con-

struction in Equation 2.9, and can be represented as a shift process of i.i.d. random

variables εt, St = f(εt, εt−1, . . .). Most stationary processes in practice admit a repre-

sentation as a shift process, and this is causal due to the forward dynamics of the time
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series (Berkes, Hörmann, and Schauer, 2009). These assumptions apply only to the

sequence indicating the relationship of a given state to the baseline space spanned by

the conceptor matrix; they are not imposed on the original data. In a time window

without a change point present, assume St will arise from some common distribution.

A process as S-mixing if the two conditions in Definition 2.1 are satisfied.

Definition 2.1. A random process St is S-mixing if:

(1) For any t ∈ Z and m ∈ N, one can find a random variable Stm such that

P (|St − Stm| ≥ γm) ≤ δm for some numerical sequences γm → 0, δm → 0.

(2) For any disjoint intervals I1, . . . , Ir of integers and any positive integers

m1, . . . ,mr, the vectors {Sjm1 , j ∈ I1}, . . . , {Sjmr , j ∈ Ir} are independent

provided the separation between I1 and Ir is greater than m1 +mr.

With mild assumptions on the function f , Berkes, Hörmann, and Schauer (2009)

easily show the shift process representation for a general class of nonlinear processes.

Construction of the approximating sequence Stm is discussed via substitution, trun-

cation, coupling, and smoothing techniques (Berkes, Hörmann, and Schauer, 2009).

S-mixing is not directly comparable to classical mixing conditions, like α-, β-, or

ρ-mixing. The classical mixing definitions lead to clean and precise theoretical re-

sults, but verifying the required conditions can be challenging and their scope of

application is limited (Berkes, Hörmann, and Schauer, 2009). S-mixing relaxes these

requirements to the existence of an approximating sequence that satisfies the above

properties. Within the targeted class of shift processes, verification of assumptions

is almost immediate, and the resulting strong approximation is used to derive the

limiting distribution (Berkes, Hörmann, and Schauer, 2009).
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Define the function q : [0, 1] → (0, 1) by q(δ) = max{δ1/2(1 − δ)1/2, κ} and some

small κ > 0 resembling Equation 2.8 with ν = 1/2.

Theorem 2.2. Let St be a stationary sequence such that F(s) = P (S1 ≤ s) is

Lipschitz continuous of order C > 0. Assume St is S-mixing and that condition (1)

of Definition 2.1 holds with γm = m−AC, δm = m−A for some A > 4. Under the null

hypothesis for every κ ∈
(
0, 1

2

)
,

√
T max

1≤t<T

1

q
(

t
T

) [t(T − t)

T 2

]
sup
s∈[0,1]

∣∣∣F̂1:t(s)− F̂(t+1):T (s)
∣∣∣ D−→ sup

δ∈[0,1]
sup
s∈[0,1]

|K(s, δ)| /q(δ)

(2.10)

as T →∞, where K(s, δ) is a Gaussian process with

E [K(s, δ)] = 0,

E [K(s, δ) K(s′, δ′)] = (δ ∧ δ′) Γ(s, s′),

and Γ(s, s′) =
∑

−∞<t<∞

E [S1(s)St(s
′)] , (2.11)

and the limiting random variable is almost surely finite.

The mathematical exposition and proof is an extension of the independent case found

in Csörgő and Horváth (1997), Theorem 2.6.1 and is shown in Appendix A. Theorem

2.2 implies the statistic K converges in probability to zero under the null hypothesis.

Stationarity of the average cosine similarities depends on the training window

of data and adherence to the AMOC problem. With a well specified, sufficiently

long training window such that a relevant range of the time series is covered, the

reservoir will emit dynamics close to the conceptor space and the assumption is likely

satisfied. With multiple changes present in a dataset, the stationarity assumption
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may be violated. In practice, the data should be at least wide-sense cyclostationary,

contain at most one change, and not exhibit some long run trend.

2.3.2 Consistent Change Point Estimation

The behavior of the change point estimate τ̂ is examined under the general class

of alternatives given in the hypothesis of Equation 2.9. Under construction of the

alternative, the average cosine similarity sequence divides into two stationary ergodic

pieces on either side of a true change point τ represented by F1(s) and FT (s). When

satisfying modest conditions, τ̂ is a consistent estimator of τ .

Theorem 2.3. Suppose the sequence St, 1, . . . , T divides into two stationary ergodic

pieces on either side of the change point τ , and F1(s0) ̸= FT (s0) for some s0 ∈ [0, 1].

Then for every κ ∈
(
0, 1

2

)
, the change point estimate

τ̂ = arg max
1≤t<T

1

q( t
T
)

[
t(T − t)

T 2

]
sup
s∈[0,1]

∣∣∣F̂1:t(s)− F̂(t+1):T (s)
∣∣∣ (2.12)

converges in probability to the true value τ under the domain restriction

τ ∈
[
T

2
− T

2

√
1− 4κ2,

T

2
+

T

2

√
1− 4κ2

]
. (2.13)

The proof follows Theorem 2.1 from Newey and McFadden (1994) for consistency of

extremeum estimators and can be found in Appendix A. Restricting a possible change

point to the interval shown in Theorem 2.3 does not shrink the domain in practice if

the chosen κ <
√

1
4
− 1

4

(
1− 2

T

)2.
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2.4 Simulation Study

Performance of the CCP method is demonstrated through simulations restricted to

the AMOC problem. The CCP method is compared to the e-divisive (EDiv) method

of Matteson and James (2014) and the kernel change point (KCP) algorithm of Arlot,

Celisse, and Harchaoui (2019), both via the ecp R package by James and Matteson

(2015), along with the sparsified binary segmentation (SBS) methods of Cho and

Fryzlewicz (2015), via the sbs R package by the same authors. Type 1 sparsified

binary segmentation searches for changes in the center of the data, and Type 2 seeks

other forms of distributional change (Cho and Fryzlewicz, 2015).

2.4.1 Simulation Settings

Simulated time series fall into the broad classes of VAR, periodic, Gaussian, and white

noise processes. All simulated data yt ∈ R2, t = 1, . . . , T , has length T = 1000 with a

potential change located from τ = 181 to τ = 999. Table 2.1 summarizes the settings

used for each method in the study. CCP requires specification of a training length of

data with an associated training error tolerance. The washout length Twash = 60 and

Table 2.1: Parameter settings for methods in simulation study.

Method Settings

Conceptor Change Point (CCP) εtrain = 2, 4, 8, 16

E-Divisive (EDiv) q = 0.05

Kernel Change Point (KCP) Π = 1, C = 2

Sparsified Binary Segmentation (SBS) q = 0.05, Type = 1, 2

εtrain is the error tolerance in % NRMSE, q the significance threshold, Π the maximum
number of change points, C the KCP penalty scaling.
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the training length Ttrain = 120 are fixed to ensure a constant window of estimation

τ̂ ∈ [181, 999] for all compared methods. The error tolerance εtrain varies from 2 to 16

percent of NRMSE. The EDiv, KCP, and SBS methods are restricted to the AMOC

framework. For EDiv and SBS the estimate is the initial segmentation chosen by

the algorithm. KCP accepts an input parameter to restrict to the AMOC problem.

EDiv, SBS1, and SBS2 require a significance threshold for change point identification

that is set to q = 0.05. The same value is used in the CCP method to set an upper

threshold on the bootstrap null distribution. KCP requires specification of a penalty

parameter for change point identification; Arlot, Celisse, and Harchaoui (2019) outline

a procedure for selection of this parameter, and the suggested penalty scaling is used.

When a change in the data is present, the adjusted Rand index (ARI) of Hubert

and Arabie (1985) compares the assignment of time points to the correct class, and

the empirical CDF of the difference between the identified point and the true change

point is computed. Given in Equation 2.14, with δ the fraction of the time series

away from the true change point and S the total number of simulations for a selected

setting, the empirical CDF shape in some neighborhood {δ : 0 ≤ δ ≤ T ∗ ≪ T}

compares performance of the methods.

Ĥτ (δ) =
1

S

S∑
i=1

1
{

1

T − Twash − Ttrain
|τ̂i − τi| ≤ δ

}
(2.14)

Better performing methods will quickly increase to 1, and those that fail to identify

an existing change point are evaluated as if it was placed at the end of the series,

τ̂ = 1000. When no change is present, q̂ is defined as the observed Type 1 error and

compared with the defined threshold q.

Tables 2.2 and 2.3 detail the data processes examined in the simulation study. For
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each case, a no change point scenario is included where the initial data generating

process held constant for the full time series. Each setting is indicated by a unique

ID and repeated 300 times to create over 13000 simulated datasets.

Table 2.2: VAR and periodic simulation settings.

ID Simulated Data ID Simulated Data

(1a); (2a) ρ = 0.5→ 0.5 (3a) ω = 1→ 0.5

(1b); (2b) ρ = 0.5→ 0.8 (3b) ω = 1→ 0.8

(1c); (2c) ρ = 0.8→ 0.5 (3c) ω = 1→ 1.2

(1d); (2d) ρ = 0.8→ 0.8 (3d) ω = 1→ 1.5

(1e); (2e) ρ = 0.5→ NC (3e) ω = 1→ NC

(1f); (2f) ρ = 0.8→ NC

VAR(1) + 1
2N2 (02, I2), VAR(2) + 1

2N2 (02, I2) spectral radius ρ change simulations, and
periodic process frequency ω change simulations sin (ωt {+ω π

2
})12 +

1
2N2 (02, I2). All data

yt ∈ R2, t = 1, . . . , T , has length T = 1000 and the change point varies randomly τ ∈
[181, 999] or no change (NC). VAR(1) simulations are indicated by ID(1), VAR(2) by ID(2),
and periodic by ID(3).

For VAR(γ) processes, the coefficient matrix is randomly generated to have a

fixed spectral radius ρ (within a tolerance of 0.02). Change points from autoregres-

sive processes with similar ρ may be more difficult to identify as they can exhibit

similar dynamics. All VAR(γ) processes contain a white noise error term defined in

Table 2.2. For periodic processes, the second dimension is shifted by of π/2 as noted

by the braced parenthesis in Table 2.2, and all contain a white noise error term.

The Ornstein-Uhlenbeck processes are defined by the stochastic differential equation

dxt = θxtdt+ λdWt, where Wt denotes a two-dimensional Wiener process. The two-

dimensional Ornstein-Uhlenbeck process is denoted OU2(Θ,Λ), where Θ is the 2× 2

mean-reverting matrix and Λ is the 2 × 2 volatility matrix. Gaussian white noise
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Table 2.3: Ornstein-Uhlenbeck and white noise simulation settings.

ID Simulated Data ID Simulated Data

(4a) θ = 0.5→ 0;λ = 0.5 (5a) µ = 0→ 0.5

(4b) θ = 0.5→ 1;λ = 0.5 (5b) µ = 0→ 0.8

(4c) θ = 1→ 0;λ = 0.5 (5c) µ = 0→ 1

(4d) θ = 1→ 0.5;λ = 0.5 (5d) σ = 1→ 0.5

(4e) θ = 0.5;λ = 0.5→ 0.2 (5e) σ = 1→ 0.8

(4f) θ = 0.5;λ = 0.5→ 0.8 (5f) σ = 1→ 1.2

(4g) θ = 0.5;λ = 0.5→ 1 (5g) σ = 1→ 1.5

(4h) θ = 0.5;λ = 0.5→ NC (5h) ρ = 0→ 0.8

(4i) θ = 1;λ = 0.5→ NC (5i) µ, ρ = 0; σ = 1→ NC

Ornstein-Uhlenbeck mean reverting θ and volatility λ change simulations OU2

(
γI2, λ2I2

)
and white noise N2

(
02 + µ12, σ

2I2 + ρJ2

)
mean µ, variance σ, and covariance ρ change

simulations, where J2 refers to the anti-diagonal matrix of ones. All data yt ∈ R2, t =
1, . . . , T , has length T = 1000 and the change point varies randomly τ ∈ [181, 999] or no
change (NC). Ornstein-Uhlenbeck simulations are indicated by ID(4) and white noise by
ID(5).

processes with mean, variance, and covariance shifts are included in the simulation

to compare CCP methodology to existing methods in benchmark scenarios.

2.4.2 Simulation Results

Simulation results and figures for dependent processes are presented in this section.

Tables of results, and tables and figures for white noise processes included for com-

parison to existing methods, are given in Appendix A.

For VAR(γ) processes with a change point present, the CCP method outper-

forms existing methodology. This advantage increases with more lagged values in the
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dependence structure and when process transitions to a relatively large spectral ra-

dius. Figure 2.1 displays the graphical evaluation technique defined in Equation 2.14.

Among the conceptor methods, the higher error tolerances (CCP08 and CCP16) pro-

ρ = 0.5 → 0.5 ρ = 0.5 → 0.8 ρ = 0.8 → 0.5 ρ = 0.8 → 0.8
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ρ, IDs (1a-d, 2a-d).

Figure 2.1: VAR(γ) simulation results.

vide a more general fit to the data, where smaller error tolerances (CCP02) produce

networks with larger reservoirs that learn the minor deviations of the data. In the

presence of noise, these minor deviations occlude the true signal, potentially leading

to inconsistencies in the learned behavior. Caution should be taken when specifying

the error tolerance in noisy data; moderate tolerances may perform better than small

tolerances as they fit networks with constrained internal dynamics, placing more em-

phasis on a general signal. This phenomenon can be likened to an overfitting problem.

The KCP and SBS2 methods are the closest existing methods to the conceptor per-

formance. One major drawback of the SBS method is that the type of change point

sought must be specified; the algorithm run with a Type 1 designation produces very

low ARI scores for all VAR(γ) simulations.
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Figure 2.2 shows the results for simulations where the underlying data is generated

by a periodic process. The CCP method is able to reliably detect changes in the

frequency of periodic processes when the deviation from an initial state is sufficiently

large; existing methodology struggles with this class of processes. While methods in

the frequency domain easily detect this type of change, methods that exist in the

temporal domain often fail with periodic data. The CCP method in the temporal

domain is able to capture this type of nonlinear dependence, as well as those more

readily described by the time axis.

ω = 1 → 0.5 ω = 1 → 0.8 ω = 1 → 1.2 ω = 1 → 1.5

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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Fraction of identified points within error, periodic simulations with frequency change ω, IDs
(3a-d).

Figure 2.2: Periodic simulation results.

Figure 2.3 displays results for Ornstein-Uhlenbeck simulations with a mean revert-

ing or volatility parameter change. The CCP method surpasses most other methods

for detection in mean reverting parameter changes except in some cases when the

data shifts to a random walk process (or the parameter goes to zero). The difficul-

ties for all methods can likely be attributed to a relatively low signal to noise ratio.

For the volatility, the CCP method is competitive with existing methodology. This

behavior is also seen in white noise variance simulations (see Figure A.1 in Appendix

A) that play to the strengths of the comparator methods. With a high signal to noise

ratio, the CCP method is also competitive in detecting mean changes in white noise
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processes.
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(a) Fraction of identified points within error, Ornstein-Uhlenbeck simulations with mean
reverting change θ, IDs (4a-d).
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(b) Fraction of identified points within error, Ornstein-Uhlenbeck simulations with volatility
change λ, IDs (4e-g).

Figure 2.3: Ornstein-Uhlenbeck simulation results.

To evaluate the validity of the moving block bootstrap in the CCP method, the

Type 1 error of each method is observed when no change takes place in the time

series. Control for false discovery of change points is as important as the correct

identification of a change. Figure 2.4 shows the observed probability of erroneous

detection for each method. SBS methods provide conservative error control, KCP

methodology almost always flags a change point, and EDiv does not hold to a desired

level for data that is not Gaussian white noise. SBS methods do not return a quantile

estimate, but only a binary “present” or “not present” flag; to estimate coverage at
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the points indicated, the method was run with different values of the threshold q.

CCP methodology tracks along the uniform cdf with only slight undercoverage in

periodic data and VAR data with large spectral radii.
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Figure 2.4: Type 1 error control.

2.5 Application Study

The CCP method is applied to data from Varela and Wilson (2019). The authors

record local field potential (LFP) up to 600Hz in the midline thalamus (THAL),

medial prefrontal cortex (PFC), and the CA1 region of the hippocampus (HC) in

rats experiencing bouts of non-REM sleep and wakefulness while they remained in a

quiet, square-shaped enclosure (Varela and Wilson, 2019; Varela and Wilson, 2020).

The data, obtained from the Collaborative Research in Computational Neuroscience
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data sharing website, also includes determinations of sleep state (awake or non-REM

sleep), as well as spiking, spindle, and sharp-wave ripple information over the course of

the experiment (Varela and Wilson, 2019). Session 1 is selected (prior to exploration

of a radial maze), and the data is filtered with a finite impulse response filter to

focus on the delta band (1-4Hz), characterizing slow wave sleep. Finally, the data is

downsampled to a frequency of 4Hz.

Three periods of transition identified by Varela and Wilson (2019) are isolated; each

spans 100 seconds: sleep to wake (650 to 750s, change point at 740s), wake to sleep

(740 to 840s, change point at 800s), and wake to sleep (1080 to 1180s, change point

at 1150s). Relatively short windows are selected to satisfy the AMOC assumption;

shorter time periods focus the methods to detecting the sleep state transition rather

than other dynamic neural process changes almost certainly present in the data. The

CCP, EDiv, SBS2, and KCP methods are evaluated on their ability to locate the

change points in each transition period.

Approximately 10 seconds are reserved for reservoir washout, and 30 seconds are

used for conceptor training with the CCP method. Change points are identified in

the remaining one minute for all methods. Settings for methods are given in Table

2.1, and the CCP error tolerance is kept at εtrain = 4% NRMSE. Figure 2.5 presents

the results from applying the methods to the LFP data. Methods that fail to identify

a change point display as a vertical line at the far right edge of the figure.

Figure 2.6 displays the internal dynamics of the conceptor methodology applied

to the first (top) time series segment in Figure 2.5. Figures A.2 and A.3 present

similar visuals of the second and third segments, respectively. The top plot of Figure

2.6 displays the series of CUSUM-like statistics, with an estimated bootstrap null

distribution on the right vertical axis and quantiles as horizontal lines on the plot. The
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middle plot displays St with a relative vertical axis, as only comparative differences

through the time series are sought. The bottom plot gives empirical CDFs of St

over segmented windows of time; the plotted points display the difference between

the empirical CDF of the specific window and the overall empirical CDF of the full

time series. Shading in the middle and bottom plots represents the internal reservoir

dynamics and their relationship to the conceptor space; blue refers to dynamics that

are behaving similarly to the original conceptor space, and red indicates further away.

The scale of color shading in the middle plot is tied to percentiles the sequence St, and

in the bottom plot is a relative difference between empirical CDFs. Change points

will be identified as a peak in the top plot and a color transition in the middle and

bottom plots. Excessive undulation, a secondary peak, or multiple shifts may suggest

violation of the AMOC assumption or a slow transition between states.

2.6 Discussion

The CCP method provides a model agnostic framework for addressing nonlinear tem-

poral dependence in change point identification problems. This relaxes the common

i.i.d. assumption of most existing methodology, and allows for flexible definition of a

baseline state without the rigidity of an imposed structure. The method also alleviates

the problem of specifying a functional nonlinear form, which can be challenging.

The ESN learns the characteristic dynamics of a training window, and the deviation

from the conceptor space ix examined with a CUSUM-like statistic that consistently

estimates the true change point under mild assumptions. The method is able to flag

important locations for future scrutiny and provide guidance on the strength of evi-

dence for a change point via the moving block bootstrap. CCP outperforms existing
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methods in temporally dependent and periodic processes, and is even competitive in

i.i.d. processes with a change in variation or a high signal to noise ratio. In practice,

the training window should be sufficiently long to capture representative variation of

the original time series, and εtrain left at a default value unless there is prior knowl-

edge of the type of change sought. Assumptions include a baseline period of stable

data generation, where the data is at least wide-sense cyclostationary, and station-

arity of the obtained similarity sequence St on either side of at most one potential

change point. Violation of the cosine similarity stationarity assumption will affect

theoretical results, but does not diminish use of the method for investigative study

of a dataset. Implementation of the method may require isolation of a time segment

of interest, like the application in Section 2.5, so that the AMOC assumption is met.

These segments must be identified by the researcher with prior knowledge of their

data.

The framework in this chapter only applies to the AMOC problem, which can be

limiting. Further, all covariate specific information regarding the nature of a change

in the dataset is lost. Chapter 3 outlines a straightforward extension to the multiple

change point problem provided changes are sparse and sufficiently spaced in a time

series. After one identified change, a new baseline window is defined and the algorithm

run consecutively for application in both offline and online problems. Future work can

improve the data representation so that information pertaining to individual series

in the data is preserved, making qualitative conclusions about change points more

accessible.
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Chapter 3

Multiple Change Point Detection

with Conceptors

Extensions to the multiple change point problem are met by challenges beyond just

estimating the potential locations. Methodology needs to address the propensity of

a technique to overestimate (or underestimate) the number of potential breaks in

a multivariate time series and perform separate inference on each of these breaks.

With imperfect estimation, an evaluation technique should address the combined

error of misplacement (distance away from a true change point) and mismatching

(the number of estimated change points not corresponding to the number of true

changes, also called annotation error in Truong, Oudre, and Vayatis (2020)). This

chapter builds on the work of Chapter 2 and Gade and Rodu (2023a) to provide a

framework for the online and offline multiple change point problems in arbitrarily

dependent time series data, provided changes are sparse and sufficiently spaced.

3.1 Multiple Change Point Detection

The change point problem has amassed an extensive quantity of published literature

and has been applied to problems in engineering, economics, biological sciences, sig-

nal processing, and genomics (Niu, Hao, and H. Zhang, 2016; Truong, Oudre, and
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Vayatis, 2020; L. Xie et al., 2021). In both retrospective (offline) and sequential (on-

line) analysis, detecting shifts in the underlying process is challenging with nonlinear

temporal dependence.

Retrospective change point detection considers a complete section of a time series,

yt ∈ Rd with t = 1, . . . , T , and segments data into sections of consistent dynamics.

Often, it is beneficial to reformulate the multiple change point problem into a series

of AMOC problems by leveraging local information (Niu, Hao, and H. Zhang, 2016).

Sequential detection, as in Lai (1995), aims to identify changes in a continuous data

stream as they are observed, usually with a goal of prompt detection. A better result

minimizes T − τj, with τj a change point in the data. In both schemes, with τ the set

of true change points, it is common to include assumptions on sparsity of the total

number of change points n(τ )≪ T and spacing between two adjacent change points

with a lower bound |τj − τj′ | ≥ γ∗ (Niu, Hao, and H. Zhang, 2016).

Ideally the set of estimated change points τ̂ recovers all true change points τ ,

or τ̂j = τj for j = 1, . . . , n(τ ). Denote Ft as the distribution of the multivariate

time series at t. The hypothesis for the AMOC problem, considered in Chapter 2, is

adjusted to the non-specific form shown in Equation 3.1.

H0 : F1 = F2 = · · · = FT−1 = FT

HA : ∃ at least one τj such that Fτj ̸= Fτj+1 (3.1)

This statement, as noted in Niu, Hao, and H. Zhang (2016), is too broad for any

direct procedure. Specific forms relative to the sequential or retrospective nature of

the methodology are shown in Sections 3.1.1 and 3.1.2.

The inherent repeated nature of the hypothesis framework introduces a multiple
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testing problem that permits family-wise error rate (FWER) or false discovery rate

(FDR) control depending on the tolerance of false detection (Benjamini and Hochberg,

1995). For conservative estimation schemes where false detection is undesirable, a

FWER approach controlling P [(# False Detections) ≥ 1] ≤ q may be preferred, but

a procedure looking for potential existence of breaks with limited downside of false

alarm may utilize the FDR control of E [(# False Detections)/n(τ̂ )] ≤ q for some

suitable testing threshold q (Benjamini and Hochberg, 1995; H. Li, Munk, and Sieling,

2016). A secondary consideration may also be the definition of a “relevant” change.

In a parametric setting driven by a parameter (or set of parameters) θ, a researcher

may only be interested in changes larger than some magnitude ∥θt − θt+1∥ > ∆ (Dette

and Wied, 2015).

Much of the multiple change point literature focuses on the mean of a univariate

sequence, relies on assumptions of temporal independence, or examines parameterized

versions of the change point problem where likelihood ratio approaches are applicable

(Niu, Hao, and H. Zhang, 2016; L. Xie et al., 2021). Simple data structures may not

require complicated methodology, and sparse changes can often be discovered from

visual inspection of a time series. In reality, especially when lacking a fundamental

scientific understanding, the relevance of changes in a temporally dependent dataset

may be much more complex, and parametric methods are rendered unreliable due to

the multitude of possible functional forms (Gade and Rodu, 2023a; McGonigle and

Cho, 2023).

The sequential conceptor change point (SCCP) and the multiple conceptor change

point (MCCP) methods address several of these challenges. They harness the high-

dimensional featurization and representation learning strategy from Gade and Rodu

(2023a) and Chapter 2 to allow for multiple change point detection in multivari-
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ate processes with arbitrary, potentially elaborate and nonlinear, dependence struc-

tures. With an interpretable “baseline” state defined from a training window of data,

the methods allow for flexible change point detection beyond first and second or-

der changes, or changes in parametric models that impose a rigid structure. Under

assumptions on sparsity and spacing of potential change points, these tools can be

used to suggest multiple locations of interest when traditional methods and visual

inspection fail.

3.1.1 Online Multiple Change Point Detection

Online change point detection (sometimes also classified as statistical process control)

examines time series data sequentially (potentially in real-time) with the goal of quick

identification. The generic alternative in Equation 3.1 is adjusted to the more specific

form in Equation 3.2, where a procedure steps forward in a recursive manner at each

time point t.

H0 : F1 = F2 = · · · = Ft−1 = Ft

HA : F1 = F2 = · · · = Ft−1 ̸= Ft (3.2)

After rejection of the null hypothesis, the time index resets and a method proceeds

forward to the next change point. Equation 3.2 represents an ideal situation with

immediate detection at time t; often it is necessary to incorporate a detection delay

γ, and the resulting alternative considers F1 = · · · = Ft−γ ̸= Ft−γ+1 = · · · = Ft.

Gösmann, Kley, and Dette (2021) makes the distinction between open-ended se-

quential detection, referring to a continuous observed stream of data where only data
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points up to t are realized, and closed-ended detection where the entire dataset has

been realized prior to the analysis (Gösmann, Kley, and Dette, 2021). Normaliza-

tion schemes for a chosen statistic (such as the likelihood-based approaches of Dette

and Gösmann (2020) and Gösmann, Kley, and Dette (2021)) may be different in each

case, but successful detection in both requires sufficient spacing of consecutive change

points such that the minimum separation is greater than the detection delay, γ∗ > γ.

Research in this space stems from Page (1954) and Page (1955) and procedures

from statistical process control (Shewhart, 1925; Shiryaev, 1963). For i.i.d. streams

of data, the likelihood-based methods of Lorden (1971), Pollak (1985), Moustakides

(1986), and Ritov (1990) attempt to optimize the sensitivity to change through the

trade-off between false alarm and detection delay (L. Xie et al., 2021). These methods

also inherently rely on parametric assumptions and assume the notion of change is

clearly defined prior to observation of the data. Bai (1997a) and Bai (1997b) inves-

tigate least squares methods for parametric change point detection, relax the strict

notion of independence among errors, and establish consistency of the resulting es-

timates. Relaxation of other individual assumptions include S. Zou, Fellouris, and

Veeravalli (2017) and Rovatsos et al. (2017) for quickest change detection in tran-

sient processes where non-stationary pieces may be present, Tartakovsky, Nikiforov,

and Basseville (2014) for change point methods using the generalized likelihood ra-

tio approach in dependent data, and Fryzlewicz (2014) for online or offline change

identification in dependent data from ARCH and GARCH models.

Dette and Gösmann (2020) uses approximately linear functionals of the empirical

distribution function to extend the likelihood-based approach to dependent processes,

but still requires a clear metric or significant underlying knowledge of the scientific

process. Gösmann, Stoehr, et al. (2022) considers high-dimensional data and the
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trade-off between controlling Type 1 error and the time to a false alarm (false detec-

tion), akin to FWER and FDR control (Benjamini and Hochberg, 1995). Generally,

statistical process control accepts false detection and considers the relaxed false dis-

covery error rate approach (H. Li, Munk, and Sieling, 2016; Gösmann, Stoehr, et al.,

2022).

Lau, Tay, and Veeravalli (2019) examines quickest change point detection when

the pre-change distribution is known, but this places a rather inflexible assumption

on the process. Nonparametric methods look to relax the presumption of known

properties of the data; O. H. M. Padilla, Athey, et al. (2019) develops a sequen-

tial, windowed Kolmogorov-Smirnov test (a maximal statistic in a backward-looking

section of data) that accepts a user-defined error tolerance for false alarms. While

relaxing the rigid, parametric form, this work reverts to the assumption of i.i.d. data

(O. H. M. Padilla, Athey, et al., 2019). O. H. M. Padilla, Y. Yu, et al. (2021) and

Yi Yu and Rinaldo (2023) develop sequential methods based on a CUSUM statistic,

but only apply to univariate sequences. The kernel-based Scan B approach of S. Li

et al. (2019), similar to the kernel method of Arlot, Celisse, and Harchaoui (2019),

allows for a fully nonparametric change point detection framework, but still relies on

the i.i.d. assumption and requires a relatively large fraction of reference data. Wei

and Y. Xie (2023) adopts a similar technique with an online kernel-based method, and

C. M. M. Padilla et al. (2023) relaxes the supposition of independent data by deriving

a change point estimator under the conditions of α-mixing. The i.i.d. assumption

is limiting, and α-mixing, while more generalizable than independence, still places

restrictions on the observed data and the mechanism of a temporal process. In this

work, SCCP addresses these concerns with a fully nonparametric method that allows

for nonlinear interactions and does not limit the dependence structure to a specific
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form. The goal of quickest change detection is temporarily relaxed to demonstrate

the utility of the sequential methodology in capturing arbitrary, potentially nonlinear

and complicated, dependence with a limited amount of training data. Extension of

the method to optimize the detection delay is left for future research.

3.1.2 Offline Multiple Change Point Detection

Offline multiple change point detection considers a complete section of a time series

where all relevant data has been observed (Truong, Oudre, and Vayatis, 2020). The

generic hypothesis is adjusted to a similar form as Equation 3.2, but the sequential

nature of testing is no longer inherent to the procedure. For each time point in the

data t = 1, . . . , T − 1,

H0 : Ft = Ft+1

HA : Ft ̸= Ft+1, (3.3)

or all points t are initially considered a potential change (Niu, Hao, and H. Zhang,

2016). Multiple testing of this nature permits FWER or FDR control, and H. Li,

Munk, and Sieling (2016) examines the latter under the simple scenario of jump

discontinuities in a piecewise constant function.

Penalized regression approaches are grounded in parametric methods where a

change in a well-defined metric or parameter is sought. The simultaneous multi-

scale change-point estimator (SMUCE) of Frick, Munk, and Sieling (2014) examines

changes in a piecewise constant function by estimating the mean vector via a con-

strained optimization problem on a local log-likelihood ratio test statistic. Extensions

to less restrictive settings include generalization of the Gaussian regression model to
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include heterogeneity, modifications of the piecewise function for shift processes (sta-

tionary datasets with a causal representation), and investigation of quantile regression

for segmentation (Pein, Sieling, and Munk, 2016; H. Li, Q. Guo, and Munk, 2019;

Dette, Eckle, and Vetter, 2020; Vanegas, Behr, and Munk, 2022). Other model-based

methods, like the likelihood ratio scan method (LSRM) of Yau and Zhao (2015) for

univariate data, allow for confidence regions of change, but impose a rigid structures

making inference contingent on “close enough” specification of the functional form.

Complicated change point problems can sometimes be transformed to detecting

mean changes in a univariate sequence (Niu, Hao, and H. Zhang, 2016), and M. Yu

and X. Chen (2020) provides another extension of this framework to account for

high-dimensional data. Derivation of this sequence based on a metric of interest,

however, is not always straightforward. Nonparametric methods that don’t require

an explicit specification of a functional form can be more flexible, but may only be

applicable to univariate data (Yau and Zhao, 2015; Haynes, Eckley, and Fearnhead,

2017; Haynes, Fearnhead, and Eckley, 2017; Korkas and Fryzlewicz, 2017; Messer,

2022) or assumptions that data is i.i.d. (Matteson and James, 2014; C. Zou et al.,

2014; Cho and Fryzlewicz, 2015; Arlot, Celisse, and Harchaoui, 2019; S. Li et al.,

2019). Rigid definition of the metric of interest (like a specific search for mean,

variance, or correlation changes (Dette, W. Wu, and Zhou, 2019)) can also hinder

existing methods in change point analysis when complicated, nonlinear interactions

muddle the process.

McGonigle and Cho (2023) develops a method that allows for a flexible definition

of change in multivariate time series and does not rely on assumptions of indepen-

dence. The nonparametric moving sum procedure for detecting changes in the joint

characteristic function (NP-MOJO) only requires that the data be piecewise station-
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ary (McGonigle and Cho, 2023). The MCCP method targets these same scenarios

and relaxes the requirements to include wide-sense cyclostationary processes.

3.2 Methodology

Methodology in this section divides the multiple change point problem sequentially

into sets of AMOC problems where local information is leveraged. The SCCP and

MCCP methods are extensions of the work presented in Chapter 2 and Gade and

Rodu (2023a). The SCCP method steps forward in time to identify potential change

points with a fixed detection delay, and the MCCP method aggregates information

from both forward and backward-looking algorithmic processes.

3.2.1 Online Multiple Change Point Methodology

To test the hypothesis in Equation 3.2, SCCP begins with selection of an initial

training window, of integer length Ttrain, near the beginning of the time series to serve

as a “baseline” state from which changes are identified. Several ESNs are generated,

with parameters chosen to best fit the data from the baseline window. The baseline

state is padded from the left edge by an integer length Twash that serves to wash out

the influence of the initial zero-state reservoir conditions. The SCCP methodology

builds on repeated iterations of an elementary sequential algorithm outlined below.

For a multivariate dataset yt ∈ Rd, assume the initial distribution y1 ∼ F1 pro-

duces a time series that is at least wide-sense cyclostationary, the first potential

change takes place after t = Twash +Ttrain, and the minimum spacing between consec-

utive change points is at least γ∗ = Twash + Ttrain + 1. The first assumption prevents
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a long-term trend in the data and ensures that the specified training window covers

a relevant domain of network states produced by the featurization from ESNs. The

spacing assumption fixes the detection delay, γ = Twash + Ttrain, and defines a new

baseline window after change identification.

As in Chapter 2, generally Twash < Ttrain and define T0 = Twash + Ttrain. The

assumption of no distributional change applies to time points where t ≤ T0. In open-

ended change point detection, this restricts the domain of a potential change point

τj ≥ T0 + 1, and in a closed-ended procedure where the data has a defined endpoint

T , changes are restricted to the domain τj ∈ [T0 + 1, T − 1].

The elementary sequential method, like the CCP method in Chapter 2, has three

main steps. First, several featurizations of the time series are generated from ESNs,

and conceptor matrices computed to describe the dynamics of the baseline training

window. The behavior of the time series relative to the baseline is summarized in

a univariate cosine similarity sequence, and time points of interest are flagged using

local maxima of a modified Kolmogorov-Smirnov distance statistic. Change points

in the time series are evaluated with moving block bootstraps of the original data at

the flagged local maxima.

ESN Featurization & Conceptor Computation

The ESN reservoir size is chosen near the allowable maximum N = ⌊0.9Ttrain⌋, with

the restriction that N < Ttrain to avoid degeneracy of the system. A series of r =

1, . . . ,R ESNs are initialized by generating the matrices Wh
r, Wi

r, and br from

Equation 1.9 as in Section 1.1.1 with additional details provided in Section 2.2.1. As

in Chapter 2, each associated conceptor matrix is calculated (Equation 1.12) from
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the series of training time points after network washout, t ∈ [Twash + 1, T0], and the

reservoir states are collected. For all time points t ≥ Twash + 1, each ESN propagates

forward in time with Cr, like Equation 1.10.

In this chapter, the reservoir size and the aperture α = 100 are fixed for computa-

tional simplicity. Fixing N at a large value heeds the recommendation of Lukoševičius

(2012) to produce a rich representation of the data in the reservoir. The aperture

is fixed at a value small enough to obtain slight differences in the projected and

unprojected states h̃t and ht, respectively. Large values of the aperture force the

conceptor to the identity matrix, resulting in h̃t ≈ ht (Jaeger, 2014; Jaeger, 2017).

Procedure B.1, similar to Procedure A.1 and the first part of Algorithm 2.2, outlines

the determination of parameters for the ESN featurization procedure and computes

the conceptor matrices from the baseline training window of data.

Computation of the Kolmogorov Distance Statistic

A scaled Kolmogorov-Smirnov statistic, resembling Equation 2.6 in Chapter 2, is

restricted to include only local information around a time point of interest. With a

fixed detection delay γ = T0, the first point examined as a potential change t = T0+1

will occur when the multivariate data yt has been observed up to time 2T0 +1. Each

successive point t in the sequence will undergo investigation as a potential change

when the right endpoint reaches Tend = t+ T0. In closed-ended detection (if the data

has a defined endpoint T ) this definition is altered to Tend = min {t+ T0, T}.

The cosine similarities sr,t from Equation 2.3, for each ESN featurization r, form

univariate sequences contained in the interval [0, 1] (because each conceptor matrix Cr

is positive semidefinite) that quantify the similarity between reservoir state behavior
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and the baseline training window. To guard against the variability inherent to each

random ESN featurization and extract a general trend, these individual sequences are

aggregated as an ensemble of weak learners, like in bagging (Breiman, 1996). The

method considers the average similarity sequence St = R−1
∑R

r=1 sr,t as presented in

Section 2.2.2.

The sequence St is divided into two sections that collectively span the region

[T0+1, Tend]. Equations 2.4 and 2.5 are modified to those shown below with the right

endpoint adjusted to adhere to the specified window.

F̂(T0+1):t(s) =
1

t− T0

t∑
i=T0+1

1 {Si ≤ s} (3.4)

F̂(t+1):Tend(s) =
1

Tend − t

Tend∑
i=t+1

1 {Si ≤ s} (3.5)

The sequence of scaled statistics in Equation 3.6 resembles the equivalent form in

Equation 2.6 (Gombay and Horváth, 1995; O. H. M. Padilla, Y. Yu, et al., 2021). For

time points in the domain of a potential change,

Kt =
(t− T0) (Tend − t)

q (t) (Tend − T0)
2 sup

s

∣∣∣F̂(T0+1):t(s)− F̂(t+1):Tend(s)
∣∣∣ , (3.6)

and Kt = 0 otherwise. The scaling function q(t) defined in Equation 3.7 is equivalent

to the Chapter 2 form in Equation 2.8.

q(t) = max
{(

t− T0

Tend − T0

)ν (
1− t− T0

Tend − T0

)ν

, κ

}
(3.7)

Like in Chapter 2 and Gade and Rodu (2023a), values ν = 1/2 and κ = 0.01 nor-

malize the behavior of the Kolmogorov-Smirnov statistic near the edges of the se-
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quence (Csörgő and Szyszkowicz, 1994a; Csörgő and Szyszkowicz, 1994b; Csörgő and

Horváth, 1997; Csörgő, Horváth, and Szyszkowicz, 1997; Kojadinovic and Verdier,

2021).

MBB Inferential Procedure

Local maxima in the sequence Kt indicate regions where the point t divides the time

window into sections with greater distributional dissimilarity. Define τ̂ ∗ in Equation

3.8 as the set of flagged potential change points that require an inferential testing

procedure, and label the associated local maximum statistics Kj.

τ̂ ∗ =
{
t
∣∣ Kt ≥ Kt′ ∀ |t− t′| ≤ T0

}
(3.8)

The set τ̂ ∗ contains all points τ̂ ∗j that correspond to local maxima in the sequence Kt

with separation at least equal to the assumed minimum spacing γ∗ = T0 + 1.

If time point t results in a flagged local maximum for inclusion in τ̂ ∗, a mov-

ing block bootstrap, similar to that performed in Chapter 2 and Gade and Rodu

(2023a), samples and concatenates potentially overlapping blocks of data to form a

bootstrapped time series with dimension equivalent to the original dataset (Kunsch,

1989; R. Y. Liu and Singh, 1992). Dependence within blocks of the time series re-

mains intact, but longer-term dependence, like a shift in the data due to a change

point, will be shuffled to generate an approximate null distribution of the scaled

maximum Kolmogorov-Smirnov statistic. Further discussion of the applicability and

implications of the MBB is presented in Section 2.2.3.

As in Section 2.2.3, the assumption of no change in the baseline training window

leaves the conceptor matrices, and all reservoir states prior to T0, unchanged. Each
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time point in the interval [T0+1, Tend] is equally likely to be chosen as the beginning of

a bootstrap interval of length L, where a point within L of Tend will cycle back to T0+1

ensuring equal inclusion probability. With the process to generate bootstrapped data

in Procedure B.2, similar to Procedure A.4, b = 1, . . . , B bootstrapped time series are

generated. The associated maximum statistic Kj
b is computed for each bootstrapped

time series as above simulating an approximate null distribution for the local max-

imum Kj. The bootstrap distributional quantile pj = B−1
∑B

b=1 1
{
Kj

b < Kj
}

pro-

vides an estimate for the strength of evidence for the proposed point t corresponding

to a true change point, and the full approach is outlined in Procedure B.3.

For a cutoff value cq, the elementary sequential method terminates after labelling

the first flagged point τ̂ ∗1 as a change point if p1 ≤ cq, or proceeds to the next time

point in the sequence if p1 > cq. In the case of the latter, the method will proceed until

some pj ≤ cq for a potential change point τ̂ ∗j , or for closed-ended online detection,

result in no found change point after examining all points in the time series. The full

process for the elementary sequential framework, that serves as a building block for

SCCP, is given in Algorithm 3.1.

Online Sequential Conceptor Change Point Method

The SCCP method performs repeated iterations of the elementary sequential method-

ology, stepping forward in time until all estimated change points have been identified

τ̂j ∈ τ̂ . Designate the first change point estimate, returned by an initial run of Al-

gorithm 3.1, as τ̂1. After locating τ̂1, the elementary sequential method is performed

on the truncated time series yt ∈ Rd, t = τ̂1 + 1, . . . , T . Designate time points

t ∈ [τ̂1 + 1, τ̂1 + Twash] for reservoir washout, and define t ∈ [τ̂1 + Twash + 1, τ̂1 + T0]

as the new baseline training window for the next change point.
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Algorithm 3.1 Elementary Sequential Method
Inputs: time series data yt ∈ Rd; training window length Ttrain; washout length

Twash; testing cutoff threshold cq

Outputs: estimated change point τ̂ ; statistic K; p-value; MBB null distribution Kb

1: perform Procedure B.1 to obtain ESN scaling, N , all Cr,Wi
r, br, Wh

r

2: for r in 1 : R do

3: hr,t ← tanh
(
Wh

rhr,t−1 + Wi
ryt + br

)
for t = 1, . . . , Twash

4: hr,t ← tanh
(

Wh
rh̃r,t−1 + Wi

ryt + br

)
;

h̃r,t ← Crhr,t for t = Twash + 1, . . . , 2T0

5: sr,t ←
h̃⊤
r,thr,t

||h̃r,t||||hr,t||
for t = T0 + 1, . . . , 2T0

6: end for

7: St ←
1

R

R∑
r=1

sr,t for t = T0 + 1, . . . , 2T0

8: for t in (T0 + 1) : (T − 1) do

9: Tend ← min {t+ T0, T}

10: if STend = NULL then

11: sr,Tend ←
h̃⊤
r,Tend

hr,Tend

||h̃r,Tend ||||hr,Tend ||
for r = 1, . . . ,R; STend ←

1

R

R∑
r=1

sr,Tend

12: end if

13: F̂(T0+1):t(s)←
1

t− T0

t∑
i=T0+1

1 {Si ≤ s}

14: F̂(t+1):Tend(s)←
1

Tend − t

Tend∑
i=t+1

1 {Si ≤ s}

15: Kt ← (t−T0)(Tend−t)

q(t)(Tend−T0)
2 sup

s

∣∣∣F̂(T0+1):t(s)− F̂(t+1):Tend(s)
∣∣∣

16: perform Procedure B.4 to obtain τ̂ , K, p, all Kb

17: if τ̂ ̸= NULL then

18: break

19: end if

20: end for

return estimated change point τ̂ , K, p, all Kb
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This framework introduces a multiple testing scenario, where up to n(τ̂ ∗) ∈ N

hypothesis tests are performed via moving block bootstraps on the local maxima

included in the set τ̂ ∗. The tests are conducted in succession; if test j rejects the null

hypothesis, the elementary sequential method resets, starting at a new time point. If

test j fails to reject the null, test j + 1 is performed on the next local maximum in

the sequence. For closed-ended online detection, the process repeats until a run of

the elementary sequential method fails to identify a change and returns a null value,

or until an estimated change point τ̂j is within the assumed minimum spacing to

the endpoint, τ̂j ≥ T − γ∗ = T − T0 − 1. If observed simultaneously, a procedure to

control the FWER at the Type 1 error threshold q could consider the n(τ̂ ∗) hypotheses

collectively, and follow one of several well-known methods (Bonferroni, 1936; Šidák,

1967; Holm, 1979; Shaffer, 1986; Hochberg, 1988; Romano and Wolf, 2005). This,

however, is not feasible; the sequential nature of the testing procedure requires a

decision rule prior to observing n(τ̂ ∗).

Define max {n(τ̂ ∗)} as the maximum number of hypothesis tests potentially con-

ducted in the SCCP method. The sequential procedure adapted from the simultane-

ous process in Holm (1979) with cutoff value,

cq,j =
q

max {n(τ̂ ∗)} − kj
, (3.9)

where kj is the number of rejected null hypotheses prior to test j = 1, . . . ,max {n(τ̂ ∗)},

conservatively controls the FWER at the defined threshold q for any possible 0 ≤

n(τ̂ ∗) ≤ max {n(τ̂ ∗)}. Further details of the sequential testing procedure are pre-

sented in Section 3.3.3. For the first hypothesis test, k = 0 and the value in Equation

3.9 is equivalent to the Bonferroni correction (Bonferroni, 1936). After rejection of

hypothesis j, kj+1 = kj + 1 and cq,j+1 > cq,j, and the adapted sequential procedure
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is uniformly more powerful than Bonferroni (Bonferroni, 1936; Holm, 1979). Due to

the assumed spacing requirements of consecutive change points and selection of local

maxima, the method will flag at most

max {n(τ̂ ∗)} = ⌊(T − 1) /γ∗⌋ = ⌊(T − 1) / (T0 + 1)⌋ (3.10)

points for testing by means of a moving block bootstrap, and this value is used in

Equation 3.9 for the cutoff threshold.

The procedure for level-q FWER control requires the number of bootstrapped

time series B ≥ ⌊(T − 1) / (T0 + 1)⌋/q to avoid a trivial scenario that the MBB is

not sensitive enough to clear the initial rejection threshold cq,1. This trivial case is

also observed when T ≫ T0, and in open-ended detection when there is no defined

endpoint of the time series (max {n(τ̂ ∗)} → ∞), resulting in cq,1 → 0. These settings

require a switch to FDR Type 1 error control, where cq,j ≈ q for all j, and the threshold

represents the approximate expected proportion of erroneous change points identified

(Benjamini and Hochberg, 1995). FDR error control may be also used in closed-ended

detection when there is reasonable tolerance for false alarm (H. Li, Munk, and Sieling,

2016; Gösmann, Stoehr, et al., 2022). For more thorough procedures that control the

FDR, refer to Storey (2002) and Foster and Stine (2008). Algorithm 3.2 presents the

full process for SCCP.

3.2.2 Offline Multiple Change Point Methodology

Like SCCP, the MCCP methodology builds on repetitions of the elementary sequential

method, but with the complete section of the time series available, the algorithm uses

both forward and backward-looking processes to return τ̂ , the estimate of the change
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Algorithm 3.2 Online Sequential Conceptor Change Point Method
Inputs: time series data yt ∈ Rd; training window length Ttrain; washout length

Twash; Type 1 error threshold q; Error control {FWER, FDR}

Outputs: estimated change point set τ̂

1: τ̂ ← ∅; i← 1; k ← 0; EndLoop← FALSE

2: while EndLoop = FALSE do

3: if FWER then

4: cq ← q
⌊(T−1)/(T0+1)⌋−k

5: else

6: cq ← q

7: end if

8: perform Algorithm 3.1 to obtain τ̂i

9: if τ̂i = NULL then

10: EndLoop← TRUE

11: else

12: τ̂ ← τ̂ ∪ {τ̂i}

13: if τ̂i ≥ T − T0 − 1 then

14: EndLoop← TRUE

15: end if

16: i← i+ 1; k ← k + 1

17: end if

18: end while

return estimated change point set τ̂
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point set τ .

To test the hypothesis in Equation 3.3, MCCP begins with selection of an initial

training window length Ttrain, like in Section 3.2.1. Because all relevant data has

been observed, MCCP can aggregate information from both forward and backward

algorithms. The forward and backward algorithms follow equivalent processes; the

first considers multivariate time series data yt ∈ Rd for t = 1, . . . , T in order. The

baseline training window is defined as t ∈ [Twash + 1, T0] for T0 = Twash + Ttrain and

some integer length Twash that pads the baseline state to wash out initial ESN reservoir

conditions. The backward algorithm considers the reversed time series y′
t = yT−t+1.

This defines a baseline training window as t ∈ [T − T0 + 1, T − Twash]. As in Section

3.2.1, assume the initial distributions produce a time series that is at least wide-sense

cyclostationary, no change points take place in the washout or training regions of data,

and the minimum spacing between consecutive change points is at least γ∗ = T0 + 1.

Combining the assumed regions of consistent behavior, this restricts changes to the

domain τj ∈ [T0 + 1, T − T0].

Estimated change points are accumulated from the elementary sequential method

in Algorithm 3.1, similar to the SCCP method of Algorithm 3.2. The forward-looking

procedure returns the set of estimated change points τ̂ f , and the backward-looking

procedure produces the corresponding set τ̂ b. Level-q FWER control for two repeti-

tions of SCCP modifies the cutoff for change point identification with a Bonferroni

correction, and adjusts Equation 3.10 to max {n (τ̂ ∗)} = ⌊(T − T0) / (T0 + 1)⌋.

cq,j =
q

2 [max {n(τ̂ ∗)} − kj]
(3.11)

The FWER of each individual instance of SCCP is at most q/2 in a strong sense, and
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thus, the collective FWER for MCCP is at most q (Bonferroni, 1936; Holm, 1979).

Approximate FDR control, like in Section 3.2.1, sets cq,j = q/2.

MCCP requires reconciliation between the two estimated change point sets τ̂ f

and τ̂ b. Denote τ̂ f =
{
τ̂ f1 , . . . , τ̂

f
n(τ̂ f )

}
and τ̂ b =

{
τ̂ b1 , . . . , τ̂

b
n(τ̂ b)

}
, and from the

sequential nature of the procedure, τ̂ f1 < · · · < τ̂ f
n(τ̂ f )

, and τ̂ b1 > · · · > τ̂ b
n(τ̂ b)

. Define

the minimum spacing between two consecutive change points γ∗ = T0 + 1, where

|τ̂ δi − τ̂ δj | ≥ γ∗ for δ = f, b and i ̸= j. Flagged change points within the minimum

spacing are aggregated to regions of dynamic behavior, or perhaps transition, that

warrant further examination.

Let τ̂ fb = τ̂ f∩τ̂ b, and write τ̂ fb(1), . . . , τ̂
fb
(nfb)

as the ordered sequence of nfb = n
(
τ̂ fb
)

points in the intersection, where nfb ≤ n(τ̂ f )+n(τ̂ b). Define a neighborhood around

each τ̂ fb(i) as N
(
τ̂ fb(i); γ

∗
)
=
{
t ∈ N : |t− τ̂ fb(i)| < γ∗

}
. Consider the intersections

Ai = N
(
τ̂ fb(i); γ

∗
)
∩ τ̂ fb (3.12)

for i = 1, . . . , nfb, where 1 ≤ n (Ai) ≤ 3, that create groups of adjacent points

within the assumed minimum spacing. The goal is to identify sets Bk = {bk,l} for

k = 1, . . . , nB and l = 1, . . . , n (Bk) as groupings of the sets Ai, where each element

bk,l ∈ N (bk,l′ ; γ
∗) for l ̸= l′, and Bk ∩ Bk′ = ∅ for k ̸= k′. As shown in Equations

3.13 and 3.14, a set Bk contains a single estimated change point at the midpoint

of the region if max {Bk} − min {Bk} < γ∗ (i.e., n (Bk) ≤ 2), or two estimated

change points on either side of a region of dynamic behavior (“transition region”) if
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max {Bk} −min {Bk} ≥ γ∗ (i.e., n (Bk) > 2).

τ̂k1 =


⌊n (Bk)−1∑n(Bk)

l=1 bk,l⌋ for n (Bk) ≤ 2

min {Bk} for n (Bk) > 2

(3.13)

τ̂k2 = max {Bk} for n (Bk) > 2 (3.14)

The complete process to reconcile between the estimated change point sets is given

in Procedure B.5, and Algorithm 3.3 presents the full MCCP method for estimation

of the change point set τ̂ .

Algorithm 3.3 Offline Multiple Conceptor Change Point Method
Inputs: time series data yt ∈ Rd; training window length Ttrain; washout length

Twash; Type 1 error threshold q; Error control {FWER, FDR}

Outputs: estimated change point set τ̂

1: τ̂ f ← result from Algorithm 3.2 with yt and Type 1 error threshold q/2

2: τ̂ f ← τ̂ f ∩ [T0 + 1, T − T0]

3: y′
t ← yT−t+1 for t = 1, . . . , T

4: T − τ̂ b ← result from Algorithm 3.2 with y′
t and Type 1 error threshold q/2

5: τ̂ b ← τ̂ b ∩ [T0 + 1, T − T0]

6: perform Procedure B.5 to obtain τ̂

return estimated change point set τ̂

3.3 Theory

Asymptotic theory for SCCP and MCCP methodology builds on that found in Section

2.3. The hypotheses for online and offline change point detection are tested using the
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processes outlined in Section 3.2. Like in Chapter 2, the cosine similarity values

St are expected to exhibit relatively consistent behavior under the null. Under the

alternative wit at least one change point, the reservoir state activity (summarized

by St) will indicate one or more shifts and deviate from the behavior in the baseline

window.

For a multivariate time series yt ∈ Rd, t = 1, . . . , T , let γ∗ = Twash + Ttrain + 1 be

the minimum spacing between two consecutive change points determined from the

specified washout and training lengths of data, placing a constraint on the alternatives

in Equations 3.2 and 3.3. Define ζ∗ = γ∗/T as the fractional minimum spacing

relative to the length time series. The assumption that any change takes place after

the washout and training windows restricts the domain to τj ∈ [ζ∗T, Tmax], where

Tmax = T − 1 for online detection and Tmax = (1− ζ∗)T + 1 for offline detection.

Define St as the sequence of cosine similarity values, and suppose St ∼ Ft(s) for all

s ∈ [0, 1], with each Ft(s) a defined distribution function. Let τ = {τj} be the set of

change points in data, producing Fτj (s0) ̸= F i
τj+1 (s0) for some s0 ∈ [0, 1], and further

define the empirical distribution function F̂ (s; a, b) = (b− a)−1∑b
i=a 1 {Si ≤ s}.

3.3.1 Null Hypothesis

Define the preceding change point in a sequence τ+j−1 = max {0, τj−1}, and examine

time t ∈ Tj in the potential change point domain, where Tj =
[
τ+j−1 + ζ∗T, (1− ζ∗)T + 1

]
.

Label ζj =
[
τ+j−1 + ζ∗T, t+ ζ∗T − 1

)
as the domain defined by selection of t.

Under the null hypothesis, the sequence Sz, z ∈ ζj, is stationary by construc-

tion, and denote the common distribution function F(s) ≡ Fτ+j−1+ζ∗T (s) = · · · =
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Ft+ζ∗T−1(s). Define the function q : [0, 1]→ (0, 1) for some small κ > 0 by

q(δ) = max{δ1/2(1− δ)1/2, κ} (3.15)

where δ =
z − τ+j−1 − ζ∗T + 1

z − τ+j−1

, (3.16)

for z ∈ ζj resembling Equation 3.7 with ν = 1/2, and the statistic

K(z) =
δ (1− δ)

q (δ)
sup
s∈[0,1]

∣∣∣F̂(s; τ+j−1 + ζ∗T, z)− F̂(s; z + 1, z + ζ∗T − 1)
∣∣∣ (3.17)

akin to Equation 3.6 in Section 3.2. Let K(s, δ) be a Gaussian process with

E [K(s, δ)] = 0,

E [K(s, δ) K(s′, δ′)] = (δ ∧ δ′) Γ(s, s′),

and Γ(s, s′) =
∑

−∞<z<∞

E
[
Sτ+j−1+ζ∗T (s)Sz(s

′)
]
. (3.18)

Theorem 3.1. For some t ∈ Tj and a fixed minimum fractional spacing ζ∗ ∈
(
0, 1

2

)
,

suppose F(s) is Lipschitz continuous of order C > 0 and the sequence Sz, z ∈ ζj, is

S-mixing, where condition (1) of Definition 2.1 holds with γm = m−AC, δm = m−A

for some A > 4. Under the null hypothesis, for any κ ∈
(
0, 1

2

)
as T →∞,

√
t− τ+j−1 max

z∈ζj
K(z)

D−→ sup
δ∈[0,1]

sup
s∈[0,1]

|K(s, δ)|
q(δ)

(3.19)

and maxz∈ζj K(z) = o(1).

Under mild assumptions, Berkes, Hörmann, and Schauer (2009) show a S-mixing

sequence can be represented as a shift process of i.i.d. random variables. Section



71

2.3.1 briefly discusses the intuition of S-mixing and construction of the approximating

sequence. Like in Chapter 2, these assumptions only apply to St and are not imposed

on the original dataset yt. The proof of Theorem 3.1, shown in Appendix B follows

the result of Csörgő and Horváth (1997), Theorem 2.6.1, and is similar to that of

Theorem 2.2.

In offline detection, Theorem 3.1 holds for the full domain of potential change

points τj ∈ [ζ∗T, Tmax]. As t → T in closed-ended online detection, the length of

the final window of the sequence becomes finite, and convergence is not realized for

t > (1− ζ∗)T + 1.

The minimum fractional spacing parameter ζ∗ effectively controls the number of

potential identified change points in a dataset. As the parameter approaches the

upper limit ζ∗ → 1/2, the domain of potential change points is compressed toward

the center of the data. When ζ∗ → 0 such that ζ∗T = O(1) the number of potential

change points becomes infinitely large and the span of the domain ζj is finite, so

convergence in distribution is not attained. Smaller ζ∗ > 0 allows for flexibility of

the methodology (as long as it is sufficiently large to produce a well specified training

window) and leads to stationarity of the resulting sequence.

3.3.2 Alternative Hypothesis

Consider the online multiple change point problem and the hypothesis in Equation

3.2 to test for change point τj. As in Section 3.3.1, define the preceding change point

as τ+j−1 = max {0, τj−1}. Further define the next point τTj+1 = min {τj+1, T}, and

examine time t ∈ Tj, where Tj =
[
τ+j−1 + ζ∗T, τTj+1 − ζ∗T + 1

]
. Note the spacing

requirement of neighboring change points asserts τTj+1 − τ+j−1 ≥ 2ζ∗T . Label ζj =
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[
τ+j−1 + ζ∗T, t+ ζ∗T − 1

)
as the domain defined by selection of t.

By construction of the alternative Sz, z ∈ ζj, divides into two stationary ergodic

pieces on either side of τj for some t ∈ Tj, with Fτj (s0) ̸= Fτj+1 (s0). Let τ̂ fj be the

forward SCCP estimate, where

τ̂ fj = arg max
z∈ζf

j

K(z). (3.20)

Theorem 3.2. For some t ∈ Tj and a fixed minimum fractional spacing ζ∗ ∈
(
0, 1

2

)
,

suppose the sequence Sz, z ∈ ζj, divides into two stationary ergodic pieces on either

side of a change point τj. Then, for any κ ∈
(
0, 1

2

)
as T → ∞, τ̂ fj

P−→ τj provided

τj ∈ (ζj ∩∆j), where

∆j − ζ∗T =

[
t+ τ+j−1

2
−

t− τ+j−1

2

√
1− 4κ2,

t+ τ+j−1

2
+

t− τ+j−1

2

√
1− 4κ2

]
. (3.21)

The statement is similar to Theorem 2.3 in Chapter 2 and the proof follows the

outline of Theorem 2.1 from Newey and McFadden (1994). The domain restriction

in Equation 3.21 does not narrow the window of allowable change points in practice

if κ <

√
1
4
− 1

4

(
1− 2

t−τ+j−1

)2
.

In the offline multiple change point problem, rejecting the null hypothesis in

Equation 3.3 produces the estimate

τ̂j =
⌊(

τ̂ fj + τ̂ bj

)
/2
⌋
, (3.22)

where τ̂ bj is obtained from a backward-looking algorithm run. Define y′
t = yT−t+1, the

corresponding cosine similarity sequence S ′
z, z ∈ ζ ′

j, for ζ ′
j =

(
t− ζ∗T + 1, τTj+1 − ζ∗T

]
,
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and domain restriction τj ∈
(
ζ ′
j ∩∆′

j

)
, where

∆′
j + ζ∗T =

[
t+ τTj+1

2
−

τTj+1 − t

2

√
1− 4κ2,

t+ τTj+1

2
+

τTj+1 − t

2

√
1− 4κ2

]
. (3.23)

The result of Theorem 3.2 implies that τ̂ bj
P−→ τj. Thus, the estimate τ̂j, defined in

Equation 3.22, is consistent for the change point τj.

Corollary 3.3. For some t ∈ Tj and a fixed minimum fractional spacing ζ∗ ∈
(
0, 1

2

)
,

suppose the sequences Sz, z ∈ ζj, and S ′
z, z ∈ ζ ′

j, divide into two stationary ergodic

pieces on either side of a change point τj. Then, for any κ ∈
(
0, 1

2

)
as T → ∞,

τ̂j
P−→ τj provided τj ∈

[
(ζj ∩∆j) ∩

(
ζ ′
j ∩∆′

j

)]
.

As above, the condition does not restrict the domain in practice if the chosen κ is

small.

3.3.3 Type 1 Error Control

The sequential testing procedure adapted from Holm (1979), with cutoff values shown

in Equation 3.9 for online detection and Equation 3.11 for offline detection, addresses

the multiplicity problem and conservatively controls the FWER at a defined Type 1

error threshold.

Proposition 3.4. Suppose Hi, i = 1, . . . ,m, are null hypotheses for testing in a

sequential framework, where a decision must be rendered on Hi−1 prior to testing

Hi. Let pi be the associated p-value for hypothesis Hi, and ki the number of rejected

hypotheses prior to Hi in the set H1, . . ., Hi−1. A sequential procedure that rejects

Hi for pi ≤ α/(m− ki) ensures the FWER is at most α in the strong sense.
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The threshold for the first hypothesis test is identical to the Bonferroni correction;

after rejection of at least one hypothesis, the sequential procedure adapted from Holm

(1979) is uniformly more powerful than Bonferroni.

3.4 Simulation Study

Performance of SCCP and MCCP is investigated via simulation of the multiple change

point problem. For online detection, SCCP is compared to the Scan-B method of S.

Li et al. (2019) (ScanB) and the kernel-based CUSUM method of Wei and Y. Xie

(2023) (kCUSUM). Comparator methods for MCCP in the offline problem include

the e-divisive method of Matteson and James (2014) (EDiv), the kernel change point

algorithm of Arlot, Celisse, and Harchaoui (2019) (KCP), Type 1 and 2 sparsified

binary segmentation methods of Cho and Fryzlewicz (2015) (SBS1/2), and the NP-

MOJO method of McGonigle and Cho (2023).

Methods are evaluated by examination of the true positive rate (TPR) (also re-

ferred to as the “sensitivity”), the positive predictive value (PPV) (the “precision”

or 1 − FDR), and the Matthews correlation coefficient (MCC). Larger values of all

metrics indicate better performance, with 0 ≤ TPR, PPV, MCC ≤ 1. A method is

determined to have correctly located a change point if placed within a radius of the

reservoir washout length rγ∗ = Twash, avoiding overlap between adjacent regions.

TPR =

∑n(τ )
j=1 1 {|τ̂j − τj| < rγ∗}

n (τ )
(3.24)

PPV =

∑n(τ )
j=1 1 {|τ̂j − τj| < rγ∗}

n (τ̂ )
(3.25)

The TPR represents the ability to correctly identify true change points, and the PPV
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indicates propensity to limit the number of false discoveries. The MCC summarizes

several binary classification metrics into a single value,

MCC =
√

TPR× PPV× (1− FPR)× (1− FOR)

−
√

(1− TPR)× FDR× FPR× FOR, (3.26)

where FPR is the false positive rate and FOR the false omission rate (Matthews,

1975).

3.4.1 Simulated Data

The goal of this study is to generate processes that retain consistent mean and variance

structures after change points, testing the ability of the methods to capture informa-

tion about the dependence structure. All simulated time series yt ∈ R2, t = 1, . . . , T ,

have length T = 800. Define τ the set of change points, where n(τ ) ∈ {0, 1, 2}, and

generate S = 100 simulated data sets for each setting. Change points are randomly

selected from the interval τj ∈ [161, 640] such that two consecutive have a minimum

spacing of γ∗ = 161.

Gaussian Process Model

The first section of data follows a Gaussian process with a periodic covariance function

shown in Equation 3.27, based on the separation of two time points t − t′ and a

parameter f that determines the periodicity.

Cov (t, t′) = exp
{
−32 sin2

(
t− t′

f

)}
(3.27)
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The covariates in the time series yt are joint random realizations from the Gaussian

process model with a randomly specified correlation ρ ∼ U (−0.8, 0.8) and periodicity

parameter f ∼ U (10, 30). Each covariate in the data is scaled to mean zero and unit

variance for consistency before and after change points. After encountering a change,

the covariates will negate, altering the process dependence while retaining the first

and second-order structure.

Threshold Autoregressive Model

The second half of the data follows a self-exciting TAR(2) model that allows for

regime changes in the autoregressive parameters based on a threshold variable(Tong

and Lim, 1980).

yt = A(k)
s

yt−1

yt−2

+ εt (3.28)

The coefficient matrix A(k)
s ∈ R2×4 depends on the state of the data s and the

regime k. The data takes two states and shifts back and forth after a change point is

encountered. Each state has two regimes, where k = 1 corresponds to the case where∑2
i=1

∑4
j=1 yi,t−j < 0, and k = 2 the opposing inequality, adding dependence up to t−

4. The error term εt ∼ N2 (0, I). Each coefficient matrix is selected (from several in a

random generation) to ensure constant absolute eigenvalues (within a small tolerance)

over all potential states and regimes. Basic structures of the coefficient matrices are

given below, where each aks(i,j) ∼ U (−0.8, 0.8) is shrunk to zero if
∣∣∣aks(i,j)∣∣∣ < 0.2. The

absolute eigenvalues for each simulated dataset are randomly determined from A(1)
1
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and restricted to nonzero values that produce stable time series realizations.

A(1)
1 =

 0 a
(1)
1(1,2) 0 a

(1)
1(1,4)

a
(1)
1(2,1) a

(1)
1(2,2) a

(1)
1(2,3) a

(1)
1(2,4)



A(2)
1 =

a(2)1(1,1) a
(2)
1(1,2) a

(2)
1(1,3) a

(2)
1(1,4)

a
(2)
1(2,1) 0 a

(2)
1(2,3) 0

 (3.29)

A(1)
2 =

a(1)2(1,1) a
(1)
2(1,2) a

(1)
2(1,3) a

(1)
2(1,4)

0 a
(1)
2(2,2) 0 a

(1)
2(2,4)



A(2)
2 =

a(2)2(1,1) 0 a
(2)
2(1,3) 0

a
(2)
2(2,1) a

(2)
2(2,2) a

(2)
2(2,3) a

(2)
2(2,4)

 (3.30)

3.4.2 Simulation Settings

The SCCP and MCCP methods use a washout length of Twash = 40 and a training

length Ttrain = 120 such that potential change points are identified in the interval

τ̂j ∈ [161, 640]. These values set the minimum sufficient spacing for detection of two

consecutive change points at γ∗ = 161. For consistency, comparator methods are

restricted to identifying changes in the same domain. Methods that do not accept a

parameter for the minimum spacing reconcile the final set with the process outlined

in Section 3.2.2 and Procedure B.5.

Ranges of parameters are chosen to investigate the balance between sensitivity and

precision of each method. Many methods directly accept a Type 1 error parameter

q; KCP takes an analogous penalty scaling parameter C and the online comparator
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methods employ the average run length (ARL) to control the rate of false discovery,

where larger values of each encourage more stringent error control. While SCCP

and MCCP (along with other methods) establish a theoretical upper bound for the

FWER, observed Type 1 error often deviates from this bound, and it can behave

much like the detached “scaling” parameter in KCP (Arlot, Celisse, and Harchaoui,

2019).

The KCP method requires specification of the maximum number of allowable

changes, and it is granted a slight oracle advantage by defining max {n (τ̂ )} = 2 after

accounting for the reconciliation process. NP-MOJO is instructed to look for changes

within a relevant window of lagged time points, t, . . . , t− 2. Table B.1 summarizes

the settings for each method used in the simulation study.

3.4.3 Simulation Results

Displays of performance for online change point detection in the simulated data are

presented in Figures 3.1 and 3.2, and in Figures 3.3 and 3.4 for offline change point

detection. Additional figures for more specific settings are relegated to Appendix B.

Online Simulation Results

SCCP outperforms ScanB and kCUSUM in both the Gaussian process and TAR

simulations, but performance lags significantly behind an oracle method.

In the online Gaussian process simulations, SCCP boasts a high TPR, identifying

a large fraction of the true change points present in the simulated data, but the

theoretical Type 1 error threshold does not cover the true error for either FWER or

FDR detection schemes. SCCP struggles with the TAR process, but still retains an
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Figure 3.1: Gaussian process online detection simulation results.

edge on the online comparators. The ScanB and kCUSUM methods show similar

detection ability, with ScanB demonstrating a propensity for slightly better error

control. Figures depicting results for each set of simulations n (τ ) = {0, 1, 2} are

shown in Appendix B.

Offline Simulation Results

MCCP demonstrates relatively strong performance in the offline Gaussian process

simulations. Both error control regimes still show sizeable undercoverage, but the

methods correctly identify nearly all change points within the radius of tolerance,



80

1.00

1.00

1.00

Oracle

TA
R

M
CC

PPV

TPR

0.47 0.52

0.79 0.72

0.41 0.43

0.530.480.420.400.400.39

0.320.350.480.580.620.65

0.230.200.240.250.270.27

SCCPFWER ScanB

q 
= 

0.
05

q 
= 

0.
10

ARL 
= 

1e
+0

6

ARL 
= 

1e
+0

5

ARL 
= 

1e
+0

4

ARL 
= 

1e
+0

3

ARL 
= 

1e
+0

2

ARL 
= 

1e
+0

1

M
CC

PPV

TPR

0.54 0.57

0.67 0.58

0.42 0.41

0.620.620.570.530.490.47

0.130.150.210.240.260.30

0.180.190.200.190.170.18

SCCPFDR kCUSUM

q 
= 

0.
05

q 
= 

0.
10

ARL 
= 

1e
+0

6

ARL 
= 

1e
+0

5

ARL 
= 

1e
+0

4

ARL 
= 

1e
+0

3

ARL 
= 

1e
+0

2

ARL 
= 

1e
+0

1

M
CC

PPV

TPR

0.00

0.25

0.50

0.75

1.00

Change points correctly identified if within radius rγ∗ = Twash = 40. Subscripts on SCCP
methods refer to the error control procedure.

Figure 3.2: Threshold autoregressive process online detection simulation results.

rγ∗ . The SBS methods return empty change point sets for all simulations (with one-

third of those correctly identified as n (τ ) = 0). KCP is the closest competitor for

the TPR metric, but error control lags well behind MCCP.

For offline detection in the simulated TAR data, MCCP struggles in locating the

true change points. While marginally outperforming some comparator methods that

assume independence (e.g., EDiv), MCCP methods are surpassed by NP-MOJO in

terms of the TPR, and consequently the MCC. Error control for all methods that show

decent performance exhibit slight undercoverage relative to the specified theoretical

Type 1 error rate.
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Figure 3.3: Gaussian process offline detection simulation results.

The figures illustrate the power and Type 1 error trade-off for all change point

methods, with a clear picture shown in the KCP results of Figure 3.4. Balance

between these competing objectives inches a method closer to the non-oracle ideal

method where TPR→ 1 and PPV = 1− q. Figures depicting offline results for each

n (τ ) = {0, 1, 2} are in Appendix B.

3.5 Discussion

For the online comparator methods, ScanB and kCUSUM are designed for change

point identification problems where there is access to a long window of training data

(reference section) prior to seeking changes in a shorter sequence of interest (S. Li

et al., 2019; Wei and Y. Xie, 2023). In the simulation study, as in many applications
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Figure 3.4: Threshold autoregressive process offline detection simulation results.

where spending this length of data on training is not feasible, methods were not

granted this long running reference window and some lose strength as a result.

Offline comparator methods that assume independence of the observations are,

as expected, less effective in the presence of temporal dependence. The contrast be-

tween the relative success in scope of application between the MCCP and NP-MOJO

methods may lie in the elemental construction of the procedures. NP-MOJO seeks

information directly from the lagged covarite structure, like VAR or TAR models,

and should excel in these situations. In non-stationary (or cyclostationary data), the

methodology may break down and fail (McGonigle and Cho, 2023). MCCP encodes

information about interactions between network states with a conceptor matrix, and

aggregates them over a given time window (the training data). This transforms and

captures changes in cyclostationary data, but may miss key short-term information
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lumped together in the aggregation process. The contrived TAR data in Section

3.4 retains a constant mean and variance structure with nearly identical absolute

eigenvalues of the autoregressive coefficient matrices. Change points, then, must be

sought from duration of time spent between regimes within a state, or from global

information about loadings onto certain network states when a coefficient changes.

This may have more to do with the specific featurization process, and perhaps is only

sporadically captured by a random functional transformation and rotation.

To illustrate this point, the NP-MOJO method was performed on the simulated

data in n (τ ) = {0, 1} (post transformation to a sequence of cosine similarities) by

the CCP method of Chapter 2 (referred to by CNP-MOJO in Figures 3.5 and 3.6).

Ignoring the propensity for false discovery and examining the TPR, the combined

method outperforms NP-MOJO for Gaussian process data and lags behind in the TAR

data suggesting information is lost in the featurization and aggregation process and

not the back-end change point identification algorithm. In aggregate, the combined

method performs worse than either of the two individual methods. Examination

of n (τ ) = 2 was not considered due to the methodological inconsistencies in the

multiple change point problem. Individual figures for each class of simulated data

and n (τ ) = {0, 1} are shown in Appendix B.

Comparing the online and offline simulation results from Section 3.4.3 demon-

strates the advantage of access to the complete time series rather than just a brief

window near a time point of interest.
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Figure 3.5: Gaussian process comparison between MCCP and NP-MOJO methods
on simulated data and the transformed sequence of cosine similarities (CNP-MOJO)
from the CCP method of Chapter 2.

3.5.1 Naive Variance Change Simulations

MCCP assumes a minimum spacing γ∗ between two consecutive change points. Sim-

ilar assumptions are imposed by many methods in literature, like the binary segmen-

tation of Cho and Fryzlewicz (2012) and the window selection of EDiv and NP-MOJO

(Matteson and James, 2014; McGonigle and Cho, 2023). To investigate the ability

of MCCP to detect change points near (or approaching) the minimum spacing, and

the behavior of the method under violation of this assumption, naive variance change

simulations were performed. Simulated white-noise datasets of length T = 800 en-

counter a change point and switch from σt = 1 to σt = 0.2. Five scenarios explore the

performance under these settings, with the spacing varying from well under the min-

imum γ = 80, to stepping slowly away from the minimum γ = {161, 171, 181, 191},

where γ∗ = 161.

MCCP becomes more powerful as the spacing between consecutive points gets
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Figure 3.6: Threshold autoregressive process comparison between MCCP and NP-
MOJO methods on simulated data and the transformed sequence of cosine similarities
(CNP-MOJO) from the CCP method of Chapter 2.

further away from the assumed minimum. For spacing in γ = {80, 161, 171, 181},

MCCP consistently identifies the first and last shifts in a time series, but the inner

changes are lost as “regions of transition” due to their proximity.

3.6 Future Work

Inconsistent performance of SCCP and MCCP likely stems from the process of ag-

gregating information over several time points and random featurizations. Major

simplification of the methods may alleviate this challenge, allow for increased inter-

pretability, and decrease the computational burden.

Suppose yt ∈ Rd, with t = 1, . . . , T , is a time series of interest in the offline multiple

change point problem. With Y = [y1 · · ·yT ]
⊤ ∈ RT×d the concatenated matrix of

temporal observations, examine the singular value decomposition Y = UΣV⊤, where

U ∈ RT×T and V ∈ Rd×d are the orthonormal bases of the temporal and variable
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Figure 3.7: MCCP performance for naive variance change simulations as the spacing
between consecutive change points γ fluctuates.

axes, respectively. The matrix V captures information about the covariate directions

of linear variability in the original dataset.

As in Equation 1.13, post transformation from an artificial network N of dimension

N that generates a faithful representation of the data, analogously write the matrix of

network state vectors H = UΣV⊤, where V ∈ RN×N is an orthonormal basis of the

states. The conceptor-based methodology here and in Chapter 2 examines properties

based on V, with H⊤
trainHtrain = VtrainΣ

⊤
trainΣtrainV⊤

train and

C = VtrainΣ
⊤
trainΣtrainV⊤

train

(
VtrainΣ

⊤
trainΣtrainV⊤

train +
Ttrain

α2
I
)−1

. (3.31)

The conceptor matrix encodes how the interactions of a network state relate to those

in the training window of data. Similar information may be captured through exam-
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ination of the loadings on the orthonormal vectors composing V,

Λ = HV = UΣ. (3.32)

A row λt in the matrix Λ ∈ RT×N encodes a measure of the quantity of information

contributed by a direction of the orthonormal basis of the network states. With N

sequences of information, change points can be identified from shifts in the loadings

on this “linearized” orthonormal basis (via the universal function approximator trans-

formation). In practice, N should likely be restricted so that the relevant information

is not spread thin over a large number of dimensions.

This simplified approach eliminates of the training window of data, provides flex-

ibility for changes sought, shrinks the required window between consecutive changes,

and permits qualitative statements about the nature of regimes in a dataset (like

temporal clustering based on the loading vectors). The potential methodology will

require careful choice of ANN (featurization process) such that dependence is captured

without fabricating temporal relationships not present in the original data (through

various MLP, RNN, and LSTM architectures). The approach would lose applicabil-

ity to the online change point problem as the full vector sequence of data has not

been realized for generation of the orthonormal basis matrix. The conceptor matrix

captures periodic structure in the data from the time domain, and steps to retain this

capability should be emphasized.

In the ANN featurization process, all covariate specific information is lost and

changes are sought from the joint distribution of the covariate set. If a change takes

place in sequence yt,i, and not yt,j, i ≠ j, the conceptor-based methods here and

in Chapter 2 can only mark a global change point; they provide zero intuition on
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the covariate(s) involved or the nature of the change. Introducing architectures of

featurization that retain covariate specific information, while allowing for the repre-

sentative transformation harnessing the universal approximator ability of ANNs, will

add noteworthy benefits in the interpretability of these methods.
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Chapter 4

Nonlinear Permuted Granger

Causality

This chapter is adapted from the article Nonlinear Permuted Granger Causality (Gade

and Rodu, 2023b).

Granger causal inference investigates the ability of a time series xt ∈ Rp, t =

1, . . . , T , to predict future values of a response yt ∈ Rd (Wiener, 1956; Granger, 1969).

The effect is traditionally measured through the variance of residuals in restricted

and unrestricted models, as shown in Definition 4.1, where P represents the optimal

prediction function, I<t is all information prior to time t, and X<t is a matrix of

compiled values of xt prior to time t.

Definition 4.1. Time series xt ∈ Rp is Granger causal for yt ∈ Rd if

Var [yt − P (yt|I<t)] < Var [yt − P (yt|I<t\X<t)] . (4.1)

Modern methods for adapting Granger causality to nonlinear functional relation-

ships leverage deep learning and representation learning for capturing dependence

between variables (Moodie and Stephens, 2022). These tools, when paired with other

machine learning techniques, are not necessarily reliable or precise. Penalized vari-
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able selection as a screening method potentially removes signal by not considering

the collective covariate set of the system and tends to up-weight contributions of the

chosen nonzero covariates. Erroneous conclusions can result from deep learning be-

cause variable specific inference is muddled. This work explicitly redefines Granger

causality in terms of a permuted framework with out-of-sample testing (NPGC) that

retains the flexibility of representation learning and has specific advantages when

seeking nonlinear functional connections.

4.1 Granger Causality

The form of Granger causality presented in Definition 4.1 is inherently conditional

on additional information included in the modeling process. The optimal prediction

P (yt|I<t) is unattainable in practice, and the notion of Granger causality is a condi-

tional model on some included explanatory covariate set zt ∈ Rq and the history of

the response prior to time t, Y<t, as in Definition 4.2.

Definition 4.2. Time series xt ∈ Rp is conditionally Granger causal for yt ∈ Rd

given zt ∈ Rq and the relevant history of the response if

Var [yt − P (yt|Y<t,Z<t,X<t)] < Var [yt − P (yt|Y<t,Z<t)] . (4.2)

Model selection is implicit in the test for presence of Granger causality, and the in-

ferential conclusion is coupled with a written form (Friston, Moran, and Seth, 2013).

Inclusion of additional variables strengthens the condition for establishing Granger

causality; rejection of the null implies the covariate set xt is found to provide unique
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and useful information for prediction of yt beyond that contained in both zt and the

lagged response (Granger, 1980). The basis for Granger causality requires fulfillment

of several conditions including a sufficient length of continuous-valued stationary data,

exact and complete specification of the model, error-free observation of the variables,

and a sampling frequency on a regular discrete grid that contains the known lag rela-

tionship (Granger, 1969; Granger, 1980; Granger, 1988). In the form of Definition 4.2,

the second condition can be relaxed provided that inference is accordingly narrowed

to the conditional statement.

The framework can also be defined in terms of non-causality as a statement of con-

ditional independence, where inclusion of additional variables zt is a simple extension

(Granger, 1980; Florens and Mouchart, 1982).

Definition 4.3. Time series xt ∈ Rp does not Granger cause yt ∈ Rd if and only if

Y<t+1 ⊥ X<t given Y<t. (4.3)

This statement is perhaps more powerful because it is defined in terms of the

distributions of the variables, allowing for extension to several other forms of statis-

tical tests. It may be prone to misuse if interpreted to place the burden of proof on

establishing independence. In a definition from Section 4 of Shojaie and Fox (2022),

column j in time series xt is Granger non-causal for time series yt if and only if ∀t,

P (yt|x<t1, . . . ,x<tj , . . . ,x<tp) = P
(
yt|x<t1, . . . ,x<t(j−1),x<t(j+1), . . . ,x<tp

)
(4.4)

that implies the equality of these predictions holds for all time points t. If misin-
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terpreted to mean finding correlation at one time point in series yt is enough to

claim functional dependence of two time series, the presence of a causal connection

effectively becomes the null hypothesis and Granger causality is reduced to an excep-

tionally weak statement.

Even when the question is framed with the onus on demonstrating a functional

relationship, all Granger causal methods overreach their scope of reliable application

when inference is performed on the individual variables included in the covariate set

rather than on their collective behavior. Applications of the framework to interpret-

ing individual model coefficients introduce a hidden multiplicity problem of repeated

testing on subsets of xt, and the conclusion requires amendment to conditional non-

causality of yt given an exhaustive list of all other components xtj, j = 1, . . . , p in

the model after adequate Type 1 error control. Methods that select causal covariate

pairs through the use of penalized optimization problems do not always allow for easy

extension to the multiple testing problem, and may require repetitive sub-sampling

approaches such as stability selection (Meinshausen and Bühlmann, 2010). A thor-

ough definition of Granger causality provides a clear representation of the collective

conclusion to be drawn on the covariate set xt, clarifies the conditional nature of the

result on the specified model and included variables, and stresses the philosophical

ordering from the null hypothesis implying no causal structure to the alternative that

demands evidence of the contrary, all while retaining any general functional form of

P (yt|Y<t,Z<t,X<t).

Holland (1986) relates the definition to that of Suppes (1970) and criticizes its

fragile reliance on the specified pre-exposure variables that may completely change

an inferential result. Maziarz (2015) writes that “Granger causality does not meet the

requirements of an investigator who uses this method due to epistemic reasons” and
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the methodology should be used “only if the theoretical background is insufficient,”

noting the common cause fallacy, indirect causality, and problems related to sampling

frequency. In this tone, the predictive nature of these definitions can relate to a causal

structure between two variable groups, but alone is not enough to establish effective

connectivity, distinguishing a direct influence of one population on another (Bressler

and Seth, 2011; Friston, 1994). Even in the presence of the optimal set I<t, association

and precedence are not enough to distinguish true causality if slight redundancies are

included or an effect does not remain constant in direction through time (Maziarz,

2015). Granger causality exists in the realm of functional connectivity that identifies

correlation at one or more time lags (Friston, 1994). Appropriate use of Granger

causality is contentious, but the method has been applied to a variety of fields like

economics, environmental sciences, and neuroscience (Bernanke, 1990; F. Chen et al.,

2021; Cox Jr. and Popken, 2015; Dey et al., 2020; Holland, 1986; Reid et al., 2019;

Seth, Barrett, and Barnett, 2015; Sims, 1972). Cautious and targeted use of the

Granger causal framework can elucidate predictive relationships between variables

that warrant further study when prior knowledge of potential causal relationships is

limited.

In the linear realm, P(yt|Y<t,Z<t,X<t) is often sought from a VAR(MA) model

and evaluated with in-sample testing, and Himdi and Roy (1997) examines formu-

lation via a non-causal hypothesis (Granger, 1969; Granger, 1980). Geweke (1982)

proposed a spectral decomposition form of linear Granger causality for application

to stationary Gaussian processes. Inference is performed with the estimated covari-

ance of the restricted model (with X<t excluded) and that of the unrestricted model,

where under the null it is assumed the two are equal. Increasing dimension of the

response variable often requires implementation of an approximate test or a switch
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to permutation-like testing (Anderson and Robinson, 2001; Barnett and Seth, 2011).

In-sample testing differs from the true notion of predictive ability, and out-of-sample

methods align closer to the essence of Granger causality (Chao, Corradi, and Swan-

son, 2001; Inoue and Kilian, 2005; Peters, Bühlmann, and Meinshausen, 2016). This

distinction is especially important when using deep learning techniques to model

complex, nonlinear dynamics.

4.1.1 Nonlinear Adaptations

Nonparametric methods provide the basis for many nonlinear adaptations of Granger

causality; specification of the exact functional form can be challenging. Paramet-

ric attempts, like the ordinary differential equations approaches of Henderson and

Michailidis (2014) and H. Wu et al. (2014), allow for flexible definition of a series

of functions to capture dependence, but are limited to modeling additive dynamics

when the true mechanism of interaction may be more complicated. Some model-free

information theoretic methods detect more elaborate forms of nonlinear dependence

with minimal assumptions, but suffer from highly variable estimates and challenges

of application to multivariate systems (Amblard and Michel, 2011; Runge et al.,

2012; Vicente et al., 2011). Kernel Granger causality examines the linear form in a

transformed feature space, but model comparison can become difficult (Marinazzo,

Pellicoro, and Stramaglia, 2008; Marinazzo, Liao, et al., 2011). ANNs allow for gen-

eral forms of nonlinear dependence in a similar feature space.

Tank et al. (2022) extend Granger causality to the nonlinear space using component-

wise MLPs (cMLP), which model individual variables in the response yti, i = 1, . . . , d,

with separate artificial networks. Parameters are sought via a penalized optimiza-
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tion approach and proximal gradient descent, and no Granger causal connection is

inferred for an individual covariate if the corresponding row in a component input

parameter matrix (W1i in Equation 1.4) is zero (Tank et al., 2022). The penalized

approach encourages sparse solutions that block the inclusion of information from

less predictive components in the hidden states ht, but selecting the regularization

parameter is not an easy task and values may produce vastly different results. Tank

et al. (2022) further introduce a component-wise LSTM (cLSTM) model that har-

nesses the recurrent structure to circumvent selection of the optimal lag for inclusion

in the covariate set X<t. This formulation, while making model specification as it

relates to the time lag components easier, has the consequence of mixing inferential

results across several lags.

Khanna and Tan (2019) builds on the cMLP framework with statistical recurrent

units (Oliva, Póczos, and Schneider, 2017), Biswas and Ombao (2022) discusses the

application of the component network structure to frequency-specific relationships

and non-stationary data, and Marcinkevičs and Vogt (2021) introduces generalized

vector autoregressive (GVAR) methodology aimed at interpretability of potential

functional relationships. The Jacobian Granger causality method of Suryadi, Chew,

and Ong (2023) uses the Jacobian matrix, and Nauta, Bucur, and Seifert (2019)

(TCDF) uses convolutional neural networks and attention scores to serve as measures

of variable importance. Jointly estimating a large number of parameters is computa-

tionally expensive, and Duggento, Guerrisi, and Toschi (2021) instead use randomly

initialized ESNs. Because computation is performed using linear techniques rather

than a gradient descent algorithm, complexity decreases; however, inference can only

be performed on the output coefficients if information mixing does not occur in the

hidden states ht. They formulate Wh as a block diagonal matrix, which limits the
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scope of application to a specific subset of additive nonlinear interactions (Duggento,

Guerrisi, and Toschi, 2021).

Many of these methods ignore the collective inference principle of Granger causal-

ity and instead take the eager approach of performing individual covariate inference,

sometimes with disregard for the multiplicity problem. Evaluation of these predictive

relationships is often performed using in-sample tests. As a universal approximator,

artificial neural networks of sufficient width or depth can approximate any functional

relationship between two covariate sets, even if it is data-specific and the model is

overfit, making them prone to link variables that do not have a predictive relationship

as the dimension of the network increases. Sparsity inducing penalties may marginally

improve reliability of in-sample tests, but out-of-sample testing helps control the over-

fitting problem to identify only useful functional relationships. In this vein, Horvath,

Sultan, and Ombao (2022) develop the Learned Kernel VAR (LeKVAR) method that

proposes use of a kernel parameterized by an artificial neural network they argue is

less prone to overfitting from a decoupling importance measure of the individual se-

ries and the selected lags, and the TCDF method employs a permutation-like testing

procedure after variable selection (Nauta, Bucur, and Seifert, 2019).

Rather than comparison of the inherently unequal restricted and unrestricted

model errors, focus in this chapter is shifted to out-of-sample predictability by imple-

menting a permutation structure. There is precedence for the use of permutation-type

procedures on general linear models, and their asymptotics are well studied in liter-

ature (Anderson and Legendre, 1999; Anderson and Robinson, 2001; DiCiccio and

Romano, 2017; Winkler et al., 2014). Nauta, Bucur, and Seifert (2019) employ this

type of permutation procedure after their complicated convolutional neural network

(CNN) screening procedure. This chapter explicitly defines the methodology for its
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widespread use as a decision framework in Granger causal inference. Importance of

a chronologically ordered variable can be interpreted as “causal” (predictive) effect,

and the strategy builds on the concept of exchangeability (like the directed graph

method of Caron and Fox (2017)), where if X̃ is a random permutation of the rows

of X, Y<t+1 ⊥ X given Y<t implies Y<t+1 ⊥ X̃ given Y<t, but the converse is not

always true (Van der Laan, 2006).

The following definition pair, adjusting Definitions 4.2 and 4.3 to a permutation

structure for the covariate matrix, are proposed to investigate if xt Granger causes yt.

The unrestricted and restricted models are replaced by a null model and a permuted

model, where X̃<t is a copy of X<t with the time axis (rows) randomly permuted.

Definition 4.4. Time series xt ∈ Rp is not conditionally Granger causal for yt ∈ Rd

given zt ∈ Rq and the relevant history of the response Y<t if and only if

Y<t+1|Y<t,Z<t,X<t
d
= Y<t+1|Y<t,Z<t, X̃<t. (4.5)

Definition 4.5. Time series xt is conditionally Granger causal for yt given zt and

the relevant history of the response Y<t if

Var [yt − P (yt|Y<t,Z<t,X<t)] < Var
[
yt − P

(
yt|Y<t,Z<t, X̃<t

)]
. (4.6)

Permutations of X<t (augmented with lagged observations to maintain short-term

dependence in X (Kunsch, 1989; R. Y. Liu and Singh, 1992)) break the dependence

structure between X and the response while retaining the intradependence of the
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covariates. Restructuring the Granger causal framework allows for use of out-of-

sample estimated prediction errors, corrects the imbalance of comparison between

restricted and unrestricted models, and presents a clear path to account for multiple

testing, aligning the methodology closer to its inferential utility.

4.2 Methodology

Suppose observed realizations of the data (X,Y,Z)ω arise from the set of all potential

realizations ω ∈ Ω. Define Ωobs as the size φ set of observations, Ωobs = {1, . . . , φ} ⊆

Ω, and note that usually φ = 1. Instances for φ > 1 may occur with repeated trials of

a controlled experiment. For simplicity of the original presentation, the subscript ω

notation specifying an observed realization is omitted until the end of this subsection.

4.2.1 Structure

Nonlinear functional dependence in the data is captured with FNNs of Equations 1.2

and 1.3, where Wi and b are randomly generated. The exact formulation of this

transformation to a representative space (akin to Ψ in Equation 1.13) is not the main

focus of this chapter and the dimension of the feature space N is fixed for direct

comparison to other methods. For demonstration of NPGC, a simple model agnostic

structure was selected. Other, more targeted featurization strategies will likely more

effectively describe data specific dependence. For the simple FNN, adaptation to an

automated selection of the feature dimension N can be found in Appendix C.

With familiarity of a dataset, a researcher selects γ lagged values of yt that serve

as a representative history, Ylag ∈ R(T+γ)×γd (corresponding to Y<t in Definitions
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4.4 and 4.5), and assume that an appropriate number of lags is selected such that

autocorrelation in yt is fully explained across all potential realizations. Selection of

the truncation lag γ is outside the scope of this work; Ng and Perron (2001), Ivanov

and Kilian (2005), Shojaie and Michailidis (2010), and Nicholson, Matteson, and Bien

(2017) provide detailed discussions. With a finite data length T + γ, this process

restricts the usable portion of X, Y, and any additional covariates Z to the last T

rows. All columns (individual variables) are standardized for consistent behavior in a

random FNN featurization process with an activation function (Goodfellow, Bengio,

and Courville, 2016).

Dependence across rows of X, for example a covariate lag structure, is captured

by augmenting the matrix with additional columns. The rows of the (augmented)

covariate matrix X are randomly reorganized via Πm to generate several permutations

X̃m = ΠmX for m = 1, . . . ,M . The designated first permutation, m = 1, corresponds

to the original ordering of the data where Π1 = I.

After permutation, the predictor matrices
[
1 Ylag Z X̃m

]
∈ RT×(1+γd+q+p) are

compiled, and the FNN is rewritten to the structure in Equation 4.7 (with activation

function g = tanh). Wi and b are combined into a single parameter matrix W ∈

R(1+γd+q+p)×N after inclusion of the intercept term in the predictor matrices, and each

matrix entry is an independent Gaussian realization wij ∼ N (0, 1).

Hm = g
([

1 Ylag Z X̃m

]
W
)
= tanh

([
1 Ylag Z X̃m

]
W
)

(4.7)

Added uncertainty arising from the random generation is mitigated through several

featurizations, Wr for r = 1, . . . ,R, and extracting the aggregate behavior. The

models can be written in terms of the original (m = 1) and permuted (m = 2, . . . ,M)
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feature spaces, where Um,r is the variation in Y not captured by the functional

relationship with the feature space Hm,r.

Y = Hm,rWo
m,r + Um,r (4.8)

Define Θm as the underlying covariance matrix of the prediction for Y given the

relevant history of the response Ylag, the additional variables Z, and the permuted

covariate set X̃m. Denote ϑm = tr (Θm) as the corresponding parameter over all

potential realizations ω ∈ Ω. Variation in the estimate arises from potential real-

izations of the data ω ∈ Ω and via randomly generated FNNs approximating the

nonlinear functional form. For a given data realization (X,Y,Z)ω, and under the

true functional form f , define the specific covariance matrix of the prediction Σm,ω.

For random featurization r, define the covariance matrix of prediction Sm,ω,r as an

estimate of Σm,ω. The out-of-sample variation parameter ϑm is estimated for each

permutation via a cross-validation approach.

4.2.2 Estimating Granger Causal Influence

A sufficiently large featurization dimension N is chosen to “linearize” any existing

functional relationship, but not so large that the network is able to memorize inputs

or fabricate dependence between the permuted data and a response. This implicitly

assumes the existence of some nonlinear functional relationship between a covariate

set and a response will be “easier” for an ANN to learn than random matching

of inputs to outputs in the permuted data, and an exact form of this condition is

proposed in Section 4.3. The data is split into K sets for model computation and

testing, and define the number of observations in each set k = 1, . . . , K as Tk =
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⌊T/K⌋+ 1 {(T mod K) ≥ k}.

Under the form of Equation 4.7, several random FNNs are generated r = 1, . . . ,R.

The model matrices Wr are held fixed over all permutations m and observations

ω ∈ Ωobs for a consistent error estimation framework. For each permutation, with

m = 1 corresponding to the original data, the predictor matrices are projected into

the respective feature spaces, and the residuals for test set k can be written as in

Equation 4.9, where the where the training data (subscript −k) excludes set k.

Rm,ω,r,k = Hm,ω,r,k

(
H⊤

m,ω,r,−kHm,ω,r,−k

)−1 H⊤
m,ω,r,−kYω,−k,−Yω,k (4.9)

The out-of-sample prediction residuals R from the test set align closer to the

original definition of predictive ability in Granger causal inference than the in-sample

model variation. This distinction is especially important with the use of ANNs and

the ability to learn any arbitrary, data-specific dependence structure. The estimate

for the out-of-sample variation in prediction residuals ϑ̂m is shown in Equation 4.10.

ϑ̂m =
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
(4.10)

A null distribution of variation from each model m = 1, . . . ,M is approximated

from the permutation structure. The random permutations of the covariate set X

break the potential dependence structure present in the form of some predictive rela-

tionship with the response Y. Under the null hypothesis, the original data is viewed

as one of M random permutations, and the original “permutation” X̃1 = X should

exhibit similar properties to X̃m for m = 2, . . . ,M . Analogously, if the time obser-

vations X are exchangeable for prediction of Y, the conditional distribution of the
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prediction will not change.

The variation estimates are drawn from the distribution of all possible permuta-

tions in Equation 4.11, and ϑ̂1 is expected to fall above some lower tail portion.

ϑ̂m ∼ Ĥ(s) = (T !)−1

T !∑
i=1

1{ϑ̂i ≤ s}, (4.11)

This leads to an approximate null distribution where the estimate ϑ̂1 is at quantile

Q̂M of the empirical distribution ĤM(s), defined in Equation 4.12, formed from a

subsample of size M ≤ T !. A decision rule is formulated from comparison to a chosen

level of test α.

ĤM(s) =
1

M

M∑
m=1

1{ϑ̂m ≤ s} (4.12)

Q̂M = ĤM(ϑ̂1) =
1

M

M∑
m=1

1
{
ϑ̂m ≤ ϑ̂1

}
(4.13)

Rejection of the null hypothesis in this framework, Q̂M ≤ α, presents evidence for

X as Granger causal of Y conditional on the additional variables Z and the relevant

history of the response Ylag. For the case when φ = 1, this conclusion is conditional

on error free observation of the dataset. Inferential results must either include this

assumption, or the scope narrowed to the specific observation ω. The full algorithmic

process is shown in Algorithm 4.1, and an explicit outline of the theoretical behavior

of these estimates and development of the underlying framework is given in Section

4.3.
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Algorithm 4.1 Nonlinear Permuted Granger Causality
Inputs: (X,Y,Z)ω for all φ realizations ω ∈ Ωobs; lag selection γ; # permutations

M ; # random featurizations R; feature space dimension N ; # cross-validation folds

K

Outputs: Q̂M ; ϑ̂m for each permutation m = 1, . . . ,M

1: Generate permutations X̃m = ΠmX for m = 1, . . . ,M with Π1 = I

2: Initialize Wr ∈ R(1+γd+q+p)×N where each element wr,ij ∼ N (0, 1) for all R

3: for m in 1 : M do

4: for ω in 1 : φ do

5: for r in 1 : R do

6: Hm,ω,r ← tanh
([

1 Ylag,ω Zω X̃m,ω

]
Wr

)
7: for k in 1 : K do

8: Rm,ω,r,k ← Hm,ω,r,k

(
H⊤

m,ω,r,−kHm,ω,r,−k

)−1 H⊤
m,ω,r,−kYω,−k −Yω,k

9: end for

10: end for

11: end for

12: ϑ̂m ← (φRK)−1∑φ
ω=1

∑R

r=1

∑K
k=1 T

−1
k tr

(
R⊤

m,ω,r,kRm,ω,r,k

)
13: end for

14: Q̂M ←M−1
∑M

m=1 1
{
ϑ̂m ≤ ϑ̂1

}
return Q̂M ; ϑ̂m for m = 1, . . . ,M
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4.3 Theory

Define Θm as the underlying covariance matrix of the predictive ability of per-

mutation m, and the quantity ϑm = tr (Θm). For each potential realization of

the data (X,Y,Z)ω, ω ∈ Ω, define the realization-specific covariance matrix Σm,ω

drawn from some distribution with expectation E [tr (Σm,ω)] = ϑm and variance

τ 2ω < ∞ that is constant over all permutations. Each random generated FNN for

the featurization process r = 1, . . . ,R produces Sm,ω,r as an estimate of Σm,ω, where

E [tr (Sm,ω,r) |Σm,ω] = tr (Σm,ω) and Var [tr (Sm,ω,r) |Σm,ω] = τ 2r <∞.

The null and permuted models are evaluated with the out-of-sample prediction

residuals, shown in Equation 4.9, and define the estimate for total variation as in

Equation 4.10. Under the null hypothesis when the conditional distribution of the

prediction is invariant to permutation of the covariate set X, ϑ1 = ϑ2 = · · · = ϑT ! = ϑ,

leading to the null and alternative hypotheses in Equation 4.14.

H0 : ϑ1 = ϑ2 = · · · = ϑT !−1 = ϑT !

HA : ϑ1 < ϑi for all i = 2, . . . , T ! (4.14)

The null hypothesis is tested using the sample quantile Q̂M from the empirical

distribution ĤM(s) defined in Equations 4.12 and 4.13.

4.3.1 Conditions for Theoretical Results

Theoretical results in this section rely on a set of three mild conditions comparable

to those found in relevant literature. Four additional conditions provide regularity

to the featurization process. Theoretical results are derived for a generic activation
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function g in Equation 4.7 with the constraints of Condition 4.7.

Condition 4.6. The data is continuous and stationary, and the discrete, regular

sampling grid t = 1, . . . , T is sufficiently fine to capture any potential functional

dependence in the variable matrices (X,Y,Z)ω for any realization ω ∈ Ω.

Condition 4.7. The nonlinear function activation function g in Equation 4.7 is

bounded, g : R → [a, b] for some a < b, such that for any x ∈ R, |g(x)| ≤ G =

max {|a|, |b|} and G <∞.

Condition 4.8. Let W be the space of all element-wise randomly generated FNNs,

wij ∼ N (0, 1), such that for all Wr ∈ W , the matrix Wr is full rank and generates a

feature matrix that is full rank with a finite condition number. For permutation m,

realization ω, and random featurization r,

rank (Hm,ω,r) = N (4.15)

and κ(Hm,ω,r) = σ1(Hm,ω,r)/σN(Hm,ω,r) ≤ κmax <∞. (4.16)

All initialized model matrices Wr ∈ W .

For the matrix Hm,ω,r = (hm,ω,r,ij), define G as the maximal element from Condi-

tion 4.7 and the average squared entry as h̄2
m,ω,r.

Condition 4.9. The following expected values exist and are finite:

E
[
G−2h̄2

m,ω,r|Sm,ω,r

]
= ν2 <∞, (4.17)

E
[
G2
(
h̄2
m,ω,r

)−1 |Sm,ω,r

]
= ξ2 <∞, (4.18)

and E
[
G4
(
h̄2
m,ω,r

)−2 |Sm,ω,r

]
= ϱ4 <∞. (4.19)
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Combining Conditions 4.7, 4.8, and 4.9, 0 < ν2 ≤ 1, 1 ≤ ξ2 <∞, and 1 ≤ ϱ4 <∞.

Define f as the true functional relationship between the response and the unpermuted

predictor matrix for all ω ∈ Ω,

Yω = f
([

1 Ylag,ω Zω X̃1,ω

])
+Uω, (4.20)

and the approximating model form for permutations m = 1, . . . ,M and featurizations

r = 1, . . . ,R.

Yω = Hm,ω,rWo
m,ω,r + Um,ω,r (4.21)

Condition 4.10. For every η > 0, there exists a fixed N , where 1 + γd + q + p ≤

N <∞, such that as the number of random featurizations R→∞,

sup
ω∈Ω

∥∥∥∥∥ 1R
R∑

r=1

H1,ω,rWo
1,ω,r − f

([
1 Ylag,ω Zω X̃1,ω

])∥∥∥∥∥ < η, (4.22)

where Wo
1,ω,r is the true coefficient matrix of feature space r for the unpermuted

covariate set, H1,ω,r = g
([

1 Ylag,ω Zω X̃1,ω

]
Wr

)
.

Note that Condition 4.10 specifically pertains to the f piece of the true func-

tional relationship; no assumption is made of the closeness of a transformed response

H1,ω,rWo
1,ω,r and the true values Yω if the predictors themselves are not reliable and

the entries of Uω in Equation 4.20 are large.

Condition 4.11. For all realizations ω ∈ Ω, and random generated FNNs Wr ∈ W ,

r = 1, . . . ,R, the quantities tr (Sm,ω,r) |Σm,ω are independently drawn from continuous

distributions with defined expectation in Equation 4.23 and constant, finite variance
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across all permutations and potential realizations of the data.

E [tr (Sm,ω,r) |Σm,ω] = tr (Σm,ω) (4.23)

Var (tr [Sm,ω,r] |Σm,ω) = τ 2r <∞ (4.24)

Similarly, Σm,ω are independently drawn from continuous distributions with expec-

tation in Equation 4.25 and constant, finite variance across permutations.

E [tr (Σm,ω)] = ϑm (4.25)

Var (tr [Σm,ω]) = τ 2ω <∞ (4.26)

Condition 4.12. The relevant history of the response, Y<t,ω = Ylag,ω ∈ RT×γd is

appropriately chosen such that the model errors Um,ω,r are independent, or um,ω,r,t ⊥

um,ω,r,t′ for any realization ω ∈ Ω, permutation m = 1, . . . ,M , featurization r =

1, . . . ,R, and time point t = 1, . . . , T where t ̸= t′. Further, the model errors follow

multivariate normal distributions with mean zero and constant variation, leading to

the result

um,ω,r,t
i.i.d.∼ Nd (0,Sm,ω,r) . (4.27)

4.3.2 Asymptotic Properties

The asymptotic behavior of the estimates and established testing framework is ex-

amined under the listed conditions in Section 4.3.1. Define the underlying variation

parameter for permutation m as ϑm, and the estimate ϑ̂m as in Equation 4.10. As-

sume a fixed test set size Tk and allow the training set T−k = T − Tk and number of
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folds K to grow as T →∞.

Theorem 4.13. Under the conditions listed in Section 4.3.1, with Condition 4.11

modified such that τ 2ω = 0 (i.e., error free observation of the data), for all ε > 0,

lim
R→∞

lim
T→∞

P
(
|ϑ̂m − ϑm| ≤ ε

)
= 1. (4.28)

Alternatively, under the conditions listed in Section 4.3.1, for all ε > 0,

lim
φ→∞

lim
T→∞

P
(
|ϑ̂m − ϑm| ≤ ε

)
= 1. (4.29)

Without error free observation of the data, the underlying variation τ 2ω remains

present in the estimate, but shrinks as the number of observations gets large.

Theorem 4.14. Under the conditions listed in Section 4.3.1, the estimate for the

variation parameter ϑ̂m admits a Central Limit Theorem with respect to the number

of observations φ in Ωobs.

lim
R→∞

lim
T→∞

√
φ
(
ϑ̂m − ϑm

)
D−→ N

(
0, τ 2ω

)
(4.30)

As a direct result of Theorem 4.14, ϑ̂m is a consistent estimate for ϑm when τ 2ω > 0

as φ tends to infinity along with the size of the training and test sets.

Under the Null Hypothesis

Under the null hypothesis, the underlying variation parameter is constant for every

possible permutation, ϑ1 = · · · = ϑT !. Define the quantile estimate Q̂M as in Equation

4.13, and establish the limiting uniform distribution from the result of Theorem 4.13.
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Theorem 4.15. Under the null hypothesis and the conditions listed in Section 4.3.1,

lim
T→∞

lim
M→T !

Q̂M
D−→ Uniform(0, 1). (4.31)

Under the Alternative Hypothesis

Define Q as the true quantile for parameter ϑ1 over all T ! possible permutations. In

the limit, the quantile estimate defined in Equation 4.13 converges in probability to

Q.

Theorem 4.16. Under the alternative hypothesis and the conditions listed in Section

4.3.1, with Condition 4.11 modified such that τ 2ω = 0 (i.e., error free observation of

the data), for all ε > 0,

lim
M→T !

lim
R→∞

lim
T→∞

P
(
|Q̂M −Q| ≤ ε

)
= 1. (4.32)

Similarly, under the alternative hypothesis and the conditions listed in Section 4.3.1,

for all ε > 0,

lim
M→T !

lim
φ→∞

lim
T→∞

P
(
|Q̂M −Q| ≤ ε

)
= 1. (4.33)

4.3.3 Finite Sample Distribution

For a finite sample, the distribution of the estimated quantity ϑ̂m is derived as a sum

of linear combinations of chi-square random variables. Define the following chi-square
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random variables

Xm,ω,r,k,i, Ym,ω,r,k,ij , Zm,ω,r,k,ij ∼ χ2
1 (4.34)

for all ω ∈ Ωobs, r = 1, . . . ,R, k = 1, . . . , K, i = 1, . . . , Tkd and j < i. Denote

Hm,ω,r,k

[
H⊤

m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,k = (ϕm,ω,r,k,ij) (4.35)

and Sm,ω,r = (sm,ω,r,ij), with i′ = ⌈i/d⌉, j′ = ⌈j/d⌉, i∗ = i mod d, and j∗ = j mod d.

Theorem 4.17. Under the conditions listed in Section 4.3.1, a finite sample contain-

ing T observations, R random generated FNNs, and φ realizations in the set Ωobs, the

estimate for the variation parameter ϑ̂m defined in Equation 4.10 follows a generalized

chi-square distribution.

ϑ̂m ∼
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

Tkd∑
i=1

[
(ϕm,ω,r,k,i′i′ + 1) sm,ω,r,k,i∗i∗Xm,ω,r,k,i

+

d⌊(i−1)/d⌋∑
j=1

ϕm,ω,r,k,i′j′sm,ω,r,k,i∗j∗ (Ym,ω,r,k,ij − Zm,ω,r,k,ij)

+
i−1∑

j=d⌊(i−1)/d⌋+1

(ϕm,ω,r,k,i′j′ + 1) sm,ω,r,k,i∗j∗ (Ym,ω,r,j,ij − Zm,ω,r,k,ij)

]
(4.36)

4.4 Simulation Study

The ability of the permutation-based methodology of NPGC (similar to the decision

rule formulation of TCDF) to detect the presence of functional connectivity and

control for false positive results is evaluated with a consistent FNN framework (like

the cMLP nonlinear transformation). All methods featurize the data to dimension
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N = 100. Three of the five comparison methods use in-sample methodology and

variants of the lasso penalty within cMLP models (Tank et al., 2022; Tibshirani,

1996). The other two employ random FNN generation like NPGC, and in-sample

testing from comparison of restricted and unrestricted models or the substitution of

random Gaussian noise.

Multiple testing on bivariate pairs is not examined; a group decision process is

considered where the covariate set X is (or is not) collectively Granger causal for the

response Y. Ability to detect a Granger causal result will almost certainly improve

with a more sophisticated nonlinear structure; relative differences between methods

are demonstrated at a baseline level. A full list of included methods is given in Table

4.1.

Table 4.1: Testing frameworks for Granger causal inference simulations.

(i) Nonlinear Permuted Granger Causality (NPGC)

(ii) cMLP, Group Lasso Penalty (cMLP-GL)

(iii) cMLP, Group Sparse Group Lasso Penalty (cMLP-GSGL)

(iv) cMLP, Hierarchical Lasso Penalty (cMLP-H)

(v) Restricted vs. Unrestricted Models (R/U)

(vi) Gaussian Noise Substitution (GNS)

The lasso type objectives of cMLP methods (ii) - (iv) penalize nonzero rows of

the matrix W1i in the formulation of Equation 1.4 (or W in Equation 4.7). The cor-

responding null and alternative hypotheses are adjusted to those shown in Equation

4.37, and a Granger causal connection is present for a covariate set if any correspond-
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ing rows of W1i contain nonzero components (Tank et al., 2022).

H0 : W1i
j = 0 for all j corresponding to the covariate set X

HA : W1i
j ̸= 0 for at least one j corresponding to the covariate set X (4.37)

A group lasso penalty is applied to each variable j in the model matrix W1i corre-

sponding to the covariate set X over all time lags t, . . . , t−γ (Yuan and Y. Lin, 2006).

As in Tank et al. (2022), define W1i
j =

[
W1i

j,t · · · W1i
j,t−γ

]
, with each entry as the

weights of the model matrix row for variable j and lagged data up to t− γ. Penalties

for the cMLP methods take the general form λ
∑p

j=1 β
(
W1i

j

)
, with specific β for

each defined below.

βGL

(
W1i

j

)
=
∥∥W1i

j

∥∥
F

(4.38)

βGSGL

(
W1i

j

)
=
∥∥W1i

j

∥∥
F
+

γ∑
k=0

∥∥W1i
j,t−k

∥∥
2

(4.39)

βH

(
W1i

j

)
=

γ∑
k=0

∥∥[W1i
j,t−k · · · W1i

j,t−γ

]∥∥
F

(4.40)

The group sparse group lasso penalty combines sparsity of included variables and

their lagged values like in Simon et al. (2013), and the novel hierarchical penalty of

Tank et al. (2022) retains information about the natural ordering of the variables,

encouraging solutions where for some lag k∗, k > k∗ implies W1i
j,t−k = 0. A regu-

larization parameter of λ = 0.5 is chosen based on a cross-validation like trial and

error approach. Conclusions drawn from these methods can vary greatly depending

on the chosen λ; smaller values retain all matrix entries and larger values penalize

the matrix to zero. Effects of varying λ are shown for the application in Section 4.5.

Two additional naive methods are included for comparison to NPGC. The in-
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sample restricted and unrestricted method examines the ratio of model residuals

σ̂2
Res/σ̂

2
Unres in a randomly generated FNN. The in-sample Gaussian noise substitution

is methodologically similar, but instead substitutes Gaussian white noise in place of

the covariate set X to examine σ̂2
Noise/σ̂

2
Unres. The three model errors are shown in

Equations 4.41 to 4.43, where E ∼MN T×p (0, I, I), and the corresponding σ̂2 shown

in Equation 4.44.

UUnres,r = Y− tanh ([1 Ylag Z X]Wr)Wo
Unres,r (4.41)

URes,r = Y− tanh ([1 Ylag Z 0]Wr)Wo
Res,r (4.42)

UNoise,r = Y− tanh ([1 Ylag Z E]Wr)Wo
Noise,r (4.43)

σ̂2
r = T−1U⊤

r Ur (4.44)

The individual terms in Equation 4.44 follow chi-square distributions with degrees

of freedom T − N , and each ratio for an individual generated FNN is distributed

FT−N,T−N . The sum of a large number of these independent (via Condition 4.12)

statistics, all random FNNs r = 1, . . . ,R, is approximately normal. As R→∞ under

the null hypothesis,

R−1

R∑
r=1

σ̂2
0,r

σ̂2
1,r

D−→ N
[

T −N

T −N − 2
,

4(T −N)2(T −N − 1)

R(T −N)(T −N − 2)2(T −N − 4)

]
. (4.45)

This is used to formulate a naive decision rule with a large number (R = 1000) of

randomly generated FNNs.

The NPGC methodology is performed with M = 400 permutations, K = 5 cross

validation folds, and R = 50 randomly generated FNNs. The methods are successful

when correctly flagging a Granger causal result when direct functional dependence
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is present, or correctly labelling a non-causal result when it is absent, leading to the

potential outcomes in Table 4.2. For the NPGC and naive ratio methods, a result is

flagged if the quantile estimate of the associated statistic under the null hypotheses

is under a specified level α. The lasso-type methods lack the direct translation to a

traditional hypothesis testing framework.

Table 4.2: Potential simulation outcomes.

Truth

Result Granger causal (GC = 1) Not causal (GC = 0)

Granger causal (GC = 1) ρ1 =
∑

S 1 {D = 1} /N1 ρ10 =
∑

S 1 {D = 1} /N0

Not causal (GC = 0) ρ01 =
∑

S 1 {D = 0} /N1 ρ0 =
∑

S 1 {D = 0} /N0

Proportion of potential outcomes for the decision D of each of the methods shown in Table
4.1. The set S represents the space of all simulations (both GC = 1 and GC = 0) within a
given setting, N1 =

∑
S 1 {GC = 1}, and N0 =

∑
S 1 {GC = 0}.

4.4.1 Simulation Settings

NPGC and the comparator methods in Table 4.1 are tested on two nonlinear pro-

cesses: Lorenz-96 models of Karimi and Paul (2010), and TAR models introduced by

Tong and Lim (1980). The p-dimensional Lorenz-96 model (p ≥ 4) is governed by

the continuous differential equation

dxi,t

dt
= (xi+1,t − xi−2,t) xi−1,t − xi,t + F, (4.46)

with i = 1, . . . , p and boundary series x−1,t = xp−1,t, x0,t = xp,t, and xp+1,t = x1,t. F

is a forcing constant generated as F ∼ Uniform(5, 20) with higher values introducing

a larger degree of nonlinear, chaotic behavior. For data generation, a sampling rate



115

of ∆t = 0.05 and a burn-in period of 500 time steps are used.

The TAR(2) model is governed by a similar skeleton to a VAR, but allows for

changes in parameters based on the value of a threshold variable (Tong and Lim,

1980).

 xt

xt−1

 =

A(k)
1 A(k)

2

I 0


xt−1

xt−2

+

ε(k)t

0

 . (4.47)

The threshold is defined on the values in xt−2 with regime k = 1 corresponding to

the case when
∑p

i=1 xi,t−2 ≤ 0 and k = 2 to
∑p

i=1 xi,t−2 > 0. For the TAR(2) process,

ε
(k)
t ∼ Np (0, σ2

kI) where σ1 = 0.5 and σ2 = 0.2. Each A(k)
1 ,A(k)

2 ∈ Rp×p has elements

A(k) = (a
(k)
ij ) ∼ Uniform(−0.5, 0.5) that are thresholded to zero if |a(k)ij | < 0.1, and

their spectral radii are at most 0.8 to ensure stationary data generation. Like the

Lorenz-96 data generation procedure, there is a burn-in period of 500 time steps.

Two groups of dependent data observations are generated with p = 6 (one from

each process), containing xi for i = 1, . . . , 12. The series i = 1, . . . , 6 are labelled

as the Lorenz-96 process and i = 7, . . . , 12 as the TAR(2) process. The samples are

of length T = 250, 500, and 1000 after burn-in and truncation for lag selection to

include in the model, γ = 3. One index is selected to serve as the response, three to

serve as the set of additional variables Z and three for the covariate set X depending

on a Granger causal designation. A dataset is designated “Granger causal” if at least

one series in X has a direct influence on the selected response (i.e., one series in X is

chosen from the same generating process). For each of the settings in Table 4.3, 200

datasets are generated for a total of 4800 trials.
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Table 4.3: NPGC simulation settings.

Response Variable T # Causal in X # Causal in Z

Lorenz-96 {250, 500, 1000} {0, 2} {0, 2}

TAR(2) {250, 500, 1000} {0, 2} {0, 2}

A variable is labelled causal if from the same generating process as the response Y. Variables
are randomly selected from within their causal or non-causal groups.

4.4.2 Simulation Results

Simulation results are split by Granger causal designation and process of the chosen

response variable. The control for false positive results and the ability to detect a

Granger causal connection is examined in each setting. AUROC is not considered as

it does not implicate a decision rule a priori. Tables 4.4 and 4.5 list the proportion

of correctly identified causal relationships ρ1 for TAR(2) and Lorenz-96 response

variables, respectively. Results for the finer grid of designations from Table 4.3 are

given in Appendix C.

Table 4.4: TAR(2) response compiled simulation results.

NPGC cMLP-GL cMLP-GSGL cMLP-H R/U GNS

T = 250 0.915 0.870 0.155 0.555 0.752 0.989

T = 500 0.965 0.852 0.132 0.558 0.842 0.998

T = 1000 0.985 0.850 0.122 0.500 0.850 1.000

Proportion of correctly labelled Granger causal outcomes (GC = 1, ρ1 in Table 4.2).

Figures 4.1 and 4.2 plot the observed Type 1 error by specified level of test,

with a target 45 degree line included for reference. The NPGC method succeeds in

identifying many cases of Granger causal influence in both processes, and as expected,



117

Table 4.5: Lorenz-96 response compiled simulation results.

NPGC cMLP-GL cMLP-GSGL cMLP-H R/U GNS

T = 250 0.978 0.765 0.232 0.482 0.025 1.000

T = 500 0.988 0.728 0.160 0.442 0.001 1.000

T = 1000 0.992 0.715 0.128 0.412 0.020 1.000

Proportion of correctly labelled Granger causal outcomes (GC = 1, ρ1 in Table 4.2).
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Methods that adhere to a chosen level of test will lie closer to the uniform CDF (gray)
included for clarity that indicates the reference quantile α.

Figure 4.1: Type 1 error control for TAR(2) simulations.

this ability approaches the upper limit as the number of time points increases. The

cMLP methods provide spotty results, and these are greatly influenced by the selected

parameter λ. Without guidance for a specific penalty selection, the global decision of

“Granger causal” or “non-causal” is uncertain. The naive restricted and unrestricted

model method fails to identify many Granger causal pairings in the Lorenz-96 trials.

The Gaussian noise substitution method correctly identifies nearly all Granger causal

pairs, but this comes at the cost of uncontrolled Type 1 error (see Figures 4.1 and

4.2).

Under the null hypothesis, moderate adherence to the asymptotic properties shown
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Figure 4.2: Type 1 error control for Lorenz-96 simulations.

in Theorem 4.15 is demonstrated. The NPGC permutation methodology tracks rela-

tively close to the included reference CDFs in Figure 4.1 for TAR(2) simulation set-

tings, and exhibits mild to moderate deviations for Lorenz-96 settings in Figure 4.2.

These deviations can likely be attributed to the complicated nature of the chaotic

Lorenz system; the same pattern is not observed in other simulations when both

groups are generated by a TAR(2) process (see Figure C.3 in the Appendix C). The

cMLP lasso methods are included as horizontal lines in these plots; they do not have

a straightforward extension for a specific level of test, other than computationally

expensive iteration over several penalties λ. The naive methods do not adhere to

their theoretical Type 1 error control, but approaches in the noise substitution realm

appear promising if this issue can be resolved.

Granger causal identification methods that use a penalized objective can be useful,

but do not allow for the global decision to label a group of variables “Granger causal”

or “non-causal”. These methods should be applied to narrow the scope of research to

individual variables of the covariate set after a global method is applied.
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4.5 Application Study

The out-of-sample permutation framework is applied to neuronal responses to acoustic

stimuli in the primary auditory cortex of an anesthetized (ketamine–medetomidine)

rat. The data, taken from the Collaborative Research in Computational Neuroscience

data sharing website, consists of in vivo whole-cell recordings (mV) sampled at 4kHz

in response to natural sound fragments (Machens, Wehr, and Zador, 2004; Asari

et al., 2009). A time region of interest between 11 and 15 seconds is isolated from

experimental trial 60 of the 050802mw03 data (partially shown in Figures 2D and

2E of Machens, Wehr, and Zador (2004)). The subset of data corresponds to the

recordings in response to a jaguar (Panthera onca) mating call sound fragment pre-

sented at 97.656 kHz; this is resampled to a frequency of 4kHz matching that of the

response. Additional sound fragments of a Humpback whale (Megaptera novaean-

gliae) and Knudsen’s frog (Leptodactylus knudseni), played in other trials throughout

the experiment, are included to construct a simplistic, non-causal scenario. Figure

4.3 displays the whole-cell recordings to the jaguar mating call and all sound frag-

ments examined. Machens, Wehr, and Zador (2004) contains additional detail on

data collection and experimental methods.

Performance of the Granger causal detection methodology is evaluated by formu-

lating a farcical example in which any suitable method should be able to recover the

correct causal structure. The methods are expected to flag the jaguar sound frag-

ment as causal, while correctly labelling the other two included fragments non-causal.

Lagged information from 30ms to 40ms is isolated for inclusion, consistent with the

measured the half-maximal synaptic conductance in Wehr and Zador (2003). One

acoustic stimulus fragment is chosen as the covariate set X and the others are ad-
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Top: In vivo whole-cell recordings (mV) from the contralateral (left) primary auditory cortex
of an anesthetized rat. Bottom: Jaguar mating call acoustic stimulus fragment resampled
at 4kHz. Humpback whale and Knudsen’s frog acoustic stimuli are included as non-causal
examples for the methodology.

Figure 4.3: Responses to acoustic stimuli in the primary auditory cortex of an anes-
thetized rat.

ditional variables Z in the model. Lagged values of the response are included up

to 10ms. The NPGC method is implemented with M = 400 permutations, K = 5

cross validation folds, R = 50 randomly generated FNNs, and a feature dimension of

N = 250 due to the large number of covariates. The comparator penalized optimiza-

tion methods are examined at the same dimension and a variety of penalty values.

The selection of the penalty λ presents a major challenge, and this value must be

chosen prior to analysis; it should not be fine-tuned after the fact to produce a de-

sired (already known) result. Results for the fabricated, naive scenario are compiled

in Figure 4.4. Permutation based methodology extracts the correct relationship be-

tween the jaguar mating call sound fragment and the whole-cell recording response,
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NPGC quantiles Q̂M = 0.0025, 1.000, 0.4425, from top to bottom. The NPGC method
recovers the correct causal structure, while the lasso-based cMLP methods fail to isolate
the jaguar stimulus.

Figure 4.4: Estimated Granger causal relationship between each acoustic stimulus
and primary auditory cortex response.

and the penalized variable selection approaches do not.

4.6 Discussion

The NPGC methodology illustrates the use of the permutation-based shift from in-

sample to out-of-sample testing. Permutation tests are used widely in literature, and

Nauta, Bucur, and Seifert (2019) implement a decision rule similar to NPGC. This

chapter explicitly defines Granger causality in this framework, and it provides a the-

oretical analysis of the corresponding variance estimates and decision rule. The shift

allows for control in identifying useful functional relationships when overfitting from

an artificial network becomes a concern, and removes the burden of specifying reg-

ularization parameters that have a major impact on the observed outcome. Once a

Granger causal outcome has been determined, penalized variable selection techniques

provide a practical screening method for identifying the prominent relationships, but

they do not effectively estimate the global presence or absence of functional connec-

tivity.
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The permutation framework is able to detect the presence of functional connectiv-

ity, and provide a safeguard against misidentification of data-specific noise as func-

tional dependence when the artificial network is overfit. Alternative formulations

of the featurizing function Ψ in Equation 4.7 can utilize the same methodological

structure and retain the theoretical guarantees provided the transformation meets

the required conditions listed at the beginning of Section 4.3.1 and the construction

allows for row-wise permutation without breaking the dependence structure across

variables in X. Misspecification of the dimension of the feature space should only

produce additional false negative results as long as N is less than the number of data

points used in model estimation. Using a large enough dimension to capture any

potential nonlinear dependence structure that may exist in the dataset is suggested.

The NPGC method may exhibit slight undercoverage for a chosen level of test, but

minor deviations in this realm are not of great concern if the result is correctly in-

terpreted as a potential functional connection and not an outright causal effect. The

permutation method circumvents the need for a penalty parameter selection, and

provides ease of extension to multiple testing problems and control of family-wise

error rate.

Potential misuses of Granger causality include, but are not limited to, repeated

application to subsets of a selected covariate group without adequate Type 1 error

correction, disregard for the conditional nature of the inferential conclusion, attempts

at individual rather than collective covariate inference (unless model specification

is complete and exact), inclusion of a covariate without careful scientific or logical

reasoning, and use as an outright mechanism for identifying causal relationships rather

than predictive links for future study. Prudent selection of the length of lag response

included in the covariate matrix is required, and two values may produce different
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results. In nonlinear processes, selection of the relevant history of the response for

inclusion in the model remains an area of future study.
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Chapter 5

Conclusion

Representation learning harnesses the ability to uncover information about a dataset

Y via a functional transformation Ψ, as defined in Equation 1.13. With careful choice

of Ψ, nonlinear features of the data become linearly separable, and methods can ex-

amine the transformed data H to glean information about the behavior of the original

process. This idea is broadly applicable to many areas of research including includ-

ing classification, natural language processing, signal processing, transfer learning,

finance, economics, and biology applications (Bishop, 2006; Bengio, Courville, and

Vincent, 2013; LeCun, Bengio, and Hinton, 2015; Goodfellow, Bengio, and Courville,

2016).

This dissertation focuses on using ANNs as universal function approximators to

transform data of interest Y into a representative set of network states H (Cybenko,

1989; Hornik, 1991). Featurization by an ANN N escapes the burden of specifying

a “close enough” functional form for nonlinear temporal dependence in multivariate

time series, and linear techniques are applicable to the transformed network states.

Chapters 2 and 3 employ ESNs to identify change points in arbitrarily dependent

data by examining the relationships between the hidden state vectors in regions of

time, and Chapter 4 uses a simple MLP to extract information about functional

relationships in multivariate time series as it relates to Granger causality.

Future work can extend methodology to classification of temporal regimes in a
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multivariate time series, allow for inspection of functional relationships in the pres-

ence of generic (non-Gaussian) and autocorrelated errors, retain covariate specific

information streams for interpretability and individual inference, bolster the theoret-

ical underpinnings of the artificial network transformations, and explain the repre-

sentative ability of the network states relative to chosen network architectures and

specifications. In examination of arbitrarily dependent and multivariate time series

data, representation learning is a promising strategy for prospective research when

model recovery is not the main goal.
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Appendix A

Additional Material for Chapter 2

Code and supporting material: Files (.RData) used to assess performance of change

point methods, code (.R) used to generate results and figures, and data (.mat

and .csv) and code (.R) used to generate output in Section 2.5 can be found at

github.com/noahgade/ChangePointDetectionWithConceptors.

A.1 Additional Figures
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(b) Fraction of identified points within error, white noise simulations with variance change
σ, IDs (5d-g).
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ρ, ID (5h).

Figure A.1: Gaussian white noise simulation results.
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Figure A.2: CCP method visualization of Figure 2.5 (middle).
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Figure A.3: CCP method visualization of Figure 2.5 (bottom).
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A.2 Additional Tables

Table A.1: VAR(1) simulation results.

CCP02 CCP04 CCP08 CCP16 EDiv KCP SBS1 SBS2

ρ = 0.5→ 0.5 0.576 0.620 0.716 0.700 0.192 0.556 0.011 0.584

ρ = 0.5→ 0.8 0.755 0.751 0.784 0.795 0.385 0.600 0.029 0.606

ρ = 0.8→ 0.5 0.549 0.609 0.698 0.682 0.393 0.668 0.044 0.679

ρ = 0.8→ 0.8 0.685 0.719 0.766 0.775 0.288 0.523 0.032 0.656

Mean ARI of VAR(1) spectral radius ρ changes, IDs (1a-d).

Table A.2: VAR(2) simulation results.

CCP02 CCP04 CCP08 CCP16 EDiv KCP SBS1 SBS2

ρ = 0.5→ 0.5 0.595 0.694 0.774 0.769 0.239 0.607 0.012 0.575

ρ = 0.5→ 0.8 0.837 0.848 0.873 0.883 0.293 0.677 0.012 0.654

ρ = 0.8→ 0.5 0.610 0.697 0.769 0.816 0.302 0.655 0.016 0.622

ρ = 0.8→ 0.8 0.776 0.822 0.839 0.880 0.310 0.606 0.027 0.621

Mean ARI of VAR(2) spectral radius ρ changes, IDs (2a-d).
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Table A.3: Periodic simulation results.

CCP02 CCP04 CCP08 CCP16 EDiv KCP SBS1 SBS2

ω = 1→ 0.5 0.943 0.936 0.953 0.961 0.000 0.057 0.000 0.057

ω = 1→ 0.8 0.649 0.597 0.559 0.586 0.000 0.056 0.000 0.000

ω = 1→ 1.2 0.587 0.605 0.538 0.532 0.000 0.056 0.000 0.000

ω = 1→ 1.5 0.932 0.935 0.940 0.941 0.000 0.055 0.000 0.000

Mean ARI of periodic frequency ω changes, IDs (3a-d).

Table A.4: Ornstein-Uhlenbeck simulation results.

CCP02 CCP04 CCP08 CCP16 EDiv KCP SBS1 SBS2

θ = 0.5→ 0 0.709 0.718 0.716 0.701 0.516 0.633 0.419 0.199

θ = 0.5→ 1 0.056 0.124 0.479 0.538 0.241 0.359 0.018 0.368

θ = 1→ 0 0.738 0.743 0.738 0.736 0.523 0.633 0.406 0.720

θ = 1→ 0.5 0.328 0.367 0.365 0.311 0.304 0.348 0.020 0.313

(a) Mean ARI of mean reverting θ changes, IDs (4a-d).

CCP02 CCP04 CCP08 CCP16 EDiv KCP SBS1 SBS2

λ = 0.5→ 0.2 0.922 0.924 0.924 0.926 0.874 0.949 0.053 0.927

λ = 0.5→ 0.8 0.909 0.896 0.882 0.870 0.558 0.861 0.005 0.836

λ = 0.5→ 1 0.936 0.935 0.934 0.931 0.767 0.942 0.016 0.886

(b) Mean ARI of volatility λ changes, IDs (4e-g).
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Table A.5: Gaussian white noise simulation results.

CCP02 CCP04 CCP08 CCP16 EDiv KCP SBS1 SBS2

µ = 0→ 0.5 0.478 0.532 0.620 0.638 0.868 0.904 0.802 0.000

µ = 0→ 0.8 0.840 0.846 0.850 0.845 0.922 0.962 0.899 0.002

µ = 0→ 1 0.899 0.894 0.897 0.898 0.940 0.974 0.898 0.000

(a) Mean ARI of mean µ changes, IDs (5a-c).

CCP02 CCP04 CCP08 CCP16 EDiv KCP SBS1 SBS2

σ = 1→ 0.5 0.921 0.916 0.905 0.905 0.883 0.964 0.011 0.866

σ = 1→ 0.8 0.720 0.718 0.578 0.527 0.039 0.716 0.007 0.345

σ = 1→ 1.2 0.631 0.604 0.503 0.409 0.032 0.599 0.001 0.214

σ = 1→ 1.5 0.917 0.903 0.891 0.872 0.690 0.920 0.005 0.796

ρ = 0→ 0.8 0.034 0.040 0.082 0.087 0.299 0.916 0.000 0.857

(b) Mean ARI of variance σ and covariance ρ changes, IDs (5d-h).

Table A.6: No change point simulation results.

ID Class CCP02 CCP04 CCP08 CCP16 EDiv KCP SBS1 SBS2

(1e) VAR(1) 0.07 0.07 0.04 0.06 0.41 1.00 0.01 0.01

(1f) VAR(1) 0.06 0.07 0.05 0.08 0.54 1.00 0.01 0.00

(2e) VAR(2) 0.06 0.06 0.07 0.06 0.44 1.00 0.01 0.02

(2f) VAR(2) 0.09 0.08 0.08 0.08 0.35 1.00 0.01 0.00

(3e) Periodic 0.07 0.09 0.06 0.09 0.00 1.00 0.00 0.00

(4h) Orn.-Uhl. 0.04 0.04 0.03 0.04 0.99 1.00 0.02 0.00

(4i) Orn.-Uhl. 0.05 0.05 0.04 0.05 0.03 1.00 0.00 0.01

(5i) Wh. Noise 0.06 0.08 0.05 0.05 0.05 1.00 0.00 0.01

Observed Type 1 error for q = 0.05 with no change point.
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A.3 Additional Algorithms

This section presents additional procedures composing the main algorithms in Chap-

ter 2.

Procedure A.1 ESN Featurization: I. Scaling
Inputs: time series data yt ∈ Rd; training window length Ttrain

Outputs: ESN scaling parameters

Default Parameters: ESN spectral radius ρ← 0.8; grid of possible Wi
r, br scalings

G← {cinput ← {0.2, 0.6, 1.0, 1.4}, cbias ← {0.1, 0.3, 0.5}}; test reservoir size N ← 10d;

number of initializations R ← 10; approximate washout length T ∗
wash ← 50; output

regularization parameter λ← 10−4

1: for each grid scaling combination of cinput and cbias in G do

2: for r in 1 : R do

3: initialize Wi
r,br,Wh

r where each element N (0, 1), and Wh
r is sparse

4: Wi
r ← cinputWi

r; br ← cbiasbr

5: Wh
r ← ρWh

r/max
{

v⊤Wh
rv : ||v|| = 1

}
6: hr,t ← tanh

(
Wh

rhr,t−1 + Wi
ryt + br

)
for t = 1, . . . , T ∗

wash + Ttrain

7: Wo
r ←

(
H⊤

r Hr + λI
)−1 H⊤

r Y where Hr =
[
hr,T ∗

wash+1 · · · hr,T ∗
wash+Ttrain

]⊤
8: end for

9: NRMSE← 1

R

R∑
j=1

√
(Y−HrWo

r)
2

1
2

Var(Y)+ 1
2

Var(HrWo
r)

10: end for

return ESN scaling : {cinput, cbias, ρ} ← arg min
G
{NRMSE}
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Procedure A.2 ESN Featurization: II. Washout Length
Inputs: time series data yt ∈ Rd; training window length Ttrain; ESN scaling :

{cinput, cbias, ρ} from Procedure A.1; reservoir size N

Outputs: washout length Twash

Default Parameters: initial reservoir states hr,0,0 ← 0, hr,0,1 ← 1; washout toler-

ance εwash ← 10−6; initial time state t← 0; number of initializations R← 10

1: δ01 ← |hr,0,0 − hr,0,1|

2: while δ01 > εwash do

3: for r in 1 : R do

4: initialize Wi
r,br,Wh

r where each element N (0, 1), and Wh
r is sparse

5: Wi
r ← cinputWi

j; br ← cbiasbr

6: Wh
r ← ρWh

r/max
{

v⊤Wh
rv : ||v|| = 1

}
7: hr,t,0 ← tanh

(
Wh

rhr,t−1,0 + Wi
ryt + br

)
8: hr,t,1 ← tanh

(
Wh

rhr,t−1,1 + Wi
ryt + br

)
9: end for

10: δ01 ← maxj |hr,t,0 − hr,t,1|

11: if δ01 > εwash then

12: t← t+ 1

13: else

14: Twash ← t

15: end if

16: end while

return Twash, Wi
r,br,Wh

r
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Procedure A.3 ESN Featurization: III. Parameter Computation
Inputs: time series data yt ∈ Rd; training window length Ttrain; ESN scaling (cinput,

cbias, and ρ← 0.8) from Procedure A.1; Twash from specified value or Procedure A.2

Outputs: ESN reservoir size N ; aperture α

Default Parameters: training error tolerance εtrain ← 0.04; initial reservoir size

N ← 10d; initial aperture value α ← N ; number of initializations R ← 10; output

regularization parameter λ← 10−4

1: while NRMSE > εtrain do

2: perform Procedure A.2 to obtain Twash, Wi
r,br,Wh

r

3: for r in 1 : R do

4: hr,t ← tanh
(
Wh

rhr,t−1 + Wi
ryt + br

)
for t = 1, . . . , Twash + Ttrain

5: Cr ← 1
Ttrain

H⊤
r Hr

(
1

Ttrain
H⊤

r Hr + α−2I
)−1

where Hr = [hr,Twash+1 · · · hr,Twash+Ttrain ]
⊤

6: hr,t ← tanh
(

Wh
rh̃r,t−1 + Wi

ryt + br

)
7: h̃r,t ← Crhr,t for t = Twash + 1, . . . , Twash + Ttrain

8: Wo
r ←

(
H̃⊤

r H̃r + λI
)−1

H̃⊤
r Y

where H̃r =
[
h̃r,Twash+1 · · · h̃r,Twash+Ttrain

]⊤
9: end for

10: NRMSE← 1

R

R∑
j=1

√
(Y−H̃rWo

r)
2

1
2

Var(Y)+ 1
2

Var(H̃rWo
r)

11: if NRMSE > εtrain and α ≤ 100N then

12: α←
√
10α

13: else

14: N ← dN ; α← N

15: end if

16: end while

return N , α, Twash
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Procedure A.4 Generating Bootstrapped Time Series
Inputs: time series data yt ∈ Rd; training length Ttrain; Twash from Algorithm 2.1

Outputs: bootstrapped time series yb,t

Default Parameters: number of bootstraps B ← 240; pilot block length ℓ← Twash

1: Perform Hall, Horowitz, and Jing (1995) algorithm with ℓ, five proposed block

lengths equally spaced between ⌈T 1/5⌉ and ⌈T 1/2⌉, and 40 bootstrapped series

each to obtain MBB block length parameter L.

2: for b in 1 : B do

3: for i in 1 : ⌈(T − Twash − Ttrain) /L⌉ do

4: βb,i ← β ∼ Uniform {Twash + Ttrain + 1, T}

5: bi ← yβb,i:(βb,i+L−1)

6: end for

7: yb
t ←

[
y⊤
1:(Twash+Ttrain)

b⊤
1 · · · b⊤

⌈(T−Twash−Ttrain)/L⌉

]⊤
1:T

8: end for

return all yb,t
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A.4 Proofs

Proof of Theorem 2.2 follows Csörgő and Horváth (1997), Theorem 2.6.1 with the

relaxation of the i.i.d. sequence to a stationary, S-mixing sequence. The proof consists

of two major steps. First, we show the statistic converges to a sequence of Gaussian

processes (Lemma A.1). Because of the relaxation from an i.i.d. sequence to a

S-mixing sequence, the rates of convergence shown in Csörgő and Horváth (1997),

Lemma 2.6.1 are adjusted. Next we show that the sequence of Gaussian processes, in

turn, converges in distribution to the desired limiting process (Lemma A.2).

Define the quantity KT (s, t) in Equation A.1 on the domain 1 ≤ t ≤ T − 1 as

a scaled difference between the two empirical CDFs. This is a common form akin

to that used in Csörgő and Horváth (1997), Chapter 2 with a modification of the

denominator.

KT (s, t) =

[
t(T − t)

T 2

](
F̂1:t(s)− F̂(t+1):T (s)

)
(A.1)

We scale the time domain to δ ∈ [0, 1] such that δ = t/T , and define F1:δT (s) =

F1(s) and FδT :T (s) = FT (s) as the distribution functions on the intervals (0, δ] and

[δ, 1), respectively, with F̂1:δT (s) and F̂δT :T (s) as their corresponding empirical esti-

mates. Equation A.1 can be adjusted to the analogous form,

KT (s, δ) =

[
δT (T − δT )

T 2

](
F̂1:δT (s)− F̂δT :T (s)

)
. (A.2)

We now state and prove our Lemma A.1. The proof requires Theorem 2 from

Berkes, Hörmann, and Schauer (2009), which we restate at the end of this section,

without proof, for convenience.
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Lemma A.1. Let St be a stationary sequence such that F(s) = P (S1 ≤ s) is Lipschitz

continuous of order C > 0. Assume St is S-mixing and that condition (1) of Definition

2.1 holds with γm = m−AC, δm = m−A for some A > 4. Then under the null hypothesis

with q(δ) a positive function on (0, 1) that increases in a neighborhood of zero and

decreases in a neighborhood of one,

sup
1/T≤δ≤(T−1)/T

sup
s∈[0,1]

∣∣∣√T KT (s, δ)−KT (s, δ)
∣∣∣ /q(δ) = o(1), (A.3)

where KT (s, δ) is defined in Equation A.2, {KT (s, δ), 0 ≤ δ ≤ 1} is a sequence of

Gaussian processes with

E [KT (s, δ)] = 0,

E [KT (s, δ) KT (s
′, δ′)] = (δ ∧ δ′) Γ(s, s′),

and Γ(s, s′) =
∑

−∞<t<∞

E [S1(s)St(s
′)] , (A.4)

provided I0,1(q, c) <∞ for all c > 0, where

I0,1(q, c) =

∫ 1

0

1

δ(1− δ)
exp

{
− cq2(δ)

δ(1− δ)

}
dδ. (A.5)

Proof of Lemma A.1. With F(s) denoting the true distribution function of all St
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under the null, we can write KT (s, t) from Equation A.1 as

√
T KT (s, t) =



1√
T

(∑t
i=1 (1{Si ≤ s} − F(s))− t

T

∑T
i=1 (1{Si ≤ s} − F(s))

)
for 1 ≤ t ≤ T/2,

1√
T

(
T−t
T

∑T
i=1 (1{Si ≤ s} − F(s))−

∑T
i=t+1 (1{Si ≤ s} − F(s))

)
for T/2 ≤ t ≤ T − 1.

(A.6)

Replacing the strong approximation of empirical processes used in Csörgő and Horváth

(1997), Lemma 2.6.1 we use the S-mixing conditions and Theorem 2 from Berkes, Hör-

mann, and Schauer (2009). Define two Gaussian processes {K1(s, t), 1 ≤ t ≤ T/2}

and {K2(s, t), T/2 ≤ t ≤ T} such that

sup
1≤t≤T/2

sup
s∈[0,1]

∣∣∣∣∣
t∑

i=1

(1{Si ≤ s} − F(s))−K1(s, t)

∣∣∣∣∣ = o

((
T

2

)1/2(
log T

2

)−α
)
, (A.7)

and

sup
T/2≤t≤T

sup
s∈[0,1]

∣∣∣∣∣
T∑

i=t+1

(1{Si ≤ s} − F(s))−K2(s, t)

∣∣∣∣∣ = o

((
T

2

)1/2(
log T

2

)−α
)
,

(A.8)

for some α > 0 where the two processes have identical expected value and covariance
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functions.

E [K1(s, t)] = E [K2(s, t)] = 0

E [K1(s, t) K1(s
′, t′)] = E [K2(s, t) K2(s

′, t′)] = (t ∧ t′) Γ (s, s′)

Γ(s, s′) =
∑

−∞<t<∞

E [S1(s)St(s
′)] (A.9)

From the strong approximation in Equations A.7 and A.8, we define a sequence of

Gaussian processes KT (s, δ) based on the partial sums in Equation A.6 using the

scaled time domain δ ∈ [0, 1].

KT (s, δ) =


1√
T
(K1(s, δT )− δ [K1(s, T/2) +K2(s, T/2)]) for 0 ≤ δ ≤ 1/2,

1√
T
(−K2(s, δT ) + (1− δ) [K1(s, T/2) +K2(s, T/2)]) for 1/2 ≤ δ ≤ 1

(A.10)

Assembling Equations A.6, A.7, and A.8, we immediately obtain the result stated in

Equation A.3.

Lemma A.2. Let {KT (s, δ), 0 ≤ δ ≤ 1} be a sequence of Gaussian processes defined

in Equation A.4 and {K(s, δ), 0 ≤ δ ≤ 1} be a Gaussian process defined in Equation

2.11. Under the null hypothesis with q(δ) a positive function on (0, 1) that increases

in a neighborhood of zero and decreases in a neighborhood of one,

sup
δ∈[0,1]

sup
s∈[0,1]

|KT (s, δ)| /q(δ)
D−→ sup

δ∈[0,1]
sup
s∈[0,1]

|K(s, δ)| /q(δ), (A.11)

provided the result of Lemma A.1 holds for KT (s, δ) defined in Equation A.2, and

I0,1(q, c) <∞ for all c > 0, where I0,1(q, c) is defined in Equation A.5.
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Proof of Lemma A.2. We continue as in Theorem 2.6.1 from Csörgő and Horváth

(1997). From the definition of KT (s, δ) in Equation A.2 at the extreme ends of the

domain,

sup
0<δ<1/T

sup
s∈[0,1]

∣∣∣√T KT (s, δ)
∣∣∣ /q(δ) = 0, (A.12)

and

sup
(T−1)/T<δ<1

sup
s∈[0,1]

∣∣∣√T KT (s, δ)
∣∣∣ /q(δ) = 0. (A.13)

From the result of Lemma A.1 in Equation A.3 with the condition I0,1(q, c) <∞ for

all c > 0, we can obtain Equations A.14 and A.15.

sup
0<δ<1/T

sup
s∈[0,1]

|KT (s, δ)| /q(δ) = o(1) (A.14)

sup
(T−1)/T<δ<1

sup
s∈[0,1]

|KT (s, δ)| /q(δ) = o(1) (A.15)

Examining the covariance structure of KT (s, δ) will verify that

{KT (s, δ), 0 ≤ δ ≤ 1} D−→ {K(s, δ), 0 ≤ δ ≤ 1} , (A.16)

and via Kolmogorov’s zero-one law and Theorem A.7.3 from Csörgő and Horváth

(1997),

lim
δ↓0

sup
s∈[0,1]

|K(s, δ)| /q(δ) = 0 a.s. (A.17)

and lim
δ↑1

sup
s∈[0,1]

|K(s, δ)| /q(δ) = 0 a.s., (A.18)
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if and only if I0,1(q, c) < ∞ for all c > 0. Thus, we obtain the Lemma A.2 result

stated in Equation A.11.

We now use Lemmas A.1 and A.2 to prove Theorem 2.2.

Proof of Theorem 2.2. We combine the result from Lemma A.1 in Equation A.3 with

that of Lemma A.2 in Equation A.11 and can write

max
1≤t<T

sup
s∈[0,1]

√
T
KT (s, t)

q
(

t
T

) D−→ sup
δ∈[0,1]

sup
s∈[0,1]

|K(s, δ)| /q(δ), (A.19)

as shown in in Equation 2.10 provided the necessary condition, I0,1(q, c) <∞ for all

c > 0, is met with I0,1(q, c) defined in Equation A.5. We expand q(δ), defined in in

Theorem 2.2, as a piecewise function on δ ∈ [0, 1].

q(δ) =



κ for 0 ≤ δ < 1
2
− 1

2

√
1− 4κ1/ν ,

δν(1− δ)ν for 1
2
− 1

2

√
1− 4κ1/ν ≤ δ ≤ 1

2
+ 1

2

√
1− 4κ1/ν ,

κ for 1
2
+ 1

2

√
1− 4κ1/ν < δ ≤ 1

(A.20)

The integral from Equation A.5 becomes

I0,1(q, c) =

∫ 1
2
− 1

2

√
1−4κ1/ν

0

1

δ(1− δ)
exp

{
−cκ2δ−1(1− δ)−1

}
dδ

+

∫ 1
2
+ 1

2

√
1−4κ1/ν

1
2
− 1

2

√
1−4κ1/ν

1

δ(1− δ)
exp

{
−cδ2ν−1(1− δ)2ν−1

}
dδ

+

∫ 1

1
2
+ 1

2

√
1−4κ1/ν

1

δ(1− δ)
exp

{
−cκ2δ−1(1− δ)−1

}
dδ, (A.21)
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and for any c > 0 the boundary terms are finite with κ > 0.

∫ 1
2
− 1

2

√
1−4κ1/ν

0

1

δ(1− δ)
exp

{
−cκ2δ−1(1− δ)−1

}
dδ <∞ (A.22)

∫ 1

1
2
+ 1

2

√
1−4κ1/ν

1

δ(1− δ)
exp

{
−cκ2δ−1(1− δ)−1

}
dδ <∞ (A.23)

For the middle term,

∫ 1
2
+ 1

2

√
1−4κ1/ν

1
2
− 1

2

√
1−4κ1/ν

1

δ(1− δ)
exp

{
−cδ2ν−1(1− δ)2ν−1

}
dδ <∞ (A.24)

provided ν < 1/2 if κ → 0. For κ > 0, the range of values satisfying Equation A.24

includes ν = 1/2. Thus, from the specification of q(δ) in Theorem 2.2 with ν = 1/2

and κ > 0, I0,1(q, c) <∞ for all c > 0.

Proof of Theorem 2.3 follows the outline of Theorem 2.1 from Newey and McFadden

(1994) for consistency of extremum estimators. To meet the first three of the four

conditions, we show the statistic for selection of a change point is uniquely maximized

at the true change point τ , the set used for estimation is compact and bounded

away from the endpoints, and the statistic is continuous. To show the estimate of

the statistic converges uniformly in probability to the true values, we employ the

almost sure convergence of the empirical CDF of a stationary, ergodic sequence from

the Glivenko-Cantelli Theorem and the definition of stochastic equicontinuity and

Theorem 1 from Newey (1991), along with Lemmas A.3 and A.4. We include the

definition of stochastic equicontinuity from Newey (1991) and restate Theorem 2.1,

without proof, from Newey and McFadden (1994) at the end of the section. We first

proceed with our proof of Lemma A.3.

Lemma A.3. A sequence of functions Q̂T (δ) is stochastically equicontinuous if there
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exists α > 0, ÂT = o(1), and B̂T = O(1) such that for all δ̃, δ ∈ ∆, |Q̂T (δ̃)−Q̂T (δ)| ≤

ÂT + B̂T∥δ̃ − δ∥α.

Proof of Lemma A.3. We follow the strategy of the proof for Lemma 2.9 in Newey and

McFadden (1994). Pick ε, η > 0. By ÂT = o(1), P(|ÂT | > ε
2
) < η

2
for T large enough.

Likewise, by B̂T = O(1), there is M such that P(|B̂T | > M) < η
2

for all T large enough.

Let ΓT (ε, η) = ÂT+B̂T
ε

2M
and N (δ, ε, η) = {δ̃ : ∥δ̃−δ∥α ≤ ε

2M
}. Then, P(|ΓT (ε, η)| >

ε) = P(|ÂT + B̂T
ε

2M
| > ε) ≤ P(|ÂT |+ |B̂T

ε
2M
| > ε) ≤ P(|ÂT | > ε

2
)+P(|B̂T | > M) < η

and for all δ̃, δ ∈ N (δ, ε, η), |Q̂T (δ̃)− Q̂T (δ)| ≤ ÂT + B̂T∥δ̃ − δ∥α ≤ ΓT (ε, η).

For the statement and proof of Lemma A.4, we scale the time domain to δ ∈ [0, 1]

such that δ = t/T , with the true change point at δ0 = τ/T , and define F1:δT (s) and

FδT :T (s) as the distribution functions on the intervals (0, δ] and [δ, 1), respectively,

with F̂1:δT (s) and F̂δT :T (s) as their corresponding empirical estimates. Suppose the

true change point occurs at δ0 ∈ ∆, and divides the sequence into two distinct pieces

with distribution functions F1(s) = F1:δ0T (s) and FT (s) = Fδ0T :T (s), where F1(s0) ̸=

FT (s0) for some s0 ∈ [0, 1]. Define the supremum of the difference between the two

distributions θ > 0, where the quantity is maximized at s0.

θ = sup
s∈[0,1]

|F1(s)−FT (s)| = |F1(s0)−FT (s0)| (A.25)

Write Q0(δ) as below for δ ∈ ∆ =
[
1
2
− 1

2

√
1− 4κ2, 1

2
+ 1

2

√
1− 4κ2

]
, q(δ) = max{δ1/2(1−

δ)1/2, κ}, and κ > 0 a small constant.

Q0(δ) =
1

q(δ)

[
δT (T − δT )

T 2

]
sup
s∈[0,1]

|F1:δT (s)−FδT :T (s)| (A.26)

We construct Q̂T (δ) in Equation A.27 comparably to Q0(δ) while including the em-
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pirical CDFs F̂1:δT (s) and F̂δT :T (s).

Q̂T (δ) =
1

q (δ)

[
δT (T − δT )

T 2

]
sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣ (A.27)

Lemma A.4. Suppose the sequence St, 1, . . . , T divides into two stationary ergodic

pieces on either side of the change point τ , where 1 ≤ τ < T , and F1:τ (s0) ̸=

F(τ+1):T (s0) for some s0 ∈ [0, 1]. Then, Q̂T (δ) from Equation A.27 converges uni-

formly in probability to Q0(δ) from Equation A.26 on the interval

δ, δ0 ∈ ∆ =

[
1

2
− 1

2

√
1− 4κ2,

1

2
+

1

2

√
1− 4κ2

]
(A.28)

with q(δ) = max{δ1/2(1− δ)1/2, κ} for and some small κ > 0.

Proof of Lemma A.4. We use Theorem 1 from Newey (1991) and show uniform con-

vergence in probability with pointwise convergence and stochastic equicontinuity.

For any δ, δ0 ∈ ∆, we can write the distributions F1:δT (s) and FδT :T (s) as a mixture

between the distributions F1(s) and FT (s).

F1:δT (s) = 1{δ ≤ δ0}F1(s) + 1{δ > δ0}
[
δ0
δ
F1(s) +

δ − δ0
δ
FT (s)

]
(A.29)

FδT :T (s) = 1{δ ≤ δ0}
[
δ0 − δ

1− δ
F1(s) +

1− δ0
1− δ

FT (s)

]
+ 1{δ > δ0}FT (s) (A.30)

Taking the supremum of the difference between the distributions in Equations A.29
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and A.30 as it appears in Q0(δ),

sup
s∈[0,1]

|F1:δT (s)−FδT :T (s)|

= sup
s∈[0,1]

∣∣∣∣1{δ ≤ δ0}F1(s) + 1{δ > δ0}
[
δ0
δ
F1(s) +

δ − δ0
δ
FT (s)

]
− 1{δ ≤ δ0}

[
δ0 − δ

1− δ
F1(s) +

1− δ0
1− δ

FT (s)

]
+ 1{δ > δ0}FT (s)

∣∣∣∣ (A.31)

= sup
s∈[0,1]

∣∣∣∣1{δ ≤ δ0}
[
1− δ0
1− δ

F1(s)−
1− δ0
1− δ

FT (s)

]
− 1{δ > δ0}

[
δ0
δ
F1(s)−

δ0
δ
FT (s)

] ∣∣∣∣ (A.32)

= sup
s∈[0,1]

∣∣∣∣ [1{δ ≤ δ0}
1− δ0
1− δ

− 1{δ > δ0}
δ0
δ

] (
F1(s)−FT (s)

)∣∣∣∣ (A.33)

=

∣∣∣∣1{δ ≤ δ0}
1− δ0
1− δ

− 1{δ > δ0}
δ0
δ

∣∣∣∣ sup
s∈[0,1]

|F1(s)−FT (s)| (A.34)

=

∣∣∣∣1{δ ≤ δ0}
1− δ0
1− δ

− 1{δ > δ0}
δ0
δ

∣∣∣∣ θ. (A.35)

Considering the leading term in Equation A.26,

Q0(δ) =


θ
δ1/2(1− δ0)

(1− δ)1/2
for δ, δ0 ∈ ∆ and δ ≤ δ0,

θ
δ0(1− δ)1/2

δ1/2
for δ, δ0 ∈ ∆ and δ > δ0.

(A.36)

We expand the supremum term of Q̂T (δ) in a similar fashion depending on the rela-
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tionship between δ and δ0. For δ ≤ δ0,

sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣ = sup

s∈[0,1]

∣∣∣∣F̂1:δT (s)−
δ0 − δ

1− δ
F̂δT :δ0T (s)−

1− δ0
1− δ

F̂δ0T :T (s)

∣∣∣∣
= sup

s∈[0,1]

∣∣∣∣ (F̂1:δT (s)−F1(s)
)
+

δ0 − δ

1− δ

(
F1(s)− F̂δT :δ0T (s)

)
+

1− δ0
1− δ

(
FT (s)− F̂δ0T :T (s)

) ∣∣∣∣ (A.37)

≤ sup
s∈[0,1]

∣∣∣F̂1:δT (s)−F1(s)
∣∣∣+ δ0 − δ

1− δ
sup
s∈[0,1]

∣∣∣F̂δT :δ0T (s)−F1(s)
∣∣∣

+
1− δ0
1− δ

sup
s∈[0,1]

∣∣∣F̂δ0T :T (s)−FT (s)
∣∣∣

+
1− δ0
1− δ

sup
s∈[0,1]

|F1(s)−FT (s)| . (A.38)

And for δ > δ0,

sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣ ≤ δ0

δ
sup
s∈[0,1]

∣∣∣F̂1:δ0T (s)−F1(s)
∣∣∣+ δ − δ0

δ
sup
s∈[0,1]

∣∣∣F̂δ0T :δT (s)−FT (s)
∣∣∣

+ sup
s∈[0,1]

∣∣∣F̂δT :T (s)−FT (s)
∣∣∣+ δ0

δ
sup
s∈[0,1]

|F1(s)−FT (s)| .

(A.39)

Using an extension of the Glivenko-Cantelli theorem to stationary and ergodic se-

quences, the supremum term almost surely converges to a scaled difference in the

true distribution functions as the number of time points in each section gets large
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(Tucker, 1959; H. Yu, 1993; Dehling and Philipp, 2002).

P

[(
sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣− 1− δ0

1− δ
θ

)
→ 0

]
= 1 for δ ≤ δ0, (A.40)

and P

[(
sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣− δ0

δ
θ

)
→ 0

]
= 1 for δ > δ0. (A.41)

Including the leading coefficient,

Q̂T (δ)
a.s.−−→


θ
δ1/2(1− δ0)

(1− δ)1/2
for δ ≤ δ0,

θ
δ0(1− δ)1/2

δ1/2
for δ > δ0,

(A.42)

and we obtain Q̂T (δ)→ Q0(δ) with probability 1 for all δ, δ0 ∈ ∆.

To show Q̂T (δ) is stochastically equicontinuous, we use the structure of Lemma A.3.

Define α = κ, B̂T = Cθ, where C = (2/κ)
√
1− κ2+1, and ÂT as below in Equations

A.43 through A.48 depending on the relationship between δ̃, δ, and δ0 where each is

contained in ∆. For each case i = 1, . . . , 6, Âi
T = o(1) is a weaker condition than the

extended Glivenko-Cantelli result, and B̂T = O(1) is verified with C <∞, 0 < θ ≤ 1
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(Tucker, 1959; H. Yu, 1993).

Â1
T = sup

s∈[0,1]

∣∣∣F̂1:δ̃T (s)−F1(s)
∣∣∣+ 3

2
sup
s∈[0,1]

∣∣∣F̂δ̃T :δT (s)−F1(s)
∣∣∣

+ sup
s∈[0,1]

∣∣∣F̂δT :δ0T (s)−F1(s)
∣∣∣+ sup

s∈[0,1]

∣∣∣F̂δ0T :T (s)−FT (s)
∣∣∣ for δ̃ < δ ≤ δ0,

(A.43)

Â2
T = sup

s∈[0,1]

∣∣∣F̂1:δT (s)−F1(s)
∣∣∣+ 3

2
sup
s∈[0,1]

∣∣∣F̂δT :δ̃T (s)−F1(s)
∣∣∣

+ sup
s∈[0,1]

∣∣∣F̂δ̃T :δ0T
(s)−F1(s)

∣∣∣+ sup
s∈[0,1]

∣∣∣F̂δ0T :T (s)−FT (s)
∣∣∣ for δ < δ̃ ≤ δ0,

(A.44)

Â3
T = sup

s∈[0,1]

∣∣∣F̂1:δ̃T (s)−F1(s)
∣∣∣+ 3

2
sup
s∈[0,1]

∣∣∣F̂δ̃T :δ0T
(s)−F1(s)

∣∣∣
+

3

2
sup
s∈[0,1]

∣∣∣F̂δ0T :δT (s)−FT (s)
∣∣∣+ sup

s∈[0,1]

∣∣∣F̂δT :T (s)−FT (s)
∣∣∣ for δ̃ ≤ δ0 < δ,

(A.45)

Â4
T = sup

s∈[0,1]

∣∣∣F̂1:δT (s)−F1(s)
∣∣∣+ 3

2
sup
s∈[0,1]

∣∣∣F̂δT :δ0T (s)−F1(s)
∣∣∣

+
3

2
sup
s∈[0,1]

∣∣∣F̂δ0T :δ̃T (s)−FT (s)
∣∣∣+ sup

s∈[0,1]

∣∣∣F̂δ̃T :T (s)−FT (s)
∣∣∣ for δ ≤ δ0 < δ̃,

(A.46)
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Â5
T = sup

s∈[0,1]

∣∣∣F̂1:δ0T (s)−F1(s)
∣∣∣+ sup

s∈[0,1]

∣∣∣F̂δ0T :δ̃T (s)−FT (s)
∣∣∣

+
3

2
sup
s∈[0,1]

∣∣∣F̂δ̃T :δT (s)−FT (s)
∣∣∣+ sup

s∈[0,1]

∣∣∣F̂δT :T (s)−FT (s)
∣∣∣ for δ0 < δ̃ < δ,

(A.47)

Â6
T = sup

s∈[0,1]

∣∣∣F̂1:δ0T (s)−F1(s)
∣∣∣+ sup

s∈[0,1]

∣∣∣F̂δ0T :δT (s)−FT (s)
∣∣∣

+
3

2
sup
s∈[0,1]

∣∣∣F̂δT :δ̃T (s)−FT (s)
∣∣∣+ sup

s∈[0,1]

∣∣∣F̂δ̃T :T (s)−FT (s)
∣∣∣ for δ0 < δ < δ̃

(A.48)

We simplify the form of Q̂T in Equation A.27 and write q(δ) = δ1/2(1− δ)1/2 for the

domain restriction δ̃, δ ∈ ∆ such that

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ = ∣∣∣∣q(δ̃) sup

s∈[0,1]

∣∣∣F̂1:δ̃T (s)− F̂δ̃T :T (s)
∣∣∣

− q(δ) sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣ ∣∣∣∣, (A.49)

and then alter the expression to a convenient final form shown in Equation A.52,
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where all absolute value terms are separated for easy manipulation.

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣

=

∣∣∣∣q(δ̃) sup
s∈[0,1]

∣∣∣F̂1:δ̃T (s)− F̂1:δT (s) + F̂1:δT (s)− F̂δ̃T :T (s) + F̂δT :T (s)− F̂δT :T (s)
∣∣∣

− q(δ) sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣ ∣∣∣∣ (A.50)

≤
∣∣∣∣q(δ̃) sup

s∈[0,1]

∣∣∣F̂1:δ̃T (s)− F̂1:δT (s)
∣∣∣+ q(δ̃) sup

s∈[0,1]

∣∣∣F̂δ̃T :T (s)− F̂δT :T (s)
∣∣∣

+
(
q(δ̃)− q(δ)

)
sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣ ∣∣∣∣ (A.51)

≤ q(δ̃) sup
s∈[0,1]

∣∣∣F̂1:δ̃T (s)− F̂1:δT (s)
∣∣∣+ q(δ̃) sup

s∈[0,1]

∣∣∣F̂δ̃T :T (s)− F̂δT :T (s)
∣∣∣

+
∣∣∣q(δ̃)− q(δ)

∣∣∣ sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣ (A.52)

For each piece in Equation A.52, we examine the result based on the relationship

between δ̃, δ, and δ0. The full exposition is given below for the case where δ̃ < δ ≤ δ0

to obtain Â1
T , and abbreviated versions are included for the remaining pieces Â2

T

through Â6
T that follow a similar structure.

We proceed under condition one of six, where δ̃ < δ ≤ δ0. For the terms in Equation

A.52, we separate the form into distinct pieces of the empirical CDFs and introduce
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the true distribution functions F1(s) and FT (s).

q(δ̃) sup
s∈[0,1]

∣∣∣F̂1:δ̃T (s)− F̂1:δT (s)
∣∣∣

= q(δ̃) sup
s∈[0,1]

∣∣∣∣∣F̂1:δ̃T (s)−
δ̃

δ
F̂1:δ̃T (s)−

δ − δ̃

δ
F̂δ̃T :δT (s)

∣∣∣∣∣ (A.53)

= q(δ̃) sup
s∈[0,1]

∣∣∣∣∣δ − δ̃

δ
F̂1:δ̃T (s)−

δ − δ̃

δ
F̂δ̃T :δT (s)

∣∣∣∣∣ (A.54)

= q(δ̃) sup
s∈[0,1]

∣∣∣∣∣δ − δ̃

δ

(
F̂1:δ̃T (s)−F1(s)

)
− δ − δ̃

δ

(
F̂δ̃T :δT (s)−F1(s)

)∣∣∣∣∣ (A.55)

≤ q(δ̃) sup
s∈[0,1]

∣∣∣F̂1:δ̃T (s)−F1(s)
∣∣∣+ q(δ̃) sup

s∈[0,1]

∣∣∣F̂δ̃T :δT (s)−F1(s)
∣∣∣ (A.56)

For the second term,

q(δ̃) sup
s∈[0,1]

∣∣∣F̂δ̃T :T (s)− F̂δT :T (s)
∣∣∣

= q(δ̃) sup
s∈[0,1]

∣∣∣∣∣δ − δ̃

1− δ̃
F̂δ̃T :δT (s) +

1− δ

1− δ̃
F̂δT :T (s)− F̂δT :T (s)

∣∣∣∣∣ (A.57)

= q(δ̃) sup
s∈[0,1]

∣∣∣∣∣δ − δ̃

1− δ̃
F̂δ̃T :δT (s)−

δ − δ̃

1− δ̃
F̂δT :T (s)

∣∣∣∣∣ (A.58)

= q(δ̃)
δ − δ̃

1− δ̃
sup
s∈[0,1]

∣∣∣∣F̂δ̃T :δT (s)−
δ0 − δ

1− δ
F̂δT :δ0T (s)−

1− δ0
1− δ

F̂δ0T :T (s)

∣∣∣∣ , (A.59)
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and following the same outline as above,

q(δ̃) sup
s∈[0,1]

∣∣∣F̂δ̃T :T (s)− F̂δT :T (s)
∣∣∣

≤ q(δ̃) sup
s∈[0,1]

∣∣∣F̂δ̃T :δT (s)−F1(s)
∣∣∣+ q(δ̃) sup

s∈[0,1]

∣∣∣F̂δT :δ0T (s)−F1(s)
∣∣∣

+ q(δ̃) sup
s∈[0,1]

∣∣∣F̂δ0T :T (s)−FT (s)
∣∣∣+ q(δ̃)

δ − δ̃

1− δ̃
θ. (A.60)

For the third term,

∣∣∣q(δ̃)− q(δ)
∣∣∣ sup
s∈[0,1]

∣∣∣F̂1:δT (s)− F̂δT :T (s)
∣∣∣

≤
∣∣∣q(δ̃)− q(δ)

∣∣∣ sup
s∈[0,1]

∣∣∣F̂1:δ̃T (s)−F1(s)
∣∣∣+ ∣∣∣q(δ̃)− q(δ)

∣∣∣ sup
s∈[0,1]

∣∣∣F̂δ̃T :δTT (s)−F1(s)
∣∣∣

+
∣∣∣q(δ̃)− q(δ)

∣∣∣ sup
s∈[0,1]

∣∣∣F̂δT :δ0TT (s)−F1(s)
∣∣∣

+
∣∣∣q(δ̃)− q(δ)

∣∣∣ sup
s∈[0,1]

∣∣∣F̂δ0T :TT (s)−FT (s)
∣∣∣+ ∣∣∣q(δ̃)− q(δ)

∣∣∣ θ. (A.61)
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Combining the terms from Equations A.56, A.60, and A.61, we obtain

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ ≤ (q(δ̃) + ∣∣∣q(δ̃)− q(δ)

∣∣∣) sup
s∈[0,1]

∣∣∣F̂1:δ̃T (s)−F1(s)
∣∣∣

+
(
2q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ̃T :δT (s)−F1(s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δT :δ0T (s)−F1(s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ0T :T (s)−FT (s)
∣∣∣

+

(
q(δ̃)

δ − δ̃

1− δ̃
+
∣∣∣q(δ̃)− q(δ)

∣∣∣) θ. (Case 1: δ̃ < δ ≤ δ0)

(A.62)

Each q term in the first four pieces of Equation A.62 is bounded above: q(δ̃) ≤ 1/2,

q(δ) ≤ 1/2, and their difference |q(δ̃)−q(δ)| < 1/2. We can substitute the coefficients

1, 3/2, 1, and 1 that appear below in Equation A.68 to resemble Â1
T in Equation A.43.

All that remains is to manipulate the final term of Equation A.62 to look like the

form in Lemma A.3.

In the initial scenario δ̃ < δ ≤ δ0 where δ̃, δ, δ0 ∈
[
1
2
− 1

2

√
1− 4κ2, 1

2
+ 1

2

√
1− 4κ2

]
, we

examine the final coefficient term of Equation A.62. For any q(δ̃) and q(δ), we can

write |q(δ̃)− q(δ)| ≤
√
|δ̃(1− δ̃)− δ(1− δ)| ≤

√
|δ̃ − δ|, and the expression becomes

q(δ̃)
(δ − δ̃)

(1− δ̃)
+
∣∣∣q(δ̃)− q(δ)

∣∣∣ ≤ q(δ̃)
(δ − δ̃)

(1− δ̃)
+ (δ − δ̃)1/2. (A.63)

For some constant 0 ≤ α ≤ 1, we note that (δ − δ̃) ≤ (δ − δ̃)α, and similarly for
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κ < 1/2, (δ − δ̃)1/2 < (δ − δ̃)κ.

q(δ̃)
(δ − δ̃)

(1− δ̃)
+ (δ − δ̃)1/2 ≤ q(δ̃)

(1− δ̃)
(δ − δ̃)1/2 + (δ − δ̃)1/2 (A.64)

≤

(
δ̃1/2

(1− δ̃)1/2
+ 1

)
(δ − δ̃)1/2 (A.65)

<

(
δ̃1/2

(1− δ̃)1/2
+ 1

)
(δ − δ̃)κ (A.66)

Equation A.66 takes the form

(
δ̃1/2

(1− δ̃)1/2
+ 1

)
(δ − δ̃)κ ≤ C1

∣∣∣δ̃ − δ
∣∣∣κ , (A.67)

where the maximum value of C1 will occur at large δ̃. We use a slightly cleaner form of

the domain restriction to write κ2 ≤ 1
2
− 1

2

√
1− 4κ2 ≤ δ̃, δ ≤ 1

2
+ 1

2

√
1− 4κ2 ≤ 1−κ2,

and set C1 = (1/κ)
√
1− κ2+1. With C = (2/κ)

√
1− κ2+1 <∞ defined above and

C1 ≤ C, we adjust the final term to look like that in Lemma A.3.

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ ≤ sup

s∈[0,1]

∣∣∣F̂1:δ̃T (s)−F1(s)
∣∣∣

+
3

2
sup
s∈[0,1]

∣∣∣F̂δ̃T :δT (s)−F1(s)
∣∣∣

+ sup
s∈[0,1]

∣∣∣F̂δT :δ0T (s)−F1(s)
∣∣∣

+ sup
s∈[0,1]

∣∣∣F̂δ0T :T (s)−FT (s)
∣∣∣

+ Cθ
∣∣∣δ̃ − δ

∣∣∣κ (A.68)

≤ Â1
T + B̂T

∥∥∥δ̃ − δ
∥∥∥κ , (A.69)



184

where κ > 0 is the small constant from q(δ) that appears in the domain restriction.

The last term in Equation A.62 is bounded above by the equivalent in Equation A.68

for all δ̃ < δ ≤ δ0 where δ̃, δ, δ0 ∈ ∆ and when the trivial boundary condition κ < 1/2

is satisfied.

In case two of six where δ < δ̃ ≤ δ0, we can write

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ ≤ (q(δ̃) + ∣∣∣q(δ̃)− q(δ)

∣∣∣) sup
s∈[0,1]

∣∣∣F̂1:δT (s)−F1(s)
∣∣∣

+
(
2q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δT :δ̃T (s)−F1(s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ̃T :δ0T
(s)−F1(s)

∣∣∣
+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ0T :T (s)−FT (s)
∣∣∣

+

(
q(δ̃)

δ − δ̃

1− δ̃
+
∣∣∣q(δ̃)− q(δ)

∣∣∣) θ. (Case 2: δ < δ̃ ≤ δ0)

(A.70)

We obtain the coefficients for Â2
T in Equation A.44 of 1, 3/2, 1, and 1 from the bounds

q(δ̃) ≤ 1/2, q(δ) ≤ 1/2, and |q(δ̃) − q(δ)| < 1/2. In the same process as above, we

can show the final piece is bounded by Cθ|δ̃ − δ|κ where C = (2/κ)
√
1− κ2 + 1.
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For case three,

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ ≤ (q(δ̃) + ∣∣∣q(δ̃)− q(δ)

∣∣∣) sup
s∈[0,1]

∣∣∣F̂1:δ̃T (s)−F1(s)
∣∣∣

+
(
2q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ̃T :δ0T
(s)−F1(s)

∣∣∣
+
(
2q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ0T :δT (s)−FT (s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δT :T (s)−FT (s)
∣∣∣

+

(
q(δ̃)

δ − δ̃

δ
+ q(δ̃)

δ − δ̃

1− δ̃
+
∣∣∣q(δ̃)− q(δ)

∣∣∣) θ, (Case 3: δ̃ ≤ δ0 < δ)

(A.71)

we obtain the coefficients for Â3
T in Equation A.45 of 1, 3/2, 3/2, and 1, and C =

(2/κ)
√
1− κ2 + 1 as above when δ̃ is large and δ small.

For case four,

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ ≤ (q(δ̃) + ∣∣∣q(δ̃)− q(δ)

∣∣∣) sup
s∈[0,1]

∣∣∣F̂1:δT (s)−F1(s)
∣∣∣

+
(
2q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δT :δ0T (s)−F1(s)
∣∣∣

+
(
2q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ0T :δ̃T (s)−FT (s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ̃T :T (s)−FT (s)
∣∣∣

+

(
q(δ̃)

δ − δ̃

δ̃
+ q(δ̃)

δ − δ̃

1− δ
+
∣∣∣q(δ̃)− q(δ)

∣∣∣) θ, (Case 4: δ ≤ δ0 < δ̃)

(A.72)
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we obtain the coefficients for Â4
T in Equation A.46 of 1, 3/2, 3/2, and 1, and C =

(2/κ)
√
1− κ2 + 1 as above when δ̃ is small and δ large.

For case five,

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ ≤ (q(δ̃) + ∣∣∣q(δ̃)− q(δ)

∣∣∣) sup
s∈[0,1]

∣∣∣F̂1:δ0T (s)−F1(s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ0T :δ̃T (s)−FT (s)
∣∣∣

+
(
2q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ̃T :δT (s)−FT (s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δT :T (s)−FT (s)
∣∣∣

+

(
q(δ̃)

δ − δ̃

δ̃
+
∣∣∣q(δ̃)− q(δ)

∣∣∣) θ, (Case 5: δ0 < δ̃ < δ)

(A.73)

we obtain the coefficients for Â5
T in Equation A.47 of 1, 1, 3/2, and 1, and C =

(2/κ)
√
1− κ2 + 1 as above when δ̃ is small.
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For the sixth and final case,

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ ≤ (q(δ̃) + ∣∣∣q(δ̃)− q(δ)

∣∣∣) sup
s∈[0,1]

∣∣∣F̂1:δ0T (s)−F1(s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ0T :δT (s)−FT (s)
∣∣∣

+
(
2q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δT :δ̃T (s)−FT (s)
∣∣∣

+
(
q(δ̃) +

∣∣∣q(δ̃)− q(δ)
∣∣∣) sup

s∈[0,1]

∣∣∣F̂δ̃T :T (s)−FT (s)
∣∣∣

+

(
q(δ̃)

δ − δ̃

δ̃
+
∣∣∣q(δ̃)− q(δ)

∣∣∣) θ, (Case 6: δ0 < δ < δ̃)

(A.74)

we obtain the coefficients for Â6
T in Equation A.48 of 1, 1, 3/2, and 1, and C =

(2/κ)
√
1− κ2 + 1 as above when δ̃ is small.

For all cases δ̃, δ, δ0 ∈ ∆, the result of Lemma A.3 holds with the corresponding Âi
T ,

B̂T = θ
[
(2/κ)

√
1− κ2 + 1

]
, and α = κ. Thus, Q̂T (δ) is stochastically equicontinuous

and uniformly converges in probability to Q0(δ) on the interval ∆.

We now employ Theorem 2.1 from Newey and McFadden (1994) and Lemma A.4

to complete the proof of Theorem 2.3.

Proof of Theorem 2.3. We begin with condition (1). It can easily be seen that the

quantity in Equation A.35 is uniquely maximized to a value of θ at δ = δ0, thus

Q0(δ) in Equation A.36 has a unique maximum at δ = δ0. If we relax the boundary

restriction δ ∈ ∆ and let δ ∈ (0, 1), the unique maximum will still hold provided

κ ≤ δ
1/2
0 (1− δ0)

1/2, or δ0 ∈ ∆.
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Condition (2) is satisfied as ∆ is a closed and bounded set on R.

For condition (3), the individual pieces of Equation A.36 are continuous, and we

examine the extreme points of each subdomain. Because the set ∆ is closed, continuity

is trivially satisfied at the outward extremes. For the point δ0,

lim
δ→δ+0

Q0(δ0) = Q0(δ0) = θδ
1/2
0 (1− δ0)

1/2 (A.75)

and lim
δ→δ−0

Q0(δ0) = lim
δ→δ−0

θ
δ0(1− δ)1/2

δ1/2
= θδ

1/2
0 (1− δ0)

1/2. (A.76)

Condition (4) is satisfied via Lemma A.4.

The four conditions of Theorem 2.1 from Newey and McFadden (1994) are satisfied

and δ̂
P−→ δ0 implies τ̂

P−→ τ for t, τ ∈
[
T
2
− T

2

√
1− 4κ2, T

2
+ T

2

√
1− 4κ2

]
.

Berkes, Hörmann, and Schauer (2009), Theorem 2. Let {St, t ∈ Z} be a

stationary sequence such that F(s) = P (S1 ≤ s) is Lipschitz continuous of order

C > 0. Assume that {St, t ∈ Z} is S-mixing and condition (1) of Definition 2.1

holds with γm = m−AC, δm = m−A for some A > 4. Then the series

Γ(s, s′) =
∑

−∞<t<∞

E [S1(s)St(s
′)] (A.77)

converges absolutely for every choice of parameters (s, s′) ∈ R2. Moreover, there exists

a two-parameter Gaussian process K(s, t) such that E [K(s, t)] = 0, E [K(s, t) K(s′, t′)] =

(t ∧ t′) Γ(s, s′), and for some α > 0,

sup
1≤t≤T

sup
s∈[0,1]

∣∣∣∣∣
t∑

i=1

(1{Si ≤ s} − F(s))−K(s, t)

∣∣∣∣∣ = o
(
T 1/2(logT )−α

)
a.s. (A.78)
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Definition A.5. A sequence of functions Q̂T (δ) is stochastically equicontinuous if

for every ε, η > 0 there exists a random quantity ΓT (ε, η) and a constant T0(ε, η)

such that for T ≥ T0(ε, η), P (|ΓT (ε, η)| > ε) < η and for each δ there is an open set

N (δ, ε, η) containing δ with

sup
δ̃∈N (δ,ε,η)

∣∣∣Q̂T (δ̃)− Q̂T (δ)
∣∣∣ ≤ ΓT (ε, η), for T > T0(ε, η). (A.79)

Newey and McFadden (1994), Theorem 2.1. If there is a function Q0(δ) such

that

(1) Q0(δ) is uniquely maximized at δ0, δ0 = arg maxδ∈∆ Q0(δ);

(2) ∆ is compact;

(3) Q0(δ) is continuous;

(4) Q̂T (δ) converges uniformly in probability to Q0(δ), supδ∈∆

∣∣∣Q̂T (δ)−Q0(δ)
∣∣∣ P−→ 0;

then δ̂ = arg maxδ∈∆ Q̂T (δ)
P−→ δ0.
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Appendix B

Additional Material for Chapter 3

Code and supporting material: Files (.RData, .csv, and .mat) used to assess per-

formance of change point methods, code (.R, .cpp, and .m) used to generate

results and figures, and data for generating output in Sections 3.4 and 3.5 can

be found at

github.com/noahgade/MCCP.

B.1 Additional Figures
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Figure B.1: Gaussian process online detection simulation results for n (τ ) = 0.
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Figure B.2: Gaussian process online detection simulation results for n (τ ) = 1.
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Figure B.3: Gaussian process online detection simulation results for n (τ ) = 2.
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Figure B.4: Threshold autoregressive process online detection simulation results for
n (τ ) = 0.
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Figure B.5: Threshold autoregressive process online detection simulation results for
n (τ ) = 1.
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Figure B.6: Threshold autoregressive process online detection simulation results for
n (τ ) = 2.
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methods refer to the error control procedure, and on EDiv and NP-MOJO refer to the
defined minimum separation (window size).

Figure B.7: Gaussian process offline detection simulation results for n (τ ) = 0.
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Figure B.8: Gaussian process offline detection simulation results for n (τ ) = 1.
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Figure B.9: Gaussian process offline detection simulation results for n (τ ) = 2.
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Figure B.10: Threshold autoregressive process offline detection simulation results for
n (τ ) = 0.
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Figure B.11: Threshold autoregressive process offline detection simulation results for
n (τ ) = 1.
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Figure B.12: Threshold autoregressive process offline detection simulation results for
n (τ ) = 2.
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Figure B.13: Gaussian process comparison between MCCP and NP-MOJO methods
on simulated data and the transformed sequence of cosine similarities (CNP-MOJO)
from the CCP method of Chapter 2 with n (τ ) = 0.
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Figure B.14: Gaussian process comparison between MCCP and NP-MOJO methods
on simulated data and the transformed sequence of cosine similarities (CNP-MOJO)
from the CCP method of Chapter 2 with n (τ ) = 1.
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Figure B.15: Threshold autoregressive process comparison between MCCP and NP-
MOJO methods on simulated data and the transformed sequence of cosine similarities
(CNP-MOJO) from the CCP method of Chapter 2 with n (τ ) = 0.
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Figure B.16: Threshold autoregressive process comparison between MCCP and NP-
MOJO methods on simulated data and the transformed sequence of cosine similarities
(CNP-MOJO) from the CCP method of Chapter 2 with n (τ ) = 1.
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B.2 Additional Tables

Table B.1: Parameter settings for methods in multiple change point simulation study.

Method Settings

Sequential Conceptor
(SCCP)

Twash = 40, Ttrain = 120,
Change Point {FWER,FDR}, q = {0.05, 0.1}

Scan-B (ScanB)
block length = 31, # blocks = 5,

ARL = {101, 102, 103, 104, 105, 106}

Kernel CUSUM (kCUSUM)
block length = 31, # blocks = 5,

ARL = {101, 102, 103, 104, 105, 106}

(a) Online Change Point Detection Methods.

Method Settings

Multiple Conceptor
(MCCP)

Twash = 60, Ttrain = 120,
Change Point {FWER,FDR}, q = {0.05, 0.1}

E-Divisive (EDiv) γ∗ = 161, q = {0.01, 0.05, 0.1}

NP-MOJO (NP-MOJO)
γ∗ = 181, lags = {0, 1, 2},

q = {0.01, 0.05, 0.1}

Kernel Change Point (KCP) max {n (τ̂ )} = 2, C = {2, 20, 40, 60, 80, 100}

Sparsified Binary
(SBS1/2)

Type = {1, 2},
Segmentation q = {0.01, 0.05, 0.1}

(b) Offline Change Point Detection Methods.
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B.3 Additional Algorithms

This section presents additional procedures composing the main algorithms in Chap-

ter 3.
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Procedure B.1 ESN Featurization & Conceptor Computation
Inputs: time series data yt ∈ Rd, t = 1, . . . Twash + Ttrain; training window length

Ttrain; washout length Twash

Outputs: ESN parameters, reservoir size N , all Cr,Wi
r, br, Wh

r

Default Parameters: ESN spectral radius ρ ← 0.8; grid of possible Wi
r, br scal-

ings G← {cinput ← {0.6, 1.0, 1.4}, cbias ← {0.1, 0.3, 0.5}}; reservoir scaling cres ← 0.9;

number of test initializations Rtest ← 5; output regularization parameter λ ← 10−6;

number of featurizations Rtest ← 100; aperture α← 100

1: N ← ⌊cresTtrain⌋; T0 ← Twash + Ttrain

2: for each grid scaling combination of cinput and cbias in G do

3: for r in 1 : Rtest do

4: initialize Wi
r,br,Wh

r where each element N (0, 1), and Wh
r is sparse

5: Wi
r ← cinputWi

r; br ← cbiasbr

6: Wh
r ← ρWh

r/max
{

v⊤Wh
rv : ||v|| = 1

}
7: hr,t ← tanh

(
Wh

rhr,t−1 + Wi
ryt + br

)
for t = 1, . . . , T0

8: Wo
r ←

(
H⊤

r Hr + λI
)−1 H⊤

r Y where Hr = [hr,Twash+1 · · · hr,T0 ]
⊤

9: end for

10: NRMSE← 1

R

R∑
j=1

√
(Y−HrWo

r)
2

1
2

Var(Y)+ 1
2

Var(HrWo
r)

11: end for

12: ESN scaling : {cinput, cbias, ρ} ← arg min
G
{NRMSE}

13: for r in 1 : R do

14: initialize Wi
r,br,Wh

r where each element N (0, 1), and Wh
r is sparse

15: Wi
r ← cinputWi

r; br ← cbiasbr

16: Wh
r ← ρWh

r/max
{

v⊤Wh
rv : ||v|| = 1

}
17: hr,t ← tanh

(
Wh

rhr,t−1 + Wi
ryt + br

)
for t = 1, . . . , T0

18: Cr ← 1
Ttrain

H⊤
r Hr

(
1

Ttrain
H⊤

r Hr + α−2I
)−1

where Hr = [hr,Twash+1 · · · hr,T0 ]
⊤

19: end for

return ESN parameters, reservoir size N , all Cr,Wi
r, br, Wh

r
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Procedure B.2 Generating Bootstrapped Time Series
Inputs: potential change point τ̂ ∗j ∈ τ̂ ∗; time series data yt ∈ Rd; training length

Ttrain; washout length Twash

Outputs: bootstrapped time series yb,t

Default Parameters: number of bootstraps B ← 99; block length L← ⌈T 1/3⌉

1: for b in 1 : B do

2: T0 ← Twash + Ttrain

3: Tend ← min
{
τ̂ ∗j + T0, T

}
4: for i in 1 : ⌈(Tend − T0) /L⌉ do

5: βb,i ← β ∼ Uniform {T0 + 1, Tend}

6: bi ← yβb,i:(βb,i+L−1)

7: end for

8: yb
t ←

[
y⊤
1:T0

b⊤
1 · · · b⊤

⌈(Tend−T0)/L⌉

]⊤
1:Tend

9: end for

return all yb,t
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Procedure B.3 Generate MBB Null Distribution for a Potential Change Point
Inputs: potential change point τ̂ ∗j ∈ τ̂ ∗; corresponding maximum statistic Kj; time

series data yt ∈ Rd; training window length Ttrain; washout length Twash; all Cr,Wi
r,

br, Wh
r, R from Procedure B.1

Outputs: MBB null distribution estimate Kj
b ; quantile estimate pj

1: perform Procedure B.2 to obtain bootstrapped data yb,t and B

2: for b in 1 : B do

3: for r in 1 : R do

4: hb,r,t ← tanh
(
Wh

rhb,r,t−1 + Wi
ryb,t + br

)
for t = 1, . . . , Twash

5: hb,r,t ← tanh
(

Wh
rh̃b,r,t−1 + Wi

ryb,t + br

)
;

h̃b,r,t ← Crhb,r,t for t = Twash + 1, . . . , Tend

6: sb,r,t ←
h̃⊤
b,r,thb,r,t

||h̃b,r,t||||hb,r,t|| for t = T0 + 1, . . . , Tend

7: end for

8: Sb,t ←
1

R

R∑
r=1

sb,r,t for t = T0 + 1, . . . , Tend

9: for t in (T0 + 1) : (Tend − 1) do

10: F̂ b
(T0+1):t(s)←

1

t− T0

t∑
i=T0+1

1 {Sb,i ≤ s}

11: F̂ b
(t+1):Tend

(s)← 1

Tend − t

Tend∑
i=t+1

1 {Sb,i ≤ s}

12: Kb,t ← (t−T0)(Tend−t)

q(t)(Tend−T0)
3/2 sup

s

∣∣∣F̂ b
(T0+1):t(s)− F̂ b

(t+1):Tend
(s)
∣∣∣

13: end for

14: Kj
b ← max

t
Kb,t

15: end for

16: pj ←
1

B

B∑
b=1

1
{
Kj

b > Kj
}

return pj, all Kj
b
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Procedure B.4 Inference for Potential Change Points
Inputs: time series data yt ∈ Rd; training length Ttrain; washout length Twash; se-

quence of statistics Kt; all Cr,Wi
r, br, Wh

r, R from Algorithm B.1; testing cutoff

threshold cq

Outputs: estimated change point τ̂ ; corresponding maximum statistic K; corre-

sponding p-value p, moving block bootstrap estimated null distribution Kb

1: τ̂ ← NULL

2: if Kt ≥ Kt′ ∀ |t− t′| ≤ T0 then

3: perform Procedure B.3 to obtain pj, all Kj
b

4: if pj ≤ cq then

5: τ̂ ← t

6: K ← Kt; p← pj; Kb ← Kj
b

7: end if

8: end if

return τ̂ , K, p, Kb
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Procedure B.5 Reconciliation of Estimated Change Point Sets
Inputs: estimated sets from forward and backward-looking procedures, τ̂ f and τ̂ b

Outputs: estimated change point set τ̂

1: τ̂ ← ∅; τ̂ fb ← τ̂ f ∩ τ̂ b

2: B1 ← N
(
τ̂ fb(1); γ

∗
)
∩ τ̂ fb

3: j ← 1; i← 1

4: while i < n
(
τ̂ fb
)

do

5: i← i+ 1

6: if Bj ∩
[
N
(
τ̂ fb(i); γ

∗
)
∩ τ̂ fb

]
̸= ∅ then

7: Bj ← Bj ∪
[
N
(
τ̂ fb(i); γ

∗
)
∩ τ̂ fb

]
8: else

9: j ← j + 1

10: Bj ← N
(
τ̂ fb(i); γ

∗
)
∩ τ̂ fb

11: end if

12: end while

13: nB ← j

14: for k in 1 : nB do

15: if max {Bk} −min {Bk} < γ∗ then

16: τ̂ ←
{
τ̂ , ⌊n (Bk)−1∑n(Bk)

l=1 bk,l⌋
}

17: else

18: τ̂ ← {τ̂ , min (Bk) , max (Bk)}

19: end if

20: end for

return estimated change point set τ̂
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B.4 Proofs

Proof of Theorem 3.1 follows the proof of Theorem 2.2 in Section A.4, and Theorem

2.6.1 from Csörgő, Horváth, and Szyszkowicz (1997) with the relaxation of the i.i.d.

sequence to a stationary, S-mixing sequence.

Proof of Theorem 3.1. Let F(s) denote the true distribution function of all points in

the sequence Sz, z ∈ ζj, where ζj =
[
τ+j−1 + ζ∗T, t+ ζ∗T − 1

)
as in Section 3.3.1.

Define Kt(s, δ) as in Equation B.1 to directly resemble that in Equation A.2.

Kt(s, δ) = δ (1− δ)

[
F̂
(
s; τ+j−1 + ζ∗T, δ

(
t− τ+j−1

)
+ τ+j−1 + ζ∗T + 1

)
− F̂

(
s; δ
(
t− τ+j−1

)
+ τ+j−1 + ζ∗T + 2, t+ ζ∗T − 1

) ]
(B.1)

In the limit as T →∞ for a fixed ζ∗ ∈
(
0, 1

2

)
, ζ∗T →∞, and n (ζj)→∞. By Lemma

A.1,

sup
δ∈∆

sup
s∈[0,1]

∣∣∣√t− τ+j−1 Kt(s, δ)−Kt(s, δ)
∣∣∣ /q(δ) = o(1), (B.2)

where ∆ =
[

1
t−τ+j−1

,
t−τ+j−1−1

t−τ+j−1

]
, and {Kt(s, δ), 0 ≤ δ ≤ 1} is a sequence of Gaussian

processes with

E [Kt(s, δ)] = 0,

E [Kt(s, δ) Kt(s
′, δ′)] = (δ ∧ δ′) Γ(s, s′),

and Γ(s, s′) = E
[
Sτ+j−1+ζ∗T (s)Sz(s

′)
]
, (B.3)
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provided I0,1(q, c) <∞ for all c > 0, where

I0,1(q, c) =

∫ 1

0

1

δ(1− δ)
exp

{
− cq2(δ)

δ(1− δ)

}
dδ. (B.4)

By Lemma A.2, given the condition in Equation B.4 and the result in Equation B.1,

sup
δ∈[0,1]

sup
s∈[0,1]

|Kt(s, δ)| /q(δ)
D−→ sup

δ∈[0,1]
sup
s∈[0,1]

|K(s, δ)| /q(δ), (B.5)

where K(s, δ) is a Gaussian process defined in Equation 3.18. All that remains is to

show I0,1(q, c) < ∞ for all c > 0. Like in the proof for Theorem 2.2, write q (δ) as

a piecewise function on the domain δ ∈ [0, 1], and the integral from Equation B.4

becomes

I0,1(q, c) =

∫ 1
2
− 1

2

√
1−4κ1/ν

0

1

δ(1− δ)
exp

{
−cκ2δ−1(1− δ)−1

}
dδ

+

∫ 1
2
+ 1

2

√
1−4κ1/ν

1
2
− 1

2

√
1−4κ1/ν

1

δ(1− δ)
exp

{
−cδ2ν−1(1− δ)2ν−1

}
dδ

+

∫ 1

1
2
+ 1

2

√
1−4κ1/ν

1

δ(1− δ)
exp

{
−cκ2δ−1(1− δ)−1

}
dδ. (B.6)

For any c > 0 the boundary terms are finite with κ > 0,

∫ 1
2
− 1

2

√
1−4κ1/ν

0

1

δ(1− δ)
exp

{
−cκ2δ−1(1− δ)−1

}
dδ <∞ (B.7)

∫ 1

1
2
+ 1

2

√
1−4κ1/ν

1

δ(1− δ)
exp

{
−cκ2δ−1(1− δ)−1

}
dδ <∞, (B.8)
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and the middle term,

∫ 1
2
+ 1

2

√
1−4κ1/ν

1
2
− 1

2

√
1−4κ1/ν

1

δ(1− δ)
exp

{
−cδ2ν−1(1− δ)2ν−1

}
dδ <∞ (B.9)

provided ν < 1/2 if κ → 0. For κ > 0, the range of values satisfying Equation B.9

includes ν = 1/2. Thus, from the specification of q(δ) in Theorem 3.1 with ν = 1/2

and κ > 0, I0,1(q, c) <∞ for all c > 0.

Proof of Theorem 3.2 follows the structure of Theorem 2.3 in Section A.4 and the

outline of Theorem 2.1 from Newey and McFadden (1994).

Proof of Theorem 3.2. Scale the time domain as in Section 3.3, where δ ∈ [0, 1] is

defined in Equation 3.16, and let

δ0 =
τj − τ+j−1 − ζ∗T + 1

t− τ+j−1

(B.10)

be the true change point. For the sequence Sz, z ∈ ζ, write

F(0,δ](s) = F
[
s; τ+j−1 + ζ∗T, δ

(
t− τ+j−1

)
+ τ+j−1 + ζ∗T + 1

]
(B.11)

and

F(δ,1)(s) = F
[
s; δ
(
t− τ+j−1

)
+ τ+j−1 + ζ∗T + 2, t+ ζ∗T − 1

]
(B.12)

as the distribution functions on the intervals (0, δ] and (δ, 1), respectively, and label

F̂(0,δ](s) and F̂(δ,1)(s) the corresponding empirical estimates. The true change point

δ0 divides the sequence Sz into two distinct pieces with distribution functions Fτj(s)

and Fτj+1(s), where Fτj(s0) ̸= Fτj+1(s0) for some s0 ∈ [0, 1]. Like in Section A.4,
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define the supremum of the difference between the two distributions θ > 0, where the

quantity is maximized at s0.

θ = sup
s∈[0,1]

∣∣Fτj(s)−Fτj+1(s)
∣∣ = ∣∣Fτj(s0)−Fτj+1(s0)

∣∣ (B.13)

Define Q0(δ) as in Equation B.14 for δ ∈ ∆ =
[
1
2
− 1

2

√
1− 4κ2, 1

2
+ 1

2

√
1− 4κ2

]
,

q(δ) as in Equation 3.15, and κ > 0 a small constant, and construct the empirical

estimate Q̂t(δ) in Equation B.15.

Q0(δ) =
δ(1− δ)

q(δ)
sup
s∈[0,1]

∣∣F(0,δ](s)−F(δ,1)(s)
∣∣ (B.14)

Q̂t(δ) =
δ(1− δ)

q(δ)
sup
s∈[0,1]

∣∣∣F̂(0,δ](s)− F̂(δ,1)(s)
∣∣∣ (B.15)

Condition (1) of Newey and McFadden (1994), Theorem 2.1 is verified by writing

Q0(δ) as in Equation A.35 of Section A.4 to show the quantity is uniquely maximized

at δ = δ0. Condition (2) is verified as ∆j is a closed and bounded set on R. Continuity

in condition (3) is verified from Equations A.75 and A.76. Like in the Theorem 3.1

proof, in the limit as T → ∞ for a fixed ζ∗ ∈
(
0, 1

2

)
, ζ∗T → ∞, and n (ζj) → ∞.

Condition (4) is verified by Lemma A.4 that shows Q̂t(δ) converges uniformly in

probability to Q0(δ) on the interval δ, δ0 ∈∆ (equivalent to z, τj ∈∆j).

Therefore, τ̂ fj
P−→ τj provided τj ∈ ∆j, with ∆j defined in Equation 3.21, and τj

divides the sequence Sz, z ∈ ζj (i.e., τj ∈ ζj).

The result of Corollary 3.3 is obtained directly from the definition of τ̂j in Equation

3.22, and the result of Theorem 3.2.

Proof of Corollary 3.3. By the result of Theorem 3.2, τ̂ fj
P−→ τj provided τj ∈ ∆j,
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where ∆j is defined in Equation 3.21. Theorem 3.2 directly implies that the backward-

looking algorithm yields the same guarantee for the corresponding sequence S ′
z, z ∈ ζ ′

j:

τ̂ bj
P−→ τj provided τj ∈

(
ζ ′
j ∩∆′

j

)
, where ζ ′

j =
(
t− ζ∗T + 1, τTj+1 − ζ∗T

]
and ∆′

j is

defined in Equation 3.23.

With τ̂j defined in Equation 3.22, τ̂ fj
P−→ τj and τ̂ bj

P−→ τj implies τ̂j
P−→ τj provided

τj ∈
[
(ζj ∩∆j) ∩

(
ζ ′
j ∩∆′

j

)]
, where

ζj ∩ ζ ′
j = (t− ζ∗T + 1, t+ ζ∗T − 1) (B.16)

and

∆j ∩∆′
j =[

t+ τTj+1

2
−

τ tj+1 − t

2

√
1− 4κ2 − ζ∗T,

t+ τ+j−1

2
+

t− τ+j−1

2

√
1− 4κ2 + ζ∗T

]
.

(B.17)

The proof of Proposition 3.4 examines the multiple testing problem in succession

and shows conservative FWER control at a given Type 1 error threshold.

Proof of Proposition 3.4. In the sequential hypothesis testing framework where null

hypotheses Hi, i = 1, . . . ,m are tested in order, define pi as the associated p-value

for hypothesis Hi, and ki the number of rejected hypotheses prior to Hi in the set

H1, . . ., Hi−1. Define the rejection rule for hypothesis Hi as in Proposition 3.4 to be

pi ≤ α/(m− ki), and k∗
j as the number of rejected null hypotheses in the set H1, . . .,

Hj−1 from simultaneous observation as in the Holm (1979) procedure.
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Examine the hypothesis Hj, and suppose kj = 0. Rejection of the hypothesis pj ≤

α/m ensures that p(1) = mini=1,...,j{pi} ≤ α/m. The remaining p-values pi > α/m

for all i = 1, . . . , j− 1 and the sequential procedure will reject at most the number of

hypotheses as the simultaneous procedure kj+1 ≤ k∗
j+1.

Next, suppose a generic number of rejected null hypotheses, kj. Rejection of

the hypothesis pj ≤ α/(m − kj) implies that p(1) ≤ α/m, p(2) ≤ α/(m − 1), . . .,

p(kj+1) ≤ α/(m − kj), and the remaining p-values p(kj+2), . . . , p(j) > α/m. Thus, the

sequential procedure will result in kj+1 ≤ k∗
j+1, and the decision rule controls the

FWER to at most the Holm (1979) procedure FWER.
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Appendix C

Additional Material for Chapter 4

Code and supporting material: Files (.RData, .npy, and .csv) used to assess per-

formance of change point methods, code (.R, .cpp, and .py) used to generate

results and figures, and data (.mat) and code (.R, .py, and .m) used to generate

output in Section 4.5 can be found at

github.com/noahgade/NonlinearPermutedGrangerCausality.

C.1 Additional Figures
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(a) Control by reference quantile α with zero Granger causal variables included in additional
set Z.
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(b) Control by reference quantile α with two Granger causal variables included in additional
set Z.

Figure C.1: Type 1 error control for TAR(2) simulations.
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(a) Control by reference quantile α with zero Granger causal variables included in additional
set Z.
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(b) Control by reference quantile α with two Granger causal variables included in additional
set Z.

Figure C.2: Type 1 error control for Lorenz-96 simulations.
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Control by reference quantile α simulations without Lorenz-96 group included. Left: Zero
Granger causal variables. Right: Two Granger causal variables included in the additional
set Z. All datasets are T = 1000.

Figure C.3: Type 1 error control for two-group TAR(2) simulations.
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C.2 Additional Tables

Table C.1: TAR(2) simulation results.

NPGC cMLP-GL cMLP-GSGL cMLP-H R/U GNS

T = 250 0.895 0.795 0.110 0.435 0.865 0.985

T = 500 0.975 0.805 0.130 0.505 0.910 1.000

T = 1000 0.990 0.805 0.090 0.420 0.915 1.000

(a) Proportion of correctly labelled Granger causal outcomes (GC = 1, ρ1 in Table 4.2) for
zero Granger causal variables included in additional set Z.

NPGC cMLP-GL cMLP-GSGL cMLP-H R/U GNS

T = 250 0.935 0.945 0.200 0.675 0.640 0.990

T = 500 0.955 0.900 0.135 0.610 0.775 0.995

T = 1000 0.980 0.895 0.155 0.580 0.785 1.000

(b) Proportion of correctly labelled Granger causal outcomes (GC = 1, ρ1 in Table 4.2) for
two Granger causal variables included in additional set Z.
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Table C.2: Lorenz-96 simulation results.

NPGC cMLP-GL cMLP-GSGL cMLP-H R/U GNS

T = 250 0.955 0.705 0.220 0.435 0.050 1.000

T = 500 0.980 0.650 0.115 0.380 0.015 1.000

T = 1000 0.985 0.670 0.090 0.360 0.040 1.000

(a) Proportion of correctly labelled Granger causal outcomes (GC = 1, ρ1 in Table 4.2) for
zero Granger causal variables included in additional set Z.

NPGC cMLP-GL cMLP-GSGL cMLP-H R/U GNS

T = 250 1.000 0.825 0.245 0.530 0.000 1.000

T = 500 0.995 0.805 0.205 0.505 0.000 1.000

T = 1000 1.000 0.760 0.165 0.465 0.000 1.000

(b) Proportion of correctly labelled Granger causal outcomes (GC = 1, ρ1 in Table 4.2) for
two Granger causal variables included in additional set Z.

C.3 Additional Algorithms

Automated selection of the feature space dimension in Algorithm C.1 uses cross val-

idation sets 1, . . . , k∗ of the K total to obtain N . Implementation of Algorithm C.1

requires alteration of Algorithm 4.1 to only use test sets k = k∗ + 1, . . . , K.
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Algorithm C.1 Automated Feature Space Dimension Selection
Inputs: (X,Y,Z)ω for all φ realizations ω ∈ Ωobs; lag selection γ; # random FNN

generations R; # cross-validation folds K

Outputs: feature space dimension N

1: Remove set k∗ + 1, . . . , K from (X,Y,Z)ω leaving only folds 1, . . . , k∗

2: Nmax ←
∑k∗

k=1 Tk − 1

3: for n in 10 : 10 : Nmax do

4: Initialize Wr ∈ R(1+γd+q+p)×n where each element wr,ij ∼ N (0, 1) for all R

5: for ω in 1 : φ do

6: for r in 1 : R do

7: Hn,ω,r ← tanh ([1 Ylag,ω Zω Xω]Wr)

8: for k in 1 : k∗ do

9: Rn,ω,r,k ← Hn,ω,r,k

(
H⊤

n,ω,r,−kHn,ω,r,−k

)−1 H⊤
n,ω,r,−kYω,−k −Yω,k

10: end for

11: end for

12: end for

13: end for

14: N ← arg minn

{
(φRk∗)−1∑φ

ω=1

∑R

r=1

∑k∗

k=1 T
−1
k tr

(
R⊤

n,ω,r,kRn,ω,r,k

)}
return N
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C.4 Proofs

Lemma C.1. Under the conditions listed in Section 4.3.1, limT→∞ E
[
ϑ̂m

]
= ϑm.

The proof of Lemma C.1 begins with the estimate for one test set with a single

individual randomly generated FNN given the variation measure Sm,ω,r. We aggregate

these expectations over the sets k = 1, . . . , K, generated FNNs r = 1, . . . ,R and the

φ ≥ 1 observed datasets in Ωobs.

Proof of Lemma C.1. We seek the conditional expectation E
[
tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
,

and can write the unconditional expectation of the underlying parameter based on

the definition in Equation 4.10.

E
[
ϑ̂m

]
=

1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

E
[
E
(
E
[
tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]
(C.1)

From Condition 4.12, we can write the distribution of the residual term Rm,ω,r,k from

that of Um,ω,r.

Um,ω,r ∼MN T×d (0, IT ,Sm,ω,r) (C.2)

Rm,ω,r,k = Hm,ω,r,k

[
H⊤

m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,−kYω,−k −Yω,k (C.3)

Rm,ω,r,k ∼MN Tk×d

(
0,Hm,ω,r,k

[
H⊤

m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,k + ITk

,Sm,ω,r

)
(C.4)

Define Φm,ω,r,k = Hm,ω,r,k

[
H⊤

m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,k, and further define Vm,ω,r,k ∼
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MN Tk×d(0, ITk
, Id) such that we can write Rm,ω,r,k = (Φm,ω,r,k + ITk

)1/2 Vm,ω,r,kS1/2
m,ω,r.

E
[
tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
= E

[
tr
(
S1/2
m,ω,rV⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,kS1/2

m,ω,r

)
|Sm,ω,r

]
(C.5)

= E
[
tr
(
Sm,ω,rV⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k

)
|Sm,ω,r

]
(C.6)

= tr
(
E
[
Sm,ω,rV⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Sm,ω,r

])
(C.7)

= tr
(
Sm,ω,rE

[
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Sm,ω,r

])
(C.8)

We can write

E
[
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Sm,ω,r

]
= E

[
E
(
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Φm,ω,r,k,Sm,ω,r

) ∣∣Sm,ω,r

]
,

(C.9)

and from Gupta and Nagar (2018),

E
(
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Φm,ω,r,k,Sm,ω,r

)
]

= tr (ITk
[Φm,ω,r,k + ITk

]) Id (C.10)

= tr (Φm,ω,r,k + ITk
) Id. (C.11)

Thus,

E
[
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Sm,ω,r

]
= E [tr (Φm,ω,r,k + ITk

) Id|Sm,ω,r] (C.12)

= E [tr (Φm,ω,r,k) |Sm,ω,r] Id + TkId. (C.13)
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We modify Equation C.13 by exchanging Φm,ω,r,k for its definition as written above.

E [tr (Φm,ω,r,k) |Sm,ω,r] = E
[
tr
(

Hm,ω,r,k

[
H⊤

m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,k

)
|Sm,ω,r

]
(C.14)

= E
[
tr
([

H⊤
m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,kHm,ω,r,k

)
|Sm,ω,r

]
(C.15)

We examine the matrices Hm,ω,r,−k and Hm,ω,r,k under Conditions 4.7, 4.8, 4.9, and

4.10. Recall Tk is the number of rows in the test set, and T−k the number in the train-

ing set. We obtain a fixed and finite N from Condition 4.10, and rank(Hm,ω,r,−k) = N

under Equation 4.15 from Condition 4.8. We label the singular values of the matri-

ces σi(Hm,ω,r,−k) > 0 and σi(Hm,ω,r,k) ≥ 0 for i = 1, . . . , N . For any matrix P,

∥P∥F =
√∑n1

i=1

∑n2

j=1 |pij|2 =

√∑rank(P)
i=1 σi(P)2. From Condition 4.7, each entry in

Hm,ω,r,−k and Hm,ω,r,k lies in a bounded interval, hm,ω,r,−k,ij , hm,ω,r,k,ij ∈ [a, b] such

that |hm,ω,r,−k,ij|, |hm,ω,r,k,ij | ≤ G, and we use this to establish the upper bounds for

the maximal singular values shown in Equations C.16 and C.17. To write the min-

imum values, we define the average squared matrix entry as in Condition 4.9, and

note the combination of Conditions 4.7, 4.8, and 4.9 yields 0 < ν2 ≤ 1, 1 ≤ ξ2 <∞,

and 1 ≤ ϱ4 <∞.

√
T−kh̄2

m,ω,r,−k ≤ σ1 (Hm,ω,r,−k) ≤ ∥Hm,ω,r,−k∥F ≤
√

T−kNG2 (C.16)√
Tkh̄2

m,ω,r,k ≤ σ1 (Hm,ω,r,k) ≤ ∥Hm,ω,r,k∥F ≤
√
TkNG2 (C.17)

Under Condition 4.8, Hm,ω,r,−k has a finite condition number κ (Hm,ω,r,−k) ≤ κmax,

and we can use the bounds in Equations C.16 and C.17 to obtain bounds for the

minimum singular values. The rank of Hm,ω,r,k is not necessarily N , as Tk can be less
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than N , but it is at least min {Tk, N}.

√
T−kh̄2

m,ω,r,−k

κmax
≤ σN (Hm,ω,r,−k) ≤

√
T−kh̄2

m,ω,r,−k (C.18)

0 ≤ σN (Hm,ω,r,k) ≤
√
Tkh̄2

m,ω,r,k (C.19)

We return to the tr
([

H⊤
m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,kHm,ω,r,k

)
piece of Equation C.15.

Applying the above results, we can write
[
H⊤

m,ω,r,−kHm,ω,r,−k

]−1 ≻ 0, H⊤
m,ω,r,kHm,ω,r,k ⪰

0, and the following bounds on the extreme eigenvalues.

1

T−kh̄2
m,ω,r,−k

≤ λ1

([
H⊤

m,ω,r,−kHm,ω,r,−k

]−1
)
≤ κ2

max
T−kh̄2

m,ω,r,−k

(C.20)

1

T−kNG2
≤ λN

([
H⊤

m,ω,r,−kHm,ω,r,−k

]−1
)
≤ 1

T−kh̄2
m,ω,r,−k

(C.21)

Tkh̄
2
m,ω,r,k ≤ λ1

(
H⊤

m,ω,r,kHm,ω,r,k

)
≤ TkNG2 (C.22)

0 ≤ λN

(
H⊤

m,ω,r,kHm,ω,r,k

)
≤ Tkh̄

2
m,ω,r,k (C.23)

We can bound the trace of the product with the eigenvalues using Von Neumann’s

trace inequality.

tr
([

H⊤
m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,kHm,ω,r,k

)
≤

N∑
i=1

λi

([
H⊤

m,ω,r,−kHm,ω,r,−k

]−1
)
λi

(
H⊤

m,ω,r,kHm,ω,r,k

)
(C.24)

≤ Nλ1

([
H⊤

m,ω,r,−kHm,ω,r,−k

]−1
)
λ1

(
H⊤

m,ω,r,kHm,ω,r,k

)
(C.25)

≤ TkN
2G2κ2

max
T−kh̄2

m,ω,r,−k

(C.26)

The upper bound in Equation C.26 is a positive, finite constant. Returning to Equa-



229

tion C.15,

E [tr (Φm,ω,r,k) |Sm,ω,r] ≤ E

[
TkN

2G2κ2
max

T−kh̄2
m,ω,r,−k

∣∣Sm,ω,r

]
(C.27)

≤ Tk

T−k

(NGκmax)
2 E
[(
h̄2
m,ω,r,−k

)−1 |Sm,ω,r

]
(C.28)

≤ Tk

T−k

(Nξκmax)
2 . (C.29)

Using this result in Equation C.13,

E
[
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Sm,ω,r

]
≤ Tk

T−k

(Nξκmax)
2 Id + TkId, (C.30)

and in Equation C.8,

E
[
tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
≤ tr

(
Sm,ω,r

[
Tk

T−k

(Nξκmax)
2 Id + TkId

])
(C.31)

≤
[
Tk

T−k

(Nξκmax)
2 + Tk

]
tr (Sm,ω,r) . (C.32)

We now require a lower bound for the expectation. We examine the trace inequality

tr
([

H⊤
m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,kHm,ω,r,k

)
≥

N∑
i=1

λi

([
H⊤

m,ω,r,−kHm,ω,r,−k

]−1
)
λN−i+1

(
H⊤

m,ω,r,kHm,ω,r,k

)
(C.33)

≥ λN

([
H⊤

m,ω,r,−kHm,ω,r,−k

]−1
)
λ1

(
H⊤

m,ω,r,kHm,ω,r,k

)
(C.34)

≥
Tkh̄

2
m,ω,r,k

T−kNG2
. (C.35)
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Again returning to Equation C.15,

E [tr (Φm,ω,r,k) |Sm,ω,r] ≥ E

[
Tkh̄

2
m,ω,r,k

T−kNG2

∣∣Sm,ω,r

]
(C.36)

≥ Tk

T−kNG2
E
[
h̄2
m,ω,r,k|Sm,ω,r

]
(C.37)

≥ Tkν
2

T−kN
, (C.38)

and using the result in Equation C.13,

E
[
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Sm,ω,r

]
≥ Tkν

2

T−kN
Id + TkId. (C.39)

This yields the lower bound,

E
[
tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
≥ tr

(
Sm,ω,r

[
Tkν

2

T−kN
Id + TkId

])
(C.40)

≥
[
Tkν

2

T−kN
+ Tk

]
tr (Sm,ω,r) . (C.41)

We return to the expectation equation given in Equation C.1 with the two bounds
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from Equations C.32 and C.41.

1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

E
[
E
([

Tkν
2

T−kN
+ Tk

]
tr (Sm,ω,r) |Σm,ω

)]
≤ E

[
ϑ̂m

]
≤ 1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

E
[
E
([

Tk

T−k

(Nξκmax)
2 + Tk

]
tr (Sm,ω,r) |Σm,ω

)]
(C.42)

1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

E
[(

Tkν
2

T−kN
+ Tk

)
tr (Σm,ω)

]
≤ E

[
ϑ̂m

]
≤ 1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

E
[(

Tk

T−k

(Nξκmax)
2 + Tk

)
tr (Σm,ω)

]
(C.43)

1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

[
ν2

T−kN
+ 1

]
ϑm ≤ E

[
ϑ̂m

]
≤ 1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

[
1

T−k

(Nξκmax)
2 + 1

]
ϑm (C.44)

In the limit as T →∞, with a fixed test set size Tk <∞, T−k = T − Tk →∞.

lim
T→∞

1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

[
ν2

T−kN
+ 1

]
ϑm

=
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

lim
T−k→∞

[
ν2

T−kN
+ 1

]
ϑm = ϑm (C.45)

lim
T→∞

1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

[
1

T−k

(Nξκmax)
2 + 1

]
ϑm

=
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

lim
T−k→∞

[
1

T−k

(Nξκmax)
2 + 1

]
ϑm = ϑm (C.46)

Thus, limT→∞ E
[
ϑ̂m

]
= ϑm.

Lemma C.2. Under the conditions listed in Section 4.3.1, limT→∞ Var
(
ϑ̂m

)
=

φ−1τ 2ω + (φR)−1 τ 2r .
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For use in the proof of Lemma C.2, we first state and prove Remark C.3, and then

proceed like in the proof of Lemma C.1.

Remark C.3. For any square, positive semidefinite matrix P ∈ Rn×n, tr2 (P) ≤

(n2 − n+ 1) tr (P2).

Proof of Remark C.3. Let λ1 (P) , λ2 (P) , . . . , λn (P) ≥ 0 be the eigenvalues of P ∈

Rn×n. For any n ≥ 1 we can write,

tr2 (P) =

(
n∑

i=1

λi(P)

)2

(C.47)

=
n∑

i=1

λi (P)2 + 2
n∑

i=1

i−1∑
j=1

λi (P)λj (P) (C.48)

≤
n∑

i=1

λi (P)2 + n(n− 1)
n∑

i=1

λi (P)2 (C.49)

≤
(
n2 − n+ 1

) n∑
i=1

λi (P)2 (C.50)

with the last line equal to (n2−n+1) tr (P2). Thus, tr2 (P) ≤ (n2−n+1) tr (P2).

Proof of Lemma C.2. We isolate the quantity tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
like in the proof of

Lemma C.1 and examine the conditional variance Var
(
tr
[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
.

The unconditional variance follows from the law of total variance and from the defi-
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nition in Equation 4.10.

Var
(
ϑ̂m

)
= E

[
E

(
Var

[
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]

+ E

[
Var

(
E

[
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]

+ Var
(
E

[
E

(
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
|Σm,ω

])
(C.51)

We first examine Var
(
tr
[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
.

Var
(
tr
[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
= E

[
tr2
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
− E

[
tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]2
(C.52)

To establish an bounds on the variance, we seek both lower and upper bounds for the

terms in Equation C.52. The bounds for the second term can be directly obtained

from the derivation in the Proof of Lemma C.1.

[
Tkν

2

T−kN
+ Tk

]2
tr2 (Sm,ω,r) ≤ E

[
tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]2
≤
[
Tk

T−k

(Nξκmax)
2 + Tk

]2
tr2 (Sm,ω,r) (C.53)[

T 2
k ν

4

T 2
−kN

2
+ 2

T 2
k ν

2

T−kN
+ T 2

k

]
tr2 (Sm,ω,r) ≤ E

[
tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]2
≤
[
T 2
k

T 2
−k

(Nξκmax)
4 + 2

T 2
k

T−k

(Nξκmax)
2 + T 2

k

]
tr2 (Sm,ω,r)

(C.54)

For the first term in Equation C.52, we follow the strategy of the proof of Lemma
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C.1. The matrix in the trace of Equation C.55 is square and positive semidefinite,

and we apply the result of Remark C.3.

E
[
tr2
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
= E

[
tr2
(
S1/2
m,ω,rV⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,kS1/2

m,ω,r

)
|Sm,ω,r

]
(C.55)

≤ (d2 − d+ 1) E
[
tr
(

Sm,ω,rV⊤
m,ω,r,k [Φm,ω,r,k + ITk

]Vm,ω,r,kSm,ω,r

V⊤
m,ω,r,k [Φm,ω,r,k + ITk

]Vm,ω,r,k

)
|Sm,ω,r

]
(C.56)

≤ (d2 − d+ 1) tr
(

Sm,ω,rE
[
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,kSm,ω,r

V⊤
m,ω,r,k [Φm,ω,r,k + ITk

]Vm,ω,r,k|Sm,ω,r

])
(C.57)

We can write the expectation as

E
[
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,kSm,ω,rV⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Sm,ω,r

]
= E

[
E
(

V⊤
m,ω,r,k [Φm,ω,r,k + ITk

]Vm,ω,r,kSm,ω,rV⊤
m,ω,r,k

[Φm,ω,r,k + ITk
]Vm,ω,r,k|Φm,ω,r,k,Sm,ω,r

)
|Sm,ω,r

]
(C.58)
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and obtain the inner piece from Theorem 2.3.8 (v) of Gupta and Nagar (2018).

E
(

V⊤
m,ω,r,k [Φm,ω,r,k + ITk

]Vm,ω,r,kSm,ω,rV⊤
m,ω,r,k [Φm,ω,r,k + ITk

]Vm,ω,r,k|Φm,ω,r,k,Sm,ω,r

)
= tr (ITk

[Φm,ω,r,k + ITk
] ITk

[Φm,ω,r,k + ITk
]) tr (Sm,ω,rId) Id

+ tr ([Φm,ω,r,k + ITk
] ITk

) tr ([Φm,ω,r,k + ITk
] ITk

) IdSm,ω,rId

+ tr ([Φm,ω,r,k + ITk
] ITk

[Φm,ω,r,k + ITk
] ITk

) IdSm,ω,rId (C.59)

= tr
(
[Φm,ω,r,k + ITk

]2
)

tr (Sm,ω,r) Id

+ tr2 ([Φm,ω,r,k + ITk
])Sm,ω,r

+ tr
(
[Φm,ω,r,k + ITk

]2
)

Sm,ω,r (C.60)

= tr
(
Φ2

m,ω,r,k

)
tr (Sm,ω,r) Id + tr

(
Φ2

m,ω,r,k

)
Sm,ω,r + tr2 (Φm,ω,r,k)Sm,ω,r

+ 2tr (Φm,ω,r,k) tr (Sm,ω,r) Id + 2tr (Φm,ω,r,k)Sm,ω,r + 2Tktr (Φm,ω,r,k)Sm,ω,r

+ Tktr (Sm,ω,r) Id + TkSm,ω,r + T 2
k Sm,ω,r (C.61)

Using Von Neumann’s trace inequality and the upper bound on the largest eigenvalue

from Equation C.26,

tr
(
Φ2

m,ω,r,k

)
≤

N∑
i=1

λi (Φm,ω,r,k)
2 (C.62)

≤ Nλ1 (Φm,ω,r,k)
2 (C.63)

≤ T 2
kN

3G4κ4
max

T 2
−k

(
h̄2
m,ω,r,−k

)2 , (C.64)
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and we input the result to Equation C.61.

E
(

V⊤
m,ω,r,k [Φm,ω,r,k + ITk

]Vm,ω,r,kSm,ω,rV⊤
m,ω,r,k [Φm,ω,r,k + ITk

]Vm,ω,r,k|Φm,ω,r,k,Sm,ω,r

)
≤

(
T 2
kN

3G4κ4
max

T 2
−k

(
h̄2
m,ω,r,−k

)2
)

tr (Sm,ω,r) Id +
(

T 2
kN

3G4κ4
max

T 2
−k

(
h̄2
m,ω,r,−k

)2
)

Sm,ω,r

+

(
T 2
kN

4G4κ4
max

T 2
−k

(
h̄2
m,ω,r,−k

)2
)

Sm,ω,r + 2

(
TkN

2G2κ2
max

T−kh̄2
m,ω,r,−k

)
tr (Sm,ω,r) Id

+ 2

(
TkN

2G2κ2
max

T−kh̄2
m,ω,r,−k

)
Sm,ω,r + 2

(
T 2
kN

2G2κ2
max

T−kh̄2
m,ω,r,−k

)
Sm,ω,r

+ Tktr (Sm,ω,r) Id + TkSm,ω,r + T 2
k Sm,ω,r (C.65)

With the expected values from Condition 4.9, we can simplify the form to that shown

in Equation C.66.

E
[
V⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,kSm,ω,rV⊤

m,ω,r,k [Φm,ω,r,k + ITk
]Vm,ω,r,k|Sm,ω,r

]
≤
(
T 2
kN

3ϱ4κ4
max

T 2
−k

)
tr (Sm,ω,r) Id +

(
T 2
kN

3ϱ4κ4
max

T 2
−k

)
Sm,ω,r

+

(
T 2
kN

4ϱ4κ4
max

T 2
−k

)
Sm,ω,r + 2

(
TkN

2ξ2κ2
max

T−k

)
tr (Sm,ω,r) Id

+ 2

(
TkN

2ξ2κ2
max

T−k

)
Sm,ω,r + 2

(
T 2
kN

2ξ2κ2
max

T−k

)
Sm,ω,r

+ Tktr (Sm,ω,r) Id + TkSm,ω,r + T 2
k Sm,ω,r (C.66)

We return to Equation C.57, and note that for any square, positive semidefinite
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matrix P ∈ Rn×n, tr (P2) ≤ tr2 (P).

E
[
tr2
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
≤ (d2 − d+ 1) tr2 (Sm,ω,r)

[
3

(
T 2
kN

4ϱ4κ4
max

T 2
−k

)
+ 4

(
TkN

2ξ2κ2
max

T−k

)
+ 2

(
T 2
kN

2ξ2κ2
max

T−k

)
+ 2Tk + T 2

k

]
(C.67)

We can write the following inequality for Var
(
T−1
k tr

[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
.

Var
(
T−1
k tr

[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
≤ tr2 (Sm,ω,r)

(
1

T 2
−k

[
3(d2 − d+ 1)N6ϱ4κ4

max − ν4

N2

]
+

1

TkT−k

[
4(d2 − d+ 1)N2ξ2κ2

max
]

+
1

T−k

[
2(d2 − d+ 1)N3ξ2κ2

max − 2ν2

N

]
+ (d2 − d) +

2

TK

(d2 − d+ 1)

)
(C.68)

Taking the limit as T →∞, we obtain an upper bound for the variance of the estimate

given all individual covariance matrices for one test set with each featurization and

potential realization of the data. As the number of time points gets large with a fixed

Tk <∞, the size of each training set T−k tends to infinity.

lim
T→∞

Var
(
T−1
k tr

[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
≤
[
(d2 − d) +

2

Tk

(d2 − d+ 1)

]
tr2 (Sm,ω,r)

(C.69)

Returning to the total variance in Equation C.51, with the limit in Equation C.69,

we can apply the Dominated Convergence Theorem to establish the limiting value
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for Var
(
ϑ̂m

)
. We also use the results in Equations C.32 and C.41 to establish the

limiting expectation limT→∞ E
[
T−1
k tr

(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
= tr (Sm,ω,r).

The first term in Equation C.51 has an inner term of the variance of the variation

parameter given the featurization specific matrix Sm,ω,r and the realization specific

matrix Σm,ω. The only remaining source of variation arises from labelling the training

and test sets k = 1, . . . , K. With random assignment, and fully explained temporal

dependence as in Condition 4.12, we treat these splits as uncorrelated draws, and the

variance can move inside the summation.

E

[
E

(
Var

[
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]

= E

[
E

(
1

φ2R2K2

φ∑
ω=1

R∑
r=1

K∑
k=1

Var
[
1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]
(C.70)

The inner variance converges pointwise and is dominated by the integrable quantity

tr2 (Sm,ω,r)

[
3(d2 − d+ 1)N6ϱ4κ4

max + 6(d2 − d+ 1)N3ξ2κ2
max + 3d2 + 1

]
, (C.71)

as a simplification of the form shown in Equation C.68. The expectation of the inner

term converges pointwise, where

lim
T→∞

E
[
Var

(
T−1
k tr

[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
|Σm,ω

]
≤
[
(d2 − d) +

2

Tk

(d2 − d+ 1)

]
tr2 (Σm,ω) , (C.72)
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and is dominated by the similar integrable quantity

tr2 (Σm,ω)

[
3(d2 − d+ 1)N6ϱ4κ4

max + 6(d2 − d+ 1)N3ξ2κ2
max + 3d2 + 1

]
. (C.73)

We again assume a fixed Tk < ∞, and T → ∞ implies T−k → ∞. The limit also

implies K →∞ for a fixed Tk. When applying the Dominated Convergence Theorem

twice,

lim
T→∞

E

[
E

(
1

φ2R2K2

φ∑
ω=1

R∑
r=1

K∑
k=1

Var
[
1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]

= E

[
lim
T→∞

E

(
1

φ2R2K2

φ∑
ω=1

R∑
r=1

K∑
k=1

Var
[
1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]
(C.74)

= E

[
E

(
lim

T−k,K→∞

1

φ2R2K2

φ∑
ω=1

R∑
r=1

K∑
k=1

Var
[
1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]
(C.75)

≤ E

[
E

(
lim

K→∞

1

φ2R2K2

φ∑
ω=1

R∑
r=1

K∑
k=1

[
(d2 − d) +

2

Tk

(d2 − d+ 1)

]
tr2 (Sm,ω,r) |Σm,ω

)]
.

(C.76)

The inner piece tends to zero as K gets large, and

lim
T→∞

E

[
E

(
1

φ2R2K2

φ∑
ω=1

R∑
r=1

K∑
k=1

Var
[
1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]
= 0.

(C.77)

For the second term in Equation C.51, the inner expectation converges pointwise to

tr (Sm,ω,r) and is dominated by the integrable term
[
(Nξκmax)

2 + 1
]

tr (Sm,ω,r). The

middle expectation converges pointwise to tr (Σm,ω) and is dominated by the similar



240

term
[
(Nξκmax)

2 + 1
]

tr (Σm,ω). We can take the limit inside the function h(x) = x2

as it is continuous on the full domain x ∈ R (i.e., inside the variance term).

lim
T→∞

E

[
Var

(
E

[
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]

= E

[
lim
T→∞

Var
(
E

[
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]
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= E

[
Var

(
lim
T→∞

1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

E
[
1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]
(C.79)

= E

[
Var

(
1

φR

φ∑
ω=1

R∑
r=1

tr (Sm,ω,r) |Σm,ω

)]
(C.80)

Given the data realized covariance matrix Σm,ω, each featurization Sm,ω,r is an un-

correlated draw, and we can distribute the variance term like above. From Condition

4.11, we extract the limiting value.

lim
T→∞

E

[
Var

(
E

[
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
(
R⊤

m,ω,r,kRm,ω,r,k

)
|Sm,ω,r

]
|Σm,ω

)]

= E

[
1

φ2R2

φ∑
ω=1

R∑
r=1

Var (tr (Sm,ω,r) |Σm,ω)

]
(C.81)

= E

[
1

φ2R2

φ∑
ω=1

R∑
r=1

τ 2r

]
=

τ 2r
φR

(C.82)

For the third term in Equation C.51, we note the same conditions as before, and
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proceed like above.

lim
T→∞

Var
(
E

[
E

(
1

φRK

φ∑
ω=1

R∑
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K∑
k=1

1

Tk

tr
[
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m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
|Σm,ω

])

= Var
(

lim
T→∞

E

[
E

(
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
|Σm,ω
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(C.83)

= Var
(
E

[
lim
T→∞

1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

E
(

1

Tk

tr
[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
|Σm,ω

])
(C.84)

= Var
(
E

[
1

φR

φ∑
ω=1

R∑
r=1

tr (Sm,ω,r) |Σm,ω

])
(C.85)

= Var
(
1

φ

φ∑
ω=1

tr (Σm,ω)

)
(C.86)

Each realization of the data is independent, and we can take the variance inside the

summation.

lim
T→∞

Var
(
E

[
E

(
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk

tr
[
R⊤

m,ω,r,kRm,ω,r,k

]
|Sm,ω,r

)
|Σm,ω

])

=
1

φ2

φ∑
ω=1

Var (tr [Σm,ω]) =
τ 2ω
φ

(C.87)

Thus, we can write the limiting variance as,

lim
T→∞

Var
(
ϑ̂m

)
=

τ 2ω
φ

+
τ 2r
φR

. (C.88)

The proof of Theorem 4.13 follows directly from the results of Lemmas C.1 and
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C.2.

Proof of Theorem 4.13. From Lemma C.1, we establish that limT→∞ E
[
ϑ̂m

]
= ϑm.

Turning to the result of Lemma C.2,

lim
T→∞

Var
(
ϑ̂m

)
=

τ 2ω
φ

+
τ 2r
φR

(C.89)

lim
R→∞

lim
T→∞

Var
(
ϑ̂m

)
= lim

R→∞

τ 2ω
φ

+
τ 2r
φR

=
τ 2ω
φ
. (C.90)

When we observe the data without error (τ 2ω = 0), the limiting variance is zero, and

the estimate is consistent.

In the alternative scenario, we no longer require error free data observation.

lim
φ→∞

lim
T→∞

Var
(
ϑ̂m

)
= lim

φ→∞

τ 2ω
φ

+
τ 2r
φR

= 0. (C.91)

The proof of Theorem 4.14 is a direct result of Condition 4.11.

Proof of Theorem 4.14. From Condition 4.11, we see that tr (Σm,ω)
i.i.d.∼ (ϑm, τ

2
ω). For

an individual realization, we have shown in the proofs of Lemma C.1 and C.2 that

1

RK

R∑
r=1

K∑
k=1

T−1
k tr

(
R⊤

m,ω,r,kRm,ω,r,k

)
|Σm,ω

P−→ tr (Σm,ω) (C.92)

as the number of observations T →∞. The variation parameter is the average of the

individual realization-specific covariance matrices, and the Central Limit Theorem

arises from the application of Slutsky’s Theorem.

The proof of Theorem 4.15 begins with the empirical distribution function, and
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employs the result of the Glivenko-Cantelli to show convergence in distribution to a

Uniform(0, 1) random variable.

Proof of Theorem 4.15. Under the null hypothesis, ϑ1 = · · · = ϑT ! = ϑ. We define

the quantile estimate Q̂M , shown in Equation 4.13, as an evaluation of the empirical

distribution function ĤM(s) at ϑ̂1. As the number of permutations M approaches the

total number of possible permutations T !, the empirical distribution ĤM(s) trivially

converges to Ĥ(s) defined in Equation 4.11.

From the results of Lemmas C.1 and C.2, we know that as T →∞, ϑ̂1
D−→ F , where the

continuous distribution F has expectation ϑ and variance φ−1τ 2ω + (φR)−1 τ 2r . Under

the null, each realization ϑ̂m is independently drawn from F . From the Glivenko-

Cantelli Theorem as T →∞,

sup
s

∣∣∣Ĥ(s)−F(s)∣∣∣ a.s.−−→ 0. (C.93)

We define U ∼ Uniform(0, 1) and note that if s ∼ G, we can write s ∼ G−1(U). We

state that F
(

limT→∞ ϑ̂1

)
follows the same distribution as F (F−1 (U)) ∼ U .

Combining these results and Theorem 4.13 with the continuous mapping theorem in

Equation C.96 and Slutsky’s Theorem,

lim
M→T !

ĤM

(
ϑ̂1

)
→ Ĥ

(
ϑ̂1

)
(C.94)

lim
T→∞

Ĥ
(
ϑ̂1

)
→ F

(
ϑ̂1

)
(C.95)

lim
T→∞

F
(
ϑ̂1

)
D−→ F

(
lim
T→∞

ϑ̂1

)
(C.96)

F
(

lim
T→∞

ϑ̂1

)
∼ U , (C.97)
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so under Conditions 4.6 - 4.12,

lim
T→∞

lim
M→T !

Q̂M = lim
T→∞

lim
M→T !

ĤM

(
ϑ̂1

)
D−→ U . (C.98)

The proof of Theorem 4.16 follows from the result of Theorem 4.13.

Proof of Theorem 4.16. Under the alternative, we have ϑ1 < ϑi for all possible per-

mutations i = 1, . . . , T !. We observe M permutations of the total possible. Define

δM as the minimum difference between the underlying parameter ϑ1 and another

permutation in m = 1, . . . ,M , and ηM as the maximum estimation error over all

permutations m = 1, . . . ,M .

δM = min
1<m≤M

|ϑm − ϑ1| ≥ δ where δ = lim
M→T !

δM (C.99)

ηM = max
1≤m≤M

∣∣∣ϑ̂m − ϑm

∣∣∣ ≤ η where η = lim
M→T !

ηM (C.100)

If 2ηM < δ, then the quantile estimate Q̂M will return the true value in the limit.

Writing the minimum using the definition in Equation 4.13,

min
2ηM<δ

Q̂M = min
2ηM<δ

1

M

M∑
m=1

1
{
ϑ̂m ≤ ϑ̂1

}
(C.101)

= min
2ηM<δ

1

M

M∑
m=1

1
{
ϑ̂m − ϑ̂1 ≤ 0

}
(C.102)

= min
2ηM<δ

1

M

M∑
m=1

1
{
(ϑ̂m − ϑm) + (ϑ1 − ϑ̂1) + (ϑm − ϑ1) ≤ 0

}
. (C.103)

The quantity in Equation C.103 will reach its minimum when the estimation errors

are maximized, leading to a larger value inside the indicator and fewer pairs that
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meet the criteria.

min
2ηM<δ

Q̂M ≥ min
2ηM<δ

1

M

M∑
m=1

1 {2ηM + (ϑm − ϑ1) ≤ 0} (C.104)

≥ min
2ηM<δ

1

M

M∑
m=1

1 {2ηM + ϑm ≤ ϑ1} (C.105)

For the maximum,

max
2ηM<δ

Q̂M = max
2ηM<δ

1

M

M∑
m=1

1
{
(ϑ̂m − ϑm) + (ϑ1 − ϑ̂1) + (ϑm − ϑ1) ≤ 0

}
(C.106)

≤ max
2ηM<δ

1

M

M∑
m=1

1 {−2ηM + (ϑm − ϑ1) ≤ 0} (C.107)

≤ max
2ηM<δ

1

M

M∑
m=1

1 {ϑm ≤ ϑ1 + 2ηM} . (C.108)

To show consistent behavior with the original ordering, if 2ηM < δ and ϑm ≤ ϑ1,

2ηM + ϑm ≤ 2ηM + ϑ1 − δ ≤ ϑ1 (C.109)

and ϑm ≤ ϑ1 − δ + 2ηM ≤ ϑ1 + 2ηM , (C.110)

or if 2ηM < δ and ϑm > ϑ1,

2ηM + ϑm > 2ηM + ϑ1 + δ > ϑ1 (C.111)

and ϑm > ϑ1 + δ > ϑ1 + 2ηM . (C.112)
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Thus, the ordering is preserved.

lim
M→T !

min
2ηM<δ

Q̂M ≥ lim
M→T !

1

M

M∑
m=1

1 {ϑm ≤ ϑ1} ≥ Q (C.113)

lim
M→T !

max
2ηM<δ

Q̂M ≤ lim
M→T !

1

M

M∑
m=1

1 {ϑm ≤ ϑ1} ≤ Q (C.114)

=⇒ lim
M→T !

Q̂M = Q when 2ηM < δ (C.115)

We now need to show the probability of 2ηM < δ goes to one in the limit. Pick any

δ > 0.

P
(
ηM <

δ

2

)
= P

(
max

1≤m≤M

∣∣∣ϑ̂m − ϑm

∣∣∣ < δ

2

)
(C.116)

From the result of Theorem 4.13, when τ 2ω = 0,

lim
R→∞

lim
T→∞

P
(∣∣∣ϑ̂m − ϑm

∣∣∣ < δ

2

)
= 1. (C.117)

Similarly,

lim
φ→∞

lim
T→∞

P
(∣∣∣ϑ̂m − ϑm

∣∣∣ < δ

2

)
= 1. (C.118)

Returning to the maximum,

P
(

max
1≤m≤M

∣∣∣ϑ̂m − ϑm

∣∣∣ < δ

2

)
= P

(∣∣∣ϑ̂1 − ϑ1

∣∣∣ < δ

2
, . . . ,

∣∣∣ϑ̂M − ϑM

∣∣∣ < δ

2

)
(C.119)

≥ 1−
M∑

m=1

P
(∣∣∣ϑ̂m − ϑm

∣∣∣ ≥ δ

2

)
, (C.120)
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and taking the limit under the two scenarios,

lim
R→∞

lim
T→∞

P
(

max
1≤m≤M

∣∣∣ϑ̂m − ϑm

∣∣∣ < δ

2

)
≥ 1−

M∑
m=1

lim
R→∞

lim
T→∞

P
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2

)
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when τ 2ω = 0, and

lim
φ→∞

lim
T→∞

P
(

max
1≤m≤M

∣∣∣ϑ̂m − ϑm

∣∣∣ < δ

2

)
≥ 1−

M∑
m=1

lim
φ→∞

lim
T→∞

P
(∣∣∣ϑ̂m − ϑm

∣∣∣ ≥ δ

2

)
= 1.

(C.122)

This implies Q̂M
P−→ Q in both cases presented in the statement of Theorem 4.16.

The proof of Theorem 4.17 follows a step by step derivation of the distribution

from the known starting point of Condition 4.12.

Proof of Theorem 4.17. We begin with the distribution of the model residuals that

is known from Equation 4.27 and Condition 4.12, Um,ω,r ∼ MN T×d (0, IT ,Sm,ω,r).

The predicted residuals can be expressed as a function of the model residuals, like in

Equation 4.9, and their distribution follows from that of Um,ω,r as in Equation C.4.

Like in the proof of Lemma C.1, we define

Φm,ω,r,k = Hm,ω,r,k

[
H⊤

m,ω,r,−kHm,ω,r,−k

]−1 H⊤
m,ω,r,k, (C.123)

and further define

Vm,ω,r,k ∼MN Tk×d(0, ITk
, Id) (C.124)



248

such that we can write Rm,ω,r,k = (Φm,ω,r,k + ITk
)1/2 Vm,ω,r,kS1/2

m,ω,r. The distribution

has an equivalent vectorized form, with covariance matrix the Kronecker product

between the row-wise and column-wise variation.

rm,ω,r,k = vec (Rm,ω,r,k) ∼ NTKd (0, [Φm,ω,r,k + ITk
]⊗ Sm,ω,r) (C.125)

For simplicity, define ∆m,ω,r,k = [Φm,ω,r,k + ITk
] ⊗ Sm,ω,r and write the equivalent

form rm,ω,r,k = ∆
1/2
m,ω,r,kvm,ω,r,k, where vm,ω,r,k ∼ NTkd (0, I). The covaraince ma-

trix ∆m,ω,r,k = (δm,ω,r,k,ij) is symmetric and each element in the vector vm,ω,r,k =

(vm,ω,r,k,i) ∼ N (0, 1).

r⊤m,ω,r,krm,ω,r,k = v⊤
m,ω,r,k∆m,ω,r,kvm,ω,r,k (C.126)

=

Tkd∑
i=1

(
δm,ω,r,k,iiv

2
m,ω,r,k,i +

Tkd∑
j=1
j ̸=i

δm,ω,r,k,ijvm,ω,r,k,ivm,ω,r,k,j

)
(C.127)

=

Tkd∑
i=1

(
δm,ω,r,k,iiv

2
m,ω,r,k,i + 2

i−1∑
j=1

δm,ω,r,k,ijvm,ω,r,k,ivm,ω,r,k,j

)
(C.128)

=

Tkd∑
i=1

(
δm,ω,r,k,iiv

2
m,ω,r,k,i +

1

2

i−1∑
j=1

δm,ω,r,k,ij (vm,ω,r,k,i + vm,ω,r,k,j)
2

− 1

2

i−1∑
j=1

δm,ω,r,k,ij (vm,ω,r,k,i − vm,ω,r,k,j)
2

)
(C.129)

We note that

v2m,ω,r,k,i ∼ χ2
1 (C.130)

1

2
(vm,ω,r,k,i + vm,ω,r,k,j)

2 ∼ χ2
1 (C.131)

1

2
(vm,ω,r,k,i − vm,ω,r,k,j)

2 ∼ χ2
1, (C.132)
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and δm,ω,r,k,ij depend on the matrices Φm,ω,r,k = (ϕm,ω,r,k,ij) and Sm,ω,r = (sm,ω,r,ij).

Let i′ = ⌈i/d⌉, j′ = ⌈j/d⌉, i∗ = i mod d, and j∗ = j mod d. We define the following

random variables for all ω ∈ Ωobs, r = 1, . . . ,R, k = 1, . . . , K, i = 1, . . . , Tkd and

j < i.

Xm,ω,r,k,i, Ym,ω,r,k,ij , Zm,ω,r,k,ij ∼ χ2
1 (C.133)

We can write each δm,ω,r,k,ij = (ϕm,ω,r,k,i′j′ + 1 {i′ = j′}) sm,ω,r,k,i∗j∗ and input the def-

initions.

r⊤m,ω,r,krm,ω,r,k =

Tkd∑
i=1

[
(ϕm,ω,r,k,i′i′ + 1) sm,ω,r,k,i∗i∗Xm,ω,r,k,i

+

d⌊(i−1)/d⌋∑
j=1

ϕm,ω,r,k,i′j′sm,ω,r,k,i∗j∗ (Ym,ω,r,k,ij − Zm,ω,r,k,ij)

+
i−1∑

j=d⌊(i−1)/d⌋+1

(ϕm,ω,r,k,i′j′ + 1) sm,ω,r,k,i∗j∗ (Ym,ω,r,j,ij − Zm,ω,r,k,ij)

]
(C.134)

To obtain the distribution for the variation parameter, we aggregate this generalized

chi-square distribution over the test sets k = 1, . . . , K, featurizations r = 1, . . . ,R,

and potential realizations ω ∈ Ωobs.
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