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1 Introduction

Complexity science is concerned with the characterization of natural phenomena
through the postulation of generative rules which are unlike the laws of traditional
science in that the latter aim to be universally predictive and are formulated through
controlled experimentation and data analysis while the former aim to be locally
descriptive and are often formulated through in silico simulation. These simulations,
in turn, may display emergent properties which mimic natural phenomena. Complex
systems are nonlinear, non-stationary, non-equilibrium, lack a characteristic scale
(scale free), lack a central coordinating authority, and display some degree of order
often on the verge of chaos.

The process of social influence and individual opinion formation can aptly be
constructed as a complex adaptive system. Individual people formulate their opin-
ions through some unknown process that considers social pressure and their own
individual agency. What arises from this process is a global opinion distribution, or
“public opinion,” that is a nonlinear epiphenomena of local agent action. Opinion
dynamics models postulate simple agent rules that approximate this unknown local
process so as to generate global behavior mimicking observed phenomena.

1.1 Motivation

Developing a complex systems model of public opinion will have a twofold impact.
First, it will provide a framework for a novel conceptualization of public opinion.
Present understandings of public opinion rely on the linear aggregation of individual
opinions, e.g., surveys from polling organizations such as Gallup or Pew Research
Center. However, this fails to describe the process that drives such opinon formation
in the first place. It neglects the influence of interest groups, political and media
elites, and social mores, as well as individual variation on dimensions of knowl-
edge, ideology, self-interest, group identity, emotion, and salient frames of reference,
among others. A complex systems framework will shed light on the processes of
social influence and individual response which will yield more fruitful results for
questions about public opinion posed by political, non-profit, and community orga-
nizations.

1.2 Problem statement

Existing opinion dynamics models and theories are characterized by three signifi-
cant faults. First, they largely assume that all people respond to social influence
in the same manner. As a result, they use one-dimensional theories that are insuf-
ficient to explain individual variation and group dynamics. Second, in formulating
said theories, existing approaches rely heavily on phenomena observed in biology or
physics — such as spin interaction, bird flocking, or cellular automata — yet, there
is little, if any, evidence that establishes a link between these quantitative models
and human behavior. As a result, current models are often predetermined systems
with intuitive results, given the initial conditions, and rarely display true emergent
properties. Finally, the simulation spaces to which such models are applied are not
representative of the true social spaces. Namely, most models employ a random
graph topology despite there being strong evidence that human networks are not
well approximated by random graphs.

3



1.3 Research aims

As a consequence of the aforementioned shortcomings, current opinion dynamics
models offer little insight into human behavior. The broad objective of this research
is to contribute to the development of a more descriptively rigorous and practically
useful model of social influence. Towards this end, we have three research aims.

Aim 1: Design a set of agent rules that is nuanced and accounts for
variation in individuals’ reception to and exercise of social influence.
This rule set will take its roots in the study of social influence and
individual response by psychologists and social scientists.

Aim 2: Develop and employ a network topology that is a better approx-
imation of human social networks.

Aim 3: Determine issues (opinions) and phenomena whose dynamics
can be fruitfully simulated using this approach.

2 Literature Review

For this project, two literature reviews are necessary: one surveying approaches to
modeling opinion dynamics and a second outlining psychological theories of social
influence. This section covers both bodies of literature.

2.1 Opinion dynamics models

The majority of opinion dynamics models belong to one of a few major categories:
voter, averaging, majority rule, social impact, Sznajd, bounded confidence, and
Bayesian updating models. The basic form and significant variations of each model
type are presented here.

2.1.1 Voter model

The voter model was first introduced by Holley and Liggett (1975) as part of a study
of the ergodic properties of a branching process. In each time-step of the opinion
model, a node is randomly selected and then one of its neighbors (or itself) is also
selected at random. Then, the selected node moves, invariably, to the opinion of its
selected neighbor. In the default case, this model reaches consensus.

Several variations of the voter model have been studied, for instance, Yildiz
et al. (2011) present a model with stubborn agents and show this prevents opinion
convergence and invites further questions such as identifying optimal location of
the stubborn agents. Xiong et al. (2010) consider a voter model in which agents
own a memory in addition to a present opinion; they show the system settles to a
more polarized state. Yang et al. (2012) posit a nonlinear voter model in which a
tuning parameter controls the speed and nature of consensus formation. Finally, and
perhaps most interestingly, Kempe et al. (2013) present an arbitrary graph structure
in which agents are only open to influence from other agents with sufficiently similar
interaction patterns and characterize various equilibria and end-states based on
initial conditions.
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2.1.2 Sznajd model

Sznajd-Weron (2005) held that changing a person’s opinion is more likely to happen
if that person is persuaded by two or more people than by a single individual. In its
original version, agents occupy the sites of a linear chain, and have binary opinions,
denoted by Ising spin variables. A pair of neighboring agents, i and i+1, determines
the opinions of their two nearest neighbors, i− 1 and i+ 2, as follows: if the agents
of the pair share the same opinion, they successfully impose their opinion on their
neighbors. If, instead, the two agents disagree, each agent imposes its opinion
on the other agent’s neighbor. Opinions are updated in a random sequential order.
Starting from a totally random initial configuration, where both opinions are equally
distributed, two types of stationary states are found, corresponding to consensus,
with all spins up (m = 1) or all spins down (m = −1), and to a stalemate, with the
same number of up and down spins in antiferromagnetic order (m = 0).

2.1.3 Averaging model

Often used to study the emergence of consensus in a society, agents in this model
update their opinions based on the average of their neighbors’ opinions as introduce
by DeGroot (1974). Opinions in this model may be represented as either discrete or
continuous. Friedkin and Johnsen (1990) extended this model to encompass both
dissent and consensus by implementing a two-tiered opinion model in which each
agent owns both a public and private opinion.

Variations of the averaging model include the study of exogenous inputs and
defiant agents with local and global interactions by Fotouhi and Rabbat (2013) in
which they model local interaction as agents’ response to direct neighbors (family,
friends, etc.) and global interaction as agents’ response to indirect influence (mass
media, advertising, etc.). Each node finds the proportion of local and global agents
with whom it disagrees and probabilistically determines whether or not to adopt
their average opinion. To model mass media, in particular, an exogenous bias on
the average system orientation is added. Fotouhi and Rabbat present the results of
both simulations then investigate the effect of stubborn nodes that refuse influence
by the exogenous bias. Their key result is the necessary conditions so that the
stubborn nodes can successfully resist influence by mass media.

2.1.4 Bounded confidence model

These models are structurally similar to the averaging models but differ in that
agents are only influenced by neighbors whose opinions are within a given confidence
range of their own opinion. Hegselmann and Krause (2002) find the system will
approach consensus only if the network is such that for any two agents i and j there
exists a third one k such that a chain of confidence leads from i to k as well as from
j to k. Opinions in this model lie on the real line.

Numerous studies have examined the convergence of bounded confidence mod-
els to consensus or clustering. One such variation is the multi-equilibria regulation
model in which Koulouris et al. (2012) explore the effect of various network topolo-
gies — complete graph, star, cellular automata, small-world, and random graph —
on opinion dynamics in a bounded confidence model. The results of their simulations
are quite nuanced and can be found summarized in Castellano et al. (2009).
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2.1.5 Majority rule model

Majority models differ from averaging and bounded confidence models in that se-
lected agents adopt the opinion of the majority of other agents (including them-
selves). In each time step, the focal agent probabilistically determines whether or
not to adopt the opinion of the majority of his neighbors. Zhang et al. (2013) show
that, in the default case, this will lead to consensus with two system sub-states:
opinion consensus and relation consensus. They show the number of opinion clus-
ters in the final state is inversely proportional to the number opinions in the initial
state.

The non-consensus opinion (NCO) model was proposed by Shao et al. (2009)
in which they found clusters of nodes holding the same opinion occurs when the
concentration of nodes holding the same opinion is above a certain threshold. Shao
et al. (2009) show these clusters are impermeable to influence from others. Li et al.
(2012) generalize the NCO model by adding a weight factor to each individual’s
original opinion to control the relative displacement in opinion at the end state.
Li et al. (2012) find tuning this parameter will impact the stability and opinion
minority density of the clusters. They present various other detailed results in.

2.1.6 Continuous opinions and discrete actions

The continuous opinions and discrete actions (CODA) model was proposed by Mar-
tins (2007) and generalized as a Bayesian updating procedure in Martins (2012).
This model differentiates between opinion and choice: agents possess a discrete ac-
tion that is motivated by an underlying continuous opinion distribution in which he
registers information received from neighbors and keeps track of his own memory.
In this approach, agents with more extreme opinions will require more influence to
change their public opinion. In Martins (2008), there are two possible discrete ac-
tions to choose from and a simple application of Bayes rule is used as the updating
procedure for agents’ underlying continuous opinion distribution.

In Martins (2007) this decision theory is outlined and applied to the discrete
voter model and shows the discrete model can be obtained as a limit case of the
CODA model. In Martins (2012) this decision theory is applied to the continuous
bounded confidence model which is also shown to be a special case of the CODA
model. Martins (2008) explores the behavior of extreme opinions in the CODA
model and finds that extreme opinions do not survive long with increasing social
contact. Liu et al. (2012) present this model with multiple cluster-coupled patterns
in which clusters are connected via fixed links and interact with each other at varying
frequencies. They show that higher interconnectivity and interaction frequency yield
to greater levels of agreement and decreased extremism.

2.2 Psychological Theories of Social Influence

There is, of course, a vast body of literature in which psychologists and social scien-
tists attempt to explain some aspect of individual opinion formation as a function
of social influence. The majority of such studies employ a controlled experiment
methodology and are, thus, only able to comment on specific aspects of an individ-
ual’s opinion formation process: gender, minority status, religious affiliation, etc.
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There are; however, a few studies that postulate a generalized theory of social in-
fluence, a few of which are summarized here.

2.2.1 Dissemination of culture model

This model was introduced by Axelrod (1997) and depends on two critical aspects
of cultural dynamics: social assimilation and homophily. Social assimilation is the
tendency of individuals to become more similar when they interact. Homophilly is
the tendency of likes to attract each other, so that they interact more frequently.
The remarkable result of this model is that, while social scientists expected these two
aspects to yield a self-reinforcing dynamic leading to a global convergence, Axelrod
and others demonstrated the persistence of local diversity.

In this model, agents are represented as nodes in a network and are given F inte-
ger variables (σ1, . . . , σF ) that can assume q possible values, i.e. σf = 0, 1, . . . , q−1.
The variables are “cultural features” and q is the number of the possible traits al-
lowed per feature. Together, they represent the different “beliefs, attitudes, and
behavior” of agents. In an elementary dynamic step, an individual i and one of his
neighbors j are selected and interact with probability ωi,j where δi,j is Kronecker’s
delta.

ωi,j =
1

F

F∑
f=1

δσf (i),σf (j) (1)

If the interaction does, in fact, take place, one of the features for which i and j have
different traits, i.e. σf (i) 6= σf (j), is selected and σf (j) is set equal to σf (i). For
any pair of neighbors, there are two stable configurations. First is the case in which
they are exactly equal, so that they belong to the same cultural region. Second
is the case in which they are entirely different, so that they exist at the fringe of
cultural regions.

2.2.2 Social impact theory

The psychological theory of social impact was first introduced by Latane (1981) to
characterize the process through which people respond to and exert influence on
their peers. The impact of a social group on a subject depends on three factors: (1)
the number of neighbors, (2) their convincing power, and (3) the distance from the
subject, where the distance can be interpreted spatially or abstractly.

Each agent, i, has an opinion σi = ±1, a measure of persuasiveness pi, and a
measure of supportiveness si. Persuasiveness and supportiveness characterize the
agent’s ability to convince his neighbors to change or keep their opinion, respectively.
pi and si take random values. Between two agents exists a distance dij . The total
impact that an agent experiences from his environment is given by:

Ii =

 N∑
j=1

pj
dαij

(1− σiσj)

−
 N∑
j=1

sj
dαij

(1 + σiσj)

 (2)

Where α > 2 expresses how fast the impact decreases with the distance. The first
term represents the persuasive impact while the second represents the supportive
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impact. An agent changes his opinion if the persuasive pressures exceed supportive
pressures, or:

σi(t+ 1) = −sgn [σi(t)Ii(t) + hi] (3)

Where hi is a random field representing all pressures other than social impact that
may persuade or support the current opinion. This field is most often set to zero
for simplicity.

3 Model theoretics and methodology

3.1 Agent rules

The rules employed to describe the low-level behavior of agents in the previously
surveyed models vary widely depending on the objective of the simulation. The goal
of this model is to bridge between statistical physics approaches and social science
theories. A preliminary rule set will begin the social impact theory and then make a
number of incremental additions and adaptations to enhance the model and explore
it’s suitability for mimicking various phenomena.

3.1.1 Social impact theory

As described above, the social impact theory assigns each person a measure of
persuasion – their ability to convince those with opinions differing from their own
to change their position and adopt one matching their own position. Likewise, each
person is assigned a measure of supportiveness – their ability to convince those with
opinions identical to their own to retain their shared position inspite of persuasive
influence from others. Latane (1981) argues that these characteristics, while related,
are independent. So, each node, i in the network is seperately assigned pi and si
from a random uniform distribution with values between 0 and 100.

Each node in the network also requies an initial opinion. In this implementation
of the model, the possible opinions are +1 and −1. Each node is initially assigned
one of the possible opinions with equal probability.

Between each pair of nodes, or set of neighbors, is some measure of distance.
This is represented as a weight on the edges in the network. Absent any information
about the nature of each node and the nature of its relationship to its neighbor, this
must also be assigned arbitrarily. In this case, each edge from node i to node j
carries a weight dij drawn from a random uniform distribution with values between
1 and 10. It is worth noting here, all edges in this network are undirected, implying
that all relationships are mutual.

In this implementation of the social impact theory, the random field hi is set to
zero.

Finally, the value for α is set arbitrarily and will be the subject a more detailed
discussion in section 3.3 on simulation methods.

The aforementioned parameters are set at the beginning of the simulation and
do not change. The model was updated synchronously, in each iteration a new copy
of the graph is created in which all changes are made based on the original graph.
At the end of iteration, the new graph becomes the old graph and a new copy is
generated. The algorithm passes over each node, computes Ii as given in Equation
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(2) above, and then determines σi(t + 1) as given in equation(3) above. σi(t + 1)
are stored in a new copy of the graph.

The first term of Equation (2) is the additive persuasive impact of the neighbors
of node i while the second term is the additive supportive impact of the neighbors of
node i – when nodes i and j share the same opinion, that is σi = σj , the persuasive
impact goes to zero and the supportive impact persists. Likewise, when node i and
j hold opposing positions, that is σi 6= σj , the supportive impact goes to zero and
the persuasive impact persists. By Equation (1), if the overall persuasive impact
exceeds the overall supportive impact, node i will change it’s position.

3.1.2 Social impact theory with memory

In a simple, yet significant, enhancment of this model we consider agents with
memory. The model follows the same form as the previously described approach
except after computing the opinion dynamics rule in Equation (3) the result is not
immediately adopted as the agent’s new opinion. Instead, the result is appended to
a unique list for each agent. When communicating a discrete opinion, each agent
may report some point estimate from that distribution – the mean, the mode, a
random draw, a random draw from the more salient or recent memories.

The objective with such a modification to the model is to dampen the longterm
variability in agent opinions. That is, agents are less likely to make dramatic changes
in their opinions over short periods of time and agents become less likely to change
their opinions altogether in the longrun.

For the consideration of memory to really be fruitful, agents must have the
capacity to hold and be exposed to more than just binary opinions.

3.1.3 Social impact theory with three opinion state space

In the standard model, opinions take value σi = ±1. This implies people may only
take position for or against a particular question. In fact, people are more often
ambivalent or apathetic than opinionated. In this adaptation of the social impact
theory, σi ∈ {−1, 0,+1} where 0 represents a neutral position.

To implement this change, we must first introduce a new node parameter along-
side persuasion, pi, and supportiveness, si: ambivalence, ai. This is a measure of
how grounded a person is in his/her ambivalence, given that they hold the neutral
position. si was assigned from a uniform random distribution between 0 and 100.

Computing social impact, Ii now becomes more intricate. If σi = ±1 and if
σj = ±1, the computation is identical to that detailed earlier. But, in the case
when either σi = 0 or σj = 0, it is easiest to consider Ii in its three components:
persuasive impact, Ip,i(t), supportive impact Is,i(t), and apathetic impact, Ia,i(t).
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The process for computing Ii(t) can be summarized as follows:

• In each iteration t, node i keeps track of persuasive impact, Ip,i(t), support-
ive impact Is,i(t), and apathetic impact, Ia,i(t) while surveying each of its
neighbors.

• If σi(t) = +1:

– If σj(t) = +1:

∗ Is,i(t) = Is,i(t) +
sj
dαij

Ip,i(t) = Ip,i(t) + 0 Ia,i(t) = Ia,i(t) + 0

– If σj(t) = −1:

∗ Is,i(t) = Is,i(t) + 0 Ip,i(t) = Ip,i(t) +
pj
dαij

Ia,i(t) = Ia,i(t) + 0

– If σj(t) = 0:

∗ Is,i(t) = Is,i(t) + 0 Ip,i(t) = Ip,i(t) + 0 Ia,i(t) = Ia,i(t) +
aj
dαij

• If σi(t) = −1:

– If σj(t) = +1:

∗ Is,i(t) = Is,i(t) + 0 Ip,i(t) = Ip,i(t) +
pj
dαij

Ia,i(t) = Ia,i(t) + 0

– If σj(t) = −1:

∗ Is,i(t) = Is,i(t) +
sj
dαij

Ip,i(t) = Ip,i(t) + 0 Ia,i(t) = Ia,i(t) + 0

– If σj(t) = 0:

∗ Is,i(t) = Is,i(t) + 0 Ip,i(t) = Ip,i(t) + 0 Ia,i(t) = Ia,i(t) +
aj
dαij

• If σi(t) = 0:

– If σj(t) = +1:

∗ Is,i(t) = Is,i(t) + 0 I+
p,i(t) = I+

p,i(t) +
pj
dαij

Ia,i(t) = Ia,i(t) + 0

– If σj(t) = −1:

∗ Is,i(t) = Is,i(t) + 0 I−p,i(t) = I−p,i(t) +
pj
dαij

Ia,i(t) = Ia,i(t) + 0

– If σj(t) = 0:

∗ Is,i(t) = Is,i(t) + 0 Ip,i(t) = Ip,i(t) + 0 Ia,i(t) = Ia,i(t) +
aj
dαij

Here, I−p,i(t) and I+
p,i(t) are the persuasive impacts from neighbors whose opinion is

−1 and +1 respectively. The opinion dynamics decision will also differ from that
which was previously presented. At the end of the iteration, σi(t+ 1) is determined
based on persuasive impact Ip,i(t), supportive impact Is,i(t), and apathetic impact,
Ia,i(t) detailed above.

• If σi(t) = +1:

– If max{Ip,i(t), Is,i(t), Ia,i(t)} = Is,i(t): σi(t+ 1) = +1

– If max{Ip,i(t), Is,i(t), Ia,i(t)} = Ip,i(t): σi(t+ 1) = −1

– If max{Ip,i(t), Is,i(t), Ia,i(t)} = Ia,i(t): σi(t+ 1) = 0
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• If σi(t) = −1:

– If max{Ip,i(t), Is,i(t), Ia,i(t)} = Is,i(t): σi(t+ 1) = −1

– If max{Ip,i(t), Is,i(t), Ia,i(t)} = Ip,i(t): σi(t+ 1) = +1

– If max{Ip,i(t), Is,i(t), Ia,i(t)} = Ia,i(t): σi(t+ 1) = 0

• If σi(t) = 0:

– If max{I+
p,i(t), I

−
p,i(t), Ia,i(t)} = I+

p,i(t): σi(t+ 1) = 0

– If max{I+
p,i(t), I

−
p,i(t), Ia,i(t)} = I−p,i(t): σi(t+ 1) = −1

– If max{I+
p,i(t), I

−
p,i(t), Ia,i(t)} = Ia,i(t): σi(t+ 1) = 0

3.1.4 Social impact theory with Bayesian updating

Now we consider a further abstraction from the binary opinion space. It is still true
that σ ∈ {−1, 0,+1} but now agents do not simply have a discrete opinion, instead,
they have a probability distribution, fi(σ) over all possible opinions. Initially, this
opinion distribution is assigned randomly (but, as outlined below, this distribution
will be updated in each iteration).

This opinion distribution is kept private, when communicating their opinion
agents report the position, σi, which they feel is most likely to be correct – that is,
the position with the highest probability in the distribution. The objective of each
agent is to improve its inference about σ∗.

To do so, the agent updates its distribution in accordance to Bayes theorem. The
focal agent, i, surveys each neighbor, j, one at a time and receives a communication
σj . The focal agent must have in mind some relationship between its belief in the
true value of σ, call it σ∗, and the value communicated by its neighbor, σj . This
relationship is given by a probability distribution Pr(σj |σ∗) which expresses the
chance that neighbor j will communicate σj given that a possible value σ∗ is the
correct value (in the mind of the focal agent).

In the context of the social impact theory, Pr(σj |σ∗) can be determined through
an adaptation of the impact measure expressed in Equation (2). In this case, the
measures of persuasion, supportiveness, and apathy must be conceived of differently
than before.

Pr(σj = +1|σ∗ = −1) = pj

Pr(σj = −1|σ∗ = −1) = sj

Pr(σj = 0|σ∗ = −1) = 1− pj − sj
(4)

Pr(σj = +1|σ∗ = +1) = sj

Pr(σj = −1|σ∗ = +1) = pj

Pr(σj = 0|σ∗ = +1) = 1− pj − sj
(5)

Pr(σj = +1|σ∗ = 0) = pj

Pr(σj = −1|σ∗ = 0) = pj

Pr(σj = 0|σ∗ = 0) = 1− pj − pj
(6)

In each iteration of the algorithm, a focal node, i, is chosen at random and then i
randomly selects one of its neighbors, j, and receives a communication from j, σj ,
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indicating the position j believes is most likely to be true. The focal agent can then
update its underlying distribution as follows:

fi(σ
∗|σj) =

Pr(σj |σ∗)Pr(σ∗)
Pr(σj)

(7)

In the next iteration of the algorithm, this posterior distribution becomes the new
prior distibution and the algorithm repeats. For the sake of completeness, a complete
set of update expressions contained in Equation (7).

fi(σ = +1|σj = +1) =
Pr(σj = +1|σ = +1)Pr(σ = +1)[
Pr(σ = +1)Pr(σj = +1|σ = +1)+

Pr(σ = −1)Pr(σj = +1|σ = −1)+

Pr(σ = 0)Pr(σj = +1|σ = 0)

]
(8)

fi(σ = −1|σj = +1) =
Pr(σj = +1|σ = −1)Pr(σ = −1)[
Pr(σ = +1)Pr(σj = +1|σ = +1)+

Pr(σ = −1)Pr(σj = +1|σ = −1)+

Pr(σ = 0)Pr(σj = +1|σ = 0)

]
(9)

fi(σ = 0|σj = +1) =
Pr(σj = +1|σ = 0)Pr(σ = 0)[

Pr(σ = +1)Pr(σj = +1|σ = +1)+

Pr(σ = −1)Pr(σj = +1|σ = −1)+

Pr(σ = 0)Pr(σj = +1|σ = 0)

]
(10)

In each time step of the algorithm, each node selects a single neighbor at random
and recieves a communication from that neighbor. The node updates its opinion
according to the scheme outlined above in a seperate lise. Note in this algorithm
each node is influenced by just one neighbor in each time step. In the previous
implementations of the social impact theory, each node was influenced by all its
neighbors in each time step.
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3.2 Network structure

Network models are well known to be sensitive to initial conditions. In a purely
random collection of network nodes, there would likely be little or no observable
pattern of connection among the users. While the majority of existing models
test their simulations on random graphs, this model will make use of a network
that better approximates the structure of human social network. The data and
information informing this network were derived from a study of a cell phone network
aimed at uncovering the latent structure and organization of that network.

3.2.1 About the data and pre-processing

The data for this study was obtained from a major mobile and Voice Over Internet
Protocol (VOIP) provider. The University of Virginia Institutional Review Board
approved an annonmization process whereby the company encrypted user phone
numbers by using a hashing function prior to providing the data set.

The data set contained 358,543,271 call detail records (CDRs) involving 50,855,844
unique users who placed or recieved calls on their network from June 1 through June
30, 2014. One day’s records, those of June 3, were not used due to a data corruption
issue. Other records were associated with non-standard users, such as service calls,
telemarketing calls, voicemail calls, etc. Finally, certain recrods had indecipherable
values, such as string entries for the area code. All such records were identified and
omitted from this analysis.

This study was limited to call detail records in which at least one of the caller or
callee had a number plan area code (NPA) within the Greater New York Metropoli-
tan Area. This allowed for a more computationally tractable sample size. A poten-
tial trade-off is a loss of important information about the network structure. In the
end, the analysis revealed interesting characteristics within the spatially-constrained
network using a suite of network statistical measures which measured up well against
similar studies performed on other data sets.

Following the aforementioned initial pre-processing of the CDR data were then
constructed in a network formation in order to examine the node degree distribution.
This graph contained a node for each unique user (caller and callee alike) with node
attributes to keep track of the user’s NPA, whether or not the user is identified as a
Company user (based on the stream direction variable), and the user hash (as given
in the original data set). The network was then populated with a directed edge for
each unique call between caller and callee was with edge attributes capturing the
stream direction associated with that call and a weight representing the number of
times that unique call took place over the entire month.

The resulting graph was comprised of 4,465,313 nodes and 8,159,933 edges and
a connected subgraph of 984,174 nodes and 3,312,927 edges. All further analysis
will focus exclusively on the connected subgraph as unreachable nodes or clusters
are uninteresting and have a negligible impact on the global opinion dynamics.

In this connected subgraph, the average weighted total (both in and out) node
degree was 10.28 with a standard deviation of 214.72, a maximum of 238,349 and
minimum of 1. The wide spread on this distribution was unrepresentative of average
human social networks which is closer to a power law distribution. To approximate
such a distribution nodes with degree less than 5 and greater than 500 were removed
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from the network. The resulting degree distribution is represented and approximated
below.

Figure 1: Weighted total node degree distribution.

This distribution can be approximated as a power law distribution. To verify
this approximation, observe the distribution is nearly linear in log-log space.

Figure 2: Weighted total node degree distribution in log-log space.

The power law distribution can be described as follows, where p is the number of
users, x is the number of calls they participated in and α is the power law parameter.

f(x) ∝ x−α = x−1.84270 (11)

The power law nature of this distribution validates its suitability for approximating
the structure of true social networks. All future analysis considers only the node
degree constrained subgraph in which only nodes with degree between 5 and 500
are included.

3.2.2 Network statistics

The node degree constrained network contained 1,147,532 nodes and 2,935,739 edges
with a connected subgraph composed of 522,186 nodes and 1,727,227 edges. To
evaluate the latent structure of the network, a number of standard network statistics
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were computed and compared to statistical measurements of an Erdős-Rényi random
graph. The random graph was generated by randomly swapping edges in the overall
network (i.e., not the connected subgraph) according to an Erdős-Rényi distribution
and then locating the connected subgraph within that randomized network. This
approach is preferred to simply randomizing the connected subgraph because that
subgraph is, in fact, an artifact of the larger network so randomizing the subgraph
would preserve some of the characteristics of the data driven network which would
not be truly random. The results of this analysis are summarized in the table below.

Data Random

Number of nodes 522,186 929,424
Number of edges 1,727,227 2,378,551

Average local clustering 0.00019 7.01341e-07
Global clustering 0.01664 5.69812e-06

Assortativity 0.01389 0.00033
Weighted average total degree 6.61537 5.11906

Average edge weight 4.60230 4.39491
Average shortest path length Intractible

Diameter 406.0 442.0
Is bipartite? FALSE FALSE

The number of nodes is the number of unique users (unique hashed user IDs) in
each network. The number of edges is the number of unique calls in each network.
Average local clustering is computed by iterating over each node and first determin-
ing its immediate neighbors (i.e., other nodes to which it is directly connected by
one edge) and then counting the number of possible and actual connections among
these neighbors. The local clustering coefficient for a node is given by:

Ci =
number of actual connections among neighbors

number of possible connections among neighbors
(12)

The average local clustering coefficient is the average of the Ci taken over all nodes in
the network graph. A graph is considered “small world” if its average local clustering
coefficient is significantly higher than a random graph constructed with the same set
of nodes and edges. In this case, the average local clustering coefficient for the data
driven network is several orders of magnitude larger than the comparable random
network. This indicates a “small world” clustering of nodes in the data driven graph.

The global clustering coefficient is computed by counting the number of closed
and open triplets in the network. A triplet is a set of three nodes that are connected
by either two or three edges; the former is “open” while the latter is called a “closed”
triplet. The global culstering coefficient is computed as follows:

C̄ =
number of closed triplets

number of open and closed triplets
(13)

The global clustering coefficient gives a measure of how densely connected a network
is; the higher the global clustering coefficient, the more connected the network. In
this case, the global clustering coefficient of the data driven network is several orders
of magnitude larger than the comparable random network implying the data network
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is more densely connected.
Assortativity is a measure of homophily, the tendency for nodes, people in this

case, networks to preferentially associate with nodes, or persons, of similar interests,
tastes, etc. The assortativity coefficient is given by:

r =

∑
xy xy(exy − axby)

σaσb
(14)

Where ax =
∑

y exy, by =
∑

x exy, and exy is the fraction of edges from a vertex of
type x to a vertex of type y. σa and σb are the variances of a and b respectively.

In this case the characteristics x and y are node degree so assortativity mea-
sures the extent to which nodes connect by a rule of preferential attachment – the
phenomenon in which popular nodes, simply by virtue of being popular, become
more popular while less popular nodes become less popular. Observe that the as-
sortativity coefficient is effectively the Pearson correlation coefficient of node degree
between pairs of linked nodes. In this regard the data and random networks both
demonstrate an assortativity coefficient close to zero which indicates some preferen-
tial process of node attachement.

The weighted average total degree in a network is the weighted average number
of edges going in and out of a node. In this case, the weight is a factor representing
the frequency of each unique call-pair. The average edge weight, then, is average
number of times each unique call-pair occurs.

The average shortest path of a network is the average fewest number of steps
required to go from any one node to another, called contact chaining.

ε =
∑
x,y∈V

d(x, y)

n(n− 1)
(15)

Determining average shortest path is a computationally expensive operation and
was intractable for such large networks, even when making use of the University of
Virginia Advanced Computing Services.

The diameter of a network is the longest of all shortest paths in the network,
given by:

Diameter = max
v∈V

ε(v) (16)

The significant difference in network statistics and measurements between the
data driven graph and the random graph indicate that social networks have some
inherent structure which cannot be replicated with a simple Erdős-Rényi random
network. Girvan and Newman (2002) claim real-world networks typically have a
clustering coefficient between 0.1 and 0.5. While the data driven network presented
here has a clustering coefficient of 0.02, it is still much closer to the theoretical value
given by Girvan and Newman (2002) than that of the random network. To put this
in context, G. Palla and Vicsek (2005) present the following statistical properties of
three benchmark real-world networks.
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Network Num. of nodes Avg. node degree Avg. clustering coeff.

Co-authorship 2,450 12.1 0.44
Word association 670 11.33 0.56

Protein interaction 82 1.54 0.17

The network studied here is a more appropriate simulation space for opinion dynam-
ics models since telephone networks better represent the structure of information
flow between people.

3.2.3 Network centrality

The final aspect of this network analysis involved the identification of nodes that
were central to the flow of information in this network. Toward this end, two
common centrality algorithms were applied. The first such algorithm, Page Rank,
computes a score for each node v as follows:

PR(v) =
1− d
N

+ d
∑

u∈Γ−(v)

PR(u)wu→v
d+(u)

(17)

Where N is the total number of nodes, Γ−(v) are the in-neighbors of v, d+(u) is
the out-degree of u, and d is a damping factor. In this case, the damping factor
represents the likelihood of a node calling another node with whom it already has a
connection (as opposed to randomly forging a new connection to a new node). The
damping factor was set to the default d = 0.85.

The Page Rank algorithm considers both the quantity and quality of edges be-
tween nodes to estimate the importance of each node. The main assumption of the
Page Rank algorithm is that nodes receiving more links from more important nodes
are themselves important. All nodes were ranked according to this algorithm. A
summary of the results is presented below.

The second centrality algorithm implemented, betweenness, considers – for each
node – the number of shortest paths from all vertices to all others that pass through
that node. A node with high betweenness centrality has a large influence on the
network, under the assumption that connections follow the shortest paths. This
algorithm is given by:

g(v) =
∑
s 6=v 6=t

σst(v)

σst
(18)

Where σst is the total number of shortest paths from node s to node t and σst(v)
is the number of those paths that pass through v. The results of this algorithm are
summarized below.
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Figure 3: A rendering of the connected subgraph colored such that nodes with higher
Page Rank are lighter in color.

Table 1: The 50 most central nodes according to the Page Rank algorithm.
User Hash Page Rank Network

0d17f0008374619a7a3f2d5b5d81be08 0.0001232926 Company
a2bd8e839f77a0bf4cc642249e1e7401 0.0001231742 PSTN
8bd3cbf9cb3916f6764494bc0aa11c2e 0.0001056989 PSTN
1b5f8e3261b18887558748342b519551 0.0001021668 Company
b5bb132f2cdf6e4382f77c1b2cf912d6 0.0001007798 Company
28c6c9862c922182431d247df733f9f6 0.0000978175 Company
b7970b2faa9905b3c7baafcef417f609 0.0000977702 PSTN
ff30ca3aaeaf8df16ffc7215e190318b 0.0000969494 PSTN
154d77a7b15305469a6d3c405f191022 0.0000954457 Company
15bbf72f80877700823856e650c9e117 0.0000949458 Company
28810315cad45c8a7cafb622381853bf 0.0000948474 PSTN
072d05f9346986146a6d3518c8fe0110 0.0000940846 Company
c74960d1c2fb81377124cd40b16f9411 0.0000938504 PSTN
9725aecf6a6aec216f3592160ff17695 0.0000921201 PSTN
fd0d2036495e3e32c566445ecd28eb76 0.0000916574 Company
02f16c6225bbc510c1ec211f98346075 0.0000914790 Company
39cc297d1309916849d7960211845659 0.0000909906 Company
199c0eca7bb9351b800f6703a0c9b166 0.0000898173 Company
aabf9f0d595303ff5b43418b23c511cb 0.0000894877 Company
a893d2913cf0148975189508de53865c 0.0000888918 Company
ba83bd2d66d2efc8feff90f09568e1e1 0.0000883434 PSTN
9d67ef6a95fa19cb16fc50b617a9c60b 0.0000881209 PSTN
e95bdd4a2f7a5d06128d902749e559e9 0.0000871566 PSTN
0bbed33b43a14e823755973a2e265d96 0.0000859067 Company
85350e77af17c39eae2efb334a5eecb5 0.0000831603 Company
2bba4780061b65afc6a6b8148497c510 0.0000814665 Company
c1e60f92bdbb380589b0e99e37635111 0.0000805223 PSTN
0bae1677620d08f95491a1dea467371f 0.0000799177 Company
cfbc738dfced5d81cf8bca189efa3c8a 0.0000795637 Company
9065bd065b79b0e3dac9535e21e4dfa2 0.0000792142 PSTN
38598f5fe3ad4ea25f0a6ac57efbb3fa 0.0000790604 Company
413db4519f48eb67b4344675698f898f 0.0000783035 PSTN
1d838185e7153965940ea1cfd137998c 0.0000778107 PSTN
0f5e194a1cd8f46c05c212a4b4394a6f 0.0000746046 PSTN
c9aaa09215500f13ce0f74e0f5c145dc 0.0000745676 PSTN
c9aaa09215500f13ce0f74e0f5c145dc: 0.0000745676 PSTN
359e456d6e8288f0e38fa8f034bad43a 0.0000744478 Company
7378e5252aa827a99f40415d422b411a 0.0000744001 Company
ba9343b963a3a7be344a9dc8e04b8636 0.0000722985 Company
fbbf7f2ce7b73c49a304b8fc30d690f0 0.0000710240 PSTN
e01d6524821d319391a84a1999e9d598 0.0000708263 Company
ff7ffe317dba633f9655e74275cbb2fe 0.0000708222 PSTN
c7b9005a8b4b4603bb54f4d35acc3b82 0.0000696782 Company
1068c6c1071d232b1a17f50933421e53 0.0000687694 PSTN
789709559bb9c8577065d7a539f3df07 0.0000686339 Company
3327ecbde5c47bbfc38121e19e8f62cd 0.0000685248 PSTN
a5a89586b85c65bc0329a0f8f2dad9e3 0.0000684130 Company
02e85843fead5ff2898ae8f8ba3462e4 0.0000681548 PSTN
aaf5b14fc65cf75dc9d7d552a94f317e 0.0000673218 Company
7a5abe0a2b93b075f63835de74b035a8 0.0000672901 Company
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Figure 4: A rendering of the connected subgraph colored such that nodes with higher
betweenness measure are lighter in color.

Table 2: The 50 most central nodes according to the betweenness algorithm.
User Hash Betweeness Network

0344c47c1a68f833be71636e1cbde4b3 0.0135690187617 Company
a893d2913cf0148975189508de53865c 0.0124742430163 Company
cbd41c6103064d3f0af848208c20ece2 0.0122196391687 Company
b5bb132f2cdf6e4382f77c1b2cf912d6 0.0120588984679 Company
a2bd8e839f77a0bf4cc642249e1e7401 0.0112880322728 PSTN
a2a6bb076324e18c34d0ba4dc64374f6 0.0099676036100 PSTN
1b5f8e3261b18887558748342b519551 0.0094149414751 Company
7e76b1118b52dbcd0a7e4d0157ab1c25 0.0089498381588 PSTN
6db76106f006028acf2fb7188328161e 0.0085825884342 PSTN
ff7ffe317dba633f9655e74275cbb2fe 0.0085018232728 PSTN
aad4e440185da8f2bf109e7fe7aa6925 0.0082357435921 Company
1e8dd4e060ad940cc734b50d1a9c59d4 0.0082256606363 Company
a849add9a28b95ae1050dd131f99ae04 0.0081315344560 PSTN
9725aecf6a6aec216f3592160ff17695 0.0078536251766 PSTN
5794f081a24d24174653895847ff7829 0.0076461099262 Company
c44e781a0f7dc2f6a5a6987a2bbac34a 0.0071998484203 Company
81bf2141b4c8278e54e17861d82c305d 0.0071638976580 Company
db0096ebc89a7ecf04ddb34ec51f5f02 0.0070589001844 PSTN
ccaff5445e4fd2c46d12706ceb9b7dc3 0.0067832770594 Company
484edae9268e91b7e58ce78a46e4712a 0.0066931397039 PSTN
342f652451c195605261cf7af3aeac0b 0.0065678370666 PSTN
815de431bf7d4b93f3fbe81716002eb2 0.0065211696319 Company
8bd3cbf9cb3916f6764494bc0aa11c2e 0.0063671935260 PSTN
2e0c16b782b0fb86fd172bfea67ccffb 0.0062983084577 Company
d846e0c47e2598424e458b985fe04874 0.0062978285449 Company
08196c9c5e8959d290c8d4deb3bc24cf 0.0062329592982 Company
81cc6aae316673520cf0e9750c559fe2 0.0061986193370 Company
c250b25958c7f19496d9b685d6eb9c84 0.0058514522066 Company
9d67ef6a95fa19cb16fc50b617a9c60b 0.0056424915174 PSTN
e160a366bd740281c409875ab8f0dde4 0.0056046530625 Company
948cf108a182c90d7ac1dff66d7c9500 0.0055921480811 Company
292c4e9124aa0eaa56081fcf4bc6a9b9 0.0054749444740 Company
d49a2c7f43fdb95853c72abebafad9b7 0.0054524892120 Company
ce93871977318c8b005a3d683aec7af4 0.0054507515795 Company
5e11d09069e341a794b831b5bbc43dc2 0.0054501607979 Company
9b961213d45a21d751b970bfb2659217 0.0053884252201 Company
fd9a673b0d2e04e6a680d84c86ab5360 0.0053564240533 Company
ce9231d1b5a455179e32bdceb513eee4 0.0053094520566 PSTN
62ed08a6afda4066b89d03ef092d95b7 0.0051158401254 Company
bcf929a7063e5ee52cf8df05d1978501 0.0049790668304 PSTN
108c54a6d36c70caf86f331fdf60c77d 0.0048986667175 Company
74114357629e7abf7e358fc019a097e2 0.0048423302350 Company
db408cbc8142c83a0669a60ac379e696 0.0048414023343 Company
db408cbc8142c83a0669a60ac379e696 0.0048414023343 Company
2c92ad05ff2528a4dd10b840022dbc3e 0.0048243487380 PSTN
64f820a1f16258854dcbcfaabd28198f 0.0048240482222 Company
d337d88fc4fee40c587e6b68a3e79030 0.0048065858148 Company
5d9334f5b0457bed11217692194335fe 0.0047894309361 PSTN
d610877735094573a21f3e2050398a76 0.0047600080273 Company
81361ddd22908aad6bbf5135260bda57 0.0047487310325 Company
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3.3 Simulation methods

The social impact thoery and variations described above were implemented on a so-
cial network with similar structure to the graph formulated above. The data driven
graph would have been simply too large for use under simulation and may have
caused several computations to be unnecessarily expensive. For a more convenient
study, a new graph was constructed with the same average local clustering coeffi-
cient, global clustering coefficient, and assortativity. Because the powerlaw nature
of the node degree distribution, demonstrated above, implies the data driven net-
work has some scale-free characteristics, taking a smaller scale replica of the data
driven graph still preserves its structural integrity.

This model aims to simulate the dynamics of word-of-mouth influence. Word-of-
mouth relationships are not permanent. To simulate this, at the end of each iteration
a double edge swap is performed over a specified number of edges. A double edge
swap removes two randomly chosen edges u←→ v and x←→ y and creates the new
edges u ←→ x and v ←→ y. If either the edge u ←→ x or v ←→ y already exist
no swap is performed so the actual count of swapped edges may be less than the
specified number of swaps. After this operation, new values for distance dux and
dvy are generated.

In the follow section, we will make use of Monte Carlo simulation methods to
explore:

1. The global and local dynamics of the social impact theory as applied to the
network model and in the manner detailed above.

2. The impact of key aspects and parameters on the model outcomes:

– Varying α.

– Attributing values other than zero to the random field hi.

– Investigating nodes with highest betweenness as predictors for global or
local behavior.

3. The global and local dynamics of the three variations on the social impact
theory model detailed above (memory, three opinion state space, and Bayesian
updating). In the case of the memory model, three further variations will be
presented. When stating a discrete opinion the kind of point estimate may be:

– The mean of the memory distribution.

– The mode of the memory distribution.

– A random draw from the memory distribution with varying emphasis on
more salient, or more recent, memories.
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4 Results

4.1 Benchmark results

The benchmark social impact theory detailed in section 3.1.1 was tested on various
randomly generated networks in accordance with the simulation methods outlined
above. Two main classes of global dynamics, steady and unsteady, were observed
with several specific cases in the first class. In the first stead case, the initial opinion
distribution was about equal between σ = +1 and σ = −1. An example of such a
simulation is presented in Figure 5.

(a) (b)

(c) (d)

Figure 5: Representative results of the benchmark social impact theory model.

Figure 5 (a) presentes the global opinion dynamics over time with an initial
distribution around 50%. Of 150 agents, inititally 74 agents held an opinion of
σ = +1 while 76 held σ = −1. In this example, the global dynamics show some
variability within few hundred time steps but the general trend is clearly approaching
consensus.

In the second case of steady global dynamics, the initial opinion distribution
favored either σ = +1 or σ = −1. Examples of such simulations are presented in
Figures 5 (b) and 5 (c). Figure 5 (b) presents the global dynamics over time of
a simulation with an initial distribution favoring agents with opinion −1. Of 150
agents, initially 63 agents held an opinion of σ = +1 while 82 held σ = −1. In
this case, consensus is acheived in approximately 600 iterations. In Figure 5 (c),
the initial distribution favored agents with opinion +1. Of 150 agents, initially 87
agents held an opinion of σ = +1 while 68 held σ = −1. In this example consensus
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is achieved within approximately 400 iterations. Note that in both cases the initial
minority opinion grew to dominate the entire network. Likewise, in both examples
convergence was achieved within a few short time steps.

The second main class of benchmark results is defined by relatively unstable
global dynamics. In comparison to Figures 5 (a), 5 (b), and 5 (c), observe the no-
ticeable difference in the globaly dynamics over the first 1200 iterations in Figure
5 (d). This class of models requires significantly more time steps to reach con-
vergence. In this example, consensus is acheived at approximately 4000 iterations.
This particular simulation offers an opportunity to examine the impact of different
parameters on the model.

4.1.1 Varying α

By definition, α adjusts the relative impact of distance, dij , on social impact. In
order to examine the impact of the parameter α on the global dynamics, the initial
network presented in Figure 5 (d) above is reproduced and controlled in ever aspect,
including edge mutations, while varying α. In all the benchmark model shown,
α = 5.5.

(a) α = 2.5 (b) α = 4 (c) α = 5

(d) α = 5.5 (e) α = 7 (f) α = 8

(g) α = 10 (h) α = 15 (i) α = 20

Figure 6: Varying α for the system presented in Figure 5 (d).

This model is very sensitive to α in terms of time required to reach consensus and
which opinion dominates. For α = 2.5 and α = 3, the network reaches consensus
in about 700 time steps but in the former case converges on σ = +1 and in the
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latter on σ = −1. When α = 3.5 or α = 4, the systems is relatively stable and
converges to σ = +1 in about 1400 time steps. For 4.5 < α < 12, the system
becomes considerably less stable and identifying a pattern in among the different
values for α is difficult.

When α = 12 and α = 13, the global dynamics are very similar, converging
on σ = −1 in about 650 time steps. Yet, when α = 14, the global dynamics are
significantly different – requiring over 200 time steps to convergence. The system
behaves nearly identically when α = 15, 16 – converging in about 1600 time steps to
σ = +1. Likewise, when α = 17, 18, 19, 20 the global dynamics are nearly identicaly,
converging in about 2000 time steps to σ = −1.

4.1.2 Varying hi

Now, we introduce nonzero values for the random field hi which represents all forms
of influence on opinion other than dynamic social influence. In each trial, nodes
were randomly assigned a value hi from the specified uniform distribution. This
random field may represent influence from a personal bias, a static social influence,
an economic influence, among others. Again, these simulations were implemented
on the same graph presented in Figure 5 (d) above.

(a) hi = (−0.5, 0.5) (b) hi = (−1, 1) (c) hi = (−5, 5)

(d) hi = (−10, 10) (e) hi = (−25, 25) (f) hi = (−50, 50)

Figure 7: Global dynamics for various values of hi for the system presented in Figure
5 (d).

For computational purposes, the number of iterations was limited to 10,000. For
hi = (−0.5, 0.5), the system is nearly converging on σ = −1 while for hi = (−1, 1)
the system is nearly converging on σ = +1. While it is unclear towards which
opinion it will converge, the system is converging for hi = (−5, 5). On the other
hand, for hi = (−10, 10), hi = (−25, 25), hi = (−50, 50), and hi = (−100, 100) the
system becomes chaotic with no discernable pattern to the global dynamics.
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4.1.3 Betweenness centrality

Now, we apply the betweenness centrality algorithm as detailed in the section 3.2.3.
Using the results of a simulation presented in the following figure as a benchmark,
we examine whether the global behavior can be predicted by tracking the behavior
of the nodes in the top 10% of betweenness centrality.

Figure 8: Benchmark simulation to examine the predictive potential of betweenness
centrality. The scatter plot points for betweenness represent the number of agents
with the highest 10% betweenness centrality whose opinion is +1. This count is then
scaled by 10 in order to visualize on the same scale as the overall network counts.

The simulation presented in Figure 8 requires about 4500 iterations to reach
consensus. At such a scale it is difficult to asses the predictive potential of the
betweenness centrality algorithm. So we will examine the graph at various intervals,
each of ten time steps.

(a) Time steps 0–10. (b) Time steps 10–20. (c) Time steps 20–30.

(d) Time steps 30–40. (e) Time steps 40–50. (f) Time steps 50–60.

Figure 9: Local behavior of nodes with highest betweenness against global behavior.

At the beginning of the simulation when the systems undergoes considerable
variability, the local behavior of the nodes with highest betweenness consistently
preempts the global behavior of all nodes by about one time step. This is easily
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noticeable in Figure 9 (c) when, in each time step, the nodes of highest betweenness
take a certain position and in the very next time step, the global behavior follows
suit.

This framework may be used to ask more interesting questions. In one time
span during the simulation, the global behavior nears consensus at the positive
opinion but does not converge to that position. A closer look at the global and local
dynamics shows that the nodes with highest betweenness were consistently drawing
the global system away from that convergence. This correlation is not surprising
and, in fact, confirms the effectiveness of the betweenness algorithm at selecting the
most central or influential nodes in a social network.

4.2 Social impact theory with memory

Now, we implement agent memory in the manner detailed in section 3.1.2. Figure
16 presents a new benchmark model from which all other aspects of the simulation
will be controlled.

Figure 10: Benchmark simulation (i.e., without memory) used to control the exper-
iment for a social impact model with memory.

The results of the updating rules with memory are presented in Figure 11 below.
Observe that a random choice from an agent’s recent memory, however defined,
produces a global dynamic not too dissimilar from the benchmark. However, a
random choice from an agent’s entire memory leads to a chaotic global dynamic with
no reasonable indication towards convergence or patterned behavior. This is not
surprising as a random draw from the entire distribution will have no reinforcement
towards or against a particular opinion and thus no chance of consensus.

It is no surprise that, in a two opinion state space with α = ±1 the mean
(rounded mean) and mode of a distribution are almost always symmetrical. As a
result, Figures 11 (e) and 11 (f) display the same global dynamic. In this case, the
system converges in less than 600 iterations, as opposed to the nearly 2500 required
for the benchmark system to converge.
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(a) Random choice from 5 most re-
cent interactions.

(b) Random choice from 15 most re-
cent interactions.

(c) Random choice from 100 most
recent interactions.

(d) Random choice from all interac-
tions.

(e) Choose the mode of the memory
distribution.

(f) Choose the mean of the memory
distribution.

Figure 11: Simulation results for various interpretations of agent memory.

4.3 Social impact theory with three opinion state space

Considering a third opinion state, neutrality, leads to significantly different global
dynamics. Figure 12 presents four representative results of such simulations. In
each case, a clustering of opinions is randomly assigned to the network and such
clustering largely persists, albeit with some fluctuations and patterned variation. In
simulations with a two opinion state space, it is nearly impossible for more than one
opinion to persist. However, with the introduction of some measure of apathy or
ambivalence, agents’ social influence is diluted and are able to better preserve their
initial opinions.
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(a) (b)

(c) (d)

Figure 12: Representative global dynamics for simulations with three opinion state
space.

4.4 Social impact theory with Bayesian updating

The three opinion state space, as presented in the previous section, allowed for
clustering and the coexistence of multiple opinions ad infinitum. The Bayesian
updating procedure allows for the coexistence of multiple opinions with greater
variability in the global dynamics. Because agents are attempting to identify the
opinion with the highest likelihood, they can be more readily influenced and yet
still maintain their independence. This leads to very interesting global dynamics as
demonstrated in Figure 13 below. In some cases, one opinion will still dominate the
longterm dynamics but in most cases there will be some coexistence of the three
opinions in the longterm.
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(a) (b)

(c) (d)

Figure 13: Representative global dynamics for simulations with Bayesian updating.

5 Discussion

This project aimed primarily to develop more interesting and realistic agent rules
for opinion dynamics models and secondarily to apply these rules to a more rep-
resentative social network model. Based on the social impact theory, this project
arrives at a Bayesian method of updating that allows for a rich coexistence of more
than two opinion states over long periods of time, often limitlessly. This is unique
among opinion dynamics models and has not been demonstrated in the realm of
social impact theoretic models.

The vast majortiy of opinion dyanmics models presented elsewhere that demon-
strate some clustering or coexistence of multiple opinions require the imposition of
stubborn agents in the network around which such clusters will form. Presented
here is a model in which clustering occurs organically as a result of the updating
procedure. This is far more representative of the dynamics observed in the natural
world.

In arriving at this model, the effect of various parameters on the benchmark
social impact theory were examined. It was shown that adjusting α, a tuning pa-
rameter of the rate at which influence changes with disctance, alters the global
dynamics in a way that is not fundamentally different than arbitrarily chose α. Fur-
thermore, varying hi, a measure of all influence on agent opinion other than social
impact, can increase variability in the system. But, as with α, hi, does not highlight
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any esential characteristics of agent opinions and behavior.
A model of social impact with agent memory was implemented with various

methods of operating over memory at the agent level. Surprisingly, this was not a
very rich adaptation on the model. In the end, agent memory simply caused the
global dynamics to be either more or less chaotic depending the implementation but
did not offer much in the way of a more fruitful model.

At first glance, the social impact theory model adapted to operate over a three
opinion state space seems interesting. A clustering and coexistence of opinions is
observed in the global dynamics. But a closer look at the local behavior shows
that less than 5% of nodes are actively changing their positons over time while the
majority of nodes retain their initial opinion.

It is, finally, the social impact theory model with Bayesian updating that offers
a rich opinion dynamics model in which agent behavior is turly nonlinear. However,
there does remain some additional work to examine more thoroughly the local dy-
namics of this model. It was shown here that the betweenness centrality algorithm
may identify nodes whose local behavior preempts global behavior. But that is far
from a complete description of the local dynamics and may not offer any predictive
power, that is, while this project was meant, at the outset, to consider questions of
causality, in the end such questions must be left for future study.

Still, this model offers a fertile experimentation ground for those interested in
political opinions, product adoption, or information diffusal. A more sophisticated
model may consider grounding the parameters, pi, si, and ai, in some empirical
or at least deliberate methodology. For example, the American National Election
Survey routinely measures parameters such as political awareness, political apathy,
and party affiliation that may be considered to give this model further grounding in
much the same way it was tested here on a data-drive network topology.
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