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ABSTRACT 

Transportation agencies devote significant resources towards the collection of highly 
detailed and accurate pavement condition data using instrumented vans to support pavement 
maintenance decisions.  However, they often cannot afford to measure pavement condition 
annually for the whole roadway network. In addition, pavement maintenance is traditionally 
based only on asset management condition targets but do not explicitly account for the role of 
pavement condition in roadway safety. This dissertation introduced a connected vehicle-enabled 
approach to improve the pavement assessment method in terms of data collection cost and 
frequency, and applied highway safety analysis to demonstrate a new way to use pavement 
condition data beyond current practice.  

Three related studies were conducted. The first study developed an improved 
acceleration-based metric, an index normalized by vehicle operating speed, for a connected 
vehicle-enabled pavement network screening application. The application can be used on a 
regular basis to “prescreen” pavement segments that are likely to deficient, and then a profile van 
can be sent to measure the accurate roughness condition. It was found that the proposed 
acceleration-based metric is able to correctly identify between 80 and 93 percent of all deficient 
pavement sections on three different functional classes of highways.  

Considering that connected vehicle data will come from a good variety of vehicle 
dynamic systems, a follow-up study investigated the impact of vehicle dynamic systems on the 
acceleration-based roughness metric. Sensitivity analysis based on the quarter-car model found 
that vehicle vibration response is most sensitive to the spring stiffness of the sprung mass and 
least sensitive to the loading of the vehicle. Furthermore, the relationship analysis shows that the 
resulting acceleration-based metrics are linearly correlated between different vehicle systems. 
Assuming that transportation agencies will use agency-owned vehicles to build a pavement 
condition network screening system, a vehicle calibration procedure was developed to help them 
calibrate vehicles in the fleet. 

The third study focused on filling the gap between traditional pavement management and 
highway safety management. It quantitatively evaluated the safety effectiveness of good 
pavement conditions versus deficient pavement conditions on rural two-lane undivided highways 
in Virginia. Using the Empirical Bayes method, it was found that good pavements are able to 
reduce fatal and injury (FI) crashes by 26 percent over deficient pavements, but do not have a 
statistically significant impact on the overall crash frequency. As a result, improving pavement 
condition from deficient to good can offer a significant safety benefit in terms of reducing crash 
severity. 

In conclusion, the results from the first two studies point to the feasibility of using a cost-
effective acceleration-based application for the purpose of network screening. The network 
screening process will reduce the total mileage of pavement sections that need to be measured by 
the instrumented van and meanwhile still identify locations where maintenance work is 
necessary. The third study enhances transportation agencies’ ability to account for safety in their 
pavement maintenance decision making process, which helps to better set priorities for 
maintenance. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement 

With more than 100 years of investment in infrastructure, the current highway network 
supports the economic activities and the mobility of people and goods throughout the whole 
country. Transportation agencies devote significant resources toward highway maintenance to 
protect and enhance the transportation infrastructure and the safety of the traveling public. For 
example, the Virginia Department of Transportation (VDOT), which maintains the third-largest 
state network of roadways (more than 125,000 lane miles) in the United States, spent about one 
third ($1.56 billion) of its 2014 budget ($4.66 billion) on the highway system maintenance 
program (1). Highway pavement management is a core area of the program. This includes 
development of strategies and systems for periodically assessing pavement condition and 
maintenance plans to maximize pavement life within limited budgets. It also requires making 
tactical decisions regarding treatment during adverse weather conditions to keep roadways 
functional. A fundamental requirement in these management activities is to collect data to assess 
the condition of the pavement, which allows the pavement maintenance decisions to be made 
using a systematic, performance-based and data-driven approach. Like many other transportation 
agencies, the Virginia Department of Transportation (VDOT) began automated pavement 
condition data collection using digital images and an automated crack detection methodology in 
2007, which led to significant improvements in the consistency and efficiency of pavement 
condition data assessments. Since then, pavement condition information has been updated 
annually for the entire interstate and primary highway systems and every five years in the 
secondary system (2). 

Although the automated data collection is making good progress in data-driven pavement 
management, there is still room for improvement. The progress of the connected vehicle program 
offers an opportunity to improve the pavement assessment method. In addition, highway safety 
analysis could demonstrate a new way to use pavement condition data beyond current practice. 

 

1.1.1 Connected Vehicle Opportunity 

Given the need for specialized equipment and skilled personnel, it is very difficult to 
collect data at more locations in a timely and cost effective manner. Even though VDOT spends 
approximately $1.8 million per year in automated pavement condition data collection (3), for a 
large portion of the roadway system (i.e., secondary roadways and local systems), the pavement 
condition data is usually measured infrequently, only once every 5 years.  

Highway transportation is undergoing significant technological transformations to a 
connected vehicle environment as wireless communication increasingly enables vehicles to 
communicate with each other and with the infrastructure (4). The US Department of 
Transportation (USDOT)’s ITS initiative is intended to introduce intelligent vehicles, 
infrastructure, and communications systems to the United States’ transportation system.  The 
core of the ITS program is the connected vehicle research program, which aims to connect 
vehicles, infrastructure, and mobile devices for safety, efficiency, and environmental 
improvements through wirelessly shared information (5).  This connected, data-rich environment 
will allow for innovative connected vehicle applications for transportation infrastructure 
maintenance. The use of simple sensors such as accelerometers, already installed either in 
vehicles or mobile devices, enable us to directly measure the vehicle vibration responses, which 
is believed to highly correlate with pavement roughness.  In other words, the entire vehicle fleet 
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– if equipped with appropriate communication devices – can be transformed into probes, 
measuring pavement roughness at more locations, more frequently with minimal additional 
costs.  As designed, the Basic Safety Message (BSM), which includes vehicle body 
accelerations, location, speed and other information, will be sent from each connected vehicle 
every 0.1 second (6). Under a connected vehicle environment, these data can be collected 
through people’s daily travel, does not need specifically equipped vehicles, and thus may be used 
to assess pavement roughness in a more timely manner with minimal additional data collection 
cost. 

 

1.1.2 Incorporating Highway Safety in Pavement Management 

When transportation agencies develop paving schedules for their roadways, they often 
make decisions based on asset management condition targets but do not explicitly account for the 
role of pavement condition in roadway safety. However, pavement condition can have an 
important effect on highway safety.  For instance, skidding crashes, a major concern in highway 
safety, are usually related to pavement rutting, polishing, bleeding, and dirty pavements (7). 
Previous research regarding the safety effect of pavement condition usually focused on either 
maintenance activities such as resurfacing or a certain type of pavement distress and was not 
based on consistent and accurate pavement condition data (8, 9). If the safety effect information 
were available, it could be used for a variety of applications, including prioritizing sites for the 
agency’s annual paving program or quantifying the benefits of preventative maintenance 
treatments. 

The automated pavement data collection provides an excellent opportunity to investigate 
the safety effectiveness of pavement condition. Thanks to the significant improvements in the 
consistency and efficiency of pavement condition data, assessments, engineers are able to track 
historic pavement condition information now. This progress facilitates safety research regarding 
the effect of pavement conditions on crash frequency and severity. It will provide DOTs with 
information that will allow them to include safety in the pavement management decision making 
process. 

  

1.2 Research Motivations 

With shrinking budgets after the economic crisis, transportation agencies have strong 
incentives to maximize the returns on their investments in highway systems. The work of this 
dissertation can help to enhance DOTs’ investments in pavement maintenance and connected 
vehicle programs, either through exploring a low-cost pavement condition measurement 
application under a connected vehicle environment or extending the capability of current 
pavement condition data to account for safety.  

The connected vehicle-enabled pavement condition assessment approach offers 
opportunities to improve the current pavement assessment practice. First, it allows more frequent 
updates of roughness data and wider network coverage. Currently, it takes most transportation 
agencies at least a year to update the network roughness information due to budget constraint 
(10). As a result, the pavement maintenance decision making is based on information that are 
months or even years old, which may be very different than the current condition. Under a 
connected vehicle environment, it is likely that DOTs can obtain near-real-time pavement 
roughness information, which can result in faster and more efficient pavement repair and 
maintenance.   
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In addition, the data collection can be completed with minimal cost as it is a byproduct of 
people’s daily trips. The required data collection devices are low-cost and already installed in 
many vehicles and most smartphones. In addition, the BSM, which is essential for connected 
vehicle safety and mobility applications, contains all necessary data elements for accessing 
pavement roughness. No additional data collection efforts are needed if the connected vehicle 
program is implemented in the future.  

Studying the safety effect of the general pavement condition will fill the gap between 
traditional pavement management activities and highway safety research. Originally, the 
pavement condition indexes calculated from the automated collected data are intended to help 
transportation agencies make decisions based on assets management targets. However, it can also 
be linked to crash history and other roadway features and thus evaluate safety effects of 
pavement conditions.  Given the information, transportation agencies will be able to incorporate 
safety objective into pavement maintenance applications, such as prioritizing sites for the 
agency’s annual paving program or quantifying the benefits of preventative maintenance 
treatments. 

 

1.3 Objectives and Scope 

The overall goal of this dissertation is to improve pavement assessment and management 
activities. To accomplish this goal, exploratory analyses were conducted to address three specific 
objectives, with the first two objectives focusing on connected vehicle as an opportunity to 
improve current pavement assessment practice and the third objective demonstrating a new way 
to use data beyond current pavement management practice. 

Several past efforts investigated the feasibility of assessing pavement roughness based on 
probe vehicle data (i.e., acceleration and GPS data) collected under controlled environments (11, 
12, 13).  They found that the vehicle vibration responses, or the acceleration data, correlate very 
well with the International Roughness Index (IRI), the most commonly used pavement roughness 
index. One critical issue about the acceleration-only index is that its value depends on a 
combined effect of vehicle operating speeds, vehicle dynamic features, and pavement 
characteristics (i.e., wavelength).  The expected data source of the connected vehicle-based 
pavement condition measurement is the numerous general vehicles naturalistically running on 
the road. In the real world, vehicles will encounter different surface types, changing speeds, 
divergent travel paths and other factors which may cause variations in terms of vehicle-body 
vibration responses and result in very different acceleration datasets. It is therefore necessary to 
extend previous studies to a real world situation to investigate the feasibility of identifying 
deficient pavements using the connected vehicle-enabled application. The first two objectives 
focus specifically on the two most significant impact factors of vehicle vibration responses: 
vehicle speeds and vehicle dynamic systems. It is important to note that the goal of this study is 
not to propose a new method to replace the current IRI practice, but to improve current practice 
by introducing a supplemental method for pavement roughness assessment. 

The intent of the third objective is to quantify the safety effect of the general pavement 
conditions and thus provide DOTs with information that will allow them to include safety in the 
pavement management decision making process. It is not intended to be used as a justification to 
repave a road section that has a demonstrated pavement friction problem. The effect of pavement 
condition on both overall crash frequency and crash severity was examined. The targeted facility 
type is segments on rural two-lane primary highways in the Commonwealth of Virginia. The 
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Empirical Bayes (EB) approach was applied using data from VDOT databases, including 
roadway inventory information, crash history, and pavement condition between 2007 and 2011.  

In summary, the three related objectives are listed below and they were addressed in three 
related papers, as presented in Chapters 3, 4, and 5.  

 Paper 1: Present and evaluate a data processing method that is able to estimate pavement 
roughness based on acceleration data collected under naturalistic driving situations (with 
changing speed),  

 Paper 2: Investigate the impacts of vehicle dynamic systems and develop a procedure to 
calibrate individual vehicles to reduce the variety of data from different vehicles, and 

 Paper 3: Quantify the safety effectiveness of good pavement conditions versus deficient 
pavement conditions. 
 

1.4 Dissertation Layout 

The three-paper format was applied in this dissertation. This dissertation consists of six 
chapters, including the general introduction presented in this chapter, which introduces the 
research problem, motivations, and objectives. Chapter 2 contains a comprehensive literature 
review that gives a view of current pavement management and assessment activities, the 
connected vehicle program, as well as several theoretical foundations such as the EB method and 
the calculation of the IRI.  

The first objective was addressed by Paper 1 presented in Chapter 3. This chapter 
introduces and evaluates an improved acceleration-based metric to identify deficient pavement 
sections. The effect of vehicle speeds was investigated and incorporated into the proposed metric.  

Chapter 4 covers Paper 2 that addressed the second objective. This chapter presents the 
analysis results regarding the impact of vehicle dynamic systems and proposes a procedure for 
transportation agencies to calibrate its fleet vehicles if necessary.  

Chapter 5 presents Paper 3 to address the last objective of this dissertation. It applied the 
EB method to quantify the safety effects of good pavement conditions versus deficient pavement 
conditions on rural two-lane undivided highways in Virginia. The chapter covers the details from 
research design and data collection to conclusions and recommendations. 

The last chapter summarizes this dissertation. It discusses the findings and limitations of 
the three studies, delivers recommendations, and provides suggestions for future research. 

 

1.5 Attribution 

Dr. Brian Smith, professor of civil engineering at the University of Virginia and 
dissertation advisor, aided in the organization, conceptual design, and execution of the research 
discussed in Chapters 3, 4, and 5; therefore, is listed as a co-author in all three Chapters. Dr. 
Mike Fontaine, associate principal research scientist at the Virginia Center for Transportation 
Innovation and Research, is listed as a co-author in Chapters 3 and 5 for his assistance in 
research design, data collection and manuscript review. Dr. Hyungjun Park, senior scientist at the 
University of Virginia Center for Transportation Studies, is listed as a co-author of both studies 
presented in Chapters 3 and 4 for his contributions to the organization, conceptual design and 
manuscript review. Mr. Kevin McGhee, associate principal scientist at the Virginia Center for 
Transportation Innovation and Research, is listed as a co-author for Chapter 3 for providing 
insights in pavement management systems and resources for pavement condition data collection, 
and reviewing manuscript.  
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CHAPTER 2 LITERATURE REVIEW 

This Chapter presents the results from a literature review to show the background and 
theoretical foundation for this dissertation. The following sections focus on reviewing current 
pavement roughness assessment practice, the calculation of IRI, relationship between IRI and 
vibration-based measurement, probe-based pavement roughness measurement, the connected 
vehicle program, the EB approach, and pavement-related safety studies.  

 

2.1 Current Pavement Management and Assessment Practice 

Pavement condition assessment is generally known as the assessment of pavements for 
the purposes of maintaining level of service and choosing the appropriate maintenance practices 
associated with a pavement section (14).  Thanks to decades of development in pavement 
assessment method, the main method has been changed from windshield survey to automated 
data collection. Compared with windshield survey, the automated methods significantly improve 
pavement data consistency by limiting subjective visual scans.  

Currently, pavement condition data in Virginia are collected using automated methods 
conducted by a contractor (2, 15). The system relies on advanced computing technology and a 
multitude of sensors and equipments (including high-speed lasers, cameras and accelerometers) 
to collect rutting, cracking, roughness, texture, and surface distress information for translation 
into pavement performance indices (3). To assess the network roughness condition, Fugro 
Roadware (VDOT’s current contractor) uses its instrumented vans to measure roadway profiles 
and take images of the surface every year for the interstate and primary highway systems and 
every five years for the secondary systems. The two most important pavement performance 
indexes are the Critical Condition Index (CCI) and the IRI, which indicate the general pavement 
condition and the pavement roughness, respectively. 

 

 
FIGURE 2.1 Fugro data collection van and interior environment (16). 

 
CCI was first derived in 1998 by the US Army Corps of Engineers (15). CCI is 

represented on a scale of 0 to 100, with 100 representing a pavement with no visible distress. For 
asphalt pavements, the CCI is calculated based on alligator cracking, longitudinal cracking, 
transverse cracking, patching, potholes, delaminations, bleeding, and rutting (2). The details of 
the CCI calculation methodology are provided in a VDOT report published in 2002 (17). VDOT 
does not collect friction data on a systematic basis at this time, although that capability is under 
investigation. Friction may or may not be correlated with the CCI. If cracking is driving CCI at a 
site, then friction factor and the CCI may be correlated. If rutting is driving CCI, then friction 
may not be correlated with the CCI.  
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IRI is defined by the American Association of State Highway and Transportation 
Officials (AASHTO) and the American Society of Testing and Materials (ASTM). By definition, 
IRI is the accumulated suspension stroke in a mathematical car model divided by the distance 
traveled by the model during a simulated ride on a pavement section whose profile is measured 
(18). It is recorded in inches per mile (in/mile), or meters per kilometer (m/km). IRI was chosen 
as the standard reference roughness index of the Highway Performance Monitoring System 
(HPMS), a national database of roadway information kept by the Federal Highway 
Administration (FHWA). According to HPMS Field Manual, the primary advantages of the IRI 
include (19):  

 it is a time-stable, reproducible mathematical processing of the known profile; 
 it is broadly representative of the effects of roughness on vehicle response and user’s 

perception over the range of wavelengths of interest, and is thus relevant to the definition 
of roughness; 

 it is a zero-origin scale consistent with the roughness definition; 
 it is compatible with profile measuring equipment available in the U.S. market; 
 it is independent of section length and amenable to simple averaging; and  
 it is consistent with established international standards and able to be related to other 

roughness measures. 
 
For the purpose of pavement maintenance, VDOT uses CCI and IRI for overall 

awareness of road condition in terms of pavement condition and ride quality/roughness and 
awarding contractor payments according to final project roughness readings (15). Table 2.1 
below shows the qualitative pavement condition and ride quality terms and corresponding 
quantitative CCI and IRI. Note that the IRI rating depends on the functional class of the roadway. 
          

TABLE 2.1 Ride Quality Category Based on IRI Rating (15) 

Pavement Condition/ 
Ride Quality 

CCI Scale 
IRI Rating (inch/mile) 
Interstate & 
Primary 

Secondary 
Roads 

Excellent ≥ 90 < 60 < 95 
Good 70 - 89 60 - 99 95 - 169 
Fair 60 - 69 100 - 139 170 - 219 
Poor 50 - 59 140 - 199 220 - 279 
Very Poor < 50 ≥ 200 ≥ 280 

 
A pavement with a CCI value lower than 60 is considered as deficient in terms of 

pavement condition. Interstate and Primary pavement sections with an average IRI of 140 or 
more or a Secondary pavement section with an average of IRI of 220 or more are considered 
‘deficient’ in terms of ride quality (15). Every year VDOT makes its maintenance activity 
decisions for the pavement system based on both CCI and IRI information. The maintenance 
activities include Do Nothing, Preventive Maintenance, Correlative Maintenance, Restorative 
Maintenance, and Rehabilitation/Reconstruction. CCI is applied as the primary reference index 
for a selection of maintenance activity and IRI is used to enhance the selection (20). Table 2.2 
shows the recommended maintenance activities based on CCI and IRI ranges for asphalt-based 
surfaces. 
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TABLE 2.2 Recommended Maintenance Activities based on CCI and IRI Ranges (20) 

Maintenance Activity Category 
Index Ranges 

CCI IRI 
Do Nothing (DN) > 85 -- 

Preventive Maintenance (PM) 70 - 85 < 140 
Corrective Maintenance (CM) 50 - 70 140 - 200 
Restorative Maintenance (RM) 30 - 50 200 - 250 

Rehabilitation/Reconstruction (RM) ≤ 30 ≥ 250 
 
Besides supporting pavement maintenance decision-making, VDOT also awards 

contractor payments according to final project IRI readings (21). As an example, the current pay 
adjustment chart on Secondary road projects based on IRI can be found in Table 2.3 below. 

 
TABLE 2.3 IRI to Pay Adjustment Chart on Secondary Road Projects (21) 

IRI After Completion Pay Adjustment (% Unit 
55.0 and Under 115
55.1-65.0 110 
65.1-80.0 100 
80.1-90.0 90 
90.1-100.0 80 
100.1-110.0 70 
110.1-130.0 60 or Subject To Corrective 
130.1-150.0 40 or Subject to Corrective 
150.1-170.0 20 or Subject to Corrective 
Over 170.1 0 or Subject to Corrective 

 

2.2 Calculation of International Roughness Index 

Since the IRI was used as the reference index to evaluate the performance of the 
proposed methods in Chapters 3 and 4, it is necessary to understand how it is created. This 
section gives a brief introduction about the calculation of IRI.  

The quarter-car simulation model mandated by the ASTM for calculation of IRI uses 
physical movement and resistance relationships to evaluate the movement of a wheel, tire, and 
suspension system. The essential physics of the quarter-car model involve two masses (vehicle 
and wheel/tire/axle) and two springs (tire and the suspension), as shown in Figure 2.2.  This 
model is the basis for calibration of response-type roughness measuring equipment and provides 
“a means for evaluating traveled surface-roughness characteristics directly from a measured 
profile (22).”  The quarter car parameters for masses, damping and stiffness are set to represent a 
reference passenger car, “the Golden Car”. The parameters (normalized to ms = 1) for the Golden 
Car are (18): 

cs = 6. [1/s], kt = 653 [1/s2], 
ks = 63.3 [1/s2], mu/ms = 0.15 
The simulated speed v is set to 80 km/h, or 50 mph. The calculation of IRI is expressed 

mathematically as (18, 23): 
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IRI ൌ
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Where: 
v = simulated speed, set to 80 km/h; 
L = Length of the profile (i.e. 0.1 mile); 
௦ሶݖ = Vertical velocity of the quarter-car sprung mass (m/s), its value is determined by measured 
profile and the Golden Car parameters; 
௨ሶݖ = Vertical velocity of the quarter-car unsprung mass (m/s), determined by measured profile 
and the Golden Car parameters; 
dt = Small increment of time (s), as defined by the definite integral. 
  

 
FIGURE 2.2  The Quarter-car Simulation Model (18). 

  
 In terms of obtaining an accurate profile, ASTM publication E950-9 covers the standard 
process for measuring the profile of vehicular traveled surfaces with an accelerometer-
established inertial reference on a profile-measuring vehicle (24).  The HPMS Field Manual also 
gives guidelines for collection of roughness data, including collecting data when pavement is 
stable (not in a freeze/thaw or wet state), collecting in the outside lane when practical, 
maintaining constant speeds, and excluding the impacts of bridges, railroad crossings, or other 
road features which are not representative of the overall roadway (19). IRI data on the lower 
functional systems (rural and urban collector and urban minor arterial) are only “recommended” 
since it may not be possible to obtain meaningful roughness measurements with profiling 
equipment due to problems such as low speed (less than 25 mph), traffic congestion and safety 
(19).  
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2.3 IRI and Body-Vehicle Vibration Response 

Road roughness is the main contributor of the experienced in-vehicle vibration, which 
impacts drivers/passengers’ ride quality directly. As a result, people can link IRI closely with 
body-vehicle vibration. Many studies have been done to quantify the relation between the IRI 
and measured or simulated body-vehicle vibration response and to identify the IRI limits based 
on ride quality.  

Ahlin and Cranlund derived the analytical relationship between car floor vertical 
acceleration root mean squared (RMS) value (afloor) and the IRI (25). The reference quarter-car 
model for the IRI computation was used for simulating the car floor acceleration. A velocity of 
the model and the waviness of the road elevation were concerned in the derived relationship. It 
was also shown that there can be a difference by a factor of 30 between the worst and best 
vibration response for the same IRI value. Another study by Magnusson et al. studied the 
correlation among road roughness indicators (IRI and road profile elevation RMS values in 
different wave bands) and the front wheel vertical acceleration RMS value (afw) for field-test 
measurements on 45 test sections along a 60-km route (26). Two instrumented vehicles were 
used: the Volvo 245 passenger car and the Scania 94 heavy truck. It was found that the 
acceleration level over all test sections were approximately the same in both vehicles. The 
regression curves were also generally similar and both had good correlation with IRI.  More 
studies were conducted to examine the relationship between IRI and vehicle vibration response 
based on simulated vehicle models. Prem and Ayton applied a two-axle longitudinal passenger 
half-car model with 6 degrees of freedom (DOF) (27). They estimated a linear relation between 
the RMS value of the frequency-weighted vertical acceleration on the driver’s seat (awd) and IRI 
based on data from 10 test sections. Cantisani and Loprencipe investigated the relationship 
between IRI and the RMS value of frequency-weighted vertical acceleration on the driver’s seat 
under variant operational speeds (28). An 8-DOF full car model of the Fiat Stilo passenger car 
was used. Profiles of 124 real test sections with a length of 320 m were processed at simulation 
environments with velocities scaling from 30 to 90 km/h. The results show that although all 
acceleration levels correlated very well with IRI, their magnitude can vary significantly under 
variant vehicle speeds.  

 
TABLE 2.4 Probable Reactions in Public Transportation (25, 26, 27, 28) 

Source 
Vehicle/Simulation 
Model 

Velocity 
(km/h) 

Regression 
Relationship 

R 

Ahlin and 
Granlund 

2-DOF car model -- 
afloor = 0.16(v/80)(w-

1)/2IRI 
- 

Magnusson et al.  

Volvo 245 
(Instrumental) 

70 afw = 0.9197IRI+0.0935 0.887

Scania 64 
(Instrumental) 

70 afw = 0.9226IRI+0.0402 0.927

Prem and Ayton 
6-DOF passenger half-
car 

80 
awd = 
0.0844IRI+0.0355 

0.956

Gantisani  
and Loprencipe 

8-DOF passenger full-
car 

30 awd = 0.08IRI 0.866
50 awd = 0.11IRI 0.943
60 awd = 0.17IRI 0.964
80 awd = 0.22IRI 0.949
90 awd = 0.27IRI 0.894
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 Table 2.4 summarizes the models and results in these studies. All models have indicated a 
good correlation between IRI and vibration-base measurements, with the correlation coefficients 
ranging from 0.887 to 0.964. Theoretically, the values of speed and vehicle dynamic parameters 
are unlikely to have significant impacts of the correlation level between IRI and vibration-base 
measurements. However, they will change the actual relationship. For example, in Gantisani and 
Loprencipe’s study, the coefficient of IRI changed from 0.08 to 0.27 when the simulated speed 
changed from 30 to 90 km/h. It also indicates that the expected vibration will increase with speed 
when the roughness level, or IRI, remains the same. According to Ahlin and Granlund’s study, it 
is possible that one can still compare the vibration responses with different travel speeds by 
calibrating the vibration measurement with a speed factor. This idea will be tested in this 
dissertation research. It is also important to note that all models in Table 4 were based on a 
constant speed ranging from 30 to 90 km/h. In real world, the vehicle speed is expected to 
change even if it travels in a same pavement section. Previous studies did not investigate how the 
variation of speed will impact the correlation between vibration-base measurement and IRI. 
When examining the relationship between vibration-based roughness measurement and IRI, the 
variation of speed will be taken into consideration in this dissertation research.  
 

2.4 Probe-Base Pavement Roughness Assessment 

A considerable amount of work has been completed to improve the concept of using 
inexpensive vehicle or smartphone sensors to assess pavement roughness condition. In 2010, the 
Michigan Department of Transportation (MDOT) started to demonstrate and evaluate a system to 
monitor slippery roads and road surface roughness based on probe data (11). A Droid phone 
platform, mounted on the windshield similar to a navigation device, was used to collect vehicle 
data and transmit it to a backend server. The platform mainly collected four kinds of data: 
vehicle Controller Area Network (CAN) messages; external road surface temperature and 
humidity (added external sensors); GPS position (from the Droid phone); and 3-axis 
accelerometer data (from the Droid phone). The system was installed in two vehicles, driven by 
MDOT employees over a two year period (from 2010 to 2012). Over 13 giga bytes of data have 
been accumulated over 30,000 miles. In that project, variance of the vertical accelerometer signal 
was chosen as the metric to represent pavement roughness. The sample rate of the accelerometer 
is 100 HZ. After collection, the accelerometer readings were calibrated, using a curve fitting 
algorithm, to a 10-point scale known as the Pavement Surface Evaluation and Rating (PASER) 
system. The research team recommended refining the curve fitting algorithm with future data 
from MDOT’s annual PASER rating study.  

A research team from Auburn University investigated the application of using vehicle-
based sensors assess pavement condition (12). The main focus of the study was to utilize 
vehicular sensors to estimate the IRI. In addition, detection and mapping of potholes was 
addressed. Several vehicular sensors including accelerometers, gyroscopes, and suspension 
deflection meters were tested to estimate the IRI. Testing was conducted under controlled speed 
on a 1.7 mile (2,750 m) long test track at the National Center for Asphalt Technology (NCAT). 
The team hoped that those sensors could capture the vibrations of a running vehicle, which can 
represent pavement roughness. The amount of overall vibrations across a given segment was 
determined by taking the root mean square (RMS) of a signal measurement. The overall 
vibrations were then compared with the true IRI of the pavement segment. The resulting data 
indicated that the RMS of vertical accelerations represents the best case scenario to capture the 
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true IRI. It displayed the same trend of the known IRI, with only a few expected differences in 
magnitude. The study also indicated that the estimation error increases with decreasing window 
size and thus recommended to use larger windows when possible to assure the most accurate IRI 
estimates. In conclusion, this study found that the most feasible application to estimate the IRI is 
to implement a root mean square algorithm on vertical acceleration measurements. 

In 2011, Flintsch et al. conducted a pilot study using probe vehicles to measure road ride 
quality, or roughness (13). Again, vertical acceleration data were used as an index of vehicle 
vibration. A smoothness profile was obtained using an inertial-based laser profiler, while the 
vertical accelerometer measurements were obtained using a vehicle instrumented with an 
accelerometer at the Virginia Smart Road facility in Blacksburg, Virginia. The accelerometer 
operated at a rate of 10 HZ. GPS positions were also recorded. A total of four runs were 
completed on the test track to collect acceleration data. The study confirmed that the acceleration 
runs are very repeatable. Analysis using the coherence function indicates that the acceleration 
data linearly correlate well to road profile between wavelength 50 and 300 m.  

Another study conducted by the Center for Transportation Studies at the University of 
Virginia has extended this work to investigate system-level designs to extend the technical 
feasibility to a “system” that could support transportation agency pavement management (3). 
This project researched and discussed the technical feasibility and characteristics of three 
potential probe-based pavement roughness assessment systems: a) a system using intelligent 
transportation system (ITS) and connected vehicle technology, b) a system using a vehicle-
installed accelerometer and communications system instrument package, and c) a system using 
smartphone devices containing accelerometers. The third approach was identified as the most 
appropriate system in the near future given the relative easier implementation and a large and 
expanding market share of smartphone. The study also addressed that such a data-gathering 
system will increase frequency of pavement roughness data collection, increase the number of 
lane-miles of monitored roadways, decrease lag time from collection to interpretation, and add to 
the information available to transportation professionals.   

In 2013, a study from North Dakota State University (29) derived a theoretical 
relationship between IRI and accelerometer data for a connected vehicle approach for pavement 
roughness estimation. The research introduced the road impact factor (RIF) which is derived 
from vehicle integrated accelerometer data. A time-wavelength-intensity-transform (TWIT) 
algorithm was also developed to create a wavelength-unbiased measurement based on RIFs from 
different speed bands. The analysis demonstrates that RIF and IRI are directly proportional. 
Profile and acceleration data were collected from six runs with a constant speed (55.6 km/h) on a 
150-meter pavement section in Minnesota to validate this relationship. The author concluded that 
the proposed application enables low-cost, network-wide and repeatable performance measures 
at any speeds. No discussion were provided on sample size and sampling rate for acceleration 
data collection. 
 

2.5 The Connected Vehicle Program and Basic Safety Message 

The connected vehicle program will provide a great opportunity to improve pavement 
roughness assessment thanks to its data-gathering capability. According to USDOT, the program 
focuses on “intelligent vehicles, intelligent infrastructure, and the creation of an intelligent 
transportation system through integration with and between these two components.” (5) 
Connected vehicle applications will provide a connected, data-rich travel environment by 
capturing data from equipments located on-board vehicles and within the infrastructure. As 
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presented in the figure below, there are two basic communications components to the connected 
vehicle program: Vehicle to Vehicle (V2V) communications and Vehicle to Infrastructure (V2I) 
communications. V2V uses information contained in a wireless message transmitted from 
vehicle to vehicle, and helps prevent crashes and injuries by activation of warnings for the driver 
or other vehicle safety systems. V2I communications require road-based infrastructure, and 
involve communications from vehicles to fixed-position devices which are in turn connected to a 
network or the internet. 
 

 
FIGURE 2.3 Connected vehicle application. 

 
Currently, the connected vehicle research primarily focuses on safety, mobility and 

environmental improvements (5). To serve these purposes, standardized communication 
methodology has been published. The Society of Automotive Engineers (SAE) has published a 
document which outlines the methodology and data elements for connected vehicle 
communication: the J2735 Dedicated Short Range Communications (DSRC) Message Set 
Dictionary. It was found that data from the key data set can also serve for pavement condition 
monitoring as it includes all data element required for estimating pavement roughness. The 
building block of safety systems according to J2735 standard message set is the basic safety 
message (BSM), which is a pre-determined set of elements critical for safety use.  Also described 
as the “Here I Am” message, the BSM contains data from vehicle sensors at an instant in time, 
and includes information on vehicle position, speed and acceleration, yaw rate, brake status, and 
vehicle specifications (6).  The broadcast spatial interval varies with speed or roadway 
conditions; by default the BSM is broadcast every 0.1 second (100 ms or 10 Hz).   

 

2.6 The Empirical Bayes Method 

This section presents an overview of the Empirical Bayes (EB) method, which is the 
state-of-the-art method for highway safety analysis. Observational before-after studies have been 
considered the industry standard for the safety evaluation of treatments such as developing Crash 
Modification Factors (CMFs). Harwood et al. documented that there are three common ways to 
carry out a before-after study: naïve before-after evaluations, comparison group evaluations, and 
the EB approach (30). Of these three methods, the EB approach was recommended in the first 
edition of Highway Safety Manual (HSM) (31), which provides transportation professionals a 
guideline of a science-based technical approach to quantitative safety analysis.  

According to Hauer, the EB method is able to account for regression-to-the-mean effects, 
as well as traffic volume and other roadway characteristic changes, by combining safety 
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performance function (SPF) estimates with the observed count of crashes (32).  Regression-to-
the-mean is the natural tendency of observed crashes to regress (return) to the mean in the year 
following an unusually high or low crash count (32). This advantage allows the EB approach to 
overcome the limitations faced by the other two evaluation methods and provide more accurate 
estimates of safety effects. 

The EB approach precisely predicts the number of crashes that would have occurred at an 
individual treated site in the after period if a treatment was not implemented (EA). Safety 
effectiveness is estimated by comparing the total crash prediction for all treated sites if no 
treatments applied with the observed number of crashes in the after period (32).  

A critical step is to predict EA, which is based on the number of crashes expected in the 
before period without the treatment (EB).  EB is a weighted average of information from two 
sources (33):  

 The observed number of crashes in the before period at the treated sites (OB), and 
 The crashes predicted at the treated sites based on reference sites with similar traffic and 

geometric features (NB).  
NB can be calculated using Safety Performance Functions (SPFs) that indicate crashes’ 

relationships with traffic volume and geometric features. SPFs regressed from information of an 
untreated “reference” group. Sites in the reference group have similar features as treated sites in 
the becfore period. As a result, NB represents the “mean” frequency of crashes of the study sites. 
Figure 2.4 shows how EB estimation works for a single site.  

FIGURE 2.4 Illustration of regression-to-the-mean and the EB estimation (33). 

 

Regression-to-the-mean Effect 
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As shown in Figure 2.4, EB falls somewhere between the values of OB and NB. 
Regression-to-the-mean effect is the difference between observed crashes and EB estimation. 
A ratio is calculated by dividing the predicted crash frequency of the treated sites (NA ) in the 
after period by that in the before period. In order to estimate the expected crashes in the 
treatment group had no treatment been applied, the EB estimated crash frequency in the before 
period in a treatment group is multiplied by the ratio. Note that more detail about the EB method 
will be discussed in Chapter 5. 
 

2.7 Pavement-related Safety Studies 

While there has been a longstanding interest in examining the impact of pavement 
condition on safety, there are relatively few studies that have examined this issue in detail.   
Initial investigations in the late 1980s examined the effect of resurfacing.  A synthesis by 
Cleveland of published evidence from studies conducted before 1986 found that there was a 
small, immediate increase in overall crash frequency for rural resurfacing projects conducted to 
address structural quality or poor ride condition (34).  On the other hand, it was found that there 
was an average reduction of about 20 percent in wet pavement crashes for resurfacing projects 
conducted due to high numbers of wet pavement crashes (34). In light of these diverse findings, 
Cleveland concluded that the detrimental effect of resurfacing on safety, if any, is likely to be 
small. A related hypothesis was that vehicle speed will increase due to the smoother pavement 
surface after resurfacing, which, in turn, results in more crashes. 

A well cited report by Hauer et al applied the Empirical Bayes (EB) approach to evaluate 
the safety effectiveness of two types of resurfacing projects undertaken in the early 1980s in 
New York State (35).  Crash data and annual average daily traffic (AADT) from 1975 to 1987 
were used. The study concluded that non-intersection crashes did increase by 21 percent during 
the first 30 months after resurfacing on “fast-track” projects in which no safety improvements 
accompanied the repaving, while non-intersection crashes did not change on reconditioning and 
preservation (R&P) projects that included geometric safety improvements. Another conclusion 
was that within the first 6 to 7 years of pavement life, safety improves as the pavement ages. In 
this study, no pavement condition data were collected and information about NYDOT’s selection 
criteria regarding the two types of resurfacing projects were not mentioned.  

To confirm or refine the Hauer et al study results, a larger study was undertaken in 
NCHRP project 17-9 (2), which involved five states: Washington, California, Minnesota, New 
York, and Illinois (36). The EB approach was used. Generally, there were five-years of before 
data and three-years of after data. The results were inconclusive, as there was not a single 
consistent pattern of safety effectiveness of resurfacing among and within the states. Crashes 
were found to increase after resurfacing in some states, but to decline in others. In addition, no 
explanation was found for these state-to-state variations.  

Given the hypothesis that smother pavement surfaces following resurfacing lead to higher 
vehicle speeds, another NCHRP study evaluated the effect of resurfacing, restoration, and 
rehabilitation (RRR) projects on travel speed (37).  Speed data were collected before and after 
resurfacing at 39 sites on rural two-lane highways of five states: Maryland, Minnesota, New 
Mexico, New York, and West Virginia. The results indicated that overall there was a small but 
statistically significant increase of approximately 1.6 km/h (1 mph) in both the mean speed and 
85th percentile speed after resurfacing.  However, this effect varied substantially from site to site.  
No explanation was found for these site-to-site variations.  In addition, no further analysis was 
conducted regarding the relationship between the change in speed and the change in crashes.  
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A 2011 study applied the cross-sectional method to investigate the efficacy of roadway 
improvements in terms of crash reduction on various subclasses of rural two-lane highways (38). 
Data were collected from 540 rural two-lane highway segments in the state of Indiana. The 
factors in the crash prediction model included lane width, shoulder width, pavement surface 
friction, pavement condition, and horizontal and vertical alignments. The effect of pavement 
friction in crash reduction was found to be significant for rural major collectors and rural minor 
arterials, but insignificant for rural principal arterial two-lane roads. It was also found that 
increased skid resistance impacted severe crashes more than non-severe crashes as the roadway 
functional class increased.  The Present Serviceability Index (PSI), on a scale of 0 to 5, was used 
to represent pavement condition. The model results showed that better pavement condition 
significantly reduced crashes for rural two-lane principal arterials, but the effect was 
insignificant for the two lower road classes. One concern about this study is that there may be a 
multicollinearity issue in the models as pavement condition may correlate with pavement friction 
and this issue was not discussed in the paper.  

 

2.8 Summary of Literature Review 

Findings from the literature review have revealed the importance of assessing pavement 
roughness, limitations of current practices, opportunities from the development of connected 
vehicle technology, and the possibility of exploring a new way to use pavement condition data.  

First, pavement condition assessment is playing an essential role in pavement 
management system. In network level, it helps to identify deficient pavement sections and 
support DOTs’ maintenance decision making. In project level, DOTs can also award contractor 
payments according to final project pavement condition data. The two most important pavement 
condition indexes are CCI and IRI, which represent the general condition and roughness/ride 
quality, respectively. Due to its need of special data collection equipment and complex data 
processing mathematical method, transportation agencies cannot afford the time and expense 
necessary to collect pavement data more frequently than once per year. The connected vehicle 
program will create a great opportunity to overcome the limitation of current practice. This 
connected, data-rich environment will allow for innovative connected vehicle applications for 
transportation infrastructure maintenance. It is possible to collect segment-based pavement 
roughness information (including all travel lanes) more frequently with a minimum additional 
cost. 

Previous study results reinforce that using a connected vehicle approach for pavement 
roughness data collection is promising and a cost-effective approach. According to previous 
research, implementing a root mean square (RMS) algorithm on vertical acceleration 
measurements could provide the better level of precision. However, it should be noted that most 
of the studies so far have been conducted based on data collected under controlled and closed 
environments and very few of them have discussed about the impact of vehicle speed and vehicle 
dynamic system. In the real world, vehicles will encounter different surface types, change 
speeds, a good variety of vehicle dynamic systems, and other variant situations, which may cause 
variations in terms of vehicle-body vibration responses and result in very different acceleration 
datasets.  It is therefore necessary to take this concept to a real world situation to investigate its 
feasibility.  

Traditionally, pavement maintenance is based on assets management condition targets 
but do not explicitly account for the role of pavement condition in roadway safety. Most of the 
previous pavement-related safety studies were event-driven, focusing specifically on the activity 
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of resurfacing. The previous studies were not able to quantitatively track the pavement condition 
before and after the resurfacing projects due to lack of data, so the impact of remediating 
different levels of pavement distress could not be determined. Instead, some studies assumed the 
pavement conditions were consistent before the repaving project across sites. Since the pavement 
condition is sensitive to pavement age, traffic load, and other factors, this assumption could be 
problematic, especially when the duration of the before period is long. Also some previous 
studies assumed that the safety effectiveness is the same across facility types. However, the 
safety effectiveness of a change in pavement condition on rural two-lane highways could be very 
different with that on urban highways.   

Thanks to progress in the automated collection of quantitative pavement condition data, it 
is now possible to link the pavement condition information to crash history and other roadway 
features. It provides an excellent opportunity to investigate the safety effectiveness of pavement 
condition, which could inform many DOT investments in pavement maintenance. Some recent 
research had examined this topic by including pavement condition as a crash factor in crash 
prediction models, but this approach cannot account for regression-to-the-mean effects. In 
addition, inaccurate results may be derived from the regression models due to inappropriate 
model forms, omitted variable bias, or correlation among variables (33). 
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CHAPTER 3 IDENTIFYING DEFICIENT PAVEMENT SECTIONS USING AN 
IMPROVED ACCELERATION-BASED METRIC 

A paper accepted for presentation in the 2015 Annual Meeting of the Transportation Research 
Board, and revised and resubmit for publication in Transportation Research Record 

 
Huanghui Zeng1, Hyungjun Park2, Michael D. Fontaine3,  

Brian L. Smith4, and Kevin K. McGhee5 
 

3.1 Abstract 

Transportation agencies devote significant resources towards the collection of highly 
detailed and accurate pavement roughness data using profiler vans to support pavement 
maintenance decisions.  However, they often cannot afford to measure roughness annually for 
the whole pavement network. This study introduces an improved acceleration-based metric, an 
index normalized by vehicle operating speed, to be used on a regular basis to “prescreen” 
pavement segments that are likely to deficient, and then a profile van can be sent to measure the 
accurate roughness condition. 

A profile van collected pavement profile data on a total of 50 miles (80 km) of roadway, 
which was then used to calculate the International Roughness Index (IRI). Meanwhile, two 
tablets were placed on the vehicle floor to collect data, including 3-way accelerations, GPS 
coordinates, and vehicle speeds. A normalized acceleration-based index was created by 
incorporating a speed factor. Furthermore, logistic regression models were created to evaluate 
the effectiveness of the proposed index in identifying deficient pavement sections (IRI ≥ 140 
in/mile or 2.21 m/km). It was found that the proposed acceleration-based metric is able to 
correctly identify between 80 and 93 percent of all deficient pavement sections.  

In conclusion, this research points to the feasibility of using a cost-effective acceleration-
based application for the purpose of network screening. The network screening process will 
reduce the total mileage of pavement sections that need to be measured and meanwhile still 
identify locations where maintenance work is necessary. 
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3.2 Introduction 

Transportation agencies have traditionally depended on measures of pavement roughness 
to support planning maintenance, repair, and rehabilitation work on the pavement system. Since 
the 1960s, many measures and measurement techniques have been developed. Currently one of 
the most commonly used measurements is the International Roughness Index (IRI) which was 
developed by NCHRP and the World Bank.  IRI is computed based on the measured longitudinal 
profiles of a roadway (39). Given the need for specialized equipment and sensors, it is very 
difficult to collect this data at numerous locations in a timely and cost effective manner. For a 
large portion of the roadway system (i.e., secondary roadways and local systems), the roughness 
is usually measured infrequently, often only once every 3 to 5 years. 

Highway transportation is undergoing significant technological transformations thanks to 
the emerging connected vehicle environment which enables vehicles to wirelessly communicate 
with other vehicles and with the infrastructure (4). This connected, data-rich environment will 
allow for innovative connected vehicle applications for transportation infrastructure 
maintenance. The use of simple sensors such as accelerometers, already installed either in 
vehicles or mobile devices, is able to directly measure the vehicle vibration responses, which is 
believed to highly correlate with pavement roughness. Several past efforts investigated the 
feasibility of collecting acceleration data to assess pavement roughness at a significantly lower 
cost and higher level of temporal resolution (3, 11, 12, 13).  One critical issue about the 
acceleration-only index is that its value depends on a combined effect of vehicle operating 
speeds, vehicle dynamic features, and pavement characteristics (i.e., wavelength).  Thus, it is 
hard to generate reproducible roughness measurements under naturalistic driving conditions 
without considering this combined effect. On the other hand, it is cost prohibitive to develop 
specific acceleration-based models for each vehicle system and each type of pavement. As a 
result, totally replacing the current IRI practice with the acceleration-based index is not 
recommended, especially for applications requiring a high degree of accuracy (i.e., construction). 
However, if an acceleration-based metric can be developed by incorporating vehicle speed and 
be used as a supplementary method to current practice, it may help to address some of the current 
practice’s limitations by providing more timely information to decision makers. For example, the 
acceleration-based metric could be used for network screening, which is a low-level practice that 
does not require highly accurate and detailed roughness measurements. One of the key concerns 
about the current IRI practice is that it is too costly to assess the whole system’s pavement 
roughness condition once a year. The acceleration-based metric would help to identify pavement 
segments that are likely to deficient, and then a profile van can be sent to those flagged sections 
to measure the accurate roughness condition. Introducing a network screening process should be 
able to reduce the total mileage of pavement sections that need to be measured and meanwhile 
still identify locations where maintenance work is necessary.  

To complete the network screening process in a cost-effective manner, the data should be 
generated through people’s daily travel in common vehicles.  Using smartphone or vehicular 
sensors appears to be a good way to collect data. A remaining question is whether those data can 
generate meaningful results for network screening under naturalistic driving conditions. In the 
real world, vehicles will encounter different surface types, changing speeds, divergent travel 
paths and other factors which may cause variations in terms of vehicle-body vibration responses 
and result in very different acceleration datasets. It is therefore necessary to take this concept to a 
real world situation to investigate its feasibility for identifying deficient pavements.  
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3.3 Objectives and Scope 

The goal of this study is not to propose a new method to replace the current IRI practice, 
but to improve current practice by introducing a supplemental method for pavement roughness 
assessment. The focus is to demonstrate the feasibility of using an acceleration-based index to 
classify pavement roughness levels under “uncontrolled” real world driving conditions. 
Specifically, two objectives were addressed: 

 Developed an acceleration-based metric by incorporating vehicle speeds, and 
 Evaluated the effectiveness of using the acceleration-based metric to identify deficient 

pavement sections.  
Note that the vibration response of a running vehicle is influenced by the vehicle 

operating speed, the vehicle dynamic system, and pavement roughness. This study addressed 
mainly the impact of vehicle speed, and an ongoing effort will investigate the feasibility of 
calibrating different vehicle systems in conjunction with the vehicle speed.  

The background of current pavement roughness assessment practice, previous studies, 
methodology for the proposed application, and the analysis results will then be presented. 
Finally, this paper concludes with a summary of findings and recommendations for future 
studies. 

 

3.4 Background 

By definition, IRI is the accumulated suspension stroke in a mathematical car model 
divided by the distance traveled by the model during a simulated ride on a pavement section 
whose profile is measured (18). It is recorded in inches per mile (in/mile), or meters per 
kilometer (m/km).  By applying a unit quarter-car model and simulating the vehicle response at a 
constant speed (80 km/h) on a known profile, the IRI is a reproducible index, making it 
outperform other pavement roughness measurements. IRI was chosen as the standard reference 
roughness index of the Highway Performance Monitoring System (HPMS), a national database 
of roadway information kept by the Federal Highway Administration (FHWA) (19). 

Pavement condition data in Virginia are collected using an automated method that relies 
on advanced computing technology and a multitude of sensors and equipment (including high-
speed lasers, cameras and accelerometers). To assess the network roughness condition, Fugro 
Roadware (VDOT’s current contractor) uses its instrumented vans to measure roadway profiles 
every year for the interstate and primary highway systems and every five years for the secondary 
system. The profiles are later analyzed by a software package to determine the IRI value of the 
related pavement section. Although the final IRI is reported at every 0.1-mile (163 m), the profile 
data are recorded at a much smaller interval of less than 6 inches (3).  

For pavement maintenance purpose, Virginia Department of Transportation (VDOT) uses 
IRI for overall awareness of road condition in terms of ride quality. Interstate and Primary 
pavement sections with an average IRI of 140 in/mile (2.2 m/km) or more or a Secondary 
pavement section with an average IRI of 220 in/mile (3.47 m/km) or more are considered 
‘deficient’ in terms of ride quality (15). Every year, VDOT makes its maintenance activity 
decisions for the pavement system based on IRI and other pavement condition information.  
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3.5 Literature Review 

This section first introduces a previous study regarding the relationship between vehicle 
vibration response, vehicle speed, and roughness, and then presents several recent studies that 
used smartphone-based or connected vehicle applications to monitor pavement roughness.  

Ahlin and Cranlund derived the analytical relationship between the car floor vertical 
acceleration root mean squared (RMS) value and the IRI (25). The reference quarter-car model 
for the IRI computation was used for simulating the car floor acceleration. A velocity of the 
vehicle model and the Power Spectral Density (PSD) of the road profile elevation were taken 
into account within the derived approximate relationship. It was found that the conversion from 
IRI (m/km) to vertical vehicle vibration response in a quarter car can often be done using a factor 
0.16, but depending on actual roughness wavelength and vehicle speed, the conversion factor 
ranges from 0.04 to 1.4. This indicates that there can be a difference of a factor 30 between 
different rides, given the very same IRI value.  

A considerable amount of work has been completed recently to improve the concept of 
using inexpensive vehicle or smartphone sensors to assess pavement roughness conditions. A 
research team from Auburn University investigated the application of using vehicle-based 
sensors to assess pavement condition (12). The main focus of the study was to utilize vehicular 
sensors (accelerometers, gyroscopes, and suspension deflection meters) to estimate the IRI. 
Testing was conducted under controlled speed on a 1.7 mile (2,750 m) long test track at the 
National Center for Asphalt Technology (NCAT). The amount of overall vibrations across a 
given segment was determined by taking the root mean square (RMS) of a signal measurement. 
The overall vibrations were then compared with the true IRI of the pavement segment. The 
resulting data indicated that the RMS of vertical accelerations represents the best case scenario to 
capture the true IRI. The study also indicated that the estimation error increases with decreasing 
window size and thus recommended to use larger windows when possible to assure the most 
accurate IRI estimates.  

In 2011, Flintsch et al. (13) conducted a pilot study using probe vehicles to measure road 
ride quality, or roughness. Again, vertical acceleration data were used as an index of vehicle 
vibration. A smoothness profile was obtained using an inertial-based laser profiler, while the 
vertical accelerometer measurements were obtained using a vehicle instrumented with an 
accelerometer at the Virginia Smart Road facility in Blacksburg, Virginia. The accelerometer 
operated at a rate of 10 HZ. GPS positions were also recorded. A total of four runs were 
completed on the test track to collect acceleration data. The study confirmed that the acceleration 
runs are very repeatable. Analysis using the coherence function indicates that the acceleration 
data linearly correlate well to smoothness profile between wavelength 50 and 300 m.  

Bridgelall derived a theoretical relationship between IRI and accelerometer data for a 
connected vehicle approach for pavement roughness estimation (29). The research introduced the 
road impact factor (RIF) which is derived from vehicle integrated accelerometer data. A time-
wavelength-intensity-transform (TWIT) algorithm was also developed to create a wavelength-
unbiased measurement based on RIFs from different speed bands. The analysis demonstrates that 
RIF and IRI are directly proportional. Profile and acceleration data were collected from six runs 
with a constant speed (55.6 km/h) on a 150-meter pavement section in Minnesota to validate this 
relationship. The author concluded that the proposed application enables low-cost, network-wide 
and repeatable performance measures at any speeds. No discussion was provided on sample size 
and sampling rate for acceleration data collection. 
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In summary, the literature review reinforces the possibility of using vehicular or 
smartphone sensors as a cost-effective approach for pavement roughness data collection. 
According to previous research, implementing a root mean square (RMS) algorithm on vertical 
acceleration measurements could provide a better way to quantify the vehicle vibration response, 
which is believed to correlate with the IRI. However, special attention should be given that most 
of the studies so far have been conducted based on data collected under controlled and closed 
environments and therefore did not investigate the effects of vehicle speed, and did not address 
how DOTs might use the acceleration measurements. In the real world, vehicles will encounter 
different surface types, changing speeds, divergent travel paths and other conditions which may 
cause variations in terms of vehicle-body vibration responses and result in very different 
acceleration datasets. It is therefore necessary to transfer this concept to a real world situation to 
improve the acceleration-based metric and investigate its feasibility for identifying deficient 
pavements.  

 

3.6 Methodology 

The vibration response of a running vehicle is influenced by the vehicle operating speed, 
vehicle dynamic system, and pavement roughness. As for this study, an acceleration-based 
metric was developed by incorporating vehicle speeds so that the metric can account for most of 
the impact of vehicle speed variations and be applied to roadways with different functional 
classes and posted speed limits. Data were collected using a same vehicle and thus there were no 
variations in terms of vehicle dynamic system.  

The two objectives were accomplished using the following three steps: 
 Data collection on three functional classes of highways near Charlottesville, Virginia; 
 Development of an improved acceleration-based metric by incorporating vehicle speed; 

and  
 Develop classification models based on the proposed acceleration-based metric and 

evaluate their effectiveness in identifying deficient pavement sections.   
 

3.6.1 Data Collection and Pavement Group Identification 

A pick-up truck (GMC Sierra 2500 HD) with a RoLine profiler installed was used to 
collect pavement profile on 50 miles (80 km) of roadway segments. The collected profile was 
used to calculate the International Roughness Index (IRI). Meanwhile, two tablets (Samsung 
Galaxy Note 10.1) were placed on the vehicle floor to collect data, including 3-way 
accelerations, GPS coordinates, and vehicle speeds. The two tablets were placed on the floor in 
front of the second row seats and close to the two side doors so that both right-wheel-path and 
left-wheel-path data can be collected. To ensure the tablets do not dislocate themselves when the 
vehicle is running, they were fit into two boxes attached to the floor with tape.  

The acceleration data were updated every 0.02 second, while the GPS and speed data 
were updated every 1 second. Only the vertical acceleration was used to quantify vehicle 
vibration responses. Each individual data record was matched to the milepost location through a 
map-matching process based on the GPS information. Acceleration data were aggregated using 
the RMS algorithm at the 0.1-mile (0.16-km) interval. It was found that the estimated GPS 
accuracy was between 4 and 8 meters, which is acceptable for estimating the roughness 
condition for every 0.1-mile (160-meter) pavement section. Vehicle speeds were also recorded 
every 1 second, allowing us to address the impact of speed on acceleration readings. 
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Data collection was conducted on April 22, 2014 near Charlottesville, Virgina. The 
studied segments contain three different functional classes of highway with asphalt-based 
surfaces.  The roadway designs of these three types of highways are very different in terms of 
horizontal/vertical curves, grades, traffic control, cross sections, etc. The posted speed limits 
range from 30 mph to 70 mph (48.3 to 112.6 km/h) and data were collected under reasonable 
operating speeds. According to the HPMS Field Manual, low vehicle speed will bias the IRI 
measurements (8). As a result, this study only used data that were collected at a speed higher 
than 30 mph (48.3 km/h). The final dataset contained data on 35.7miles (57.5 km) of interstate 
freeways (IS-64 W/E), a 3.5-mile (5.6-km) primary highway segment (US-15) and 10.8 miles 
(17.4 km) of secondary roadway (SR) segments. 

The collected IRI data were used as the reference value of pavement roughness. For 
general classification of road condition, VDOT identifies different roughness levels using 
corresponding quantitative IRI values (9). Note that transportation agencies may have different 
definitions for deficient pavement and thus may not have identical threshold values. As for this 
study, pavement sections with an IRI greater or equal to 140 in/mile (2.2 m/km) were marked as 
deficient sections. Table 3.1 summarizes the number of 0.1-mile sections in each roughness 
category according to VDOT’s current policy. Of the total of 500 0.1-mile (0.16 km) pavement 
sections, there were 81 deficient sections. The IRI values range from 37.3 in/mile to 267.45 
in/mile (0.59 to 4.22 m/km), while the speed ranges from 32 mph to 67.5 mph (51.5 to 108.6 
km/h). The speeds measured from the two tablets were very similar, and thus the speed 
information was extracted from only one of the tablets. 

 
TABLE 3.1 Data Summary based on Routes 
 Route IRI Summary (in/mile) Speed (mph) Number of Sites Length 

(mile) Med. Min. Max. Med. Min. Max. Deficient Non-Def. 
IS-64E 75.5 45.5 256.8 65.9 63.9 67.5 16 162 17.8 
IS-64W 76.9 37.3 267.5 64.8 64.0 74.3 17 162 17.9 
US-15 82.6 63.4 125.5 52.4 50.2 54.1 0 35 3.5 
SR-616 124.7 86.1 172.0 45.4 41.2 47.8 6 15 2.1 
SR-600 121.2 85.7 219.3 40.8 34.0 50.4 9 25 3.4 
SR-799 87.4 123.9 228.5 39.3 32.0 49.3 8 20 2.8 
SR-676 189.9 151.8 248.2 40.5 33.5 45.8 25 0 2.5 
Total 85.0 37.3 267.5 64.8 32.0 67.5 81 419 50 

 
To investigate how the proposed methods will generalize to an independent data set, the 

whole dataset was divided randomly into a training dataset and a testing dataset, as suggested by 
Hastie et al. (40). The training dataset containing two-thirds of the data (335 observations) was 
used to develop the acceleration-based metric and the classification model; while the testing 
dataset (165 observations) validated the results.  Figure 3.1 compares the box-plot of the three 
datasets in terms of IRI (in/mile), RMS acceleration (m/second2), and speed (m/second). The 
Kolmogorov-Smirnov (K-S) test was applied to test whether the training and testing datasets 
were drawn from the same distribution (41), as shown in the right bottom of the figure. The box-
plots and K-S test results indicate that there are no significantly different central tendency 
features between the training and testing datasets.  
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FIGURE 3.1  Comparison of IRI, RMS and Speed Data in the Test and Train Datasets. 

 

3.6.2 Normalized Root Mean Squared Acceleration 

According to previous studies, root mean squared (RMS) vertical acceleration, which is 
calculated with the equation below, represents a better scenario for matching the IRI with 
acceleration measurements under a constant speed (12).  
 

ܽ௭,ோெௌ ൌ ටଵ

ே
∑ ሺܽ௭, െ ݃ሻଶே
ୀଵ        (12) 

Where:  
az, RMS = the RMS vertical acceleration for the studied pavement section; 
N = the number of acceleration readings among the studied pavement section; 
az,i = the ith vertical acceleration reading among the studied section; 
g = the contribution of the force of gravity. 
 
As a result, we use RMS vertical acceleration to quantify the vehicle floor vibration level. 

It is important to note that the value of RMS acceleration also relates to vehicle speed. For 
instance, the RMS accelerations may be very different between those on a freeway section with a 
speed limit of 70 mph and on a secondary roadway section with a speed limit of 35 mph, even 
though they have very similar IRI values. According to Ahlin and Cranlund’s study, the 
approximation relationship is shown as the following equation between IRI, vehicle speed (v) 
and vehicle floor vibration (vib), assuming the reference quarter-car model. Vehicle floor 
vibration is usually quantified as the RMS vertical acceleration (25). The value of the PSD 
exponent (n) is low for roads where the dominating roughness amplitudes have short 
wavelengths, such as on a modern designed highway with a deteriorated surface with plenty of 
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potholes, etc. The value of n is high for roads where the dominating roughness amplitudes have 
long wavelengths, such as on an older rural low volume road, just after an 1–2 inch asphalt 
overlay has been placed.  

௩

ூோூ
ൌ 0.16ሺݒ 80⁄ ሻሺିଵሻ ଶ⁄             (25) 

 
According to the approximation relationship, for a given pavement section, the floor 

vibration or the RMS vertical acceleration is directly proportional to vehicle operation speed. 
The value of the proportion factor is determined by the ratio of vehicle speed to 80 km/h (the 
simulation speed when calculating IRI). A normalized floor vibration, or normalized RMS 
vertical acceleration (NRMS), is defined by incorporating vehicle speed, as shown in the 
following equation.  

 
ܵܯܴܰ ൌ ሺ80 ⁄ݒ ሻ௪ܽ௭,ோெௌ, where ݓ ൌ ሺ݊ െ 1ሻ 2⁄ . 

 
NRMS indicates the vibration level that a vehicle is expected to experience at the speed of 

80 km/h.  
The next question is how to determine the value of the exponent w. Theoretically, each 

pavement section has its own PSD characteristics and thus a unit w. However, it will be cost 
prohibitive to calculate the value of w for each individual pavement section. For network 
screening purposes, a general value of w can be used by assuming that there is a typical value for 
most roads. The authors applied 3-fold cross-validation with logistic regression to determine the 
approximate exponent value (w) that should be used in the acceleration-based metric. Cross-
validation is a popular data mining method that helps to find the optimal tuning parameter (w in 
this case) that minimizes prediction error (40).  In 3-fold cross-validation, the original sample is 
randomly partitioned into three equal size subsamples. Of the three subsamples, a single 
subsample is retained as the validation data for testing the model, and the remaining two 
subsamples are used as training data. The next step is to fit a model based on the training data 
and a candidate value of the tuning parameter, and then use the validation data to calculate 
prediction error (i.e., MSE). The cross-validation process is then repeated three times (the folds), 
with each of the three subsamples used exactly once as the validation data. The three prediction 
error results from the folds can then be averaged to produce a single estimation. Repeating this 
process for every possible value of the tuning parameter provides an estimate of the test error 
curve, which can be used to find the tuning parameter that minimizes it.  

 

3.6.3 Pavement Classification Model Development and Evaluation 

To investigate the effectiveness of the proposed acceleration-based metric, a logistic 
regression method was created and then evaluated. Logistic regression is used here because it not 
only can help approximate the actual pavement roughness level using acceleration and speed 
data, but also is able to indicate the likelihood of correct estimation. Knowing the likelihood of 
correct estimation is useful for pavement maintenance decision making (i.e., prioritizing 
repaving projects). In addition, there are mature tools to evaluate and validate logistic regression 
models.  

After the NRMS accelerations were calculated, logistic models were developed to predict 
a pavement section’s roughness level based on its NRMS value. The important outputs include a 
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threshold NRMS value (NRMS0) and a probability function. The following section will describe 
the technical detail of model development and validation. 

The model setup is as follows. For pavement section i, define 
 

ܻ ൌ ൜
	ܫܴܫ	ݐ	݈ܽݑݍ݁	ݎ	ݎ݁ݐܽ݁ݎ݃	ݏ݅	݁ݑ݈ܽݒ	ܫܴܫ	ݏᇱ݊݅ݐܿ݁ݏ	݄݁ݐ	݂ܫ					1
	ܫܴܫ	݄݊ܽݐ	ݏݏ݈݁	ݏ݅	݁ݑ݈ܽݒ	ܫܴܫ	ݏᇱ݊݅ݐܿ݁ݏ	݄݁ݐ	݂ܫ																										0

 

 Where IRI0 is the threshold value in the model that defines whether a pavement section is 
deficient or not, its default value is 140 in/mile.  
 

Let pi be the probability of being a deficient pavement (IRI ≥ IRI0 in/mile) for section i. 
The observed Yi is assumed to follow a Bernoulli distribution (Yi ~ Bernoulli (pi)). 

As a key parameter, pi is associated with the NRMS acceleration of section i (NRMSi) by a 
logit link function (or by a probability function). 

 

ሻሺݐ݈݅݃ ൌ log ቀ 
ଵି

ቁ ൌ ߙ  ܯܴܰߚ ܵ， or 

 ൌ
exp	ሺߙ  ܯܴܰߚ ܵሻ

1  exp	ሺߙ  ܯܴܰߚ ܵሻ
 

 
Where α and β are regression coefficients. The exponential of regression coefficients, 

exp(β) , is the odds ratio (OR) for the NRMS acceleration. The regression model will estimate the 
probability of being a deficient pavement, given the section’s NRMS acceleration. A section will 
be predicted as a deficient section if this probability is greater than a predefined threshold value 
p0 (default value is 0.5). Mean squared error (MSE), as shown below, can be used as an 
estimation of the prediction error.  

ܧܵܯ ൌ
1
ܰ
ሺ െ ܻሻଶ
ே

ୀଵ

 

 
Once the logistic model is developed, the related threshold value of normalized RMS 

acceleration (NRMS0) can be determined by the following equation. 
 

ܵܯܴܰ ൌ
1
ߚ
ሺ݈݃ ൬


1 െ 

൰ െ  ሻߙ

 
A section will be identified as rough section if its NRMS acceleration is higher than 

NRMS0, and the probability function will inform the likelihood of correct classification. To 
ensure the probability function and threshold value can work properly, the logistic model needs 
to be evaluated and validated. 

The model performance was evaluated mainly by the receiver operating characteristic 
(ROC) curve, which measures model sensitivity and specificity (42). In the case of this study, the 
sensitivity is the probability of correctly predicting a deficient pavement section, and the 
specificity is the probability of correctly predicting a non-deficient section. 

Both indexes are related to the threshold value p0 and there is a tradeoff between 
sensitivity and specificity. The ROC curve is a plot of sensitivity versus false positive rate (i.e., 
1-Specificity) for all possible thresholds (p0). The prediction performance of the model can be 
measured by the area under the curve (AUC), with a higher AUC value indicating better 
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predictive power. A perfect prediction method would yield the maximum AUC of 1. A 
completely random guess would result in an AUC of 0.5.  

 

3.7 Analysis Results 

This section presents the results from data analysis. The analysis first presents the 
proposed acceleration-based metric from the cross-validation result, then introduces the 
development of logistic models, and finally evaluates the model performance.  
 

3.7.1 Acceleration-based Metric 

Figure 3.2 shows the scatter plots of IRI with RMS acceleration or NRMS acceleration 
when the exponent w values are 0.5 and 1.3, respectively. The 3-fold cross-validation curve 
based on the training data was also shown in the bottom right of Figure 2, indicating how the 
value of MSE changes when the value of the exponent w changes from 0.5 to 2.0. 

 

      

      
FIGURE 3.2  Scatter plots of IRI Vs. RMS/NRMS acceleration and cross-validation result. 

 
According to Figure 3.2, the RMS accelerations before normalization did not show 

consistent relationships with the IRI values between different routes. However, after 
normalization, the NRMS values appear to share a similar relationship with the IRI between 
different routes. It indicates that incorporating vehicle speed in the acceleration-based metric is 
possible to generalize results to different functional classes of highway. 
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The 3-fold cross-validation result indicates that the optimal value of w is 1.3, and the 
related NRMS can minimize the MSE of the prediction model to 0.028. It also illustrates that the 
MSE is stable when the exponent value is between 1.1 and 1.6. In other words, selecting 
different values within this range is not expected to change the effectiveness of NRMS 
significantly.  As for this study, the NRMS was determined with 1.3 as the exponent value (as 
shown in the following equations). 
 

ܵܯܴܰ ൌ ሺ80 ⁄ݒ ሻଵ.ଷܽ௭,ோெௌ 
 

3.7.2 Logistic Regression Models 

For network screening, the key interest is whether DOTs can use the proposed 
acceleration-based metric to identify deficient pavement sections. Logistic models were 
developed to demonstrate this feasibility by classifying pavement sections into deficient and non-
deficient categories based on their NRMS values. Note that the training dataset was used to 
develop the models. A default model was first developed with IRI0 equaling to current VDOT 
threshold value (140 in/mile) for deficient pavement. Three shifted models were also created 
with  IRI0 values (112, 119, and 126 in/mile, respectively) that are lower (10%, 15%, and 20% 
lower, respectively) than the current VDOT threshold value. All models’ ability to flag deficient 
pavement (IRI ≥ 140 in/mile) sections were evaluated using the testing dataset. Compared with 
the default model, the shifted models are expected to perform better in capturing deficient 
sections, but at the expense of misclassifying more non-deficient pavement sections. . It was 
found that the 15%-shifted model performed better in balancing this tradeoff than the other two 
shifted models. As a result, the 15%-shifted model was selected and presented here as a 
comparison model of the default model. The tradeoffs between these models will be further 
discussed later in the paper. The model outputs are summarized in Table 3.2.   
 
TABLE 3.2  Logistic Model Results Summary 

Model Variable Coefficient S.E. Significant
Odds 
Ratio1 

Nagelkerke 
R Square2 AIC NRMS0

Default 
Model  

Intercept -14.20 2.16 0.000 
1.48    0.84 69.46 0.36 

NRMS 39.04 6.16 0.000 
Shifted 
Model 

Intercept -11.78 1.42 0.000 
1.46    0.82 115.00 0.31 

NRMS 38.12 4.91 0.000 
  Note: 1. Odds ratio was scaled for every 0.01 unit increase in RMS acceleration, Exp (0.01*β); 
            2. A surrogate R square for logistic models given by SPSS. 

 
As expected, the NRMS value is a significantly important indicator for a deficient 

pavement in both models. A scaled odds ratio (OR) was calculated to quantitatively evaluate the 
impact of NRMS acceleration. It represents the relative odds of being a deficient pavement for 
every 0.01 unit increase in NRMS acceleration. The default model results indicate that, for every 
0.01 m/sec2 increase in NRMS acceleration, the relative odds of being a deficient pavement will 
increase by 48% (OR=1.48). The predictive models (probability functions) are as follows: 

 

Default Model: ܲݕݐ݈ܾܾ݅݅ܽݎሺ݂݀݁݅ܿ݅݁݊ݐ	ݐ݊݁݉݁ݒܽሻ ൌ ୣ୶୮	ሺିଵସ.ଶାଷଽ.ସேோெௌሻ

ଵାୣ୶୮	ሺିଵସ.ଶାଷଽ.ସேோெௌሻ
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Shifted Model: ܲݕݐ݈ܾܾ݅݅ܽݎሺ݂݀݁݅ܿ݅݁݊ݐ	ݐ݊݁݉݁ݒܽሻ ൌ ୣ୶୮	ሺିଵଵ.଼ାଷ଼.ଵଶேோெௌሻ

ଵାୣ୶୮	ሺିଵଵ.଼ାଷ଼.ଵଶேோெௌሻ
 

 Where NRMS is the normalized RMS acceleration of the target section.  
 

With these models, the probability of being a deficient pavement section can be predicted 
based on the acceleration and vehicle speed data collected on the target section. Generally 
speaking, a higher NRMS acceleration results in a higher probability of being a deficient 
pavement section. Assuming that the threshold probability between deficient and smooth 
pavement is 0.5 (p0 = 0.5), the corresponding NRMS acceleration threshold (NRMSo) values for 
the default and shifted models are 0.36 m/sec2 and 0.31 m/sec2, respectively. 

In the network screening process, a pavement section’s roughness level can be estimated 
simply by comparing the NRMS value with the threshold value. For example, if a pavement 
section has a NRMS value of 0.42 m/sec2 (greater than 0.36 m/sec2), its estimated classification 
will be a deficient section according to the default model and thus it is recommended to further 
investigate its roughness condition (i.e., collect its profile or IRI data). Furthermore, there is a 
probability of 0.90 that the classification is correct according to the probability function. This 
probability information is useful in the decision making of pavement maintenance (i.e., 
prioritizing pavement treatment projects). 

 

3.7.3 Model Evaluation and Validation 

The models were evaluated based on both training data (the original data for model 
development) and testing data (the additional data for model validation). As a result, two ROC 
curves were generated for each model, as shown in Figure 3.3. To better examine the 
effecitiveness of incorporating vehicle speed into the acceleration-based metric, Figure 3.3 also 
shows the ROC curves of a logistic regression model based on the RMS vertical acceleration that 
did not take speed into account.  

 

 
FIGURE 3.3 ROC curves for the training and testing datasets. 
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 The default model had very similar ROC curves with the shifted model. According to the 
ROC curves, the logistic regression model based on the proposed metric (NRMS) has a high 
predictive power. The AUCs are 0.99 for the training dataset and 0.98 for the testing dataset, 
both close to the perfect AUC value of 1. This result indicates that using the proposed 
acceleration-based metric to identify the deficient pavement sections is statistically highly 
effective and transferable. Both the default model and the shifted model performed significantly 
better than the model without speed. It indicates that incorporating vehicle speed in the 
acceleration-based metric is much more effective than the acceleration-only metric. 
 To further evaluate the models, classification tables were created by showing the number 
of sections by observed roughness level and predicted roughness level (assuming p0 = 0.5), as 
well as the percentage of correct prediction (Table 3.3). Note that the disaggregated numbers are 
listed in parentheses, with the first value for interstate sections (IS-64E/W) and the latter value 
for non-interstate sections. As a comparison, the classification results were also shown for the 
model that did not incorporate vehicle speed.  
 
                  TABLE 3.3  Classification Results Summary 

 Testing Data Predicted 
Model Observed Non-Def. Deficient Correct Percentage 

Default 
Model 

Non-Def. 
132 
(99, 33)1 

3 
(0, 3) 

97.78 
(100.00, 91.67) 

Deficient 
6 
(3, 3) 

24 
(13, 11) 

80.00 
(81.25, 78.57) 

Shifted 
Model 

Non-Def. 
123 
(96, 27) 

12 
(3, 9) 

91.11 
(96.97, 75.00) 

Deficient 
2 
(1, 1) 

28 
(15, 13) 

93.33 
(93.75, 92.86) 

No 
Speed 

Non-Def. 
133 
(98, 34) 

2 
(1, 1) 

98.51 
(98.99, 97.14) 

Deficient 
13 
(7, 6) 

17 
(9, 8) 

56.66 
(56.25, 57.14) 

Note: 1. The first value in the parenthesis indicates the number of interstate sections and 
the latter the number of non-interstate sections. 

 
Overall, the percentages of correct classification from both the default and shifted models 

are greater than 92 percent on the testing dataset. This result is consistent with the ROC curve 
results. The default model was able to correctly identify 80 percent of the deficient pavement 
sections and only mis-identified about two percent of those non-deficient sections. The shifted 
model can capture more deficient sections (93%) but also mis-identfied more non-deficient 
sections (8.9%). Generally speaking, lowering the IRI threshold value in the development of 
classification models increases the accuracy of identifying deficient sections, but also harms its 
ability to correctly identify non-deficient pavements. The model based on the RMS acceleration 
without incorporating vehicle speed can only correctly identify 57 percent of deficient sections. 
As a result, there is a significant improvement regarding correctly identifying deficient 
pavements by incorporating vehicle speed into the acceleration-based metric.  
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Figure 3.4 provides more insights for the classification results by showing each pavement 
section’s IRI value and estimated probability from the probability function. All 165 observations 
in the testing dataset were colored and marked according to the four classification outcomes. 

 
 

 
 

 
FIGURE 3.4  IRI values and the estimated probability. 

 
It was found that all nine sections that were mis-classified by the default model (top of 

Figure 3.4) had IRI values between 130 and 150 in/mile. Specifically, this model missed six 
sections that were near the deficient threshold while picking up three sections that soon would be 
deficient. The shifted model (bottom of Figure 4.4) missed only two sections that were at the 
early stage of being deficient, but picked up 12 non-deficient sections (9 of them had IRI values 
greater than 120 in/mile). It is clear that there are advantages and disadvantages in selecting 
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either model for network screening. The default model will identify fewer pavement sections for 
further investigation.  This will require fewer resources, but it will miss some sections that are at 
the early stage of being deficient. The shifted model will identify relatively more pavement 
sections, including sections that are close to being deficient. However, it means an increase in 
further investigation on non-deficient sections. Transportation agencies are recommended to 
select the model based on their own pavement maintenance goals and available resources. In 
summary, the evaluation results indicate that estimating the roughness level based on NRMS 
acceleration can achieve a high accuracy level that is feasible for network screening. It is 
expected that the predictive power is transferable across different functional classes of highways 
in Virginia. The results show a promising effectiveness of using the proposed acceleration-based 
metric to identify deficient pavement sections.  

 

3.8 Conclusions 

This study developed a normalized acceleration-based metric (NRMS) that can generalize 
to different functional classes of highway by incorporating vehicle speed. This proposed metric 
was trained and tested on data collected from three functional classes of highway and illustrated 
a promising performance in identifying deficient pavement sections. It is expected the proposed 
acceleration-based metric to be used in a network screening process.  

In conclusion, this research points to the feasibility of using a cost-effective application 
for the purpose of network screening. The network screening process will reduce the total 
mileage of pavement sections that need to measure and meanwhile still identify locations where 
maintenance work is necessary.  

There are several opportunities to expand this research to further validate this approach.  
First, it is recommended to design filters to remove invalid data by identifying situations where 
the acceleration-based metric can not work. With the help of filters, only valid data points will 
remain. Due to the requirement of vehicle speed for IRI data collection, this research did not 
investigate acceleration data collected under 30 mph. However, it is plausible that the 
acceleration-based metric has a lower speed requirement than IRI. As a result, future research 
can examine the minimum speed for valid data. Also, this study did not investigate the 
identification of pavement sections with IRI values greater than 220 in/mile given a lack of data. 
This could be another area for future research. Last but not least, a prototype system can be 
developed using state-owned vehicles as probe vehicles to collect data. With the prototype 
system, a more comprehensive dataset can be generated by collecting data on more routes and in 
a wider area. It can be used to validate previous findings, address issues regarding 
implementation, assess the network benefit of this system, and explore the possibility of 
measuring other pavement condition data using a similar approach. 
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CHAPTER 4 THE IMPACT OF VEHICLE DYNAMIC SYSTEM ON THE 
ACCELERATION-BASED METRIC FOR PAVEMENT ROUGHNESS 

A paper prepared for submission to the International Journal of Pavement Engineering 
Huanghui Zeng1, Brian L. Smith2, and Hyungjun Park3 

4.1 Abstract 

Transportation agencies devote significant resources towards the collection of highly 
detailed and accurate pavement roughness data using profiler vans to support pavement 
maintenance decisions. Thanks to the progress of wireless communication and sensor 
technology, numerous studies were conducted to investigate the feasibility of using probe vehicle 
data (i.e., Vehicle floor acceleration) for pavement condition assessment. One challenge of this 
concept is that there are a huge variety of vehicle dynamic systems which can directly impact the 
resulting probe data. This study investigated the impact of vehicle dynamic systems on vehicle 
vibration response, which directly affects the acceleration-based metric for pavement roughness 
measurements.  

Profile and probe data were collected on a total of 10.8 mile segments using three 
different vehicles. The sensitivity analysis and relationship analysis based on quarter-car model 
simulations found that variations in vehicle dynamic parameters can result in a significantly 
different magnitude of vibration response. The magnitude of vehicle vibration response is most 
sensitive to the spring stiffness of the sprung mass and least sensitive to the loading of the 
vehicle. Furthermore, the relationship analysis shows that the vibration responses are linearly 
correlated between different vehicle systems, which were illustrated in both the quarter-car 
simulations and the probe data collected under naturalistic driving conditions.  

These findings help transportation agencies better understand the probe data generated 
from different vehicle systems in the real world, and thus could use the related acceleration-
based metric properly for pavement condition network screening. Assuming that transportation 
agencies will use agency-owned vehicles to build a pavement condition network screening 
system, a vehicle calibration procedure was developed to help them calibrate vehicles in the 
fleet. Case studies based on the probe data collected from different vehicles were also presented 
and demonstrated that the calibration improved system performance. 
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4.2 Introduction 

Transportation agencies have traditionally depended on measures of pavement roughness 
to support planning maintenance, repair, and rehabilitation work on the pavement system. Since 
the 1960s, many measures and measurement techniques have been developed. Currently one of 
the most commonly used measurements is the International Roughness Index (IRI) which was 
developed by NCHRP and the World Bank.  IRI is computed based on the measured longitudinal 
profiles of a roadway (39). Given the need for specialized equipment and sensors, it is very 
difficult to collect this data at numerous locations in a timely and cost effective manner.  

Highway transportation is undergoing significant technological transformations thanks to 
the emerging connected vehicle environment which enables vehicles to wirelessly communicate 
with other vehicles and with the infrastructure (4). This connected, data-rich environment will 
allow for innovative connected vehicle applications for transportation infrastructure 
maintenance. The use of simple sensors such as accelerometers, already installed either in 
vehicles or mobile devices, is able to directly measure the vehicle vibration responses, which is 
believed to highly correlate with pavement roughness. Several past efforts investigated the 
feasibility of collecting acceleration data to assess pavement roughness at a significantly lower 
cost and higher level of temporal resolution (3, 11, 12, 13).  One critical issue about the 
acceleration-only index is that its value depends on a combined effect of vehicle operating 
speeds, vehicle dynamic features, and pavement characteristics (i.e., wavelength).  Thus, it is 
hard to generate reproducible roughness measurements under naturalistic driving conditions 
without considering this combined effect. On the other hand, it is cost prohibitive to develop 
specific acceleration-based models for each vehicle system and each type of pavement. As a 
result, totally replacing the current IRI practice with the acceleration-based index is not 
recommended, especially for applications requiring a high degree of accuracy (i.e., construction). 
However, if an acceleration-based metric can be used as a supplementary method to current 
practice, it may help to address some of the current practice’s limitations by providing more 
timely information to decision makers. For example, the acceleration-based metric could be used 
for network screening, which is a low-level practice that does not require highly accurate and 
detailed roughness measurements. One of the key concerns about the current IRI practice is that 
it is too costly to assess the whole system’s pavement roughness condition once a year. The 
acceleration-based metric would help to identify pavement segments that are likely to be 
deficient, and then a profile van can be sent to those flagged sections to measure the accurate 
roughness condition. Introducing a network screening process should be able to reduce the total 
mileage of pavement sections that need to be measured and meanwhile still identify locations 
where maintenance work is necessary.  

To complete the network screening process in a cost-effective manner, the data should be 
generated through people’s daily travel in common vehicles.  Using smartphone or vehicular 
sensors appears to be a good way to collect data. A remaining question is whether this data can 
generate meaningful results for network screening under naturalistic driving conditions from 
numerous vehicles. In the real world, vehicles will encounter different dynamic systems, 
different surface types, changing speeds, divergent travel paths and other factors which may 
cause variations in terms of vehicle-body vibration responses and result in very different 
acceleration datasets. It is therefore necessary to take this concept to a real world situation to 
investigate its feasibility for identifying deficient pavements.  
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4.3 Objectives and Scope 

Note that the vibration response of a running vehicle is influenced by the vehicle 
operating speed, the vehicle dynamic system, and pavement roughness. A previous study (43) 
was able to develop an improved acceleration-based metric by incorporating vehicle speed. As a 
follow-up project, this study addressed mainly the impact of vehicle systems. The goal of this 
study is to understand the data generated from different vehicle dynamic systems so that 
transportation agencies can use this data properly in pavement roughness assessment. 
Specifically, two objectives were addressed: 

 Investigate the impacts of vehicle dynamic parameters on the acceleration-based metric, 
and 

 Develop a procedure for calibrating data from different vehicle systems and provide a 
case study.  
 
It is important to know that this study does not intend to propose a new method to replace 

the current IRI practice, but to improve current practice by introducing a supplemental method 
for pavement roughness assessment. The background of current pavement roughness assessment 
practice, previous studies, methodology for the proposed application, and the analysis results will 
then be presented. Finally, this paper concludes with a summary of findings and 
recommendations for future studies. 

 

4.4 Background 

By definition, IRI is the accumulated suspension stroke in a mathematical car model 
divided by the distance traveled by the model during a simulated ride on a pavement section 
whose profile is measured (23). It is recorded in inches per mile (in/mile), or meters per 
kilometer (m/km).  By applying a unit quarter-car model and simulating the vehicle response at a 
constant speed (80 km/h) on a known profile, the IRI is a reproducible index, making it 
outperform other pavement roughness measurements. IRI was chosen as the standard reference 
roughness index of the Highway Performance Monitoring System (HPMS), a national database 
of roadway information kept by the Federal Highway Administration (FHWA) (19). 

Pavement condition data in Virginia are collected using an automated method that relies 
on advanced computing technology and a multitude of sensors and equipment (including high-
speed lasers, cameras and accelerometers). To assess the network roughness condition, Fugro 
Roadware (VDOT’s current contractor) uses its instrumented vans to measure roadway profiles 
every year for the interstate and primary highway systems and every five years for the secondary 
system. The profiles are later analyzed by a software package to determine the IRI value of the 
related pavement section. Although the final IRI is reported at every 0.1-mile (163 m), the profile 
data are recorded at a much smaller interval of less than 6 inches (3).  

For pavement maintenance purpose, Virginia Department of Transportation (VDOT) uses 
IRI for overall awareness of road condition in terms of ride quality. Interstate and Primary 
pavement sections with an average IRI of 140 in/mile (2.2 m/km) or more or a Secondary 
pavement section with an average IRI of 220 in/mile (3.47 m/km) or more are considered 
‘deficient’ in terms of ride quality (15). Every year, VDOT makes its maintenance activity 
decisions for the pavement system based on IRI and other pavement condition information.  
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4.5 Literature Review 

A considerable amount of work has been completed recently to improve the concept of 
using inexpensive vehicle or smartphone sensors to assess pavement roughness conditions. A 
research team from Auburn University investigated the application of using vehicle-based 
sensors to assess pavement condition (12). The main focus of the study was to utilize vehicular 
sensors (accelerometers, gyroscopes, and suspension deflection meters) to estimate the IRI. 
Testing was conducted under controlled speed on a 1.7 mile (2,750 m) long test track at the 
National Center for Asphalt Technology (NCAT). The amount of overall vibrations across a 
given segment was determined by taking the root mean square (RMS) of a signal measurement. 
The overall vibrations were then compared with the true IRI of the pavement segment. The 
resulting data indicated that the RMS of vertical accelerations represents the best case scenario to 
capture the true IRI. The study also indicated that the estimation error increases with decreasing 
window size and thus recommended to use larger windows when possible to assure the most 
accurate IRI estimates.  

In 2011, Flintsch et al. (13) conducted a pilot study using probe vehicles to measure road 
ride quality, or roughness. Again, vertical acceleration data were used as an index of vehicle 
vibration. A smoothness profile was obtained using an inertial-based laser profiler, while the 
vertical accelerometer measurements were obtained using a vehicle instrumented with an 
accelerometer at the Virginia Smart Road facility in Blacksburg, Virginia. The accelerometer 
operated at a rate of 10 HZ. GPS positions were also recorded. A total of four runs were 
completed on the test track to collect acceleration data. The study confirmed that the acceleration 
runs are very repeatable. Analysis using the coherence function indicates that the acceleration 
data linearly correlate well to smoothness profile between wavelength 50 and 300 m.  

Bridgelall derived a theoretical relationship between IRI and accelerometer data for a 
connected vehicle approach for pavement roughness estimation (29). The research introduced the 
road impact factor (RIF) which is derived from vehicle integrated accelerometer data. A time-
wavelength-intensity-transform (TWIT) algorithm was also developed to create a wavelength-
unbiased measurement based on RIFs from different speed bands. The analysis demonstrates that 
RIF and IRI are directly proportional. Profile and acceleration data were collected from six runs 
with a constant speed (55.6 km/h) on a 150-meter pavement section in Minnesota to validate this 
relationship. The author concluded that the proposed application enables low-cost, network-wide 
and repeatable performance measures at any speeds. No discussion was provided on sample size 
and sampling rate for acceleration data collection. 

A recent study was conducted by Center for Transportation Studies (CTS) at the 
University of Virginia to address the impact of vehicle speed on vehicle vibration response (43). 
This study developed a normalized acceleration-based metric (NRMS) that can generalize to 
different functional classes of highway by incorporating vehicle speed. Vehicle speed and 
vertical acceleration were both included to calculate NRMS. Pavement roughness condition 
classification models were created using a logistic regression method, based on the proposed 
metric (NRMS). It was found that the model can correctly identify between 80 to 93 percent of 
deficient pavement sections. It is expected the proposed acceleration-based metric to be used in a 
network screening process. 

In summary, the literature review reinforces the possibility of using vehicular or 
smartphone sensors as a cost-effective approach for pavement roughness data collection. 
However, special attention should be given that very few studies so far have been conducted to 
investigate the impact of variation in vehicle dynamic system. In the real world, probe data will 
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come from numerous vehicles, which could have a good variety of dynamic characteristics. It is 
possible that the variations of vehicle dynamic system result in very different acceleration 
datasets. It is therefore necessary to extend this concept to a real world situation where data are 
collected from numerous probe vehicles and investigate the feasibility of identifying deficient 
pavements using a connected vehicle-enabled pavement network screening system.  

 

4.5 Methodology 

Figure 4.1 shows the workflow of this project from data collection to final conclusion. 
 

 
FIGURE 4.1 Workflow of the project. 

 
As mentioned in the Objective section above, two primary objectives were addressed in 

this study. For the first objective, to investigate the impacts of different vehicle dynamic systems, 
two types of analyses were conducted. Firstly, a quarter-car model was applied to simulate the 
sensitivity of the vehicle vibration response when several key vehicle dynamic parameters 
change. The relationship of vibration responses between a variety of vehicle systems were 
further examined. Secondly, real world data collected from several pavement sections using three 
different types of vehicles were compared to validate the results from the simulation analysis.  

The second objective was addressed based on the better understanding of the vehicle 
dynamic system’s impacts on vibration response. The findings from addressing the first objective 
inspired a possible solution for vehicle calibration, and thus a standard procedure was introduced 
to calibrate data from different vehicle systems. Finally a case study illustrated how 
transportation agencies can apply the procedure.  
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The following section presents the method of using the quarter-car model to simulate 
vehicle vibration response, followed by a description of the real world data collection and the 
quantification of vehicle vibration response. 

 

4.5.1 Vehicle Vibration Response Simulation 

Researchers have used the quarter-car model to simulate the vibration response of vehicle 
body for a long time. According to Jazar, the quarter car model is the most employed and useful 
model of a vehicle suspension system (44). Although the quarter car model contains no 
representation of the geometric effects of the full car and offers no possibility of studying 
longitudinal and lateral interconnections, it represents well the vertical variance of vehicle 
movement and thus contains the most basic features of the real problems and representation of 
the problem of controlling wheel and wheel-body variations (44). During the development of 
IRI, the World Bank compared a variety of models and the quarter car model (Figure 5.2) with 
Golden Car parameters was found to have the best correlations between a profile index and the 
response-type systems (23). As a result, this study applied the same quarter car model to simulate 
the car floor acceleration responses. Since this study focus primarily on the impact of vehicle 
dynamic system, the simulation analysis was conducted based on a constant speed (50 mph) to 
simplify the model. The following section will describe how the quarter-car model can be 
applied to simulate vehicle vibration responses. 

 

 
FIGURE 4.2  The Quarter-car Simulation Model (39). 

 
Figure 4.2 shows the quarter-car model as in the IRI calculation. It represents the major 

dynamic effects that determine how pavement roughness causes vehicle vibration. This model 
includes two masses (ms and mu), two springs (ks and kt) and one damper (cs). One could add 
another damper to the unsprung mass. However, compared with the suspension damper, it is very 
small and it could be ignored. To simplify the equations the parameters are normalized by the 
sprung mass, ms.  The parameters (normalized to ms = 1) for the Golden Car are (23): 

cs = 6. [1/s], kt = 653 [1/s2], 
ks = 63.3 [1/s2], µ=mu/ms = 0.15. 
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Necessary notation is introduced below to simulate the quarter-car model’s vibration 
response by modifying the method for calculating the IRI, as presented in Sayer’s study (23). Let 
p be the raw profile measured by the high speed laser profiler. Before simulating the quarter-
car’s response to it, the raw profile needs to be preprocessed using a moving average algorithm 
for two reasons: to simulate the enveloping behavior of pneumatic tires on highway vehicles, and 
to reduce the sensitivity of the vibration response algorithm to the sample interval, Δ. A moving 
average smoothing filter is defined as below: 

௦ሺ݅ሻ ൌ
1
݇
 ሺ݆ሻ

ାିଵ

ୀଵ

 

݇ ൌ ,ሺ1	ݔܽ݉ ሾ
ݓ
∆
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Where: 
 p = measured profile elevation, 
ps = smoothed profile elevation, 
 , = moving average base length, 250 mmݓ
Δ = sample interval, 1 inch for a typical high-speed laser profiler, and  
 .the smallest integer that is greater than wB/ Δ = [/ Δݓ]

 
Theoretically, the quarter car model is described by four first-order ordinary differential 

equations that can be written in matrix form:  
ሶ܆ ൌ ܆ۯ   ௦۰

Where the X, A, and B arrays are defined as follows: 
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Where: 
 T = transpose operation of matrixes/vectors, 
 ,height of sprung mass = ࢙ࢠ 
  height of unsprung mass, and =  ࢛ࢠ 
ሶࢠ	 ሶࢠ and ࢙  ,time derivatives of the heights of sprung mass and unsprung mass = ࢛

respectively. 
 
Time is related to longitudinal distance by the simulated speed of the vehicle. For the 

calculation of IRI, one can accumulate the differences between the time derivatives of sprung 
mass height and unsprung mass height, as presented in the following equation. 

ܫܴܫ ൌ
1
ܮ
න ሶࢠ| ࢙ െ ሶࢠ ݐ݀|࢛

/



 

Where: 
 L = length of the segment where the IRI is calculated on; 
 V = vehicle speed, the default value is 50 MPH, or 22.22 meter/second. 
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According to Hartman (45), the solution for a general differential equation ܠሶ ൌ ܠۯ   ܝ۰
will be better approximated when u is a vector of constants over interval i-1 to i.  The closed-
form solution is known as below: 

ݔ ൌ ିଵݔ/∆݁  ଵି ൬݁
∆
 െ  ࢛൰ࡵ

According to a Taylor series expansion (46): 
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This solution is accurate to the extent that the input u is actually constant over the interval 
from point i-1 to i. Also previous research shows that the best approximation of the sampled 
profile to a continuous one is that the profile slope is constant between samples. This indicates 
that the profile slope should be applied as the assumed constant input u to obtain the best 
accuracy. As a result, the quarter car differential equation is transferred as below, for the purpose 
of getting an accurate solution. In addition, the transferred format will have the capability to 
simulate acceleration response. 

ሶ࢞ ൌ ࢞   ࢙࢙
Where the profile slop sps can be calculated using the following equation: 
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∆
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The A and B arrays are defined the same ways as before, and a new state variable vector 
x was defined based on the slope of the original state variables, as indicated below: 

࢞ ൌ ሾ࢙ࢠ࢙, ሶ࢙ ,࢙ࢠ ,࢛ࢠ࢙ ሶ࢙ ሿ࢛ࢠ
் 

Note that the new state variables were generated by the same way as the profile slope. 
With the new differential equation, the IRI can also be defined as below: 

ܫܴܫ ൌ
1
݊
|



ୀଵ

௭ೞሺ݅ሻݏ െ  |௭ೠሺ݅ሻݏ

By solving the differential equation, the resulting sprung mass vertical acceleration (car 
floor vertical acceleration) value can be approximated as: 
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The RMS acceleration can also be calculated accordingly.  
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 This study used Matlab, a powerful tool for numerical computing, to conduct vehicle 
vibration response simulations. A Matlab function was created with the ability to calculate the 
simulated RMS acceleration at every 0.1 mile interval given the pavement profile and values of 
the four vehicle dynamic parameters. Simulation runs were conducted by changing the parameter 
values. 
 

4.5.2 Data Description 

A pick-up truck (GMC Sierra 2500 HD) with a RoLine profiler installed was used to 
collect pavement profile on 10.8 miles (17 km) of roadway segments. The collected profile was 
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used to calculate the International Roughness Index (IRI) and simulate RMS acceleration of the 
quarter-car model. Meanwhile, two tablets (Samsung Galaxy Note 10.1) were placed on the 
vehicle floor to collect data, including 3-way accelerations, GPS coordinates, and vehicle speeds, 
which were applied to calculate the acceleration-based metric. The two tablets were placed on 
the floor in front of the second row seats and close to the two side doors so that both right-wheel-
path and left-wheel-path data could be collected. To ensure the tablets did not dislocate 
themselves when the vehicle was running, they were fit into two boxes attached to the floor with 
sticky tape.  

The acceleration data were updated every 0.02 second, while the GPS and speed data 
were updated every 1 second. Only the vertical acceleration was used to quantify vehicle 
vibration responses. Each individual data record was matched to the milepost location through a 
map-matching process based on the GPS information. Acceleration data were aggregated using 
the RMS algorithm on the 0.1-mile (0.16-km) interval. It was found that the estimated GPS 
accuracy was between 4 and 8 meters, which is acceptable for estimating the roughness 
condition for every 0.1-mile pavement section. Vehicle speeds were also recorded every 1 
second, allowing us to address the impact of speed on acceleration readings. 

Data collection was conducted on April 22, 2014 near Charlottesville, Virginia. The 
studied segments contain 10.8-mile segments from four secondary routes: SR-600, SR-616, SR-
676, and SR-799.  The collected IRI data were used as the reference value of pavement 
roughness. For general classification of road condition, VDOT identifies different roughness 
levels using corresponding quantitative IRI values (15). Note that transportation agencies may 
have different definitions for deficient pavement and thus may not have identical threshold 
values. As for this study, pavement sections with an IRI greater or equal to 140 in/mile (2.2 
m/km) were marked as deficient sections. Table 4.1 summarizes the number of 0.1-mile sections 
in each roughness category according to VDOT’s current policy. Of the total of 108 0.1-mile 
(0.16 km) pavement sections, there were 48 deficient sections. The IRI values range from 85.7 
in/mile to 248.2 in/mile (0.59 to 4.22 m/km). 

 
TABLE 4.1 Data Summary based on Routes 

 Route IRI Summary (in/mile) Number of Sites Length 
(mile) Med. Min. Max. Deficient Non-Def. 

SR-616 124.7 86.1 172.0 6 15 2.1 
SR-600 121.2 85.7 219.3 9 25 3.4 
SR-799 87.4 123.9 228.5 8 20 2.8 
SR-676 189.9 151.8 248.2 25 0 2.5 
Total 94.6 85.7 248.2 48 60 10.8 

 
Besides the GMC pickup truck, two other vehicles (a 2001 Volvo S60 and a 2012 Subaru 

Forester) were also used to collect GPS, vehicle acceleration and speed data using the same 
tablets on the same segments in April 2014. The vehicle speeds range from 31 mph to 56 mph. 

 

4.5.3 Quantification of Vehicle Vibration Response 

Most previous studies used root mean squared (RMS) vertical acceleration, which is 
calculated with the equation below, to represent the vehicle vibration response under a constant 
speed (12).  
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ܽ௭,ோெௌ ൌ ටଵ

ே
∑ ሺܽ௭, െ ݃ሻଶே
ୀଵ        (12) 

Where:  
az, RMS = the RMS vertical acceleration for the studied pavement section; 
N = the number of acceleration readings among the studied 0.1-mile pavement section; 
az,i = the ith vertical acceleration reading among the studied section; 
g = the contribution of the force of gravity. 
 
One limitation of the RMS is that it can not account for the changing speeds in the real 

world. To address this limitation, a UVA CTS study developed and evaluated an improved 
acceleration-based metric, the normalized RMS vertical accelerations (NRMSs). According to the 
study, NRMS is defined by incorporating vehicle speed, as shown in the following equation (43).  

 
ܵܯܴܰ ൌ ሺ80 ܸ⁄ ሻଵ.ଷܽ௭,ோெௌ,  

Where V = vehicle speed in km/h. 
 

NRMS indicates the vibration level that a vehicle is expected to experience at the speed of 
80 km/h. Unlike the RMS, the NRMS can generalize to different functional classes of highway 
thanks to the incorporation of vehicle speed. Once the tablet data were collected, they were 
aggregated to calculate the NRMS at a 0.1-mile interval on the study routes.  
 

4.6 Analysis Results 

4.6.1 Sensitivity Analysis 

The purpose of sensitivity analysis is to understand whether and how different vehicle 
dynamic systems will impact the vibration responses. As described above, there are four 
important parameters in a quarter-car model: tire stiffness, sprung mass stiffness, sprung mass 
damping, and the ratio of unsprung mass to sprung mass. It is useful to learn how the vibration 
response changes accordingly when these parameters change. Simulations were conducted based 
on quarter-car models with changing dynamic parameters. Table 4.2 summarized the values of 
the Golden-Car parameters, the coefficients of variation (CV, ratio of standard deviation to the 
mean value) for typical vehicles (47), and the simulation intervals.  
 

TABLE 4.2 Summary of Golden-car Dynamic Parameters and Simulation Intervals 
Parameter Golden-car CV1 Intervals2 
kt (1/s2) 653 21.7 [300, 1006] 
ks (1/s2) 63.3 27.4 [29, 97] 
cs (1/s) 6 18.1 [2.76, 9.24] 
µ 0.15 - [0.07, 0.23] 

Note: 1. Data came from Bridgelall’s recent study (47); 
2. Determined as ܾܽ݁ݑ݈ܽݒܿ݅ݏ ∗ ሺ1 േ ఈୀ.ହݖ ∗ 27.4%ሻ. 
 

The simulation intervals were the intervals within which the values of the dynamic 
parameters change. It was determined in a way that they could cover most of the vehicles in the 
market. It was found that the sprung mass stiffness has the largest coefficient of variation (CV) 
value. As a result, its value (27.4%) was used to decide to what extend the dynamic parameters 
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need to fluctuate and the upper/lower bound of the simulation intervals were calculated by 
increasing/decreasing the original parameter by 54% (1.96*27.4%).  

The quarter-car simulations at the speed of 50 mph (80 km/h) were conducted on the four 
collected profiles with the dynamic parameters fluctuating within the simulation intervals. The 
resulting RMS accelerations were recorded for each simulation. Figures 4.3 to 4.6 show the 
sensitivity analysis results with shape areas indicating the fluctuations in the RMS acceleration.  

 

 
FIGURE 4.3  Effect of quarter car parameters on RMS on SR-799; 

Top Left kt; Top Right:Cs; Bottom Left: ks; Bottom Right:µ. 
 

 
FIGURE 4.4  Effect of quarter car parameters on RMS on SR-600; 

Top Left kt; Top Right:Cs; Bottom Left: ks; Bottom Right:µ. 
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FIGURE 4.5  Effect of quarter car parameters on RMS on SR-616; 

Top Left kt; Top Right:Cs; Bottom Left: ks; Bottom Right:µ. 
 

 
FIGURE 4.6  Effect of quarter car parameters on RMS on SR-676; 

Top Left kt; Top Right:Cs; Bottom Left: ks; Bottom Right:µ. 
 

According to the figures above, it appears that the spring stiffness of the sprung mass (ks) 
most affects the vehicle floor RMS acceleration, followed by the damping of the sprung mass 
and tire stiffness. On the other hand, the fluctuations of the ratio of the unsprung mass to the 
sprung mass have very small impact on the final RMS acceleration.  
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To quantify the sensitivity of the parameter change, a sensitivity rate (SR) is defined as 
the mean of the ratios of the upper limits of the RMS accelerations to their related lower limits, 
as shown in the equation below.  

ܴܵ ൌ
1
ܰ


ܽோெௌሺ݅ሻା

ܽோெௌሺ݅ሻି

ே

ୀଵ

 

Where ܽோெௌሺ݅ሻା and ܽோெௌሺ݅ሻି are the upper and lower limits of the RMS acceleration 
for the ith observation, and N is the number of observations. The SR is an index with a value that 
is always higher than 1. The higher SR value indicates a higher level of sensitivity.  

Table 4.3 summarizes the SR and the standard deviation (STD) of those related ratios for 
each dynamic parameter. 
  

TABLE 4.3 SR and its Standard Deviation according to Individual Dynamic Parameter 
 k t (1/s2) ks (1/s2) cs (1/s) µ 
SR 1.09 1.27 1.12 1.03
STD 0.09 0.12 0.08 0.02

Note: A SR numbers in bold indicate that it is significantly 
larger than 1 at the 0.05 confidence level. 

 
According to the table above, only the SR of the sprung mass stiffness is significantly 

larger than 1 at the 0.05 confidence level, indicating that the variation in sprung mass stiffness 
could have a statistically significant impact on vehicle vibration response. On average, changing 
the sprung stiffness from one end to the other end can increase the RMS acceleration by 27%. On 
the other hand, the SR for the ratio of unsprung mass to sprung mass is only slightly larger than 
1, indicating that the loading of the vehicle is not expected to have much influence on the 
resulting RMS acceleration.  

The results of sensitivity analysis indicate that people could obtain significantly different 
acceleration results from two vehicle systems when their spring stiffness of the sprung mass is 
not similar to each other. Considering that transportation agencies could use a fleet that contains 
a variety of vehicle systems, it is necessary to explore the relationship between acceleration data 
from different vehicles, which could lead to a solution to calibrate vehicle systems. 
 

4.6.2 Relationship Analysis 

This section will first show visually the relationship between accelerations from any two 
of the nine simulated vehicle dynamic systems (as listed in the following table). 
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TABLE 4.4 Simulation Scenarios with Different Dynamic Parameters 
Sim ID k t (1/s2) ks (1/s2) cs (1/s) µ 

1 653 63.3 6 0.15
2 940.32 63.3 6 0.15
3 365.68 63.3 6 0.15
4 653 97.482 6 0.15
5 653 29.118 6 0.15
6 653 63.3 9.24 0.15
7 653 63.3 2.76 0.15
8 653 63.3 6 0.23
9 653 63.3 6 0.07

 
Figure 4.7 shows a scatter plot matrix of the simulated RMS accelerations, which is able 

to indicate the relationship of RMS accelerations between any two simulation scenarios.  
 

 
FIGURE 4.7 Scatter plot matrix for the nine simulation scenarios. 

 
Visually, the scatter plot matrix illustrates a very good linear relationship for each pair of 

simulation scenarios. The following correlation table tells a similar story.  
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TABLE 4.5 Correlation Coefficient Table 
  Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6 Sim 7 Sim 8 Sim 9 

Sim 1 1.00 
Sim 2 0.99 1.00 
Sim 3 0.98 0.95 1.00
Sim 4 0.98 0.97 0.97 1.00
Sim 5 0.98 0.99 0.94 0.94 1.00
Sim 6 0.99 0.99 0.95 0.97 0.99 1.00
Sim 7 0.97 0.94 0.99 0.96 0.92 0.92 1.00
Sim 8 1.00 0.99 0.98 0.99 0.98 0.99 0.97 1.00 
Sim 9 1.00 0.99 0.99 0.98 0.98 0.98 0.97 1.00 1.00

 
It was found that the RMS accelerations from each individual simulation scenario 

correlated very well with those from other simulation scenarios. The correlation coefficients in 
most cases are higher than 0.95, with the smallest value of 0.92.  

With the results from the quarter car simulation, it is reasonable to assume that the 
relationship of vibration response between two different vehicle systems is linear. This 
assumption was tested using real world tablet data.  
 

4.6.3 Real World Data Comparison 

This section compares the tablet data from three different vehicles to see whether the 
linear relationship holds up in the real world. Two linear regression models were created based 
on the tablet data collected on the same four routes where the profile data were collected, with 
NRMS from the GMC Sierra 2500 HD as the dependent variable and NRMSs from the Subaru 
Forester and the Volvo S60 as the independent variable, respectively. Note that NRMS was used 
here because in naturalistic driving situation vehicle speeds change between different drives and 
it is recommended to normalize the RMS acceleration with vehicle speed.  

The following figures show the scatter plots of NRMS data from each pair of vehicles. 
Visually, linear trends appear in both scatter plots.  

 

 
FIGURE 4.8 Scatter plot: NRMS.GMC Vs. NRMS.Subaru. 
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FIGURE 4.9 Scatter plot: NRMS.GMC Vs. NRMS.Volvo. 

 
Table 4.6 summarizes the results for the two linear models.  
 

TABLE 4.6 Linear Regression Model Results 
Model Parameter Coefficient Std. Error t value Pr(>|t|) 

GMC-
Subaru 

Intercept 0.022 0.014 1.49 0.138 
NRMS.Subaru 0.948 0.038 24.78 <0.0001 
R-squared 0.85 
F-statistic 614.2 

GMC-
Volvo 

Parameter Coefficient Std. Error t value Pr(>|t|) 
Intercept -0.016 0.017 -0.95 0.138 
NRMS.Volvo 0.977 0.042 23.34 <0.0001 
R-squared 0.84 
F-statistic 544.7 

 
According to the linear regression analysis, the linear models fitted the data well, with 

both R-squared values at around 0.84. The independent variable from both models is statistically 
significant at the 0.01 level. To examine whether there are any non-linear relationships existing 
in the data, more plots are presented in Figures 4.10 and 4.11. These include plots of fitted values 
versus residuals/standardized residuals, Q-Q plot, and residuals versus leverage plot.  



                                                                                                                                     
 

48 
 

 
FIGURE 4.10 Model plots for the GMC-Subaru model. 

 

 
FIGURE 4.11 Model plots for the GMC-Volvo model. 

 
There are no obvious curvilinear trends in the residuals across the fitted values. In other 

word, the real world tablet data also show a linear relationship between NRMS results from 
different vehicles.  

In summary, the sensitivity analysis and relationship analysis provide a better insight 
regarding the imparts of vehicle dynamic system on vibration response and the relationship 
between vibration results from different vehicle systems. It was found that variations in vehicle 
dynamic parameters can result in a significantly different magnitude of vibration response. The 
magnitude of vehicle vibration response is most sensitive to the spring stiffness of the sprung 
mass and the vibration responses on the same pavement segment can fluctuate by an average of 
27% under extreme cases. Furthermore, the relationship analysis shows that the vibration 
responses are linearly correlated between different vehicle systems, which were illustrated in 
both the quarter-car simulations and the tablet data collected under naturalistic driving 
conditions.  
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4.7 Probe System Calibration 

Assuming that transportation agencies will use agency-owned vehicles to build a 
pavement condition network screening system, it is possible that the fleet includes some vehicles 
that have a good variety of dynamic systems. The findings above indicate that the acceleration-
based indexes on a typical pavement section from different vehicle systems can be calibrated to a 
reference value using a linear model, as presented in the following equation.  

 
ܵܯܴܰ ൌ ߙ   ିܵܯܴܰߚ

Where: 
NRMSreference = the calibrated/reference NRMS value, it represents the NRMS result of the 
reference vehicle on the same pavement section; 
NRMSnon-reference = the NRMS value before calibration; and 
α, β = coefficients for the linear model. 
 
The purpose of the calibration process is to determine proper coefficients for each type of 

vehicles in the fleet. This section introduces a vehicle calibration procedure to help them 
calibrate vehicles in the fleet. The procedure includes data and system requirement for 
calibration, the criteria regarding the necessity of the calibration, the criteria regarding the 
success of the calibration, and a step by step process description. A case study based on 
smartphone data collected from three vehicles were also presented and demonstrated that the 
calibration improved system performance.  

 

4.7.1 System Requirement 

For calibration purposes, at lease two elements are required, including an agency-owned 
fleet and a reference vehicle.   

The agency-own fleet contains vehicles that will be used as probes to collect data for 
pavement roughness assessment. There are no restrictions on the types of vehicle. However, it is 
expected that wider vehicle system diversity requires more efforts for calibration. The probe data 
can come from mobile devices such as smartphones and tablets, or vehicular sensors that already 
installed in the vehicle. Required data elements include GPS location, vehicle body vertical 
acceleration, vehicle speed, as well as vehicle ID that allows people to identify which vehicle the 
data come from.  

A reference vehicle is a vehicle whose roughness measurement will be used as the target 
variable in calibrating other non-reference vehicles. Generally, a pavement classification model 
has been developed based on the reference vehicle data to identify deficient pavement sections. 

  

4.7.2 Calibration Procedure 

The flowchart presents a recommended calibration procedure, followed by a detailed 
description for each step. It is important to note that it may not be necessary to calibrate each 
individual vehicle in the fleet as some vehicles could have very similar dynamic systems. For 
example, vehicles of the same model or vehicles that have been shown to have very similar 
vibration responses could result in NRMS results with only marginal varieties. In this case, 
transportation agencies can only calibrate a representative vehicle and apply the resulting model 
to the whole group.  
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FIGURE 4.12 Calibration flowchart. 

 
The steps for calibrating a non-reference vehicle is described below: 
1. Collect data on a set of selected pavement sections for initial calibration 

Both the reference vehicle and the non-reference vehicle should collect GPS 
information, acceleration, and vehicle speed data on the selected pavement sections. For 
better performance of the calibration model, it is recommended to include the most typical 
types of pavements with a good variety of roughness level. To facilitate the calibration 
process, the locations should be carefully selected so that both the reference vehicle and non-
reference vehicles can easily collect data there. Also, the difference of data collection time 
between the reference vehicle and the non-reference vehicle should be less than one month.  

 
2. Develop a linear regression model to find out the coefficients 

A linear regression model can be created using the NRMS from the reference vehicle 
as the dependent variable and the NRMS from the non-reference vehicle as the independent 
variable.  
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ܵܯܴܰ ൌ ߙ   ିܵܯܴܰߚ
 

3. Check the goodness of fit of the regression model 
This step is optional. The goodness of fit of the regression model can be impacted by 

the variations between the reference vehicle data collection and the non-reference vehicle 
data collection, in terms of time, weather condition, driving path and other conditions. 
Idearly the data from reference vehicle and non-reference vehicle should be collected under 
similar conditions, which may be hard to achieve in some naturalistic driving condition. 
Checking the goodness of fit (R squared value) is a good way to help users decide whether or 
not to accept the regression model. The default threshold R squared value is set to 0.7. Note 
that people can adjust this value based on specific condition given more available data. If the 
goodness of fit meets the criteria, the regression model can be applied to the next step; if not, 
it is recommended to select a new set of calibration sections and restart from Step 1. This 
step can be skipped if there is a good reason to believe in the regression model. 

 
4. Compare the coefficients with calibration criteria 

Some vehicles may share similar dynamic systems. It is possible that some vehicles 
can generate very similar roughness measurements even without calibration. There are two 
criteria to determine whether calibration work is needed. Hypothesis test should be 
conducted to see whether the criteria are met. The null hypothesis is that the roughness 
measurement of the reference vehicle is similar to that from the non-reference vehicle 
ܵܯܴܰ) ൌ  ି). It can also be stated based on the coefficientܵܯܴܰ
values. 

H0: ߙ ൌ 0, and  ߚ ൌ 1. 
If the hypothesis is rejected, it indicates that calibration is necessary and the 

calibration process should continue. Otherwise, it is not worth to calibrate the studied vehicle 
and the original data from the non-reference vehicle can be used directly. 

 
5. Collect data on a set of selected pavement sections for validation of the model 

The step collects data on a separate set of pavement sections for validation purpose. 
Again, both the reference vehicle and the non-reference vehicle should collect data for these 
sections. 

 
6. Calculate the validation result and compare it with validation criteria 

The calibrated NRMS for the non-reference vehicle can be calculated using the linear 
model developed from Step 2.  

௧ௗܵܯܴܰ ൌ ߙ   ିܵܯܴܰߚ
The NRMS from the reference vehicle can be treated as ground truth to test the 

performance of the calibration model. The coefficient of determination (41), or R squared, is 
applied as the validation criteria and defined by the following equation. Here the R squared 
value shows the similarity between the calibrated NRMS values and the reference NRMS 
values.  
 

ܴଶ ൌ 1 െ
∑ ሺܴܰܵܯ, െ ௧ௗ,ሻଶܵܯܴܰ

ୀଵ

∑ ሺܴܰܵܯ, െ തതതതതതതതሻଶܵܯܴܰ
ୀଵ
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Where: 
 തതതതതതതത = the average NRMS of the reference vehicle,andܵܯܴܰ
n = number of observations in the validation dataset. 
 
A typical value of R squared ranges from 0 to 1, with higher value indicating better 

performance of the calibrated value. As a result, people can set up validation criteria based 
on the R squared value. As a default case, here the threshold R squared value is set to 0.6. 
Note that this threshold value can be adjusted based on specific cases. If the result meets the 
criteria (R2 > 0.6), accept the calibration model and use it to calibrate data on new pavement 
sections; if not, selected a new set of calibration pavement sections and restart the process 
from Step 1. 
 

4.7.3 Case Studies 

This section presents two case studies regarding calibrating probe vehicle systems. The 
first case tried to calibrate the Volvo S60 based on the data collected on secondary roads, with 
the GMC pickup truck as the reference vehicle. First, the data collected on SR-600 are used here 
as the initial calibration data. The next step is to develop a regression model with the GMC truck 
NRMS and the Volvo NRMS as the dependent and independent variables, respectively. The 
table below summarizes the model results.   

 
TABLE 4.7 Linear Calibration Model Results for Case #1 

Parameter Coefficient Std. Error t value Pr(>|t|) 
Intercept -0.07 0.04 -1.76 0.09 
NRMS.Volvo 1.09 0.10 11.11 <0.001 
R-squared 0.79 
F-statistic 123.5 
DOF 32 

 
The R-squared value is higher than 0.7 and the regression model is applied to the next 

step, which will test whether there are statistical evidence to reject the hypothesis that the 
NRMSs from the reference vehicle and the non-reference vehicle are similar.  

 
TABLE 4.8 Hypothesis Test Results 

Hypothesis t value Pr(>|t|) 
α=0 -1.76 0.09
β=1 0.90      0.37 

 
According to the hypothesis test results, both t values are not significant at the 0.05 

confidence level. In other words, there is no significant statistical evidence to reject the null 
hypothesis. It indicates that it may not worth to calibrate the NRMS results from the Volvo S60 
and its NRMS result can be used directly as the reference vehicle.  

To identify deficient pavement sections, the UVA CTS study developed a pavement 
classification model based on the data from GMC pickup truck (43). This model was applied in 
this case study. The NRMS threshold value was found to be 0.36 m/sec2 to separate deficient 
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pavement and non-deficient pavement. Assume that VDOT wants to screen the pavement 
condition on SR-616, SR-676, and SR-799, the original NRMS values calculated from the Volvo 
S60 data can be directly applied to the classification model to identify deficient pavement 
sections. Table 4.9 summarizes the classification results from both the reference vehicle (GMC) 
and the non-reference vehicle (Volvo).  
 

TABLE 4.9 Pavement Roughness Classification Results for Case #1 

Vehicle Observed 
Testing Data Predicted 
Non-Def. Deficient Correct Percentage 

GMC 
Non-Def. 34 1 97.14 
Deficient 7 32 82.05 

Volvo 
Non-Def. 33 2 94.29 
Deficient 7 32 82.05 

 
According to Table 4.9, the performance of Volvo data is very close to that from the 

reference vehicle. Both of them can identify correctly 82 percent (32 out of 39) of those deficient 
sections. This also shows that it is not necessary to calibrate the Volvo S60 data if the GMC 
pickup truck is treated as the reference vehicle.  

The second case shows another scenario in which calibration is necessary in order to 
improve the network screening performance. Data were collected on I-64 in October 2013, using 
two vehicles, a 2001 Volvo S60 and a 2003 Toyota Corolla. The initial calibration dataset 
includes a 5.8-mile freeway segment, from milepost 118.3 to milepost 124 on I-64 E, and the 
testing dataset includes a 5.2-mile freeway segment, from milepost 124.1 to milepost 119 on I-64 
W.  

The table below summarizes the model results, with the Volvo and Corolla data as the 
dependent and independent variables, respectively.   

 
TABLE 4.10 Linear Calibration Model Results for Case #2 

Parameter Coefficient Std. Error t value Pr(>|t|) 
Intercept 0.019 0.012 1.57 0.12 
NRMS.Corolla 0.709 0.038 18.72 0.00 
R-squared 0.86 
F-statistic 350.5 
DOF 56 

 
The R-squared value (0.86) is higher than 0.7 and the regression model is applied to the 

next step, which will test whether there are statistical evidence to reject the hypothesis that the 
NRMSs from the reference vehicle and the non-reference vehicle are similar.  

 
TABLE 4.11 Hypothesis Test Results 

Hypothesis t value Pr(>|t|) 
α=0 1.57 0.12
β=1 7.70      0.00 
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According to the hypothesis test results, the t value for β=1 is significant at the 0.05 
confidence level. In other words, there is a significant statistical evidence to reject the null 
hypothesis. It indicates that it may worth to calibrate the NRMS results from the 2003 Toyota 
Corolla.  

The next step is to test whether the same calibration model (as presented in the following 
equation) holds up using a separate dataset. In this case, the I-64 W data were applied to test the 
calibration model.  

௧ௗܵܯܴܰ ൌ 0.019   ଶଷܵܯ0.709ܴܰ
 
Since no classification model based on the Volvo data is available, the second case study 

can not compare the classification results between the reference vehicle data and non-reference 
vehicle data. Instead, plots and R squared values were used to evaluate the calibration 
effectiveness. Figure 4.13 shows the plots of NRMS results according to mileposts for Volvo 
S60, Corolla, and calibrated Corolla data. For comparison purpose, both I-64 E and I-64 W data 
were shown here.  

 

 

 
FIGURE 4.13 NRMS according to milepost on I-64 E/W. 

  
Visually, the calibrated Corolla data were much more similar to the reference vehicle 

(Volvo S60) data for both the calibration and testing datasets. Before calibration, the NRMSs 
from the Corolla were about 41% higher than the reference vehicle, while the calibrated NRMSs 
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has a significantly better similarity with the reference data, with a coefficient of determination 
(R2) value of 0.74 on the testing dataset. The R squared value is higher than the threshold value 
(0.60) set for the acceptance of the calibration model. As a result, if a transportation agency uses 
the 2001 Volvo S60 as the reference vehicle, the calibration model developed here should be 
applied to calibrate data from a 2003 Toyota Corolla or other vehicles with a similar dynamic 
system.  

 

4.7.4 Discussion 

Before the full implementation of the connected vehicle program, it is likely that only a 
limited number of vehicles (i.e., agency-owned vehicles) are capable of sending out probe data 
for pavement network screening. It is expected that the calibration procedure can help to reduce 
impacts of the variety of vehicle dynamic systems and thus still obtain robust results with small 
sample size of data. The calibration procedure is only applicable in situations when 
transportation agencies know which type of vehicle the probe data come from. This information 
will allow transportation agencies to create and select proper calibration models. As a result, it is 
recommended that vehicle identification or vehicle type to be included in the probe data 
elements, along with accelerations, vehicle speeds and GPS locations. In addition, it is cost 
prohibitive and unnecessary to calibrate each individual vehicle in the fleet. Since some vehicles 
have very similar dynamic systems (i.e., vehicles of the same model), they are likely to share 
similar NRMS results on a same pavement segment. In this case, transportation agencies can 
only calibrate a representative vehicle and apply the resulting model to the whole group. 
Transportation agencies are recommended to select the most common vehicle type as the 
reference vehicle to minimize the need of vehicle calibration. It is also recommended that the 
calibration models be updated in a proper time interval (i.e., every five years) for the reason that 
vehicle’ dynamic characteristics may change with its age.  

When most of the vehicles are connected in the future, transportation agencies may not 
be able to access to the general vehicles’ identification information for calibration due to privacy 
concerns. In that case, averaging the NRMS results from numerous vehicles on the same section 
could be a more proper approach to reduce the impact of vehicle dynamic systems. Continuous 
research regarding this approach and sampling methods is strongly recommended once there are 
available data on the field.  

  

4.8 Conclusions 

This study investigated the impact of vehicle dynamic systems on vehicle vibration 
response, which directly affects the acceleration-based metric for pavement roughness 
measurements. The sensitivity analysis and relationship analysis based on quarter-car model 
simulations provide a better insight regarding the imparts of vehicle dynamic systems and the 
relationship between vibration results from different vehicle systems. It was found that variations 
in vehicle dynamic parameters can result in a significantly different magnitude of vibration 
response. The vehicle vibration response is most sensitive to the spring stiffness of the sprung 
mass and least sensitive to the loading of the vehicle. Furthermore, the relationship analysis 
shows that the vibration responses are linearly correlated between different vehicle systems, 
which were illustrated in both the quarter-car simulations and the probe data collected under 
naturalistic driving conditions.  
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These findings help transportation agencies better understand the probe data generated 
from different vehicle systems in the real world, and thus use the related acceleration-based 
metric properly for pavement condition network screening. Assuming that transportation 
agencies will use agency-owned vehicles to build a pavement condition network screening 
system, a vehicle calibration procedure was developed to help them calibrate vehicles in the 
fleet. The procedure includes data and system requirements for calibration, the criteria regarding 
the necessity of the calibration, the criteria regarding the success of the calibration, and a step by 
step process. Two case studies based on probe data collected from different vehicles were also 
presented and demonstrated that the calibration improved system performance. 

There are several opportunities to expand this research to further validate this approach.  
For example, a prototype system can be developed using state-owned vehicles as probe vehicles 
to collect data. With the prototype system, a more comprehensive dataset can be generated by 
collecting data on more routes and in a wider area. It can be used to validate previous findings, 
address issues regarding implementation and assess the network benefit of this system. Also, it is 
recommended to design filters to remove invalid data by identifying situations where the 
acceleration-based metric can not work. For example, when a vehicle stops before a traffic light, 
the data do not contain useful information regarding pavement roughness. With the help of 
filters, only valid data points will remain.  
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CHAPTER 5 ESTIMATION OF THE SAFETY EFFECT OF PAVEMENT 
CCONDITION ON RURAL TWO-LANE HIGHWAYS 

A paper accepted for publication in Transportation Research Record 
Huanghui Zeng1, Michael D. Fontaine2, and Brian L. Smith3 

 

5.1 Abstract 

The condition of the pavement surface can have an important effect on highway safety. 
For example, skidding crashes are often related to pavement rutting, polishing, bleeding, and 
dirty pavements. When transportation agencies develop paving schedules for their roadways, 
they often make decisions based on asset management condition targets but do not explicitly 
account for the role of pavement condition in roadway safety. 

The Virginia Department of Transportation (VDOT) began automated pavement 
condition data collection using digital images and an automated crack detection methodology in 
2007. This development enabled the DOT to track historical pavement condition information, 
and thus facilitates research regarding pavement condition impacts on safety. Information on 
how pavement condition influences safety could be used to inform paving decisions and better 
set priorities for maintenance. 

The objective of this study is to quantitatively evaluate the safety effectiveness of good 
pavement conditions versus deficient pavement conditions on rural two-lane undivided highways 
in Virginia. Using the Empirical Bayes method, it was found that good pavements are able to 
reduce fatal and injury (FI) crashes by 26 percent over deficient pavements, but do not have a 
statistically significant impact on overall crash frequency. Further analysis indicated that the 
safety benefit of pavement condition improvement on FI crashes does not statistically 
significantly change as the lane or shoulder width increases.  In conclusion, improving pavement 
condition from deficient to good can offer a significant safety benefit in terms of reducing crash 
severity. 
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5.2 Introduction 

Pavement condition can have an important effect on highway safety.  According to the 
American Association of State Highway and Transportation Official’s (AASHTO) A Policy on 
Geometric Design of Highways and Streets, pavements should enable drivers to steer easily, 
keep their vehicles moving in the proper path, and provide a level of skid resistance that will 
accommodate the braking and steering maneuvers that can reasonably be expected for a 
particular site (7). Skidding crashes, a major concern in highway safety, are usually related to 
pavement rutting, polishing, bleeding, and dirty pavements (7). Previous research regarding the 
safety effect of pavement condition usually focused on either maintenance activities such as 
resurfacing or a certain type of pavement distress. Few studies were able to evaluate the safety 
effect of the general pavement condition, due in part to a lack of systematic data on overall 
pavement condition across the roadway network. If this information were available, it could be 
used for a variety of applications, including prioritizing sites for the agency’s annual paving 
program or quantifying the benefits of preventative maintenance treatments. 

Historically, it has been difficult to evaluate the safety effect of pavement conditions 
because of the lack of robust and consistent pavement condition measures. The Virginia 
Department of Transportation (VDOT) began automated pavement condition data collection 
using digital images and an automated crack detection methodology in 2007, which led to 
significant improvements in the consistency and efficiency of pavement condition data 
assessments. Since then, pavement condition information has been updated annually for the 
entire interstate and primary highway systems and every five years for the secondary system (2). 
This development has enabled engineers to track historic pavement condition information, and 
thus facilitates safety research regarding the effect of pavement conditions on crash frequency 
and severity.  

 

5.2 Objectives and Scope 

The intent of this paper is to provide DOTs with information that will allow them to 
include safety in the pavement management decision making process.  It is not intended to be 
used as a justification to repave a road section that has a demonstrated pavement friction problem. 
The objective is to quantitatively evaluate the safety effectiveness of good pavement conditions 
versus deficient pavement conditions. The effect of pavement condition on both overall crash 
frequency and crash severity was examined.  The targeted facility type is segments on rural two-
lane primary highways in the Commonwealth of Virginia. The Empirical Bayes (EB) approach 
was applied using information from VDOT databases containing roadway inventory information, 
crash history, and pavement condition between 2007 and 2011. 

 

5.3 Literature Review 

While there has been a longstanding interest in examining the impact of pavement 
condition on safety, there are relatively few studies that have examined this issue in detail.   
Initial investigations in the late 1980s examined the effect of resurfacing.  A synthesis by 
Cleveland of published evidence from studies conducted before 1986 found that there was a 
small, immediate increase in overall crash frequency for rural resurfacing projects conducted to 
address structural quality or poor ride condition (34).  On the other hand, it was found that there 
was an average reduction of about 20 percent in wet pavement crashes for resurfacing projects 
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conducted due to high numbers of wet pavement crashes (34). In light of these diverse findings, 
Cleveland concluded that the detrimental effect of resurfacing on safety, if any, is likely to be 
small. A related hypothesis was that vehicle speed will increase due to the smoother pavement 
surface after resurfacing, which, in turn, results in more crashes. 

A well cited report by Hauer et al applied the Empirical Bayes (EB) approach to evaluate 
the safety effectiveness of two types of resurfacing projects undertaken in the early 1980s in 
New York State (35).  Crash data and annual average daily traffic (AADT) from 1975 to 1987 
were used. The study concluded that non-intersection crashes did increase by 21 percent during 
the first 30 months after resurfacing on “fast-track” projects in which no safety improvements 
accompanied the repaving, while non-intersection crashes did not change on reconditioning and 
preservation (R&P) projects that included geometric safety improvements. Another conclusion 
was that within the first 6 to 7 years of pavement life, safety improves as the pavement ages. In 
this study, no pavement condition data were collected and information about NYDOT’s selection 
criteria regarding the two types of resurfacing projects were not mentioned.  

To confirm or refine the Hauer et al study results, a larger study was undertaken in 
NCHRP project 17-9 (2), which involved five states: Washington, California, Minnesota, New 
York, and Illinois (36). The EB approach was used. Generally, there were five-years of before 
data and three-years of after data. The results were inconclusive, as there was not a single 
consistent pattern of safety effectiveness of resurfacing among and within the states. Crashes 
were found to increase after resurfacing in some states, but to decline in others. In addition, no 
explanation was found for these state-to-state variations.  

Given the hypothesis that smother pavement surfaces following resurfacing lead to higher 
vehicle speeds, another NCHRP study evaluated the effect of resurfacing, restoration, and 
rehabilitation (RRR) projects on travel speed (37).  Speed data were collected before and after 
resurfacing at 39 sites on rural two-lane highways of five states: Maryland, Minnesota, New 
Mexico, New York, and West Virginia. The results indicated that overall there was a small but 
statistically significant increase of approximately 1.6 km/h (1 mph) in both the mean speed and 
85th percentile speed after resurfacing.  However, this effect varied substantially from site to site.  
No explanation was found for these site-to-site variations.  In addition, no further analysis was 
conducted regarding the relationship between the change in speed and the change in crashes.  

A 2010 study applied the cross-sectional method to investigate the efficacy of roadway 
improvements in terms of crash reduction on various subclasses of rural two-lane highways (38). 
Data were collected from 540 rural two-lane highway segments in the state of Indiana. The 
factors in the crash prediction model included lane width, shoulder width, pavement surface 
friction, pavement condition, and horizontal and vertical alignments. The effect of pavement 
friction in crash reduction was found to be significant for rural major collectors and rural minor 
arterials, but insignificant for rural principal arterial two-lane roads. It was also found that 
increased skid resistance impacted severe crashes more than non-severe crashes as the roadway 
functional class increased.  The Present Serviceability Index (PSI), on a scale of 0 to 5, was used 
to represent pavement condition. The model results showed that better pavement condition 
significantly reduced crashes for rural two-lane principal arterials, but the effect was 
insignificant for the two lower road classes. One concern about this study is that there may be a 
multicollinearity issue in the models as pavement condition may correlate with pavement friction 
and this issue was not discussed in the paper.  

In summary, most of the previous studies were event-driven, focusing specifically on the 
activity of resurfacing. The previous studies were not able to quantitatively track the pavement 
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condition before and after the resurfacing projects due to lack of data, so the impact of 
remediating different levels of pavement distress could not be determined. Instead, some studies 
assumed the pavement conditions were consistent before the repaving project across sites. Since 
the pavement condition is sensitive to pavement age, traffic load, and other factors, this 
assumption could be problematic, especially when the duration of the before period is long. Also 
some previous studies assumed that the safety effectiveness is the same across facility types. 
However, the safety effectiveness of a change in pavement condition on rural two-lane highways 
could be very different with that on urban highways.  Thanks to progress in the automated 
collection of quantitative pavement condition data, it is now possible to link the pavement 
condition information to crash history and other roadway features. It provides an excellent 
opportunity to investigate the safety effectiveness of pavement condition, which could inform 
many DOT investments in pavement maintenance. Some recent research had examined this topic 
by including pavement condition as a crash factor in crash prediction models, but this approach 
cannot account for regression-to-the-mean effects. In addition, inaccurate results may be derived 
from the regression models due to inappropriate model forms, omitted variable bias, or 
correlation among variables (33). 

 

5.4 Methodology 

Observational before-after studies have been considered the industry standard for the 
safety evaluation of treatments such as developing Crash Modification Factors (CMFs). 
Harwood et al. documented that there are three common ways to carry out a before-after study: 
naïve before-after evaluations, comparison group evaluations, and the Empirical Bayes (EB) 
approach (30). Of these three methods, the EB approach was recommended in the first edition of 
Highway Safety Manual (HSM) (31).  

According to Hauer, the EB method is able to account for regression-to-the-mean effects, 
as well as traffic volume and other roadway characteristic changes, by combining safety 
performance function (SPF) estimates with the observed count of crashes (32, 33).  Regression-
to-the-mean is the natural tendency of observed crashes to regress (return) to the mean in the 
year following an unusually high or low crash count. This advantage allows the EB approach to 
overcome the limitations faced by the other two evaluation methods and provide more accurate 
estimates of safety effects. Moreover, VDOT conducts many pavement rehabilitation/resurfacing 
projects every year and maintains a comprehensive pavement condition database. Generally, the 
pavements before the rehabilitation/resurfacing projects are deficient while the conditions 
become good after the project is completed,  allowing the research team to find an adequate 
sample of sites to study.   Because of these factors, the EB method was selected as the most 
suitable approach for this study.  

The methodology for this project consisted of three major phases, which are discussed 
below: 

 Data collection and treatment group identification 
 SPF development 
 EB analysis of pavement condition effect 

 

5.4.1 Data Collection 

The most recent five years of data available were used, from 2007 to 2011. Two data sets 
were created: one for the reference group and another for the treatment group. The reference 
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group included segments of rural two-lane undivided highways that did not have major 
construction, alignment changes, or resurfacing during the study period, while the treatment 
group included rural two-lane undivided segments that had been resurfaced but also did not have 
major construction or alignment changes in the study period. Also, no safety improvements were 
included in any treatment group projects examined.  Information from the reference group was 
used to develop the SPFs, and information from the treatment group was used to conduct the 
before-after studies. 

The data were mainly obtained from two separate data systems, both of which are 
maintained by VDOT. The pavement condition data were from pavement management system, 
while roadway inventory, AADT, and crash history information were from the VDOT Roadway 
Network System (RNS).  These data elements were collected on all rural two-lane undivided 
segments in Virginia. Note that crashes reported within 250 ft of an intersection were excluded 
from this study because of the differing characteristics of intersection crashes and road segment 
crashes. Also, segments were excluded if they were shorter than 0.1 mile or longer than 10 miles. 
The pavement condition index used by VDOT is called the Critical Condition Index (CCI), first 
derived in 1998 by the US Army Corps of Engineers (15). CCI is represented on a scale of 0 to 
100, with 100 representing a pavement with no visible distress. For asphalt pavements, the CCI 
is calculated based on alligator cracking, longitudinal cracking, transverse cracking, patching, 
potholes, delaminations, bleeding, and rutting (2). The details of the CCI calculation 
methodology are provided in a VDOT report published in 2002 (17). VDOT does not collect 
friction data on a systematic basis at this time, although that capability is under investigation. 
Friction may or may not be correlated with the CCI. If cracking is driving CCI at a site, then 
friction factor and CCI may be correlated.  If rutting is driving CCI, then friction may not be 
correlated with CCI. As shown in Table 5.1, CCI values are grouped into five condition 
categories: excellent, good, fair, poor and very poor.  

 
TABLE 5.1 Pavement Condition Category Based on CCI (15) 

Pavement Condition CCI Scale 
Excellent 90 and above 
Good 70-89 
Fair 60-69 
Poor 50-59 
Very Poor 49 and below 

 
In VDOT’s pavement maintenance practice, pavement sections with a CCI value below 60 (poor 
and very poor) are considered “deficient” and will be further evaluated for maintenance and 
rehabilitation actions (15). In other words, it is expected that a pavement section should have a 
CCI value below 60 before being resurfaced, and a CCI value above 90 immediately after the 
project. To ensure that the EB approach has sufficient data, only sites with at least two years of 
before data and two years after data were examined. Since VDOT CCI data are only available 
between 2007 and 2011 when this research was conducted, the range of the “before” period was 
limited. As a result, pavement sections that rehabilitated/resurfaced in 2009 were picked as the 
initial set for examination. The process to select the treatment group sites was as follows: 
 

1. Select pavement sections on rural two-lane undivided roads that were rehabilitated in 
2009; 
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2. Check the CCI of the selected sites and remove sites that have a CCI value higher than 60 
in 2007 and 2008 or have a CCI value lower than 70 in 2010 and 2011; 

3. To ensure that the selected sites did not experience changes in geometric or traffic control 
conditions, remove sites where one or more of the following features were changed 
between 2007 and 2011: shoulder width, lane width, posted speed limit, surface type, 
number of lanes, and facility type; 

4. Remove segments with a length less than 0.1 mile (0.161 km) or greater than 10 miles 
(16 km). 

 
Once the study sites were selected, their roadway features, AADT, pavement condition, 

and crash information were matched. In addition, 2009 data were excluded in the treatment 
group data as it was the year when pavements were resurfaced.  
In summary, 5,723 segments with a total centerline mileage of 3,504 miles (5,639 km) were 
identified as the reference group and 131 segments with a total centerline mileage of 76.12 miles 
(122.5 km) were selected as the treatment group. The before period is 2007 and 2008, while the 
after period is 2010 and 2011. Table 5.2 shows descriptive statistics for the reference group, as 
well as for the before and after periods for the treatment group. 

As shown in Table 5.2, in total of 17,074 crashes, including 7,183 FI crashes, were 
recorded on segments in the reference group from 2007 to 2011. Based on the crash history, the 
after period experienced 3 fewer total crashes and 15 fewer FI crashes than the before period. 
This indicates that there was an increase of 15-3 =12 in PDO crash frequency in the after period. 
It was also found that the proportion of total crashes constituted by the FI crashes changed from 
0.39 in the before period to 0.29 in the after period. Among the treatment group segments, the 
average pavement conditions of the selected segments improved from very poor to excellent. The 
average AADT trend was found to be consistent with economic trends, dropping from 4,303 
vehicles per day in the before period to 4,115 vehicles per day in the after period. The reference 
group sites had wider range of AADT but a smaller average AADT than the treatment sites.  
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TABLE 5.2  Descriptive Statistics of Continuous Variables for Segments in the Reference 
and Treatment Groups 

Groups Variable Mean Min. Max. 
Std. 
Deviation 

Sum 

Reference 
Group 
(2007-
2011) 

Total crashes 0.60 0 18 1.10 17,074 
FI crashes 0.25 0 8 0.61 7,183 
Length (miles) 0.61 0.1 10 0.60 3,504A 
AADT  3,529 76 29,142 2,773 -- 
Lane width (ft) 10.54 9 15 0.91 -- 
Shoulder size (ft) 4.66 0 10 1.86 -- 

Treatment 
Group 
-Before 
(2007-
2008) 

Total crashes 0.56 0 9 1.70 146 
FI crashes 0.22 0 7 1.03 57 
Length (miles) 0.58 0.1 2.58 0.51 76.12A 
AADT 4,303 410 25,739 3,757 -- 
Lane width (ft) 10.34 10 12 0.64 -- 
Shoulder size (ft) 4.45 2 8 1.26 -- 
CCI 44.79 13 59 9.81 -- 

Treatment 
Group 
-After 
(2010-
2011) 

Total crashes 0.55 0 10 1.62 143 
FI crashes 0.16 0 4 0.68 42 
Length (miles) 0.58 0.1 2.58 0.51 76.12A 
AADT 4,115 430 26,943 3,578 -- 
Lane width (ft) 10.34 10 12 0.64 -- 
Shoulder size (ft) 4.45 2 8 1.26 -- 
CCI 95.75 85 100 4.69 -- 

            A.  Sum of segment length in one year. 

TABLE 5.3 Distribution of Lane/Shoulder Width of the Reference and Treatment Groups 
Lane 
Width 

Site Numbers (Percentages) Shoulder 
Width 

Site Numbers (Percentages) 
Reference Group Treatment 

Group 
Reference 
Group 

Treatment 
Group 

10 ft 3,211 (56.1%) 96 (73.3%) 2 ft 509 (8.9%) 4 (3.1%) 
10.5 ft 269 (4.7%) 5 (3.8%) 3 ft 1,047 (18.3%) 31 (23.7%) 
11 ft 1,133 (19.8%) 17 (13.0%) 4 ft 1,294 (22.6%) 37 (28.2%) 
11.5 ft 97 (1.7%) 1 (0.7%) 5 ft 607 (10.6%) 24 (18.3%) 
12 ft 692 (12.1%) 12 (9.2%) 6 ft 1,568 (27.4%) 33 (25.2%) 
Other 320 (5.6%) 0 (0.0%) Other 698 (12.2%) 2 (1.5%) 
Sum 5,723 (100%) 131 (100%) Sum 5,723 (100%) 131 (100%) 

 
Table 5.3 summarizes the distribution of lane/shoulder width of the reference and 

treatment groups. Overall, the treatment group has a similar trend in the distribution, although 
there are some magnitude differences. For example, in both groups the most common lane width 
is 10 ft (3.0 m), followed by 11 ft (3.3 m) and 12 ft (3.6 m) and the most common shoulder 
widths are 4 ft (1.2 m) and 6 ft (1.8 m), followed by 3 ft (0.9 m) and 5 ft (1.5 m). The large size 
of the reference group allows the diversity of lane/shoulder width combinations to be 
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incorporated into the SPF development, thereby permitting an evaluation of the interactions of 
lane/shoulder width with pavement condition. 
 

5.4.2 Safety Performance Functions 

The general EB procedure has been studied or described by many authors, and is 
summarized in the HSM (31). One key step for the EB procedure is to develop or select a SPF. A 
well-developed SPF will properly account for traffic volume and other changes. In addition, 
developing SPFs based on crash types and severities is necessary since most treatments affect 
various crash and severity types differently. In 2010, VDOT developed a set of SPFs for two-
lane roads in Virginia based on data from 2003 to 2007 (48). Considering that the 2007-2011 
period saw systematic reductions in crashes across Virginia due in part to the economic 
downturn, the existing SPFs may not represent our study period well. As a result, the authors 
developed two new Virginia-specific SPFs for total and fatal and injury (FI) crashes for rural 
two-lane undivided highways. The traffic, geometric, and crash data from 2007 to 2011 collected 
for the reference group discussed earlier were used to develop these new SPFs.   
Many SPF forms were studied by other authors. The most commonly used is a negative binomial 
regression model with the form as follows: 

...)( 241321 )()(  xxeAADTgthSegmentLenn  , or 

...)ln()ln()ln( 241321  xxAADTgthSegmentLenn   

Where: 
           n = the predicted annual crash number,  
           α and βi = coefficients, and  
           xi = explanatory variables other than segment length and AADT.  

 
Besides segment length and AADT, lane and shoulder width are factors that have been 

shown to be significantly correlated with crash frequency in previous research [e.g., Zegeer et al. 
(49), Gross et al. (50), and Zeng and Schrock (51)]. As a result, lane and shoulder width were 
also included in the SPF models. In addition, year and district were treated as two categorical 
variables in the model to account for yearly variation and differences in topography and driver 
behavior in different parts of the state. The variable of year also acts as a surrogate for declining 
CCI if no paving occurs since the reference group should theoretically have had declining 
pavement conditions throughout the after period. VDOT has 9 construction districts: Bristol, 
Culpeper, Fredericksburg, Hampton Roads, Lynchburg, Northern Virginia, Richmond, Salem, 
and Staunton Districts. Including district information will at least partially account for the 
differing characteristics across Virginia. For example, rural two-lane highways in the Bristol, 
Salem, and Staunton Districts tend to occur in mountainous regions of the state with significant 
horizontal and vertical curvature, while the Hampton Roads and Northern Virginia areas tend to 
have a more aggressive driving population.   

The SPSS statistical software was used to develop SPFs by regressing collected data to 
negative binomial models. Table 5.4 shows the result of the developed SPFs, as well as their 
goodness of fit information. Both SPFs have the expected positive or negative coefficients. Ln 
AADT and Ln Length have positive coefficients, indicating that the crash frequency increases 
with traffic volume and segment length, while negative coefficients for shoulder size and lane 
width show that crash frequency decreases as the width of the lane and shoulder increases. 
According to the results, most variables have coefficients that are significant at the 0.01 level. 
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The coefficients of Years address that year 2007 and 2008 experienced significantly higher (at 
the 0.01 level) crashes than year 2011, which is representative of the general downturn in crash 
frequency observed in Virginia and in many other states during this period. The coefficients of 
Districts show that rural two-lane undivided roads in mountainous districts (Bristol and Salem) 
tend to experience significantly higher crashes than other districts, given the same conditions in 
terms of AADT, lane and shoulder width, year, and segment length.  Ideally, horizontal and 
vertical curvature would have been included in this model as well, but VDOT lacks a systematic 
inventory of that information. 

It is necessary to discuss the transferability of these SPFs. The models developed are 
applicable to two-lane undivided roads in Virginia, and calibration procedures from the HSM are 
recommended to gain a more accurate estimation if they are used in other states due to 
differences in crash reporting and roadway characteristics. 
         
TABLE 5.4  Safety Performance Functions for Rural Two-lane Highways in Virginia 

Variable 
SPF for Total Crashes SPF for FI Crashes 

Coefficient (Std. Error) 
Wald  
Chi-Square E

Coefficient (Std. 
Error) 

Wald  
Chi-Square 

Intercept -3.770 (0.159) 563.2*** A -4.230 (0.230) 338.2*** 
Ln AADT  0.620 (0.013) 2,133.8*** 0.570 (0.019) 883.2*** 
Ln Length  0.952 (0.012) 6,764.5*** 0.974 (0.017) 3,369.5*** 
Shoulder size -0.026 (0.006) 21.7*** -0.045 (0.008) 30.7*** 
Lane width -0.104 (0.012) 72.2*** -0.100 (0.018) 30.6*** 
Year 2007 0.213 (0.028) 60.1*** 0.249 (0.040) 38.6*** 
Year 2008 0.093 (0.028) 10.8*** 0.184 (0.041) 20.4*** 
Year 2009 -0.020 (0.029) 0.5 -0.001 (0.043) 0.0 
Year 2010 -0.090 (0.029) 9.5*** -0.065 (0.043) 2.283 
Year 2011 0.000B -- 0.000 B -- 
Bristol 0.253 (0.056) 20.1*** 0.312 (0.081) 14.8*** 
Salem 0.229 (0.055) 17.3*** 0.288 (0.079) 13.1*** 
Lynchburg -0.137 (0.058) 5.7** -0.196 (0.084) 5.4** 
Richmond -0.217 (0.058) 14.0*** -0.200 (0.084) 5.6** 
Hampton Roads -0.111 (0.065) 3.0* -0.097 (0.094) 1.1 
Fredericksburg -0.134 (0.058) 5.4** -0.280 (0.085) 10.8*** 
Culpeper -0.035 (0.055) 0.4 -0.021 (0.079) 0.1 
Staunton -0.107 (0.057) 3.5* -0.091 (0.082) 1.2 
Northern VA 0.000 B -- 0.000 B -- 
k 0.358 (0.018) 0.438 (0.036) 
Log-likelihood ratio 
Chi-SquareC 

7,848.3*** 4,129.6*** 

AIC 52,358 31,650 
Pseudo R Square D 0.75 0.75 

A  *  indicates statistically significant at the 0.1 level; **  indicates statistically significant at the 0.05 level; and  
    ***  indicates statistically significant at the 0.01 level; 

B Set to zero as it is the basic condition of this category valuable; 
C Given by SPSS, it compares the fitted model against the intercept-only model; 
D Pseudo R2= 1-k/kmax, where kmax  is the estimated overdispersion parameter in the intercept-only model (52) (53); 
E Wald Chi-Square is the default test statistic for coefficients in negative binominal regression models in SPSS. 
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5.4.3 Empirical Bayes Analysis and Results 

For every individual treated segment, the next step was to combine the sum of initial 
predictions (NB) with the sum of observed count of crashes (OB) through the use of an 
overdispersion parameter (k) to generate an acceptable estimate (EB) for the expected number of 
crashes in the before period.  The related variance (Var(EB)) was also estimated. The calculation 
process is indicated by the equations below (31): 
 

totalitotali SPFN ,,   

FIiFIi SPFN ,,   

 iB NN  
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Where: 
Ni,total , Ni,FI = predicted total crash or FI crash frequency for the segment in year i of the before 
period; 
NB = sum of predicted crash frequency of the segment in the before period; 
w = weight factor; 
EB = expected crash frequency for the before period; 
k = overdispersion parameter; 
OB = sum of observed crash number for the study segment. 
 

With the above results and the predicted sum of number of crashes (NA) for the same 
segment, the expected number of crashes in the after period (EA) without upgrading the pavement 
condition could be estimated by the following equation: 
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To estimate the index of safety effectiveness, or CMF, one needs to sum EA over all road 
segments in the treatment group (EAsum) and then compare with the total observed crash number 
(OAsum) during the after period in the same group. The standard deviation (σ) of CMF is 
determined by another equation.  
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The EB analysis was conducted using several different scenarios to investigate whether 
the safety effect of pavement condition varied with different lane and shoulder width 
combinations. First, the aggregated CMFs were calculated based on all 131 sites’ data. Then the 
sites were divided into two groups based on lane width and CMFs were produced for 10-ft-lane 
segments and for segments with a lane width from 11 ft to 12 ft. Since a majority of the segments 
had 10-ft lanes, further evaluation was conducted for these segments based on shoulder width. 
Two additional CMFs were developed for segments with 10 ft lanes: one for segments with 3 or 
4 ft shoulders, and a second one for segments with 5 or 6 ft shoulders.  

Table 5.5 summarizes these CMF results and their standard deviations, as well as sample 
size of each scenario.  
                  
     TABLE 5.5 CMF Results and Standard Deviations 

Scenarios 
Sample Size Total Crash  

(Std Dev.) 
FI Crash 
(Std. Dev.) 

Aggregated results 131 1.03 (0.100) 0.74 (0.123)**A 
Segments with 10 ft 
lanes 

96 1.03 (0.112) 0.74 (0.138)** 

Segments with  
11 ft, 11.5 ft, or 12 ft 
lanes 

35 0.98 (0.218) 0.74 (0.279)  

Segments with 10 ft 
lanes and 3 ft or 4 ft 
shoulders 

69 1.04 (0.134) 0.77 (0.161)* 

Segments with 10 ft 
lanes and 5 ft or 6 ft 
shoulders 

27 1.26 (0.259) 0.78 (0.321) 

                          A  ** indicates significance at the 0.05 level; * indicates significant at the 0.1 level. 
 

According to the aggregated results, improving pavement condition from poor or very 
poor to excellent or good for rural two-lane highways does not have statistically significant effect 
on reducing total crashes. However, the improvement is able to reduce FI crashes by an average 
of 26 percent. The disaggregated analysis has similar results across different lane width and 
shoulder size. Because of the lack of sites, not all CMFs are significant at the 0.05 level.  
One important question is whether there are significant differences in the safety effect of 
pavement conditions among different lane and shoulder width combinations. A t-test for two 
samples with unequal variances, indicated by the equation below, was conducted (54). The null 
hypothesis was that the CMFs for segments with different lane width or shoulder width were the 
same.  
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Where: 
t = t test statistic; 
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CMF1, CMF2 = CMF values for the two compared groups; 
σ1, σ2 = related standard deviations of the tested CMFs; 
n1, n2 = number of sites in the two compared groups; and  
DF = degree of freedom. 
 

Table 5.6 shows the test results, with the number in bold indicating that the t statistic is 
large enough to reject the null hypothesis.  
 
           TABLE 5.6 Statistical Test Results 

Scenarios 
t-Value  
for Total Crash  

t-Value  
for FI Crash 

Segments with 10 ft lanes Vs.  
Segments with 11 ft, 11.5 ft, or 12 ft lanes 

1.38 0.02 

Segments with 10 ft lanes and 3 ft or 4 ft 
shoulders Vs. 
Segments with 10 ft lanes and 5 ft or 6 ft 
shoulders 

4.06**A 0.19 

                    A ** indicates significance at the 0.05 level. 
 
The results indicated that the safety benefits of repaving pavement are not expected to 

change statistically significantly as the lane width increase from 10 ft to 11, 11.5, or 12 ft. 
However, disaggregated analysis for the 10-ft lane segments shows that segments with wider 
shoulders is expected to have statistically higher overall crash frequency than segments with 
narrow shoulders after repaving, although no significant difference is expected regarding FI 
crash frequency. Considering that the sample size is only 27 sites for segments with 10 ft lanes 
and 3 ft or 4 ft shoulders, the t-test may not truly represent the real situation. Since only sites that 
were resurfaced in 2009 were examined, sample sizes could not be increased further. Also, it 
should be noted that the CMFs for both of these scenarios were not significant different from 1.0.  
As a result, this analysis indicates that there may be a differential impact of pavement condition 
by shoulder width when lane widths are 10 ft, but the impact on CMF was not statistically 
significant with this data set.  Future study that includes more sample size for this segment type 
should be able to draw a more robust conclusion.  
 

5.5 Discussion 

Generally speaking, two direct outcomes are created by a pavement resurfacing project: 
improved pavement conditions and new pavement markings. According to previous research, 
better pavement condition may impact highway safety in two ways. On one hand, it can create 
faster vehicle operating speeds, which is linked to higher crash severity; on the other hand, it 
provides better roadway friction and decreases the risk of skidding crashes. Many previous 
research studies have also shown a positive safety impact of new markings [e.g., Smadi et al. 
(55), Carlson et al. (56)]. New markings are usually tied to reduction in nighttime, run of the 
road, or sideswipe crashes.  

The EB results show that the FI crashes were reduced by 26 percent and the overall crash 
frequency did not change significantly after pavement resurfacing. To better interpret this result, 
a breakdown of crash types was conducted for the before and after periods. Table 5.7 
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summarizes observed crash types, the number of nighttime crashes, and the number of wet 
pavement crashes during the before and after period for the treatment group. 
 
      TABLE 5.7 Frequency (Percentage) of Crash Types of the Treatment Group  

Crash Type 
Total Crash 
Before 

Total Crash 
After 

FI Crash 
Before 

FI Crash 
After 

Rear End 26 (17.8%) 31 (21.7%) 10 (17.5%) 9 (21.4%) 
Angle 6 (4.1%) 12 (8.4%) 4 (7.0%) 3 (7.1%) 
Sideswipe (same direction) 4 (2.7%) 1 (0.7) 3 (5.3%) 0 (0.0%) 
Sideswipe (opposite direction) 6 (4.1%) 0 (0.0%) 3 (5.3%) 0 (0.0%) 
Non-collision 9 (6.2%) 6 (4.2%) 5 (8.8%) 1 (2.4%) 
Run off the road 51 (34.9%) 56 (39.2) 25 (43.9%) 25 (59.5%) 
Animal 37 (25.3%) 32 (22.4) 5 (8.8%) 1 (2.4%) 
Other 7 (4.8%) 5 (3.5%) 2 (3.5%) 3 (7.1%) 
Sum 146 (100.0%) 143 100.0%) 57 (100.0%) 42 (100.0%)
Night time crash 50 (34.2%) 57 (39.9%) 16 (28.1%) 10 (23.8%) 
Night time ROR crash 6 (4.1%) 7 (4.9%) -- -- 
Wet pavement crash 32 (21.9%) 33 (23.1%) 12 (21.1%) 7 (16.7%) 
Wet pavement ROR crash 5 (3.4%) 5 (3.5%) -- -- 

 
According to the summary, the most common crash type was run off the road (ROR),  

and it accounted for 35 percent (51 out of 146) and 39 percent (56 out of 143) of overall crashes 
in before and after periods, respectively. Both the before and after periods had 25 ROR FI 
crashes. The number of sideswipe crashes was reduced significantly (overall: from 10 to 1; FI: 
from 6 to 0). Animal related crashes were also reduced. For other crash types, there were 
increases in rear end and angle crashes, although the FI crashes of the two types did not change 
much. The frequency of total night time crashes increased by 14 percent in the after period. 
However, the night time FI crashes decreased by 37.5 percent. The after period had a similar 
number of wet pavement crashes and wet pavement ROR crashes with the before period, but had 
five, or 41.7 percent, less wet pavement FI crashes. In general, diverse changes were found 
between overall and FI crashes for most crash types except sideswipe crashes.  
 Although resurfacing projects had diverse safety impacts on overall crash frequency by 
type, they had positive impacts on most types of FI crashes, with sideswipe FI crashes and 
animal FI crashes, night time FI crashes or wet pavement FI crashes receiving the largest safety 
benefits. To conclude, improving pavement condition from deficient to good appears to have a 
neutral impact on frequency of overall crashes. However, it can offer significant safety benefit in 
reducing crash severity. Specifically, the new pavement markings associated with the repaving 
likely help reduce nighttime and sideswipe FI crashes, while the new pavement surface likely 
creates positive impacts on wet weather crashes and helps reduce severity across all crash types.  
 

5.6 Conclusions and Future Research 

Given the historical pavement condition data, as well as roadway and crash information, 
this study was able to quantitatively evaluate the safety effectiveness of good pavement 
conditions versus deficient pavement conditions. According to the Empirical Bayes analysis, it 
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was found that compared with deficient pavements, good pavements are able to reduce the fatal 
and injury crashes by 26 percent but do not have a statistically significant impact on overall crash 
frequency. Further analysis indicated that the safety benefit of pavement improvement does not 
statistically significantly change as the lane or shoulder width increases. The results of this study 
could be used for a variety of applications, including prioritizing sites for the agency’s annual 
paving program or quantifying the benefits of preventative maintenance treatments. 

 One limitation of this study is a lack of before and after data. Since the pavement 
condition data has only been available since 2007 and crash data have only been updated through 
2011 so far, the research could only use segments that were resurfaced in 2009 as the study sites. 
As a result, the selected sites only had two years before and after data available.  

Also, this study focuses specifically on rural two-lane undivided roads. Future research 
could expand this analysis to other facility types such as freeways or urban/rural multi-lane roads. 
This would give DOTs an idea whether these findings are transferable to other locations. 
Another direction could be to research the safety effect of pavement treatments other than 
resurfacing after which pavement condition could be improved from fair to good or from 
deficient to fair/good. With these information, DOTs could quantify the safety benefit of most 
pavement treatments across the entire network. However, it may be hard to find adequate before-
after data to conduct the EB study, so a cross-sectional study design could be used to investigate 
these trends.  
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CHAPTER 6 GENERAL CONCLUSIONS AND RECOMMENDATIONS 

6.1 General Conclusions and Discussions 

Thanks to more than 100 years of investment in infrastructure, the current highway 
systems play a significant role in supporting the economic activities and the mobility of people 
and goods throughout the whole country. Given the progress in pavement assessment method 
and connected vehicle technology, the goal of this dissertation is to improve the pavement 
management and assessment activities to enhance the returns of transportation agencies’ 
investments in highway infrastructure. Specifically, this research investigated a connected 
vehicle-enabled application to prescreen pavement segments (i.e., identify deficient pavement) 
based on roughness, and quantified the safety effect of the general pavement conditions based on 
data that became available recently. Three related studies were conducted, with the first study 
proposing and evaluating an acceleration-based metric with vehicle speeds incorporated for 
pavement roughness measurement, the second study investigating the impact of vehicle dynamic 
systems and designing a calibration procedure and the third study quantifying the safety 
effectiveness of good pavement conditions versus deficient conditions. 

Paper 1 in Chapter 3 developed a normalized acceleration-based metric (NRMS) that can 
generalize to different functional classes of highway by incorporating vehicle speed. This 
proposed metric was trained and tested on data collected from three functional classes of 
highway and illustrated a promising performance in identifying deficient pavement sections 
(between 83% and 93% correct rate). It is expected that the proposed acceleration-based metric 
be used in a network screening process. This finding points to the feasibility of a connected 
vehicle-enabled pavement network screening application. 

As a follow-up work of the previous study, Paper 2 in Chapter 4 investigated the impact 
of vehicle dynamic systems on vehicle vibration response, which directly affects the 
acceleration-based metric for pavement roughness measurements. It was found vehicle vibration 
response is most sensitive to the spring stiffness of the sprung mass and the least sensitive to the 
loading of the vehicle. Furthermore, the relationship analysis shows that the vibration responses 
are linearly correlated between different vehicle systems. 

Assuming that transportation agencies will use agency-owned vehicles to build a 
pavement condition network screening system, a vehicle calibration procedure was developed to 
help them calibrate vehicles in the fleet. The procedure includes data and system requirement for 
calibration, criteria regarding the necessity of the calibration, criteria regarding the success of the 
calibration, and a step by step process. Two case studies based on probe data collected from 
different vehicles were also presented and demonstrated that the calibration improved system 
performance.  

Given the historical pavement condition data, as well as roadway and crash information, 
Paper 3 presented in Chapter 5 applied the Empirical Bayes analysis for evaluating pavement 
condition safety effect on rural two-lane highways in Virginia. It was found that compared with 
deficient pavements, good pavements are able to reduce the fatal and injury crashes by 26 
percent but do not have a statistically significant impact on overall crash frequency. Further 
analysis indicated that the safety benefit of pavement improvement does not statistically 
significantly change as the lane or shoulder width increases. The results of this study could be 
used for a variety of applications, including prioritizing sites for the agency’s annual paving 
program or quantifying the benefits of preventative maintenance treatments. 

 



                                                                                                                                     
 

72 
 

6.2 Contributions and Recommendations 

This research resulted in several significant contributions in pavement management and 
assessment, connected vehicle research, and highway safety research. The specific contributions 
include, but are not limited to: 

 This study provided and evaluated an approach to collect pavement roughness data 
from the general vehicles under naturalistic driving environments 

Although numerous previous studies have investigated the relationship between 
the IRI and vehicle vibration response, most of them did not address the impacts of 
vehicle speeds and dynamic systems as they were conducted under controlled 
environments. This dissertation extended the concept to the real world situation where 
data are collected under a good variety of driving speeds and vehicle systems. It 
developed methodologies to address the effects of vehicle speeds and dynamic systems 
on the acceleration-based pavement roughness metric. These methodologies are able to 
reduce the variety of the roughness measurements from the general vehicles. 
 

 The study results point to the feasibility of a connected vehicle-enabled pavement 
network screening system that can assess the pavement condition in a timely and 
cost-effective manner 

The findings of this dissertation can serve as fundamental methodologies for a 
connected vehicle-enabled pavement network screening application. Once implemented, 
this system will continuously and remotely identify deficient sections of the whole 
pavement system at a relatively low cost. It is recommended that DOTs apply these 
findings to build a prototype system using state-owned vehicles, incorporate the 
prototype system into the pavement management applications, and then evaluate its 
limitations and benefits comprehensively. 
 

 This study expanded the possible connected vehicle applications beyond safety, 
mobility and environmental aspects 

Currently, the connected vehicle research primarily focuses on safety, mobility 
and environmental improvements (5).  As one of the first research efforts that utilize 
individual vehicular data to assess network-level infrastructure conditions, this research 
demonstrated a promising example of progressing transportation infrastructure 
management within a connected vehicle environment. It will bring incremental benefits 
to the overall connected vehicle program. 
 

 This is one of the first few studies that robustly quantify the safety effect of the 
general pavement condition 

The role of pavement condition in highway safety is a longstanding research topic, 
but not much research has been done due to the lack of historical pavement condition 
data. Given pavement condition data that became available recently, this study applied 
the EB approach, the state-of-the-art method for highway safety analysis, to quantify the 
safety effect of the general pavement condition.  
 

 This study demonstrates a new way to use pavement condition data beyond current 
practice 
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Originally, the pavement condition indexes calculated from the automated 
collected data are intended to help transportation agencies make decisions based on assets 
management targets. This study demonstrated that the pavement condition data can also 
be used to indicate the safety performance of the pavement. It is recommended that the 
pavement maintenance division of VDOT incorporate the developed CMFs in the 
pavement management applications, such as prioritizing sites for the agency’s annual 
paving program or quantifying the benefits of preventative maintenance treatments 
 

 This study has shown the value in determining local SPFs and CMFs for use in 
estimating safety benefits of proposed safety improvement programs using the EB 
approach 

This study developed Virginia-specific SPFs for rural two-lane primary roadways 
and CMFs for the general pavement conditions, which has the potential to be applied to 
the highway safety improvement program. The highway safety management division is 
recommended to add the CMFs for pavement conditions to the existing crash prediction 
models to provide more accurate safety estimations on rural two-lane primary roads in 
Virginia. 
 

6.3 Limitations and Future Research 

Although the findings from the two studies in Chapters 3 and 4 provide fundamental 
methodologies for a connected vehicle-enabled pavement network screening application, there 
are still great challenges for the implementation of this application. There are several 
opportunities to expand this research to further validate this approach.  First of all, a prototype 
system can be developed using state-owned vehicles as probe vehicles to collect data. With the 
prototype system, a more comprehensive dataset can be generated by collecting data on more 
routes and in a wider area. It can be used to validate previous findings, address issues regarding 
implementation, assess the network benefit of this system, and explore the possibility of 
measuring other pavement condition data using a similar approach. Also, it is recommended to 
design filters to remove invalid data by identifying situations where the acceleration-based 
metric cannot work. For example, when a vehicle is stopping before a traffic light, the data do 
not contain useful information regarding pavement roughness. With the help of filters, only valid 
data points will remain.  

For the study of pavement condition safety effect, this dissertation focuses specifically on 
rural two-lane undivided primary roads. It is plausible that the safety effect of pavement 
conditions varies between different functional classes of roadways. As a result, future research 
could expand this analysis to other facility types such as freeways or urban/rural multi-lane roads. 
This would give DOTs an idea about whether these findings are transferable to other locations 
and the need for developing individual CMFs according to facility class. Another direction could 
be to research the safety effect of pavement treatments other than resurfacing after which 
pavement condition could be improved from fair to good or from deficient to fair/good. With 
these information, DOTs could quantify the safety benefit of most pavement treatments across 
the entire network. However, it may be hard to find adequate before-after data to conduct the EB 
study, so a cross-sectional study design could be used to investigate these trends.  

Last but not least, with more research efforts involved in highways safety research and 
connected vehicle/infrastructure research, it is possible to transfer the current pavement 
management program into a comprehensive, connected vehicle-enabled and multi-objective 
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program. For instance, big data technology can be applied to analysis mass amount of connected 
vehicle data and provide actionable insights to help transportation agencies make better decisions 
by considering safety, operational, and economical objectives in pavement maintenance. 
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APPENDIXES 

Appendix 1 Samples of Raw Data 

Appendix 1.1 Sample of Probe Vehicle Data  

_id  latitude  longitude  time  speed  accuracy x  y  z  stime 

212631  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.6608 1.11091  9.768343 5.44E+13

212632  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.67995 1.206678  9.730036 5.44E+13

212633  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.67995 1.13964  9.77792 5.44E+13

212634  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.64165 1.034295  9.787497 5.44E+13

212635  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.69911 0.967258  9.844957 5.44E+13

212636  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.67995 1.091756  9.787497 5.44E+13

212637  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.76614 1.024718  9.864111 5.44E+13

212638  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.71826 1.120486  10.14184 5.44E+13

212639  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.7853 1.120486  10.03649 5.44E+13

212640  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.87149 1.225831  10.08438 5.44E+13

212641  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.7853 1.225831  10.05565 5.44E+13

212642  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.76614 1.043872  9.911995 5.44E+13

212643  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.79487 1.082179  10.0748 5.44E+13

212644  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.97683 1.312023  10.09395 5.44E+13

212645  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.91937 1.168371  10.14184 5.44E+13

212646  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.91937 1.091756  10.0748 5.44E+13

212647  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.92895 1.149217  9.854534 5.44E+13

212648  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐1.04387 1.206678  9.739613 5.44E+13

212649  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐1.08218 1.206678  9.662998 5.44E+13

212650  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.99599 1.187524  9.643845 5.44E+13

212651  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐1.04387 1.11091  9.768343 5.44E+13

212652  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐1.0343 1.187524  9.787497 5.44E+13

212653  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.90022 1.120486  9.768343 5.44E+13

212654  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.86191 0.948104  9.739613 5.44E+13

212655  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.96726 1.005565  9.77792 5.44E+13

212656  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.92895 1.024718  9.931149 5.44E+13

212657  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.95768 0.938527  10.00776 5.44E+13

212658  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.95768 0.852336  9.998186 5.44E+13

212659  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐0.9098 0.90022  10.29507 5.44E+13

212660  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐1.02472 0.890643  10.28549 5.44E+13

212661  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐1.01514 0.957681  10.3238 5.44E+13

212662  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐1.10133 0.986411  10.30465 5.44E+13

212663  37.94721  ‐78.2474  1.40E+12 4.127357 8 ‐1.00556 0.794875  10.1993 5.44E+13
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Appendix 1.2 Data Sample for SPF Development  

ID  year  route  number  Length  district  LW  SW  AADT  Total  FI 

1  2007  SR  00003  0.1 6  10 6 7009 0  0 

2  2007  US  00011  0.1 2  10 6 4779 0  0 

3  2007  US  00011  0.1 8  10 3 3792 0  0 

4  2007  US  00011  0.1 8  14 2 11921 0  0 

5  2007  US  00011  0.1 8  14 6 4881 0  0 

6  2007  US  00011  0.1 8  14 6 4881 0  0 

7  2007  US  00011  0.1 8  14 6 4785 0  0 

8  2007  US  00011  0.1 8  15 6 5321 0  0 

9  2007  US  00015  0.1 A  10 3 18269 1  1 

10  2007  SR  00040  0.1 4  11.5 6 903 0  0 

11  2007  SR  00040  0.1 4  10 6 3707 0  0 

12  2007  SR  00042  0.1 8  10 6 3187 0  0 

13  2007  SR  00042  0.1 8  10 4 2514 0  0 

14  2007  SR  00042  0.1 8  10 4 1388 1  1 

15  2007  US  00058  0.1 1  10 4 616 0  0 

16  2007  US  00058  0.1 1  10 4 2588 0  0 

17  2007  US  00220  0.1 8  10 2 1417 0  0 

19  2007  US  00360  0.1 6  11 6 5119 0  0 

20  2007  SR  00005  0.1 4  10 6 2046 0  0 

21  2007  SR  00010  0.1 4  10 3 5280 0  0 

22  2007  SR  00013  0.1 4  10 3 1583 0  0 

23  2007  SR  00018  0.1 8  9 3 1355 0  0 

24  2007  SR  00018  0.1 8  10 4 2087 0  0 

25  2007  SR  00024  0.1 2  11 8 1894 0  0 

26  2007  SR  00030  0.1 6  11 6 4698 0  0 

27  2007  US  00033  0.1 8  10.5 3 3365 0  0 

28  2007  US  00033  0.1 8  10 3 7468 0  0 

29  2007  SR  00040  0.1 2  10.5 6 4428 0  0 

30  2007  SR  00045  0.1 3  9.5 3 1360 0  0 

31  2007  SR  00049  0.1 4  10 4 1491 0  0 

32  2007  US  00052  0.1 2  11 3 3658 0  0 

33  2007  US  00052  0.1 2  10 5 3729 0  0 

34  2007  SR  00056  0.1 3  10 6 882 0  0 

35  2007  SR  00056  0.1 3  10 6 1199 0  0 

36  2007  SR  00056  0.1 3  9.5 6 463 0  0 

37  2007  SR  00056  0.1 3  10 6 1313 0  0 

38  2007  SR  00057  0.1 2  11 4 8678 0  0 

39  2007  SR  00063  0.1 1  12 8 1404 1  0 
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Appendix 2 RMS and Speed Results for GMC, Subaru and Volvo 

ID  Distant  Route  IRI  RMS.GMC Speed.GMC RMS.Subaru Speed.Subaru RMS.Volvo  Speed.Volvo

1  0  I64W  267  0.713 28.750 0.645 31.860 0.785  32.692

2  0.1  I64W  144  0.498 29.060 0.413 30.406 0.533  33.110

3  0.2  I64W  56  0.219 29.215 0.196 31.582 0.275  33.863

4  0.3  I64W  47  0.217 29.213 0.184 33.070 0.314  34.556

5  0.4  I64W  62  0.248 29.121 0.231 34.057 0.354  35.376

6  0.5  I64W  61  0.252 28.892 0.228 33.919 0.329  35.995

7  0.6  I64W  55  0.233 28.900 0.241 33.261 0.303  34.821

8  0.7  I64W  50  0.217 28.797 0.201 33.672 0.302  34.363

9  0.8  I64W  53  0.233 28.792 0.197 33.310 0.320  34.744

10  0.9  I64W  88  0.390 28.832 0.367 32.384 0.463  34.766

11  1  I64W  68  0.254 28.842 0.263 33.170 0.323  35.254

12  1.1  I64W  51  0.213 28.938 0.217 32.684 0.352  34.625

13  1.2  I64W  100  0.304 29.018 0.284 31.789 0.339  35.139

14  1.3  I64W  70  0.242 29.344 0.251 31.499 0.372  35.580

15  1.4  I64W  74  0.292 29.110 0.261 30.831 0.319  35.763

16  1.5  I64W  83  0.299 29.160 0.288 31.258 0.372  35.809

17  1.6  I64W  90  0.317 29.147 0.317 31.326 0.368  36.149

18  1.7  I64W  89  0.319 28.965 0.298 32.164 0.325  34.660

19  1.8  I64W  55  0.250 28.755 0.228 32.084 0.351  34.845

20  1.9  I64W  58  0.215 28.790 0.228 32.045 0.344  35.025

21  2  I64W  57  0.248 28.827 0.246 31.977 0.338  34.909

22  2.1  I64W  54  0.231 28.898 0.226 31.433 0.320  34.516

23  2.2  I64W  79  0.253 29.078 0.280 31.815 0.327  35.153

24  2.3  I64W  71  0.248 29.263 0.239 32.506 0.348  35.287

25  2.4  I64W  68  0.243 29.245 0.255 32.622 0.325  35.506

26  2.5  I64W  79  0.284 29.111 0.302 31.688 0.337  35.158

27  2.6  I64W  65  0.227 28.900 0.241 31.192 0.385  34.431

28  2.7  I64W  59  0.223 28.929 0.230 31.209 0.356  33.908

29  2.8  I64W  52  0.227 29.056 0.226 31.407 0.349  33.789

30  2.9  I64W  67  0.249 29.104 0.241 31.919 0.334  34.042

31  3  I64W  81  0.244 29.165 0.279 32.473 0.351  34.613

32  3.1  I64W  66  0.231 29.094 0.240 32.360 0.364  34.457

33  3.2  I64W  66  0.227 29.043 0.257 32.361 0.330  34.454

34  3.3  I64W  76  0.265 28.984 0.277 31.886 0.370  34.399

35  3.4  I64W  78  0.266 29.038 0.294 31.370 0.366  33.739

36  3.5  I64W  52  0.268 28.848 0.289 31.698 0.420  33.616

37  3.6  I64W  70  0.265 28.812 0.255 31.827 0.355  33.566

38  3.7  I64W  56  0.227 28.881 0.226 32.400 0.315  34.241

39  3.8  I64W  108  0.332 28.910 0.315 31.999 0.354  34.233

40  3.9  I64W  234  0.733 28.859 0.610 31.176 0.800  33.732

41  4  I64W  153  0.651 28.722 0.599 30.538 0.832  33.023

42  4.1  I64W  63  0.230 28.837 0.253 30.715 0.301  31.563

43  4.2  I64W  55  0.239 28.874 0.264 31.488 0.376  32.060

44  4.3  I64W  46  0.182 28.933 0.221 31.949 0.346  33.476

45  4.4  I64W  43  0.197 28.867 0.215 32.308 0.309  34.432

46  4.5  I64W  37  0.183 28.946 0.183 32.838 0.319  34.801

47  4.6  I64W  43  0.167 28.945 0.205 32.436 0.293  34.495

48  4.7  I64W  55  0.216 29.111 0.246 31.916 0.348  34.436
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49  4.8  I64W  75  0.260 29.145 0.299 31.907 0.395  34.720

50  4.9  I64W  66  0.206 29.210 0.306 32.125 0.346  34.841

51  5  I64W  200  0.572 29.276 0.416 31.874 0.618  35.062

52  5.1  I64W  68  0.396 28.861 0.466 32.528 0.559  34.720

53  5.2  I64W  57  0.210 28.804 0.307 34.309 0.363  34.619

54  5.3  I64W  53  0.202 28.719 0.241 35.078 0.349  34.691

55  5.4  I64W  60  0.201 28.661 0.242 35.210 0.332  34.944

56  5.5  I64W  45  0.187 28.912 0.224 34.978 0.334  34.972

57  5.6  I64W  56  0.182 28.949 0.230 34.698 0.289  33.968

58  5.7  I64W  70  0.268 29.037 0.245 34.077 0.334  33.474

59  5.8  I64W  63  0.240 29.052 0.226 32.722 0.307  32.918

60  5.9  I64W  110  0.408 28.959 0.413 32.204 0.475  32.611

61  6  I64W  63  0.264 29.177 0.274 32.237 0.378  32.121

62  6.1  I64W  72  0.241 29.300 0.282 34.092 0.327  33.562

63  6.2  I64W  74  0.271 28.981 0.248 35.058 0.346  34.351

64  6.3  I64W  71  0.261 28.870 0.255 34.172 0.324  34.499

65  6.4  I64W  83  0.305 28.826 0.359 34.071 0.430  35.151

66  6.5  I64W  72  0.282 28.893 0.303 34.281 0.356  34.232

67  6.6  I64W  65  0.224 28.957 0.270 34.043 0.344  34.343

68  6.7  I64W  67  0.226 28.973 0.270 34.468 0.327  34.673

69  6.8  I64W  65  0.227 28.954 0.251 34.150 0.333  34.834

70  6.9  I64W  70  0.249 29.022 0.274 33.316 0.430  35.617

71  7  I64W  62  0.248 29.014 0.278 33.359 0.358  35.070

72  7.1  I64W  62  0.208 29.035 0.246 33.501 0.344  34.612

73  7.2  I64W  67  0.225 28.987 0.261 33.889 0.343  34.349

74  7.3  I64W  67  0.273 29.145 0.274 33.241 0.347  34.174

75  7.4  I64W  61  0.313 31.011 0.266 32.298 0.395  34.090

76  7.5  I64W  60  0.275 32.483 0.245 33.749 0.347  34.215

77  7.6  I64W  56  0.264 32.138 0.265 33.715 0.341  34.961

78  7.7  I64W  68  0.270 32.714 0.252 33.495 0.359  35.234

79  7.8  I64W  73  0.325 32.613 0.295 33.038 0.381  34.606

80  7.9  I64W  72  0.283 32.519 0.272 33.710 0.388  34.292

81  8  I64W  51  0.213 32.510 0.220 34.194 0.328  34.933

82  8.1  I64W  55  0.218 32.572 0.224 34.357 0.323  35.154

83  8.2  I64W  56  0.202 33.090 0.206 34.144 0.307  34.779

84  8.3  I64W  64  0.291 33.233 0.260 33.955 0.374  34.663

85  8.4  I64W  76  0.255 32.307 0.291 33.626 0.366  34.592

86  8.5  I64W  77  0.263 31.671 0.247 34.147 0.352  34.673

87  8.6  I64W  60  0.333 31.918 0.303 34.185 0.371  35.039

88  8.7  I64W  66  0.239 31.776 0.265 34.576 0.345  34.911

89  8.8  I64W  69  0.259 30.508 0.249 34.625 0.383  35.482

90  8.9  I64W  59  0.263 30.801 0.289 35.097 0.394  35.461

91  9  I64W  56  0.234 31.069 0.234 35.287 0.321  35.020

92  9.1  I64W  132  0.372 31.103 0.307 35.275 0.384  34.674

93  9.2  I64W  146  0.718 31.021 0.559 34.959 0.635  33.787

94  9.3  I64W  85  0.278 31.087 0.374 34.900 0.449  33.296

95  9.4  I64W  105  0.348 29.306 0.287 34.689 0.448  34.802

96  9.5  I64W  103  0.282 29.036 0.288 34.267 0.402  34.686

97  9.6  I64W  89  0.265 28.998 0.265 33.615 0.376  34.248

98  9.7  I64W  211  0.804 29.071 0.585 33.313 0.840  33.480
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99  9.8  I64W  87  0.309 28.981 0.236 33.683 0.360  33.180

100  9.9  I64W  87  0.281 28.811 0.279 34.536 0.354  33.286

101  10  I64W  82  0.297 28.669 0.314 34.592 0.398  33.737

102  10.1  I64W  95  0.297 28.805 0.316 34.689 0.402  34.031

103  10.2  I64W  85  0.281 28.979 0.284 34.454 0.386  34.286

104  10.3  I64W  93  0.293 28.891 0.295 34.091 0.374  34.167

105  10.4  I64W  77  0.260 29.012 0.252 33.854 0.326  32.331

106  10.5  I64W  80  0.253 28.968 0.284 32.464 0.339  31.830

107  10.6  I64W  91  0.313 28.997 0.236 32.008 0.295  31.802

108  10.7  I64W  90  0.296 28.818 0.259 31.372 0.342  31.079

109  10.8  I64W  76  0.262 28.806 0.292 31.262 0.361  31.189

110  10.9  I64W  94  0.280 29.062 0.265 32.301 0.331  32.094

111  11  I64W  87  0.263 29.022 0.282 32.218 0.324  33.105

112  11.1  I64W  99  0.329 28.945 0.293 32.179 0.364  33.759

113  11.2  I64W  92  0.296 29.080 0.290 31.799 0.366  32.628

114  11.3  I64W  124  0.402 28.820 0.377 31.785 0.481  32.507

115  11.4  I64W  196  0.735 28.868 0.612 32.191 0.762  32.261

116  11.5  I64W  113  0.385 28.849 0.333 32.856 0.403  31.079

117  11.6  I64W  88  0.273 28.985 0.309 32.897 0.389  31.225

118  11.7  I64W  95  0.324 28.982 0.373 33.081 0.391  31.355

119  11.8  I64W  97  0.355 28.949 0.350 32.993 0.372  31.050

120  11.9  I64W  86  0.305 29.205 0.347 33.245 0.384  30.953

121  12  I64W  79  0.236 29.094 0.298 34.121 0.370  31.931

122  12.1  I64W  94  0.278 29.216 0.307 33.765 0.371  32.155

123  12.2  I64W  89  0.298 29.072 0.327 33.573 0.365  31.115

124  12.3  I64W  136  0.432 28.860 0.350 32.683 0.405  29.502

125  12.4  I64W  114  0.336 28.763 0.310 32.358 0.365  28.958

126  12.5  I64W  127  0.391 28.914 0.428 32.082 0.493  29.763

127  12.6  I64W  117  0.534 28.900 0.473 31.284 0.555  30.235

128  12.7  I64W  79  0.269 28.936 0.269 31.429 0.333  30.688

129  12.8  I64W  75  0.238 29.017 0.325 32.173 0.409  31.311

130  12.9  I64W  92  0.275 28.924 0.358 32.251 0.447  32.832

131  13  I64W  65  0.249 28.949 0.346 32.199 0.446  33.321

132  13.1  I64W  83  0.306 29.110 0.339 32.201 0.408  32.954

133  13.2  I64W  83  0.251 29.270 0.349 33.004 0.441  32.575

134  13.3  I64W  78  0.244 29.265 0.326 32.135 0.418  32.223

135  13.4  I64W  86  0.240 29.029 0.326 31.317 0.402  31.987

136  13.5  I64W  106  0.334 29.046 0.347 31.939 0.439  32.116

137  13.6  I64W  89  0.294 28.759 0.339 31.781 0.398  31.682

138  13.7  I64W  93  0.283 28.644 0.294 31.371 0.353  31.139

139  13.8  I64W  78  0.257 28.784 0.360 31.565 0.420  30.392

140  13.9  I64W  144  0.431 28.739 0.367 31.533 0.465  28.976

141  14  I64W  230  0.837 29.124 0.537 31.682 0.558  28.072

142  14.1  I64W  82  0.353 28.983 0.397 31.435 0.408  27.153

143  14.2  I64W  77  0.239 28.814 0.255 31.535 0.275  26.702

144  14.3  I64W  85  0.284 28.768 0.287 30.958 0.285  26.529

145  14.4  I64W  76  0.260 28.601 0.247 30.731 0.280  26.896

146  14.5  I64W  89  0.281 28.716 0.262 30.277 0.295  28.057

147  14.6  I64W  75  0.257 29.078 0.253 30.413 0.333  28.546

148  14.7  I64W  74  0.258 28.989 0.242 30.634 0.304  28.984
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149  14.8  I64W  72  0.234 28.967 0.248 31.103 0.326  30.028

150  14.9  I64W  83  0.285 29.087 0.295 31.727 0.361  30.379

151  15  I64W  79  0.261 29.001 0.274 33.293 0.323  31.272

152  15.1  I64W  82  0.257 29.191 0.280 32.098 0.357  31.664

153  15.2  I64W  97  0.313 29.041 0.318 32.027 0.395  31.420

154  15.3  I64W  93  0.329 28.838 0.327 32.255 0.385  31.277

155  15.4  I64W  88  0.267 28.863 0.300 31.686 0.372  31.565

156  15.5  I64W  153  0.335 28.829 0.421 33.113 0.570  31.434

157  15.6  I64W  164  0.820 28.855 0.687 34.949 0.794  32.161

158  15.7  I64W  77  0.315 28.717 0.451 35.159 0.377  31.984

159  15.8  I64W  83  0.290 28.790 0.304 33.616 0.349  31.871

160  15.9  I64W  68  0.284 28.809 0.308 33.681 0.354  31.517

161  16  I64W  77  0.231 28.769 0.265 32.993 0.348  31.360

162  16.1  I64W  69  0.256 28.788 0.265 32.484 0.331  31.358

163  16.2  I64W  91  0.271 28.807 0.264 31.403 0.353  31.336

164  16.3  I64W  153  0.409 28.896 0.424 31.380 0.522  32.317

165  16.4  I64W  150  0.869 28.650 0.665 31.591 0.702  32.416

166  16.5  I64W  75  0.250 28.835 0.277 31.210 0.338  31.909

167  16.6  I64W  75  0.279 29.470 0.261 29.897 0.343  30.976

168  16.7  I64W  69  0.224 28.913 0.211 28.201 0.302  30.627

169  16.8  I64W  193  0.522 28.856 0.353 26.866 0.500  30.279

170  16.9  I64W  113  0.549 29.109 0.524 26.333 0.493  29.297

171  17  I64W  98  0.383 29.078 0.244 26.243 0.315  29.752

172  17.1  I64W  87  0.333 28.947 0.296 27.426 0.416  30.806

173  17.2  I64W  93  0.353 29.099 0.265 27.058 0.379  30.982

174  17.3  I64W  136  0.307 29.084 0.341 26.422 0.526  28.972

175  17.4  I64W  179  0.616 28.843 0.518 25.204 0.547  25.820

176  17.5  I64W  135  0.556 28.743 0.336 22.530 0.435  22.327

177  17.6  I64W  159  0.651 28.742 0.315 20.808 NA  NA 

178  17.7  I64W  77  0.440 28.735 NA NA NA  NA 

179  17.8  I64W  70  0.252 28.942 NA NA NA  NA 

180  0  I64E  257  0.972 29.593 NA NA NA  NA 

181  0.1  I64E  128  0.523 29.426 0.398 23.643 0.433  19.679

182  0.2  I64E  216  0.859 29.490 0.535 24.235 0.634  25.601

183  0.3  I64E  99  0.508 29.423 0.314 24.009 0.581  30.525

184  0.4  I64E  55  0.250 29.314 0.188 24.775 0.286  32.516

185  0.5  I64E  51  0.191 29.267 0.204 25.681 0.275  33.106

186  0.6  I64E  49  0.188 29.371 0.204 25.162 0.256  32.651

187  0.7  I64E  63  0.246 29.234 0.207 24.463 0.279  31.829

188  0.8  I64E  196  0.730 29.296 0.546 23.910 0.724  32.600

189  0.9  I64E  83  0.303 29.515 0.284 24.709 0.381  32.713

190  1  I64E  87  0.246 29.779 0.269 25.791 0.342  33.423

191  1.1  I64E  84  0.236 29.948 0.242 25.969 0.335  33.367

192  1.2  I64E  171  0.540 29.724 0.319 26.571 0.500  33.120

193  1.3  I64E  98  0.455 29.556 0.579 26.925 0.574  32.892

194  1.4  I64E  95  0.300 29.394 0.224 25.853 0.376  33.441

195  1.5  I64E  77  0.265 29.437 0.233 24.981 0.328  32.570

196  1.6  I64E  84  0.301 29.451 0.243 24.419 0.378  33.117

197  1.7  I64E  60  0.200 29.345 0.218 24.861 0.285  33.325

198  1.8  I64E  104  0.342 29.525 0.215 25.430 0.386  32.656
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199  1.9  I64E  92  0.381 29.496 0.316 27.153 0.423  32.061

200  2  I64E  167  0.618 29.447 0.508 28.525 0.623  30.989

201  2.1  I64E  153  0.626 29.280 0.626 30.179 0.711  31.854

202  2.2  I64E  82  0.324 29.012 0.300 31.185 0.331  32.739

203  2.3  I64E  68  0.244 29.045 0.261 30.298 0.340  32.371

204  2.4  I64E  62  0.207 28.927 0.219 29.187 0.287  32.226

205  2.5  I64E  69  0.249 29.055 0.250 28.613 0.330  32.289

206  2.6  I64E  77  0.262 29.009 0.250 28.515 0.307  32.067

207  2.7  I64E  90  0.351 29.288 0.350 29.989 0.374  32.425

208  2.8  I64E  67  0.241 29.525 0.272 30.621 0.332  32.582

209  2.9  I64E  73  0.228 29.790 0.251 30.563 0.308  32.871

210  3  I64E  72  0.226 29.731 0.277 31.687 0.317  32.136

211  3.1  I64E  85  0.267 29.672 0.286 31.736 0.328  31.720

212  3.2  I64E  97  0.288 29.828 0.303 31.329 0.339  31.566

213  3.3  I64E  106  0.332 30.049 0.349 31.625 0.362  32.478

214  3.4  I64E  73  0.288 30.183 0.322 32.744 0.334  32.596

215  3.5  I64E  86  0.265 30.071 0.322 33.427 0.319  32.662

216  3.6  I64E  195  0.559 29.895 0.535 32.700 0.574  32.311

217  3.7  I64E  143  0.594 29.760 0.555 32.342 0.535  32.587

218  3.8  I64E  98  0.293 29.664 0.323 31.941 0.354  33.332

219  3.9  I64E  97  0.306 29.884 0.326 32.845 0.382  33.137

220  4  I64E  81  0.248 29.610 0.271 32.977 0.330  32.961

221  4.1  I64E  79  0.247 29.308 0.277 32.834 0.340  32.889

222  4.2  I64E  76  0.277 29.134 0.321 32.510 0.392  33.088

223  4.3  I64E  88  0.261 29.139 0.313 32.710 0.314  32.880

224  4.4  I64E  93  0.241 29.040 0.263 32.913 0.302  32.136

225  4.5  I64E  90  0.306 29.216 0.302 31.528 0.327  31.884

226  4.6  I64E  114  0.336 29.340 0.344 31.893 0.363  32.440

227  4.7  I64E  136  0.443 29.529 0.401 32.548 0.482  33.267

228  4.8  I64E  107  0.352 29.629 0.327 31.880 0.426  32.888

229  4.9  I64E  92  0.220 29.719 0.302 31.724 0.327  32.958

230  5  I64E  101  0.371 29.689 0.286 31.596 0.488  33.366

231  5.1  I64E  134  0.361 29.592 0.419 31.623 0.422  32.630

232  5.2  I64E  92  0.317 29.355 0.349 32.809 0.392  32.706

233  5.3  I64E  132  0.510 29.349 0.326 32.795 0.573  32.731

234  5.4  I64E  103  0.327 29.337 0.499 32.663 0.362  32.988

235  5.5  I64E  94  0.311 28.876 0.297 32.653 0.392  34.146

236  5.6  I64E  87  0.254 28.579 0.315 32.893 0.355  34.113

237  5.7  I64E  99  0.327 28.724 0.289 32.553 0.461  33.936

238  5.8  I64E  90  0.282 29.253 0.321 31.120 0.394  33.818

239  5.9  I64E  87  0.267 29.215 0.255 29.507 0.339  33.394

240  6  I64E  94  0.344 29.538 0.269 30.035 0.405  33.542

241  6.1  I64E  108  0.387 29.430 0.323 29.916 0.463  33.657

242  6.2  I64E  179  0.543 29.449 0.362 30.530 0.582  33.457

243  6.3  I64E  116  0.288 29.258 0.466 30.391 0.326  32.945

244  6.4  I64E  81  0.255 29.216 0.272 30.371 0.338  32.928

245  6.5  I64E  87  0.301 29.232 0.250 30.793 0.339  33.253

246  6.6  I64E  79  0.255 29.003 0.277 30.897 0.316  33.088

247  6.7  I64E  78  0.248 29.282 0.259 30.396 0.341  32.519

248  6.8  I64E  76  0.249 29.232 0.249 30.045 0.356  33.512
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249  6.9  I64E  92  0.319 29.450 0.295 31.550 0.419  34.188

250  7  I64E  78  0.225 29.755 0.337 32.212 0.350  34.374

251  7.1  I64E  80  0.249 29.766 0.276 32.817 0.330  33.710

252  7.2  I64E  76  0.250 29.702 0.272 31.773 0.321  32.597

253  7.3  I64E  104  0.312 29.635 0.288 32.157 0.399  33.561

254  7.4  I64E  86  0.273 29.806 0.360 33.838 0.383  33.782

255  7.5  I64E  72  0.279 29.781 0.286 33.593 0.368  34.002

256  7.6  I64E  72  0.264 29.719 0.307 33.549 0.350  34.548

257  7.7  I64E  70  0.282 29.843 0.269 33.700 0.355  35.234

258  7.8  I64E  74  0.391 29.644 0.262 33.816 0.506  34.116

259  7.9  I64E  181  0.563 29.327 0.381 33.349 0.546  33.203

260  8  I64E  87  0.329 29.242 0.416 32.449 0.304  33.146

261  8.1  I64E  86  0.329 29.210 0.269 32.594 0.328  32.780

262  8.2  I64E  79  0.302 29.310 0.286 34.157 0.319  32.199

263  8.3  I64E  91  0.346 29.295 0.286 34.025 0.371  31.983

264  8.4  I64E  173  0.706 29.566 0.330 33.315 0.654  32.474

265  8.5  I64E  147  0.552 29.905 0.604 32.538 0.435  33.126

266  8.6  I64E  75  0.309 29.806 0.236 33.750 0.314  34.479

267  8.7  I64E  82  0.357 29.614 0.331 33.936 0.404  34.857

268  8.8  I64E  81  0.336 29.360 0.303 34.101 0.359  34.931

269  8.9  I64E  87  0.376 29.090 0.338 34.665 0.398  35.022

270  9  I64E  76  0.359 28.971 0.294 33.961 0.328  34.411

271  9.1  I64E  64  0.301 29.372 0.260 33.410 0.325  34.497

272  9.2  I64E  65  0.322 29.352 0.293 33.610 0.340  33.764

273  9.3  I64E  62  0.290 29.270 0.252 33.794 0.266  33.322

274  9.4  I64E  69  0.285 29.176 0.260 33.051 0.291  33.382

275  9.5  I64E  79  0.325 29.527 0.306 32.363 0.363  34.196

276  9.6  I64E  70  0.314 29.689 0.273 33.923 0.324  33.485

277  9.7  I64E  84  0.313 29.631 0.279 35.017 0.312  32.249

278  9.8  I64E  73  0.298 29.687 0.289 34.486 0.317  31.067

279  9.9  I64E  65  0.266 29.605 0.291 34.021 0.296  31.859

280  10  I64E  76  0.312 29.570 0.278 33.983 0.312  31.738

281  10.1  I64E  65  0.332 29.595 0.288 34.116 0.309  31.704

282  10.2  I64E  73  0.328 29.388 0.304 33.793 0.322  32.748

283  10.3  I64E  62  0.301 29.476 0.255 33.119 0.307  33.044

284  10.4  I64E  64  0.303 29.362 0.255 32.503 0.313  34.014

285  10.5  I64E  65  0.323 29.273 0.251 31.908 0.336  34.388

286  10.6  I64E  69  0.336 29.252 0.285 32.074 0.402  34.917

287  10.7  I64E  67  0.293 29.551 0.257 30.969 0.329  35.209

288  10.8  I64E  70  0.302 29.553 0.266 30.614 0.303  34.135

289  10.9  I64E  66  0.298 29.516 0.273 30.981 0.289  32.747

290  11  I64E  78  0.326 29.352 0.283 31.100 0.334  33.042

291  11.1  I64E  73  0.295 29.681 0.268 31.115 0.313  33.055

292  11.2  I64E  56  0.287 29.770 0.252 31.801 0.284  33.213

293  11.3  I64E  64  0.313 29.554 0.259 32.581 0.296  33.767

294  11.4  I64E  65  0.303 29.367 0.254 33.155 0.321  33.670

295  11.5  I64E  73  0.369 29.225 0.236 33.404 0.323  34.496

296  11.6  I64E  54  0.275 29.010 0.254 33.435 0.331  34.441

297  11.7  I64E  59  0.284 29.185 0.304 33.604 0.338  33.785

298  11.8  I64E  75  0.306 29.491 0.301 33.989 0.375  33.950
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299  11.9  I64E  61  0.249 29.678 0.354 33.590 0.396  34.753

300  12  I64E  61  0.237 29.739 0.300 33.208 0.342  35.338

301  12.1  I64E  60  0.254 29.821 0.286 33.603 0.338  34.809

302  12.2  I64E  67  0.285 29.817 0.266 33.587 0.415  35.179

303  12.3  I64E  66  0.290 29.821 0.319 33.105 0.347  35.195

304  12.4  I64E  69  0.251 29.822 0.279 33.912 0.336  34.963

305  12.5  I64E  86  0.365 29.792 0.336 34.246 0.401  35.344

306  12.6  I64E  187  0.665 29.491 0.659 34.726 0.752  35.278

307  12.7  I64E  85  0.529 29.383 0.334 34.955 0.333  34.751

308  12.8  I64E  77  0.265 29.059 0.295 35.254 0.383  35.017

309  12.9  I64E  62  0.326 29.196 0.314 34.041 0.373  34.831

310  13  I64E  63  0.235 29.190 0.233 32.618 0.306  34.506

311  13.1  I64E  54  0.249 29.417 0.256 34.192 0.333  34.476

312  13.2  I64E  52  0.201 29.798 0.319 35.222 0.360  33.988

313  13.3  I64E  61  0.220 29.795 0.295 35.036 0.314  32.910

314  13.4  I64E  50  0.229 29.701 0.241 34.134 0.303  32.946

315  13.5  I64E  57  0.251 29.596 0.279 34.228 0.323  34.097

316  13.6  I64E  148  0.457 29.434 0.338 34.313 0.449  33.222

317  13.7  I64E  171  0.577 29.367 0.513 33.895 0.553  33.442

318  13.8  I64E  76  0.474 29.358 0.465 33.796 0.483  34.717

319  13.9  I64E  57  0.281 29.483 0.291 34.899 0.369  34.757

320  14  I64E  60  0.264 29.459 0.267 34.048 0.319  33.776

321  14.1  I64E  65  0.242 29.431 0.244 33.265 0.289  33.519

322  14.2  I64E  50  0.269 29.457 0.283 33.311 0.342  33.222

323  14.3  I64E  57  0.245 29.253 0.271 32.137 0.309  32.614

324  14.4  I64E  54  0.249 29.033 0.238 31.673 0.291  32.900

325  14.5  I64E  67  0.291 29.043 0.265 32.437 0.354  33.651

326  14.6  I64E  57  0.233 29.158 0.253 32.019 0.312  33.776

327  14.7  I64E  59  0.275 29.038 0.247 31.765 0.296  34.097

328  14.8  I64E  54  0.234 29.081 0.244 32.318 0.295  33.889

329  14.9  I64E  80  0.281 29.052 0.253 33.216 0.319  33.497

330  15  I64E  60  0.328 29.205 0.301 33.073 0.351  33.738

331  15.1  I64E  55  0.221 29.736 0.266 33.513 0.319  34.021

332  15.2  I64E  62  0.207 29.613 0.267 33.739 0.310  34.249

333  15.3  I64E  69  0.293 29.467 0.260 33.500 0.325  33.862

334  15.4  I64E  58  0.302 28.986 0.227 33.908 0.307  34.069

335  15.5  I64E  62  0.230 28.746 0.292 34.111 0.328  34.101

336  15.6  I64E  65  0.254 28.693 0.263 33.928 0.316  33.772

337  15.7  I64E  60  0.281 29.329 0.266 33.808 0.293  33.632

338  15.8  I64E  65  0.238 29.732 0.353 34.362 0.379  33.255

339  15.9  I64E  74  0.266 29.776 0.266 34.786 0.313  33.853

340  16  I64E  67  0.287 29.718 0.280 34.355 0.364  33.988

341  16.1  I64E  60  0.230 29.532 0.279 33.624 0.357  34.028

342  16.2  I64E  68  0.264 29.196 0.261 32.716 0.340  33.763

343  16.3  I64E  64  0.238 29.140 0.264 32.978 0.313  34.464

344  16.4  I64E  59  0.225 29.012 0.262 33.923 0.329  34.562

345  16.5  I64E  49  0.206 29.339 0.268 33.717 0.324  34.326

346  16.6  I64E  74  0.244 29.540 0.282 33.902 0.326  34.322

347  16.7  I64E  68  0.288 29.511 0.333 34.834 0.405  34.564

348  16.8  I64E  62  0.257 29.569 0.397 35.533 0.467  34.545
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349  16.9  I64E  49  0.232 29.547 0.278 34.944 0.336  34.253

350  17  I64E  53  0.232 29.543 0.291 34.871 0.358  34.546

351  17.1  I64E  70  0.230 29.434 0.328 34.928 0.400  35.048

352  17.2  I64E  45  0.287 29.414 0.317 34.908 0.384  35.174

353  17.3  I64E  57  0.230 29.119 0.265 33.912 0.382  35.162

354  17.4  I64E  55  0.244 29.201 0.250 33.109 0.315  34.857

355  17.5  I64E  117  0.290 29.165 0.238 31.240 0.344  34.126

356  17.6  I64E  159  0.588 29.266 0.463 31.095 0.523  34.133

357  17.7  I64E  114  0.500 29.514 0.483 31.282 0.505  34.855

358  0.4  US15  85  0.239 20.961 0.176 16.768 0.218  16.698

359  0.5  US15  95  0.290 23.727 0.171 19.297 0.307  22.303

360  0.6  US15  114  0.313 23.255 0.238 19.919 0.335  23.189

361  0.7  US15  84  0.247 23.353 0.231 20.349 0.310  23.276

362  0.8  US15  66  0.194 23.067 0.222 20.864 0.280  23.148

363  0.9  US15  64  0.199 23.857 0.250 21.136 0.297  22.629

364  1  US15  101  0.279 23.897 0.284 22.550 0.358  24.371

365  1.1  US15  93  0.233 22.933 0.285 23.762 0.381  25.433

366  1.2  US15  82  0.237 23.177 0.278 23.526 0.321  24.160

367  1.3  US15  86  0.245 23.113 0.292 24.026 0.338  24.564

368  1.4  US15  88  0.249 23.532 0.280 23.248 0.311  22.721

369  1.5  US15  80  0.228 23.287 0.266 23.110 0.325  23.647

370  1.6  US15  83  0.249 23.243 0.275 23.191 0.330  24.231

371  1.7  US15  66  0.196 23.769 0.261 23.272 0.304  24.171

372  1.8  US15  63  0.202 23.486 0.255 24.254 0.290  24.962

373  1.9  US15  73  0.209 23.752 0.258 24.642 0.315  25.655

374  2  US15  81  0.239 23.640 0.297 25.276 0.378  25.333

375  2.1  US15  101  0.272 23.282 0.309 24.404 0.372  25.348

376  2.2  US15  76  0.247 24.028 0.292 23.813 0.343  25.758

377  2.3  US15  87  0.274 24.175 0.291 24.268 0.416  26.527

378  2.4  US15  106  0.324 24.020 0.327 23.693 0.421  26.585

379  2.5  US15  101  0.297 23.411 0.275 22.234 0.341  24.034

380  2.6  US15  91  0.283 22.454 0.294 21.872 0.344  23.046

381  2.7  US15  102  0.299 22.853 0.252 17.894 0.283  16.081

382  2.8  US15  92  0.248 23.739 0.247 18.471 0.282  20.600

383  2.9  US15  79  0.211 23.345 0.245 20.503 0.319  24.008

384  3  US15  81  0.222 23.499 0.258 21.928 0.303  25.027

385  3.1  US15  80  0.230 23.326 0.278 23.319 0.321  25.540

386  3.2  US15  79  0.228 23.881 0.276 24.104 0.341  25.635

387  3.3  US15  79  0.224 23.257 0.268 24.201 0.314  26.473

388  3.4  US15  82  0.256 23.415 0.299 24.915 0.364  26.536

389  3.5  US15  81  0.251 23.383 0.288 25.692 0.331  26.478

390  3.6  US15  83  0.253 23.503 0.276 26.029 0.328  26.510

391  3.7  US15  126  0.372 23.636 0.354 25.592 0.422  26.650

392  3.8  US15  72  0.232 23.049 0.263 25.325 0.342  26.695

393  3.9  US15  100  0.239 23.469 0.275 22.669 0.319  25.945

394  4  US15  271  0.354 17.670 0.301 17.730 0.363  19.343

395  0.22  SR616  97  0.214 18.404 0.216 17.373 0.220  19.312

396  0.32  SR616  148  0.293 19.982 0.258 19.171 0.277  18.521

397  0.42  SR616  129  0.270 18.466 0.278 20.070 0.295  20.426

398  0.52  SR616  101  0.194 18.823 0.217 19.645 0.277  20.847
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399  0.62  SR616  98  0.228 19.639 0.227 20.742 0.281  21.670

400  0.72  SR616  86  0.210 20.985 0.222 22.163 0.248  21.737

401  0.82  SR616  120  0.257 20.761 0.253 21.361 0.348  21.624

402  0.92  SR616  102  0.252 21.125 0.213 21.382 0.271  20.541

403  1.02  SR616  148  0.387 21.391 0.325 21.129 0.452  22.077

404  1.12  SR616  172  0.381 20.342 0.294 20.700 0.360  22.220

405  1.22  SR616  122  0.235 20.968 0.225 20.928 0.311  21.997

406  1.32  SR616  88  0.231 21.221 0.222 20.732 0.241  21.465

407  1.42  SR616  142  0.314 21.086 0.268 21.366 0.348  21.820

408  1.52  SR616  125  0.256 21.182 0.258 21.962 0.315  21.616

409  1.62  SR616  135  0.303 20.068 0.317 21.932 0.317  21.842

410  1.72  SR616  102  0.229 20.305 0.260 22.429 0.287  22.013

411  1.82  SR616  158  0.361 19.380 0.286 21.170 0.303  21.440

412  1.92  SR616  131  0.324 18.877 0.284 19.671 0.290  18.789

413  2.02  SR616  140  0.320 20.332 0.283 21.230 0.379  21.457

414  2.12  SR616  116  0.235 19.932 0.222 20.523 0.249  19.937

415  2.22  SR616  125  0.295 19.450 0.246 18.199 0.237  17.804

416  2.32  SR616  650  0.160 14.467 0.158 10.717 0.214  10.898

417  0.11  SR600  182  0.355 17.340 0.340 15.336 0.307  15.352

418  0.21  SR600  144  0.351 19.214 0.286 16.689 0.336  17.687

419  0.31  SR600  149  0.365 19.593 0.312 18.319 0.392  19.083

420  0.41  SR600  118  0.275 19.613 0.277 18.232 0.303  19.961

421  0.51  SR600  175  0.363 19.095 0.366 19.352 0.425  20.225

422  0.61  SR600  165  0.350 18.711 0.318 19.312 0.349  19.457

423  0.71  SR600  134  0.287 19.645 0.306 19.052 0.362  20.886

424  0.81  SR600  114  0.231 18.533 0.229 18.031 0.299  21.313

425  0.91  SR600  219  0.452 16.248 0.373 15.667 0.441  19.226

426  0.23  SR600  121  0.196 15.194 0.221 16.831 0.285  17.439

427  0.33  SR600  134  0.264 16.112 0.331 16.974 0.363  17.689

428  0.43  SR600  97  0.205 18.688 0.225 16.853 0.238  18.600

429  0.53  SR600  122  0.290 21.464 0.242 19.296 0.344  21.121

430  0.63  SR600  177  0.404 22.555 0.373 20.854 0.477  23.166

431  0.73  SR600  214  0.439 18.879 0.418 18.850 0.437  17.275

432  0.83  SR600  114  0.217 18.175 0.252 18.024 0.272  16.281

433  0.93  SR600  147  0.224 17.818 0.196 16.713 0.270  17.621

434  1.03  SR600  139  0.246 15.295 0.237 15.124 0.276  15.793

435  1.13  SR600  104  0.176 15.784 0.203 15.649 0.234  17.374

436  1.23  SR600  96  0.184 16.489 0.204 14.227 0.217  16.349

437  1.33  SR600  87  0.169 16.026 0.173 16.492 0.199  16.181

438  1.43  SR600  93  0.206 18.029 0.196 17.187 0.251  19.222

439  1.53  SR600  117  0.198 17.111 0.236 17.535 0.282  18.333

440  1.63  SR600  123  0.214 15.378 0.248 16.649 0.238  17.363

441  1.73  SR600  111  0.200 16.362 0.205 17.408 0.287  17.872

442  1.83  SR600  115  0.226 17.935 0.236 16.627 0.281  18.166

443  1.93  SR600  126  0.232 18.333 0.238 18.552 0.283  18.530

444  2.03  SR600  122  0.241 18.189 0.266 19.126 0.304  19.300

445  2.13  SR600  125  0.232 17.025 0.298 18.446 0.316  18.134

446  2.23  SR600  112  0.224 18.330 0.246 19.772 0.274  18.817

447  2.33  SR600  89  0.194 19.080 0.229 20.598 0.242  19.751

448  2.43  SR600  86  0.191 19.505 0.221 19.940 0.247  20.624
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449  2.53  SR600  99  0.242 19.946 0.232 18.828 0.293  20.643

450  2.63  SR600  104  0.232 20.138 0.186 16.004 0.253  20.642

451  2.73  SR600  1128  0.241 12.260 0.171 7.500 0.294  14.571

452  0.25  SR799  101  0.227 17.996 NA 15.941 0.248  16.669

453  0.35  SR799  109  0.258 21.617 0.241 20.097 0.300  23.367

454  0.45  SR799  142  0.269 20.753 0.253 20.414 0.366  23.924

455  0.55  SR799  145  0.217 17.730 0.244 20.058 0.310  22.506

456  0.65  SR799  161  0.306 18.801 0.316 21.249 0.430  24.456

457  0.75  SR799  123  0.225 19.255 0.238 20.495 0.269  22.123

458  0.85  SR799  147  0.293 18.112 0.287 17.949 0.333  18.879

459  0.95  SR799  161  0.373 21.573 0.302 18.372 0.390  21.563

460  1.05  SR799  186  0.426 22.057 0.376 19.568 0.453  21.623

461  1.15  SR799  147  0.274 18.234 0.273 17.971 0.271  16.935

462  1.25  SR799  229  0.394 17.430 0.372 17.637 0.400  16.600

463  1.35  SR799  123  0.250 18.278 0.240 18.473 0.274  19.308

464  1.45  SR799  125  0.261 18.263 0.283 18.490 0.313  19.093

465  1.55  SR799  113  0.241 18.387 0.224 20.550 0.286  20.844

466  1.65  SR799  139  0.240 17.154 0.277 19.456 0.323  19.790

467  1.75  SR799  131  0.208 16.528 0.251 18.780 0.257  19.088

468  1.85  SR799  126  0.189 14.302 0.240 17.283 0.261  17.916

469  1.95  SR799  125  0.201 14.308 0.238 16.451 0.249  16.954

470  2.05  SR799  115  0.196 16.331 0.222 17.641 0.246  18.866

471  2.15  SR799  115  0.212 16.580 0.270 18.481 0.294  19.876

472  2.25  SR799  112  0.188 15.968 0.247 19.161 0.285  20.627

473  2.35  SR799  121  0.234 17.018 0.268 18.907 0.347  21.883

474  2.45  SR799  108  0.226 17.089 0.233 19.636 0.271  20.869

475  2.55  SR799  130  0.224 16.644 0.258 19.413 0.288  20.164

476  2.65  SR799  113  0.215 17.725 0.250 19.721 0.272  19.500

477  2.75  SR799  120  0.208 16.712 0.251 19.336 0.271  19.216

478  2.85  SR799  106  0.223 17.728 0.235 18.554 0.285  19.850

479  2.95  SR799  87  0.189 16.466 0.219 17.998 0.220  18.620

480  3.05  SR799  104  0.206 16.549 0.240 17.516 0.254  17.673

481  3.15  SR799  214  0.274 9.524 0.377 10.546 0.313  12.691

482  0.09  SR676  173  0.320 16.990 0.280 15.431 NA  15.162

483  0.19  SR676  174  0.345 18.404 0.304 17.515 0.286  13.805

484  0.29  SR676  233  0.400 17.308 0.357 15.903 0.374  15.775

485  0.39  SR676  206  0.316 17.055 0.338 16.384 0.380  17.654

486  0.49  SR676  171  0.337 17.527 0.355 17.245 0.375  17.885

487  0.59  SR676  248  0.462 18.488 0.422 18.720 0.481  19.949

488  0.69  SR676  205  0.386 18.235 0.354 18.779 0.424  20.408

489  0.79  SR676  171  0.285 18.356 0.353 19.739 0.389  21.062

490  0.89  SR676  178  0.351 19.054 0.388 19.822 0.436  21.565

491  0.99  SR676  215  0.391 18.158 0.410 19.262 0.451  20.743

492  1.09  SR676  190  0.390 18.102 0.382 18.667 0.472  19.180

493  1.19  SR676  193  0.411 17.467 0.379 17.923 0.437  18.368

494  1.29  SR676  183  0.379 18.739 0.374 18.576 0.423  20.004

495  1.39  SR676  216  0.446 19.020 0.396 19.137 0.450  21.730

496  1.49  SR676  191  0.382 20.433 0.375 20.050 0.455  22.804

497  1.59  SR676  152  0.311 20.458 0.320 19.654 0.395  21.487

498  1.69  SR676  208  0.359 17.004 0.308 14.932 0.410  15.348
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499  1.79  SR676  174  0.329 16.181 0.284 13.782 0.352  15.172

500  1.89  SR676  178  0.334 16.735 0.317 17.305 0.338  17.506

501  1.99  SR676  181  0.288 14.968 0.301 16.188 0.329  17.514

502  2.09  SR676  172  0.285 15.903 0.336 16.586 0.319  17.448

503  2.19  SR676  223  0.338 15.307 0.355 15.120 0.387  15.704

504  2.29  SR676  221  0.364 15.199 0.341 14.776 0.404  15.689

505  2.39  SR676  190  0.353 15.870 0.341 14.058 0.330  14.598

506  2.49  SR676  186  0.365 18.365 0.365 15.323 0.383  17.362

507  2.59  SR676  200  0.510 18.407 0.378 15.341 0.442  17.251

508  2.69  SR676  195  0.300 12.937 0.305 10.721 0.349  12.261
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Appendix 3 Quarter Car Simulation Results 

ID  Route  Distant  Sim1  Sim2  Sim3  Sim4  Sim5  Sim6  Sim7  Sim8  Sim9 

1  SR799  0.1  0.765  0.774 0.749 0.902 0.677 0.775 0.759  0.769  0.760

2  SR799  0.2  0.403  0.427 0.394 0.457 0.351 0.399 0.411  0.402  0.404

3  SR799  0.3  0.570  0.574 0.575 0.620 0.515 0.562 0.582  0.571  0.569

4  SR799  0.4  0.619  0.624 0.621 0.686 0.554 0.612 0.631  0.621  0.616

5  SR799  0.5  0.765  0.773 0.770 0.915 0.589 0.748 0.792  0.766  0.762

6  SR799  0.6  0.669  0.697 0.629 0.817 0.561 0.666 0.677  0.672  0.663

7  SR799  0.7  0.487  0.495 0.483 0.617 0.362 0.486 0.496  0.490  0.484

8  SR799  0.8  0.718  0.744 0.697 0.826 0.593 0.714 0.729  0.720  0.714

9  SR799  0.9  0.650  0.670 0.649 0.756 0.503 0.638 0.672  0.651  0.649

10  SR799  1  0.982  1.007 0.964 1.093 0.902 0.980 0.988  0.983  0.980

11  SR799  1.1  0.625  0.628 0.637 0.800 0.474 0.602 0.660  0.627  0.622

12  SR799  1.2  0.798  0.819 0.777 0.841 0.703 0.787 0.815  0.800  0.793

13  SR799  1.3  1.213  1.223 1.228 1.477 0.962 1.188 1.254  1.215  1.210

14  SR799  1.4  0.483  0.491 0.478 0.511 0.389 0.472 0.503  0.486  0.479

15  SR799  1.5  0.549  0.564 0.541 0.642 0.467 0.547 0.559  0.551  0.547

16  SR799  1.6  0.520  0.534 0.503 0.645 0.418 0.522 0.522  0.523  0.516

17  SR799  1.7  0.678  0.693 0.670 0.718 0.572 0.669 0.695  0.682  0.674

18  SR799  1.8  0.691  0.694 0.700 0.795 0.534 0.672 0.719  0.693  0.688

19  SR799  1.9  0.679  0.693 0.679 0.721 0.589 0.667 0.698  0.681  0.677

20  SR799  2  0.653  0.667 0.652 0.678 0.596 0.643 0.671  0.654  0.651

21  SR799  2.1  0.478  0.483 0.490 0.510 0.388 0.465 0.499  0.479  0.478

22  SR799  2.2  0.453  0.463 0.452 0.578 0.339 0.446 0.467  0.455  0.452

23  SR799  2.3  0.462  0.470 0.463 0.591 0.340 0.455 0.476  0.464  0.461

24  SR799  2.4  0.492  0.512 0.481 0.588 0.421 0.494 0.494  0.493  0.491

25  SR799  2.5  0.456  0.488 0.419 0.552 0.406 0.466 0.448  0.458  0.454

26  SR799  2.6  0.484  0.496 0.479 0.563 0.388 0.477 0.496  0.485  0.482

27  SR799  2.7  0.552  0.557 0.551 0.617 0.474 0.546 0.564  0.555  0.548

28  SR799  2.8  0.629  0.631 0.634 0.685 0.581 0.621 0.642  0.631  0.627

29  SR799  2.9  0.543  0.551 0.539 0.653 0.428 0.539 0.554  0.546  0.539

30  SR799  3  0.273  0.300 0.245 0.300 0.247 0.278 0.270  0.274  0.272

31  SR799  3.1  0.331  0.355 0.301 0.378 0.293 0.341 0.322  0.332  0.329

32  SR799  3.2  0.539  0.555 0.526 0.677 0.421 0.535 0.550  0.541  0.536

33  SR799  3.3  0.953  1.006 0.888 0.971 0.913 0.975 0.935  0.961  0.944

34  SR799  3.4  0.676  0.760 0.568 0.726 0.620 0.686 0.669  0.672  0.673

35  SR600  0  1.066  1.135 0.985 1.313 0.887 1.080 1.062  1.069  1.060

36  SR600  0.1  0.952  0.993 0.924 1.183 0.733 0.947 0.971  0.956  0.948

37  SR600  0.2  0.764  0.784 0.750 0.853 0.673 0.760 0.776  0.766  0.761

38  SR600  0.3  0.814  0.825 0.778 0.977 0.686 0.824 0.813  0.823  0.804

39  SR600  0.4  0.767  0.800 0.728 0.919 0.627 0.773 0.767  0.768  0.766
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40  SR600  0.5  1.147  1.171 1.126 1.487 0.849 1.136 1.172  1.156  1.137

41  SR600  0.6  0.748  0.764 0.734 0.942 0.613 0.751 0.751  0.752  0.744

42  SR600  0.7  0.670  0.672 0.671 0.840 0.504 0.664 0.686  0.674  0.666

43  SR600  0.8  0.742  0.803 0.678 0.847 0.627 0.744 0.748  0.740  0.740

44  SR600  0.9  0.640  0.668 0.601 0.816 0.579 0.657 0.630  0.645  0.634

45  SR600  1  0.597  0.616 0.590 0.703 0.471 0.591 0.611  0.599  0.595

46  SR600  1.1  0.577  0.621 0.524 0.619 0.524 0.592 0.567  0.580  0.572

47  SR600  1.2  0.454  0.470 0.430 0.520 0.367 0.450 0.462  0.455  0.451

48  SR600  1.3  0.529  0.544 0.529 0.602 0.453 0.520 0.547  0.529  0.528

49  SR600  1.4  0.851  0.877 0.821 0.982 0.761 0.851 0.855  0.855  0.846

50  SR600  1.5  0.991  1.145 0.806 1.113 0.892 1.009 0.979  0.983  0.991

51  SR600  1.6  0.423  0.434 0.425 0.448 0.348 0.416 0.436  0.423  0.422

52  SR600  1.7  0.687  0.687 0.708 0.781 0.518 0.664 0.722  0.688  0.685

53  SR600  1.8  0.578  0.614 0.547 0.675 0.489 0.578 0.585  0.580  0.576

54  SR600  1.9  0.515  0.526 0.511 0.581 0.444 0.509 0.526  0.516  0.513

55  SR600  2  0.343  0.363 0.323 0.379 0.312 0.347 0.341  0.344  0.341

56  SR600  2.1  0.368  0.379 0.368 0.400 0.317 0.363 0.378  0.369  0.368

57  SR600  2.2  0.551  0.561 0.552 0.558 0.523 0.544 0.561  0.551  0.550

58  SR600  2.3  0.614  0.620 0.622 0.653 0.540 0.607 0.626  0.616  0.612

59  SR600  2.4  0.633  0.644 0.622 0.754 0.532 0.639 0.634  0.638  0.629

60  SR600  2.5  0.373  0.385 0.363 0.432 0.333 0.377 0.373  0.375  0.372

61  SR600  2.6  0.428  0.459 0.397 0.456 0.390 0.433 0.425  0.428  0.426

62  SR600  2.7  0.504  0.518 0.502 0.610 0.396 0.498 0.518  0.505  0.503

63  SR600  2.8  0.641  0.662 0.645 0.720 0.499 0.624 0.668  0.642  0.641

64  SR600  2.9  0.750  0.767 0.755 0.816 0.622 0.736 0.776  0.750  0.749

65  SR600  3  0.472  0.489 0.466 0.498 0.428 0.469 0.480  0.473  0.471

66  SR600  3.1  0.375  0.386 0.366 0.456 0.308 0.375 0.380  0.377  0.373

67  SR600  3.2  0.377  0.391 0.368 0.423 0.325 0.374 0.385  0.378  0.376

68  SR600  3.3  0.446  0.459 0.437 0.539 0.361 0.445 0.452  0.448  0.444

69  SR600  3.4  0.525  0.536 0.518 0.588 0.449 0.519 0.536  0.527  0.523

70  SR616  0.1  0.549  0.560 0.551 0.580 0.478 0.542 0.562  0.551  0.547

71  SR616  0.2  0.636  0.642 0.649 0.685 0.513 0.620 0.658  0.637  0.635

72  SR616  0.3  0.667  0.696 0.632 0.753 0.604 0.669 0.671  0.672  0.662

73  SR616  0.4  0.513  0.550 0.480 0.548 0.456 0.514 0.517  0.513  0.512

74  SR616  0.5  0.439  0.447 0.439 0.506 0.364 0.433 0.451  0.440  0.438

75  SR616  0.6  0.431  0.439 0.429 0.485 0.362 0.426 0.440  0.432  0.429

76  SR616  0.7  0.382  0.398 0.373 0.421 0.344 0.383 0.384  0.383  0.381

77  SR616  0.8  0.559  0.571 0.558 0.661 0.452 0.548 0.578  0.560  0.558

78  SR616  0.9  0.445  0.479 0.419 0.476 0.386 0.444 0.450  0.444  0.445

79  SR616  1  0.793  0.828 0.775 0.910 0.655 0.791 0.803  0.793  0.792

80  SR616  1.1  0.638  0.691 0.594 0.680 0.556 0.637 0.645  0.637  0.637
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81  SR616  1.2  0.506  0.509 0.515 0.579 0.390 0.488 0.534  0.508  0.503

82  SR616  1.3  0.335  0.355 0.319 0.377 0.302 0.337 0.334  0.335  0.334

83  SR616  1.4  0.454  0.492 0.394 0.531 0.399 0.462 0.450  0.458  0.449

84  SR616  1.5  0.588  0.593 0.593 0.668 0.478 0.576 0.607  0.590  0.586

85  SR616  1.6  0.535  0.550 0.506 0.636 0.466 0.549 0.525  0.540  0.530

86  SR616  1.7  0.605  0.613 0.610 0.622 0.521 0.594 0.623  0.607  0.603

87  SR616  1.8  0.590  0.646 0.553 0.646 0.483 0.590 0.599  0.589  0.591

88  SR616  1.9  0.404  0.436 0.386 0.435 0.355 0.405 0.406  0.403  0.405

89  SR616  2  0.600  0.613 0.594 0.698 0.522 0.593 0.612  0.602  0.598

90  SR616  2.1  0.601  0.618 0.574 0.652 0.511 0.599 0.610  0.606  0.595

91  SR616  2.2  0.550  0.577 0.539 0.611 0.459 0.540 0.569  0.550  0.549

92  SR676  0  0.885  0.957 0.810 0.966 0.832 0.920 0.852  0.889  0.881

93  SR676  0.1  0.657  0.711 0.581 0.771 0.591 0.679 0.639  0.661  0.651

94  SR676  0.2  0.730  0.786 0.671 0.799 0.656 0.736 0.729  0.733  0.726

95  SR676  0.3  0.852  0.883 0.815 0.906 0.702 0.849 0.870  0.860  0.842

96  SR676  0.4  0.601  0.636 0.539 0.665 0.538 0.617 0.589  0.606  0.593

97  SR676  0.5  0.648  0.680 0.553 0.711 0.598 0.673 0.625  0.660  0.632

98  SR676  0.6  1.187  1.392 0.919 1.256 1.131 1.234 1.141  1.192  1.180

99  SR676  0.7  0.730  0.810 0.630 0.782 0.666 0.750 0.714  0.731  0.724

100  SR676  0.8  0.696  0.721 0.673 0.744 0.589 0.690 0.712  0.699  0.691

101  SR676  0.9  0.951  0.969 0.932 1.157 0.744 0.946 0.967  0.956  0.944

102  SR676  1  0.910  0.968 0.834 1.048 0.771 0.932 0.900  0.917  0.900

103  SR676  1.1  0.861  0.884 0.797 1.093 0.725 0.887 0.840  0.875  0.847

104  SR676  1.2  0.920  0.986 0.814 1.014 0.826 0.949 0.898  0.926  0.909

105  SR676  1.3  0.775  0.819 0.739 0.839 0.671 0.782 0.777  0.778  0.771

106  SR676  1.4  0.950  1.041 0.815 1.058 0.860 0.973 0.932  0.954  0.940

107  SR676  1.5  0.832  0.891 0.741 0.916 0.757 0.854 0.815  0.839  0.822

108  SR676  1.6  0.652  0.680 0.607 0.732 0.569 0.662 0.650  0.659  0.645

109  SR676  1.7  1.089  1.110 1.081 1.201 0.905 1.075 1.119  1.095  1.082

110  SR676  1.8  0.863  0.893 0.848 1.001 0.697 0.850 0.888  0.865  0.860

111  SR676  1.9  1.022  1.077 0.904 1.250 0.905 1.046 1.001  1.032  1.007

112  SR676  2  0.671  0.714 0.632 0.779 0.583 0.679 0.669  0.673  0.667

113  SR676  2.1  0.675  0.708 0.652 0.764 0.577 0.673 0.686  0.677  0.673

114  SR676  2.2  0.821  0.909 0.726 0.842 0.762 0.822 0.825  0.815  0.821

115  SR676  2.3  1.189  1.252 1.118 1.237 1.104 1.185 1.203  1.192  1.183

116  SR676  2.4  1.004  1.053 0.914 1.119 0.930 1.010 1.002  1.010  0.993

117  SR676  2.5  0.778  0.830 0.732 0.953 0.640 0.779 0.784  0.777  0.776

118  SR676  2.6  0.919  0.980 0.848 1.002 0.847 0.931 0.911  0.920  0.914
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Appendix 4 Matlab Code for Quarter-car Simulation 

Appendix 4.1 Quarter-car Model Function 

function [Y, Y1, tstep, X, dX] = qcar(x,p,v,f,f1,f2,c,mu) 
if nargin<5 
    f1 = 1; 
    f2 = 1; 
    c = 6; 
    mu = 0.15; 
end 
N = 1; 
% calculates the quarter car response 
[x, ia] = unique(x); 
p = p(ia); 
X = linspace(min(x),max(x),length(x)); 
P = interp1(x,p,X); 
t = (X-min(X))/v; 
% Dt = (t(2)-t(1))*ones(4); 
Dt = (t(2)-t(1)); 
tstep = Dt(1); 
dX = X(2)-X(1); 
SR = f/dX; 
k = max(1,round(SR)); 
SP = (P(1+(2*floor(k/2)+1):end)-P(1:end-(2*floor(k/2)+1)))/((2*floor(k/2)+1)*dX); 
Y = zeros(4,length(SP)+1); 
XLEAD = 11; 
[~, ind] = min(abs(t-XLEAD/v)); 
ind = min(2,ind); 
XIN = [(P(ind)-P(1))/XLEAD,0,(P(ind)-P(1))/XLEAD,0]'; 
Y(:,1) = XIN; 
k1 = 653*f1; 
k2 = 63.3*f2; 
A = [ 0         1        0        0;... 
     -k2       -c        k2       c;... 
      0         0        0        1;... 
    k2/mu     c/mu -(k1+k2)/mu -c/mu]; 
iA = inv(A); 
B = [0 0 0 k1/mu]'; 
EXPA = expm(Dt*A); 
P = iA*(EXPA-eye(4))*B; 
for i=1:length(SP) 
    Y(:,i+1) = EXPA*Y(:,i)+P*SP(i); 
end 
Y1 = zeros(size(Y)); 
for i=1:4 
    Y1(i,:) = cumsum(Y(i,:))*dX; 
end 
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Appendix 4.2 Simulation Code 

D = csvread('C:\Users\hz3xm\Documents\Dropbox\2014 Summer-
Fall\Dissertation\Sensitivity\sr600-3.csv',1,1); 
xp = D(:,1)'*0.3048; % distant in meter 
zp = D(:,2)'*0.0254; % elevuation in meter 
zp = mvaveragec(zp,5); % need to change to number of averaging points 
F=0.270; % window size of moving average 10*0.984252 
interval=(xp(2)-xp(1)); % sampling interval 
n=round(160.934/interval); % number of recores every 0.1 mile 
m=1609.934/interval; % ratio of mile/interval 
V=22.2222; % simulating speeds 
noseg=floor(length(xp)/n); % number of segments in the profile data 
IRI=zeros(noseg+1,10); % initalize IRI matrix 
ABS=zeros(noseg+1,10); % initalize ABS 
RMS=zeros(noseg+1,10); % initalize RMS 
for i=1:noseg 
    IRI(i,1)=(i-1)*0.1; % distant 
end 
IRI(noseg+1,1)=noseg*0.1; 
ABS(:,1)=IRI(:,1);  
RMS(:,1)=IRI(:,1); 
f1=[1;1.44;0.56;1;1;1;1;1;1]; 
f2=[1;1;1;1.54;0.46;1;1;1;1]; 
%c=[6;6;6;6;6;6.9;5.1;6;6]; 
c=[3;3;3;3;3;3.45;2.55;3;3]; 
mu=[0.15;0.15;0.15;0.15;0.15;0.15;0.15;0.17;0.13]; 
for j=1:9 
    [Y, Y1, dt, ~, dX] = qcar(xp,zp,V,F,f1(j),f2(j),c(j),mu(j)); 
    %[Y, Y1, dt, ~, dX] = qcar(xp,zp,V(j),F,1.34,1,6,0.08); 
    %[Y, Y1, dt, ~, dX] = qcar(xp,zp,V(j),F,1.34,1.25,8,0.08); 
    iri=abs(Y(3,:)-Y(1,:)); 
    ab=abs(Y(2,:)); 
    ACC=Y(2,:)*dX/dt; 
    for k=1:noseg 
        IRI(k,j+1)=m*mean(iri(((k-1)*n+1):((k-1)*n+n))); 
        ABS(k,j+1)=mean(ab(((k-1)*n+1):((k-1)*n+n))); 
        %RMS(k,j+1)=sqrt((1/n)*Y(2,((k-1)*n+1):((k-1)*n+n))*transpose(Y(2,((k-1)*n+1):((k-
1)*n+n)))); 
        RMS(k,j+1)=sqrt((1/n)*ACC(((k-1)*n+1):((k-1)*n+n))*transpose(ACC(((k-1)*n+1):((k-
1)*n+n)))); 
    end 
    IRI(noseg+1,j+1)=m*mean(iri((noseg*n+1):length(iri))); 
    ABS(noseg+1,j+1)=mean(ab((noseg*n+1):length(iri))); 
end 
%plot(IRI(:,1),IRI(:,2),IRI(:,1),IRI(:,3),IRI(:,1),IRI(:,4),IRI(:,1),IRI(:,5),IRI(:,1),IRI(:,6),IRI(:,1),
IRI(:,7),IRI(:,1),IRI(:,8),IRI(:,1),IRI(:,9)); 
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%xlabel('Distant(mile)'); 
%ylabel('IRI(in/mile)'); 
%legend('20 mph','30 mph','40 mph','50 mph','60 mph','70 mph','80 mph','90 mph'); 
dlmwrite('IRIsimL.txt', IRI, 'delimiter', '\t', 'precision',6); 
dlmwrite('ABSsimL.txt', ABS, 'delimiter', '\t', 'precision',6); 
dlmwrite('RMSsimL.txt', RMS, 'delimiter', '\t', 'precision',6); 


