
RAISING DEFORESTATION AWARENESS THROUGH ONLINE EDUCATION

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Trevor Bedsaul
Spring, 2020

Technical Project Team Members
Trevor Bedsaul
Henry Clabby
Ryan Coulter
Sammy Hecht
Dylan Peters
 Teddy Vallar
Rob Wallace

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines for
Thesis-Related Assignments

Signature __ Date __________
 ​ Trevor Bedsaul

Approved __ Date __________
 Dr. Ahmed Ibrahim, Department of Computer Science

Table of Contents

Abstract 3

List of Figures 5

1. Introduction 6
1.1 Problem Statement 6
1.2 Contributions 8

2. Related Work 9

3. System Design 11
3.1 System Requirements 11
3.2 Wireframes 12
3.3 Sample Code 14
3.4 Sample Tests 22
3.5 Code Coverage 25
3.6 Installation Instructions 29

3.6.1 Initial AWS Account Setup 29
3.6.2 Create an EC2 instance and download AWS private key 29
3.6.3 Setup security group for EC2 30
3.6.4 Edit permissions of AWS private key 30
3.6.5 SSH to AWS server 31
3.6.6 Create S3 bucket 31
3.6.7 Install project and dependencies 31
3.6.8 Create the secret.py file 32
3.6.9 Login to MySQL and set up database 33
3.6.10 Collect static files and migrate the database 33
3.6.11 Webservice setup 34

4. Results 35

5. Conclusions 38

6. Future Work 40

7. References 41

2

Abstract

Our capstone team worked alongside the Amazon Aid Foundation to solve fundamental

navigation and accessibility issues affecting the foundation’s web-based, educational game called

the “Grow A Tree” game. Our capstone team was motivated by the core mission of the Amazon

Aid Foundation: to educate and spread awareness about the importance of the Amazon

Rainforest, one of the planet’s most vital natural assets in the fight against climate change which

is being rapidly deforested by human destruction and uncontained forest fires. By solving the

game’s issues, our team aimed to answer the question: How can we increase the instructional

value of the game and facilitate wide-spread use of the learning module across classrooms of

North America, and hopefully the globe? This goal was accomplished by first establishing a

working relationship with communications specialist for the Amazon Aid Foundation, Ben

Eppard, to elicit and discuss the functional requirements that would guide our development

process. We employed the Scrum methodology over the course of two semesters, aided by

continuous integration (GitHub) and automated testing (TravicCI) tools. Our team was able to

successfully complete all of the main requirements, resulting in a product that is ready for

deployment and use by the public.

The development process, as a whole, taught us the importance of maintaining effective

communication channels between team members and our client in order to effectively partition

workloads, respond to changing product requirements, and overcome design roadblocks. In

addition, because our work was a continuation of a prior capstone team’s, we learned how

important it is to restructure and refactor an existing codebase during the initial development

3

phases, adding documentation and comments where necessary, in order to streamline future

development. Our team’s work is significant because tropical rainforests often exist in countries

that are rife with political corruption, as is the case with Brazil’s Amazon. Our success in making

the “Grow A Tree” game more usable and accessible therefore increases the amount of students

that can be reached. These students who may go on to be the next generation’s industry leaders,

engineers, policy-makers, or the citizens who influence them, ultimately resulting in the greatest

potential for a long term shift to good-governance of Amazonian resources.

4

List of Figures

Figure Page
1 Rise in Environmental Concern…………..…………………………………………….. 10
2 Choose Login..………………………………………………………………………….. 13
3 Teacher Admin………………………………………………………………………….. 13
4 Tree Game ..…………………………………………………………………………….. 14
5 Teacher Login...………………………………………………………………………… 14

5

1. Introduction

The Amazon Rainforest is one of our planet’s most valuable defenses against climate

change. Acting as the world’s largest carbon sink, the Amazon absorbs around 600 million tons

of carbon dioxide from our atmosphere every year. Unfortunately, human-related deforestation of

tropical rainforests has been accelerating at an alarming rate across the globe. As noted by

Lovejoy and Nobre (2018), two experts on matters of global biodiversity, the Amazon Rainforest

comprises a majority of the planet’s tropical forest, yet around 17% of this species-rich biome

has already been destroyed as of 2018. They suggest that if deforestation climbs higher than

25% an ecological tipping point will be reached, shifting southern and central Amazonia from a

tropical rainforest into a non-forest ecosystem called a degraded savannah (p. 1).

1.1 Problem Statement

The Amazon Aid Foundation, a Charlottesville non-profit, was established in 2010 with

the core mission of educating global citizens on the importance of the Amazon Rainforest and

the implications of its destruction; the foundation garners support to protect and restore the

rainforest using artwork, film, and other multimedia projects. More specifically, Amazon Aid

aims to put pressure on politically and economically powerful organizations because many

continue to operate without any environmental accountability. E. Pereira, Ferreira, Ribeiro,

Carvalho, and H. Pereira, experts in resource conservation and computational modeling,

recorded the series of anti-environmentalist policies enacted by Brazilian politicians linked to the

country’s agribusiness since 2016. President Michel Temer eliminated multiple construction

licenses previously required for companies cutting down the rainforest, and enacted other

6

policies reducing the public’s ability to oversee those construction projects. After deforestation

rates increased in 2016, Temer’s administration cut the Brazilian Ministry of Environment’s

budget in half, then froze the budget at that level for a twenty-year period beginning in 2018. His

successor Jair Bolsonaro promised to continue increasing access to the Amazon’s resources (p. 8,

2019).

In August of 2017 The Amazon Aid Foundation began working with a prior UVa

capstone team over the course of one academic year to develop a learning module that would

educate and inspire middle school students on the importance of the Amazon. This educational,

web-based game named “Grow A Tree” represented a long-term solution that could begin

educating the next generation of environmentalists to boycott politicians and companies who

choose to ignore the deforestation problem. Although this past UVa capstone team was

successful in developing the core functionality of this application, the Amazon Aid Foundation

was left with a new set of problems concerning the learning module. As with any grassroots

effort, Amazon Aid was now concerned with expanding the learning module’s outreach by

getting the game into as many middle-school classrooms as possible, but fundamental issues

with navigation and accessibility hindered its widespread use across public schools in North

America and globally. At the time overall site navigation was minimal and users had no way of

returning to previously completed levels of the game making class-wide discussions difficult. In

addition, the learning module required password-protected accounts to track progress between

logins. This requirement posed a serious barrier to entry because public middle school teachers

require special administrative permission to use any website that requires students to create

7

standalone accounts. It became the current capstone team’s goal to solve these issues for the

Amazon Aid Foundation.

1.2 Contributions

Our capstone team was first able to successfully solve the navigational issues of the

game. We redesigned the game’s views to allow for intuitive backward and forward navigation

throughout all levels of the game for both students and teachers, as well as fixing bugs related to

transitions after a level or task is completed. Our team was also able to reduce barriers to entry

to make the learning module viable for use in public schools. We accomplished this by

restructuring the login process to use a class-wide code, distributed by the teacher, followed by a

personalized four-digit code so that students can track their progress without needing to create an

account with an email and password. In addition, we added teacher administration functionality

to the learning module that allows teachers to track individual student progress and maintains

information on student progress between class sessions.

8

2. Related Work

With the Amazon Rainforest being the world’s largest tropical rainforest and overall

environmental concerns an issue for the majority of the United States and the world (Figure 1,

page 10), Amazon Aid is not alone in their mission. Two other online learning outlets, Rainforest

Alliance and ARCAmazon, have similar missions and purposes when it comes to improving

environmental responsibility in the world.

Rainforest Alliance is “an international non-profit organization working at the

intersection of business, agriculture, and forests to make responsible business the new normal.”

(Rainforest Alliance, 2020). They offer many games for children to play to learn more about

rainforests around the globe, and raise millions of dollars to help improve the life of at risk

rainforests. However, Amazon Aid is able to do a better job than Rainforest Alliance can in

regards to the Amazon Rainforest itself. Amazon Aid focuses entirely on the Amazon Rainforest,

which enables it to maximize children’s education on the struggles of the region.

ARCAmazon focuses all its efforts on the Amazon region, aiming to “to offer sustainable

livelihoods for local people through responsible ecotourism, sustainable rainforest products and

services, agroforestry/analog forestry, reforestation, PES/REDD+, education programs, media

awareness and technology innovation.” (ARCAmazon, 2020) However, ARCAmazon currently

does not have any online learning features aimed towards children, something that Amazon Aid

specializes in.

9

By focusing on both youth education and specializing in the Amazon Rainforest, Amazon

Aid is able to do the most good of any other organization that is out there for their mission of

“fighting for the Amazon through arts, sciences, and education” (Amazon Aid, 2020).

Figure 1: Rise in Environmental Concern: Concern about the environment is rising among both
political parties in the United States, but slowly. (Reuters, 2019)

10

3. System Design

The AmazonAid foundation provides an online educational platform to educate users

about the importance of the Amazon rainforest. Individual users have full access to the platform,

and can register and sign in using an email and password. Teachers have the ability to register

themselves and their students and are given a class access code upon sign up. With an

individualized student access code generated by the teacher, students can then sign in and use the

platform. Teachers also have the ability to track their student’s progress and even reset their

progress if needed. As this system is a continuation of a past project, we used the framework the

project was created with, Django. The code for our project is under the MIT license.

3.1 System Requirements

System requirements are the basis for a project and the first thing that should be talked

about between client and developer. System requirements encapsulate the operational desires of

the client, placing these desires into a list of functional requirements stipulating what each

participant, such as a user, admin, etc., should be able to do. It is through these requirements that

the developers will design and build the system the client wants, at each step of development

making sure each of the requirements are either implemented or can easily be implemented

within the system design. Additionally, enumerating the requirements the client has for the

project will also provide a lense through which the development timeline can be understood.

Each of the system requirements will have development requirements varying in the amount of

time each feature takes to implement and when in the process it can be implemented if it relies

on other system features. Using this information, the developers can plan each sprint to be as

11

effective as possible and shrink development time. The requirements for our project with

Amazon Aid can be found below:

MINIMUM REQUIREMENTS

● As a USER I should be able to go back to previously completed levels within each “tree”

when using the online learning platform.

● As a USER I should be able to enter the learning platform through a single teacher login.

● As a USER I should be able to enter the learning platform using a teacher’s login

information as well as a personal avatar, so that each student doesn’t have to create an

account.

DESIRED REQUIREMENTS

● As an ADMIN I should be able to add images that are persisted in a database, so that

content can be added and served reliably.

● As a USER I should be able to bypass the integrated minigames in order to move onto

more content.

OPTIONAL REQUIREMENTS

● As a USER I should be able to access and play a variety of minigames which are native

to the web app while progressing through learning content.

3.2 Wireframes

Wireframes are an essential part of early communication between client and developers.

Unlike general functionality, aesthetics and design can be difficult to communicate and

misunderstandings between client and developers could lead to expensive and time-consuming

changes late in the design process. Wireframes are a way to mitigate this risk by allowing the

12

client and developer to agree on a general website design without any coding needed. By

beginning the conversation on design before development starts, the development team can enter

the first development phases with a template to use and a firm mutual ground to rely on when

communicating with the client for the questions that arise. The wireframes for our project with

Amazon Aid can be found below:

13

3.3 Sample Code

Model Functions :

User Model: Add Student

def add_student (self):
 if self .userType != 1 : # don't run method if not a teacher
 return

 seed(15)

 flag = True
 all_avatars = [# string list of avatar file names, removed to save space]
 students = self .students # currently a string
 if students is None :

 # get random value for pin, don't have to check if it exists cause it is the first one
 value = random()
 new_pin = int (1000 + (value * (8999)))
 uname = str (self .accessCode) + "-" + str (new_pin)

14

 # register new student
 newStudent = User.objects.create_user(username = uname, activeTreeNum = 0 ,
accessCode = self .accessCode, userType = 2)
 newStudent.save()

 # get avatar for the new student (it will also be the first avatar)
 image_index = 0
 image = all_avatars[image_index]

 # fill in the teacher's stuff
 response = [{ "id" : newStudent.id, "pin" : new_pin, "img" : image}] # have an image name for now
just to have something
 self .students = json.dumps(response) # dumps will submit it as a string
 self .save()
 else :

 #loop until we find a code not yet taken
 while (flag):
 flag = False
 # random float between 0 and 1
 value = random()

 # cast to int and make it between 1000 and 9999
 new_pin = int (1000 + (value * (8999)))

 # get student list, and loop to see if pin exists. Also need to do this for the images once we have that
 list_students = json.loads(students) # makes it a list
 for student in list_students:
 pin = student['pin'] # get pin from student
 # Are pins equal? if so, flag is true and we need a new random pin
 if int (pin) == new_pin:
 flag = True
 break

 #we have now found a pin that isn't used, so register the student
 #print(str(self.accessCode) + "-" + str(new_pin))
 uname = str (self .accessCode) + "-" + str (new_pin)

15

 newStudent = User.objects.create_user(username = uname, activeTreeNum = 0 ,
accessCode = self .accessCode, userType = 2)
 newStudent.save()

 ## get the next avatar in list but finding the current number of students, and getting the next image
index
 image_index = len (list_students) % len (all_avatars)
 image = all_avatars[image_index]
 # add the student to the teacher's json list of students
 response = { "id" : newStudent.id, "pin" : new_pin, "img" : image} # this is a list element
 list_students.append(response)
 self .students = json.dumps(list_students) # dumps will submit it as a string
 self .save()

User Model: Get level completion

def get_level_completion (self):
 trees = TreeNew.objects.all()
 all_levels = []
 for tree in trees:
 level_num = tree.get_current_level(self).number
 if level_num== 0 :
 level_num = 1 # This is checking for the "intro" level in the first tree so that it doesn't print negative
 tot_levels = tree.get_num_levels()
 if level_num == tot_levels and tree.get_current_level(self).is_complete(self):
 all_levels.append([level_num, tot_levels])
 else :
 all_levels.append([level_num- 1 , tot_levels])
 return all_levels

Level Model: is_complete

def is_complete (self , user):
 complete_tasks = self .tasks.filter(completed_users =user)
 return len (complete_tasks) == len (self .tasks.all())

16

Views:

Teacher Admin:

@login_required (login_url = "login")
def teacher_admin (request):
 if request.user.userType != 1 :
 return HttpResponseRedirect(reverse('index'))
 user = request.user
 all_level_data = []

 if user.students != None :
 students = json.loads(user.students)
 for student in students:
 student_code = str (student['pin'])
 stud_user = User.objects.get(id =student['id']) #this only gets one student
 user_img = static(user.get_student_image(student['pin']))
 levels = stud_user.get_level_completion
 all_level_data.append([student_code, levels, user_img])
 context = {
 'data' : all_level_data,
 'teacher_code' : user.accessCode,
 }

 if request.method == 'POST' :
 print (request.POST)
 user = request.user
 if 'add_student' in request.POST:
 # see method in models.py
 user.add_student()
 if 'reset_student' in request.POST:
 if user.students != None :
 students = json.loads(user.students)
 for student in students:
 student_code = str (student['pin'])
 stud_user = User.objects.get(id =student['id'])
 stud_user.reset_user_progress()
 if 'reset_individual_student' in request.POST:

17

 # get the student code from the hidden input in the form
 student_code = request.POST.get('student_code')
 # build the student username
 stud_username = user.accessCode + "-" + str (student_code)
 stud_user = User.objects.get(username =stud_username)
 # reset the progress of the one individual student
 stud_user.reset_user_progress()
 # Download Info button
 elif 'download_info' in request.POST:
 # Create the HttpResponse object with the appropriate CSV header.
 response = HttpResponse(content_type = 'text/csv')
 response['Content-Disposition'] = 'attachment; filename="studentProgress.csv"'
 writer = csv.writer(response)

 # write header row of the csv
 writer.writerow(['Student Code' , 'Tree 1' , 'Tree 2' , 'Tree 3'])
 if user.students != None :
 students = json.loads(user.students)
 # for each student in the class
 for student in students:
 stud_user = User.objects.get(id =student['id']) # this returns a student
 levelProgress = stud_user.get_level_completion() # returns a list of pairs
 writer.writerow([str (student['pin']), levelProgress[0][0], levelProgress[1][0], levelProgress[2][0]])

 return response

 return render(request, 'teacher_admin.html' , context)

Login Student View:

def login_student_view (request):
 form = LoginStudentForm()
 alerts = []
 alert = False
 if request.method == 'POST' :
 form = LoginStudentForm(request.POST)
 if form.is_valid():

18

 # get both access codes from the form
 teach_access_code = form.cleaned_data['teacher_access_code']
 student_access_code = form.cleaned_data['student_access_code']

 # teacher access code does not exist
 if not User.objects.filter(accessCode =teach_access_code).exists():
 alerts.append('Teacher access code is incorrect')
 alert = True
 else : # teacher access code does exist
 teacher = User.objects.get(accessCode =teach_access_code, userType = 1)
 curr_student = None
 students = json.loads(teacher.students)

 # find the student
 for student in students:
 for key, val in student.items():
 if key == "pin" and val == student_access_code:
 curr_student = student

 # student exists
 if not curr_student == None :
 # authenticate the student and login
 student_user = authenticate(username = str (teach_access_code) + "-" + str (student_access_code))
 login(user =student_user, request =request,
backend = "policypiece.student_auth.PasswordlessAuthBackend")
 context = { 'user' : student_user}
 return HttpResponseRedirect(reverse('index'), context)
 else : # student doesn't exist
 alerts.append('Could not find student account')
 alert = True
 else :
 alerts.append('form invalid')
 alert = True
 return render(request, 'login_student.html' , { 'form' : form, 'alerts' : alerts, 'alert' : alert})

19

Add Article for Game:

@login_required (login_url = "login")
def add_article (request):
 if request.user.isAdmin == 0 :
 return HttpResponseRedirect(reverse('index'))

 if request.method == "POST" :
 form = ArticleForm(request.POST)
 if form.is_valid():
 # Save article
 title = form.cleaned_data['title']
 category = form.cleaned_data['category']
 _base64content = form.cleaned_data['_base64content']
 if LearnContent.objects.filter(title =title).exists():
 form.add_error('title' , 'Must be unique.')
 else :
 article = LearnContent.objects.create(
 title =title,
 category =category,
 _base64content =_base64content
)
 article.save()

 # Save associated task if level was selected
 level_id = int (form.cleaned_data.get('level_id'))
 if level_id != 0 :
 level = Level.objects.get(pk =level_id)
 task = Task.objects.create(
 name = 'Article Task' ,
 description = 'See article' ,
 level =level,
 article =article
)
 task.save()

20

 # enable this page if the user wants to redirect automatically after
 # adding a new article, else page will refresh to new add form
 # return redirect('view_articles')
 else :
 form = ArticleForm()

 trees = TreeNew.objects.all().order_by('pk')
 levels_by_tree = {}
 for tree in trees:
 levels = tree.get_ordered_levels()
 levels_by_tree[tree.id] = json.loads(serializers.serialize('json' , levels))
 levels_by_tree = json.dumps(levels_by_tree)

 context = {
 'form' : form,
 'trees' : trees,
 'levels_by_tree' : levels_by_tree
 }
 return render(request, 'admin_dashboard/articles/addarticle.html' , context)

Forms:

Login Student Form:

class LoginStudentForm (forms . Form):
 teacher_access_code = forms.CharField(label = 'Teacher Code' , max_length = 10)
 student_access_code = forms.IntegerField(label = 'Student Code')

Article Form (articles for game):

class ArticleForm (forms . Form):
 CATEGORIES = (
 ('Article' , 'Article'),
 ('Game' , 'Game'),
 ('Video' , 'Video')
)

21

 title = forms.CharField(label = 'Title' , max_length = 100)
 category = forms.ChoiceField(label = 'Category' , widget =forms.Select, choices =CATEGORIES)
 _base64content = forms.CharField(max_length = 20000 , widget =forms.Textarea, required = False)
 # Optional level info
 level_id = forms.CharField(label = 'Level' , required = False)

Create Post Form:

class CreatePostForm (forms . Form):
 title = forms.CharField(label = 'Title' , max_length = 100 , required = True)
 description = forms.CharField(label = 'Description' , widget =forms.Textarea, required = True)
 tags = forms.CharField(label = 'Tags' , max_length = 100 , required = False)

3.4 Sample Tests

Testing is one of the most important components in the software development lifecycle.

It is a never ending process that helps ensure that the system is built optimally. At its core, it is

used to find defects in an application by comparing the actual result an application produces

against the result that is expected. Doing so verifies that the product conforms to whatever

requirements that have been set for it, which is especially important when making an application

for another group or company.

Many tests we created dealt with the new user types we created. For instance the two

tests shown below test to make sure the permissions for teachers and students are correct. The

first test ensures a teacher can change their display name correctly, while the second ensures that

a student is not able to change their display name as they have reduced permissions.

22

The three tests below also deal with the new user type system. In each test, one of the

three user types is created and is then tested to see if the corresponding user type is correct.

23

Other tests that were done focus more on the behavior of the code base rather than the

behaviors that potential users could exhibit. The two tests shown below make sure the class

access code generated for a teacher meets the two specified requirements of being an

alphanumeric code that is eight characters long.

24

3.5 Code Coverage

Code coverage will be tracked using the coverage.py python package alongside django built in

testing. The coverage.py package can be installed on linux systems using the following

command:

sudo apt-get install python-coverage

To use coverage.py to track code coverage in testing a django system, navigate to the folder

containing manage.py as you would for running django tests normally but run:

coverage run --source='.' manage.py test

Run the following commands to 1) generate the results in the terminal or 2) generate a navigable

html doc to see what lines ran and which didn’t:

1) coverage report

2) coverage html

25

Code coverage results

File Total Line
Number
Missed

Percent
Covered

AmazAid__init__.py 0 0 100%

AmazAid\secret.py 19 0 100%

AmazAid\settings.py 66 0 100%

AmazAid\urls.py 8 0 100%

AmazAid\wsgi.py 4 4 0%

manage.py 7 0 100%

policypiece__init__.py 0 0 100%

policypiece\admin.py 28 0 100%

policypiece\apps.py 3 3 0%

policypiece\forms.py 87 0 100%

policypiece\migrations\0001_initial.py 11 0 100%

policypiece\migrations\0002_auto_20191027_2005.py 6 0 100%

policypiece\migrations\0002_auto_20191105_2028.py 5 0 100%

policypiece\migrations\0003_auto_20191027_2006.py 5 0 100%

policypiece\migrations\0003_auto_20191106_1555.py 6 0 100%

policypiece\migrations\0004_merge_20191111_1547.py 5 0 100%

policypiece\migrations\0005_auto_20191114_1257.py 6 0 100%

policypiece\migrations\0006_auto_20191114_1318.py 5 0 100%

policypiece\migrations\0007_auto_20191114_1853.py 6 0 100%

policypiece\migrations\0007_auto_20191118_1134.py 5 0 100%

policypiece\migrations\0007_auto_20191120_1946 2.py 5 0 100%

policypiece\migrations\0007_auto_20191120_1946.py 5 0 100%

policypiece\migrations\0008_auto_20191118_1131.py 6 0 100%

policypiece\migrations\0008_auto_20191120_2018.py 5 0 100%

policypiece\migrations\0009_merge_20191125_1313 2.py 5 0 100%

policypiece\migrations\0009_merge_20191125_1313.py 5 0 100%

policypiece\migrations\0010_merge_20191201_1704.py 5 0 100%

policypiece\migrations\0011_auto_20191202_1133.py 5 0 100%

policypiece\migrations\0011_auto_20191203_1945.py 6 0 100%

policypiece\migrations\0011_auto_20191206_1108.py 5 0 100%

policypiece\migrations\0011_merge_20191204_1052.py 5 0 100%

26

policypiece\migrations\0012_auto_20191209_1607.py 5 0 100%

policypiece\migrations\0013_auto_20191209_1607.py 6 0 100%

policypiece\migrations\0014_auto_20191209_1613.py 5 0 100%

policypiece\migrations\0015_auto_20191209_1630.py 6 0 100%

policypiece\migrations\0016_auto_20191209_1646.py 6 0 100%

policypiece\migrations\0017_auto_20191212_1350.py 5 0 100%

policypiece\migrations\0017_merge_20191212_1112.py 5 0 100%

policypiece\migrations\0018_merge_20200128_0849.py 5 0 100%

policypiece\migrations\0018_merge_20200128_1048.py 5 0 100%

policypiece\migrations\0019_merge_20200128_1202.py 5 0 100%

policypiece\migrations\0020_merge_20200128_2130.py 5 0 100%

policypiece\migrations\0021_user_studentcode.py 5 0 100%

policypiece\migrations\0022_auto_20200211_1916.py 5 0 100%

policypiece\migrations\0023_auto_20200211_1932.py 5 0 100%

policypiece\migrations__init__.py 0 0 100%

policypiece\models.py 288 24 92%

policypiece\pipeline_data.py 2 0 100%

policypiece\processors.py 7 0 100%

policypiece\serializers.py 29 0 100%

policypiece\student_auth.py 14 4 71%

policypiece\templatetags__init__.py 0 0 100%

policypiece\templatetags\active_tag.py 11 1 91%

policypiece\templatetags\json.py 13 7 46%

policypiece\templatetags\split_tag.py 4 0 100%

policypiece\tests.py 2821 8 99%

policypiece\urls.py 4 0 100%

policypiece\views__init__.py 11 0 100%

policypiece\views\changesettingsview.py 79 0 100%

policypiece\views\contactview.py 19 0 100%

policypiece\views\frontpageview.py 42 0 100%

policypiece\views\loginstudentview.py 44 4 91%

policypiece\views\loginview.py 20 0 100%

policypiece\views\logoutview.py 7 0 100%

policypiece\views\manageusersview.py 39 0 100%

27

policypiece\views\registerteacherview.py 64 8 88%

policypiece\views\registerview.py 55 0 100%

policypiece\views\remainingviews.py 1015 216 79%

policypiece\views\voiceview.py 17 0 100%

TOTAL 5017 279 94%

3.6 Installation Instructions

3.6.1 Initial AWS Account Setup

● First, create an AWS account at aws.amazon.com(aws.amazon.com) and follow their

instructions

● Once done, login to AWS

3.6.2 Create an EC2 instance and download AWS private key

● Click "Services" at top left, click "EC2" from drop-down

● On the left side, under the "Instances" heading click "Instances"

● Click "Launch Instances"

● Select the first option "Amazon Linux AMI 2018.03.0 (HVM), SSD Volume Type" by

clicking "Select" to the right.

● Click "Review and Launch"

● Click "Launch"

● From the drop-down menu, select "Create a new key pair" and enter in a key pair name.

Click "Download Key Pair". Once downloaded, proceed by selecting "Launch Instances"

● Go back to the instances page (Services –> EC2 –> Instances)

28

● Click on the newly created instance and keep track of the URL (Ex:

ec2-184-72-111-17.compute-1.amazonaws.com)

By now, you should have an EC2 instance and an AWS private key. IMPORTANT : You MUST

wait for the Status Checks column to give you a green arrow for the instance before you can

connect to it. It will say "2/2 checks..." when done.

3.6.3 Setup security group for EC2

● Go to Services –> EC2 –> Instances

● Click the instance and select the associated security group, e.g. “launch-wizard-x” etc.

● Click on the security group and click on Actions –> Edit Inbound Rules

● Under Type select "All traffic"

● Under Source select "Anywhere"

● Click "Save"

As of now, you are finished with the AWS console.

3.6.4 Edit permissions of AWS private key

● Open up a new terminal/console window.

● Navigate using cd to where the AWS private key was downloaded, such as Downloads by

running “cd Downloads” in terminal.

● Once there, run the following command:

sudo chmod 400 whateveryourprivatekeyisnamed.pem

29

3.6.5 SSH to AWS server

● Now that you have the private key and the EC2 URL, in the terminal, run the command:

ssh -i /path/to/private/key.pem ec2-user@(EC2 URL)

● For example: ssh -i ~/Downloads/TestServer.pem

ec2-user@ec2-184-72-111-17.compute-1.amazonaws.com

● set the current domain into an environment variable using the EC2 instance's public IP:

export CURRENT_DOMAIN='http://EC2-IP-ADDRESS:8000/'. Don't forget the http://

and the ending slash/.

3.6.6 Create S3 Bucket

● To create the S3 bucket, go back to the AWS console and navigate to the S3 service.

● Create the bucket and turn off the block on public access during configuration

● Once the bucket is created, click your name in the top corner and select "My Security

Credentials" from the drop down.

● On the Security credentials page, click the Access Key tab and create an access key for

the S3 service.

● Save the information presented because it will be used during the configuration of the

secret.py file

3.6.7 Install Project and Dependencies

● Once you have connected to the EC2 server, run the following commands:

30

sudo yum install git-core

git clone https://github.com/uva-cp-1920/AmazonAid.git

cd AmazonAid/src/amazonaid/

sudo yum install mysql-server

sudo yum install gcc

sudo yum install mysql-devel

sudo pip install -r requirements.txt

3.6.8 Create the secret.py file in ~/AmazonAid/src/amazonaid/AmazAid/AmazAid/

● Obtain the secret.py file and the MySQL database password . The secret.py file

template can be obtained from the github repo where the files were downloaded from in

the ./AmazAid/AmazAid/ directory.

● This "secret.py" file will be placed in ~/AmazonAid/src/amazonaid/AmazAid/AmazAid/

● The secret.py file will contain all information about the database that is running locally

on the EC2 server, as well as the information needed to perform GETs from the S3 bucket

where all website assets are stored.

● Fill in the information in the template file, either on the EC2 or locally.

● The database setting should be: database_engine = "django.db.backends.mysql"

● The database user should be: database_user = "root"

● The S3 information should be the key info obtained during the S3 bucket creation step

and the name of the bucket in S3.

31

● If copying secret.py from a local machine to AWS, locally run the command: scp -i

~/path/to/key/file.pem file1

user@ec2_elastic_ip:/home/ec2-user/AmazonAid/src/amazonaid/AmazAid/AmazAid/

● Elastic IP can be obtained by using the following instructions:

● Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/ .

● In the navigation pane, choose Elastic IPs.

● Choose Allocate new address.

● For IPv4 address pool, choose Amazon pool.

● Choose Allocate, and close the confirmation screen.

3.6.9 Login to MySQL and set up database

* The databasepassword below corresponds to the MySQL database password given above

sudo service mysqld start

mysql -u root

create database slp_amazonaid;

grant all on slp_amazonaid.* to 'amazonaid' identified by 'databasepassword';

grant all on slp_amazonaid.* to 'amazonaid'@'localhost' identified by 'databasepassword';

exit

3.6.10 Collect static files and migrate the database

● Back in the terminal, run the following commands:

mkdir ~/AmazonAid/src/amazonaid/AmazAid/policypiece/static/

cd ~/AmazonAid/src/amazonaid/

32

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

python AmazAid/manage.py collectstatic

python AmazAid/manage.py makemigrations

python AmazAid/manage.py migrate

Note: collectstatic may take a while

3.6.11 Webservice Setup

● In the terminal, run the following commands:

sudo yum install nginx

sudo pip install gunicorn

sudo service nginx start

sudo yum install python36

sudo yum install python36-devel python36-pip

sudo yum install python36-setuptools python36-virtualenv

sudo python3 -m pip install gunicorn

cd ~/AmazonAid/src/amazonaid/

sudo python3 -m pip install -r requirements.txt

cd ~/AmazonAid/src/amazonaid/AmazAid/

nohup gunicorn -b (EC2 URL):8000 AmazAid.wsgi:application &

The website should now be at (EC2 URL):8000

For example, ec2-184-72-111-17.compute-1.amazonaws.com:8000

33

4. Results

Our system was successful in satisfying nearly all of the requirements set forth by the

customer. However, we have not yet integrated native minigames, and we have not created an

intuitive system for the administrator to add content. The system now includes login options for

individuals, teachers, and students. Teachers have the ability to monitor and administer students

via a teacher administrator view. Additionally, students are able to be identified by unique

avatars, and easily navigate the game levels through previous and next buttons. Students are also

now able to bypass minigames through a password distributed to teachers. Finally, students can

now post their voices about the Amazon directly within the game rather than having to navigate

to the voices view.

One of the largest requirements for this project was a rework of the login system. In order

to protect student’s privacy, we had to come up with a login system that didn’t require them to

enter any important information about themselves. The user model was modified to include an

account type identifier ranging from zero to two. These identifiers map to individual, teacher,

and student accounts. When a teacher registers an account, 46 unique student accounts are

auto-registered and assigned a student access code. Students can then login to the system using

the teacher’s class access code in addition to their unique student access code. This system

allows students to login without disclosing any personal information, and it allows teachers to

monitor student progress via a teacher admin page. Teachers can assign and identify students by

their unique avatars, and teachers can reset the progress of students on the teacher admin page.

34

Finally, the teacher admin page allows the teacher to download a csv file to easily work with the

student data. This new system protects the confidentiality of student information, and gives

teachers the ability to monitor and control student accounts.

Our system also made changes to improve the flow and ease of use of the game. One of

these changes was implementing forward and back buttons to allow users to easily visit different

levels of the game. Before, users could only progress through the game sequentially, but with this

change they are able to explore all of the content at whatever time they wish, up to the latest

level they’ve unlocked. In addition to these buttons, a change was made to allow students to post

their views on the Amazon directly within the game. The previous system required students to

visit the voices page to post their thoughts, but the new system integrates this functionality

directly into the game. These changes made the game more intuitive and packaged more

functionality directly into the game.

The customer uses this system as an administrator. The customer can modify content by

using the Django admin page, and by uploading static assets to the S3 bucket. The customer can

also monitor and approve posts made by users to ensure that they are appropriate. Aside from

modifying content and approving posts, the customer only needs to provide teachers and

individuals with a link to the web application in order to put the product into action.

Users interact with this system according to their needs and user type. Individuals may

create an account and progress through the game or post their voices as they wish. Teachers,

however, use the system to distribute accounts to students and monitor progress. The teacher

admin page provides teachers with all of the student account information, and allows them to see

and reset progress. Teachers may wish to download this information in order to easily distribute

35

student logins or work with student data in csv format. Finally, students use the game much like

individuals, but their login process is much different. Students are given a class access code and

a student access code by their teacher. These access codes allow students to login without ceding

any personal information, and they allow students to be associated with their teacher for progress

monitoring. Students are identified by unique avatars, and their progress is tracked on the teacher

admin page as they progress through the game. Prior to the rework of the login system students

would be required to enter six pieces of personal information, but the new system allows students

to access the system without disclosing any information about themselves.

In conclusion, the work on this system both improved the login process, and made the

game more user friendly. In order to post a voice, users now save three extra clicks, and do not

need to interrupt their progress. The login system now includes three distinct user types in order

to directly cater to the needs of different users. Teachers are now automatically given 46

prepopulated student accounts with unique avatars. Student accounts now require zero pieces of

personal information as opposed to the six needed in the previous system. In addition to these

improvements, all users are now able to progress forwards and backwards in the game in order to

interact with the content however they choose to. These changes allow the system to be deployed

in schools, and make the game much more friendly to any user that chooses to engage with it.

36

5. Conclusions

The Amazon Aid Foundation returned to UVa to work with another capstone team

because despite the merit of their learning materials, minor obstacles to adoption for teachers and

difficulties navigating for students prevented the site from spreading through middle schools. In

analyzing the problem, the team reevaluated the relative importance of different stakeholders

involved. While the site’s educational value derives from the experiences of students and

individuals, teachers are the most important actors in the site’s adoption and diffusion process.

Details of the login process requiring teachers to request special administration to use the site

could determine whether they share the Foundation’s message with twenty or more students per

class. When using the site, if teachers cannot effectively guide a class through it because the

students cannot all view the same page in the same level, they will not recommend the site to

their peers within the school or beyond.

With this in mind, we sought to create the best possible vehicle for the Foundation’s

information. In addition to the login redesign and major navigational enhancements, each tweak

of the user interface or reordering of site information hopefully made all users more likely to log

into the site, complete the game start to finish, and spread the information further in the future.

The team’s experience highlighted the most important factor in ensuring the success of

any awareness-aimed activism: carrying the message in the most spreadable and universally

understood way possible. As an audience, website users require particular careful

accommodation, relative to readers or movie watchers, as the Foundation sometimes addresses.

However, the problems the learning game encountered and the technical team’s solutions could

inform the Foundation or other activists well in any medium. By prioritizing the active diffusion

37

of their message among everyone they reach, hopefully Amazon Aid can help guide us towards a

political and cultural climate where the rainforest’s resources are well respected and protected.

38

6. Future Work

As we work to spread awareness for the Amazon Rainforest, we want to ensure that the

site is as smooth and simple as possible to get the job done. Amazon Aid now has a functioning

learning module for teachers to easily administer to their students. However, there are still a few

things we would recommend doing to perfect it over the next year.

First, there are minigames that users are encouraged to play during the “Grow A Tree”

modules. While they are currently imported from a third party source, we would advise that

future developers instead create a few simple games integrated directly into the site. This would

work better because Amazon Aid would no longer have to pay a subscription for the third party,

and the minigames could actually be interactive within the site itself. Students’ scores on games

could be compared amongst each other, and it could create a more enjoyable and entertaining

environment for younger kids.

Another addition would be to have email authentication and notifications for teachers.

For example, when one of their students finishes a topic, an email could be sent to notify that

student’s teacher. Specific preferences could be set within the Settings tab on the site. As for

authentication, a simple email could be sent upon registration that the teacher could use to

confirm it is indeed his or her email address.

Lastly, the images were previously stored in a google drive folder before we took over the

project. We recommend that in the future, all images and media for the site be stored in an S3

bucket through AWS. This is a much more common, safe, and efficient way to store those files.

The client has understood this and is expecting to use S3 instead. These changes to the site are

39

everything that we’ve decided are necessary for this learning module to work to its full potential,

but we expect to see success even before these changes are made.

40

7. References

Amazon Aid. (2020). Homepage - Amazon Aid Foundation . Retrieved from
https://amazonaid.org/

ARCAmazon. (2020). ARCAmazon | Alliance for Research and Conservation in the Amazon
Rainforest in Peru . Retrieved from https://conservetheamazon.org/

Lovejoy, T. E., & Nobre, C. (2018). Amazon Tipping Point. Science Advances , 4(2), 1-2.
https://doi.org/10.1126/sciadv.aat2340

Pereira, E. J. de A. L., Ferreira, P. J. S., Ribeiro, L. C. de S., Carvalho, T. S., & Pereira, H. B. de
B. (2019). Policy in Brazil (2016–2019) threaten conservation of the Amazon rainforest.
Environmental Science & Policy , 100, 8–12. doi: 10.1016/j.envsci.2019.06.001

Rainforest Alliance. (2020). About Us | Rainforest Alliance . Retrieved from
https://www.rainforest-alliance.org/about

Reuters. (2019, August 29). Surge in young Republicans worried about the environment: survey .
Retrieved from
https://www.reuters.com/article/us-environment-poll-republicans/surge-in-young-republic
ans-worried-about-the-environment-survey-idUSKCN1VJ17V

41

https://amazonaid.org/
https://conservetheamazon.org/
https://doi.org/10.1126/sciadv.aat2340
https://doi.org/10.1126/sciadv.aat2340
https://www.rainforest-alliance.org/about
https://www.reuters.com/article/us-environment-poll-republicans/surge-in-young-republicans-worried-about-the-environment-survey-idUSKCN1VJ17V
https://www.reuters.com/article/us-environment-poll-republicans/surge-in-young-republicans-worried-about-the-environment-survey-idUSKCN1VJ17V

