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Abstract. Tropospheric ozone (O3) and nitrogen dioxide (NO2) are U.S. Environmental Protection 
Agency-designated criteria air pollutants regulated to protect human health and public welfare. 
While air pollution levels have decreased across the U.S., and in many cities around the world, 
there are still major uncertainties in the sources, the processes affecting their spatiotemporal 
variability, and their impacts. Climate change will alter many controls over the abundance and 
distribution of these pollutants, especially for O3, such that air quality may vary differently in the 
future than the past. Primary pollutants such as NO2 are very highly spatially heterogeneous, and 
their impacts are unequally distributed, with communities of color and low-income communities 
disproportionately affected in U.S. cities. In this dissertation, I present a landscape-scale analysis 
of severe drought impacts on O3 chemistry in California; an evaluation of measurements of the 
recently-launched satellite sensor, the TROPospheric Ozone Monitoring Instrument (TROPOMI), 
to resolve NO2 spatiotemporal variability between neighborhoods in Houston, Texas; and 
observational constraints on the contribution of diesel engine emissions to NO2 inequalities in 52 
U.S. cities. I found prolonged severe drought conditions impacted O3 pollution in California by 
shifting O3 production to become more NOx suppressed and decreasing O3 loss through dry 
deposition. I show relative NO2 inequalities measured by TROPOMI combined with a physics-
based oversampling algorithm are comparable to those from higher resolution aircraft sensor 
GCAS. Finally, I find diesel emissions are a large driver of NO2  inequality in U.S. cities but 
decreasing these emissions completely would not eliminate air pollution inequality. 
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Chapter 1: Introduction 

Air quality has improved in the U.S. over the last several decades because of regulations under the 
U.S. Clean Air Act.1, 2 However, there still exist inequalities in the distribution of air pollution, 
alongside associated health impacts, which disproportionately affect communities of color and 
people with lower socioeconomic status.3, 4 Climate-change-influenced atmospheric conditions 
such as air temperature and stagnation have the potential to worsen air pollution in the future, 
adversely affecting people through their associated health-impacts.5 Developing effective future 
air pollution regulatory strategies must therefore consider both environmental injustice and climate 
change.  
 
Tropospheric ozone (O3) is a greenhouse gas, an oxidant, and a harmful air pollutant to plants and 
people, resulting in premature death and chronic and acute respiratory ailments, even when levels 
are well below the current National Ambient Air Quality Standard (NAAQS) of 70 ppb in eight 
hours.6 O3 is photochemically formed in the atmosphere with a nonlinear dependence on the 
abundance and chemical reactivity of nitrogen oxides (NOx º NO + NO2) and volatile organic 
compounds (VOCs). The abundance of these O3 precursors have a documented temperature 
dependence that impact O3 production.7  
 
NOx drives O3 production, broadly controls the tropospheric oxidative capacity, and has been 
linked to adverse health effects largely in respiratory and cardiovascular systems.8, 9 NOx sources 
comprise combustion processes, including those associated with traffic, goods transport, industrial 
activities, and electricity generation. Substantial changes NOx emissions have been shown to alter 
NO2 chemical lifetime in urban plumes, shifting the dominant chemistry of cities.10 Even though 
abundances and lifetime of NO2 have changed, the unequal NO2 burden with U.S. cities persists.11  
 
The goal of this dissertation is to provide further understanding of the impact of two prominent 
issues on air quality: climate change and environmental injustice. This dissertation presents 
observational analyses (1) investigating the impacts of severe drought on the chemical production 
and loss of O3 in California, (2) assessing the ability of next-generation, improved-spatial-
resolution satellite measurements to resolve NO2 spatiotemporal variability between 
neighborhoods of different race-ethnicities and income; and (3) observationally constraining the 
contribution of diesel vehicle emissions to NO2 inequality across major U.S. cities. 
 
In Chapter 2, I present a multiyear observational analysis using data collected before, during, and 
after the record-breaking California drought (2011–2015) at the O3-polluted locations of Fresno 
and Bakersfield near the Sierra Nevada foothills. Drought conditions affect O3 air quality, 
potentially altering multiple terms in the O3 mass balance equation. Here, I separately assess 
drought influences on O3 chemical production (PO3) from O3 mixing ratio. I show that mixing 
ratios of isoprene, a source of O3-forming organic reactivity, were relatively insensitive to early 
drought conditions, but decreased by more than 50% during the most severe drought years (2014–
2015). I find drought-driven isoprene effects are temperature dependent, even after accounting for 
changes in leaf area, consistent with laboratory studies but not previously observed at landscape 
scales with atmospheric observations. Drought-driven decreases in organic reactivity are 
cotemporaneous with a change in dominant oxidation mechanisms, with PO3 becoming more NOx-
suppressed, leading to a decrease in PO3 of ~20%. I infer reductions in atmospheric O3 loss of 
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~15% during the most severe drought period, consistent with past observations of decreases in O3 
uptake by plants. I consider drought-related trends in O3 variability on synoptic timescales by 
analyzing statistics of multiday high O3 events. Finally, I discuss implications for regulating O3 in 
Central California and other locations in a future where drought conditions are more prevalent.  
 
In Chapters 3 and 4, I focus on advancing analytical techniques for describing the distribution of 
NO2. NOx (º NO + NO2) is predominantly emitted by anthropogenic combustion, and urban NO2 
abundances co-locate with traffic, power generation, and industrial facilities. NO2 exhibits steep 
spatial gradients, and the impacts of NO2 are heterogeneously distributed and temporally variable 
at neighborhood scales. We have historically lacked the observations required to describe NO2 
pollution and capture this variability. Recent remote-sensing advancements offer the potential to 
map intraurban NO2 levels and provide improved constraints on the NO2 inequalities experienced 
by low-income communities and communities of color in U.S. cities. 
 
In Chapter 3, I analyze novel high-spatial-resolution (250 m x 500 m) NO2 vertical columns 
measured by the NASA GeoCAPE Airborne Simulator (GCAS) as part of the September-2013 
NASA DISCOVER-AQ mission over Houston, Texas, and discuss differences in population-
weighted NO2 at the census-tract scale. Based on the average of 35 repeated flight circuits, I find 
37 ± 6% higher NO2 for people of color living in low-income tracts compared to white residents 
of high-income tracts, and report NO2 disparities separately by race-ethnicity (11–32%) and 
poverty status (15–28%). I observe substantial time-of-day and day-to-day variability in NO2 
differences, driven by the greater prevalence of NOx emission sources in neighborhoods where 
residents are people of color and have lower household incomes. I evaluate measurements from 
the recently launched satellite-based TROPospheric Ozone Monitoring Instrument (TROPOMI), 
averaged to 0.01° x 0.01° using physics-based oversampling. I demonstrate that TROPOMI 
resolves similar relative, but not absolute, tract-level differences compared to GCAS. I utilize the 
Fuel-based Inventory for Vehicle Emissions and National Emissions Inventory NOx inventories, 
plus one year of TROPOMI weekday-weekend variability, to attribute tract-level NO2 disparities 
to industrial sources and heavy-duty diesel trucking. I show GCAS and TROPOMI spatial patterns 
correspond to surface patterns measured using aircraft profiling and surface monitors. To 
conclude, I discuss opportunities for satellite remote sensing to inform decision-making generally.  

In Chapter 4, I use observations from TROPOMI to describe NO2 inequalities with race, ethnicity, 
and income in 52 U.S. cities over June 2018–February 2020. I report average city-level census 
tract-scale NO2 differences of 17 ± 2% higher for Black and African Americans, 19 ± 2% higher 
for Hispanics/Latinos, 12 ± 2% higher for Asians, and 15 ± 2% higher for Native Americans 
compared to non-Hispanic/Latino whites; and 17 ± 2% higher for people living below and 10 ± 
2% near the poverty line compared to those living above. When combining race-ethnicity and 
income, NO2 was 28 ± 2% higher for people of color living in low-income tracts compared to non-
Hispanic white residents in high income census tracts, with many populous cities experiencing 
even greater inequalities. Using observations and inventories, I find diesel traffic is the dominant 
source of NO2 inequalities and a 62% reduction in diesel emissions would decrease race-ethnicity 
and income inequalities by 37%. I add evidence that TROPOMI resolves tract-scale NO2 
differences using relationships with urban segregation patterns and column-to-surface correlations.  
 
In Chapter 5, I synthesize the results of this dissertation and present recommendations for future 
work.
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Chapter 2: Observing Severe Drought Influences on Ozone Air Pollution in California 

 
Adapted from: Demetillo, M. A. G., Anderson, J. F., Geddes, J. A., Najacht, E., Herrera, S. A., 
Kabasares, K., Kotsakis, A., Yang, X., Lerdau, M T., and Pusede, S. E.: Observing severe drought 
influences on ozone air pollution in California, Environ. Sci. Technol., 5, 39, 4695–4706, 
doi:10.1021/acs.est.8b04852, 2019. 

2.1 Introduction 
Climate change is expected to increase the frequency and severity of drought in the future.12-16  
Drought conditions can potentially affect air quality, including concentrations of tropospheric 
ozone (O3),17-19 a harmful pollutant to humans, plants, and ecosystems.20, 21 While effective future 
pollution control strategies will require improved understanding of drought-O3 coupling, these 
influences are challenging to discern, as drought conditions alter multiple terms in the O3 mass 
balance equation simultaneously: emission of biogenic O3 precursors and chemical production rate 
(PO3), chemical and depositional loss rate (LO3), and change in O3 concentration on synoptic 
timescales with atmospheric transport and mixing (Eq. 2.1).  

(E2.1)  ∂[O3]
∂t

 = PO3 + LO3 ± transport/mixing 

The response of any individual term in ∂[O3] ∂t⁄  to drought may vary in sign and magnitude as a 
function of drought duration, drought severity, availability of non-rainwater sources, and PO3 
chemical regime. Moreover, because droughts may extend over multi-month to multiyear 
timescales, emissions regulations, seasonal patterns, and climatic events (e.g., El Nino Southern 
Oscillation) may confound interpretation, causing simultaneous variations in the ∂[O3] ∂t⁄  terms 
influencing O3 mixing ratios.  

Past research has focused on two key drought-∂[O3] ∂t⁄  perturbations, decreased isoprene 
emissions as they affect PO3 and reduced stomatal conductance with regard to LO3. In many 
locations, plants emit the majority of O3-forming organic compounds reactive with the hydroxyl 
radical (OH).22-24 Isoprene is the most abundant source of organic OH reactivity in the terrestrial 
atmosphere,25 a significant contributor to PO3 in the summertime even in cities,26 and among the 
most-studied biogenic reactive carbon species. Detailed laboratory studies have demonstrated that 
on timescales of hours to weeks, water deficits initially enhance isoprene emissions under mild 
drought,27-29 but ultimately suppress isoprene fluxes under sustained, severe water stress.7, 30 Both 
types of drought-isoprene response have been inferred at landscape scales19, 31-35 and soil moisture 
(i.e. plant water status) has been found to control a major portion of the interannual variability in 
isoprene flux in many locations.31 

Plant stomatal O3 uptake is a major LO3 pathway that is also drought sensitive.36, 37 Drought lowers 
stomatal deposition rates because apertures close to prevent water loss via transpiration and 
because, at longer time scales, overall leaf area is reduced. Decreased LO3 has been directly 
observed using O3 flux measurements in the late summer/early fall in Mediterranean climates, 
when water-deficient conditions are prevalent, including the Sierra Nevada Mountains of 
California.38-41 Chemical transport and chemistry-climate models, which allow isolation of LO3 
from ∂[O3] ∂t⁄ , have found that drought-driven LO3 decreases may be large enough to enhance O3 
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concentrations.18, 42 Huang et al.18 found monthly mean O3 deposition velocities (vd), where LO3 
to deposition equals vd[O3], decreased over Texas forests during a 2011 drought leading to higher 
O3 concentrations. In simulating the 1988 North American Drought, Lin et al.32 reduced vd by 35%, 
increasing O3 concentrations and improving model-measurement agreement. By contrast, while 
Wang et al.19 found elevated O3 mixing ratios during drought periods, vd was relatively insensitive 
to drought conditions. 

In 2011–2015, California experienced the most severe drought over the 120-year observational 
record16, 43, 44 and the last millennium.45 During this period, California saw a historic combination 
of annual high temperatures5 and precipitation deficits.43, 44 California is also home to poor O3 air 
quality, with many of the most O3-polluted cities in the U.S. located in the state.46 Here, I present 
observations of isoprene, O3, and nitrogen dioxide concentrations before, during, and after the 
California drought (2002–2017) to investigate the influence of drought conditions on O3 air 
quality. Data were collected in Central California in the San Joaquin Valley (SJV), with monitoring 
sites proximate to isoprene-emitting oak savanna regions in the Sierra Nevada Mountain foothills 
(Fig. 2.1). I combine interpretation of variability in interannual, weekday-weekend, and day-to-
day O3 concentrations to observationally distinguish effects temporally corresponding to drought 
on PO3 from other influences on O3 concentration. I infer changes in LO3 and analyze multiyear 
trends in synoptic-timescale high O3 events and meteorological variables. I discuss the 
implications of these results for regulating O3 air pollution in a potentially more drought-prone 
future in Central California and in locations where isoprene dominates OH reactivity. 

2.2 Observations 
Isoprene mixing ratio data are 3-h integrated samples collected in pressurized stainless-steel 
canisters and analyzed offline by gas chromatography-flame-ionization-mass spectrometric 
detection with pre-concentration (EPA method code 177)47 as part of the U.S. Environmental 
Protection Agency (EPA) Photochemical Assessment Monitoring Stations (PAMS) program. A 
near-continuous data record (2002–2017) for “Fresno” is reported at Clovis-N Villa Avenue 
(36.819°N, 119.716°W). I produce a “Bakersfield” record by combining isoprene observations at 
Shafter-Walker Street (35.503°N, 119.273°W) (2002–2010 and 2012–2017), Arvin Bear 
Mountain Boulevard (35.208°N, 118.776°W) (2002–2009), and Bakersfield Golden State 
Highway (35.386°N, 119.015°W) (2012–2017). In accordance with PAMS protocols, isoprene 
observations are made for three months each year during O3 season, typically spanning June–
September. At most sites, data collection occurred in June–August for the years 2002–2007, 2009, 
2014 and in July–September for the years 2008, 2010–2013, 2015–2017, with exceptions: Shafter, 
2012–2013 in June–August; Arvin, 2008 in June–August; and Arvin, 2002–2007 and 2009 in 
August–September. Isoprene data were downloaded from the U.S. Environmental Protection 
Agency (EPA) AQS Data Mart (https://aqs.epa.gov/api). 

Hourly O3 and NO2* measurements are made by UV absorption and chemiluminescence, 
respectively, and provided to the public by the California Air Resources Board (CARB) 
(https://www.arb.ca.gov/aqmis2/aqdselect.php). NO2* data have a well-known positive 
interference from higher nitrogen oxides,48 which have been shown to add uncertainty to absolute, 
but not relative NO2* concentrations.49 This interference is acknowledged by using NO2* rather 
than NO2. “Fresno” data are the mean of available hourly observations from Clovis-N Villa 
Avenue, Skypark (36.842°N, 119.874°W), Drummond (36.706°N, 119.741°W), Fresno-Garland 
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(36.785°N, 119.773°W), and First Street (36.782°N, 119.773°W) stations (Fig. 2.1b). 
“Bakersfield” data are mean of available hourly measurements from Shafter-Walker Street, 
California Avenue (35.357°N, 119.063°W), and Edison (35.346°N, 118.852°W) stations (Fig. 
2.1c). In Fresno, extremely elevated NO2* mixing ratios were observed corresponding to the time 
period of the nearby Lion Fire (beginning 27 September 2017); these O3 and NO2* data were 
excluded from the analysis. In 2014, at California Avenue, NO2* measurements prior to 16 
September are missing; at Edison, NO2* measurements prior to 24 July are either missing or were 
removed because of an apparent persistent negative offset. Hourly temperature, relative humidity, 
and winds (speed and direction) are also provided by CARB 
(https://www.arb.ca.gov/aqmis2/metselect.php). I use data from Clovis to represent Fresno. Full 
annual wind data are not available in Clovis in 2002, 2007, and 2008. In Bakersfield, I combine 
temperature records at California Avenue (2002–2012, 2015–2016) and Bakersfield Municipal 
Airport (35.332°N, 119.000°W) (2013–2014, 2017), where temperature measurements were well-
correlated (r2 of 0.99 for 2017 data). 

The leaf area index (LAI) product is generated using satellite observations from the Moderate 
Resolution Imaging Spectrometer (MODIS) instruments and available for download as part of 
MOD15A2H Version 6. LAI (8-day intervals at 500 m resolution) was averaged for June–
September over a series of rectangles that focus observations on the Sierra Nevada foothills 
adjacent to the Fresno and Bakersfield areas (Fig. A2.1).  

2.3 Results and Discussion 

2.3.1  Severe drought alters biogenic isoprene emissions and concentrations 

A wide variety of plant species produce isoprene within the leaves by the protein isoprene synthase 
(IsoS) using carbon from the Calvin cycle as the primary carbon source.50-52 Isoprene is emitted to 
the atmosphere as a function of sunlight, leaf temperature, leaf area, and species identity. Longer-
term field studies indicate emissions are independent of stomatal conductance,30, 53 while short-
term greenhouse experiments suggest a weak dependence on stomatal conductance, attributed to 
reduced CO2 uptake and internal CO2 concentrations that are associated with enhanced isoprene 
emissions.54 While drought stress immediately decreases plant photosynthetic activity, laboratory 
studies have found disproportionately smaller corresponding reductions in isoprene emission rates, 
implying non-photosynthetic carbon pools are available.27, 52, 55-57 Severe and/or sustained drought 
conditions do lead to lower emissions, but only when these alternative pools are depleted47 and 
IsoS activity is suppressed.7 In laboratory studies, recovery is observed to be rapid following soil 
rewatering, with isoprene emissions temporarily exceeding pre-drought rates in some cases.27, 29  

Isoprene mixing ratios have been measured in Central California for the last two decades. In Figs. 
2.2–b, mean daytime (8 am–8 pm local time, LT) isoprene is shown throughout the pre-drought 
(2002–2010), early drought (2011–2013), severe drought (2014–2015), and post-drought (2016–
2017) periods in Fresno and Bakersfield during O3-season (June–September). Mixing ratios are 
enveloped by the 2s summertime variability; standard mean error uncertainties are given in Table 
1. Comparable trends with time are observed if months included in the averages are varied (June–
August versus July–September). My categorization of the severe drought is consistent with 
Exceptional Drought (D4) classification by U.S. Drought Monitor58 and the lowest Tulare Basin 
water-year (October–September) rainfall totals over the study period (Table 2.1).59  
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In Fresno, isoprene concentrations during the pre- and early drought were statistically 
indistinguishable (p = 0.362, Wilcoxon rank-sum test). During the severe drought, isoprene 
decreased by 54% from pre-drought levels. In the post-drought, isoprene concentrations recovered 
by 34%, amounting to a 39% return to pre-drought levels. In Bakersfield, predrought isoprene 
abundances were steady through 2012, but fell by 65% in 2013, suggesting drought-driven 
emissions decreases occurred earlier in the Southern Sierra Nevada foothills area than in Fresno. 
While isoprene mixing ratios in Fresno do not appear to decline in 2013, isoprene concentrations 
fell precipitously in August 2013 (not shown). In Bakersfield, isoprene decreased by an additional 
29% during the severe drought. In the post-drought period, isoprene concentrations may have 
recovered by 16%, but differences between 2014–2015 and 2016–2017 are not significant to the 
5% level (p = 0.112). Isoprene mixing ratios are a function of both emissions and chemical loss. 
When photochemistry is active (summer days), isoprene’s loss rate (kisoprene+OH[OH][isoprene]) is 
proportional to the OH concentration. Isoprene exerts a positive feedback on its own lifetime, as 
decreased isoprene and consequent higher OH lead to faster isoprene loss rates and, hence, lower 
isoprene concentrations. As a result, observed differences in isoprene mixing ratio represent an 
upper bound on changes in isoprene emissions.  

Isoprene emissions have a well-known temperature dependence,25, 60, 61 with critical implications 
for PO3 on hot days.62 A recent laboratory experiment produced evidence that drought stress may 
alter this temperature dependence for at least weeks after rewetting.7 They found that while 
photosynthetic rates rebound fully from drought stress across the range of atmospheric 
temperatures, IsoS recovery was temperature dependent, with full recovery of emission rates at 
lower temperatures, but only partial recovery at higher temperatures. The net result was that 
isoprene fluxes at high and low temperatures were comparable and the temperature dependence 
was no longer a simple monotonic relationship. While this complex temperature relationship has 
been seen at leaf and single plant scales previously,7, 63 these results are the first to demonstrate 
this relationship at landscape scales.   

Isoprene emissions also vary with available leaf area.64 Plants suffering severe water deficits may 
reduce leaf area to prevent runaway embolism,32, 65, 66 as hydraulic conductivity loss in the xylem 
can inhibit water delivery to leaves.67 To separate drought effects on the isoprene-temperature 
response and plant leaf area, in Figs. 2.2c–d, I investigate the slope of correlation between daily 
maximum temperature and isoprene per unit LAI, where LAI is defined as the ratio of top-level 
leaf surface area relative to ground surface area over 2002–2017. The slope was derived using an 
ordinary least squares linear regression, as uncertainties in the y-dimension (isoprene) dominate 
uncertainties in the x-dimension (temperature). Individual correlation plots are shown in Figs. S2–
S3, with on average 32 and 29 daily observations available per year in Fresno and Bakersfield, 
respectively (Table A2.1). In year 2008 in Fresno and 2010 in Bakersfield, insufficient dynamic 
range in the observations prevented determination of the slope (Figs. S2–S3).  

In Fresno, I find the isoprene-temperature response was similar in the pre- and early drought 
periods. However, the slope of this correlation (isoprene/LAI versus temperature) fell by 55% 
during the severe drought, with no apparent post-drought recovery. In Bakersfield, the isoprene-
temperature response decreased as early as 2012 (there were no measurements in 2011). During 
the severe drought, the slope of correlation was 47% lower than in the pre-drought period, with no 
rebound in 2016–2017. Figs. 2.2c–d are consistent with laboratory observations by Fortunati et 
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al.,19 offering the first landscape-scale evidence that severe drought alters the temperature 
dependence of isoprene emissions.  

Although I do not find a tight correlation between isoprene and LAI (Fig. 2.3), similar trends in 
the isoprene temperature-dependence are observed for both isoprene/LAI and isoprene alone (Figs. 
2.2c–d). Direct comparison of monthly mean isoprene mixing ratios and LAI suggest reduced 
isoprene emissions per unit leaf area, but no significant decrease in severe-drought LAI compared 
to pre-drought (Fig. 2.3). While our MODIS imagery averaging regions (Fig. A2.1) focus on the 
oak savanna, they also encompass agricultural fields and higher elevation pine forests, which may 
obscure drought-LAI effects on isoprene-emitting species specifically.68 Therefore, the observed 
correlation is a lower bound on the isoprene-emitting LAI response to severe drought. However, 
congruent with our findings, canopy-scale isoprene emission studies of poplar (Populus spp.) 
demonstrated that as leaves die, the LAI-dependence of isoprene emission rates decline, and 
emissions become more sensitive to light and temperature.69 As a constraint on isoprene variation 
with changes in photosynthesis, solar-induced chlorophyll fluorescence (SIF) observations from 
the satellite-based Global Ozone Monitoring Experiment-2 (GOME-2) would be a potentially a 
direct proxy for interannual trends photosynthetic activity;70, 71 however, the sensor has 
experienced steady degradation over our study window preventing interpretation of drought 
impacts.72 

2.3.2  Observational constraints on PO3  

PO3 is a nonlinear function of the abundance of nitrogen oxides (NOx º NO + NO2) and organic 
gases reactive with OH (Fig. 2.4). At low NOx concentrations, increases in NOx increase PO3, as 
NO propagates radical recycling and drives PO3. Under these conditions, organic reactivity to OH 
(e.g., isoprene) has little effect on PO3. This chemical regime is known as NOx-limited and O3 can 
be regulated effectively through NOx emission control. At high NOx concentrations, NOx increases 
reduce PO3, as NO2 reacts with OH, yielding closed-shell nitric acid and terminating radical 
propagation. This PO3 regime is known as NOx-suppressed, with organic emission reductions 
leading to decreased PO3 and NOx reductions leading to worsened O3 pollution. Changes in 
organic reactivity not only affect PO3 at higher NOx levels, it also alters the NOx concentration at 
which PO3 is maximized (Fig. 2.4). Steady reductions in NOx emissions over the past few decades 
in California73 and across the U.S.,74 have led to the prevalence of O3 chemistry that is increasingly 
NOx limited, which has been observed in Central California75, 76 and cities U.S. wide.77, 78 

Drought effects on the NOx-dependence of PO3 can be tested independently from the loss and 
mixing terms in ∂[O3] ∂t⁄  (eq. 1) using the well-documented weekday-weekend experiment, which 
takes advantage of known day-of-week patterns in emissions of NOx and organic reactivity to OH. 
In U.S. cities, NOx concentrations have historically been much lower (40–60%) on weekends than 
weekdays due to reduced weekend traffic from heavy-duty diesel vehicles (HDDVs).74, 79 HDDVs 
are a major source of NOx emissions, although they comprise a small fraction (~3%) of the overall 
U.S. vehicle fleet.80 Weekend NOx decreases occur without equivalently large changes in organic 
reactivity to OH,81 as HDDVs are a relatively small source of total organic reactivity emissions. 
This has been demonstrated to be true in Central California where there are abundant non-traffic 
organic emission sources.82-84 When statistics are sufficient to minimize meteorological variability, 
observed weekday-weekend differences in the mixing ratio of Ox (∆Ox wd–we) trace a single PO3 



Chapter 2 
   

 

18 

 

versus NOx curve (i.e. constant organic reactivity with varying NOx).66 Ox (Ox º O3 + NO2) 
includes the portion of O3 temporarily stored as NO2.  

In 2007, the EPA established more stringent HDDV NOx emission standards using NOx selective 
catalytic reduction (SCR) technology.85 HDDV regulations affect the weekday-weekend 
experiment, as reductions mostly occur on weekdays, causing diminishing weekday-weekend 
differences. HDDVs have long service lifetimes and slow fleet turnover; therefore, their NOx 
control will take place gradually over decades. In California, HDDV NOx reductions have been 
accelerated through statewide programs requiring all vehicle owners to retrofit or replace older 
engines with SCRs by 2023.86 As a result, SCR-equipped vehicles represent a growing fraction of 
HDDVs on California roads.87, 88 While there have been conflicting reports on the real-world 
efficiency and durability of SCRs,89, 90 SCR-equipped HDDV fleet infiltration is suggested by 
decreases in weekday-weekend NO2* differences (∆NO2*wd–we) in Central California (Table 1).  

Trends toward smaller ∆NO2*wd–we are also consistent with increases in the relative contribution 
of other non-HDDV weekday-weekend-independent NOx emission sources, for example soils and 
fires, which are also drought dependent. Almaraz et al.91 demonstrated that fertilized soils 
contributed almost half of NOx emissions in late July–early August 2016 in Central California 
(Fresno, Tulare, and Kings counties) and increases in fire activity, and hence NOx emissions, 
attributed to greater fuel aridity92 and the lengthening of the summer fire season,93 have been 
observed in the Western U.S. and California over the past several decades.  

To investigate drought effects on PO3 separately from effects on Ox mixing ratios, I present trends 
in ∆Ox wd–we during the pre- (2002–2010), early (2011–2013), severe (2014–2015), and post- 
(2016–2017) drought periods in Fresno and Bakersfield (Fig. 2.5). To account for simultaneous 
interannual changes in ∆NO2*wd–we, I normalize ∆Ox wd–we by ∆NO2*wd–we, which linearly 
approximates the derivative ∂PO3 ∂NOx⁄ , representing ∆Ox wd–we per 1 ppb change in NO2*. 
Comparison of ∆Ox wd–we / ∆NO2*wd–we and ∆Ox wd–we indicates that lack of regard for decreasing 
∆NO2*wd–we would lead to an interpretation of PO3 that is more NOx-limited early in the record (in 
Fresno) and more NOx-suppressed later on (in Fresno and Bakersfield) than is observed using ∆Ox 

wd–we / ∆NO2*wd–we. In Fig. 2.5a–b, ∆Ox wd–we / ∆NO2*wd–we shown are afternoon (12–5 pm LT) 
hourly measurements during the June–September O3 season. Weekdays are defined as 
Wednesday–Friday and weekends are Sunday to reduce memory effects of the previous day. Any 
drought influence over PO3 will have occurred alongside longer-term PO3 trends ascribed to 
anthropogenic emission controls. In Central California, NOx emission controls have led to 
decreases NO2* concentrations (Table 2.1, Fig. A2.4) and increasingly NOx-limited PO3.75, 76, 94, 

95 This is evident in Figs. 5a–b as ∆Ox wd–we/ ∆NO2*wd–we increased from 1.7 ± 0.4 to 4.5 ± 0.6 
during the pre-drought in Fresno and from 1.7 ± 0.5 to 6.7 ± 0.6 in Bakersfield; at the same time, 
NO2* decreased by ~35% in both locations.  

In Fresno, during the early drought ∆Ox wd–we / ∆NO2*wd–we continued to increase compared to the 
most recent pre-drought 3-year mean ratio (33%), while in Bakersfield ∆Ox wd–we / ∆NO2*wd–we 
decreased by ~20% with respect to 2008–2010 ∆Ox wd–we / ∆NO2*wd–we. During the severe drought, 
∆Ox wd–we / ∆NO2*wd–Ifell in Fresno by 53% and in Bakersfield by 29% relative to early drought 
averages. Average post-drought ∆Ox wd–we / ∆NO2*wd–we may have increased in Fresno by ~35% 
and decreased slightly by ~15% in Bakersfield compared to the severe drought period; however, 
differences are within uncertainties defined as 1s standard mean errors. Trends in ∆Ox wd–we / 
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∆NO2*wd–we imply PO3 became more NOx-suppressed (although was still NOx-limited) during the 
severe drought in Fresno and early and severe drought in Bakersfield. From 2008 to 2017, weekend 
Ox mixing ratios were comparable, suggesting weekend PO3 was sufficiently NOx limited that 
drought did not perturb the chemical regime. A shift toward more NOx-suppressed PO3 can happen 
by either an increase in NOx concentrations or by a decrease in organic reactivity to OH (Fig. 2.4). 
In Fresno and Bakersfield, afternoon (12–5 pm LT) NO2* mixing ratios declined by 18% and 
~35%, respectively, from 2008–2010 to 2014–2015. Downward NOx trends were slower in Fresno, 
similar to U.S.-wide trends,96  decreasing by just 6% between the early and severe drought 
compared to 30% in Bakersfield (Fig. A2.4). While there may be drought influences over NOx 
concentrations, I do not attempt to quantify them here.  

Taken together, trends in ∆Ox wd–we/ ∆NO2*wd–we and NO2* are consistent with a reduction in a 
substantial portion of the O3-forming organic reactivity. Additionally, temporal changes in ∆Ox wd–

we / ∆NO2*wd–we reflect observed trends in isoprene as a function of location, with lower isoprene 
mixing ratios observed earlier in Bakersfield than Fresno. Isoprene constitutes just a portion of the 
total organic reactivity to OH in the region,97  and is known to make a small contribution in 
Bakersfield.81  There are currently uncertainties in our knowledge of all specific molecules that 
comprise the organic reactivity regionally.81, 84 These results offer evidence that an important 
fraction of this total reactivity is drought-sensitive and not produced as a simple function of 
photosynthetic carbon fixation.  

A shift toward more NOx-limited PO3 caused by reduced organic reactivity requires that absolute 
PO3 has also decreased (Fig. 2.4). Here, I approximate the change in PO3 from the early to severe 
drought period (DPO3), which I then use (with measured [Ox]) to solve eq. 1 for the coincident 
change in LO3 + transport/mixing. I apply a known set of analytical equations (eqs. S1–S3) to 
calculate instantaneous PO3.97, 98 The analytical model is built on three assumptions: odd hydrogen 
(HOx º OH + HO2) is conserved, peroxy nitrates are in steady state with radical precursors, and 
radical propagation dominates termination. These assumptions are valid when photochemistry is 
rapid, for example during hot summer days, and should be drought independent. The model first 
solves for OH concentration, followed by PO3; a full description is provided in the SI. Inputs to 
the model are NO2/NOx, total organic reactivity to OH, air temperature, PHOx, and the alkyl nitrate 
branching ratio (a). Following the temperature-dependent O3 chemistry analysis in Bakersfield by 
Pusede et al.,81 I derive values at 35oC of NO2/NOx = 0.75 and PHOx = 0.7 ppt s–1 for both Fresno 
and Bakersfield. Because these terms are largely a function of O3 concentration, they are likely 
similar in the two locations over 2002–2017. While there are observational constraints on pre-
drought organic reactivity (at 35oC) in Bakersfield (7–12 s–1),72 I have no empirical knowledge of 
the reactivity in Fresno. For Fresno, I test the range of available data (7–25 s–1), including those 
collected at the Blodgett Forest Research Station in the Sierra Nevada Mountains, which may not 
be entirely representative.99 In Fresno, a was set equal 0.10 following Beaver et al.100 for Sierra 
Nevada foothill Oak-influenced air parcels. In Bakersfield, a was set equal 0.03 following Pusede 
et al.81 I did not vary PHOx or a between the early and severe drought; however, both may be 
drought sensitive. While changes in PHOx and a alter absolute DPO3, they have a smaller effect 
on the PO3 NOx dependence than organic reactivity.101, 102 

To estimate DPO3, I first determine the decrease in total organic reactivity consistent with 
measured ∆Ox wd–we / ∆NO2*wd–we (an approximate of ∂PO3 ∂NOx⁄ ), ∆NO2*wd–we, and the 
observation that DPO3 I» 0 (Figs. 2.4c–d). This step is necessary because while I know the change 
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in isoprene concentration between early and severe drought (Fig. 2.2), I know neither isoprene’s 
contribution to total organic reactivity nor the drought-sensitive portion of total, including 
unknown reactivity. Due to documented NO2* inaccuracies, the weekend NOx concentration is 
determined as the NOx concentration at which DPO3 I» 0 within a 0.5 ppb tolerance. I compute 
PO3 with an initial (early-drought) total organic reactivity value in the range of 7–20 s–1 in Fresno 
and 7–12 s–1 in Bakersfield. I then estimate severe-drought PO3 by varying “severe-drought” total 
organic reactivity (rounded to the nearest integer), optimizing agreement in observed ∆Ox wd–I/ 
∆NO2*wd–we and ∂PO3 ∂NOx⁄  (Fig. A2.5). Calculated DPO3 are weighted by one weekend day 
(DPO3 I» 0) and three weekdays, mirroring our weekday-weekend analysis. Regardless of initial 
reactivity, results were generally consistent (Table A2.2). Severe-drought reductions in organic 
reactivity of 65–70% in Fresno and 25–30% in Bakersfield were required to match observations. 
Because I do not account for drought-related changes in PHOx or a, calculated reactivity changes 
are an upper estimate, as they account for the full observed change in ∆Ox wd–we / ∆NO2*wd–we. By 
comparison, isoprene mixing ratios decreased by 54% in Fresno and 29% in Bakersfield (Fig. 2.2). 
Trends in ∆Ox wd–we / ∆NO2*wd–we are consistent with increased OH concentrations during the 
severe drought, which would have also led to reductions in non-biogenic and/or drought-
insensitive reactivity. In this way, I approximate that DPO3 equals –25% in Fresno and –17% in 
Bakersfield.  

2.3.3  Inferring drought influences over LO3 and Ox synoptic time-scale variability 

Despite large reductions in PO3 between early and severe drought, Ox decreased by just 6% in both 
Fresno and Bakersfield (Table 1), indicating compensating changes in other terms in ∂[O3] ∂t⁄ . 
Lower severe-drought Ox mixing ratios compared to early drought were significant to the 1% level 
(Fresno, p = 0.010; Bakersfield, p < 0.001). Severe-drought Ox differences were also significant 
to the 1% level with respect to the early drought (p < 0.001) defined as 2008–2010 to reduce the 
influence of ongoing NOx controls since 2002. While there were no ongoing direct LO3 
measurements in California, by solving the O3 mass balance using the calculated change in PO3 
and treating drought-related changes in mixing effects on the O3 concentration as negligible 
(discussion below), I infer estimates of the magnitude of drought LO3 decreases. 

In the surface boundary layer over vegetation, LO3 is often dominated by chemical reactions 
between O3 and biogenic alkenes (LO3 chemistry) and O3 deposition through stomatal pores (LO3 

deposition), 36, 38 although other nonstomatal processes may also be important. Using the isoprene 
concentration measurements, in Fresno I estimate a decrease in LO3 chemistry between the early and 
most severe drought periods of less than 0.3 ppb O3 day–1 (kO3+isoprene = 1.3 x 10–17 cm3 molecules–

1 s–1; integrated over 12–5 pm). Long-term observations of reactive terpenes are not available; as 
an upper estimate, if drought similarly reduced other reactive organic gases in Fresno (by 0.45 ppb 
isoprene), and if these gases had an O3 reaction rate similar to a-pinene (kO3+a-pinene = 8.0 x 10–17 
cm3 molecule–1 s–1), I would calculate that LO3 chemistry changed by 1.5 ppb O3 day–1 integrated over 
24 h, contributing to a ~2.5% increase in Ox concentration. In Bakersfield, I estimate a decrease in 
LO3 chemistry from the early to severe drought of 0.03 ppb O3 day–1 due to decreased isoprene mixing 
ratios and of 0.2 ppb O3 day–1 due to the same hypothetical reduction in other organic gases (0.06 
ppb). This suggests a change in LO3 chemistry during the severe drought of 0.5–3% in Fresno and 
<0.3% in Bakersfield. 
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The remainder of the drought-dependent change in LO3 has been previously attributed to reduced 
LO3 deposition to vegetated canopies because of decreased stomatal conductance and leaf area.18, 32, 

37, 103, 104 Deposition to ground surfaces may also be suppressed during drought, as reduced 
resistance to soil deposition has been observed at lower relative humilities.105 Using eq. 1, I 
estimate drought-driven changes in LO3 deposition (stomatal, cuticular, and to soil) of ~18% in Fresno 
and ~10% in Bakersfield, which are of the same magnitude as modeled changes over Texas forests, 
where drought led to LO3 deposition decreases of 5–15%.32 

Some models predict drought will result in changes in surface wind speeds and synoptically-driven 
factors such as greater atmospheric stagnation19, 106 leading to enhanced O3 accumulation over 
multiple days107, 108 and changes in surface mixing heights.109 In Fresno and Bakersfield, I find 
slightly slower daytime (12–5 pm LT) surface wind speeds concurrent with drought years (Table 
1). One effect would be to reduce the spatial extent of the upwind footprint. For example, the 
Clovis monitoring station is located at the eastern edge of the O3-polluted SJV and 10.5 km 
northeast of downtown Fresno. Integrated over 6 h, early-drought and severe-drought wind speed 
differences (corresponding with DPO3) amount to a 5% decrease in the mean upwind footprint. 
Because high O3 concentrations are prevalent throughout the SJV,66 small changes in the size of 
the source region are not expected to cause large variations in O3 mixing ratios measured in Fresno 
or Bakersfield.  

As a constraint on whether O3 variation on synoptic timescales is influenced by drought conditions, 
I compare the severity, length, and total O3 accumulation of ev3 events during the pre-, early, 
severe, and post-drought periods (Table 1). O3 events are identified as four or more consecutive 
days of increasing afternoon (12–5 pm LT) mean Ox mixing ratios during the June–September O3 
season with a 5% tolerance and leading to an Ox increase over the event of at least 10%.110 Severity 
and accumulation are defined for each event as the slope of the Ox concentration versus day and 
the difference between the maximum and minimum measured Ox, respectively.  

Through this method, in Fresno, event severity, length, and accumulation in the early (p = 0.324, 
p = 0.639, p = 0.807) and severe drought (p = 0.635, p = 0.272, p = 0.871) were statistically 
indistinguishable from the predrought period. While the ensemble event severity distribution is 
positively skewed over most of the time record, during 2014–2015 the distribution is 
approximately normal (Table 1). A reduction in the highest severity values, is consistent a 
reduction in PO3 during severe-drought O3 event. Likewise, in Bakersfield, differences in event 
severity, length, and accumulation in the early (p = 0.450, p = 0.926, p = 0.431) and severe drought 
(p = 0.398, p = 0.898, p = 0.483) from the predrought period were not significant at the 5% level. 
While O3 variations on synoptic timescales (4–13 days over 2002–2017) do not appear to have 
changed significantly during the severe drought, drought conditions may have still exerted 
influence over synoptically-driven factors. 

2.4  Air Quality Implications, Future O3 Ecosystem Impacts 
These results suggest drought-O3 influences are both more complex than would be inferred from 
the atmospheric O3 temperature and humidity dependence and are a function of drought severity 
and duration. This observational study, based on trace gas concentrations rather than flux 
measurements, is not sensitive enough to distinguish early drought-driven isoprene enhancements 
from interannual variability, but decreased isoprene under severe drought conditions (and with 
early drought in Bakersfield) is unambiguous. Oak trees are drought tolerant,111, 112 in part due to 
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their ability to manage water resource limitation113 and access groundwater through deep root 
systems;114 however, the limits of their drought resilience are not entirely known.113 I find 
conditions in the Sierra Nevada foothills region in Central California during the California drought 
were sufficiently severe to suppress isoprene emissions regionally. While isoprene mixing ratios 
rebounded partially in Fresno (~35%) and possibly in Bakersfield (~15%) in 2016–2017, recovery 
was impaired at higher atmospheric temperatures. I anticipate results derived in Central California 
should apply to other ecosystems with isoprene-emitting drought-prone vegetation. While O3-
temperature correlations are often presupposed, in many locations, this correlation is caused by the 
temperature dependence emissions of biogenic organic reactivity to OH, including isoprene.62  

Decreased isoprene emissions will alter O3 plant and ecosystem impacts, as isoprene reduces 
stresses from O3 pollution.115 Isoprene and other biogenic alkenes act as within-leaf chemical sinks 
of oxidants, including O3, preventing a variety of O3 plant injuries116 and suggesting greater O3 
sensitivity for ecosystems post-drought. However, while Sierra Nevada trees can live for hundreds 
of years, high O3 concentrations in the western Sierra Nevada Foothills, which are common during 
drought and non-drought years, are only a decades-old phenomenon. The combination of serious 
O3 pollution and wide-spread tree death, initiates a landscape scale experiment on O3 influences 
over plant community dynamics. There is laboratory evidence that elevated atmospheric O3 affects 
plant development and growth, including delayed starch biosynthesis, greater isoprene emissions 
with a larger portion of photosynthetic carbon allocated to isoprene production, and structural 
changes leading to increased O3 resistance.117 It is also predicted that O3 pollution favors isoprene-
emitting plant species, causing a shift in species composition, which unless otherwise perturbed, 
would take centuries.118 

Climate change is predicted to affect the chemistry and environmental conditions that control 
atmospheric O3 concentrations.17, 62, 119 There remain critical uncertainties related to effective 
regulatory design in a warmer and/or otherwise different climate, including more prevalent and 
extreme drought. Moreover, the magnitude and sign of drought forcing on any individual term in 
the O3 mass balance equation will vary as a function of location. This analysis adds to growing 
literature indicating severe drought has the potential to alter the abundance and temperature-
dependence of O3-forming biogenic organic reactivity, the dominant chemical mechanisms and 
absolute rates of PO3, and the O3 tropospheric lifetime. While less abundant in Central California, 
isoprene is typically the largest source of OH reactivity in the continental boundary layer; as a 
result, drought-isoprene effects on PO3 will likely be more pronounced in locations where isoprene 
is dominant. I find severe drought conditions worsen the so-called O3-climate penalty in Central 
California, defined as diminished NOx emission control benefits,76 as biogenic reactivity is reduced 
to the extent that PO3 becomes more NOx suppressed, more substantial decreases in NOx would 
be require to have the same effect. In Central California, drought conditions led to decreased PO3, 
but air quality benefits were largely negated by concomitant changes in LO3, suggesting more 
aggressive regulatory interventions will be required in the future.  
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Figure 2.1. Central California (panel a) with MEGAN isoprene emission factors (MEGAN v2.1, 
version 2011).120 Fresno (panel b) and Bakersfield (panel c) areas and monitoring station locations 
with isoprene (green) and O3 and NO2* (red outline) measurements available, with MEGAN 
isoprene emission factors in same color scale as panel a. 
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Figure 2.2. Daytime (8 am–8 pm, LT) isoprene mixing ratios (ppb) during O3-season in Fresno 
(panel a) and Bakersfield (panel b). Envelopes define the 2σ standard deviation, not the 
measurement uncertainty. Slopes of the correlation between daily maximum temperature (oC) and 
isoprene/LAI (green, left axis) or isoprene (gray, right axis) in Fresno (panel c) and Bakersfield 
(panel d) with slope errors. Plot fields are tinted to indicate the 2011–2013 early drought (light 
yellow) and 2014–2015 severe drought (light orange) time periods. 
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Figure 2.3. Monthly mean isoprene mixing ratios (ppb) versus MODIS-derived LAI (m2 m–2) in 
Fresno (panel a) and Bakersfield (panel b). Coloration indicates pre-drought (gray), early-drought 
(yellow), severe-drought (orange), and post-drought (light blue) time periods. 
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Figure 2.4. Cartoon illustrating PO3 versus NOx concentration at high (black) and low (gray) 
organic reactivity. NOx-limited PO3 is indicated in blue and NOx-suppressed PO3 is indicated in 
brown. 
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Figure 2.5. Panels a–b, right axis (red): afternoon (12–5 pm, LT) ∆Ox wd–we / ∆NO2*wd–we during 
O3 season (June–September) in Fresno and Bakersfield. Left axis (gray): ∆Ox wd–we for the same 
data with standard mean errors. Panels c–d: afternoon (12–5 pm LT) Ox (ppb) during O3 season 
on weekdays (burgundy circles) and weekends (pink diamonds) in Fresno (panel c) and 
Bakersfield (panel d). Error bars are 1s standard mean errors. Tinted areas indicate the 2011–2013 
early-drought (light yellow) and 2014–2015 severe-drought (light orange) time periods. 
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Table 2.1. Statistics during the pre- (2002–2010), early (2001–2013), severe (2014–215), and post-
drought (2016–2017) time periods for Fresno, Bakersfield, and the Tulare Basin during O3 season 
(June–September). For Ox and NO2* metrics, pre-drought is defined as 2008–2010 (italics). Data 
are reported as means if distributions are generally Gaussian and include medians in parentheses 
if non-normal. Normality was determined through visual examination of histograms and quantile-
quantile plots. Isoprene metrics are daily means (8 am–8 pm, LT); all other metrics are afternoon 
observations (12–5 pm, LT). Uncertainties are 1s standard mean errors, with the exception of the 
isoprene/LAI versus daily maximum temperature slopes, which are slope errors. The number of 
days with measurements included in each metric is reported in Table A2.1. 
  

pre-drought 
2008–2010 
2002–2010 

early drought 
2011–2013 

severe drought 
2014–2015 

post-drought  
2016–2017 

Fresno 
Isoprene mixing ratio (ppb) 1.00 ± 0.03 1.00 ± 0.04 0.45 ± 0.02 0.60 ± 0.02 
Isoprene/LAI vs. temperature correlation slope (ppb oC–1) 0.10 ± 0.01 0.10 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 
LAI  0.84 ± 0.03 0.89 ± 0.04 0.84 ± 0.04 0.91 ± 0.02 
∆Ox wd–I/ ∆NO2*wd–we 4.5 ± 0.6 

2.9 ± 0.5 
5.9 ± 0.7 2.8 ± 1.1 3.8 ± 1.4 

Percent ∆NO2*wd–I(%) 42 
42 

36 24 23 

Ox mixing ratio (ppb) 75.7 ± 0.4 
78.2 ± 0.4 

73.6 ± 0.3 69.5 ± 0.3 72.9 ± 0.2 

NO2* mixing ratio (ppb) 4.9 (4.3) ± 0.1 
6.0 (5.5) ± 0.1 

4.1 (3.7) ± 0.1 3.4 (3.1) ± 0.1 3.4 (3.2) ± 0.1 

Daily maximum temperature (oC) 34.6 ± 0.1 35.2 ± 0.1 35.1 ± 0.1 35.7 ± 0.1 
Relative humidity (%) 25 (22) 24 (22) 26 (24) 24 (23) 
Wind speed (m s–1) 6.4 ± 0.1 6.0 ± 0.1 5.7 ± 0.1 5.9 ± 0.1 
Stagnation severity (O3 ppb day–1) 6.3 (5.4) ± 0.2 6.0 (5.3) ± 0.3 5.7 (5.8) ± 0.3 5.3 (4.8) ± 0.3 
Stagnation event duration (days) 5.4 (5) ± 0.1 5.4 (5) ± 0.1 5.5 (5) ± 0.2 5.8 (5) ± 0.2 
Stagnation accumulation (O3 ppb event–1) 26.8 (23.3) ± 0.8 25.7 (23.1) ± 1.3 24.7 (24.0) ± 1.4 24.9 (23.1) ± 1.4 
Bakersfield 
Isoprene mixing ratio (ppb) 0.40 ± 0.01 0.21 ± 0.02 0.15 ± 0.01 0.17 ± 0.01 
Isoprene/LAI vs. temperature correlation slope (ppb oC–1) 0.23 ± 0.05 0.11 ± 0.02 0.06 ± 0.01 0.12 ± 0.04 
LAI  0.16 ± 0.03 0.20 ± 0.01 0.18 ± 0.02 0.22 ± 0.01 
∆Ox wd–I/ ∆NO2*wd–we 6.7 ± 0.6 

4.4 ± 0.6 
5.5 ± 0.7 3.9 ± 1.5 3.3 ± 1.1 

Percent ∆NO2*wd–I(%) 36 
31 

32 23 29 

Ox mixing ratio (ppb) 76.0 ± 0.2 
79.0 ± 0.1 

71.5 ± 0.2 67.0 ± 0.2 72.5 ± 0.2 

NO2* mixing ratio (ppb) 4.2 (4.0) ± 0.1 
5.3 (4.7) ± 0.1 

3.7 (3.4) ± 0.1 2.6 (2.6) ± 0.1 2.9 (2.7) ± 0.1 

Daily maximum temperature (oC) 34.4 ± 0.1 34.1 ± 0.1 34.9 ± 0.1 35.8 ± 0.1 
Relative humidity (%) 25 (22) 24 (23) 21 (19) 18 (17) 
Wind speed (m s–1) 3.2 ± 0.4 3.4 ± 0.3 3.1 ± 0.2 3.1 ± 0.2 
Stagnation severity (O3 ppb day–1) 6.0 (5.2) ± 0.2 5.6 (5.1) ± 0.3 6.1 (5.4) ± 0.4 4.8 (4.3) ± 0.3 
Stagnation event duration (days) 5.5 (5) ± 0.1 5.5 (5) ± 0.2 5.5 (5) ± 0.2 5.8 (5) ± 0.2 
Stagnation accumulation (O3 ppb event–1) 25.7 (22.7) ± 0.8 23.7 (23.7) ± 1.0 25.7 (24.9) ± 1.2 23.0 (20.5) ± 1.4 
Tulare Basin 
Water-year rainfall (inches) 56.1 55.2 27.8 72.7 
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Chapter 3: Observing Air Pollution Inequality Using High Spatial Resolution Nitrogen 

Dioxide Remote Sensing Measurements in Houston, Texas 

 
Adapted from: Demetillo, M. A. G., Navarro, A., Knowles, K. K., Fields, K. P., Geddes, J. A., 
Nowlan, C. R., Sun, K., Judd, L. M., Al-Saadi, J., Diskin, G. S., McDonald, B. C., and Pusede, S. 
E.: Observing Air Pollution Inequality Using High Spatial Resolution Nitrogen Dioxide Remote 
Sensing Measurements in Houston, Texas, Environ. Sci. Technol., 54, 9882-9895, 
doi:10.1021/acs.est.0c01864, 2020. 

3.1  Introduction 
Houston, Texas is a large, socio-demographically diverse U.S. city that is also a global center for 
petrochemical manufacturing. Houston experiences among the worst air quality in the U.S.,121, 122 
with documented evidence that local air pollution disproportionately burdens the city’s low-
income residents and communities of color,123-126 leading to demonstrated differences in health 
and life expectancy as a result.127, 128 Similar racial, ethnic, and income-based inequalities have 
also been observed in other major U.S. cities.129-133 Our ability to describe this intra-urban pollutant 
variability has been limited by the lack of spatially-continuous, temporally-resolved measurements 
that capture gradients between neighborhoods. In the case of reactive gases with short atmospheric 
lifetimes, such as nitrogen dioxide (NO2), intra-urban spatiotemporal variability cannot be directly 
observed by traditional monitoring approaches, impeding efforts to address air quality disparities 
through policy. 

NO2 plays a critical role in surface air quality, and knowledge of NO2 spatiotemporal variability 
is fundamental to air pollution and public health decision-making. NO2 is a key control over the 
atmospheric oxidation capacity, a precursor to ground-level ozone and particulate matter (PM), 
and a regulated criteria pollutant under the Clean Air Act. In U.S. cities, NO2 sources are typically 
dominated by vehicles and electricity generation;134 in Houston, petrochemical refineries and 
industrial activities are also large emitters.135-137 NO2 is a robust indicator of combustion emissions 
generally131 and a common surrogate for traffic-pollutant mixtures, especially toxic diesel 
exhaust.138 Epidemiological studies have linked ambient NO2 concentrations to adverse health 
outcomes139-142 and residential proximity to roadways has been associated with reduced lung 
function and asthma,143-145 cardiac and pulmonary mortality, and preeclampsia and preterm 
birth.146-148 

NO2 concentrations change rapidly in the near-field of sources, with downwind distance-decay 
gradients ranging from <0.5 km in unstable to 1–2 km in stable atmospheres.149, 150 Widely-used 
monitoring tools such as regulatory surface networks and satellite instruments have historically 
been unable to resolve such NO2 gradients. Across the U.S., there are over 400 in situ NO2 
monitoring stations, yet fewer than 1/3 of U.S. urban areas are equipped with even one NO2 
analyzer.151 In cities with monitors, representative concentrations are not captured for most 
residents, and, while urban NO2 is well-correlated with traffic, U.S. Environmental Protection 
Agency (EPA) guidance generally recommends siting monitors away from roadways.152 At the 
same time, satellite remote sensing has contributed substantially to our understanding of inter-
urban NO2 distributions, providing spatially continuous maps of NO2 columns across cities, but 
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has generally lacked the resolution required to capture intra-urban variability.74, 151, 153, 154 Fine 
spatial scale land-use regression (LUR) models, which predict pollutant concentrations as a 
function of the geographic location of emitters and other land cover elements, have added spatial 
detail to coarse NO2 datasets and allowed the creation of NO2 maps at resolutions of 100 m2, fine 
enough to resolve distance-decay gradients away from sources.155-157 However, these models 
require substantial a priori geospatial knowledge and rely on temporal averages of pollutant data 
of at least weeks (surface monitors) to months (satellites). As a result, LUR models typically do 
not describe pollutant temporal variability, limiting source identification and discovery from time-
varying emission patterns, and leading to biases in acute exposure epidemiological studies related 
to confounding temporal trends and meteorology.138 

Here, I evaluate the extent that NO2 remote sensing can resolve intra-urban spatiotemporal 
variability relevant to NO2 inequality in Houston, Texas. First, I describe an observationally-based 
analysis using novel high-spatial-resolution (250 m x 500 m) sub-orbital remote sensing 
measurements from NASA GCAS (GEOstationary Coastal and Air Pollution Events (GEO-
CAPE) Airborne Simulator), collected as part of the September-2013 DISCOVER-AQ study 
(Deriving Information on Surface Conditions from COlumn and VERtically Resolved 
Observations Relevant to Air Quality).158-160 I quantify neighborhood-level (census-tract) 
differences in population-weighted tropospheric NO2 vertical columns, with GCAS columns 
resolving within census-tract variability, and discuss atmospheric controls over the NO2 
spatiotemporal distribution for various socio-demographic groups, specifically race-ethnicity and 
income. Second, I test whether the recently launched satellite-based TROPOMI sensor, currently 
producing the highest spatial resolution NO2 satellite measurements, precisely and/or accurately 
captures the same NO2 column differences detected by GCAS. I utilize in situ NO2 vertical profiles 
collected onboard the NASA P-3B during DISCOVER-AQ and data from the routine surface 
monitoring network to demonstrate that columns and surface measurements represent similar NO2 
spatial patterns. I evaluate major source contributions to census-tract-level NO2 disparities, 
comparing weekday-weekend column differences in the first full year of TROPOMI data (June 
2018–May 2019) to estimates derived from emissions in the high-resolution Fuel-based Inventory 
of Vehicle Emissions (FIVE) inventory and National Emission Inventory (NEI). Finally, I discuss 
potential applications and limitations of next-generation satellites observations to inform, evaluate, 
enforce, and motivate decision-making on air pollution inequality in U.S. cities. 

3.2  Materials and Methods 

3.2.1  Houston, Texas  

Houston-The Woodlands-Sugar Land, referred to in this paper as either Houston or the Houston 
Metropolitan Area (HMA), is largest metropolitan statistical area in Texas, and among the largest 
in the U.S., with 6.1 million residents in 2013 and 6.8 million in 2018.161 Houston is a growing 
city that is racially, ethnically, and economically diverse, and home to one of the largest Hispanic 
populations in the U.S. Houston is also the location of ~1/4 of all U.S. chemical refineries162 and 
the Houston Ship Channel (HSC), a busy waterway where numerous major industrial facilities are 
located, extending from the Gulf of Mexico, through Galveston Bay, and along the Buffalo Bayou 
river between Baytown and Downtown Houston (Fig. A3.1).163 The unique combination of urban 
transportation, petrochemical emissions, and the prevalent land-sea breeze contribute to the 
HMA’s poor air quality, including high levels of ozone and hazardous air pollutants.164-166 Past 
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research has shown that local air pollution is not uniformly distributed across Houston, but is 
instead concentrated in neighborhoods with larger Hispanic populations, lower rates of educational 
attainment, and higher rates of poverty.123-125 Primarily non-white, Hispanic, and lower-income 
neighborhoods have experienced greater cancer risks, increased chronic and acute air pollutant 
exposure, and lower overall physical well-being, especially in communities adjacent to facilities 
on HSC, where low-income households and people of color are statistically overrepresented.127, 

128  

3.2.2  GCAS 

The GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS) 
was developed as a technology-demonstration instrument in support of the GEOstationary Coastal 
and Air Pollution Events (GEO-CAPE) decadal survey mission.167 GCAS makes hyperspectral 
nadir-viewing measurements of backscattered solar radiation in two channels at wavelengths 300–
490 nm (air quality species) and 480–900 nm (ocean color). Each channel uses a two-dimensional 
charge coupled device (CCD) array detector for mapping, with one CCD dimension capturing 
absorption spectra and the other providing cross-track spatial coverage over a ~45° field of view. 
GCAS NO2 column retrievals consisted of a two-step approach similar to algorithms used for other 
major satellite instruments: GOME, SCIAMACHY, OMI, and the forthcoming TEMPO.158, 159 
First, NO2 slant column densities were derived by direct spectral fitting of radiances using 
measured nadir spectra and an averaged unpolluted reference spectrum (over the Gulf of Mexico). 
Second, slant columns were converted to vertical columns using an air mass factor (AMF), 
calculated for each scene with scattering weights derived from a radiative transfer model over 56 
vertical layers, 45 of which were generated from the Community Multi-scale Air Quality (CMAQ) 
model. The AMF was a function of the observing geometry, surface reflectance, ozone profile, 
and trace gas profile shape. GCAS column uncertainties were estimated to range between 20–50% 
and 18–30% over moderately (0.5–1 x 1016 molecules cm–2) and heavily polluted (>2 x 1016 
molecules cm–2) areas, respectively.158 In a detailed evaluation of DISCOVER-AQ GCAS 
observations, Nowlan et al.158 reported an overall correlation of r2 = 0.89 between integrated P-3B 
NO2 columns and GCAS measurements. GCAS was found to underestimate NO2 columns 
compared to P-3B measurements for high column densities (GCAS low by 10%) and overestimate 
columns near background concentrations (by ~1.6 x 1015 molecules cm–2), implying our 
community-level NO2 difference estimates may be underestimated. Column uncertainties were 
driven by uncertainties in the AMF and challenges associated with representing species exhibiting 
high spatiotemporal variability as means. The GCAS instrument and retrieval validation have been 
described in detail in Nowlan et al.158, 159 GCAS produced individual spectra with native spatial 
resolution on the order of tens of m2, but spectra were spatially averaged to enhance their signal to 
noise. At a 9-km flight altitude, GCAS produced NO2 vertical columns at 250 m (across track) x 
500 m (along track), with the along-track coverage generated by the host aircraft. During the 
Houston DISCOVER-AQ deployment, GCAS flew onboard the NASA B-200 and conducted a 
total of 21 air quality flights in the morning (8 am–12 pm, LT) and afternoon (1 pm–5 pm, LT) 
over 11 days. I focused on measurements of cloud-free pixels from 9 weekdays that included both 
morning and afternoon research flights, with two circuits during each flight: September 4, 6, 11–
13, 18, and 24–26, 2013. Data from the second circuit of the 12-September morning sortie were 
omitted because of heavy clouds. 
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3.2.3  TROPOMI  

TROPOspheric Monitoring Instrument (TROPOMI) is the newest space-based NO2 sensor168, 169 
and the single-payload onboard the sun-synchronous Copernicus Sentinel-5 Precursor (S5P) 
satellite. TROPOMI measures in the ultraviolet and visible (270–500 nm), near-infrared (675–775 
nm), and shortwave infrared (2305–2385 nm) spectral regions to quantify a range of atmospheric 
trace gases. NO2 is retrieved by fitting the 405–465 nm band using an updated OMI DOMINO 
retrieval and based on work from the QA4ECV project.170-174 At nadir, NO2 is retrieved at a spatial 
resolution of 3.5 km x 7 km.168, 169 Precision of individual tropospheric NO2 columns over 
urban/polluted scenes is on the order of 30–60% and dominated by uncertainties in the AMF.175 
Key inputs to the AMF are clouds, the NO2 profile shape generated using 1° x 1° TM5-MP model 
output, and the surface albedo from a 0.5° x 0.5° monthly OMI climatology.176, 177 I used clear-sky 
Level 2 NO2 tropospheric columns, quality descriptor: qa value >0.75 as recommended by the 
Product User Manual.178 TROPOMI maps at 0.01∘ x 0.01∘ were produced using physics-based 
oversampling.179 In brief, the approach represents observations on the ground as sensitivity 
distributions, rather than as points or polygons. For image grating spectrometers like TROPOMI, 
generalized two-dimensions super Gaussian functions have been shown best to characterize 
sensitivity distributions. 

3.2.4  Surface NO2* and winds  

Hourly ground-based nitrogen dioxide (NO2*), wind speed, and wind direction measurements 
were downloaded via the Texas Commission on Environmental Quality Data Report query tool 
(https://www17.tceq.texas.gov/tamis/index.cfm). NO2* was measured using chemiluminescence 
coupled to a heated molybdenum converter that includes a positive interference from nitric acid 
and organic nitrates, which largely affects absolute rather than relative NO2* mixing ratios. 49, 180 
I use the nomenclature NO2* rather than NO2 in acknowledgement of this interference. For 
September 2013, I analyzed wind data from 16 monitoring stations in the HMA with simultaneous 
NO2* and wind observations. To observe interannual trends, I compared daytime (10 am–4 pm 
LT) annual averaged data for June 2013–May 2014 and June 2018–May 2019 using NO2* 
measurements from the 15 stations operating in both time periods. To compare surface and 
TROPOMI column observations, I included mean midday (12–3 pm LT) measurements from all 
17 monitors in the HMA, excluding two designated near-roadway sites (see Fig. A3.14 caption for 
station information).181  

3.2.5  Demographic data and boundaries 

Household income statistics from the 2010 American Community Survey: 5-Year Dataset and 
race-ethnicity population tables from the 2010 U.S. Census were downloaded from the IPUMS 
National Historical Geographic Information System.182 Year 2013 census tract polygons were 
downloaded as TIGER/Line shapefiles from the Data.gov library (https://www.census.gov/cgi-
bin/geo/shapefiles/index.php).  
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3.2.6  P-3B dataset and CBL height determination 

As part of DISCOVER-AQ, NO2 and NO were measured onboard the NASA P-3B at 1-s time 
resolution by the NCAR chemiluminescence system, detecting NO directly and NO2 following 
photolysis into NO by a blue light converter. The instrument was calibrated frequently in flight 
and uncertainties were 0.02 ppb precision (at 1 s averaging) and ±10% accuracy for NO2. H2O(v) 
was measured by the NASA open-path Diode Laser Hygrometer (DLH) and reported at 1-s time 
resolution with overall uncertainties of 5%. Static air temperature data were collected by a 
Rosemount model 102 sensor with precision of 0.006°C and accuracy of ±0.2°C. 

For each P-3B profile, I identified the CBL height as the altitude of the strongest coincident 
gradients in potential temperature (q) and water vapor mixing ratio (H2O(v)), which were also near 
the top of the region of constant H2O(v) mixing ratios extending from the surface.183, 184 To reduce 
spurious layer determination from instrument noise, I first averaged measurements into 10-m 
altitude bins and calculated 5-point running mean lapse rates and H2O(v) gradients. Vertical profiles 
of NO2, lapse rate, q, and H2O(v) with their corresponding CBL heights over Moody Tower, 
Channelview, Deer Park, West Houston, Conroe, and Manvel Croix are provided. 

3.2.7  FIVE and NEI inventories 

The Fuel-based Inventory from Vehicle Emissions (FIVE) is a spatially- and temporally-resolved 
inventory of mobile source emissions (on-road + off-road engines).185 I focused on the on-road 
component, comprised of light-duty gasoline vehicles and heavy-duty trucks, with fuels sales and 
emission factors updated to 2018. FIVE provided on-road emissions derived from publicly 
available fuel sales reports, road-level traffic counts, and time-resolved weigh-in-motion traffic 
counts.80 Fuel use uncertainties are based on differences between fuel sale reports and truck travel 
(±13% in Texas) and traffic count site-selection and sample size (±10% for major roads and 
freeways in large urban areas). Emissions uncertainties were derived from regression analysis of 
near-road infrared remote sensing and tunnel studies: ±16% and ±15% for light-duty gasoline 
vehicles and heavy-duty diesel trucks, respectively.185 

The National Emissions Inventory (NEI) provides a comprehensive and detailed estimate of NO2 
emissions from stationary sources, including industrial facilities, power plants, airports, and 
commercial facilities. I used estimates from the 2014 NEI Version 1, encompassing reports from 
state, local, and tribal air agencies and the EPA programs: Toxic Release Inventory, Acid Rain 
Program, and Maximum Achievable Control Technology standards development. I use emission 
uncertainties in power plants of ±25% and assume errors in industrial facilities and other less-
characterized stationary sources to be ±50%.90, 186 

3.2.8  Population-weighted NO2, community-level NO2 differences, and NO2 inequality 

GCAS and TROPOMI NO2 columns were averaged within census tract polygons and tagged with 
geographic identifiers. Population-weighted NO2 columns were calculated as equal to the product 
of the tract-unit NO2 column (NO2,j) and demographic group population (pj) (by race-ethnicity or 
poverty classification) in the ith tract, summed over all census tracts with NO2 data (n), and divided 
by the summation of the group population (pj) (Eq. 3.1). Errors were defined as standard mean 
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errors, with N representing the number of census tracts with both NO2 observations and residents 
of a given demographic group. 

(E3.1) Population-weighted NO2,j =  ∑ NO2,i pi,j
n
i = 1   ∑ pi,j

n
i = 1(   

I discussed absolute and relative NO2 inequality in terms of the absolute and percent difference in 
population-weighted NO2 columns between two demographic groups. Race-ethnicity 
demographics were defined with the following U.S. Census codes: Black and African Americans 
(JMJE004), excluding individual identifying as Hispanic or Latino; Asians (JMJE006), excluding 
those identifying as Hispanic or Latino; Hispanics (JMJE012), including all races reporting as 
Hispanic; and non-Hispanic whites (JMJE003). GCAS sampling was statistically representative of 
race-ethnicity demographics in the HMA (GCAS, HMA): Black and African American (17%, 
12%); Asian (5%, 4%); Hispanic (36%, 37%), and non-Hispanic white (42%, 47%). I also 
described NO2 columns for non-whites living in low-income tracts (LIN) defined as NO2 column 
densities population-weighted by non-white populations (Black and African American, Asian, and 
Hispanic) in tracts with median household incomes less than 35,000 USD. NO2 columns for whites 
living in high-income tracts (HIW) were defined using population-weighting by non-Hispanic 
white populations in tracts with median household incomes greater than $80,000. For reference, 
lower (upper) annual household-income quintiles were 34,588 (84,905) USD along the GCAS 
flight path and 33,860 (79,332) USD across the nine counties of the HMA. Along the GCAS track, 
13% of the population met the criteria for LIN (16% for HIW), residing in 18% of census tracts 
(23% for HIW); in the HMA, 16% of the population met the criteria for LIN (13% for HIW), 
residing in 25% percent of tracks (17% for HIW). Poverty status was categorized following the 
U.S. Census Bureau definition using the ratio of household income-to-poverty. Households were 
classified as being below the poverty line if their income was less than the poverty threshold in the 
U.S. Federal Poverty Guidelines, which scales with the number of people per household. I defined 
census tracts as below-poverty if >20% of households in the tract were at or below an income-to-
poverty ratio of 1. The corresponding number of households was used in Eq. 3.1. Households with 
an income-to-poverty ratio greater than one in the remaining census tracts comprise the above-
poverty population. Near-poverty populations encompassed households in all tracts with an 
income-to-poverty ratio of 1–1.24. 

3.3  Results and Discussion 

3.3.1  GCAS, census-tract NO2 differences, and temporal variability 

I focused on GCAS measurements from 35 flight circuits, collected on 9 weekdays (Tuesday–
Friday) with sampling conducted in both the morning (8 am–12 pm local time, LT) and afternoon 
(1 pm–5 pm LT) (Figs. S2–S10). Observations from two example days are shown in Fig. 3.2, with 
GCAS vertical columns averaged to the underlying census tracts. To investigate differences in 
neighborhood-level NO2, I calculated tract-level race-ethnicity population-weighted mean NO2 
columns for census tracts along the GCAS flight path for each circuit, and compared absolute and 
relative column differences (Tables 1 and 2). Population-weighted NO2 columns for Hispanic, 
Black and African American, and Asian residents across all tracts sampled by GCAS were higher 
than for non-Hispanic whites by 32 ± 11%, 19 ± 7%, and 11 ± 5%, respectively (Table 1). In census 
tracts defined as below or near the poverty line, NO2 columns were on average 28 ± 11% and 15 
± 8% higher than those above the poverty line. For non-whites in low-income tracts, population-
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weighted NO2 columns were 37 ± 6% higher than for HIWs. Correspondingly, predominantly 
Hispanic and Black and African American neighborhoods and lower-income neighborhoods of all 
race-ethnicities were more often located in central Houston and closer proximity to the HSC (Figs. 
A3.11 and A3.12).  

While population-weighted NO2 columns were always higher for LIN than HIWs, a wider range 
of NO2 levels were observed in predominantly non-white, Hispanic, and low-income tracts (Table 
2). Variability, defined as two standard deviations of mean population-weighted NO2 for all 35 
flight circuits, was a factor of 2.5 greater for LINs than HIWs. On 25 September, meteorological 
conditions contributed to late-morning NO2 columns and LIN-HIW differences (84 ± 8%) that 
were uniquely high (Table 3.1; Fig. A3.9); however, even after removing all 25-September data, 
population-weighted NO2 columns were still 1.8 times more variable for LINs than HIWs. In the 
afternoon, absolute NO2 column densities were lower for both LINs and HIWs than in the morning. 
Afternoon mean surface winds were 8 ± 1 m s–1 and usually from the southeast (onshore flow); by 
comparison, morning surface winds were 6 ± 2 m s–1, and, while typically from the east/east-
northeast, were more varied in direction (Table A2.1). The observed variability indicated greater 
NOx emission source density in proximity to non-whites living in low-income neighborhoods, as 
the highest concentrations should co-locate with sources for reactive gases. I test this conclusion 
against emission inventory data (below), as high-income tracts were also 60% larger than low-
income tracts, leading to greater spatial averaging. 

3.3.2  Evaluating TROPOMI observations.  

GCAS operates as a satellite analog in NASA airborne missions and its high-spatial-resolution 
observations now provide TROPOMI validation measurements. Launched in October 2017, 
TROPOMI has been shown to generate detailed NO2 column maps, revealing hotspots 
undetectable by past space-based sensors due to its order of magnitude improved spatial 
resolution.187-190 Here, I use the high-spatial-resolution, but limited duration, GCAS dataset to 
evaluate TROPOMI-derived annual-average differences in census tract-scale NO2 columns, both 
along the GCAS flight track and across the HMA. The comparison provides an evaluation of the 
suitability of TROPOMI observations to resolve key horizontal NO2 gradients for assessing air 
pollution disparities, where pollutant inequalities with neighborhood demographics in Houston 
have been independently shown.123-125, 127, 128 

In Fig. 3.2a–b, TROPOMI observations are weekdays (Tuesday–Friday) over June 2018–May 
2019, with data collection occurring at ~1:30 pm LT. Mondays were excluded, as they were 
considered transition days. TROPOMI measured highly-localized NO2 column enhancements over 
the HSC, Texas City Galveston Bay Refinery (the second largest refinery in the U.S.), and the 
W.A. Parrish Generating Station (a 3.65 GW dual-fired power plant that includes the largest coal-
fired plant in Texas at 2.7 GW). To produce TROPOMI maps at 0.01∘ x 0.01∘ (~1 km x 1 km over 
Houston), I employed a physics-based oversampling of daily images.179 The annual-average 
weekday NO2 pattern was spatially similar to GCAS measurements on days with slower surface 
winds, onshore afternoon air flows, and higher-than-average NO2, in particular, September 4, 25, 
and 26. 

Population-weighted annual weekday TROPOMI columns were 31 ± 3% higher for LINs than 
HIWs when sampled along the GCAS flight track (Fig. A3.13a). Across the full HMA (Fig. 3.2b; 
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Table 1), weekday TROPOMI observations indicated 34 ± 2% higher population-weighted NO2 
columns for LINs than HIWs. Because I utilized population-weighted columns, these results do 
not simply reflect urban-rural gradients. In Houston’s ‘urbanized areas’ only (Fig. A3.15), which 
included 79% of tracts in the HMA, population-weighted LIN NO2 columns were 27 ± 3% higher 
for HIWs. In September 2018 (Fig. A3.13b), LIN population-weighted weekday TROPOMI NO2 
columns were 42 ± 3% greater than for HIWs. Results from both annual and September TROPOMI 
weekday means agreed with afternoon GCAS LIN-HIW differences (34 ± 8%) to within 
uncertainties. Between 2013 and 2018, surface-level NO2* mixing ratios averaged across the HMA 
decreased by 6 ± 5% (1.0 ± 7 ppb), with no major changes in the NO2* spatial distribution and 
lower absolute and relative changes recorded at monitors nearest to the HSC compared to sites in 
suburban HMA (Fig. A3.14). In addition to somewhat lower relative LIN-HIW differences, the 
annually-averaged TROPOMI results yielded significantly lower absolute weekday LIN-HIW 
differences (9.19 x 1014 molecules cm–2) compared to GCAS (2.6 x 1015 molecules cm–2). 
Temporally averaging TROPOMI observations would have reduced the impact of individual high 
pollution episodes, such as on September 25, and contributed to decreased LIN-HIW differences 
derived from weekday annual compared to September means. Lower absolute column densities 
were consistent with TROPOMI’s coarser spatial resolution and documented TROPOMI biases, 
with columns biased low under polluted conditions (high NO2) and biased high at low NO2 levels, 
which have been attributed to the lower resolution surface albedo characterization (0.5° OMI LER) 
and the coarse resolution of the TM5-MP a priori profiles used in the standard product.188, 191 That 
being said, annually-averaged TROPOMI maps captured a key portion of LIN-HIW differences 
(and inequality by other metrics) to GCAS despite the effects of temporal averaging and instrument 
biases.  

TROPOMI and afternoon GCAS measurements were compared as joint probability density 
functions of household income and fractional census tract race-ethnicity sorted into the lowest (0–
20% of the NO2 column distribution), intermediate (40–60%), and highest-NO2 (80–100%) 
quintiles; Fig. 3.3 shows the median contours of each density function. The results showed that 
neighborhood-level differences were not driven by outliers, but represented broader patterns in the 
NO2 distribution with neighborhood demographics. TROPOMI and GCAS described similar 
patterns: low NO2 census tracts were more likely to be white and higher income, and intermediate 
and high NO2 tracts were more likely to be non-white, Hispanic, and low income. Fig. 3.3 also 
demonstrated that TROPOMI and GCAS represented the NO2 column density distributions as 
normal or log-normal, respectively (represented in the color scales), which was consistent with the 
coarser spatial resolution of the TROPOMI observations and their reported low bias at high NO2. 
In addition, while the high (red) and low (blue) quintiles were comparable between datasets, there 
was more variation in the mid (yellow) quintile, reflective of these differences in NO2 distribution. 

Finally, census tracts are aspatial administrative units optimally sized around 4000 people that 
represent fine spatial scales in cities. In Houston’s ‘urbanized areas’ (Fig. A3.15), census tracts 
were on average 4.7 ± 6.5 km2 (~2 km x 2 km if square) and the smallest 20% of tracts were on 
average 1.2 ± 0.3 km2. Because these smallest tracts are the size of our oversampled TROPOMI 
product resolution, finer scale analyses are likely limited. On average, the even smaller 
administrative unit of the U.S. Census block group, optimally sized at ~1500 people, was 2.1 ± 5.5 
km2 in the ‘urbanized areas’ and just 0.3 ± 0.1 km2 in the smallest 20% of tracts, with the latter 
approaching the limit of the GCAS spatial resolution. At the block-group level, I computed LIN-
HIW NO2 differences of 22 ± 5% for TROPOMI and 30 ± 4% for GCAS (all circuits), which were 
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35% and 17% lower than computed at the tract level, respectively, suggesting even the GCAS 
resolution was too coarse to fully resolve block-group-scale disparities. Additionally, while finer-
scale data hypothetically reveal greater NO2 inhomogeneity and inequality; higher-resolution NO2 
remote sensing observations potentially underestimate the impacts of NOx emissions. Because 
NOx is primarily emitted as NO and then converted to NO2 in the presence of ozone, NO2 remote 
sensing misses the portion of NO2 temporarily stored as NO as the system reaches steady state. 
This is important for a city-wide NO2 column comparison in differently sized tracts, especially if 
using NO2 as a surrogate for other co-emitted species, as sources are more prevalent in low-income 
neighborhoods, people of color are statistically overrepresented in tracts with higher population 
densities, and ozone concentrations are spatially variable.  

3.3.3  NO2 column-surface relationships  

Satellite and sub-orbital remote sensing instruments observe NO2 columns and precisely capture 
surface neighborhood-scale differences when NO2 vertical distributions do not co-vary with 
census-tract demographics. NO2 mixing ratios are typically highest within the convective 
boundary layer (CBL), the thin layer of air in contact with the Earth’s surface during the daytime. 
While long-lived species are generally well-mixed in the CBL; NO2 can exhibit steeper vertical 
gradients, as chemical loss and turbulent mixing timescales are similar.192 To investigate the extent 
that NO2 columns represented surface-level patterns in tract-scale NO2 inequality (not the surface 
concentrations themselves), which is a key factor in their application to air pollution decision 
making, I compared GCAS columns to in situ NO2 vertical profiles and TROPOMI columns to 
NO2* surface measurements. 

As part of DISCOVER-AQ, the NASA P-3B aircraft profiled the lower troposphere, spanning 
altitudes of 3–0.3 km at locations corresponding to the GCAS flight path (Fig. A3.16). I focused 
on 144 profiles representing tracts of varied population demographics in downtown (Moody 
Tower), the HSC (Channelview and Deer Park), and suburban Houston (Conroe, West Houston, 
and Manvel Croix), collected on 8 weekdays in the morning (8:30–10:30 am, LT), at midday 
(11:30 am–1 pm, LT), and in the afternoon (1:30–3:30, LT). Profiling at Deer Park, Conroe, and 
West Houston included missed approaches over lightly-trafficked air strips, facilitating sampling 
below altitudes of 0.1 km. All profiles are provided (Figs. S17–S65). 

CBL heights were on average 0.8 ± 0.2 km (±1s) in the morning, 1.5 ± 0.5 km at midday, and 1.7 
± 0.6 km in the afternoon. CBL heights were not statistically different at any profile location and 
temporal variability was generally well-correlated across sites (Table A2.3). In the morning, the 
slope of the correlation between the 3-km column and within-CBL column (Table A2.4; Fig. A3.14 
was 0.80 ± 0.18 (r2 = 0.99), and, once the CBL was fully developed (midday and afternoon), the 
slope was 0.98 ± 0.15 (r2 = 0.99). The slope of correlation between the column within the CBL 
and below 500 m AGL was 0.83 ± 0.19 (r2 = 0.95) in the morning. Once the CBL was developed, 
the slope decreased to 0.27 ± 0.05 (r2 = 0.80), consistent with atmospheric conditions in which 
timescales of turbulent mixing and NO2 chemical loss are competitive. The high correlation 
coefficients imply that location-dependent differences in the NO2 vertical distribution were small 
and suggest that demographic-based NO2 comparisons would not substantially differ if derived 
from surface measurements instead of columns.  
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I then compared tract-averaged TROPOMI columns and daytime (12–3 pm LT) NO2* surface 
mixing ratios measured at monitors across the HMA (Fig. 3.4). I linearly correlated annual (June 
2018–May 2019) weekday (Tuesday–Friday) mean observations as a function of the distance 
between tract center points and the nearest monitors. Surface NO2* and directly overhead columns 
(tracts within 1 km of monitors) were strongly correlated (r2 = 0.92). However, r2 decreased with 
increasing distance from the nearest monitor, falling to 0.63–0.75 when tracts were 2–5 km from 
the local monitor and 0.50–0.58 at distances of 5–10 km. Column-surface correlations have also 
been shown to improve with monitor density elsewhere using data from the more coarsely resolved 
satellite OMI sensor.151 While further analysis would have been required to infer surface 
concentrations, these results offered strong evidence that TROPOMI captured NO2 surface 
patterns and, therefore, surface-level NO2 inequality. The steep decline in r2 at 1–2 km corresponds 
to previously observed NO2 distance-decay gradients,149, 150 demonstrating the limits of the routine 
network to detect representative NO2 levels for the majority of local residents, and an advantage 
of TROPOMI, as just 3.4% of census tracts in the HMA (based on tract center points) are located 
within 2 km of an NO2 monitor. 

3.3.4  NOx source contributions to census-tract NO2 differences 

To investigate the greater observed temporal variability in the GCAS results and attribute sources 
of NO2 disparities for non-whites living in low-income tracts I analyzed LIN-HIW differences 
reported in the high-spatial-resolution FIVE and stationary source NEI using population-weighting 
as applied to the NO2 column observations. Total population-weighted emission sources densities 
(metric tons NO2-eq day–1 km–2), which included on-road diesel and gasoline-powered vehicles, 
industrial and petrochemical facilities, and electricity generation, were 82% higher for LINs than 
HIWs. Stationary emissions in tracts with in low-income tracts were 27% greater (metric tons 
NO2-eq day–1) and 7 times more spatially dense than high-income tracts. This was consistent with 
our inference of greater NOx emissions in proximity to non-whites living in low-income tracts 
based on variability in population-weighted GCAS NO2 columns. Generally, heavy-duty diesel 
vehicles (HDDVs) represent just 3–6% of the overall U.S. vehicle fleet; however, diesel engines 
produce ~7 times more NOx per kg fuel burned than gasoline,185 contributing the majority of NOx 
emissions in many U.S cities.193 According to the FIVE, population-weighted HDDV emission 
densities were the largest source of NOx in both Houston low- and high-income tracts, but were 
80% greater for non-whites living in low-income tracts than for HIWs. 

Satellite remote sensing has the advantage of capturing temporal variability useful for interpreting 
NOx sources, especially NO2 variations between weekdays and weekends driven by patterns in 
HDDV traffic.49, 74  HDDVs have been documented to contribute to air pollution disparities in 
multiple U.S. cities194-198 and their exhaust has been associated with a myriad of adverse health  

effects.138 Because HDDVs transport commercial goods, their emissions are reduced on 
weekends,74, 199 at the same time, passenger vehicle traffic and point source emissions do not 
exhibit significant weekday-weekend activity differences.193, 200 To assess HDDV contributions to 
NO2 column densities, I compared annual (June 2018–May 2019) weekday (Tuesday–Friday) and 
weekend (Saturday–Sunday) tract-level population-weighted TROPOMI NO2 observations (Figs. 
2b–c). NO2 columns unweighted by population were 29% lower on weekends than weekdays, with 
larger weekend decreases for LINs (24 ± 2%) than HIWs (15 ± 2%). If HDDV traffic caused the 
entire weekday-weekend difference, then HDDV emissions contributed 25 ± 3% of the LIN-HIW 
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population-weighted NO2 column inequality across Houston, compared to 22 ± 2% predicted by 
the inventory, indicating shifting spatial patterns in gasoline vehicle traffic may also play a role. 
Weekend NO2 column enhancements were largely confined to the HSC and western shore of 
Galveston Bay (Fig. 3.2c), indicating industrial and petrochemical sources were the dominant 
cause of NO2 differences across the HMA. 

3.4 Conclusions and Looking Forward  
I quantified the unequal distribution of NO2 across the city of Houston using high spatial resolution 
GCAS airborne observations (250 m x 500 m), which were fine enough to resolve census-tract-
scale NO2 spatial variability. I then used this analysis as a basis of comparison to determine that 
TROPOMI resolved similar tract-level NO2 disparities. I found that while population-weighted 
GCAS NO2 columns were always greater for non-white and Hispanic residents and in primarily 
low-income tracts, they were also substantially more temporally variable, a consequence of the 
higher NOx source density in these neighborhoods. Greater temporal variability has implications 
for research on the acute health impacts of NO2, and its surrogates, for LINs, as time-averaged 
pollutant data and static LUR models do not represent high NO2 events, such as observed on the 
morning of September 25, and reflected in the shift in NO2 column statistical distribution from 
log-normal (GCAS, 35 flight circuits) to normal (TROPOMI, one year of weekends) (Fig. 3.3). 
Because long-term averaging does not inherently change the underlying data distribution, and 
given that TROPOMI has at least the potential for daily coverage, the impact of transient extreme 
event could still be captured by analyzing other aspects of the NO2 column distribution. In addition, 
TROPOMI’s multiyear time record and ongoing data collection provides empirical evidence of 
specific time-varying NOx source contributions potentially relevant for political and regulatory 
decision-making; for example, weekday-weekend NO2 differences in Houston indicate HDDVs 
cause up to 25% of the city’s NO2 disparities. City-planners, elected officials, and other decision-
makers may find such information useful as they develop comprehensive plans, allocate resources 
for mitigation, invest in public transportation, propose stricter emission requirements, and/or 
implement vehicle bans. 

Spatially and temporally extensive air quality observations are foundational for successful policy 
design, implementation, and evaluation in every city, especially for controversial issues like 
environmental justice; this is because they (a) reduce uncertainties about the severity and impact 
of specific chemicals, which are often at the root of related policy disputes, and (b) lead to more 
precise identification of the contributing sources. Here, I demonstrated that TROPOMI 
(oversampled to 0.01° x 0.01°) precisely observed NO2 disparities between census tracts, and that 
the spatial patterns in NO2 columns reflected those measured at the surface. As a result, TROPOMI 
measurements are well positioned to inform multiple aspects of city-wide decision-making in 
novel ways: in the development of local and even neighborhood-level interventions, such as 
ordinances, moratoriums, comprehensive plans, zoning, siting decisions, traffic planning, and 
permitting; through data-driven regulatory enforcement; and by supporting the prioritization of 
resources for environmental equity, especially in areas lacking routine surface monitoring. While 
broader application of satellite NO2 columns as a surrogate for toxic combustion emissions 
requires further consideration, as NOx partitioning favors NO in the nearfield of sources, which 
are more prevalent in LIN neighborhoods, at least in Houston, TROPOMI observations have the 
potential to promote targeted and tailored municipal NOx intervention efforts, as well as illuminate 
limitations to cities’ enforcement capacities (e.g., growth in road transport) and, in so doing, reveal 
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the need for inter-governmental coordination to produce the resources and policies to ensure 
compliance and equitable outcomes. Finally, the geostationary satellite TEMPO instrument 
(planned launch date in 2022) will provide hourly column observations of up to 2 km x 4.5 km 
over North America, resulting in the most spatially and temporally precise space-based NO2 
observations over the U.S. to date.201 Finer city-wide spatiotemporal detail will further expand our 
ability to reveal, document and monitor census-tract-level NO2 disparities, to observe high NO2 
events, to infer source contributions from temporal variability, and to inform decision-making to 
eliminate the practices, behaviors, and conditions contributing to racial, ethnic, and income-based 
air quality disparities in major U.S. cities.  
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Figure 3.1. Fractional census-tract-level race-ethnicity demographics along the GCAS flight tract: 
(a) Hispanics, (b) Black and African Americans, (c) Asians, and (d) non-Hispanic whites. Panel 
(c) includes labels for various locations within the HMA. (e) Fractional median annual household 
income in USD. While the aircraft flew a repeated circuit, there were slight variations in some 
circuits between flights; this exact circuit is from the morning of September 4. Background map 
data: Landsat 8 composite over January 2017 to June 2018.  
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Figure 3.2. GCAS NO2 column densities (molecules cm–2) averaged to census tracts on two 
sample days, 4 September (top row; panels a–d) and 26 September (bottom row; panels e–h), 
during 8 flight circuits in the early morning (8 am–10 am LT; panels a and e), late morning (10 
am–12 pm LT; panels b and f), early afternoon (1 pm–3 pm LT; panels c and g), and late afternoon 
(3 pm–5 pm LT; panels d and h).   
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Table 3.1. Census-tract-averaged population-weighted NO2 columns (molecules cm–2) for 
weekdays (Tuesday–Friday) during morning and afternoon GCAS flights (average of the two 
circuits) with variability reported as two standard deviations of individual circuit population-
weighted NO2 means for different socio-demographic categories. Annual (June 2018–May 2019) 
TROPOMI observations sub-sampled along the GCAS flight track (4 September morning) on 
weekdays and for the HMA on weekdays and weekends (Saturday–Sunday). September-2018 
weekdays TROPOMI observations, both along the GCAS flight track (4 September morning) and 
for the full HMA. GCAS and TROPOMI uncertainties are standard mean errors rounded up to at 
least one decimal position.  
 

Population-Weighted Census-Tract-Averaged NO2 (x1015 molecules cm–2) 

 GCAS Weekday Flights TROPOMI 

 Means Variability (2s) 
Annual 
(along 
GCAS) 

Annual 
(HMA) 

September 
(along 
GCAS) 

September 
(HMA) 

Group Morning Afternoon Morning Afternoon Weekdays Weekdays Weekends Weekdays Weekdays 

LIN 13.9 ± 0.5 9.0 ± 0.3 15.3 4.3 3.7 ± 0.1 3.3 ± 0.1 2.6 ± 0.1 4.7 ± 0.1 4.0 ± 0.1 
HIW 9.1 ± 0.4 6.3 ± 0.3 4.2 2.4 2.7 ± 0.1 2.2 ± 0.1 1.9 ± 0.1 3.1 ± 0.1 2.9 ± 0.1 
Below-
poverty 13.0 ± 0.4 8.4 ± 0.3 13.7 4.1 3.5 ± 0.1 3.1 ± 0.1 2.1 ± 0.1 4.4 ± 0.1 3.7 ± 0.1 

Near-poverty 11.3 ± 0.2 7.5 ± 0.1 9.8 3.3 3.2 ± 0.1 2.9 ± 0.1 2.0 ± 0.1 4.0 ± 0.1 3.4 ± 0.1 
Above-
poverty 9.5 ± 0.3 6.5 ± 0.2 5.1 2.5 2.8 ± 0.1 2.6 ± 0.1 1.9 ± 0.1 3.4 ± 0.1 2.9 ± 0.1 

Hispanic 12.8 ± 0.4 8.4 ± 0.2 13.3 3.9 3.5 ± 0.1 3.3 ± 0.1 2.2 ± 0.1 4.5 ± 0.1 4.0 ± 0.1 
Black/African 
American 11.4 ± 0.4 7.2 ± 0.2 8.3 3.3 3.2 ± 0.1 3.0 ± 0.1 2.1 ± 0.1 3.9 ± 0.1 3.4 ± 0.1 

Asian 10.4 ± 0.3 6.7 ± 0.2 3.3 2.4 3.0 ± 0.1 2.8 ± 0.1 2.0 ± 0.1 3.6 ± 0.1 3.3 ± 0.1 
White 8.8 ± 0.3 6.2 ± 0.2 4.9 2.7 2.7 ± 0.1 2.3 ± 0.1 1.7 ± 0.1 3.1 ± 0.1 2.5 ± 0.1 
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Table 3.2. GCAS census-tract-averaged population-weighted NO2 columns (molecules cm–2) for 
each flight circuit in LIN and HIW tracts and their percent difference. For individual circuits, 
uncertainties are standard mean errors of population-weighted NO2 across all tracts within the 
flight path. The second morning pass on 12 September was omitted because most of the circuit 
was not completed and there were too many clouds. 
 

  MORNING AFTERNOON 

  First Circuit Second Circuit Third Circuit Fourth Circuit 

  Population-weighted NO2 
(x1015 molecules cm-2) 

Difference 
(%) 

Population-weighted NO2 
(x1015 molecules cm-2) 

Difference 
(%) 

Population-weighted NO2 
(x1015 molecules cm-2) 

Difference 
(%) 

Population-weighted NO2 
(x1015 molecules cm-2) 

Difference 
(%) 

September LIN HIW   LIN HIW   LIN HIW   LIN HIW   

4 10.0 ± 0.4 7.5 ± 0.3 28 ± 5 12.4 ± 0.5 8.3 ± 0.5 39 ± 7 12.3 ± 0.5 7.8 ± 0.5 44 ± 7 9.9 ± 0.2 7.4 ± 0.4 28 ± 4 

6 11.8 ± 0.4 8.9 ± 0.4 28 ± 6 7.6 ± 0.3 6.0 ± 0.3 24 ± 6 8.6 ± 0.4 6.0 ± 0.3 36 ± 7 7.2 ± 0.4 5.9 ± 0.3 21 ± 5 

11 12.4 ± 0.5 8.1 ± 0.4 42 ± 7 10.2 ± 0.5 8.3 ± 0.6 20 ± 9 7.9 ± 0.4 5.7 ± 0.4 33 ± 9 8.0 ± 0.4 6.3 ± 0.4 23 ± 6 

12 11.1 ± 0.4 8.7 ± 0.4 25 ± 6 – – – 7.7 ± 0.3 4.8 ± 0.2 47 ± 7 10.2 ± 0.5 6.5 ± 0.3 45 ± 6 

13 13.7 ± 0.6 9.0 ± 0.5 41 ± 7 11.8 ± 0.5 10.2 ± 0.5 14 ± 7 8.3 ± 0.4 5.3 ± 0.2 45 ± 7 8.6 ± 0.4 5.7 ± 0.2 41 ± 3 

18 9.4 ± 0.5 8.0 ± 0.3 17 ± 7 8.7 ± 0.4 7.6 ± 0.4 13 ± 7 6.6 ± 0.2 5.4 ± 0.2 19 ± 5 7.0 ± 0.3 5.7 ± 0.2 20 ± 3 

24 8.5 ± 0.3 8.1 ± 0.4 4 ± 6 6.3 ± 0.3 6.2 ± 0.2 2 ± 6 5.7 ± 0.2 4.8 ± 0.2 17 ± 5 6.6 ± 0.2 5.7 ± 0.2 15 ± 3 

25 23.9 ± 0.9 13.1 ± 0.7 58 ± 6 37.8 ± 1.9 15.4 ± 1.3 84 ± 9 12.6 ± 0.5 8.9 ± 0.5 35 ± 6 13.8 ± 0.5 10.0 ± 0.5 32 ± 4 

26 21.2 ± 1.0 11.2 ± 0.4 61 ± 7 17.3 ± 0.7 12.4 ± 0.5 34 ± 6 10.3 ± 0.4 5.8 ± 0.2 55 ± 6 12.0 ± 0.4 7.0 ± 0.2 44 ± 3 

Mean 13.0 ± 0.6 9.2 ± 0.4 34 ± 8 14.0 ± 0.6 9.3 ± 0.5 40 ± 8 8.9 ± 0.4 6.0 ± 0.3 39 ± 6 9.1 ± 0.4 6.7 ± 0.3 30 ± 6 
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Figure 3.3. Weekday (Tuesday–Friday) TROPOMI NO2 column densities (molecules cm–2) for 
June 2018–May 2019 at 0.01∘ x 0.01∘	over the greater Houston area (panel a) and averaged within 
census tracts (panel b). Weekend (Saturday–Sunday) TROPOMI NO2 columns averaged within 
census tracts for the HMA (panel c). A 40% transparency is applied to the TROPOMI data in panel 
(a) to see the underlying land cover. The black outline depicts the HMA.  
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Figure 3.4. HMA population as a function of census tract annual household income (USD) and 
fraction non-white/Hispanic or fraction non-Hispanic white separated by census-tract-averaged 
NO2 column quintile: high NO2 (80–100% highest column densities) (red), mid-quintile NO2 (40–
60%) (yellow), and low NO2 (0–20%) (blue). Panels a and b: Annual (June 2018–May 2019) 
weekday (Tuesday–Friday) TROPOMI observations across the HMA (panel a) and along the 
GCAS flight track (panel b). Panel c: The composite distribution of all 35 GCAS circuits. Color 
bars represent vertical column densities (molecule cm–2) corresponding to the NO2 quintiles. 
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Figure 3.5. Correlation coefficient between tract-averaged NO2 measured at surface monitors and 
their overhead columns as a function of distance away from the monitor with respect to the census 
tract center point (panel a). NO2* observations are daytime (12–3 pm LT) averages and both 
datasets include weekdays (Tuesday–Friday) over June 2018–May 2019. Census tracts coloration 
indicates the distance (km) between the nearest surface NO2 monitoring station and the census 
tract center point (panel b) for tracts within a 10 km radius.  
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Chapter 4: Space-Based Observational Constraints on NO2 Air Pollution Inequality From 

Diesel Traffic in Major U.S. Cities 

 
Adapted from: Demetillo, M.A.G., Harkins, C., Mcdonald, B.C., Chodrow, P.S., Sun, K., and 
Pusede, S.E.: Space‐Based Observational Constraints on NO2 Air Pollution Inequality from Diesel 
Traffic in Major US Cities. Geophys. Res. Lett., 48, doi:10.1029/2021gl094333, 2021 

4.1 Introduction 
In U.S. cities, the concentrations of many air pollutants have been observed, modeled, and inferred 
to be higher in neighborhoods where residents are primarily people of color and have lower 
household incomes.126, 132, 189, 202-204 These disparities have been shown to cause measurable 
differences in health and life expectancy.8, 147, 205, 206. Heavy-duty diesel vehicles (HDDVs) are a 
major driver of air pollution inequalities, with HDDV exhaust containing nitrogen oxides (NOx º 
NO + NO2) and a myriad of hazardous co-emissions.194-197, 207-211 Source characterization of air 
quality disparities, including from diesel traffic emissions, has been hindered by the lack of city-
wide measurements resolving steep atmospheric pollutant gradients and providing temporal 
information useful for source identification. 

Nitrogen dioxide (NO2) is a combustion product and a key control over atmospheric oxidation and 
secondary pollutant formation. Communities of color and those with lower household incomes 
often experience elevated NO2 concentrations and exposures.11, 130, 212-214 Epidemiological studies 
indicate an association between NO2 exposure and/or its co-emissions and various adverse health 
effects.139, 140, 215 NO2 is a common surrogate for combustion pollution generally (Levy et al., 2014) 
and toxins in traffic exhaust specifically.211 HDDVs contribute a major portion of urban NOx 
despite being a small fraction (3–6%) of the U.S. fleet in terms of distance traveled, as diesel 
engines produce x7 more NOx per kg fuel burned than gasoline.193, 216 Because its sources are 
ubiquitous and distributed, NO2 is highly variable in space and time, with typical distance-decay 
gradients away from sources of <0.5–2 km.149, 150, 217 A key advantage to focusing air pollution 
inequality analyses on NO2 is that it has recently become possible to observe NO2 daily from space 
at the scale of a few kilometers using the TROPospheric Ozone Monitoring Instrument 
(TROPOMI).  

In Chapter 3, I conducted a detailed evaluation of the use of TROPOMI observations to describe 
intra-urban NO2 disparities, demonstrating that TROPOMI was indeed well-positioned to inform 
multiple aspects of NO2 inequality research in Houston, Texas. I used fine spatial resolution (250 
m x 500 m) airborne NO2 remote sensing measurements from the GEOstationary Coastal and Air 
Pollution Events Airborne Simulator (GCAS) as a standard, showing that TROPOMI, 
oversampled to 0.01° x 0.01° using the physics-based algorithm employed here, resolved 
equivalent NO2 relative inequalities as GCAS. I assessed the effects of observational uncertainties, 
retrieval biases, and time averaging on NO2 inequality estimates, finding that although their 
influence led to underestimations in absolute census tract-level differences, TROPOMI still 
captured key variations in NO2 spatial distribution between tracts.218 I also showed that spatial 
patterns in NO2 columns reflected those at the surface, an essential aspect of their application to 
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air quality environmental justice decision-making and determined that column-based inequalities 
represented those that would be captured at the surface.  

Here I expand this application of TROPOMI, describing NO2 inequality in 52 major U.S. cities 
and using these observations as empirical constraints on the contribution of HDDV traffic to NO2 
disparities. I report neighborhood-level (census-tract) disparities with race, ethnicity, and income 
over an almost two-year period (June 2018–February 2020). I analyze weekday-weekend 
differences from both TROPOMI and NOx emissions inventories to quantify the role of diesel 
traffic in NO2 inequalities. I discuss results seasonally, as the NO2 atmospheric lifetime is shorter 
in the summer, leading to greater co-location between NOx emission sources and NO2 columns 
than in the winter. I further explore analytical issues in the use of TROPOMI for observing tract-
scale inequalities in cities where higher spatial resolution measurements are not available, 
investigating inequality relationships with urban segregation patterns and correlating column and 
surface measurements as a function of their spatial coincidence. 

4.2 Data and Methods 

4.2.1  TROPOMI  

The TROPOspheric Monitoring Instrument (TROPOMI) detects various atmospheric trace gases 
in the ultraviolet and visible, near infrared, and shortwave infrared spectral regions.169, 172 
TROPOMI samples at ~1:30 pm local time (LT) almost daily from onboard the sun-synchronous 
Copernicus Sentinel-5 Precursor satellite. NO2 is retrieved by fitting the 405–465 nm band using 
an updated OMI DOMINO algorithm based on the QA4ECV project.170-174 Before 6 August 2019, 
NO2 was retrieved at a nadir spatial resolution of 3.5 km x 7 km. NO2 tropospheric vertical column 
densities (TVCDs) have since become available at 3.5 km x 5.5 km. Precision of individual TVCDs 
over polluted scenes is on the order of 30–60% and dominated by uncertainties in air mass factor 
inputs, including clouds, NO2 profile shape (daily 1° x 1° TM5-MP output), and surface albedo 
(monthly 0.5° x 0.5° OMI climatology).174, 176, 177 

I use the TROPOMI Level 2 NO2 product averaged to 0.01° x 0.01° (~1 km x 1 km) with a physics-
based oversampling algorithm.179 I include cloud-free scenes with qa > 0.75. I calculate mean NO2 
TVCDs within census tract boundaries for 52 U.S. cities (Table A4.1) over the time periods of 
June 2018–February 2020, summer (June–August), and winter (December–February) and 
separately analyze seasonal NO2 TVCDs on weekdays (Tuesday–Friday) and weekends 
(Saturday–Sunday). The mean number of TROPOMI pixels rounded up to the nearest integer 
averaged in each 0.01° x 0.01° grid are as follows (± 1 s standard deviation), 77 ± 24 (summer 
weekdays), 33 ± 10 (summer weekends), 33 ± 21 (winter weekdays), and 18 ± 11 (winter 
weekends), with reduced wintertime sampling statistics due to increased cloud cover (Table A4.2). 
TROPOMI observations are spatially continuous (discretized to 0.001° x 0.001°), giving NO2 
TVCDs within tracts smaller in area than 1 km2. Cities were selected to represent both the largest 
U.S. urban areas and mid-sized cities for broad country-wide coverage. Cities are defined as U.S. 
Census-designated ‘urbanized areas’ (UAs) with two exceptions: I separate New York-Newark, 
NJ–NY–CT along state lines into New York City, NY and Newark, NJ and San Francisco–
Oakland, CA along the San Francisco Bay into San Francisco and Oakland, CA. With a population 
density threshold of 1,000 people mi–2, UAs represent the urban core of metropolitan areas, and, 
therefore, results reflect intra-urban rather than urban-suburban differences.207  
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4.2.2  Population-Weighted Census-Tract NO2 Inequalities  

I calculate population-weighted NO2 census tract-averaged TVCDs with race and ethnicity and 
sort tracts by household poverty status or median household income using the U.S. Census 
database for 2019 (Text A4.1). Race-ethnicity groups are defined following the U.S. Census 
categories of Black and African Americans, Asians, American Indians and Native Alaskans, 
referred to in the text as Native Americans, and whites, excluding people from each racial group 
identifying as Hispanic or Latino, and Hispanics/Latinos, including all races also reporting as 
Hispanic and/or Latino. Poverty status is defined according to the U.S. Census Bureau definition 
using the household income-to-poverty ratio. Households are categorized as below the poverty 
line if their income is below the U.S. Federal Poverty Guidelines poverty threshold, which scales 
with the number of people per household. Census tracts are classified as follows: below the poverty 
line, >20% of tract households at or below an income-to-poverty ratio of one; near poverty, all 
tract households having an income-to-poverty ratio of 1–1.24; and above poverty, all tract 
households having an income-to-poverty ratio >1.24. I discuss the sensitivity of these results to 
the 1.24 threshold in Text A4.1. I combine race-ethnicity and income categories, reporting results 
for Black and African Americans, Asians, Native Americans, and/or Hispanic/Latino residents in 
the lowest median income quintile tracts (LINs) and for non-Hispanic/Latino whites residing in 
the highest median income quintile tracts (HIWs). Household income quintiles are UA specific.  

4.2.3  NOx Inventories  

The Fuel-based Inventory from Vehicle Emissions (FIVE18–19) is a U.S.-wide, 4 km x 4 km 
mobile source (on-road and off-road, gasoline and diesel engines) NOx emissions inventory 
providing monthly mean hourly data, separately for weekdays, Saturdays, and Sundays.193, 216, 219 
Emission rates are based on publicly available fuel sales reports, road-level traffic counts, and 
time-resolved weigh-in-motion traffic counts. Fuel-use uncertainties are determined from 
differences between fuel sale reports and truck travel and traffic count site-selection and sample 
size. Emissions uncertainties are ±16% and ±17% for gasoline and diesel vehicles, respectively, 
and are derived from a regression analysis of near-road infrared remote sensing and tunnel 
studies.90  

NOx stationary source emissions are from the 2017 National Emissions Inventory (NEI17) updated 
January 2021 Version.47 The NEI17 reports annual emission totals of point sources including 
industrial facilities, electricity generating units, oil and gas operations, and airports. Data for 
smaller industrial facilities, e.g., dry cleaners and gas stations, are voluntarily submitted by state 
agencies and counted as area rather than point sources. Here, I focus on annual NEI17 point source 
emissions and assume they exhibit no seasonal or day-to-day variability. A comparison of monthly 
time resolved NEI point source NOx emissions in July and January indicated seasonal differences 
are indeed small (~5%). Emissions uncertainties in power plants are ±25%; uncertainties in 
industrial facilities and other stationary sources are larger and assumed to be ±50%.90, 186 

4.2.4  Surface NO2* Measurements  

I use NO2* surface measurements from 97 non-roadway monitors in 20 UAs identified as having 
at least three operating NO2 monitoring stations during June 2018–February 2020 (Table A4.3). 
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Almost all of these NO2 instruments operate by first decomposing NO2 to NO over a heated 
molybdenum catalyst and measuring NO by chemiluminescence. NO2 data collected with this 
technique have a known positive interference from oxidized and reduced nitrogen compounds, 
which also thermally decompose across the catalyst but at non-unity efficiency.48 The 
nomenclature NO2* is used in acknowledgement of this interference. Past research has shown the 
instruments capture NO2 temporal patterns and NO2 mixing ratios before substantial oxidation has 
occurred.73 Because I are interested in the distance dependence of correlations between surface 
NO2* and the overhead TROPOMI TVCDs, rather than the surface NO2 mixing ratios themselves, 
I do not apply a correction factor to the NO2* dataset. 

4.2.5  Segregation Extent and Structure  

I compute three complementary metrics to quantify and describe city-level racial segregation 
extent and structure, with segregation structure classified as clustered (mega-regions of 
segregation) or patch worked (micro-regions of segregation), based on the same 2019 U.S. Census 
tract-level demographics and UA boundaries as the inequality results. I calculate the Shannon 
Entropy Index, a measure of diversity and prevalence. Cities with low entropy have a small number 
of prominent groups, whereas cities with high entropy have roughly equal proportions of groups.220 
I describe the extent of urban segregation through the Information Theory Index, reflecting the 
amount of information that an individual’s location carries about their demographic group.220, 221 
This is an aspatial metric describing the extent of segregation by comparing the demographic 
representation of a geographic unit to the overall city average.222 I compute the mean local 
information density, a measure of the spatial scale of segregation, generating urban segregation 
structure estimates (clustered or patch worked) based on the Fisher information between spatial 
and demographic variables.223 

4.3 Results and Discussion 

4.3.1  NO2 Inequality and the Role of Diesel NOx Emissions 

Across the 52 cities in our study, which represent 130 million residents, population-weighted NO2 
TVCDs are on average 17 ± 2% higher for Black and African Americans, 19 ± 2% higher for 
Hispanics/Latinos, 12 ± 2% higher for Asians, and 15 ± 2% higher for Native Americans compared 
to whites (city-level results are weighted by urban population size in the averaging). NO2 TVCDs 
are on average higher for people living below (17 ± 2%) and near the poverty line (10 ± 2%) than 
for those above. When race-ethnicity and income are combined, I report an average of 28 ± 2% 
greater population-weighted NO2 for LINs than HIWs, with the highest inequalities observed in 
Phoenix, Arizona (46 ± 2%), Los Angeles, California (43 ± 1%), and Newark, New Jersey (42 ± 
2%) (Figure 4.1). In only one city, San Antonio, Texas, is the sign of LIN-HIW inequality negative 
over June 2018–February 2020 (–6 ± 3%), although a small number of negative values are also 
observed for the other metrics. In the five most-populated UAs, representing ~35% of the 
population, NO2 TVCDs are 36 ± 3% higher for LINs compared to HIWs. Absolute NO2 disparities 
(molecules cm–2) are strongly associated with local city-level NO2 pollution (Figure 4.1h), for 
example, the Pearson correlation coefficient (r) is 0.82 for the combined race-ethnicity and income 
metric (LIN-HIW). At the same time, relative inequalities (%) are only moderately associated with 
city-level NO2 (r = 0.46), suggesting that sustained NOx emission control will reduce but not 
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eliminate NO2 disparities, a result consistent with previous work investigating trends in NO2 
inequality between 2000 and 2010 using land-use regression NO2 datasets.11  

To observationally constrain city-wide effective contributions of HDDVs to NO2 disparities, I first 
compare TROPOMI NO2 inequalities on weekdays and weekends and then contextualize the 
measured changes using NOx emission weekday-weekend patterns predicted by the FIVE18–19 
(mobile sources) and NEI17 (point sources). HDDVs transport commercial goods and, due to 
decreased activity, their emissions are substantially reduced on weekends; at the same time, 
passenger vehicles (largely gasoline powered in the U.S.) and point source emissions exhibit much 
less weekday-weekend variability, although the timing of their emissions may change.74, 199, 224 
Off-road diesel engines (e.g., construction) also vary weekday to weekend; however, their 
contribution to total urban NOx emissions is considerably smaller than on-road HDDVs. While 
HDDVs with NOx control are a growing portion of the vehicle fleet, with reports of declining 
weekday-weekend NO2 differences, HDDVs still emit an important fraction of urban NOx.90, 225 In 
the 52 UAs at the focus of this work, NO2 TVCDs are an average of 34 ± 17% (1s standard 
deviation) lower on weekends than weekdays (June 2018–February 2020). I define weekdays as 
Tuesdays–Fridays and weekends as Saturdays–Sundays. Monday and Saturday are considered 
transition days as they are influenced by carryover of yesterday’s NO2; therefore, I remove 
Mondays from our analysis but keep Saturdays to improve weekend statistics.  

Weekday-weekend differences in city-level census-tract absolute TROPOMI NO2 inequalities are 
fit using a weighted bivariate linear regression model with weights derived from errors in city-
level NO2 for the different residential populations (Table A4.4).226 Because NO2 concentrations 
better correlate with NOx emission rates when the NO2 atmospheric lifetime is short, I evaluate 
correlations in the summer separately from winter months. I determine the ‘effective’ HDDV 
contributions to inequalities from the regression slope, a combined function of changes in both the 
total NOx emissions and the nonlinear NO2-dependent NO2 chemical lifetime. This method 
weights cities equally regardless of population. LIN-HIW disparities decrease by 37 ± 3% on 
weekends in the summer and 32 ± 2% in the winter (Figure 4.2a). Weekday and weekend 
inequalities are more strongly correlated in the summer (r = 0.93) than in the winter (r = 0.51), a 
function of seasonal differences in NO2 lifetime but also reduced sampling statistics under cloudier 
wintertime conditions (Table A4.2). For race-ethnicity and poverty metrics, weekday-weekend 
differences are 28–46% in the summer (mapped in Figure A4.3) and more variable in the winter 
(0–41%). Weekday-weekend decreases in NO2 TVCDs are therefore spatially variable within 
cities and larger in census tracts where residents are primarily people of color and/or have lower 
household incomes. Observed weekday-weekend NO2 differences suggest greater weekend NOx 
emission reductions in the most polluted neighborhoods, as summertime weekend NO2 decreases 
are 50% larger in the highest quintile NO2 census tracts than in the lowest quintile NO2 tracts. In 
the winter, comparable weekday-weekend NO2 differences are observed for the highest and lowest 
quintile NO2 tracts, consistent with longer NO2 lifetimes and greater distribution of NO2 TCVDs 
away from NOx emission sources in space and time (more day-to-day carryover).  

Observed weekday-weekend differences in NO2 TCVDs are a function of both the direct change 
in NOx emissions and the subsequent indirect effects on the NOx-dependent NO2 lifetime. 
Weekday-weekend differences in NOx emissions are driven by the fraction of total HDDVs that 
are parked on weekends and, to a smaller extent, weekday-weekend changes in spatiotemporal 
patterns in other vehicle types. To attribute observed differences in NO2 disparities to a specific 
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reduction in diesel traffic, I compare TROPOMI-based results with changes in NOx emission 
densities (metric tons NOx day–1 km–2) and their resulting inequalities derived from the FIVE18–
19 and NEI17. I first degrade the 0.01° x 0.01° oversampled TROPOMI product and FIVE18–19 
database (4 km x 4 km) to the same 0.04° x 0.04° grid, average each to underlying census tracts, 
and calculate inequalities as described in Section 3.2.8. NEI17 sources are represented as points 
and summed within their respective tracts. Census tract-level FIVE18–19 and NEI17 are combined 
and normalized by tract areas to produce NOx emissions densities. I analyze inventory-based 
results, and their comparison with TROPOMI, separately in the summer and winter.  

Because I expect the coarser 0.04° x 0.04° grid to influence the observed inter-tract differences, I 
first compare census tract-averaged disparities based on the 0.01° x 0.01° oversampled TVCDs to 
those determined using the 0.04° x 0.04° TVCDs. I calculate the normalized mean biases and 
errors in the absolute and relative inequalities separately on summer and winter weekdays, using 
the 0.01° x 0.01° TROPOMI-based results as our reference values. Despite the loss of spatial detail, 
U.S.-wide normalized mean biases for the different inequality metrics are just <1–6% (Figure 
A4.1, Table A4.5). In fact, I generally calculate slightly higher NO2 inequalities with the coarser-
resolution NO2 product than the 0.01° x 0.01° TVCDs, suggesting larger pixels have the effect of 
distributing NOx emissions over larger spatial areas with similar demographic and income 
characteristics. The largest city-level normalized mean biases (8–22%) are observed in Oakland, 
San Diego, and San Francisco, CA, all cities that encompass narrow geographical areas along 
coasts that may even challenge the satellite analysis at 0.01° x 0.01°. While normalized mean 
biases are low on average across UAs, normalized mean errors for each metric are higher (3–13%), 
indicating inaccuracies are larger in individual cities because of the loss of spatial resolution. That 
said, I find the 0.04° x 0.04° TVCDs give comparable weekday-weekend NO2 differences to the 
0.01° x 0.01° product for all inequality metrics (Table A4.5). The coarse-resolution TVCDs yield 
weekday-weekend decreases in LIN-HIW disparities of 37 ± 4% and 38 ± 2% in the summer and 
winter, respectively, equaling results with the 0.01° x 0.01° TVCDs within uncertainties in the 
summer. This agreement is similar for the other metrics, indicating datasets resolved to 0.04° x 
0.04° capture crucial census tract-scale patterns in the intra-urban spatiotemporal distribution. 

Using the FIVE18–19 and NEI17, I calculate mean summertime weekday-weekend reductions in 
LIN-HIW disparities in NOx emissions densities of 43 ± 4% (includes all source sectors), in 
agreement with TROPOMI-based weekday-weekend differences using the 0.04° x 0.04° TVCDs 
within associated uncertainties (Table A4.4). For race-ethnicity and poverty status, weekday to 
weekend decreases in emissions disparities equal empirical estimates to within 3–15%, with the 
inventories generally predicting comparable or slightly larger weekend reductions than 
TROPOMI. There is greater disagreement between NO2 TVCDs and the inventories in the winter, 
with TROPOMI weekday-weekend differences in some race-ethnicity metrics being much smaller 
than estimated by the FIVE18–19 and NEI17. These wintertime discrepancies are consistent with 
seasonal patterns in NO2 mesoscale transport (greater day-to-day carryover), further displacement 
of NO2 away from NOx emission sources, and more NOx-suppressed chemistry, but may also be 
related to the reduced wintertime sampling statistics on weekdays and weekends.  

Finally, I partition NOx emission inequalities and weekday-weekend differences in disparities by 
source sector, focusing on the role of HDDVs. I limit the analysis to summer months, when NO2 
TVCDs are most responsive to NOx emissions changes (Figure 4.2a). On weekdays, on-road 
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HDDVs cause on average (unweighted by urban population) 45 ± 5% of LIN-HIW NOx emissions-
based inequalities (Figure 4.2b; Table A4.6). The remainder is due to on-road gasoline-powered 
vehicles (38 ± 5%), gasoline and diesel off-road vehicles (13 ± 6%), and stationary sources (4 ± 
6%), largely electricity generating units. Across the 52 UAs, HDDVs contribute significantly to 
mean (weighted by urban population) NOx emissions inequalities for Black and African Americans 
(63 ± 13%), Hispanics/Latinos (52 ± 10%), Asians (36 ± 7%), and Native Americans (62 ± 12%) 
and for people living below and near the poverty line (56 ± 11%) (Figure A4.3). While HDDVs 
are the largest source of UA-level disparities, stationary sources may increase in importance if the 
analysis was conducted across more suburban metropolitan areas. Regulatory controls on gasoline-
powered vehicles and electricity generation between 2000 and 2010 have been shown to have 
caused decreases in NO2 inequalities (based on mixing ratios) from these sources across the U.S.11, 

193 HDDV NOx emission densities decrease by 62 ± 2% on weekends, with diesel traffic still 
causing 26 ± 6% of LIN-HIW NOx emissions inequalities on weekends. If the entire effective 
weekday-weekend change in NO2 inequality observed by TROPOMI is caused by HDDVs, then 
a 62 ± 2% reduction in summertime weekday on-road HDDV emissions leads to a 37 ± 3% 
decrease in the corresponding NO2 LIN-HIW disparities. I find that on average LIN-HIW NOx 
emission densities from the other major source of emissions-based disparities, gasoline-powered 
vehicles, decrease by 10% weekday to weekend; however, NOx emission inequalities change by 
less than 1% (Table A4.6), indicating that weekday-weekend differences in disparities are driven 
by HDDVs. If HDDV emissions were fully controlled (or their distribution was equalized), 
summer weekday LIN-HIW NOx emissions-based inequalities would decrease by almost 50%. 
Likewise, elimination of on-road HDDV inequalities would lower disparities with race-ethnicity 
and poverty by 59% and 49%, respectively (Table A4.7). These predicted changes represent upper 
bounds, as U.S. urban chemical oxidation is trending toward NOx-limitation.10 

4.3.2  Resolving Census Tract-Scale Inequality from Space  

Application of satellite remote sensing to NO2 inequality requires demonstration that oversampled 
TROPOMI TVCDs capture inter-census-tract differences and spatial patterns that reflect those at 
the surface. In Demetillo et al. (2020), I found that TROPOMI-based results were comparable to 
NO2 census tract-scale disparities determined using the high spatial resolution airborne sensor 
GCAS in Houston, TX. In addition, I used in situ NO2 aircraft profiles and surface data to show 
similar spatial patterns in NO2 columns and surface NO2 mixing ratios. Because I do not have 
aircraft measurements for the 52 cities in our domain, I instead test the dependence of tract-level 
NO2 inequalities on spatial heterogeneities in UA demographics. To evaluate relationships 
between column and surface NO2 spatial distributions, I analyze Pearson correlation coefficients 
of TVCDs and surface NO2* mixing ratios as a function of observation proximity.  

Because of historical and contemporary racial discrimination, U.S. cities are segregated by race, 
ethnicity, and income—without segregation, air pollution disparities would not be possible. I find 
city-level race-ethnicity NO2 inequalities are weakly associated with overall segregation extent (r 
= 0.35; p = 0.010) (Figure A4.4), suggesting UAs are sufficiently segregated to support intra-urban 
NO2 disparities and NO2 inequalities are more sensitive to changes in overall NO2 pollution level. 
Segregation structure can be characterized along an axis between clustered segregation, where 
segregated census tracts spatially aggregate into larger contiguous regions (mega-regions of 
segregation), and patch-worked segregation, where the spatial scale of segregated tracts is small 
and adjacent tracts are more likely to have different demographic populations (micro-regions of 
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segregation).220, 223, 227 Segregation extent is typically higher in cities with patch-worked 
segregation; however, this is not always true (Figure A4.4).223 For reference, Atlanta, GA typifies 
clustering, while New York City, NY exhibits segregation that is patch worked (Figure A4.5). This 
structural distinction is informative for the application of TROPOMI, as the 0.01° x 0.01° spatial 
resolution is coarser than many densely-populated tracts and oversampling has the effect of 
smoothing spatial gradients through averaging. Because NO2 spatially varies at sub-census-tract 
scales, if the tract unit challenges the TROPOMI resolution, NO2 disparities would positively 
correlate with increasing clustering, providing a test of the TROPOMI resolution at the tract 
scale.111 Here, I compare race-ethnicity summer weekday NO2 inequalities with urban race-
ethnicity segregation structure (Figure A4.4). I find that city-level race-ethnicity NO2 disparities 
are uncorrelated with segregation structure (r = 0.07, p = 0.619) and not positively associated with 
clustering, implying TROPOMI is indeed able to resolve inter-tract differences even when 
segregated tracts do not spatially aggregate. Past research has shown city-level NO2 co-varies with 
urban form and density.155, 228, 229 However, because I focus on the urban core, I cross-cut this 
variability, largely excluding urban-suburban form and density gradients.  

To assess whether spatial distributions in NO2 TVCDs reflect those at the surface, I compare NO2 
columns and mean daytime (12−3 pm LT) NO2* surface mixing ratios as a function of the spatial 
proximity between tract-averaged TVCDs and the NO2* nearest monitor.151, 207 Census tract 
coverage is spatially continuous; however, there are instances where no tracts are identified within 
a given 1-km interval (i). Here, tract-averaged TVCDs are set equal the column value in the i + 1 
distance interval, or infrequently the i + 2 interval. This largely occurs when comparing directly 
overhead tract-averaged TVCDs, so I limit the correction to columns ≤1 km from the nearest NO2* 
monitor. The highest mean r values are observed when TVCDs and surface measurements are 
spatially coincident, 0.69 ± 0.05 in the summer and 0.60 ± 0.09 in the winter (Figure A4.6). 
However, I anticipate that r values (≤1 km) would be even higher if comparisons were instead 
based on the 0.01° x 0.01° product. At distances of 6–10 km, r values fall to 0.42 ± 0.07 (summer) 
and 0.30 ± 0.09 (winter). These results indicate that TROPOMI TVCDs indeed capture similar 
spatial patterns as measured at the surface, but also highlight that the NO2* network is too spatially 
sparse to collect locally-relevant NO2* levels for most residents.  

4.4 Summary 
I use TROPOMI observations to quantify NO2 inequality in 52 major U.S. cities over June 2018–
February 2020. I report average census tract-level population-weighted NO2 disparities for Black 
and African Americans (17 ± 2%), Hispanics/Latinos (19 ± 2%), Asians (12 ± 2%), and Native 
Americans (15 ± 2%) compared to non-Hispanic/Latino whites, and for people living below (17 ± 
2%) and near the poverty line (10 ± 2%) compared to those living above. Higher inequalities are 
found when race-ethnicity and income are combined, with 28 ± 2% greater population-weighted 
NO2 for LINs than HIWs. For all metrics, much greater disparities are observed in some larger 
U.S. cities. Absolute NO2 inequalities are strongly associated with UA NO2 pollution; however, 
correlations between relative inequalities and city-level NO2 are weaker. I use weekday-weekend 
differences in NO2 TVCDs as empirical constraints on the impact of regulating HDDV NOx 
emissions, showing that a 62% reduction in on-road diesel traffic would lead to a 37% decrease in 
LIN-HIW inequalities. While HDDV emissions contribute to the majority of NO2 inequalities—
63 ± 13% for Black and African Americans, 52 ± 10% for Hispanics/Latinos, 36 ± 7% for Asians, 
62 ± 12% for Native Americans, and 56 ± 11% for people living below or near poverty line—
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controlling them entirely would not eliminate NO2 disparities. Finally, I provide additional 
evidence that oversampled TROPOMI observations resolve key patterns in the census tract-scale 
NO2 distribution with NO2 disparities being invariant with segregation structure and that spatial 
patterns in directly-overhead NO2 columns reflect surface-level NO2 spatial patterns.  
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Figure 4.1. Relative NO2 inequalities (percentage difference between population-weighted NO2 
means) for 52 major U.S. cities over all days in June 2018–February 2020. Marker size reflects 
the total city population with the smallest markers representing cities with <1.5 million residents 
and the largest markers for cities with >10 million residents. Average NO2 inequalities are shown 
for Black and African American (a), Hispanic/Latino (b), Asian (c), and Native American (d) 
compared to white residents. Inequalities are also mapped for people living near (e) and below (f) 
versus above the poverty line and for LINs compared to HIWs (g). Displayed mean values for each 
group are weighted by urban population size. City-averaged NO2 TVCDs are shown (h).  
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Figure 4.2. Absolute differences (molecules cm–2) in population-weighted TVCDs NO2 between 
LINs and HIWs on weekdays and weekends (a) in the summer (black) and winter (light blue). 
Percent contributions of on-road HDDVs to NOx emission density-based LIN-HIW inequalities 
during summer months from the FIVE18–19 and NEI17 (b). The mean HDDV contribution to 
emissions inequality is displayed, weighted by urban population size. 
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Chapter 5: Concluding Remarks 

5.1 Summary and Conclusions 
In Chapter 2, I conducted a landscape-scale, observationally-based chemical analysis 
demonstrating that prolonged severe drought shifted the dominant PO3 mechanisms in California. 
I found isoprene mixing ratios and their temperature-dependence remained steady throughout the 
pre and early drought periods, but under prolonged, severe drought conditions, decrease by 50%, 
with only partial recovery in the post-drought peak period. I found Ox weekday-to-weekend 
differences decreased from the early to severe drought period, indicating drought shifted PO3 from 
NOx-limited to more NOx-suppressed, which must have been attended by sizable decrease in PO3, 
estimated to be ~25%. I found high O3 events between pre, early, and severe drought periods were 
statistically indistinguishable, indicating drought impacts on mixing were negligible. I also showed 
the O3 abundance was relatively unaffected during the severe drought, with only a 6% decrease. 
Drought-related changes in LO3 through chemistry were found to be only 1% of the total change 
in LO3, leaving dry deposition to be the major loss pathway. As drought events are expected to 
increase in severity and frequency, steeper NOx emissions declines will be required for these 
controls to be effective.12, 13  
 
In Chapter 3, I presented a detailed methods-focused analysis demonstrating that current satellite-
based NO2 remote sensing captured the unequal burden between communities as a function of 
race-ethnicity and income in Houston, Texas. Prior to this analysis, intraurban inequality analyses 
were predominantly model-based and limited by lack of spatially continuous observations with 
sufficient resolution to resolve steep spatial gradients of NO2. Using a novel sub-kilometer 
resolution NASA airborne dataset, I calculated NO2 inequalities, defined as differences in 
population-weighted NO2 means with on average 37 ± 6% higher NO2 for people of color living 
in low-income census tracts than for white residents in high-income tracts. I found that NO2 
inequalities were always present despite considerable temporal variability, and that severe 
neighborhood-level NO2 differences corresponded to an atmospheric stagnation event with 
hazardous levels of O3. I repeated this analysis using the first full year of observations collected 
by TROPOMI, averaged with physics-based oversampling to increase the nadir spatial resolution 
of 3.5 km x 7 km to 0.01∘ x 0.01∘ (~ 1 km x 1 km). Relative NO2 inequalities derived from these 
next-generation satellite observations were comparable to those from aircraft observations to 
within associated uncertainties, with long-term averaging effects and instrument uncertainties 
biasing space-based NO2 observations low. Surface representation of these column-based NO2 
inequalities was confirmed through (1) an analysis of vertical NO2 distribution within the 
convective boundary layer using 144 in situ vertical profiles and (2) a column-surface distance-
dependent correlation analysis. The column-surface correlations declined steeply at the scale of 
typical NO2 distance-decay gradients. I evaluated source contribution to inequality by combining 
these inequalities with assessment of emissions estimates from the National Emissions Inventory 
and the Fuel-based Inventory for Vehicle Emissions. In Houston, Texas, stationary sources were 
found to be the largest contributor to inequality (~75%) while mobile emissions sources were 
dominant by diesel emissions (~25%).   
 
In Chapter 4, I extended the analysis developed in Chapter 3 to 52 major U.S. cities, and I 
observationally constrained the contribution of diesel traffic emissions to inequalities. Using two 
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years of TROPOMI measurements combined with physics-based oversampling, I reported that 
NO2 was 17 ± 2% higher for Black and African Americans, 19 ± 2% higher for Hispanics/Latinos, 
12 ± 2% higher for Asians, and 15 ± 2% higher for Native Americans compared to non-
Hispanic/Latino whites; and 17 ± 2% higher for people living below and 10 ± 2% near the poverty 
line compared to those living above. When race-ethnicity and income were combined, inequality 
was higher with 28 ± 2% greater population-weighted NO2 for people of color living in low-
income census tracts compared to non-Hispanic white residents in high income census tracts. I 
found absolute differences in tract-level NO2 are strongly associated with NO2 pollution; however, 
correlations between relative inequalities and city-level NO2 are weaker. I conducted a column-
surface correlation analysis and a resolution test using city segregation patterns providing further 
evidence of TROPOMI’s ability to represent NO2 spatial patterns at the surface and resolve NO2 
differences at the census tract level. I provide constraints on the impact of regulations on diesel 
NOx emissions by calculating weekday-weekend differences in NO2 and show that a 62% 
reduction in on-road diesel traffic would lead to a 37% decrease in LIN-HIW inequalities. The 
Biden Administration recently put forth tightened diesel emissions standards that will reduce diesel 
NOx emissions by 60% by 2045, and my work in Chapter 4 tests the outcome of this rule on NO2 
inequalities. In fact, Demetillo et al. (2021) was cited multiple times during the EPA’s public 
comment period on the proposed rule. Still, while diesel emissions are the largest contributor to 
intraurban NO2 inequalities in U.S. on average, the dominant source type can vary between cities, 
for example in Houston, and controlling diesel emissions alone will not eliminate inequalities.  
 
5.2 Future Directions 

The work in this dissertation contributes to a larger body of literature providing material evidence 
of air pollution injustice within cities. Here, I have demonstrated that publicly available 
measurements offer new insights into which emissions sources drive neighborhood-level 
inequalities. While satellite data are useful for describing and informing policy making around the 
unequal distribution of a limited number of pollutants, much work is needed to address air pollution 
injustice within the multiscale framework in which inequality impacts people. Among these 
include: (1) to what degree equitable strategies can be both efficient and effective at reducing air 
pollution inequality and (2) how do location-specific characteristics (local meteorology, 
differences in dominant source type and distribution, urban landscape, surrounding geography, 
etc…) constrain the structure and scale of a potential solution framework, or put another way, how 
scalable are solutions? Because the issue of air pollution inequality is multidisciplinary, so must 
be the answers to the above considerations; however, atmospheric chemistry will remain a critical 
player in solutions-focused research. 
 
While the Clean Air Act has improved air quality across the U.S., equity has not been central to 
its efforts, and air pollution inequalities have persisted. Future regulations should include equitable 
solutions. Studies investigating different storylines of mitigation efforts will be the most useful for 
optimizing efforts and resources towards environmental justice. Consideration of spatial scale is 
important, and to develop equitable and effective strategies towards addressing air pollution 
inequality in cities, we will need to understand the implications of focusing on city-wide and air 
basin scales. Cities across the U.S. have both shared and unique histories and presents that 
influence pollutant source compositions, landscapes, geographies, meteorology, and political 
processes and practices that can affect the efficacy air pollution controls.  
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We now have the spatial resolution to observe differences in air pollution at neighborhood levels 
and the computational and statistical tools with which to analyze these measurements and model 
potential solutions. It is important to leverage the informational strengths of each type of dataset 
available. Next-generation satellite observations from TROPOMI, and the upcoming TEMPO 
sensor, are powerful in their spatiotemporal continuity but lack longitudinal insight, such as 
provided by ground-based monitoring, which give context on how air pollution has changed over 
time. Aircraft, vehicle, and low-cost distributed network observations provide the spatial detail 
that further enhance information in satellite and ground-based observational analyses. 
Additionally, as modelling and data science techniques become more advanced, it will be even 
more critical to understand the strength, limitations, and information truly present in each dataset.  
 
Finally, technical advancements are not enough and must be accompanied by community-centered 
research to make progress towards environmental justice. Local knowledge gained through 
mutually beneficial collaboration with people at the forefront of these issues can create new 
opportunities for innovative solutions. For instance, a longitudinal analysis using satellite 
observations can compare the efficacy of city-wide sector-based emission controls and location-
specific (for instance those in neighborhoods of predominantly nonwhite and/or low-income 
communities) source regulation. Even more generally, community concerns and preferences may 
not be known by scientists, which when readily and seriously considered can open pathways 
towards more effective solutions.  
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Appendix A2 

 
 

Figure A2.1 Areas included in EVI and LAI averages (black outlines). Isoprene (green), O3, and 
NO2* (red outline) measurement stations in the Clovis (Fresno) and Bakersfield area. 



Appendix A2 
 

 

63 

 

 
Figure A2.2. Daytime (10 am–6 pm LT) mean isoprene (ppb) versus daily maximum temperature 
(green circle) in Clovis for each day with observations over June–September. The fit is an ordinary 
least squares linear regression (black line).  
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Figure A2.3. Daytime (10 am–6 pm LT) mean isoprene (ppb) versus daily maximum temperature 
(green circle) in Bakersfield for each day with observations over June–September. The fit is an 
ordinary least squares linear regression (black line). 
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Figure A2.4. Afternoon (12–5 pm LT) NO2* during O3 season on weekdays (brown circles) and 
weekends (golden diamonds) in Fresno (panel a) and Bakersfield (panel b). Error bars representing 
standard mean errors are included but generally smaller than the markers. 
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Figure A2.5. Modeled PO3 versus NO2 at two organic reactivity to OH values for Fresno (panels 
a–c) and Bakersfield (panels d–f) under three example initial organic reactivity conditions. 
Observational constraints are measured ΔOx wd–we / ΔNO2*wd–we (an approximate of ∂PO3⁄∂NOx), 
ΔNO2*wd–we, and the observation that ΔPO3 we ~0. Early drought ΔOx wd–we / ΔNO2*wd–we are in red 
and severe drought ΔOx wd–we / ΔNO2*wd–we in magenta. In Fresno, calculated ΔPO3 are (left to 
right): 25%, 25%, and 27%. In Bakersfield, calculated ΔPO3 are (left to right): 16%, 17%, and 
18%. 
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Table A2.1. Mean number of days with measurements (rounded to the nearest whole number) 
included in Table 1 calculations. 
 
 pre-drought 

2002–2010 
early drought 
2011–2013 

severe drought 
2014–2015 

post-drought 
2016–2017 

Fresno 

Isoprene mixing ratio (ppb) 284 103 72 69 

EVI (June–September) 72 24 16 16 

LAI (June–September) 144 48 32 32 

O3 mixing ratio (ppb) 816 306 130 171 

Weekday O3 mixing ratio (ppb) 347 133 54 73 

Weekend O3 mixing ratio (ppb) 118 43 19 24 

Weekday NO2* mixing ratio (ppb) 415 158 72 90 

Weekend NO2* mixing ratio (ppb) 140 52 24 30 

Daily maximum temperature (oC) 992 372 248 214 

Relative humidity (%)  271 90 59 58 

Wind speed (m s–1) 712 363 244 241 

Bakersfield 

Isoprene mixing ratio (ppb) 243 57 69 73 

EVI (June–September) 72 24 16 16 

LAI (June–September) 144 48 32 32 

O3 mixing ratio (ppb) 749 306 204 203 

Weekday O3 mixing ratio (ppb) 318 133 85 89 

Weekend O3 mixing ratio (ppb) 108 43 30 28 

Weekday NO2* mixing ratio (ppb) 386 158 101 106 

Weekend NO2* mixing ratio (ppb) 130 52 32 34 

Daily maximum temperature (oC) 924 372 248 247 

Relative humidity (%) 555 196 128 132 

Wind speed (m s–1) 547 79 132 131 
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Text A2.1 Analytical PO3 model description 
 
The analytical model is established set of equations to calculate PO397, 230 built on the assumptions 
that HOx (HOx º OH + HO2) is conserved (eq. A2.1), peroxy nitrates (RO2NO2) are in steady state 
with radical precursors, and radical propagation dominates termination (eq. A2.2): 

 PHOx	=	2kHO2+HO2[HO2]2	+	2kHO2+RO2
[HO2][RO2]	+	2kRO2+RO2[RO2]2  (A2.1) 

    + kNO2+OH[NO2][OH] + αkNO+RO2
[NO][RO2] 

[HO2] = [RO2] = kOH + RH[RH][OH]
(1–α)kHO2 + NO[NO]

  (A2.2) 

RH is any generic gas-phase organic compound. Radical propagation reactions are R1–R5 and 
termination reactions are R6–R10. Rate expressions are temperature dependent. The termination 
reaction rate expressions are (at 295 K): kNO2+OH	= 2.58 x 10–11,231 kRO2+RO2 = 6.8 x 10–12, kRO2+HO2 
= 8.0 x 10–12, and kHO2+HO2 = 2.74 x 10–14.232 RO2 rates are for C2H5O2.98, 233 

(R1) RH + OH ® R + H2O 

(R2) R + O2 ® RO2 

(R3) RO2 + NO ® RO + NO2 

(R4) RO + O2 ® RCHO + HO2 

(R5) HO2 + NO ® OH + NO2 

(R6) OH + NO2 + M ® HNO3 + M 

(R7) RO2 + NO + M ® RONO2 + M 

(R8) RO2 + R’O2 ® ROOR + O2 

(R9) RO2 + HO2 ® ROOH + O2 

(R10) HO2 + HO2 ® HOOH + O2 

The OH concentration is solved for using the quadratic equation with PO3 is approximately equal 
to (eq. A2.3): 

PO3 = kHO2 + NO[NO][HO2]	+	kRO2 + NO[NO][RO2]  (A2.3) 
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Appendix A3 

 

Figure A3.1. Study area with major NOx sources, including oil refineries and power plants 
(circles) and the Houston Shipping Channel (HSC) (red line). Background map data: Landsat 8 
composite over January 2017–June 2018.  

The Woodlands

-96 -95.5 -95 -94.5
Longitude

29

29.4

29.8

30.2

30.6

La
tit

ud
e

Sugar Land

Gulf of Mexico

Galveston
Bay

Houston Ship
Channel (HSC)Downtown

Houston



Appendix A2 
 

 

70 

 

 

 

Figure A3.2. September 4, 2013 GCAS column observations (molecules cm–2) averaged to census 
tracts for the early morning (panel a) and late morning (panel b) circuits and the early afternoon 
(panel c) and late afternoon (panel d) circuits. Background map data: Landsat 8 composite over 
January 2017–June 2018.  
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Figure A3.3. September 6, 2013 GCAS column observations (molecules cm–2) averaged to census 
tracts for the early morning (panel a) and late morning (panel b) circuits and the early afternoon 
(panel c) and late afternoon (panel d) circuits. Background map data: Landsat 8 composite over 
January 2017–June 2018.  
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Figure A3.4. September 11, 2013 GCAS column observations (molecules cm–2) averaged to 
census tracts for the early morning (panel a) and late morning (panel b) circuits and the early 
afternoon (panel c) and late afternoon (panel d) circuits. Background map data: Landsat 8 
composite over January 2017–June 2018.  
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Figure A3.5. September 12, 2013 GCAS column observations (molecules cm–2) averaged to 
census tracts for the early morning (panel a), early afternoon (panel b), and late afternoon (panel 
c) circuits. There were insufficient data collected during the second circuit in the morning flight to 
include. Background map data: Landsat 8 composite over January 2017–June 2018.  
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Figure A3.6. September 13, 2013 GCAS column observations (molecules cm–2) averaged to 
census tracts for the early morning (panel a) and late morning (panel b) circuits and the early 
afternoon (panel c) and late afternoon (panel d) circuits. Background map data: Landsat 8 
composite over January 2017–June 2018.  
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Figure A3.7. September 18, 2013 GCAS column observations (molecules cm–2) averaged to 
census tracts for the early morning (panel a) and late morning (panel b) circuits and the early 
afternoon (panel c) and late afternoon (panel d) circuits. Background map data: Landsat 8 
composite over January 2017–June 2018.  
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Figure A3.8. September 24, 2013 GCAS column observations (molecules cm–2) averaged to 
census tracts for the early morning (panel a) and late morning (panel b) circuits and the early 
afternoon (panel c) and late afternoon (panel d) circuits. Background map data: Landsat 8 
composite over January 2017–June 2018.  
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Figure A3.9. September 25, 2013 GCAS column observations (molecules cm–2) averaged to 
census tracts for the early morning (panel a) and late morning (panel b) circuits and the early 
afternoon (panel c) and late afternoon (panel d) circuits. Background map data: Landsat 8 
composite over January 2017–June 2018.  
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Figure A3.10. September 26, 2013 GCAS column observations (molecules cm–2) averaged to 
census tracts for the early morning (panel a) and late morning (panel b) circuits and the early 
afternoon (panel c) and late afternoon (panel d) circuits. Background map data: Landsat 8 
composite over January 2017–June 2018.  
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Table A3.1. Mean morning (7 am–12 pm LT) and afternoon (12–6 pm LT) wind direction and 
speed with 1σ standard deviation corresponding to each GCAS flight day as measured by surface 
monitors across the HMA (Methods).  
  

 Morning Afternoon 
 Wind Direction 

(Degrees) 
Wind Speed 

(m/s) 
Wind Direction 

(Degrees) 
Wind Speed 

(m/s) 
4 September 201 ± 96 4 ± 1 138 ± 24 7 ± 2 
6 September 67 ± 36 7 ± 1 119 ± 12 8 ± 1 
11 September 85 ± 17 8 ± 1 114 ± 11 9 ± 1 
12 September 63 ± 14 8 ± 2 106 ± 22 9 ± 1 
13 September 85 ± 80 6 ± 1 112 ± 33 8 ± 1 
18 September 95 ± 21 8 ± 2 119 ± 7 10 ± 1 
24 September 59 ± 76 7 ± 2 72 ± 89 7 ± 2 
25 September 248 ± 78 4 ± 1 179 ± 87 5 ± 1 
26 September 165 ± 40 6 ± 3 136 ± 10 8 ± 1 
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Figure A3.11. Weekday (Tuesday–Friday) TROPOMI NO2 columns (molecules cm–2) for June 
2018–May 2019 averaged within census tracts along the 4-September morning flight track. 
Background map data: Landsat 8 composite over January 2017–June 2018. 
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Figure A3.12. Annual (June–May), weekday (Tuesday–Friday), daytime (10 am–4 pm LT) 
averaged NO2* (ppb) in 2013 (panel a) and 2018 (panel b). Absolute (panel c) and percent (panel 
d) change in daytime NO2* between 2013 and 2018 (data in panels a and b). Monitoring sites 
included those with measurements in both 2013 and 2018: Houston Aldine (29.901°N, 95.326°W), 
Channelview (29.803°N, 95.125°W), Northwest Harris County (30.040°N, 95.674°W), Houston 
Bayland Park, (29.696°N, 95.499°W), Texas City 34th Street (29.406°N, 94.947°W), Conroe 
Relocated (30.350°N, 95.425°W), Park Place (29.686°N, 95.295°W), Wallisville Road (29.821°N, 
94.990°W), Mustang Bayou (29.309°N, 95.200°W), Danciger (29.144°N, 95.757°W), HRM #3 
Haden Road (29.765°N, 95.179°W), Manvel Croix Park (29.520°N, 95.393°W), Lynchburg Ferry 
(29.759°N, 95.079°W), Lake Jackson (29.044°N, 95.473°W), Galveston 99th Street (29.254°N, 
94.861°W), and Houston Deer Park #2 (29.670°N, 95.129°W).   
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Figure A3.13. Sample NASA P-3B flight track (9/24) with profile locations (panel a) and altitude 
profile (km above sea level) (panel b) used in this analysis: Moody Tower (red), West Houston 
(cyan), Conroe (black), Channelview (magenta), Deer Park (blue), and Manvel Croix (green). 
Panel a background map data: Google.  
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Figure A3.14. Linear correlation coefficients between overhead (within 1 km) tract-level 
TROPOMI columns, averaged annually (June 2018–May 2019), and individual daily (12–3 pm 
LT) NO2* surface mixing ratios, both on weekdays (Tuesday–Friday). Correlation coefficients 
were only computed for days when at least 75% of monitoring stations provided data (at least 14 
of 18 stations).
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Table A3.2. P-3B profile time and convective boundary layer (CBL) height (above ground level, agl), fraction of the NO2 column 
measured up to 3 km located below the CBL as measured and after interpolating the lowest-altitude NO2 data point to the surface. 

 Time CBL Height (agl)* Fraction NO2 (Measured)  
below CBL  

Fraction NO2 (Interpolated to 
Surface) below CBL 

  Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 
Channel View           
4-Sep 10.10 13.22 - 1.05 1.00 - 0.88 0.90 - 0.88 0.93 - 
6-Sep 9.74 - - 0.94 - - 0.65 - - 0.73 - - 
11-Sep 9.75 12.34 14.83 0.94 1.25 0.86 0.93 0.84 0.79 0.95 0.87 0.82 
12-Sep 9.76 12.48 15.21 0.99 1.60 1.49 0.86 0.94 0.96 0.87 0.95 0.97 
13-Sep 9.62 12.08 14.58 0.38 1.27 1.90 0.42 0.74 0.84 0.78 0.78 0.92 
24-Sep 9.64 12.07 14.53 0.87 1.64 1.51 0.69 0.82 0.91 0.75 0.83 0.94 
25-Sep 9.82 12.31 14.80 0.43 2.12 2.27 0.75 0.97 0.96 0.92 0.98 0.97 
26-Sep - 12.40 14.85 - 1.47 2.35 - 0.95 0.99 - 0.96 1.00 
Mean 9.77 12.41 14.80 0.80 1.48 1.73 0.74 0.88 0.91 0.84 0.90 0.94 
Moody Tower           
4-Sep 8.75 11.99 15.14 0.72 1.30 0.92 0.79 0.88 0.80 0.90 0.91 0.84 
6-Sep 8.62 10.76 13.39 0.71 0.88 0.76 0.84 0.66 0.79 0.85 0.69 0.85 
11-Sep 8.60 11.31 13.86 0.83 1.24 1.18 0.85 0.96 0.65 0.96 0.97 0.69 
12-Sep 8.63 11.37 14.09 0.55 1.31 1.66 0.82 0.94 0.93 0.89 0.96 0.94 
13-Sep 8.59 11.13 13.50 0.50 1.30 1.87 0.81 0.90 0.87 0.88 0.92 0.89 
24-Sep 8.64 11.09 13.55 0.77 1.98 1.74 0.85 0.96 0.95 0.90 0.97 0.96 
25-Sep 8.65 11.39 13.76 0.34 2.18 2.42 0.51 0.98 0.98 0.88 0.98 0.99 
26-Sep - 11.35 13.82 - 1.24 2.37 - 0.95 0.99 - 0.96 1.00 
Mean 8.64 11.30 13.89 0.63 1.43 1.61 0.78 0.90 0.87 0.89 0.92 0.90 
West Houston           
4-Sep 9.09 - - 0.69 - - 0.85 - - 0.85 - - 
6-Sep 8.89 11.07 13.70 0.84 1.13 0.65 0.93 0.85 0.84 0.93 0.84 0.84 
11-Sep 8.87 11.55 14.11 0.68 1.15 1.75 0.89 0.76 0.94 0.89 0.76 0.94 
12-Sep 8.91 11.64 14.36 0.73 1.35 1.69 0.92 0.90 0.87 0.92 0.90 0.87 
13-Sep 8.84 11.35 - 0.48 1.66 - 0.84 0.96 - 0.85 0.96 - 
24-Sep 8.90 11.34 13.81 1.30 1.64 1.40 0.92 0.91 0.83 0.93 0.91 0.84 
25-Sep 8.95 11.61 13.99 0.45 2.20 2.32 0.62 0.96 0.97 0.66 0.96 0.97 
26-Sep - 11.63 14.05 - 1.24 2.29 - 0.90 0.99 - 0.91 0.99 
Mean 8.92 11.46 14.01 0.74 1.48 1.68 0.85 0.89 0.91 0.86 0.89 0.91 

 Time CBL Height (agl)* Fraction NO2 (Measured)  
below CBL 

Fraction NO2 (Interpolated to 
Surface) below CBL 
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  Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 
Conroe             
4-Sep 9.64 12.77 - 0.85 1.50 - 0.78 0.80 - 0.79 0.79 - 
6-Sep 9.32 - 14.14 0.81 - 1.58 0.77 - 0.81 0.78 - 0.81 
11-Sep 9.32 11.93 14.49 0.45 1.20 1.25 0.63 0.77 0.76 0.70 0.77 0.77 
12-Sep 9.33 12.07 14.79 0.51 1.17 1.75 0.58 0.71 0.86 0.60 0.72 0.86 
13-Sep 9.24 11.72 - 0.49 1.22 - 0.81 0.70 - 0.83 0.71 - 
24-Sep 9.28 11.71 14.17 0.70 1.45 1.74 0.65 0.85 0.85 0.70 0.85 0.86 
25-Sep 9.40 11.96 14.41 0.28 2.20 2.33 0.53 0.95 0.96 0.59 0.95 0.96 
26-Sep - 12.03 14.42 - 1.41 2.11 - 0.87 0.96 - 0.88 0.97 
Mean 9.36 12.03 14.40 0.58 1.45 1.79 0.68 0.81 0.87 0.71 0.81 0.87 
Deer Park           
4-Sep 10.41 13.55 - 0.75 0.42 - 0.75 0.69 - 0.72 0.70 - 
6-Sep 9.99 - 14.75 0.74 - 0.52 0.80 - 0.74 0.78 - 0.72 
11-Sep 10.02 12.63 15.12 0.70 1.08 0.82 0.89 0.90 0.89 0.89 0.90 0.89 
12-Sep 10.04 12.76 - 1.08 1.54 - 0.94 0.96 - 0.94 0.96 - 
13-Sep 9.85 12.30 14.91 0.55 2.71 1.94 0.93 1.00 0.96 0.93 1.00 0.96 
24-Sep 9.84 12.29 14.77 1.08 1.99 1.99 0.93 0.96 0.98 0.94 0.96 0.98 
25-Sep 10.07 12.54 15.00 0.56 2.40 2.31 0.79 1.00 0.99 0.81 1.00 0.99 
26-Sep - 12.62 15.11 - 1.23 2.33 - 0.93 0.99 - 0.94 0.99 
Mean 10.03 12.67 14.94 0.78 1.62 1.65 0.86 0.92 0.92 0.86 0.92 0.92 
Manvel Croix           
4-Sep 10.75 13.88 - 0.59 0.91 - 0.70 0.74 - 0.72 0.76 - 
6-Sep 10.24 12.81 15.07 0.84 0.83 1.14 0.62 0.47 0.79 0.62 0.55 0.85 
11-Sep 10.30 12.91 15.44 1.07 1.03 0.90 0.64 0.63 0.47 0.72 0.70 0.53 
12-Sep 10.31 13.03 - 1.10 1.35 - 0.82 0.90 - 0.85 0.91 - 
13-Sep 10.12 12.53 15.14 0.83 2.61 2.64 0.94 0.99 1.00 0.96 0.99 1.00 
24-Sep 10.10 12.51 15.01 0.62 1.15 1.65 0.75 0.68 0.93 0.85 0.78 0.97 
25-Sep 10.34 12.79 15.20 0.87 2.17 2.22 0.84 0.94 0.97 0.88 0.98 0.99 
26-Sep - 12.85 15.41 - 1.53 2.38 - 0.80 0.96 - 0.87 0.98 
Mean 10.31 12.91 15.21 0.84 1.44 1.82 0.76 0.77 0.85 0.80 0.82 0.89 

*Elevation: Channelview, 10 m; Moody Tower, 50 m; Conroe, 60 m; Deer Park, 20 m; West Houston, 30 m, and Manvel Croix, 20 m.  



Appendix A2 
 

 

86 

Table A3.3. P-3B profile time, mean NO2 (ppb) within the CBL, mean NO2 (ppb) below 500 m agl, and mean NO2:NOx below 500 m 
agl. 

  Time Mean NO2 below CBL height Mean NO2 below 500 m NO2:NOx below 500 m 
  Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 
Channel View           
4-Sep 10.10 13.22 - 11.56 5.90 - 11.07 8.22 - 0.68 0.81 - 
6-Sep 9.74 - - 1.04 - - 1.59 - - 0.74 - - 
11-Sep 9.75 12.34 14.83 2.29 2.10 3.73 3.09 2.45 3.94 0.73 0.74 0.76 
12-Sep 9.76 12.48 15.21 1.39 0.95 2.95 1.88 0.98 4.76 0.77 0.79 0.79 
13-Sep 9.62 12.08 14.58 3.76 1.23 0.94 1.87 2.24 2.29 0.79 0.80 0.83 
24-Sep 9.64 12.07 14.53 0.93 0.61 0.72 1.27 0.69 1.30 0.74 0.84 0.78 
25-Sep 9.82 12.31 14.80 8.43 2.02 1.78 5.52 3.71 3.17 0.79 0.86 0.89 
26-Sep - 12.40 14.85 - 3.38 1.36 - 5.19 5.33 - 0.82 0.82 
Mean 9.77 12.41 14.80 4.20 2.31 1.91 3.75 3.35 3.47 0.75 0.81 0.81 
Moody Tower                     
4-Sep 8.75 11.99 15.14 3.02 6.39 2.03 4.07 6.86 2.09 0.54 0.80 0.82 
6-Sep 8.62 10.76 13.39 4.39 2.95 3.12 5.73 3.25 2.95 0.69 0.75 0.72 
11-Sep 8.60 11.31 13.86 3.99 2.75 3.27 11.09 3.48 3.32 0.73 0.74 0.84 
12-Sep 8.63 11.37 14.09 4.08 1.68 2.02 4.48 2.21 2.67 0.71 0.78 0.82 
13-Sep 8.59 11.13 13.50 5.65 2.81 1.57 5.44 3.45 1.27 0.79 0.80 0.85 
24-Sep 8.64 11.09 13.55 4.39 0.93 1.04 5.35 2.08 1.55 0.66 0.79 0.79 
25-Sep 8.65 11.39 13.76 7.30 1.22 1.79 2.62 3.56 2.48 0.83 0.85 0.87 
26-Sep - 11.35 13.82 - 1.58 0.88 - 1.62 1.62 - 0.84 0.83 
Mean 8.64 11.30 13.89 4.69 2.54 1.96 5.54 3.31 2.24 0.71 0.79 0.82 
West Houston                     
4-Sep 9.09 - - 2.27 - - 2.27 - - 0.66 - - 
6-Sep 8.89 11.07 13.70 3.84 1.40 3.75 4.49 1.60 3.99 0.71 0.81 0.81 
11-Sep 8.87 11.55 14.11 3.72 2.46 1.65 4.40 2.63 2.08 0.74 0.84 0.87 
12-Sep 8.91 11.64 14.36 3.99 1.12 0.93 4.74 1.14 1.05 0.73 0.86 0.86 
13-Sep 8.84 11.35 - 3.30 1.85 - 3.19 2.09 - 0.79 0.84 - 
24-Sep 8.90 11.34 13.81 1.26 0.42 0.51 2.97 0.56 0.64 0.74 0.82 0.86 
25-Sep 8.95 11.61 13.99 1.96 0.50 0.59 1.76 0.70 0.79 0.82 0.85 0.88 
26-Sep - 11.63 14.05 - 1.09 0.80 - 1.22 1.06 - 0.85 0.87 
Mean 8.92 11.46 14.01 2.91 1.26 1.37 3.40 1.42 1.60 0.74 0.84 0.86 
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  Time Mean NO2 below CBL height Mean NO2 below 500 m NO2:NOx below 500 m 
  Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 Profile 1 Profile 2 Profile 3 
Conroe                         
4-Sep 9.64 12.77 - 1.33 0.57 - 1.61 0.63 - 0.72 0.86 - 
6-Sep 9.32 - 14.14 0.89 - 0.33 1.09 - 0.38 0.78 - 0.85 
11-Sep 9.32 11.93 14.49 1.15 0.28 0.34 1.15 0.31 0.40 0.78 0.79 0.82 
12-Sep 9.33 12.07 14.79 0.68 0.30 0.30 0.68 0.31 0.35 0.78 0.86 0.87 
13-Sep 9.24 11.72 - 2.31 0.38 - 2.27 0.40 - 0.79 0.87 - 
24-Sep 9.28 11.71 14.17 0.53 0.36 0.30 0.51 0.43 0.31 0.79 0.84 0.92 
25-Sep 9.40 11.96 14.41 2.97 0.35 0.52 1.96 0.63 0.80 0.87 0.84 0.87 
26-Sep - 12.03 14.42 - 2.08 0.84 - 2.42 0.96 - 0.87 0.90 
Mean 9.36 12.03 14.40 1.41 0.62 0.44 1.32 0.73 0.53 0.79 0.85 0.87 
Deer Park                     
4-Sep 10.41 13.55 - 9.52 4.82 - 9.77 4.16 - 0.60 0.80 - 
6-Sep 9.99 - 14.75 2.60 - 1.40 2.50 - 1.40 0.74 - 0.68 
11-Sep 10.02 12.63 15.12 1.83 1.39 1.55 2.17 1.53 2.31 0.72 0.76 0.80 
12-Sep 10.04 12.76 - 2.74 2.05 - 3.48 2.32 - 0.75 0.81 - 
13-Sep 9.85 12.30 14.91 6.32 1.48 2.24 6.81 2.10 2.47 0.77 0.82 0.83 
24-Sep 9.84 12.29 14.77 4.00 1.22 1.55 5.88 2.88 2.56 0.71 0.72 0.77 
25-Sep 10.07 12.54 15.00 44.92 5.98 5.17 46.26 6.56 5.56 0.75 0.86 0.91 
26-Sep - 12.62 15.11 - 1.49 0.65 - 1.92 1.76 - 0.84 0.85 
Mean 10.03 12.67 14.94 10.28 2.63 2.09 10.98 3.07 2.68 0.72 0.80 0.81 
Manvel Croix                     
4-Sep 10.75 13.88 - 1.61 0.85 - 1.70 0.93 - 0.70 0.83 - 
6-Sep 10.24 12.81 15.07 1.90 0.38 0.53 1.57 0.46 0.65 0.83 0.75 0.76 
11-Sep 10.30 12.91 15.44 0.42 0.30 0.42 0.52 0.32 0.51 0.79 0.77 0.82 
12-Sep 10.31 13.03 - 0.79 0.71 - 0.69 0.95 - 0.80 0.83 - 
13-Sep 10.12 12.53 15.14 4.87 0.30 0.42 5.61 0.65 0.63 0.80 0.84 0.88 
24-Sep 10.10 12.51 15.01 4.88 1.08 1.18 5.52 1.19 1.50 0.75 0.81 0.87 
25-Sep 10.34 12.79 15.20 2.77 0.84 1.15 4.03 1.02 1.60 0.81 0.86 0.91 
26-Sep - 12.85 15.41 - 0.24 0.19 - 0.23 0.42 - 0.87 0.88 
Mean 10.31 12.91 15.21 2.46 0.59 0.65 2.80 0.72 0.89 0.78 0.82 0.85 
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Figure A3.15. Channelview on September 4, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d) and midday (panels e–h) circuits: NO2 
(ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and 
H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates 
are 5-point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.16. Channelview on September 6, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d) circuit: NO2 (ppb) (panel a), theta lapse 
rate (K km–1) (panel b), theta (K) (panel c), and H2O(v) (ppm) (panel d). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.17. Channelview on September 11, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.18. Channelview on September 12, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.19. Channelview on September 12, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.20. Channelview on September 13, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.21. Channelview on September 24, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.22. Channelview on September 25, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.23. Channelview on September 26, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the midday (panels a–d) and afternoon (panels e–h) circuits: NO2 
(ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and 
H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates 
are 5-point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.24. Moody Tower on September 4, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 A
lti

tu
de

 (k
m

)

0 10 20
10-3

0

0.5

1

1.5

2

2.5

3

300 305 310 315
0

0.5

1

1.5

2

2.5

3

1 2 3
104

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 A
lti

tu
de

 (k
m

)

0 0.01 0.02
0

0.5

1

1.5

2

2.5

3

300 305 310 315
0

0.5

1

1.5

2

2.5

3

1 1.5 2 2.5
104

0

0.5

1

1.5

2

2.5

3

1 2 3 4
NO2 (ppb)

0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 A
lti

tu
de

 (k
m

)

0 5 10
Theta Lapse 

Rate (theta km -1)
10-3

0

0.5

1

1.5

2

2.5

3

300 305 310 315
Theta

0

0.5

1

1.5

2

2.5

3

1 1.5 2 2.5
H2O (ppm) 104

0

0.5

1

1.5

2

2.5

3

(a) (b) (c) (d)

(h)(g)(f)(e)

(i) (j) (k) (l)



Appendix A2 
 

 

98 

 

Figure A3.25. Moody Tower on September 6, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.26. Moody Tower on September 11, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.27. Moody Tower on September 12, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.28. Moody Tower on September 13, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.29. Moody Tower on September 24, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.30. Moody Tower on September 25, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.31. Moody Tower on September 26, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the midday (panels a–d) and afternoon (panels e–h) 
circuits: NO2 (ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c 
and g), and H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). 
Lapse rates are 5-point running means of binned data. CBL heights (Methods) are shown as heavy 
black lines.  
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Figure A3.32. West Houston on September 4, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d) circuit: NO2 (ppb) (panel a), theta lapse 
rate (K km–1) (panel b), theta (K) (panel c), and H2O(v) (ppm) (panel d). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.33. West Houston on September 6, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.34. West Houston on September 11, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.35. West Houston on September 12, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.36. West Houston on September 13, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d) and midday (panels e–h) circuits: 
NO2 (ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), 
and H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse 
rates are 5-point running means of binned data. CBL heights (Methods) are shown as heavy black 
lines.  
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Figure A3.37. West Houston on September 24, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.38. West Houston on September 25, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and 
afternoon (panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, 
f, and j), theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are 
pressure altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL 
heights (Methods) are shown as heavy black lines.  
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Figure A3.39. West Houston on September 26, 2013: P-3B vertical profile measurements 
averaged into 10-m altitude bins during the midday (panels a–d) and afternoon (panels e–h) 
circuits: NO2 (ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c 
and g), and H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). 
Lapse rates are 5-point running means of binned data. CBL heights (Methods) are shown as heavy 
black lines.  
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Figure A3.40. Conroe on September 4, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d) and midday (panels e–h) circuits: NO2 (ppb) 
(panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and H2O(v) 
(ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates are 5-
point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.41. Conroe on September 6, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d) and afternoon (panels e–h) circuits: NO2 (ppb) 
(panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and H2O(v) 
(ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates are 5-
point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.42. Conroe on September 11, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon (panels i–
l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), theta (K) 
(panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure altitude above 
sea level (km). Lapse rates are 5-point running means of binned data. CBL heights (Methods) are 
shown as heavy black lines.  
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Figure A3.43. Conroe on September 12, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon (panels i–
l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), theta (K) 
(panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure altitude above 
sea level (km). Lapse rates are 5-point running means of binned data. CBL heights (Methods) are 
shown as heavy black lines.  
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Figure A3.44. Conroe on September 13, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d) and midday (panels e–h) circuits: NO2 (ppb) 
(panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and H2O(v) 
(ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates are 5-
point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.45. Conroe on September 24, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon (panels i–
l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), theta (K) 
(panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure altitude above 
sea level (km). Lapse rates are 5-point running means of binned data. CBL heights (Methods) are 
shown as heavy black lines.  
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Figure A3.46. Conroe on September 25, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon (panels i–
l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), theta (K) 
(panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure altitude above 
sea level (km). Lapse rates are 5-point running means of binned data. CBL heights (Methods) are 
shown as heavy black lines.  
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Figure A3.47. Conroe on September 26, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the midday (panels a–d) and afternoon (panels e–h) circuits: NO2 (ppb) 
(panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and H2O(v) 
(ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates are 5-
point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.48. Deer Park on September 4, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d) and midday (panels (e–h) circuits: NO2 (ppb) 
(panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and H2O(v) 
(ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates are 5-
point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.49. Deer Park on September 6, 2013: P-3B vertical profile measurements averaged into 
10-m altitude bins during the morning (panels a–d) and afternoon (panels e–h) circuits: NO2 (ppb) 
(panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and H2O(v) 
(ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates are 5-
point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  

2 4 6 8
0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 A
lti

tu
de

 (k
m

)

-5 0 5 10 15
10-3

0

0.5

1

1.5

2

2.5

3

300 305 310 315
0

0.5

1

1.5

2

2.5

3

1 2 3
104

0

0.5

1

1.5

2

2.5

3

1 2 3 4
NO2 (ppb)

0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 A
lti

tu
de

 (k
m

)

0 5 10
Theta Lapse

Rate (theta km -1)
10-3

0

0.5

1

1.5

2

2.5

3

300 305 310 315
Theta

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5
H2O (ppm) 104

0

0.5

1

1.5

2

2.5

3

(a) (b) (c) (d)

(h)(g)(f)(e)



Appendix A2 
 

 

123 

 

Figure A3.50. Deer Park on September 11, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.51. Deer Park on September 12, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d) and midday (panels (e–h) circuits: NO2 
(ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and 
H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates 
are 5-point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.52. Deer Park on September 13, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 A
lti

tu
de

 (k
m

)

0 0.01 0.02 0.03
0

0.5

1

1.5

2

2.5

3

300 305 310 315
0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5
104

0

0.5

1

1.5

2

2.5

3

2 4 6
0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 A
lti

tu
de

 (k
m

)

0 0.01 0.02
0

0.5

1

1.5

2

2.5

3

300 305 310 315
0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2
104

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12
NO2 (ppb)

0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 A
lti

tu
de

 (k
m

)

-5 0 5 10 15
Theta Lapse

Rate (theta km -1)
10-3

0

0.5

1

1.5

2

2.5

3

300 305 310 315
Theta

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2
H2O (ppm) 104

0

0.5

1

1.5

2

2.5

3

(a) (b) (c) (d)

(h)(g)(f)(e)

(i) (j) (k) (l)



Appendix A2 
 

 

126 

 

Figure A3.53. Deer Park on September 24, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.54. Deer Park on September 25, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.55. Deer Park on September 26, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the midday (panels a–d) and afternoon (panels e–h) circuits: NO2 
(ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and 
H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates 
are 5-point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.56. Manvel Croix on September 4, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d) and midday (panels e–h) circuits: NO2 
(ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and 
H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates 
are 5-point running means of binned data. CBL heights (Methods) are shown as heavy black lines.  
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Figure A3.57. Manvel Croix on September 6, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.58. Manvel Croix on September 11, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.59. Manvel Croix on September 12, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d) and midday (panels e–h) circuits: NO2 
(ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and 
H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates 
are 5-point running means of binned data. CBL heights (Methods) are shown as heavy black lines  
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Figure A3.60. Manvel Croix on September 13, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.61. Manvel Croix on September 24, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.62. Manvel Croix on September 25, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the morning (panels a–d), midday (panels e–h), and afternoon 
(panels i–l) circuits: NO2 (ppb) (panels a, e, and i), theta lapse rate (K km–1) (panels b, f, and j), 
theta (K) (panels c, g, and k), and H2O(v) (ppm) (panels d, h, and l). Altitude data are pressure 
altitude above sea level (km). Lapse rates are 5-point running means of binned data. CBL heights 
(Methods) are shown as heavy black lines.  
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Figure A3.63. Manvel Croix on September 26, 2013: P-3B vertical profile measurements averaged 
into 10-m altitude bins during the midday (panels a–d) and afternoon (panels e–h) circuits: NO2 
(ppb) (panels a and e), theta lapse rate (K km–1) (panels b and f), theta (K) (panels c and g), and 
H2O(v) (ppm) (panels d and h). Altitude data are pressure altitude above sea level (km). Lapse rates 
are 5-point running means of binned data. CBL heights (Methods) are shown as heavy black lines. 
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Appendix A4 

Text A4.1 Oversampled TROPOMI NO2 TVCDs were averaged to underlying census-tract 
polygons within UA boundaries for each city. Census tract demographics and corresponding tract-
level NO2 were linked through their GEOIDs. Population-weighted NO2 inequalities were 
calculated according to Eq. A4.4. Population-weighted NO2 for the jth race-ethnicity group in the 
ith census tract were equal to the summation across the products of tract-level (NO2, i) and group 
populations (pi, j) for all n tracts in the UA divided by the total demographic group population in 
the UA. 

𝐸𝑞. 𝐴4.4																			𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑁𝑂$,% =	@ 𝑁𝑂$,&	𝑝&,%
(

&)*
/@ 𝑝&,%

(

&)*
 

Race-ethnicity and income groups are categorized using U.S. Census designations: Black and 
African Americans (ALUKE004), Asians (ALUKE006), American Indians and Native Alaskans 
(ALUKE005), and whites (ALUKE003), excluding people from each racial group identifying as 
Hispanic or Latino; Hispanics/Latinos (ALUKE012), including all races also reporting as Hispanic 
and/or Latino; below the poverty line, >20% of tract households at or below an income-to-poverty 
ratio of one (ALWVE002 and ALWVE003); near the poverty line, all tract households having an 
income-to-poverty ratio of 1–1.24 (ALWVE004); and above the poverty line, all tract households 
having an income-to-poverty ratio >1.24 (ALWVE005, ALWVE006, ALWVE007, and 
ALWVE008).  
 
Poverty-based NO2 inequalities are sensitive to the definition of the poverty line of 1.24. For 
example, if were defined ‘above poverty’ as all tract households having an income-to-poverty ratio 
>1.49 (ALWVE006, ALWVE007, and ALWVE008), and separately analyze NO2 disparities near, 
but still above, the poverty line (ALWVE005), we find 7 ± 4%, 6 ± 4%, 9 ± 6%, and 6 ± 6% higher 
NO2 for tracts near-above (ALWVE005) than significantly above poverty (ALWVE006, 
ALWVE007, and ALWVE008) for summer weekdays, summer weekends, winter weekdays, and 
winter weekends, respectively. Likewise, we compute 11 ± 6%,10 ± 5%, 12 ±6%, and 9±5% higher 
NO2 for tracts below (ALWVE002 and ALWVE 003) and 14 ± 7%,11 ± 6%,17 ± 11%, and 11 ± 
6% higher NO2 for tracts near, but still below (ALWVE004), than significantly above the poverty 
line (ALWVE006, ALWVE007, and ALWVE008) for summer weekdays, summer weekends, 
winter weekdays, and winter weekends, respectively. Sensitivity to the definition of poverty 
indicates a scaling between household income and census-tract NO2 TVCD, where, as income-to-
poverty increases, NO2 column densities decrease.  
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Figure A4.1. City-level bias in census tract-averaged absolute (a–b) and relative (c–d) LIN-HIW 
differences for summer (a and c) and winter (b and d) weekday TROPOMI observations, 
oversampled to 0.01° x 0.01° and degraded to 0.04° x 0.04°, compared to TROPOMI observations 
oversampled to 0.01° x 0.01°. Positive values indicate greater LIN-HIW differences in the 0.01° x 
0.01° than the 0.04° x 0.04° product. 
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Figure A4.2. Summer weekday-weekend percentage difference in inequality in the 52 UAs for 
Black and African American (a), Hispanic and Latino (b), Asian (c), and Native American (d) 
compared to white residents. Inequalities are also mapped for people living near (e) and below (f) 
versus above the poverty line and for LINs compared to HIWs (g). Mean values for each group 
weighted by urban population size are also reported. 
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Figure A4.3. Percent contributions of on-road HDDVs to NOx emission density LIN-HIW 
inequalities during summer months for Black and African American (a), Hispanic and Latino (b), 
Asian (c), and Native American (d) compared to white residents. Inequalities are also mapped for 
people living near (e) and below (f) versus those living above the poverty line. Mean values for 
each group weighted by urban population size are also reported. 
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Figure A4.4. Relationships between racial-ethnic segregation extent and structure (mean local 
information density, MLID) (a), segregation extent and race-ethnicity inequality (b), and 
segregation structure and race-ethnicity inequality (c), where race-ethnicity inequality is defined 
as the summer weekday population-weighted NO2 difference between Black and African 
Americans, Hispanics and Latinos, Asians, and Native Americans compared to non-Hispanic 
whites. Higher MLID values indicate segregation is characterized as patch worked and lower 
MLID values indicate segregation is characterized by clustering. 
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Figure A4.5. Fraction of residents that are Black or African American, Asian, Native American, 
and Hispanic/Latino in each census tract in the Atlanta, GA (a) and New York City, NY (b) UAs 
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Figure A4.6. Average Pearson correlation coefficients (r) between tract-averaged TVCDs and 
surface NO2* mixing ratios as a function of distance between monitoring stations and census tract 
center points on summer (black circles) and winter weekdays (blue diamonds) for the 20 UAs with 
at least three monitors. Envelopes represent the 1s standard mean errors of the city-specific r 
values. 
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Table A4.1. Census-designated ‘urbanized areas’ (UAs) in this study, with boundaries from the 
U.S. Census Bureau (https://www.census.gov/cgi-bin/geo/shapefiles/index.php). There are the 
following exceptions: (a) the New York City–Newark, NJ–NY–CT UA was divided along state 
lines to create distinct estimates for New York City, NY and Newark, NJ and (b) the San 
Francisco–Oakland, CA UA was divided through San Francisco Bay to create distinct estimates 
for Oakland, CA and San Francisco, CA. 

Abbreviation Urbanized Area 
ABQ Albuquerque, NM 
ATL Atlanta, GA 
ATX Austin, TX 
BAL Baltimore, MD 
BOS Boston, MA–NH–RI 
CHA Charlotte, NC–SC 
CHI Chicago, IL–IN 
CLE Cleveland, OH 
COL Columbus, OH 
CSP Colorado Springs, CO 
DAL Dallas–Fort Worth–Arlington, TX 
DEN Denver–Aurora, CO 
DET Detroit, MI 
ELP El Paso, TX–NM 
HOU Houston, TX 
IND Indianapolis, IN 
JKS Jacksonville, RL 
KC Kansas City, MO–KS 
LA Los Angeles–Long Beach–Anaheim, CA 

LAV Las Vegas–Henderson, NV 
LOU Louisville/Jefferson County, KY–IN 
MEM Memphis, TN–MS–AR 
MIA Miami, FL 
MIL Milwaukee, WI 
MIN Minneapolis–St. Paul, MN–WI 
NAS Nashville–Davidson, TN 
NWK Newark, NJ 
NWO New Orleans, LA 
NYC New York, NY 
OAK Oakland, CA 
OKC Oklahoma City, OK 
OMA Omaha, NE–IA 
PHI Philadelphia, PA–NJ–DE–MD 
PHX Phoenix–Mesa, AZ 
PIT Pittsburgh, PA 
POR Portland, OR–WA 
RAL Raleigh, NC 
RIC Richmond, VA 
RIV Riverside–San Bernardino, CA 
SAA San Antonio, TX 
SAC Sacramento, CA 
SAD San Diego, CA 
SAJ San Jose, CA 
SEA Seattle, WA 
SFO San Francisco, CA 
SLC Salt Lake City–West Valley City, UT 
SLO St. Louis, MO-IL 
TAM Tampa–St. Petersburg, FL 
TUC Tucson, AZ 
VB Virginia Beach, VA 

WDC Washington, DC–VA–MD 
WIC Wichita, KS 
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Table A4.2. Mean UA-level oversampled TROPOMI sampling statistics rounded up to the 
nearest integer. 

Average of Number of Overlapping Pixels Per 0.01° x 0.01° Grid Box 
Urbanized 

Area 
Summer 

Weekdays 
Summer 

Weekends 
Winter 

Weekdays 
Winter 

Weekends 
ABQ 95 42 51 28 
ATL 60 21 41 20 
ATX 85 36 52 35 
BAL 57 27 19 11 
BOS 66 29 14 11 
CHA 70 30 41 27 
CHI 67 26 9 6 
CLE 56 30 5 6 
COL 44 23 9 6 
CSP 63 25 29 11 
DAL 82 35 42 31 
DEN 86 24 23 9 
DET 58 22 4 7 
ELP 100 43 72 45 
HOU 60 21 44 29 
IND 61 31 10 13 
JKS 41 21 49 24 
KC 76 32 18 12 
LA 114 48 67 27 

LAV 109 47 65 31 
LOU 56 25 15 13 
MEM 63 22 27 21 
MIA 50 19 52 27 
MIL 68 24 2.4 3 
MIN 70 24 13 4 
NAS 53 21 26 14 
NWK 62 32 19 10 
NWO 53 19 45 25 
NYC 62 32 19 10 
OAK 125 52 37 18 
OKC 92 33 38 24 
OMA 82 33 13 8 
PHI 55 30 16 10 
PHX 113 48 74 38 
PIT 36 24 9 6 
POR 84 43 11 2 
RAL 73 28 42 19 
RIC 64 28 22 15 
RIV 116 50 71 27 
SAA 73 36 51 35 
SAC 123 50 40 16 
SAD 110 45 74 33 
SAJ 127 53 37 17 
SEA 72 35 10 1 
SFO 119 49 36 17 
SLC 103 43 17 4 
SLO 71 30 13 11 
TAM 41 21 58 31 
TUC 97 44 77 42 
VB 76 35 36 16 

WDC 58 27 20 11 
WIC 89 37 20 15 

Mean ± 1 s 77 ± 24  33 ± 10 33 ± 21 18 ± 11 
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Table A4.3. Weekday-weekend differences in UA-level TVCD inequalities in the summer and 
winter computed from the slope of the weekday versus weekend census-tract-averages based on 
the 0.01° x 0.01° and 0.04° x 0.04° products and the FIVE and NEI inventories. For the 
observations, the y-intercepts have units of x1014 molecules cm–2 and errors are derived from the 
fit, a weighted bivariate linear regression model. For the inventories, the y-intercepts have units 
of metric tons NOx km–1 day–1; the slope and intercept errors are negligible and not included. The 
Pearson correlation coefficients are also reported. 
 

 Slope Intercept r Slope Intercept r 
Fine (0.01° x 0.01°) 

 Summer Winter 
LINs 0.63 ± 0.03 0.15 ± 0.25 0.93 0.68 ± 0.02 –0.69 ± 0.28 0.51 
Black/African Americans 0.73 ± 0.05 –0.19 ± 0.24 0.93 0.82 ± 0.03 –0.92 ± 0.26 0.65 
Hispanics and Latinos 0.52 ± 0.05 0.28 ± 0.20 0.95 0.89 ± 0.04 –1.77 ± 0.27 0.55 
Asians 0.57 ± 0.05 –0.02 ± 0.17 0.97 1.07 ± 0.06 –0.43 ± 0.23 0.70 
Native Americans 0.53 ± 0.05 0.16± 0.20 0.95 0.90 ± 0.05 –1.66 ± 0.27 0.61 
Below poverty 0.66 ± 0.06 –0.05 ± 0.29 0.89 0.68 ± 0.03 –0.68 ± 0.28 0.47 
Near poverty 0.62 ± 0.10 0.06 ± 0.26 0.93 0.59 ± 0.06 –0.04 ± 0.26 0.48 

Coarse (0.04° x 0.04°) 
 Summer Winter 

LINs 0.63 ± 0.04 0.09 ± 0.26 0.93 0.62 ± 0.02 –0.23 ± 0.28 0.54 
Black/African Americans 0.72 ± 0.06 –0.21 ± 0.25 0.93 0.74 ± 0.03 –0.60 ± 0.26 0.70 
Hispanics and Latinos 0.52 ± 0.04 0.27 ± 0.20 0.95 0.81 ± 0.04 –1.43 ± 0.27 0.60 
Asians 0.58 ± 0.06 –0.02 ± 0.18 0.97 1.01 ± 0.05 –0.45 ± 0.23 0.75 
Native Americans 0.54 ± 0.05 0.13 ± 0.20 0.96 0.82 ± 0.04 –1.33 ± 0.23 0.67 
Below poverty 0.66 ± 0.07 –0.05 ± 0.30 0.88 0.63 ± 0.02 –0.41 ± 0.28 0.50 
Near poverty 0.62 ± 0.10 0.05 ± 0.26 0.93 0.56 ± 0.06 0.04 ± 0.26 0.54 

Inventories (0.04° x 0.04°) 
 Summer Winter 

LINs 0.59 2.3 x 10–8 0.99 0.62 1.9 x 10–8 0.99 
Black/African Americans 0.56 1.4 x 10–8 0.99 0.61 9.0 x 10–9 0.99 
Hispanics and Latinos 0.58 7.5 x 10–9 0.99 0.61 7.1 x 10–9 0.99 
Asians 0.59 2.3 x 10–9 0.99 0.62 2.6 x 10–9 0.99 
Native Americans 0.59 5.5 x 10–9 0.99 0.61 5.0 x 10–9 0.99 
Below poverty 0.61 1.3 x 10–8 0.99 0.63 1.2 x 10–8 0.99 
Near poverty 0.61 1.3 x 10–8 0.99 0.62 6.4 x 10–9 0.99 



 
Appendix A4 

 

147 

Table A4.4. Normalized biases and errors for census tract-averaged TROPOMI observations, 
oversampled to 0.01° x 0.01° over and degraded to 0.04° x 0.04°, compared to TROPOMI 
observations, oversampled 1° x 1° only. Positive values indicate greater inequalities in the 0.01° 
x 0.01° than 0.04° x 0.04° product. 
 

Absolute Inequality LINs  
Black and 

African 
Americans  

Hispanic 
and 

Latino 
Asian Native 

Americans 
Near 

poverty 
Below 

poverty 

Mean Bias (x1013 molecules cm–2)             
 Summer weekdays –0.8  –1.8 –0.4 –0.3 –0.6 0.01 –0.4 
 Winter weekdays –1.9 –29.2 –22.2 –9.7 –18.9 –14.1 –26.4 
Normalized Mean Bias (x10–2)             
 Summer weekdays –1.4 –5.6 –1.1 –2.1 –2.5 0.2 –1.2 
 Winter weekdays –2.0 –94.2 –63.9 –73.6 –73.0 –69.3 –717 
Mean Error (x1013 molecules cm–2)             
 Summer weekdays 2.6 2.7 1.9 1.1 1.7 0.8 0.2 
 Winter weekdays 4.9 40.3 32.2 16.8 25.0 17.5 33.0 
Normalized Mean Error (x10–2)             
 Summer weekdays 4.4 8.6 5.6 8.2 6.7 3.7 5.1 
 Winter weekdays 5.2 1300 94.5 12.8 96.1 86.2 89.7 

Relative Inequality LINs  
Black and 

African 
Americans  

Hispanic 
and 

Latino 
Asian Native 

Americans 
Near 

poverty 
Below 

poverty 

Mean Bias (%)               
 Summer weekdays –0.41 –0.74 –0.22 –0.15 –0.32 –0.02 –0.21 
 Winter weekdays –0.09 –0.56 –0.29 –0.29 –0.26 0.02 –0.15 
Normalized Mean Bias               
 Summer weekdays –1.78 –5.90 –1.63 –2.68 –2.96 –0.20 –1.49 
 Winter weekdays –0.36 –3.64 –1.97 –4.82 –2.21 0.24 –0.94 
Mean Error (%)               
 Summer weekdays 1.01 1.08 0.74 0.44 0.70 0.29 0.71 
 Winter weekdays 1.44 1.35 1.11 0.78 1.03 0.50 1.13 
Normalized Mean Error               
 Summer weekdays 4.35 8.55 5.41 7.92 6.55 3.47 4.96 
  Winter weekdays 5.66 8.77 7.58 12.94 8.65 5.43 7.04 
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Table A4.5. Weekday-weekend percent differences in NOx emission densities and NOx 
emissions inequality. 

Weekday-Weekend Percent Differences (%) 

Urbanized Area Summer Emission 
Densities 

Winter Emission 
Densities 

Summer LIN-
HIW Inequalities 

Winter LIN-HIW 
Inequalities 

ABQ 10 9 2 0 
ATL 11 11 0 0 
ATX 11 10 0 0 
BAL 11 11 0 0 
BOS 11 11 0 0 
CHA 11 11 0 0 
CHI 10 10 0 0 
CLE 10 10 0 0 
COL 11 11 0 0 
CSP 9 9 3 0 
DAL 11 10 0 0 
DEN 10 9 0 0 
DET 11 11 0 0 
ELP 9 8 0 0 
HOU 11 10 0 0 
IND 11 11 0 0 
JKS 11 153 1 0 
KC 10 10 0 0 
LA 9 9 0 0 

LAV 9 9 0 0 
LOU 11 11 0 0 
MEM 11 10 1 0 
MIA 11 10 0 0 
MIL 10 9 0 0 
MIN 11 10 0 0 
NAS 11 10 0 0 
NWK 11 11 0 0 
NWO 11 10 0 0 
NYC 11 11 0 0 
OAK 8 8 0 0 
OKC 11 10 1 0 
OMA 11 10 0 0 
PHI 11 11 0 0 
PHX 10 9 1 0 
PIT 11 11 0 0 
POR 9 9 0 0 
RAL 11 11 0 0 
RIC 11 11 1 0 
RIV 9 8 1 0 
SAA 11 10 0 0 
SAC 9 9 0 0 
SAD 9 9 0 0 
SAJ 9 9 0 0 
SEA 9 9 0 0 
SFO 8 8 0 0 
SLC 9 9 0 0 
SLO 11 10 0 0 
TAM 11 11 1 0 
TUC 10 9 1 0 
VB 11 11 0 0 

WDC 11 11 0 0 
WIC 11 10 0 0 
Mean 10 ± 1 13 ± 20 0 ± 0 0 ± 0 
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Table A4.6. On-road HDDV emissions contribution to inequality and summer weekday 
inequality from inventory emissions estimates with HDDV emissions completely controlled for 
each sociodemographic group. Data are unweighted by urban population size. 
 

On-Road Diesel Contributions to NOx 
Emissions Inequality 

Summer 
Weekdays 
(%) 

Summer 
Weekends 
(%) 

Winter 
Weekdays 
(%) 

Winter 
Weekends 
(%) 

LINs 45 ± 5 26 ± 5 39 ± 5 25 ± 5 
Black or African Americans  43 ± 5 25 ± 5 47 ± 5 28 ± 5 
Hispanics/Latinos 41 ± 5 23 ± 5 36 ± 5 32 ± 5 
Asians 35 ± 5 19 ± 5 38 ± 5 25 ± 5 
Native Americans  43 ± 5 25 ± 5 38 ± 5 33 ± 5 
Non-white and/or Hispanic/Latino 55 ± 9 35 ± 9 49 ± 9 42 ± 13 
Below Poverty 46 ± 5 27 ± 5 40 ± 5 25 ± 5 
Near Poverty 45 ± 5 26 ± 5 39 ± 5 25 ± 5 

Summer Weekday On-Road Diesel 
Contributions to NOx Emissions Inequality 

Inequality with 
HDDVs (%) 

Inequality 
without 
HDDVs (%) 

Change in 
inequality 
(%) 

LINs 127 ± 16 121 ± 15 49 ± 18 
Black or African Americans  62 ± 14 51 ± 13 57 ± 35 
Hispanics/Latinos 64 ± 13 52 ± 14 55 ± 32 
Asians 39 ± 15 33 ± 13 60 ± 59 
Native Americans  50 ± 37 40 ± 13 64 ± 118 
Non-white and/or Hispanic/Latino 54 ± 14 44 ± 14 59 ± 42 
Below Poverty 88 ± 13 83 ± 13 48 ± 21 
Near Poverty 56 ± 13 52 ± 12 49 ± 33 
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