

An Annotation Application for Grading Papers

Notetaking Applications in Computer Science and their Connection with Different

Notetaking Strategies and Theories of Learning in Computer Science Education

A Thesis Prospectus

In STS 4500

Presented to

The Faculty of the

School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelors of Science in Computer Science

By

Andrew Song

Fall 2022

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISORS

Kent Wayland, Department of Engineering and Society

Rosanne Vrugtman, Department of Computer Science

1

General Research Problem: Improving Computer Science Education Through

Notetaking Applications

How can notetaking applications be created to cater towards computer science education and

learning?

 Just like any other subject, building a foundation of knowledge in computer science

begins with learning in the classroom, and a big part of learning in the classroom is being able to

take notes effectively. More and more students use digital notetaking platforms and applications

to take notes in the classroom. Despite the convenience, there are clear limitations to taking notes

digitally. At the same time, digital notetaking also offers unique opportunities and methods of

taking notes. The limitations and opportunities presented by digital notetaking are especially

clear when it comes to taking notes in computer science classes. For example, drawing out

computer program representations can be quite difficult to do digitally. On the other hand, only

digital platforms provide the ability to create animations to represent and visualize programs.

Thus, I am very interested in answering the question of how we can address these

limitations of digital notetaking, while also taking advantage of these opportunities of digital

notetaking, to create applications that are catered towards computer science education and

learning. To explore answers to this question, I aim to expand upon my own technical work of

creating an annotation application for grading papers and combine that with my STS research

where I explore various computer science notetaking applications and their use of notetaking

strategies that are prevalent today and examine how they fit into theories of learning in computer

science. I believe that my annotation application shares similar core principles and functionalities

behind notetaking applications while also helping to explore practical user interface design for

taking notes. On the other hand, I believe that my STS work offers insight into the ideals and

2

theory that go into making a notetaking application that will be optimized for learning computer

science subjects.

An Annotation Application for Grading Papers

How can an annotation application be created in order to grade papers while reducing the

amount of time spent on grading?

Being able to save time is one of the most important benefits that has come with the rise

of digital technologies in the classroom over the years. This is particularly true for teachers and

professors when it comes to grading. The emergence of digital assessment platforms, in

particular, has automated the grading process, requiring little to no human input to grade tests

and assignments. While many applications have been created to simplify and automate the

process of grading assignments that have pre-determined answers, a different approach is

required when it comes to simplifying grading for assignments that have open-ended answers,

such as papers. Because of the subjectivity involved in grading papers, it is difficult to create a

system that can grade and assess papers. Thus, other approaches besides automated feedback are

required to try and reduce the amount of time it takes to grade papers.

Some current approaches to reducing grading time for open-ended questions involve the

use of machine learning to process assignments and give them a grade. For example, a team of

programmers created an unsupervised learning program that is able to take an ungraded response

to an unseen question and give a grade on that assignment (Chen et al., 2010). However, even if

this method was to be “generally reliable” and save time, it is easy to imagine that graders would

feel uncomfortable having virtually no input on the feedback given to their students. As a result,

they are likely to go through the paper and add their own feedback while also trying to verify and

3

check the program feedback, ultimately not saving much time. Another approach uses machine

learning for a different purpose. The JANE system uses machine learning to learn annotating

patterns and automatically generate potential annotations for the user to select from while

annotating (Tomanek et al., 2007). This particular approach not only saves time during the

annotation/grading process, but also attempts to save time by learning the feedback that is being

repeated. However, graders may often rather sacrifice the annotation pattern learning to be able

to precisely write their own comments that they want to give.

Our approach to make this grading process faster is to create an interface that speeds up

the process of writing feedback by taking advantage of the idea that professors oftentimes find

themselves giving similar feedback over and over throughout their grading. Our application first

allows graders to upload a rubric for a given assignment, parsing all the different

comments/feedback on the rubric and points taken off for those particular comments. For

example, a rubric may contain the comment: “Your introduction went into too much detail about

the problem you are describing” for which 0.5 points would be taken off. Once the rubric has

been fully processed, our application incorporates those into an annotating interface in which

graders can quickly select feedback to add from the pre-set list of comments. Our research team

designed the web application with a javascript frontend (with the React framework) and a python

backend (with the Django framework). The database used in the application was a PostgreSQL

database. The application scrapes a submission site to display student submissions in an

annotation interface from which graders can add feedback and annotate the papers. After about a

year of work, the result was a prototype application that was tested briefly by a professor and the

teaching assistants to grade papers in a real course.

4

This work presents several foundational ideas and implementations that would be useful

in creating a notetaking application to aid in CS education. Firstly, the idea that grading often

involves writing and typing the same things again and again also applies to notetaking; many

notes and annotations can often be the same/similar. Thus, this functionality is something that

would be useful while pursuing the research project. Additionally, I believe that the user

interface created in my technical work could serve as a foundation for the interface of application

built in future annotating or notetaking applications.

Notetaking Applications in Computer Science and their Connection with

Different Notetaking Strategies and Theories of Learning in Computer

Science Education

How do computer science notetaking apps built today make use of computer science notetaking

strategies to fit various theories of learning in computer science education?

 Because traditional notetaking methods can fall short in some respects when learning

computer science subjects, many digital notetaking applications have been created and geared

specifically for learning computer science subjects. To be able to evaluate these notetaking

applications, one approach is to examine popular notetaking applications and analyze how they

make use of certain notetaking strategies to reinforce, or fail to reinforce, various theories of

learning in computer science. For example, we may evaluate a popular notetaking app called

Obsidian to determine whether one of the notable notetaking strategies that the app offers—

support for graph creation to aid visualization and organization—fits or does not fit under a well-

known theory of computer science education called constructivism. Without understanding the

connections between notetaking apps and the theories of learning, it becomes difficult to know

5

not only which notetaking methods are truly effective, but also to know how to develop and

improve notetaking strategies when learning computer science subjects. Thus, I would like to

find out some current notetaking strategies for computer science subjects along with prevalent

theories of how students learn computer science effectively and analyze the ways in which

popular notetaking applications for computer science make use of certain notetaking methods to

reinforce certain theories of learning while ignoring others.

Background

Ever since computer science became a more formal discipline in education in the 1960s,

much research and study in computer science education has led to a number of theories regarding

how students learn computer science subjects effectively. These theories clash in some ways

while mixing in other ways and are topics of great interest in computer science education.

Interestingly, different groups of people tend to find different theories more relevant and

applicable to education. Software engineers, researchers, and students are some groups that have

beliefs on this topic. Ultimately, in my research, I would like to explore why certain groups

prefer a particular theory of learning and the influence of these various groups on today’s note

taking applications in computer science by examining the notetaking strategies of these

applications and seeing how they fit into certain theories of learning.

Literature on Theories of Learning and Social Factors Influencing Theories of Learning

 To begin exploring the question that has been proposed for research, one must first

understand some of the primary theories of learning in computer science. Constructivism is one

of the most popular theories in computer science education. At the highest level, the main idea

behind this theory is the idea that “students construct knowledge rather than merely receiving

6

and storing knowledge transmitted by the teacher” (Ben-Ari, 2001). Another popular theory is

cognitivism. This theory focuses on the idea that cognitive processes like induction, deduction,

pattern recognition, etc. are the keys for learning and understanding (Taylor et al., 2013). Other

theories focus on the social aspects of education. For example, social construction is a theory that

focuses on “how the individual interacts with a community in developing their understanding”

(Machanick, 2007). Similarly, the situated learning theory argues that a “community of practice”

is needed for deep learning of material (Ben-Ari, 2004).

 Given these theories of learning, one question that arises is: which theories are more

prevalent and why are certain theories pushed more than another? One reason is the innate

beliefs of different groups of interest. In particular, software engineers tend to favor the

constructivism theory because of how it applies to their day-to-day work. Because of the huge

amount of knowledge that exists in the field, it is impossible to try and learn everything by being

taught the material. Instead, software engineers often find themselves constructing their own

knowledge while developing applications, manuals, interfaces, and so on. On the other hand,

researchers who are generally theory-oriented tend to favor the cognitive method of learning

(Ben-Ari, 2001).

 Recently, the rise of virtual learning in schools due to COVID has resulted in a shift in

theories of learning. Without face-to-face interaction between students and teachers, the

importance of constructivism has been more clearly realized. Students are more often required to

construct their own knowledge for learning as it became more difficult to receive in-person

lectures from teachers and professors. As a result, companies like Google and Microsoft adapted

their services fit these needs by making them more user-friendly for students and teachers

7

(Davenport et al., 2022). This serves as an example of companies adjusting to social factors

causing shifts in learning theories.

Methods and Evidence

One primary source that I intend to use in my research are reviews for various notetaking

applications, along with update history of these applications. Reviews give an idea of what

various groups of people are thinking, and what they want in notetaking applications, and

application update histories reflect the companies responding to these ideas. Additionally, I plan

to research discussions, blogs, and interviews with developers of the applications that I look into.

These could help to understand reasoning behind the app’s features and what theories of learning

they may fit into.

Other evidence that I intend to use are journals, surveys, and research papers. These

provide information on the specific notetaking strategies and theories of learning. Further, they

detail the state of the sociotechnical system which my research looks into. Surveys of students

can gather student opinion of notetaking methods and learning theory, for example.

Conclusion

 From my STS research, I hope to gain an understanding of various notetaking strategies

along with different theories of learning in computer science and see how companies have built

applications to incorporate these strategies and fit different theories of learning. I believe that this

would be beneficial in answering my general research question by providing an understanding of

how currently existing popular applications try to aid learning in computer science. On the other

hand, my technical research presents groundwork and ideas/implementations for the

functionality and interface of the proposed research application. Together, these two research

8

projects may serve as a foundation for future works that aim to create notetaking applications

that cater towards learning in computer science education.

9

References

Ben-Ari, M. (2001). Constructivism in Computer Science Education. Journal of Computers in

Mathematics and Science Teaching, 20(1), 45-73. Association for the Advancement of

Computing in Education (AACE).

Ben-Ari, M. (2004). Situated Learning in Computer Science Education. Computer Science

Education, 14(2), 85-100. DOI: 10.1080/08993400412331363823

Chen, Y. Y., Liu, C. L., Lee, C. H., & Chang, T. H. (2010). An unsupervised automated essay-

scoring system. IEEE Intelligent systems, 25(5), 61-67.

Davenport, J., Dawson, A., Day-Lewis, D., Delgado, R., & Kelt, T. (2022). Constructivism in

21st-Century Online Learning. Open Journal of Information Systems.

Machanick, P. (2007) A Social Construction Approach to Computer Science Education,

Computer Science Education, 17(1), 1-20, DOI: 10.1080/08993400600971067

Taylor, E., Breed, M., Hauman, H., & Homann, A. (2013). Choosing Learning Methods Suitable

for Teaching and Learning Computer Science. International Association for the

Development of the Information Society (IADIS).

Tomanek, K., Wermter, J., & Hahn, U. (2007). Efficient Annotation with the Jena ANnotation

Environment (JANE). Proceedings of the Linguistic Annotation Workshop, 9-16.

Association for Computational Linguistics.

https://doi.org/10.1080/08993400412331363823

