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Definitions

• Cyber Physical System: “Cyber-physical systems (CPS) are engineered systems that are

built from, and depend upon, the seamless integration of computation and physical compo-

nents.” [2]

• Living Labs: A cyber-physical system that occupants normally inhabit that enables long-

term and reproducible experiments

• Contextual Data: Data streams that are not directly measured by the sensors in a living

lab (i.e., manually recorded medical events, building information, occupant information)



Abstract

Research has shown that access to occupant behavior data in buildings can reduce energy con-

sumption and improve occupants’ productivity, comfort, and well-being. However, behaviors can

vary across cultural, geographic, building, environmental, and contextual settings. Therefore, to

increase our understanding of the long-term naturalistic behavior of occupants, more living labs

are emerging across different countries, offering an opportunity to address existing research gaps.

With the growth of IoT and ubiquitous computing, it has become easier to replicate and validate

short and long-term data across different contexts. However, selecting the type, quantity, and po-

sition of sensors needs to be more cohesive with building information and activity simulation to

avoid inaccurate, redundant, and privacy-intrusive sensing issues. This work tackles these critical

challenges of living lab by demonstrating:

1. A methodology for integrating building simulation models to identify optimal sensor place-

ments with privacy-preserving sensing considerations,

2. A longitudinal in-hospital case study that integrates medical events data and environmental

sensor streams to predict momentary patient sleep disruptions, and in our remaining work,

3. A novel methodology for integrating information extracted from building plans to support

fault detection of long-term energy harvesting sensor deployments

Overall, the three chapters in this dissertation proposal demonstrate contributions to three

pillars of living labs, from instrumentation (respectful sensor installation in Chapter 1), to util-

ity (support for occupant well-being using sensor and contextual data streams in Chapter 2), to

maintenance (improving the reliability of long-term sensor deployments in Chapter 3).

1
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Chapter I

Introduction

The average American spends more than 90% of their lives indoors [3, 4], and buildings account for

40% of the total energy consumption in America [5]. Together, it is unsurprising to find that if a

building is properly designed and operated around the occupants’ needs, preferences, and comfort

levels, we can reduce consumption significantly [6]. In addition to reducing energy consumption,

the study of the indoor environment has also been shown to affect the occupant’s health and well-

being significantly [7, 8, 9]. These studies indicate that improving of the indoor environment is a

pressing health concern and also financially beneficial. However, a lack of standardization in the

production of buildings compared to the automobile industry and poor information and communi-

cations technology (ICT) infrastructure in pre-existing buildings prevents building managers from

achieving the 15%-50% energy-saving advanced control strategies have demonstrated [10]. Health

studies have shown that proper management of the environment can lead to better physiological

and psychological outcomes for occupants [11]. However, relying on employee self-reported surveys

instead of quantitative measures such as Health Performance Indicators (HPI) limits the potential

for buildings to support occupant health and well-being [12]. Researchers have created an approach

called “Living Labs” to tackle these issues together. While many definitions for a living lab exist

[13, 14, 15], a previous survey of existing living labs proposed a general definition [16]:

“A living lab... is a ... typical indoor environment where everyday tasks are performed by

occupants over a significant period of time to experimentally characterize their activities

and responses, and with a permanent setup that allows hosting scientific experiments ...

3



4 CHAPTER I. INTRODUCTION

by monitoring and controlling the indoor conditions...”

However, the definition assumes certain qualifiers that make it flexible for interpretation. A

prior review of field implementations of occupant-centric building controls–a similar topic around

the domain of Human-Building-Interactions (HBI)–showcases that a majority of studies were con-

ducted for less than three months within ten zones and mainly covered zone-related controls. This

means that studies do not observe potentially large seasonal effects of the environment, nor cover

enough spatial diversity to be scalable. In the review, Park et al. further note a lack of standard-

ization for measurement and verification and that occupants’ privacy and data control are often

overlooked. This and other works by the International Energy Agency Energy in Buildings and

Communities Programme (IEA-EBC) [6] signaled to explore further ways to improve occupant pri-

vacy in buildings, ways to benefit occupant health and well-being in buildings, and ways to support

maintenance and reliability of sensing for long periods. Amidst the many different and sometimes

contradicting definitions for living labs [13, 14, 15, 17], this dissertation propose this definition for

a living lab:

“A living lab is a cyber-physical system that occupants normally inhabit that enables

long-term and reproducible experiments.”

This definition is used to focus on the relationship between the buildings, sensors, and people

and how interactions between the three entities can be improved for longer than three months.

The following chapters explore these relationships among three different categorical environments.

Experiments were conducted to map out the uses of residential space and all possible combinations

of light states in an arguably more private and controllable indoor space in Chapter 1. Then,

Chapter 2 focuses on experimentation in a university hospital, to demonstrate that these sensors

can have practical applications in the real world. Finally, Chapter 3 explores experiments in a

commercial research building, to explore issues in a large research test bed covering both public

and private places.

Thesis Statement Installing environmental sensors in buildings has shown to be reliable and

valuable, increasing health considerations, comfort, and energy efficiency. As technology improves,

these sensors have grown smaller, more perceptive, and more ubiquitous. However, a lack of
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understanding exists of the information collected by different sensors at various quantities and

distributions. Therefore, this dissertation introduces a novel method to contextualize building

activities and utilize building simulation models to evaluate the information that can be collected

with different quantities and distributions of sensors. By leveraging contextual data, applications

can approximate the minimum number of sensor positions required for inferences, predict occupant

behaviors, and classify faulty sensors that require maintenance.

I.1 Problem Area

The area of contextual data integration spans multiple disciplines and different parts of a sensor

deployment timeline. The closest match for this dissertation is in the realm of Human-Building

Interactions (HBI), a subdomain of Human-Computer Interaction (HCI) [18]. For descriptions of

the sensor deployment timeline, we can generally divide the problem into (1) before installation, (2)

during installation, and (3) after installation. Before sensor installation, work is done to determine

the sampling rate required to detect the intended behavior. Too low a sampling rate, according to

the Nyquist-Shannon sampling theorem [19], and the behavior cannot be appropriately reversed.

But too high a sampling rate, and signal aliasing occurs, and accurate inferences are sacrificed

[20]. Once the correct sensor and sampling rate are chosen, we run into issues regarding the proper

placement of the sensor. Prior works showcase this falling into a more computational realm, involv-

ing spatial statistics and autonomous sampling [21, 22]. The issue of optimal positions is further

complicated by issues relating to the beneficiary and ownership of the data: a researcher interested

in collecting the most amount of data from building occupants may not be as interested in the user’s

privacy, and the privacy-utility spectrum will sometimes be avoided for a straightforward solution,

such as collecting data and then removing it [23]. Simulations and computational algorithms were

combined not to find the most utility but rather to elucidate the bounds of inferences and how to

safeguard user privacy before the first sensor is installed.

Following the issue of sensor installation, the issue of utility is explored. Sensors have been

used for a vast myriad of applications and in an abundance of important and diverse areas, from

predicting forest fires in California [24] to reducing daylight usage in buildings [25], to inferring

noise using visuals for information retrieval. As such, we do not try to prove the usefulness of
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sensors but rather try to justify that long-term data can have a significant impact on the health

of people in general. Specifically, we demonstrate a relationship between sleep and environmental

disruptions, a known issue in hospitals [26]. In this instance, we again demonstrate the importance

of contextual data and show how leveraging collaborations with our nursing partners can lead to

valuable insights supporting better patient care. Finally, numerous works have showcased the

difficulty of long-term deployments [27, 28]. We explored using energy harvesting devices because

at face value they promise sustainable value without the need for constant retrofitting. However,

in the maintenance chapter, we will demonstrate how modern energy harvesting sensors can come

with a new set of challenges that can hinder reliability, namely issues surrounding diagnostics and

indoor signal attenuation, and how we can use a technological solution to support them.

I.2 Overview

Overall in this dissertation, we aim to demonstrate the overarching synergy that can exist when

exploring multidisciplinary research involving the use of contextual data in long-term, naturalistic

indoor environments. Specifically, we ask: 1) What are the challenges in translating inferences

found in the real world to inferences found in the simulations? How can simulation be used to

inform us about how informative a set of light sensors positions are given some assumptions about

space use? 2) What are the important environmental patterns across different time scales that can

negatively impact patient sleep? To what extent can environmental variables and medical events

data predict patient sleep disruption? 3) What are the new modes of failure and consideration

required to maintain and scale a network of energy harvesting sensors for long-term deployments?

To answer these questions, we complete the following tasks:

Task 1: Light sensors were deployed, and lamps in a residential building were retrofitted with

automated lamps. The total lighting state for all combinations of possible light states was sampled

for all selected sensor positions by manually installing the sensor and automating the lights. A

lighting simulation model using the floor plan of the unit was then developed. The lights in

the simulation were parameterized to explore the same combination of lighting states to compare

the digital twin results to the original twin. Afterward, we added a more nuanced but regularly

occurring movement of doors, multiplying the state of possible inferences by a factor of nine. Given
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those states, we use the greedy set cover approximation algorithm to find an approximately optimal

solution of required light sensor positions to cover all possible occupant behavioral states.

Task 2: Environmental sensors were deployed into five hospital rooms in a hospital setting

and recruited participants to wear a smartwatch that tracks actigraphy over six months. The

nursing team was consulted to acquire sleep-related medical events data to draw insights about

the patient’s sleep. The relationship between the frequency of the patient’s arousal from sleep and

environmental perturbations outside of the comfortable ranges listed in the literature was observed

using a mixed-effect model.

Task 3: Over 125 energy harvesting sensors of varying types were deployed into a 17,000-square

foot research infrastructure and collected data for six months, routinely adding more gateways to

collect data. The building plans were then acquired from the architect and digitized to encapsulate

distance and material information for tracing the medium between each sensor-gateway pair. Fi-

nally, the frequency of the data transmitted was analyzed. A representational encoder was applied

to predict the signals of unseen sensor locations that were masked from our training set.

Following the completion of the tasks, this dissertation elucidates Key 1: The perfect sum

algorithm combined with the greedy set cover approximation algorithm is a viable solution to make

detailed inferences of indoor occupant behavior and find optimal sensor quantity and position, and

is generally useful when run in simulation environments. Key 2: CO2, medical events, lux, volatile

organic compounds (VOC), and noise are significantly related to patient sleep disruption. Lower

environmental perturbations were observed during the weekends and sometimes higher perturba-

tions after midnight but before the start of the day shift when comparing interquartile ranges. Key

3: when digitized architectural plans are integrated, the silent rate of unseen sensor locations can

be accurately predicted for different energy harvesting sensors. The predictions can inform future

sensor placement or detect faulty downstream sensors.

This dissertation contributes by showing how contextual data integration can be helpful through-

out various living lab scenarios. This dissertation demonstrates the quantity and placement of sen-

sors to control the scope of inferences before installation, how the installed environmental sensors

can elucidate and quantify the potential environmental disturbances, and how architectural layout

can be leveraged to help maintain a network of energy harvesting sensors for scalable long-term

deployments.
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Chapter 1

Instrumentation

One of the most fundamental ways contextual data relates to sensor data is about the placement of

sensors. Building performance simulations enable researchers and sensor installers to evaluate the

scope of observable behaviors prior to physically instrumenting the sensors. This chapter explores

the distance between the digital and original twin and demonstrates with which algorithms and

how much building performance-assisted placements can improve inferences and reduce the required

sensors.

Integrating building simulation models to identify optimal light

sensor placements with privacy-preserving sensing considerations

As IoT devices become cheaper, smaller, and more ubiquitously deployed, they can reveal more

information than their intended design and threaten user privacy. Indoor Environmental Quality

(IEQ) sensors previously installed for energy savings and indoor health monitoring have emerged

as an avenue to infer sensitive occupant information. For example, light sensors are a known

conduit for inspecting room occupancy status with motion-sensitive lights. Light signals can also

infer sensitive data such as occupant identity and digital screen information. To limit sensor

overreach, we explore the selection of sensor placements as a methodology. Specifically, in this

proof-of-concept exploration, we demonstrate the potential of physics-based simulation models to

quantify the minimal number of positions necessary to capture sensitive inferences. We show how

a single well-placed sensor can be sufficient in specific building contexts to holistically capture

9
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its environmental states and how additional well-placed sensors can contribute to more granular

inferences. We contribute a device-agnostic and building-adaptive workflow to respectfully capture

inferable occupant activity and elaborate on the implications of incorporating building simulations

into sensing schemes in the real world.

1.1 Introduction

Due to increased awareness of energy reduction measures in buildings over the past two decades,

numerous technological advancements have been introduced to monitor the changes in indoor con-

ditions. Sensors and actuators have become increasingly integrated into buildings to reduce overall

energy consumption while improving occupant comfort [16, 6]. For example, building automation

systems can reduce a building’s energy consumption by dimming artificial lighting when sufficient

daylight is sensed in the building [25]. The building can also utilize occupancy and air quality

sensors to reduce energy demand by Heating Ventilation and Air Conditioning (HVAC) units in

anticipation of occupants’ presence or comfort [29]. The number of sensors installed in buildings

will only grow with increasing energy prices and the known benefits of smart environments [30].

However, numerous challenges still exist to using sensor-collected data to improve the utility of

occupants.

Firstly, and fundamentally, sensors have different data collection frequencies, so researchers

cannot simply purchase any environmental sensor and install it to capture all the activity happening

indoors. The frequency of data collection restricts the types of occupant behaviors that can be

inferred. For instance, the Nyquist-Shannon sampling theorem demonstrates that you need to

sample at more than twice the highest frequency component of the signal to correctly reverse it [19].

The time scale differences mean that researchers cannot use a one-image per thirty-second camera

to capture the behavior of subjects that occur every 15 second without losing data. Increasing the

frequency, on the other end, can cause other undesirable effects, such as signal aliasing. A researcher

(designer or facility manager) is still required to decide the installed sensor’s specifications, such

as frequency, mode, and observed variable; the very act of purchasing the hardware restricts in

perpetuity the downstream observable behavior.

Secondly, sensor placements have a large effect on the downstream utility of the sensor’s collected
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data, but positioning is often overlooked or starts off randomly then iteratively improved [23].

Sensors deployed at incorrect positions can result in incorrect readings [31, 32], but it can feel more

convenient to install sensors and start collecting data as soon as possible. Furthermore, prior sensors

installed for evaluating a building can become insufficient or undesirable for new uses of space. For

example, some residents can move out, rendering prior sensors in locations no longer occupied

redundant. Similarly, additional residents can move in, making previous coverage inadequate for

the new use of space. Optimizing the position and number of sensors can result in lower energy

consumption and better readings, but it is challenging to incorporate and maintain considerations

of changing contexts and sensing objectives for a scaling number of sensors manually.

Lastly, in the expediency of collecting ever more data, installed sensors can inadvertently expose

more information than necessary for its intended use, leading to privacy concerns for the occupants.

For instance, the “sensing by proxy” paradigm demonstrates how proxy measurements such as CO2

can infer occupant count and activity [33, 34]. Similar granular occupant activity information has

been observed by other sensors as well. For example, cooking activities can be observed via the

fluctuation of PM 2.5 [35]. Granular appliance use can also be effectively disaggregated via non-

intrusive load monitoring [36]. For instance, appliances such as coffee makers and hair dryers

can have unique energy-use signatures relating to start-up processes and the physical makeup

of the appliance. By installing a load monitor at the circuit level, the total energy use can be

disaggregated from individual contributions based on the appliance’s unique signatures, allowing

for invasive inferences of occupant activity without needing to install any sensors inside the building

itself. Other examples, such as using cameras and motion amplification, have allowed researchers

to exaggerate the vibration of snack bags and reverse engineer decipherable sounds using visual

data [37].

As more projects utilize machine learning and other computational methods to retrieve sensitive

data from the indoor environment, we instead consider if similar computational methods exist to

help reduce inferable information from sensors and protect the privacy of building occupants. One

promising avenue that can help sensor installations navigate the potential overreach of sensing is

at the intersection of simulations and sensor placements [38]. Simulations have traditionally been

used to assess different building performance attributes during the design phase. The orientation

of buildings and placement of windows, for example, can be explored and quantified using a score
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called daylight autonomy [39]. Simulations of the weather conditions, and movement of the sun,

in conjunction with the location of the building, size, material, and orientation of the window and

room, enable architects to uncover the total amount of time over a whole year when daylight can

effectively stand in for artificial lighting. Similar simulations and metrics can be found for HVAC,

where given the hours that the building will be occupied, the room size, the expected occupancy, the

total energy use, and required airflow can be predicted and quantified [40]. The acoustic qualities

of a building can also be designed and tailored to better match the intended use of space, such as

longer reverberations for music halls and shorter reverberations for classrooms [41]. The timing in

the pipeline during which these simulations are used represents a fundamental discourse in digital

twins [42]. Specifically, a simulation model can help optimize the placement of sensors to inform

on occupant activity, and it does not need to be run in real-time parallel to the physical twin for

it to have a lasting impact on the smart environment.

Compared to manual or autonomous methods of sensor position optimization, where robots are

used to sample the environment routinely and iteratively uncover the most optimal positions for

the static environmental sensors [43], simulations enable a low-cost alternative for testing unlimited

virtual sensors positions at the cost of computational power. Furthermore, instead of navigating

protocols for institutional review boards (IRB) or logistics of the environment (e.g., to avoid a party

or speaker event in the building), simulations enable researchers to avoid a broad range of com-

plexity that can cause nontrivial disruptions for both study administrators and study participants.

Researchers (designers or other decision makers) can run unlimited what-if scenarios to see how

different environmental or user-related factors may impact the changes in the downstream signal

before interacting with the physical environment. For example, the movement of occupants can be

simulated using artificial agents to assess the ease of navigating the space in case of emergencies

[44], the sun’s movement can be simulated using historical sky information [45], and stochastic

models can be used to simulate an occupants interaction with building controls [46].

In this chapter, we demonstrate the potential of physics-based simulation models to quan-

tify the minimal number of positions necessary to capture sensitive inferences. We show how a

single well-placed sensor can be sufficient in specific building contexts to holistically capture its

environmental states and how additional well-placed sensors can contribute to more granular infer-

ences. Specifically, we focus on lighting simulations as a test case because of its accessibility and
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geometrically-dependant nature. We answer two research questions:

• RQ1: What are the challenges in translating lighting inferences found in the real world to

inferences found in the simulations? And,

• RQ2: How can lighting simulation be used to inform us about how informative a set of light

sensors positions are given some assumptions about space-use?

We advocate for the use of simulation as a standard tool for 1) identifying the ideal location for

sensors and minimizing the number of sensors distributed and 2) identifying potential information

that sensors can collect when deployed in real life by showing the capabilities of simulations to

calculate building states containing granular occupant activity exhaustively. In other words, we

show how the simulated environment allows researchers to assess the effects that the position of

sensors and the geometry of the building can have on occupant activity inferences. The workflow

demonstrates an avenue for future researchers to verify the possible inferences of existing sensor

positions or use the “adjustment of sensor positions” as a method to limit sensor inference overreach.

1.2 Methods

We consider the scenario where a researcher is trying to ascertain the light state of on and off for

individual luminaires. Given the additive nature of light, we approach decomposing the summed

light contribution at a sensor point in the building by formulating it as a Perfect Sum Problem with

a noise threshold ϵ. Since light intensity diminishes equal to the inverse of the square distance from

the source, and each luminaire has photometric data, moving a light sensor’s final placement at a

variable distance away from light sources can enable individual contributions to be disaggregated.

For instance, we can utilize the geometry and drop-off of light intensity by distance to coordinate

unique fingerprints for each luminaire in range. Furthermore, utilizing the entire building space as

potential placement areas enables researchers to exhaustively explore the ability to utilize sets of

potential sensor positions that traditionally require repeated trial-and-error to capture.
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1.2.1 State Inferences

Let L = [l0, l1, ...ln−1], where L is a configuration vector of n individual light source states li ∈

{0, 1}. Then, for any location s, given a configuration L, the contribution vector can be seen as

X(s, L) = [x0, x1, ..., xn−1], where the contributions from each light source xi correspond to each

light state li modified by distance and obstruction. The maximum number of possible configurations

is then equal to the cardinality of the power set with each light source, or 2n.

Given a combination sum solver, we can take a target sum K, threshold ϵ, and list of individual

contributions [x0, x1, ...xn−1] and return a list of lists that contain all possible combination of

contributions that add up to K± ϵ. Each list corresponds to a possible configuration that fits the

constraints, but since ultimately only one configuration is correct, we calculate the accuracy for

each inference using Accuracy = |L∩Linfer|
|L∪Linfer| and return the mean.

Sensor readings from multiple points do not always corroborate to the same lighting configu-

rations. To overcome this, we disambiguate misaligned light configuration inferences by using a

voting vector V (s, L) =

[
v0, v1, ...vn

]
, from each sensor, where vi is 1 if the luminaire is determined

to be on, -1 if the light is determined to be off, and 0 if the light cannot be detected (i.e., the sensor

is out of range of the luminaire). The final inference is chosen based on the summed votes. If the

value is greater than zero, the luminaire is on. If the final value is less than zero, we consider the

luminaire off.

1.2.2 Distinctness Score

To generalize the real-world sensing to building simulations, we introduce an error threshold τ , and

define a distinctness vector Dτ as:

Dτ (X(s, L)) = e0, e1, ..., en−1,where ei =


1, if j |xi − xj | > τ, i ̸= j

0, otherwise.

(1.1)

For example, given a contribution, X(s, L) = [1, 2, 4], if the error threshold τ = 1, then

D1(X(s, L)) = [0, 0, 1] and the distinctness score D1 =
∑

D1 = 1. However, given a τ = 0.5

for the same contribution, D0.5(X(s, L)) = [1, 1, 1], so D0.5 = 3. The sum of the distinctness vector

helps us decipher the total number of detectable lighting states at a given position and accounts for
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the sensor’s resolution when assigning credit. We utilize this score in our simulations, where the

virtual light sensors in simulation do not have the added lumen degradation and other measurement

noise terms.

For our activity inferences, we account for j = 3 door angles (i.e., {0◦, 45◦, 90◦}), for m = 2

doors. To find the distinctness score for each given application state a is then:

D =

2n−1∑
p=0

jm−1∑
q=0

D(X(s, Lp, aq)) (1.2)

Because choosing the minimum combination of sensor locations that can detect all possible

applications is a known NP-Hard problem called the Minimum Set Cover (MSC) Problem, for

simplicity, we visualize the inferable states for only the single-sensor scenario. Finally, we show

an example set of light sensor locations that can capture our latent variable and the building

light states using a known algorithm for the MSC problem: the Greedy Set Cover Approximation

(GSCA) [47]. To see if a set of light sensors capture the dynamic building information, we can

then use the entire application states as the universe of states to cover a threshold < τ against all

other sensor locations rows for the same application state column to inform membership, to find

the minimum subset of sensor locations required to cover the entirety of the application states. We

target door usage because of its fixed nature. The opening and closing of doors have a large effect

on perceived lighting by the sensors, with the potential to block off sections of lighting altogether

consistently. Further, door usage is a deeper insight into space usage not expected by light sensors.

Using the bathroom, bedroom, or living room naturally involves opening and closing lights and

doors. In this case, where the lighting does not automatically turn off, being able to discern door

movement even while all lights are on allows more granular inferences about space used to be made.

1.2.3 Assumptions

To simplify the analysis, external lighting sources outside the building were ignored. Possible

external contributions of the outside can include but are not limited to direct sunlight, ambient

environmental bounce light, and outdoor artificial lighting from other building units and street

lights. Building materials are also simplified. We elaborate on these limitations in Section 1.5.3).

Occupant behaviors of interest are limited to light switch behavior and door interactions. Specifi-
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cally, in the former, the state space of 64 possible states is defined by which light fixtures are on.

This is referred to as the “simple” example. The action space is defined by which light fixtures

are turned on or off, but we are primarily focused on how signals sampled can be used to infer the

correct state space since it is trivial to infer the actions between two states for light switch behavior.

In the complex scenario, with a state space 576, the effects of opening and closing doors are paired

with the possible light states. This is referred to as the “complex” example. For instance, there

are nine possible configurations of door states if the possible angles of two doors (closed, half-open,

and open), each with a different interaction with light, are discretized. For the complex scenario,

the purpose is to demonstrate the possibility of conducting experiments in a simulation space that

is not practical to conduct in the physical space. Another assumption here is that each light fix-

ture’s contribution is known. This is assumed because scaling by each light fixture’s on-off state

is polynomial time, compared to scaling to the cardinality of the power set of the light fixtures,

which is exponential. Finally, we also assume in this chapter that the differences and similarities

demonstrated in the simple scenario are sufficient to enable exploration in the complex scenario

without exhaustively evaluating the complex scenario in the physical space. We do not intend these

experiments to demonstrate, for example, how robust a sensing system built with only doors in

mind could be resilient against a set of unseen occupant behavior patterns.

1.2.4 Experiments

As shown in Figure 1.1, even for a single light source, the angle of a door’s rest state can significantly

impact the final detected light signal. Using these methods, we conducted two experiments: 1) we

deployed light sensors into the modeled residential setting to explore real-world challenges with

detecting light states and fusing inferences from multiple sensors together, and 2) we modeled the

residential building and simulated a set of dynamic building elements to analyze the number of

light states and latent states that can be observed. The real-world study was conducted first as a

sanity check; if we can arbitrarily place sensors using only human intelligence, it is unnecessary to

utilize simulations to support the sensor placements. The simulation study was conducted to see

whether the simulation space would corroborate with the findings found from our real-world study

and also to gauge the minimum number of sensors that can capture a set of luminously disruptive

behavior.
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Figure 1.1: Relationships between building elements and lighting can be used to inform about
changes in the physical environment.

1.2.5 Real-world Experiment

In the real world, we retrofitted all lamps in a residential apartment building with 800 lumens 10

watts Philips Hue A19 Lamps and grouped each set of lights to their corresponding luminaire. For

example, two to three lamps can be associated with each light switch. We controlled each Philips

Hue lamp using the Hue API and Python to limit the need to alter the light switches manually.

We then used Raspberry Pi 4s connected with CQRobot TSL2591X light sensors with an effective

sensing range of 0 to 88,000 Lux as our sensor, communicating using the I2C interface with the

Pi. To account for the jitters, we used the mean lux values for three seconds as the baselines,

collected at 4.7 Hz after our code changed the lighting configurations configuration L for three

seconds because of the changes in light intensity during state transitions. We used the proximity of

the light sources as a guide to installing the light sensors in each location and orientation, as shown

in Figure 1.2. Specifically, we visually looked for sensor positions on different walls, enabling the
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sensors to capture light from different light sources. Then, we moved our sensor system across each

position and automated the lighting transitions using the Raspberry Pi, exporting the final data

into a CSV file for post-processing. The final accuracy we report is explained in the results, where

the ground truth is the input command we used to automate the light states. To install an initial

set of sensors, we identified walls in the testbed that all the luminaries can reach and then placed

seven sensors on those walls, seven feet above the floor shown in Figure 1.2. The idea is to see if

it is possible to install sensors in locations that avoid the noise in the data caused by shadows in

human traffic, the reflection of furniture, and other LEDs from appliances and objects. This allows

us to accurately detect the lighting state of the building for the static open door scenario before

we dive into permutations of doors in the simulation experiment.
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Figure 1.2: Building and Lighting Layout. The numbers (1,2,3..., 7) denote the light sensor posi-
tions, and the alphabets (A,B,C,...,F) denote the light sources. The dashed lines denote geometric
boundaries we used to search for our candidate walls to install the sensors.
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1.2.6 Simulation Experiment

In a simulation, we propose to utilize grasshopper to parameterize multiple door movements and

simulated each of the allotted door angle combinations using Rhino [48]. We can then use the

grasshopper plug-in honeybee [49] as we have in our previous work [50] to extract the lighting

contributions at each sensor point. In essence, the plug-in acts as a middleware that takes the

building geometry and photometric lighting files (IES files) that describe the geometric intensity

distribution of light and passes them into the lighting render engine radiance [51]. The experiment

will be assumed to be undertaken at night with covered windows to avoid external light sources. We

can then use the simulation default material for all wall, floor, ceiling, door, and window objects.

For the photometric lighting files, we propose to use generic flush-mounted dome lights for fixtures

A, B, C, E, and F and a generic wall-scone fixture for D. We can then automate the inputs to the

grasshopper workflow and export text files we convert for post-processing using Python modules

inside grasshopper. The process will then return a ray-traced light rendering of the building for

each virtual sensor position defined. We can then extract each lighting value for post-processing

by passing it through the Perfect Sum solvers and the GSCA algorithm. This workflow will enable

us to explore potential lighting differences in the overall environment without needing to physically

place new sensors, change which luminaires are on and off, and move the doors in the real world.

1.3 Results

We first conducted a feasibility study to explore the potential challenges of collecting sensor data

manually. We then used the experiences we have learned to inform our modeling of the building in

simulation space. We summarize the real-world experiment and the simulation experiment below.

1.3.1 Real-world Experiment

Figure 1.4 shows the spread of individual accuracy for those locations. The median accuracy of

inferences was generally above 80%, with location 6 having the lowest median accuracy. We suspect

this due to the direction the sensor is facing being directly opposite to luminaire F and reflected

lights off the wall being less potent than the drop off of intensity due to distance. Overall, we still

found it possible to disaggregate all possible light states using a single sensor (i.e., a light sensor
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located at position 4), but many factors can contribute to the imperfect inferences. For example,

when an occupant closes the door to any room, the information about the light state in that room

is lost to sensors outside. We also experience situations where the inferred light state of the signals

does not align with each other, because the noise in the environment and sensor was larger than

the resolution required to differentiate the states. For example, the lighting contribution from two

light sources can be the same (e.g., 2+5 and 3+4 equal 7), leading to ambiguous readings. This

led us to utilize a voting mechanism to reduce the overall error of the system, which is further

described in the methods section.

When we automated the lighting states, we also realized that, unlike what may happen in

simulations, the switching on and off of lights in the real world is not instantaneous. Specifically,

when turning on the lights, there is a distinguishable start-up time when the light starts dimmer

after the switch is flipped and approaches its final brightness after a delay. Furthermore, when

retrofitting the luminaires, we noticed that not all of the lights were using the same bulbs and

that likely more frequented areas had bulbs that were more frequently replaced. This suggests

that keeping track of the light usage in a building can also be helpful to track which lights might

need to be replaced and account for the lamps’ brightness degradation over time. Finally, we

found that the number of available sensors, microcontrollers, and outlets also limits how many

positions can be tested simultaneously. In addition to purchasing a long extension cord to move

our sensing apparatus across the building, we also adhered to moving sensors, installing sensors,

running through all the light states, and uninstalling sensors to sense each position.

1.3.2 Lighting Simulation Results

Utilizing the information we’ve learned from the real-world experiment, we developed a lighting

simulation that deviated from traditional lighting simulations to explore locations where static

sensor installations can give us the most information. Specifically, in our lighting simulation, we

included walls instead of using the traditional work plane–an imaginary plane set at the level of a

desk where work is done–because we are not interested in the utilization of the space but rather

in the ability to install real static sensors and detect different behaviors in the space (e.g., light

switch behavior). The results from the simulation are shown in Figure 1.5. Figures 1.5a through

1.5i represent the different states of dynamic building elements, with the heatmap showing the
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Figure 1.3: Inference accuracy of physically sensed values

Figure 1.4: In Figure 1.3, we observe state inference accuracy for the physical experiment. Each
box plot shows the seven positions for 64 possible lighting states for manually selected positions.
The triangles mark the mean accuracy for each sensor location, while the line across the middle of
the box marks the median accuracy.
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(a) Bed Door 90◦, Bath
door 90◦ (open-door
scenario)

(b) Bed Door 45◦, Bath
door 90◦

(c) Bed Door 0◦, Bath
door 90◦

(d) Bed Door 90◦, Bath
door 45◦

(e) Bed Door 45◦, Bath
door 45◦

(f) Bed Door 0◦, Bath
door 45◦

(g) Bed Door 90◦, Bath
door 0◦

(h) Bed Door 45◦, Bath
door 0◦

(i) Bed Door 0◦, Bath
door 0◦

(j) Aggregate latent
variable privacy D0.01

(k) One light sensor can
sense all 64 light states
for the open-door sce-
nario using GSCA

(l) 31 sensors are needed
to sense a total of 567
states using GSCA for
the dynamic-door sce-
nario

Figure 1.5: Compilation of the distinctness score D0.01 heat maps for each building configuration.
In addition to the resolution of the sensor, the building’s physical configuration can also systemically
alter the inferable states of the sensor set. Note that the scale for Figures 1.5a through 1.5i is on
a scale out of 64, while the aggregated scale on Figure 1.5j is out of 567.



1.4. EVALUATION 23

distinctness score D0.01 value from 0 to 64, representing the number of collective states a sensor

placed at the location can detect. Figure 1.5a represents a typical light sensing simulation, where

the movement of additional building elements is not considered. In this scenario, many positions

in the middle of the room where all the lights can reach can be used to infer the light state of

all luminaires. From Figure 1.5b to Figure 1.5i, we show that these informative middle positions

diminish as the doors close and block out lighting contributions from different sources. In Figures

1.5d and 1.5e, when all doors are still partially open, we see a slight reduction in areas that can

still make all targeted inferences. However, in Figures 1.5c, 1.5f, 1.5g, 1.5h, and 1.5i, we see the

total possible inference visibly diminish by half to three quarters.

Figure 1.5j represents one of the most informative single locations accounting for all possible

door states. As much as there are informative locations in the middle, we also observe there to be

spots of lost information, dark zones that have lower inference potential. This is a result of the

clashing of light contribution combinations that lead to ambiguous readings. Comparably, while

Figure 1.5i has lower number of possible inferences in the middle, there are also less informative

“dark spots” as a result of collisions. Figure 1.5k shows how Greedy Set Cover Approximation

(GSCA) found a single location that can detect all light states, but Figure 1.5l shows that the

previous best location is no longer valid when we account for the opening and closing of doors.

More specifically, we can see a set of sensors being placed deep into rooms away from noisy areas

in the center, which help to disambiguate the readings when the lighting signals are muddied by

reflection and attenuation in the center area.

1.4 Evaluation

To further evaluate the validity of the proposed method, three different value functions for sensor

selection were explored, as well as improvements on how the voting scheme can apply to states larger

than light states. Specifically, three different value functions were explored for sensor placement:

1) random selection, 2) value based on maximal increase in observable states, and 3) manual expert

selection. An updated merge strategy was used for evaluating the number of total states covered,

where the value assigned to each state for a sensor position corresponds to the vs =
1
n , where vs is

the weighted vote variable, and n is equal to the total number of ambiguous states (states where
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the lighting values clash). Compared to the previously merge strategy proposed in Section 1.2.1,

this updated method properly represents the confidence of assertions for each state. It simplifies

ways to merge information when further states are to be observed. For example, if a sensor at a

location can detect each possible building state with a unique lux value, and we are searching for

576 states, for 2817 possible sensor positions, we create a 576 by 1,622,592 matrix, representing

each unique (location, state) combination, and their confidence for the knowability of each unique

state. If, for a certain building state configuration (i.e., for a row), two configurations result in the

same value, the row will have all zeros and two 0.5 values for the readings. If three states results in

the same value, three values in the row will be 0.33, and so on. Using this construction, to compute

the final coverage of each state given a set of sensor locations, we sum the confidence vectors for a

given state and observe if the index of the largest confidence cell in the voting vector corresponds

with the index of the 1 in the ground truth vector. Figure 1.6 compares the average of 100 random

selections with the random selection policy with the sensor coverage and sensed state value function

using GSCA, showing how GSCA can reliably outperform the two other placement strategies.

1.5 Discussion

1.5.1 Key Takeaways

The key takeaway from our study is that: sensor position is important, and simulations can be

used to quantify just how important position is. By quantifying inferable information in simulation,

building operators can adjust the privacy-utility spectrum for where sensor installation should occur

before deployment. The quantity and location of sensors can be altered to purposefully remove

possible inferences based on the physical attributes of the environment. Even after deployment,

simulation elucidates where the current installation is on this spectrum and ways to navigate

this trade-off. In our scenario, this trade-off between privacy and utility is exactly the distinctness

score, a quantifiable value between zero and the total number of states we are considering. Towards

answering RQ1: we found that the informativeness of the sensor location also hinges on the sensor’s

resolution. Paradoxically, the more contributions from different light sources sensed by a sensor-

location pair, the more chance there can be ambiguous readings in the perfect sum solver because

of the number of possible combinations and jitters in the sensor signals. These jitters, shown in
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Figure 1.6: A comparison of the number of sensors required to infer all 567 possible building states
for the complex scenario and the weighted probability strategy (the nine states in the dark remain
ambiguous). Using GSCA with the weighted-vote merging, only three sensors are found to be
necessary to infer all states in the complex scenario. The algorithm can perform marginally better
than how a human agent would place the sensors. An example of the manually selected location
for a three-sensor scenario is shown in the Appendix, Figure A.1).
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Figure 1.1, signify a vital distinction between real-world and virtual sensors in simulations. Adding

more sensors in the physical world does not, by default, increase the accuracy of the final light

state inference. The requirement for accurate sensing relies on the majority of the votes cast being

accurate. To know the lowest level of resolution permissible for accurate sensing before purchasing

a sensor, simulations can be a useful tool to assist with planning. In the simulation, the resolution

of the virtual sensors is deterministic under the same parameters, and adjustments can be made

to simulate different sensor resolutions by introducing additional noise terms. Further, by adding

more information about the activity, simulations can be improved to account for different sampling

frequencies by discretizing sample points based on a continuous response function. With sufficient

computational resources, permutations of different sampling policies and sensor descriptions can be

used to optimize the inference accuracy, redundancy, and efficiency. With simulations, researchers

can achieve more intrusive inferences with fewer sensors, fewer samples, and less energy compared

to without simulations.

Towards answering RQ2: we found that utilizing lighting simulations with a formulation of

Perfect Sum Problem with the Set Cover Problem allowed us to quantify the minimal number of

light sensors that are required to capture the light state of the building, including modification of

the doors. We found that as long as the sensor is placed in a location where all light sources can

reach and result in a different contribution, a single sensor is theoretically enough to infer all of

the possible light configurations in the building if the resolution equivalent τ is sufficiently small.

However, as doors are introduced that can block off lighting contributions from other luminaires, the

minimum number of sensors required to sense the lighting state of the building becomes equal to the

total number of independent zones. For example, three separate rooms require at least three sensors

to detect the lighting state, regardless of the number of luminaires in each room. The minimum

number of sensors required increases from one to 31 when we accounted for the movement of the

doors as seen by Figure 1.5k compared to Figure 1.5l. This indicates that even simple residential

buildings with no dimmers can result in complex luminous environments if commonplace building

elements such as doors are considered. Unless researchers had thousands of sensors, placed at every

inch of the space, they wouldn’t be able to practically test the entirety of the space at once.

Finally, simulations can be much faster at the search for optimal positions. In our experiment,

it took us roughly 30 minutes to test one position in the real-world, where as in simulation space,
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we cover roughly one sensor location every 0.11 minutes of simulation (about 2,800 points can

be calculated every 5 minutes for the 64 different light states). This approximates a 270-times

increase in efficiency when using simulations to test positions compared to real-world testing, not

accounting for set-up time in either scenario. Because simulations also do not require the researchers

to be physically present in space, simulations hold a distinct advantage over manual testing as an

important step to enhance physical sensor deployments. With increased simulation scenarios that

incorporate human movement and other modalities such as noise and HVAC, the digital space

will increasingly become more critical not just for sensor positioning but also for a large myriad

of selection tasks. From what type of sensors to deploy, at what frequency to sample data, what

information they provide at what different times of day, and seasons, with what different levels

of occupant activity to expect, and with which soft sensors[52] to combine and make inferences

with, simulations will take an increasingly important role in controlling and testing the scope of

inferences in buildings. Methods like this demonstrate that simulations have the potential to serve

as a stand-in for domain experts. If experts can digitize the knowledge of specific sensor placements

for building commissioning, for example, they can enable accessible and code-compliant occupant

privacy protection designs while further providing availability to interact with other simulations

using the same building model.

1.5.2 Broader Impacts

The work we have completed represents both predictive model tasks, where we anticipate the

use-case of the occupant before installing the sensors, but also a step towards reducing the gap

between the digital twin and the original twin. Sensor installations can take advantage of more

than just their placement concerning common building elements such as floors, walls, and doors.

Sensor placements can also benefit from being aware of other sensors in the context. The work-

flow we demonstrate allows for explorations in designing buildings that can be more effectively

commissioned with fewer sensors. Developing metrics to quantify possible inferences also provides

an additional avenue for designers and researchers to consider user privacy. For instance, there

could be dedicated “silent zones” where sensors cannot detect any occupant activity as protected

by the laws of physics. Simulations can be an effective tool to compete with the scale of sensor

developments because they can protect their users from scenarios that have yet to happen and
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inform and adjust models using real data. While the digital and original twins divide is short-

ening, we consider their distinct identities to carry certain benefits. For example, digital twins

can be operated “offline” to explore reactive and predictive scenarios that inform on the optimal

corrective action without interfering with the operations in the real system. However, this is not to

say that simulations will not also be an increasingly important part of the operations in real-time

systems. Decisions to navigate the potential split incentives between the building operator and

the occupant will likely depend on circumstance and might require routine updates to support

new management and new tenants. A building operator might install light sensors in all rooms

to avoid the complexity of inference but expose information about the occupant’s kitchen, living

room, and bathroom use they consider private. Similarly, an occupant might install one sensor to

understand lighting in the living room but accidentally leak the lighting states of other rooms to

the building operator. Decisions regarding which data should be hidden for privacy or which data

should be available for utility would require coalescing of ideologies regarding ownership of space,

ownership of data, ethics, among other considerations. Regardless of the perspective, the first step

is showing in a data-driven and reproducible manner where a sensor installation theoretically lies

on the privacy-utility spectrum.

1.5.3 Limitations

One limitation of this study was that it was conducted on an older residential unit, where buildings

might not reflect a more modern understanding of the efficient usage of light fixtures. The privacy

implication of sensor use in public and semi-public situations such as offices and libraries could

have a broader impact on the number of people affected. Another limitation is our assumption of

snapshot views in simulations. We did not incorporate time (analysis of signals instead of values)

such as through bulb response functions [53]. This can limit the ability for simulations to reflect the

time in-between snapshots and the additional inferences that can be drawn due to more realistic

sample rates. Another limitation is that we only collected light intensity levels but did not look

further into other properties of light, such as lighting colors. We suspect colors can be an important

avenue to disambiguate lighting signals further. For instance, the individual lights might be able

to be first filtered by color, reducing the total number of possible combinations and collisions that

could happen. Another limitation is that the involvement of some furniture has the potential to
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alter the indoor environment. For example, having a mirror on the wall can drastically alter the

luminous environment, similar to having light-absorptive materials on the floors. Finally, our work

does not address the difficulty of constructing a representative building model nor the potential

diminishing returns of modeling the environment in more realistic detail. While numerous benefits

can be achieved with an informative building model, the cost of building a representative model

can eventually outweigh the demand to protect an occupant’s privacy. The cost of the building

model can be further exacerbated when more computation time is required to calculate physical

interactions in the space, such as increases in the number of bounces for lighting simulations or the

number of particles in Computational Fluid Dynamics (CFD) simulations.

1.6 Conclusion

We demonstrate a theoretical framework for indoor activity inference selection through simulation

experiments and real-world sensor placements. We show how simulations can quantify inferable

occupant activities using a distinctness score and how to find a mathematically minimum set of

sensor positions required to detect them by applying the concept of set cover. The resulting

metrics to quantify distinguishable activities enable future sensor deployments to consider building

geometry better and limit potential sensor data overreach. We anticipate using sensor positioning

paired with building simulations to grow as an essential technique for researchers to navigate the

privacy-utility trade-off for the smart buildings of tomorrow.
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Chapter 2

Utility

The relationship between environment and health outcomes are hard to quantify because of the

inherent complexity of humans, the time duration to establish significance, and the large variety of

environmental variables that have an effect. This chapter demonstrates how contextual data recorded

by the nurses can support automated tracking of medical events behavior and narrow down the

required environmental variables and time windows. Further, this chapter uses statistical methods

and signal processing to show how environmental variables are related to patient sleep disruption.

Exploring Environmental Signals to Analyze Hospital Patient Sleep

Disruptions and Medical Events

Environmental factors, such as lighting and noise, have a history of disrupting patient sleep in

hospitals. However, until the recent advent of affordable ubiquitous environmental sensing tech-

niques, it was not feasible to conduct the long-term recording of both widely prevalent and less

available (such as volatile organic compounds (VOC)) disruptive environmental factors. Quanti-

fying the impact and timing of sleep disruptions owing to hospital environmental conditions has

greater significance than merely knowing its existence. This information can help nursing teams

better administer care, improving patient sleep and recovery. Further, environmental data streams

have been shown to provide additional insights about the medical environment, such as occupant

presence or patient fall events. In this study, we deployed commercially available environmental

and actigraphy sensors in five hospital rooms for general medicine and geriatric care at a Uni-

31
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versity Hospital to detect sleep-disruptive environmental factors (lighting, temperature, humidity,

CO2, VOC, PM2.5, and noise levels) and classify five classes of medical events using of a subset

of the high-resolution environmental data as the input features. We analyzed this data alongside

the recorded medical data over 169 days and 38 patients to understand the relationship between

medical events, environmental factors, and patient sleep disruptions. We utilize visual analysis,

generalized Linear Mixed Models, and Decision Tree models to identify environmental patterns.

Furthermore, we establish meaningful connections between environmental signals and patient sleep

disturbances while effectively classifying medical events through the use of environmental signals

in a hospital environment.

2.1 Introduction

Sleep is essential for patients in the hospital, as it promotes healing, improves mental health, and

reduces the length of hospital stays [54, 55]. Without enough sleep, patients may experience in-

creased pain sensitivity, delayed healing, and a greater risk of infection. Therefore, healthcare

providers are incentivized to promote good sleep hygiene and appropriate sleep support to improve

positive outcomes for their patients. However, despite the positive benefits that adequate sleep

provides, patients typically sleep on average less than 1.5 hours in hospitals compared to at home

[56]. While environmental factors are now considered just as crucial as a patient’s physiological

changes as a potential cause for poor patient sleep in hospitals [57], descriptions of these disrup-

tions vary. Kulpatcharapong et al., for example, report how pain, light, and sound are the most

significant predictors of sleep quality for hospitalized patients [58] while Tan et al. divide the in-

terruptions based on patient characteristics, hospital routines, and the hospital environment [59].

While the principality of disruption varies across the studies, these works highlight the essential

and interconnected relationships between patients, hospital routines, and environmental factors.

Similarly, the possible interventions to improve patient sleep in hospitals are multi-faceted. Ricio

et al. divide sleep-disrupting factors into environmental, illness-related, and sleep-promoting fac-

tors into pharmacological aids and non-pharmacological aids [60]. Environmental factors disrupting

sleep can be noise, lighting, or interruptions from hospital staff, whereas illness-related can be pain

from operations, such as surgery. Pharmacological aids correspond with sleep medicine, whereas
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non-pharmacological aids correspond with ear plugs and sleep masks. The persistent, spontaneous,

and numerous ways a hospital environment can negatively impact sleep indicate that we can no

longer rely solely on the observation of caregivers to ensure a sleep-promoting environment for the

patients. In addition to carefully monitoring caregivers, hospitals can benefit from deploying IoTs

and integrating the following data with existing collection pipelines to provide continuous and ob-

jective observations. Prior works have demonstrated how IoT deployments can successfully inform

about environmental variables that perturb sleep, but many of these studies were conducted in

residential areas [61, 62], which embodies a different context than a hospital setting. By testing

environmental IoT in a hospital environment, researchers can better inform the maintenance of

a comfortable sleep environment in a hospital and, ultimately, better patient care. We further

summarize prior IoT solutions exploring sleep in Related Works (Section 2.2).

To track physiological components of sleep continuously, researchers have utilized actigraphy in

place of polysomnography (PSG), or electroencephalography (EEG) for more scalable, long-term

assessment [63, 64]. Actigraphs are devices typically worn on the wrist that can record a patient’s

sleep state via movement and are based on the idea that people tend to move less while asleep [65].

Continuous tracking of sleep and environmental variables using IoTs, has also been carried out

via deployed static environmental sensors in various residential, commercial, and outdoor settings

[1, 27]. Besides the increased awareness of tracking indoor environmental quality attributes in

general because of its significant relationships with occupant health [12], the parallel tracking and

fusion of different but equally significant data streams have also received renewed attention and

interest [66]. Like temperature, humidity, and lighting, researchers have also found relationships

between sleep and other indoor air environmental quality metrics, such as CO2 and VOC [67]. With

the influx of evermore data to consider, we look to merge the different data streams and identify

the principal contributors to poor sleep.

In addition to relationships with poor sleep, environmental variables have been successfully

used in past literature to detect granular occupant activity. A well-known example, the concept of

“Sensing-by-proxy,” demonstrates how CO2 data can be utilized to detect occupancy [33]. Beyond

occupancy, VOC has been demonstrated to be a proxy for cooking activity [68]. Environmental

sensor streams have been successfully paired with machine learning in hospital environments to

support numerous applications, from fall detection [69] to irregular environmental event detection
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for pregnant females [70]. Since environmental variables have been showcased to detect granular

occupant behavior, we explore the possibility that environmental patterns in a hospital room can

be utilized to classify medical events activity to see if environmental sensors can bring additional

utility besides the commissioning of the environment.

In this work, we pursue an exploratory study of patient sleep quality in general medicine and

geriatric care unit hospital to observe long-term contextual challenges and opportunities to tackle

the issue of combining the different types of data to help improve the sleep quality of patients. Fur-

ther, we analyze to explore the possibility of using environmental signals to provide insights about

the medical procedures to showcase the possibility for automated checking of manual data entries.

This work will focus on methods to quantify sleep-disruptive environmental factors with input from

physiological and medical events data. We utilize actigraphy as our baseline and environmental

and medical events data as our predictor to answer the following research questions (RQ):

• RQ1: What are notable environmental patterns across different time scales that can nega-

tively impact patient sleep in hospitals?

• RQ2: To what extent can environmental variables and medical events data be predictors for

patient sleep disruption?

• RQ3: Which combination of time-windows and environmental signals is the most accurate

in predicting sleep-related medical events?

We structure the rest of the paper as follows: In the related works (Section 2.2), we review

the literature investigating the different environmental fields that affect sleep and prior methods

that captured and related sleep data with the environment. In methods (section 2.3), we detail

our participant recruitment, data acquisition, and how we evaluated our study using a Generalized

Linear Mixed Model (GLMM), Devision Trees, and Random Forest models. In the results (Section

1.3), we showcase the variance, including our random effects, across percentiles of patients and

rooms, and scores of the machine learning model with various inputs. In the discussion (Section

2.5), we discuss the potential causes for the observed differences, the importance of window length,

the highest performing combination of environmental signals, the work’s limitations and future

directions, and summarize the contributions and broader impacts of the work.
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2.2 Related Work

The relationship between environmental factors, nursing intervention, and sleep has been explored

in various prior studies in different combinations. This section summarizes some important rela-

tionships, technologies, known comfortable ranges and considerations.

2.2.1 Known Environmental Set Points

In this section, we summarize a list of indoor environmental quality metrics that we track and prior

works that help describe comfortable ranges that are conducive to sleep.

Lighting Measured in lux (one lumen per square meter), lighting has been found to have a direct

relationship with select ganglion cells influencing a person’s natural sleep-wake cycle, or circadian

rhythm [71]. Specifically, our eyes act like a blue-sky indicator, and exposure can cause delayed

melatonin secretion, increasing alertness during the daytime but inhibiting sleep when exposed at

night [72]. As the number of electronic tablets, television, or computer becomes more ubiquitous

[73], nighttime lighting exposure also grows as an important environmental variable to scrutinize for

better sleep. Crucially, proper exposure to light during the day is equally important to darkness at

night [74]. Furthermore, in addition to the timing, the amplitude of the lighting also amplifies this

delay, up to about 1,000 lux [75]. In summary, past literature mark the amplitude and timing of

light (and its absence) as an important environmental factor to track across time anywhere people

sleep, not just in hospitals. We mirrored a previous study and marked 10 lux as a cutoff point for

tolerable lighting during sleep [76].

Noise Noise, or unwanted sound, is widely known as an issue in hospitals and has become more

of an issue in modern hospitals because of the increasing number of devices and monitors with

audio cues [77]. It can be measured in decibels (dB) or A-weighted decibels (dBA) – which is

dB weight adjusted as perceived by the human ear. Noise is well known to negatively impact

sleep. A prior review by Hume et al. demonstrates the difficulty of survey-based approaches for

noise disruption research because noise events can be too short to be consciously perceived by the

subjects [78]. Further, Hume’s review also notes potential homeostatic mechanisms for internal

monitoring and control of waking arousal, where most (90%) of the noise-induced awakenings
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merely replaced awakenings that would have occurred spontaneously. These findings suggest that

even with continuous sensing, only 10% of the disruptive noise observed would significantly impact

the overall sleep quality. Regardless, we follow the World Health Organization (WHO) guidelines

that recommend less than 40 dBA at night for good sleep. In comparison, the Environmental

Protection Agency (EPA) expresses a 24-hr exposure limit of 55 dBA to protect the public from

all adverse effects on health and welfare in residential areas [79]. The EPA further notes that it is

not the average noise level that is important and that a bedroom with an average noise level of 35

dB with no instantaneous peak levels substantially higher would be more conducive to sleep than

a room with an average noise level of only 25 dB but which stillness is disturbed by occasional

shrieks. These findings advocate for tracking noise in the hospital environment and motivate

us to incorporate methodologies such as change point detection to monitor large changes in the

distribution of environmental variables in conjunction.

Temperature and Humidity While temperature and humidity are measured separately, they

are often included in the same measure regarding thermal sensation because sweat evaporates

more slowly when the air is saturated with water. Researchers in environmental health utilize a

combined measure such as a heat index to calculate perceived temperature by adjusting device-

sensed temperature values based on humidity readings to more closely align with human thermal

sensations [80]. Separately, exposure to low humidity can cause sensory irritation in the eyes

and upper airways, while exposure to high humidity carries with it risks of fungal dispersion [81].

Exposure to higher temperatures can be conducive to higher quality sleep but also cause more

sleep fragmentation during sleep [82]. Manzar et al. note an increase in longest wake episodes, a

decrease in total sleep time, and a decrease in sleep efficiency with the seasonal increase in bedroom

temperature and relative humidity [83]. For temperature, ranges between 18 and 28 degrees Celsius

have been reported to be optimal for sleep; for humidity, ranges between 40% to 60% have been

reported as optimal for sleep [84, 85]. We adopt these reported ranges for our analysis, using

individual ranges for visualizations and apparent temperature for our modeling.

Carbon Dioxide Measured in parts per million (ppm), CO2 has been positively correlated with

increased sleep awakenings, and poor subjective sleep quality [86]. During wake time, increased CO2
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concentrations are also associated with impaired cognitive functions [87], making it an important

environmental variable to track in hospitals for patients and caregivers. Additionally, because

humans naturally exhale CO2, it has also been used as an effective proxy for counting the number

of occupants in a room [33]. This indicates that negative sleep quality observed during elevated

CO2 ranges can also be attributed to other movements in the room, such as visitor activity or

nursing events. Compared to humidity, light, or noise, CO2 and other air quality metrics can be an

especially important environmental variable to track because they cannot be as readily detected by

humans but can still affect sleep. Acceptable ranges of CO2 have been reported between 400 and

900 ppm [88].

Total Volatile Organic Compounds (TVOC) As defined by the EPA, Volatile Organic Com-

pounds are “compounds that have a high vapor pressure and low water solubility” that can be 2

to 5 times greater concentrations indoors compared to outdoors [89]. Total volatile organic com-

pounds, or TVOC, are groupings of VOC to simplify reporting. In the pages following, we refer

between TVOC and VOC interchangeably. VOCs are in many chemicals in paint manufacturing,

pharmaceuticals, and refrigerants. They can cause eye, nose, and throat irritation, headaches, loss

of coordination, and nausea when exposed to them. Prior works have demonstrated people can

be routinely exposed to VOC via inhalation and trans-dermal pathways related to off-gassing by

bedding [90]. Fritz et al., in a study of occupant residential homes, found a relationship between

VOC and increased sleep time [91]. VOC has also been shown in studies to be a result of personal

care products [92], demonstrating its potential as a proxy to occupancy detection similar to CO2.

VOCs are also measured in parts per billion (ppb). An upper bound of 500 ppb was suggested as

an upper limit for comfortable sleep [93].

Particulate Matter 2.5 (PM2.5) PM2.5, measured in micrograms per meter cubed, are tiny

particles in the air that are 2.5 microns or less in width. Short-term exposure of PM2.5 has been

linked with “with premature mortality, increased hospital admissions for heart or lung causes,

acute and chronic bronchitis, asthma attacks, emergency room visits, respiratory symptoms, and

restricted activity days”, while long-term exposure to PM2.5 has been linked to other adverse health

effects such as “premature death, particularly in people who have chronic heart or lung diseases,



38 CHAPTER 2. UTILITY

and reduced lung function growth in children” [94]. Besides health effects, prior work has also

showed a link between increased PM2.5 exposure and reduced total sleep time [95]. The EPA

suggests keeping an annual standard of 12 µg/m3, and a PM2.5 values under a 24-hour fine particle

standard of 35 µg/m3 [96]. We adopted the 12 µg/m3 standard in our traction of deviations for any

epoch. For convenience, we summarize all the above-mentioned environmental ranges we selected

in Table 2.2 of the Methodology section.

2.2.2 Prior IoT Solutions to investigate sleep and Medical events

With the rapid advancement of sensing technologies, we now have access to devices that allow us

to collect more data using smaller devices, allowing the capture of both user and environmental

data on the same device. Prior work such as SleepGaurd demonstrates that it is possible to

capture rich information, including body posture and movements, acoustic events, and illumination

conditions, by using just a smartwatch [97]. Similar detection schemes using smartphones have been

demonstrated by Toss ‘N’ Turn, which found that features of noise and movement were useful to

infer sleep quality [61]. Wahl et al. also showcase a power-efficient Expert Model-based smartphone

app for realistic everyday sleep monitoring [98]. With ever more effective and efficient sensing and

analysis schemes, why haven’t these technologies seen more pervasive use in hospitals? One of the

main challenges with smartwatches that capture high-resolution data from multiple modalities is

that they consume more energy and thus require more frequent upkeep regarding charging and

maintenance. This maintenance imposes additional burdens on the caregivers, not to mention they

can become too frequent and disrupt the very comfort the devices were hoping to protect. Another

challenge with the patient population is due to the short duration of stay, resulting in insufficient

data to build a useful model. In a study of users in a residential area, Toss N’ Turn notes that

at least three days of ground truth data to train an individual model and three weeks of data to

train a general model is required [61]. However, during our observational period, we found that

patients often do not sleep more than two nights in the hospital. We thus explored the potential

of statically placed environmental sensors that do not have to be reinstalled every time there is a

new patient. These additional burdens can sometimes become unsustainable for the nursing staff.

We explore the practicality of deploying static environmental sensors into a resource-constrained

hospital environment to observe the potential benefits of the observed signals and the perceived
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reduction in necessary maintenance efforts.

2.2.3 Research Gaps

While prior works have found the different environmental factors to be sleep-promoting or sleep-

disrupting, we purvey that sudden environmental changes–even within known comfortable ranges–

can still be disruptive for sleep or indicative of a medical event or nurse visit. Furthermore, the

patient population admitted to a hospital bed can be unpredictable to adjust to and draw inferences

from. Compared to previous studies where users do not sleep in the same rooms, we can explore

the context of shared hospital space and scale the utility of installed devices for patients in the

most need. Further, we can capture information in a hospital setting without patients to observe

the potential that the semi-public room can be hospitable to patients not yet admitted. Finally,

deploying sensors with the support of hospital staff and nurses enables us to leverage recorded

medical data to arrive at a more holistic assessment of contextual variables that can affect a patient’s

sleep. We did not find studies that explored the search-window space necessary for environmental

variables to help classify medical events, nor the minimal combination of environmental variables

that can lead to an accurate classification, As such, we explore the practical potential of longitudinal

medical, environmental, momentary environmental, and actigraphy changes in a hospital setting.

2.3 Methods

This section is divided into multiple subsections, including participant recruitment (Section 2.3),

data acquisition (Section 2.3.1), data preparation (Section 2.3.2), and evaluation methods (section

2.3.3).

Participant Recruitment The study was conducted at a University hospital’s General Medicine

and Geriatric care unit. The inclusion criteria for the study were: Subjects recruited 1) must have

been assigned to one of the five single-occupant study rooms, 2) must have been admitted to a

study room within the last 72 hours, 3) must be at least 18 years old, and 4) must be able to

provide verbal consent. We admitted 39 participants (16 females, 23 males) with a mean age of 56

and a standard deviation of 16 years. The participants stayed at the hospital anywhere from 2-69



40 CHAPTER 2. UTILITY

days, with a mean of 7.5 days and a standard deviation of 9.2 days. Patients sleep anywhere from

2 to 22 hours per sleep episode, with a mean of 7 hours and 56 minutes and a standard deviation

of 4 hours and 40 minutes.

2.3.1 Data Acquisition

To capture the environmental and patient sleep-related data, we used a set of sensors, devices, and

other data streams as described in Table 2.1:

Table 2.1: Data Sources and Details

Source Sampling

Frequency

Fields and Units Error/Sensitivity

Actiwatch

Spectrum

Every 30 seconds Interval Status

(Active, REST,

REST-S),

Sleep/Wake

(S/W), Activity

Count (ACT)

Accelerometer:

0.025 G (a 2 count

level), light sensor:

10% at 1500 Lux

(typical)

Awair Omni

Every 10 Seconds Light Intensity

(lux), Temperature

(◦C), Humidity(%),

CO2(ppm),

VOC(ppm),

PM2.5(µg/m
3),

Noise (dB)

Temperature

(±0.2◦C),

Humidity(±2%),

CO2(±75ppm or

10% of reading),

VOC(±10%),

PM2.5(±15% or

±15µg/m3), Noise

(-26dBFS)
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Data Sources and Details

Source Sampling

Frequency

Fields and Units Error/Sensitivity

EnOcean ELLSU

(OEM) Light Level

Sensor

Samples every

minute. Transmit

if change > 50 lux

versus last

transmission.

Heartbeat every 20

. . . 30 minutes

(affected at

random)

Light Intensity

(Lux)

± 5 % at full scale

/ 68°F

Pressac Mini

Temperature and

Humidity Sensor

Transmit if

temperature

changes is greater

than 0.6 degrees or

humidity change of

2%, else Heartbeats

every 15 minutes.

Temperature (◦C),

Humidity (%)

Humidity: ± 5 %,

Temperature ± 1

◦C

EPIC Systems

Medical Data

Recorded manually

by caregivers

The columns we

look at specifically

are chosen by the

nursing team (see

Figure A.2 for

more details).

± 15 minutes

between care ad-

ministered and care

recorded

The study was conducted in two phases; phase 1, accounting for 320 days worth of Energy

Harvesting (EH) sensor data, and phase 2, accounting for an additional 93 days of Awair data.
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Figure 2.1: Example installation of EH and Awair Omni sensors (A), at the bed as well as the
window (B), and Overall signal health of our hospital environmental sensors (C). A set of environ-
mental sensors were installed at the end of August 2020, before the patient began to be admitted
at the end of January of the following year. Healthy signals are determined using the signal health
described in [1]. The unhealthy signals allow us to evaluate periods where data can be lower than
expected or missing, which helps describe the representativeness and quality of our collection data.
However, since the value collected during lower-than-expected periods are still valid, we included
all data as part of our analysis. The sleep status of the patient is overlaid on the top of the health
signals for reference.
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Data Inclusion and Data Exclusion Figure 2.1 shows the variety of stay duration and sleep-

wake patterns exhibited by the different patients throughout our study period. For example, Patient

9 is observed not to sleep at all, Patient 17 has the most extended stay duration, and Patient 38 is

not detected by the Actiwatch to have slept until after a few days in the hospital.

2.3.2 Data Preparation

Data Processing for the mixed effect model

The treatment of the different data streams warranted additional processing before we combined

them, and this section details that processing.

Processing Actiwatch Data In this work, sleep arousal is characterized by higher movement

during a patient’s sleep as tracked by wrist-worn actiwatch. The Actiwatch records data at 30

second intervals and characterizes patients’ sleep during those intervals using multiple metrics. The

activity count metric is essentially the activity level calculated based on accelerometer readings.

Based on the activity count, a binary ”sleep-wake status” variable is pre-calculated by the actiwatch

software based on a threshold value of 40. If we detect more movement during a labelled sleep time,

we consider it not conducive for restful sleep. The watch then uses a black-box algorithm to ”sleep-

wake status” as part of a state machine to finally identify episodes of sleep and differentiate a patient

between resting and sleeping, or specifically “REST-S” (asleep), “REST”, or “ACTIVE”. In other

words, a patient can be asleep (REST-S), but have a sleep-wake status of disrupted sleep (wake)

in order for the Actiwatch to calculate sleep metrics such as the number of awakenings and sleep

efficiency. We build upon the insight that Actiwatch provides where and utilize the combination of

low activity epochs during REST-S as our normal sleep, and high activity epochs during sleep as

our disrupted sleep.

Adjusting for different time scales One challenge with using multi-modal data was asyn-

chronous and different time scales at which the data was recorded across different sources. To

address this, we binned the data to the time scale with the least resolution and omitted from con-

sideration bins that do not have at least one data point. For example, the EH sensors transmitted

both on a periodic and event-driven schedule at around once every 30 minutes, but the Awair
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transmits routinely once every 10 seconds. Thus, we binned the data at a longer time scale of one

hour to allow for comparison of our plots across different streams.

Monotonic environmental disruptions based on deviation from known ranges Unlike

lighting, which disrupts sleep only above and not below a threshold, environmental factors such

as temperature and humidity can be uncomfortable for sleep by being too high or too low. We,

therefore, transformed the environmental values by calculating their distance from known optimal

ranges based on literature before utilizing them as input to our models. Specifically, to get the

adjusted environmental deviation value e′, we use Equation 2.1:

e′ =


e− θupper e > θupper

0 θlower ≤ e ≤ θupper

θlower − e e < θlower

(2.1)

where θupper > θlower, and represent the selected tolerable upper and lower environmental set

points respectively optimal for sleep, and e represents the observed environmental readings. The

optimal values and actual observed values are summarized in Table 2.2 along with a description of

what those values actually represent. Finally, note that we combined temperature and humidity

into a single signal called the heat index of the apparent temperature using MetPy for our models.

[99].

Table 2.2: Selected non-disruptive environmental ranges for sleep and observed values by the Awair
sensors. Observed values outside of optimal ranges are marked in bold.

IEQ Factor Selected

Ranges

Notes Units Sensed

Ranges

Notes Ref.

Light
θlower = 0 No light

Lux
emin =

0

No light
[85, 75, 76]
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θupper = 10 “Horizon,

clear sky

after sun-

set”

emax =

7770.9

Indoors

between

scattered

clouds and

complete

overcast

daytime

sky

Temperature
θlower = 18 Cold

◦C
emin =

16.59

Cold
[84, 85]

θupper = 28 Warm emax =

30.75

Warm

Relative humidity
θlower = 40 Dry

%
emin =

20.3

Dry
[85]

θupper = 60 Humid emax =

67.8

Humid

Noise
θlower = 0 “Threshold

for normal

human

hearing”

dBA
emin =

44.1

“Normal

living,

talking, or

radio in

the back-

ground”

[85, 77]
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θupper = 60 “Noisy

lawn

mower at

10 meters”

emax =

84.3

“Heavy

traffic at

10 me-

ters, door

closure”

PM2.5

θlower = 0

θupper = 12
µg/m3

emin = 0

emax = 1,000

[96]

CO2

θlower = 400

θupper = 500

ppm

emin = 400

emax = 1,008.0

[88]

TVOC

θlower = 0

θupper = 500

ppb

emin = 20

emax = 38,769

[93]

Change point detection We applied change point detection to investigate momentary disrup-

tions in environmental conditions and their association with sleep disruption during phase 2 (after

the heat index was calculated for temperature and humidity). Change-point detectors have been

used in the literature in different fields such as health [100], transportation engineering [101], and

behavioral science [102] for a variety of applications. Note that we are not interested in random

peaks in the environmental changes, which might be due to sensor reading error; rather, we are

looking for substantial changes in the distribution of the environmental attributes data. We specif-

ically use the Gaussian Kernel change point detector as implemented in the ruptures package [103],

assuming an unknown number of changes ahead of time. The Gaussian Kernel solves a penalized

optimization problem for the change points, which takes the form:

kGaussian(u, v) = exp(−γ∥u− v∥2) (2.2)
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Where u and v are two-dimensional vectors and ||·|| the Euclidean norm, and γ > 0 is a user-defined

parameter we chose manually. The literature shows that human discomfort during sleep arises from

environmental conditions falling out of the optimal ranges and the rates of change. For instance,

regular hospital activities from nursing staff, medication carts, and roommates can cause sudden

changes in the environment around the patient [104]. We run the change point analysis on contigu-

ous portions of environmental data from the beginning till the end of each patient sleep episode

to identify events/change points in the signals. Figure 2.2 shows an example of patient waveform

and found change points. As we can see in Figure 2.2, several change points in environmental

attributes overlap with disruptions in sleep during both sleep episodes. Specifically, change points

in temperature, humidity, CO2, and VOC overlap with the moments of sleep disruption during

both sleep episodes. Noise and lighting change points precede the awakenings during the first sleep

episode and overlap during the second. Similarly, Other Night time medical events overlap with

disrupted sleep during the second sleep episode. Considering the medical events and environmental

disruptions together, we witness some co-occurrences implying that any nursing or other activities

in the room result in a change in the room environment happening. For instance, Other Night time

medical events overlap with noise disruptions.

Processing Medical Events Data for the mixed-effect model The hospital uses an EPIC

electronic health record (EHR) system 1, a combination of automatic and manual data entries. The

EHR system assists with the care of the patients and is maintained by the nursing staff. However,

based on the expertise of nursing staff, there can be a margin of error of around 15 minutes between

the actual occurrence of an event versus its recording in the system. Furthermore, the information

tracked on the system to provide better care might differ across hospitals, even with the same

system. As a result, we relied on the nursing staff to provide a set of potential variables most

relevant to patients’ sleep. Due to the large size of this list, we document these columns in Figure

A.2. Finally, we converted all medical events to a binary format based on time for any epoch within

15 minutes of a recorded time event. Thus, if an event happened at time t, the window of an event

is considered as t± 15. For any epoch that falls within the range of a recorded event, we label our

medical event row as true. Otherwise, we label the epoch as false.

1 https://www.epic.com/
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Figure 2.2: Example patient waveform including two sleep episodes (boxed in gray). The interval
status refers to the Actiwatch built-in state machine, and “REST-S” refers to the state where the
patient is considered sleeping. The vertical dash lines refer to the calculated change points described
in Section 2.3.2, the grey surrounding boxes refer to each sleep episode (REST-S intervals), and
the highlighted red areas correspond to disrupted epochs.
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Processing for multi-class prediction of medical events using Environmental Signals

Feature Preparation The processing step for multi-class prediction uses the same data but was

prepared differently. To account for missing data, we first standardized data from the different

Awair environmental sensors to one-minute aggregates. Then, we varied the size of the time win-

dow per classification, up to the nurse-specified 15-minute error. This means, for example, that

the time window for classifying a medical event can go fifteen minutes before and after the time

recorded. When multiple medical events are observed, the closest event to the center is chosen as

the event class. After splitting the testing and training set 20-80, we convert the values to standard

scores before feeding them into a classifier. We converted data within training and testing sets

separately into standard scores for each environmental category. The following equation calculates

the standard score [105]:

z =
x− µ

ρ
(2.3)

where: z is the z standard score for the population, x the raw value, µ the mean of the population,

and ρ the standard deviation of the population. We calculated the z score after splitting data into

training and testing sets to avoid information leakage. Figure 2.3 showcases an example heat map

of the final processed feature set. We further describe the event class label below.

Event class and data augmentation We are interested in predicting five classes using the

environmental features. Specifically, we predict: No events, Individual Events, Other Night Time

Events, Medication administration Events, and Combination of Events. No events represent time

windows where no medical events are recorded. Individual events are recorded for Falls, MET calls

(emergency response call to other nurses when a patient’s vitals fall outside healthy ranges, for

example), and O2 Delivery Devices. Other nighttime events group together events such as mea-

suring blood glucose levels, EKGs (measures a Heart’s electrical signal), and vital signs. Medical

Administration Events represent instances where non-narcotic pain medications, opioids, and other

sedative medications are distributed. Combiantion of Events represents instances where combina-

tions of previously described classes co-occur (as part of the manual input, not as a function of

the time-window). We include in the Appendix Figures A.3 to A.5 a detailed mapping of classes

to columns for reference. A significant class imbalance was observed for classifying medical events
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data, as shown in Figure A.6. To address this imbalance, a Synthetic Minority Over-sampling

Technique (SMOTE) was used [106, 107]. Specifically, we utilized the implementation in imblearn

[108]. Compared to regular over-sampling, where samples are drawn with replacement, SMOTE

prevents over-fitting by generating new minority samples by creating synthetic samples close to the

feature space. Using SMOTE, we generated synthetic samples for all of the minority classes after

we converted values in the training set into z-scores.

2.3.3 Evaluation Methods

Visual Analysis

We approach the exploration of environmental factors by plotting our observations in different time

scales, from seasonal (i.e., spring, summer) to hourly. We first approach the plotting of box plots

to understand the different temporal scales and when certain environmental factors fall outside of

known sleep optimal ranges. We plot the entirety of our observations, including times when no

patient is present, to observe the room’s potential to serve a quality sleep environment. Secondly,

we plot split violin charts of 1) environmental values per hour with patient sleep disruption and 2)

environmental change points with patient sleep disruption. The split violin plots will give us insight

into how the different categories (i.e., normal sleep versus disrupted sleep) can be identified via

individual environmental variables. However, multiple relationships can be overlooked by plotting

the environmental factors separately. Therefore, we describe the use of a statistical model in the

next subsection to see if we can gather further insights.

Statistical Modeling

To evaluate our observations, we utilized the GLMM described above with binary outcome variable

as sleep disruption/awakening every 30 seconds and predictor variables as light, apparent tem-

perature, noise, CO2, VOC, PM2.5, their change points, and medical events. The environmental

variables from the Awair sensor record data every 10 seconds but are aggregated every 30 seconds.

Regarding the medical events data, if the sleep epoch falls within ± 15 minutes of any medical event

occurrence, it is considered True; otherwise, it is False. GLMMs enable us to make predictions with

continuous and count variables and allow us to account for inter-patient variability [109]. GLMM
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follows the general form of:

y = Xβ + Zu+ ϵ (2.4)

Where y is a N × 1 outcome column vector; X is a N × p matrix of the p predictor variables;

β is a p× 1 column vector of the fixed-effects regression coefficient; Z is a N × q design matrix for

the q random effects; u is a q × 1 vector of the random effects; and ϵ is a N × 1 column vector of

the residuals. GLMM was chosen to account for repeated observations from the same individuals

over time and to evaluate the many predictor variables together. Specifically, because of the wide

variety of samples in our observed patient population in terms of length of stay, we decided to

model the patients as random effects and the environmental variables and perturbations as fixed

effects. We removed highly correlated variables to reduce their overall influence over the model,

such as using apparent temperature instead of humidity (see Appendix A.7).

Decision Trees and Random Forest Models

The use of decision trees and random forest models to explore multi-class classification has been

successfully utilized in many in-hospital applications using environmental data [70, 110]. Decision

Trees (DTs) are a non-parametric supervised learning method used for classification and regression

that predicts the value of a target variable by learning simple decision rules inferred from the data

features [111]. A random forest (RFs) model is an ensemble method that merges the results from

multiple decision trees [112]. While sometimes more accurate, a Random Forest model in practice

can take more time to run because of the number of trees the model needs to generate and merge.

In our case, we accounted for the additional time commitment by first running Decision across

all possible environmental combinations, then running Random Forest Classifiers on a subset of

hyperparameters used for the top Decision Tree Classifiers. We use the Python package sklearn

[111] module’s implementation of DTs and RFs to conduct our experiments. We display the F1-

score, calculated as:

F1 =
2

recall−1 + precision−1
(2.5)

To balance between computation time and avoid over-fitting for our large scope of hyperparam-
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Figure 2.3: Example feature set as a heat map. The standard z score on the right is capped at
-3 to 3 for visibility. The y-axis shows the index of the signal window we process, and the x-axis
shows the environmental variables, with -15 representing 15 minutes before the recording of the
event and two being two minutes after the event.

eters, we cross validate our models by randomly splitting the data between training and test set

(20% to 80%) ten times and return the aggregated F1-score. Specifically, we use the macro-weighted

F1-score, giving equal weight to the importance of predicting all classes.

2.3.4 Assumptions

In our statistical modeling task, we assume that all patients are perturbed to the same degree with

regard to environmental deviations. This generalized patient model is likely not representative of

individual patient biases, but we chose this model to help account for the large variety of different

sleep times across patients. For our machine learning task, we assume that the manual inputs by

the nursing team into the EPIC system are accurate. Because we did not install cameras in the

room, we rely on their input as ground truth. Our study mostly focuses on the ability to predict

these labels, with the assumption that utility can be further provided in reduced cognitive load for

computer-assisted inputs.
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2.4 Results

Environmental Trends in the hospital

Seasonal and hourly environmental factors in the hospital In Figure 2.4, we show lighting,

temperature, and humidity values change by season. Specifically, we see that the temperature and

humidity fluctuations do not corroborate with higher temperatures in the region during the summer.

This indicates that HVAC regulates indoor temperatures and that the range of allowable deviations

is smaller during the summer than in the other seasons. The smaller variance in observed summer

temperature also indicates potential benefits in altering. On the other hand, the humidity trends

fall in line with known historical values, being more humid closer to the summer and less humid

around the winter. This showcases the potential value of utilizing humidity control to improve

the overall comfort of patients in the hospital, especially since ranges routinely fall out of known

comfortable zones.

spring summer autumn winter
season

16

18

20

22

24

26

28

30

C
el

si
us

(a) Seasonal temperature trends

spring summer autumn winter
season

20

30

40

50

60

70

P
er

ce
nt

ag
e

(b) Seasonal humidity trends

spring summer autumn winter
season

0

200

400

600

800

1000

Lu
x

(c) Seasonal lighting trends

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
hour

16

18

20

22

24

26

28

30

C
el

si
us

(d) Seasonal, hourly tempera-
ture trends

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
hour

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

(e) Seasonal, hourly humidity
trends

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
hour

0

200

400

600

800

1000

Lu
x

(f) Seasonal, hourly lighting
trends

Figure 2.4: We notice annual seasonal fluctuations in temperature, humidity, and lighting from the
EH sensors. Surprisingly, the temperature variability was smallest during the summer and largest
during the winter. Correspondingly, we saw, on average, higher humidity values during summer
and lower humidity levels during.

Figure 2.5 demonstrates a “washing out” effect, where the sensor can observe a higher range of

lighting values because it detects more lighting contribution from sunlight outdoors than artificial



54 CHAPTER 2. UTILITY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

200

400

600

800

1000
W

ee
kd

ay
 L

ig
ht

 d
ev

ia
tio

n
Type of Sleep

normal
disrupted

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

200

400

600

800

1000

W
ee

ke
nd

 L
ig

ht
 d

ev
ia

tio
n

Type of Sleep
normal
disrupted

Weekday versus weekday Light (lux)

(a) Weekend Versus Weekday Room Level Lighting

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

200

400

600

800

1000

W
ee

kd
ay

 L
ig

ht
 d

ev
ia

tio
n

Type of Sleep
normal
disrupted

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

200

400

600

800

1000

W
ee

ke
nd

 L
ig

ht
 d

ev
ia

tio
n

Type of Sleep
normal
disrupted

Weekday versus weekday Light Window (lux)

(b) Weekend Versus Weekday Window Level Lighting

Figure 2.5: Hourly split violin plots of room-area and window-area EH sensors. Sensors placed
at the window area show higher variance during daylight hours. The left side of a violin shows
distributions during normal sleep epochs, while the right side of a violin shows distributions during
disrupted sleep epochs.

light indoors. We generally observe higher lighting values during late afternoon hours (4 pm to

12 am) having a noticeable relationship with sleep disruption. Further, we observe anticipated

daylight fluctuations, being lower at night and higher during the day. This indicates the necessity

to either incorporate black-out blinds to further protect a patient’s luminous environment or the

importance of utilizing sunlight or other methodologies [113] to help entrain a patient’s circadian

rhythm towards a regularized cycle that rises and falls with the sun. Moving on to Phase 2 Awair

sensors, in Figure 2.6, we show CO2, VOC, and Noise values for Spring and summer. Specifically, we

observe a peak in environmental perturbation across VOC and CO2 around noon hours, indicating

perturbations based on dining activities. Further, we observe summer-time VOC median values to

be higher than spring-time VOC values and spring-time CO2 values to be higher than summer-

time CO2 values. The similar signals between VOC and CO2 indicates that VOC values can also

correspond with higher occupancy and movement. However, VOC being higher than CO2 during

the summer indicates that additional mechanisms can result in more elevated VOC values, not just

elevated occupancy, such as higher decomposition rates [114].

Pattern of higher environmental variability during the weekdays compared to the

weekends, especially during the day shift Split violin charts, which show the distribution

differences between two categories of data to help demonstrate the relationship between different



2.4. RESULTS 55

spring summer
season

45

50

55

60

65

70

75
D

ec
ib

el
s 

A
Noise

(a) Seasonal noise trends

spring summer
season

0

100

200

300

400

500

600

700

Pa
rts

 P
er

 M
illi

on

Volatile Organic Compounds

(b) Seasonal VOC trends

spring summer
season

400

450

500

550

600

Pa
rts

 P
er

 M
illi

on

Carbon Dioxide

(c) Seasonal CO2 trends

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

45

50

55

60

65

70

75

D
ec

ib
el

s 
A

Noise

(d) Seasonal, hourly noise trends

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

0

200

400

600

800

1000

1200

Pa
rts

 P
er

 M
illi

on

Volatile Organic Compounds

(e) Seasonal, hourly VOC trends

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

400

450

500

550

600

650

Pa
rts

 P
er

 M
illi

on

Carbon Dioxide

(f) Seasonal, hourly CO2 trends

Figure 2.6: During Phase 2 of our study, including the Awair sensors, we observed a noticeable
difference in overall VOC across all hours during the summer and increased CO2 during the spring
season. VOC fluctuations are noticeable around noon. We moved plots of PM2.5 to the appendix
because we found minimal perturbations.

distributions of environmental factors and the categories in question. For example, by drawing a

split violin plot per hour, we can see not only the min, max, median, 25th, and 75th quartile but also

see how the same environmental factor distribution measure compared to the category in question

(in our case, normal versus disrupted sleep). Looking at Figure 2.7c, we observe the anticipated

rise in lux during the daytime from around 7 am to 7 pm and lighting distributions from midnight

to about 6 am. This demonstrates the value of the environmental sensors in providing additional

information about the hospital’s luminous environment, specifically undesirable nighttime lighting.

Furthermore, the fluctuations in lighting have much lower ranges over the weekends compared to

weekdays. Similar undesirable can be observed in temperature (Figure 2.7a), and VOC (Figure

2.7e), where values can be lower or higher than known optimal ranges. For space considerations,

we moved the PM2.5 plot into the appendix Figure A.8, but here we observe low amplitude spikes

during lunchtime and dinner time, which are also smaller during the weekends.
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Figure 2.7: Split violin plots of weekday (top) versus weekend (bottom) environmental factors and
their relationship with patient sleep disruption. The dotted vertical lines around 7 am and 7 pm
indicate the start of the day and night shifts, respectively. We observe a variety of different types
of disruption, from lighting (Figure 2.7c), where for the majority of times, the hospital is above the
recommended threshold of light (10 lux), to humidity (Figure 2.7b), where patients can be either
too hot or too cold; to CO2 (Figure 2.7f), where the ranges are entirely within known thresholds
that disrupt sleep.
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2.4.1 Generalized Mixed-Effect Modeling of relationships between environmen-

tal, medical, and sleep disruption

Using a GLMM described in the methodology section, we found noise deviations, CO2 deviation,

CO2 change points, VOC deviation, Lux deviation, and medical events to be significant predictors

for sleep disruption as shown in Table 2.3 and Figure 2.8. We also found VOC and CO2 change

points to be significant. In this table, the intercept describes the residual unaccounted-for variability

as a value. The estimate describes the positive or negative correlation the predictor variables have

with the outcome variable. For example, in Table 2.3, we see a positive relationship between lux

deviations and the likelihood of a disrupted sleep epoch. The z value is the estimate divided

by the standard error and describes the deviation from the mean. The p value (Pr(> |z|)) is

calculated based on the z value and represents the likelihood that the predictor variable is an

outcome of chance. The lower the value, the more likely the predictor variable is significant. These

results suggest that the tracking of lighting, noise, medical events, and change points for CO2 to

be relevant in analyzing patient sleep characteristics, even for a diverse set of hospital patients. In

our discussion section, we elaborate on our speculation as to the mechanism of disruption and the

relationship between the predictor variables and outcome variables.

Table 2.3: Fixed effects results from the binomial family generalized linear mixed model fit by
maximum likelihood, with patient id as random effects.

Estimate Standard Error z value Pr(> |z|)

(Intercept) -2.437e+00 1.834e-01 -13.288 <2e-16 ***

Noise deviation 1.984e-02 3.944e-03 5.029 4.94e-07 ***

Noise Change Points 5.339e-02 1.665e-01 0.321 0.74852

Heat Deviations 7.465e-02 8.065e-02 0.926 0.35469

Heat Change Points 2.389e-01 1.516e-01 1.575 0.11514

CO2 Deviation 2.808e-03 6.139e-04 4.574 4.79e-06 ***

CO2 Change Points 3.410e-01 1.368e-01 2.492 0.01269 *

Lux Deviation 3.233e-04 1.037e-04 3.117 0.00182 **

Lux Change Points -5.523e-02 2.199e-01 -0.251 0.80169

PM 2.5 Deviation 5.747e-03 6.697e-03 0.858 0.39077
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PM 2.5 Change Points 2.018e-01 4.579e-01 0.441 0.65949

VOC Deviation 1.641e-04 7.364e-05 2.229 0.02582 *

VOC Change Points -3.921e-02 1.651e-01 -0.237 0.81230

Medical Events 7.600e-01 2.751e-02 27.628 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a) Probability of disrupted sleep
and lux deviation.

(b) Probability of disrupted sleep
and heat index deviation

(c) Probability of disrupted sleep
and noise deviation

(d) Probability of disrupted sleep
and CO2 deviation

(e) Probability of disrupted sleep
and VOC deviation

(f) Probability of disrupted sleep
and PM2.5 deviation

Figure 2.8: Predicted Probability of Sleep Disruption Per Environmental Factor, showing a positive
relationship between lux, CO2, noise, and VOC deviations and patient sleep disruption.

2.4.2 Predicting medical events using environmental data

To explore the combination of values without running all the computations, we first ran DT models

across all possible combinations of environmental variables across all possible window lengths. We

then selected a set of the highest-performing environment and window size combinations to run the

random forest model to generate Table 2.4, comparing two of the highest-performing models. We

omitted other classifiers such as SVM and Naive Bayes because of how poorly they performed during

our testing (both achieved roughly 30% accuracy). With the same environmental combination

and window size, the Random Forest Classifier achieved generally higher scores than the Decision

Tree classifier. When comparing the highest-scoring models, the Random Forest model was able
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to achieve a 93.2% Macro-weighted F1-score, with a 31-minute window combining temperature,

humidity, CO2, VOC, light, and noise, while the Decision Tree classifier was able to achieve an

85.1% F1-score with a 1-minute window combining temperature, humidity, light, and noise.

Model Combination Iterations Window F1-score

Decision Tree temp,humid,light,noise 10 1 minute 85.1%
Random Forest temp,humid,co2,voc,light,noise 10 31 minutes 93.2%

Table 2.4: Comparison of highest scoring (macro-weighted) models between Decision Tree and
Random Forest Classifiers
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Figure 2.9: Window size, environmental combinations, and F1-score using a Decision Tree Classi-
fier. The figure demonstrates how additional accuracy can be gained by combining environmental
measures and how the window length in our study was inconsequential in the large picture to
achieve accurate classifications. Important to note is that while more environmental attributes
generally lead to higher median F1-scores, the highest-scored model was achieved only using four
environmental streams (see Table 2.4).
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2.5 Discussions

In this section, we elaborate on the findings for each results section and then dive into broader

impacts, lessons learned, and limitations.

2.5.1 Visualization Results

To answer RQ1, while we did observe a trend of more minor variances (via interquartile range) for

each environmental factor across the weekend, we also observed more significant variances during

weekend night shifts than weekend day shifts for temperature and noise. Furthermore, we observe

higher median values across the different environmental variables during work hours. Together,

this indicates that the nature of environmental disruptions might not be able to be fundamentally

separated from medical routines and human traffic. We observe that the hourly fluctuation trends

of VOC visually match the hourly CO2 fluctuations and can have the potential to be used as a

proxy for occupancy measures as well. However, compared to CO2 trends, VOC is higher during

the summer than during the spring, the opposite of CO2. The elevation VOC observed during

summer can be due to thermal plumes due to elevated temperatures [90]. This, together with

elevated VOC values around noon, suggests that using VOC as an occupancy proxy would benefit

from dining and seasonal adjustments. Interestingly, while humidity becomes uncomfortable below

and above thresholds, only lower humidity values were observed during a patient’s sleep time. For

instance, we observe seasonal humidity in all seasons except the summer humidity is a problem on

the lower end instead of the upper end. This suggests a humidifier might be of more use in larger

percentages of the year. Tracking just patient sleep timing in conjunction with uncomfortable

environments trends can mislead environmental deviations and the potential for the room to be a

conducive environment with high sleep quality because a patient’s room may be either unoccupied

or not sleeping during an otherwise uncomfortable environment.

2.5.2 Generalized Linear Mixed Model Results

To answer RQ2, the shape of the models shown in Figures 2.8 suggests a significant positive

relationship between environmental variables and patient sleep disruption, and also to what degree

of increased probability of disruptions is related with each increase in environmental deviation. Lux,
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heat, noise, CO2, VOC, and PM2.5 correspond with patient sleep disruption. We also observed

scarce PM2.5 perturbations and found it potentially useful in tracking meals because the peaks

coincided with lunch and dinner times (See Figure A.8). This suggests that more granular modeling

of patient activity could be relevant for future studies, but since we did not install video cameras

out of privacy concerns, we cannot verify with a ground-truth set. For change point signals found

not to be significant, such as PM2.5, lighting, or noise change points, one possibility can be due

to the inherent nature of this particular hospital environment. For example, gradually changing

environmental variables can be continuously disruptive without abrupt changes in their sampled

distribution. In the case of PM2.5, because the values we’ve detected are mostly small, with most

distributions found around 5 µg/m3 (see Figure A.8), even sudden changes may be imperceptible

to the patients. However, we should note that it can not be verified without the introduction of

video cameras or other human activity tracking mechanisms whether the detected environmental

perturbations are proxies of human interactions or the ambient environment.

2.5.3 Decision Tree and Random Forest Results

The random forest and decision tree models demonstrate that environmental signals adequately

tailored for medical events detection can accurately classify from among various classes and events.

The results further demonstrate how environmental values, under the sensing by proxy paradigm,

can provide utility as an objective observer. The inconsequential nature of the window range likely

indicates that the frequency of data, even when aggregated at one-minute intervals, can contain

information necessary to identify patterns of environmental perturbations that can be linked to a

medical event. Figure 2.9 demonstrates that adding more environmental streams, in general, can

improve the median score for the machine learning model but can lead to less efficient and less

effective models than the optimal model. Additionally, while adding environmental measures is

helpful as a trend, increasing the window size for consideration did not improve our model. In fact,

at the maximum number of combinations, the most significant observation window of 31 minutes

performed the worst compared to the other time windows at 11 minutes and 1 minute. This trend

suggests that it is sometimes not the quantity of data collected that matters after a particular

frequency but rather the diversity of data that improves our model. To answer RQ3, surprisingly,

in both of our highest-performing models, temperature and humidity were crucial features to retain
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beyond the well-known environmental proxies of light and noise, as shown in Table 2.4. Lastly,

adding more information does not seem to, by default, improve inference accuracy. Additional

information can inadvertently lower the score depending on the model and hyperparameters.

2.5.4 Broader Impacts

Improving the environment and sleep of people in a critical shared space such as the hospital car-

ries with it immense societal if it can lead to better care and health outcomes. By integrating

environmental, medical, and physiological data streams and demonstrating the key predictors of

sleep disruption, researchers and caregivers can identify factors to which to dedicate more resources

in education and awareness. In this work, we demonstrate that all proposed streams of data can

have significance with regards to the patient’s sleep when considered together (i.e., noise deviation

p < 0.05), CO2 deviation p < 0.05), medical events (p < 0.05)). Furthermore, even the ones shown

not to be directly tied to patient sleep disruption could be routinely monitored to improve the

understanding of the hospital environment and routines. For example, heat deviations can help

inform thermal comfort in the hospital, and PM2.5 deviations might help inform dining activities.

Our work demonstrates methodologies to combine and assess different facets of the environment

towards a quantifiable health metric, in addition to enabling the identification of abrupt environ-

mental changes (CO2 change points (p < 0.05). The results indicate the potential benefits that

broader adoption of environmental tracking in hospitals can provide. Environmental sensors have

a real potential to provide substantial utility beyond environmental commissioning; they can be

considered an invaluable addition to support privacy-friendly hospital data products, automation,

and computer-assisted decision-making.

2.5.5 Limitations

Sleep is a complicated phenomenon of human existence, with which exercise, age, gender, sleep reg-

ularity, and medication have all been shown to have significant relationships [65]. Additionally, past

literature has shown that actigraphy’s sleep-wake measure decreases whenever sleep is disturbed or

distorted [115, 116]. These demonstrate potential confounding variables for the complexity of sleep

and technology limitations. While we did not find deviations about apparent temperature to be

significant in our observation, that does not mean that temperature was not important to track,



2.5. DISCUSSIONS 63

nor temperature not affecting the patient. One possible disconnect can be between the sensor’s

observed temperature and the actual perceived temperature accounting for clothing and bedding

[117]. Similar disconnects can also exist between the sensor and patient for the other environmental

variables. Generally, we placed sensors by locations specified by the nurse manager so as not to

interfere with the hospital’s operations. However, the more accurate the sensed values can be to

the perceived values, will likely benefit from further research. Our study contains patients from

only one hospital, so we note it is not a representative sample of hospital environments or hospital

patients elsewhere. Primarily, we anticipate our exploration to find potential avenues to improve

hospital environments and quantify the environment’s impact on patients. The literature demon-

strates that the disruptive environmental fields are found to be different across different hospitals

[58, 118], suggesting that a further study is required to make more substantial claims about the

need for more hospitals to incorporate environmental sensors and how the sensors can help improve

patient sleep and by extension patient recovery.

2.5.6 Future Work

We recommend that future researchers carefully consider what can be considered “ground truth”

when running future experiments. While recording patient rooms with cameras can lead to higher

data quality labels (e.g., construction lights outside the hospital bed), and patient family visits

can then be more accurately recorded), we understand the difficulty of acquiring consent from the

caregivers and the patients for video recording, as well as the difficulty in limiting the patient

population to the sensor-installed room since hospital beds are often crowded and in great demand.

We anticipate exploring more devices or methodologies that enable more convenient, private, yet

still precise measures of activities occurring in hospital rooms to explore interventions that can

help inform decision-making positive patient outcomes. We also look forward to studying more of

the mechanics that correspond to the relationship between environmental fingerprints and medical

events class. Further study is needed to verify that the environmental fingerprints are generalizable

and not a product of the study hospital’s specific machines, caretakers, or environment.
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2.6 Conclusions

Our work explores the relationships between patient sleep, the environment, and medical events

and provides hospital-specific lessons learned and environmental attributes to consider for future

researchers to explore. While it is unsurprising that the environment dramatically impacts our sleep

quality, our work demonstrates quantifiable significance in including medical and environmental

information in analyzing momentary disruptive factors affecting patient sleep. It demonstrates the

potential benefits of integrating environmental sensors and medical data to improve the patient’s

sleep environment.



Chapter 3

Maintenance

The placement of sensors dictates not only the observable behavior but also the silent rate of signal

transmissions. Modeling this silent rate enables applications that can identify locations in the build-

ing with lower silent rates and diagnose sensor transmitting sub-optimally. This chapter shows how

contextual data about the walls and materials of a building paired with the location of gateways and

sensors help us determine whether transmission rates are expectedly low due to the attenuation of

the context.

Integrating building plan information to support fault detection of

long-term energy harvesting sensor deployments

As the number of Internet of Things (IoT) devices continues to increase, energy-harvesting (EH)

devices eliminate the need to replace batteries or find outlets for sensors in indoor environments.

This comes at a cost, however, as these energy-harvesting devices introduce new failure modes

not present in traditional IoT devices: extended periods of no harvestable energy cause them to

go dormant, their often simple wireless protocols are unreliable, and their limited energy reserves

prohibit many diagnostic features. While energy-harvesting sensors promise easy-to-setup and

maintenance-free deployments, their limitations hinder robust, long-term data collection.

To continuously monitor and maintain a network of energy-harvesting devices in buildings, we

propose the EH-HouseKeeper. EH-HouseKeeper is a data-driven system that monitors EH device

compliance and predicts healthy signal zones in a building based on the existing gateway location(s)

65
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and building profile for easier device maintenance. EH-HouseKeeper does this by first filtering

excess event-triggered data points and applying representation learning on building features that

describe the path between the gateways and the device.

We assessed EH-HouseKeeper by deploying 125 energy-harvesting sensors of varying types in a

17,000-square-foot research infrastructure, randomly masking a quarter of the sensors as the test

set for validation. The results of our 6-month data-collection period demonstrate an average greater

than 80% accuracy in predicting the health status of the subset. Our results validate techniques

for assessing sensor health status across device types, for inferring gateway status, and approaches

to assist in identifying between gateway, transmission, and sensor faults.

3.1 Introduction

As buildings strive to be green and healthy [12], so too increases the need for indoor sensing

of environmental conditions and occupant activity. Studies focusing on energy consumption and

occupant comfort, performance, and well-being have demonstrated that continuous environmental

sensing can aid building automation systems in adjusting the environmental settings to suit users’

needs [119, 120, 121, 122, 123]. Since the needs of occupants are complex and multi-faceted, there

is an increasing need for richer and more comprehensive sensors to provide multiple modalities of

information about the user and for this data to be accurate and consistent.

Increasing the number of sensors while ensuring reliability presents competing challenges. In-

creasing the density and quantity of sensors suggests they should be smaller, cheaper, and easier to

deploy. But ensuring reliable data suggests that devices should be sophisticated and hard-wired.

The low-power embedded sensing community has largely focused on the first set of challenges,

namely developing small, wireless sensors capable of instrumenting existing buildings.

As devices continue to reduce in size, they have started to swap larger batteries for smaller

energy-harvesting power supplies [124]. Not only can harvesting outperform batteries when devices

are smaller than a sugar cube [125], energy-harvesting increases the range of location for sensing

versus wall-powered devices, and eliminates the periodic battery swaps needed for battery-powered

devices. These traits make them attractive for dense but aesthetically pleasing retrofits in existing

buildings.
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As energy-harvesting devices become more accessible [126], and as such more used in buildings

[127, 128], the set of challenges related to reliability and robustness become more pressing. While

a small, “stick-on”, and photovoltaic-powered sensor [129] is easy to deploy and quickly generates

useful data, these types of sensors have three characteristics that are significant regressions from

the mains-powered and BACNET capable sensors commonly found in buildings. First, they are

dependent on the availability of harvestable energy. If their energy source disappears, for example

a room is dark for an extended period of time, they will enter a hibernating state and stop trans-

mitting data. Second, to enable low-energy operation, they typically use simple, unreliable wireless

protocols. This means data may not be received even if the sensor successfully samples and sends

its data. Third, intermittent energy availability and low-cost hardware can result in less consistent

operation. For example, the sensor may have poor timekeeping and not sample at precise intervals.

Each of these hinders the reliability of the overall sensing deployment, but together they present a

significant challenge for long-term monitoring, and worse, they all tend to manifest with the same

symptom: no data packets are received from the sensors.

To realize the upside of ubiquitous energy-harvesting sensors while managing the uncertainties

they present, we propose a comprehensive monitoring system specifically for networks of energy-

harvesting sensors and the unique challenges they present. Our system, EH-HouseKeeper , is a

diagnostic system for energy-harvesting sensors that identifies faulty devices that require manual

intervention, and supports planning for more effective future device placements to increase relia-

bility.

To enable the monitoring, EH-HouseKeeper collects data from every energy-harvesting sensor

and automatically creates a unique data-driven profile of expected behavior for each sensor. This is

necessary because devices can vary widely. First, some devices transmit periodic readings, others

only respond to events, and some are event-based but also transmit periodically if no event has

occurred recently. Second, devices experience different harvesting conditions and will have differing

amounts of available energy. Third, devices experience different RF environments and will success-

fully deliver packets at different rates. And fourth, slight differences in sensor hardware will cause

otherwise identical sensors to behave slightly differently. By using the device’s actual behavior,

EH-HouseKeeper can compensate for these variabilities.

With the profile created, EH-HouseKeeper then provides a health score for each sensor based
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on how well the sensor is performing with respect to its expected behavior. This health score is

then used to identify sensors that have failed and need to be either repaired or replaced, and not

just devices that have been unable to harvest or have had a few lost packets.

Because EH-HouseKeeper has profiles of devices in the sensing deployment with a range of health

scores, EH-HouseKeeper can also be used to predict the health score of future energy-harvesting

devices installed in different locations in the same environment. EH-HouseKeeper uses a predictive

model to estimate where sensors will perform well in the future. This can guide deployment

managers on where to place devices to optimize performance, or on what level of redundancy or

overprovisioning is required to obtain a certain level of sensing performance.

To demonstrate the efficacy of EH-HouseKeeper , we test it using an in-building testbed with

more than one hundred energy-harvesting sensors of various operating modes and sensing modal-

ities. Due to the size of the testbed, there are several gateway devices distributed throughout

the space that collect the wireless packets from the sensors, and each sensor may transmit to one

or more gateways. EH-HouseKeeper must consider this gateway deployment as well, and must

account for gateway failures when assigning health scores to individual sensors.

We run EH-HouseKeeper during a six-month study and observe its performance. We find that:

• Significant data loss can occur even when both the gateway and the EH sensor are working

correctly.

• It is possible to calculate a comparable signal health score for a mixed periodic and event-

triggered sensor using the device’s Largest Heartbeat Interval (LHI).

• It is possible to automatically and accurately predict data packet loss due to signal attenuation

given the building plan.

• The prediction method can accommodate a variety of different device types with varying

intervals of heartbeat and event-trigger conditions.

• The average prediction accuracy for healthy signal zones is greater than 80% across all inves-

tigated device types.
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3.2 Related Work

Because of its lower cost during upfront installation and better scalability of maintenance compared

to battery and mains-powered devices [27], an energy-harvesing (EH) sensor based architecture

was proposed as an ideal infrastructure for building monitoring and event detection [130]. EH-

HouseKeeper is built on top of this architecture, exploring new challenges on dependability for a

network of EH sensors.

Laprie provides a framework that we adapt for describing dependable computing, including a

nomenclature to help distinguishing between fault, error, and failure [131]. Kavulya et al. extends

on this nomenclature and describes different diagnosis techniques, limitations, and examples [132].

Notably, she explains how rule-based techniques are human-interpretable and extensible but difficult

to maintain at scale; statistical techniques require little expert knowledge but might not distinguish

legitimate changes in behavior; and machine-learning techniques automatically learn profiles of

system behavior but can suffer from the curse of dimensionality when the feature set is too large.

To further analyze the reliability of our sensors, we explored works that modeled the effects of

radio signal attenuation in an indoor environment [133, 134, 135, 136]. The literature points out

a clear relationship between radio signals and indoor factors such as distance, number of walls,

wall-depth, and wall material. However, the studies were mostly conducted in a static setting and

for a short time-period. This makes it difficult to adopt the findings to a naturalistic setting, where

the movement of people and furniture could add noise into the system. The difficulty is further

increased when the status of the receivers are variable. Thus, we designed EH-HouseKeeper so that

it can detect receiver status changes and account for them for future predictions.

We found a longitudinal study of radio signal attenuation for an experiment recording moisture

content in an outdoor environment using battery-powered devices [137]. The study demonstrates a

clear relationship between the modeled signal attenuation and reduction in periodic device transmis-

sion probability via silent rates. However, the devices used in the study are outdoor periodic sensors

transmitting every 10 minutes while the sensors used in our study are a mixed event-triggered and

periodic sensor. Additionally, the experiment considers a scenario with only one receiving antenna.

Therefore, we propose a slight modification to the silent rate (signal health score) to account for

the hybrid sampling of our sensors. Furthermore, we build on top of this signal health score to
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model data loss in a multiple receiver scenario in an indoor setting.

3.3 Methodology

In order to investigate the feasibility to model data loss through signal attenuation and extend

the prediction to similar building spaces, the methodology section is divided into subsections of

sequential order. Section 3.3.1 describes the geometry of our testbed, documenting the location and

related specification of each of the deployed sensors. Then, because our study deals with multiple

divisions of time, Section 3.3.1 defines the different divisions of time we use, and details when and

what gateways were installed on the timeline. In Section 3.3.2, we build upon the defined time

definitions to derive a signal health score calculation that resists bias caused by event-triggered

sensing. Section 3.3.3 provides background information on how signal attenuation is modeled for

an indoor environment, which is demonstrated to result in measurable data packet loss [137], which

we can now detect using the derived signal health score. Lastly, Section 3.3.4 describe the details

of how we use feature-representation learning to predict future healthy signal locations for the

different aforementioned spatial and temporal arrangements.

3.3.1 Testbed Overview

The testbed is embedded within a laboratory and office space complex of approximately 17,000

square feet at a university and includes occupant-based wearables, interactive mobile robots, and

comprehensive environmental sensors. The testbed is designed to support research on occupant

behavior and new occupant-focused building control techniques through the capture of data as-

sociated with several dimensions of variability in human-building interactions. While more than

250 different types sensors (wired, battery-powered, and EH) have been deployed in the space to

date, only the EH sensors with location information are considered in this paper. The testbed is

supported by a generic gateway platform in a one-hop network that stores the received data in

a cloud-hosted time-series database. Figure 3.1 documents the gateway location, device location,

and relevant device specifications. The gray circles drawn around the gateways mark a 25 meter

radius.
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Device Prefix Units Transmission Radius Operation Time LHI

Swarm Gateway
[138]

GW 4 N/A N/A None

EnOcean Light
Level Sensor
ELLSU-W-EO

LL 40 25 meters 80 hours 30 minutes

Pressac Mini Temp
Humidity Sensor
(Discontinued)

TH 37 30 meters 4 days 15 minutes

EnOcean Wireless
Door/Window
Sensor ExT-
MDCCP

DS 27 20 meters 5 days 25 minutes

Echoflex Dual
Tech Ceiling
Mount Sensor
MOS-DT

DTMS 17 24 meters 7 days 100 sec-
onds

Pressac Wireless
CO2 60.CO2 SLR
TMP HUM

CO 2 30 meters 5 hours 15 minutes

Illumra Motion
Sensor E9T-OSW

MS 2 25 meters 80 hours 30 minutes

Figure 3.1: Projected Device Plan and Descriptions
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Yes

Is the sensor 
health score H < 

threshold?

Are other sensor health 
scores >0 for this 

gateway?

Time frame

Gateway fault

Is the 
sensor placed 
in a healthy 
connection 

zone?

Yes

Connection fault

No

Connection 
Healthy

No

yes

No

Is there more than one 
sensor with a health 
score > 0 for other 

gateways?

Network fault

No

Yes

Power Supply 
failure

Hardware failure
Moved-location 

failure

Sensor 
fault

Figure 3.2: Fault Identification Flowchart

Time Definitions

Because there are three different subdivisions of time used in this paper, we will clarify them here,

from longest to shortest:

• Time range, where we describe the encompassing datetimes for a specific gateway config-

uration. In our study this is a variable, and further described in Table 3.1. For example,

during time range T0, only one gateway was installed.

• Time period, where we describe the division within a time range, used for signal health

calculations. In our study this is a constant set to 24 hours.

• Time frame, where we describe the subdivisions within a time period. In our case we use a

constant equal to the device’s corresponding Largest Heartbeat Interval (LHI), as described

in Figure 3.1. For example, the time frame used for light level sensor health score calculations

is a constant equal to 30 minutes.

Table 3.1 details the divisions of time as well as which gateways were on during which time range.
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After T2, the space had close to zero occupants due to COVID-19 restrictions.

Name Start and end Date Gateways online

T 0 [2020-01-01 , 2020-02-25] G1 = {GW2}
T 1 [2020-02-26 , 2020-03-18] G3 = {GW1,GW2,GW4}
T 2 [2020-03-19 , 2020-04-28] G4 = {GW1,GW2,GW3,GW4}
T 3 [2020-04-29 , 2020-07-01] G4 = {GW1,GW2,GW3,GW4}

Table 3.1: Time ranges and gateways configuration

3.3.2 Calculating Device Signal Health Scores

To account for variable heartbeat intervals when doing health score calculations, we elect to use a

device’s Largest Heartbeat Interval (LHI), the largest interval of time after which a data point is

expected. For instance, for the EnOcean Light Level sensor, which heartbeats randomly between 20

to 30 minutes, we elect to use 30 minutes. We use the heartbeat interval as defined by each device’s

corresponding datasheet as their baseline. For our study, we did not customize any configuration

on our devices to sample at different intervals.

To calculate whether or not a periodic sensor is transmitting correctly for a time period, our

basic approach is to divide the total number of received data points by the total number of expected

data points for every time frame in the time period to arrive at a health score:

H =
1

N

∑
t

rt
et

Where H is the overall health score for the time period, t is the index of the time frame within

that time period, N the number of total time frames for the time period, rt the number of received

data points for that time frame, and et the expected number of received data points for the time

frame. This basic method is straightforward, but if et is lower than the LHI and therefore zero, the

score is undefined. Similarly, if e is not a multiple of the LHI, the subsequent rounding results in

loss of information.

To solve this, we subdivide the time period into time frames that are equal to the device’s LHI.
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The expected number of received data points e is then always one, giving us:

H =
1

N

∑
t

rt

However, in the mixed sensing scenario where the sensor is both periodic and event-triggered, and

the event-triggered data point resets the heartbeat interval, doing so could allow event-triggered

data points in one time frame to bias the entire time period (i.e. r could be greater than one). As

such, it is important to also cap the transmission count for each LHI frame to arrive at:

H =
1

N

∑
t

min(1, rt) (3.1)

The silent rate of the time period for the device as described in [137] is then just 1−H. It might

be helpful to note that it is impossible to completely disambiguate between heartbeat and event-

triggered data points for health score calculations in this scenario since it is theoretically possible

for a sensor to be event-triggered at the start of every heartbeat interval.

3.3.3 Radio Signal Attenuation

The Keegnan-Motley model of logarithmic signal loss L, as described by [135], is:

L(d) = LFS(d) + nwLw + nfLf (3.2)

With LFS(d) the theoretical loss in free space for an isotropically1 radiating antenna, d the distance

between transmitter and receiver, Lw attenuation per wall, Lf attenuation per floor, nw number

of traversed walls, and nf number of traversed floors. This model has further been shown to be

adjustable to account for the thickness of the wall [139]. While signal attenuation is then generally

calculated using a constant attenuation per unit path length α, in our feature preparation section

(Section 3.4) we detail our process in tracing the discrete partitions and free space for each device-

to-gateway path.

1 not varying in magnitude according to the direction of measurement
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3.3.4 Feature Representation Learning

Feature representation learning is commonly used for applications such as natural language pro-

cessing and one-shot image recognition [140]. Once discriminative features have been learned, the

predictive power of the network can be applied to new data. In this paper, we resort to a feedforward

siamese network [141] to learn discriminative features from the raw sensor-to-gateway path features

in order to predict the signal health status of future sensor locations. A feedforward siamese model

consists of L feedforward layers each with Nl units. For the first L − 1 layers, each is followed by

a ReLU activation layer. For the remaining layers, each is followed by a sigmoid layer. Our model

takes a pair of sensor data as inputs. Let h1,l represents the hidden vector in the l-th layer for the

first twin and h2,l denotes the same for the second twin. A non-negative function is deployed after

each activation layer to restrain the learned hidden vectors are non-negative. Hence, the operation

at the l-th layer takes the following form:

ak1,m = max(0, σ(Wlh1,l + bl))

ak2,m = max(0, σ(Wlh2,l + bl))

, where σ denotes the ReLU activation function, Wl and bl represent weights and bias in the l-th

layer respectively, l ∈ {1, . . . , L− 1}.

Once siamese twins, h1,L−1 and h2,L−2 are outputted, the induced distance metric is computed

by the final layer. More specifically, the prediction vector is given by:

P = σ(

NL∑
j=1

αj |hj1,L−1 − hj2,L−1|) (3.3)

Here, α denotes weights in the final layer,and σ represents the sigmoid activation function.

Let y(x1, x2) be the vector that contains the label for a pair of data sample, where y(x1, x2) = 1

if x1 and x2 are from the same class and y(x1, x2) = 0 otherwise. The network is optimized by
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minibatch gradient descent to minimize the following loss:

L(x1, x2) = y(x1, x2) logP (x1, x2)+

(1− y(x1, x2)) log(1− P (x1, x2))

In this study, we aim to learn discriminative features to distinguish healthy sensors from un-

healthy ones based on their geometric information. The two classes in our case are healthy and

unhealthy sensors. The siamese network takes raw features, which will be explained in the following

section, of a sensor i as inputs and outputs a feature vector hxi,L−1. Once the siamese network

is trained, we can apply it to generate features for sensors that are currently not installed, which

assists us in predicting the quality of newly proposed sensor locations.

3.3.5 Assumptions

This chapter assumes that the buildings where sensors will be installed will have an available

building plan that can be digitized with minimal effort. This assumption might not be generalizable

to older buildings with manual drawings. Further, the study assumes that a stable harvesting

condition is satisfied in the training set. This assumption is further elaborated on in Section 3.8. It

is supposed that the installers of sensors will first collect a profile for a sensor’s typical interaction

with building materials when energy is not constrained and then use the ideal profile to model

the silent transmission rate of other sensors. Finally, this study presupposes that attenuation by

building material is relevant (i.e., sensors are transmitting in the ultra-high-frequency range or

higher 2). Since attenuation generally scales with frequency, the work in this chapter is likely not

generalizable to transmissions at lower-frequency ranges.

3.4 Feature Preparation

Gateway Status Using the health score calculations, we defined the time period to be uniformly

24 hours for each device to represent a realistic response time for us to investigate a device failure.

We used the LHI of each corresponding device as their time frame. Figure 3.2 shows a flowchart

for our fault identification process.

2 See https://www.enocean.com/en/technology/radio-technology/

https://www.enocean.com/en/technology/radio-technology/
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Because we did not explicitly store data points of the gateway status, we assume that the

gateway is down if for that time period, no values were transmitted from that gateway by any

sensor. By extension, we assume that the network is down for the time period if all gateways did

not transmit data. While this could be sufficient in a one gateway scenario, there is a minute

possibility of incorrectly classifying gateway down status in a multiple gateway scenario if the data

point was pushed to the database by another gateway for the time frame for all of the devices in

range. Figure 3.3 shows our identification of a gateway powered by an occupancy-controlled outlet

through the health score of all the devices.

Figure 3.3: Occupancy-controlled-outlet plugged gateway 4 related transmission count per device
type over time

Sensor to Gateway Path Using the health score calculations, we sought out to explore a

relationship between sensor health score, sensor-to-gateway distance, and the wall profile between

the sensor to wall.

Plotting the distance to health score relationships for the light level sensors, shown in Figure

3.4, we observed a decline in signal health score over distance. We observe a similar trend for

the other device types as well. This indicates that there is indeed a measurable reduction of data

transmissions across all types during the one gateway scenario G1. We observed a similar trend

when counting for number of walls traversed, since generally the longer the distance between the

sensor to the gateway the more walls were traversed.
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Figure 3.4: Relationship between signal health score and distance to gateway for light level sensors
during T0

Having observed that data loss does occur, we further employed ray-tracing on a plan from the

sensor to the gateway. Codifying the wall depth, material and air space using the traversed pixel

colors, Figure 3.5 demonstrates the example wall waveform from point A to point B. We counted

only signals that exceed a threshold of 0.5 (i.e. when the trace hits the corner of two materials).

Once the features are ready, we can represent them using a siamese network.

In the next section, we detail how we adopted this information into our machine learning model

that accounts for all the different device to gateway raytraces.

3.5 Experiment and Data Preparation

For this study, additional gateways were installed over time to explore whether or not we could

improve the health scores of our devices, starting with a single gateway. We used our assumptions

(see Section 3.4) of the gateway status to evaluate whether or not the gateway was on or off during

that day, and when it was first installed. In addition, during our light sensor installation, we

installed LL4 and LL8 in a room with little access to daylight and their harvesting surface pointed

away from the artificial light source as a test case for our detection system. Table 3.2 summarizes

the columns of the data frame with an example row.
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Figure 3.5: Example ray-trace with its corresponding waveform from point A to point B. The
number of pulses corresponds with the number of walls traversed, the width of the pulse corresponds
with the thickness of the wall, and the color of each signal corresponds with a type of building
material.

The wall arr column (Shown in Table 3.2) describe characteristics of the building between the

sensor and the gateway, where element 0 is the count of the air pixels, element 1 the count of the

red wall pixels, element 2 the count of the green wall pixels, and element 3 the count of the blue

wall pixels.
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Name Example value Description

date 2020-01-31 YYYY-MM-DD time description for
the device

device type Light Level Array description of the device category
device name LL1 Identifier of the device
g[n] wall arr [722, 156, 0, 5] Description of the building elements be-

tween the gateway and the device in
[a,r,g,b] for gateway n

g[n] count 0 Number of transmission to gateway ¡n¿
g[n] dist 57.28 Distance to gateway[n] in meters

health score 0.7 Health score for the day for the device
timing [2020-03-16T01:... Array detailing the specific timings of

each data point for the day
g[n] on True Whether or not the gateway[n] was on

Table 3.2: Data set column descriptions

For our final feature set, we combined the elements of the wall arr for all four gateways (16

elements), and added 8 elements that is the on off statues of each four of our gateways to arrive at

a total of 24 features. For ease of comparison, we arbitrarily classify any sensor with a threshold

above a 70% signal health score as healthy. The choice of this threshold for future experiments will

likely depend on the research question and the lab’s capacity for maintenance.

3.6 Results

3.6.1 Aggregated Signal Health Monitoring

While we found that the proposed signal health score calculations does mitigate the effects of event-

triggered data points from biasing the overall health score, we also found it important to note that

the score does not completely remove the effects of additional event-triggers. For example, for

magnetic contact sensors, the health score could be amplified if the installed door is more frequently

used. The additional event-triggers make it more likely for the transmission to register, even if the

device is located in a more attenuated zone. Therefore, categorizing the occupancy schedule of the

space, and studying the system during a period of time with no-occupancy can provide a cleaner

reading as to whether or not the health score is due to artificial amplification. Additionally, while

this signal amplification can be readily isolated in occupant-triggered devices, as seen in Figure
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3.6, the effects are harder to isolate for sensors that are triggered by environmental conditions. To

evaluate the signals without event triggers from the temperature humidity sensor, for example, will

require a controlled environment of less than 2% humidity and 0.6 degrees Celsius fluctuations. In

order for the event-driven amplification of the device signal health score to impact the composite

daily health-score, however, the threshold for the device-trigger will need to be exceeded more than

once per time frame, across multiple time frames, and also be registered in place of the signal that

otherwise would not have been registered.

Figure 3.6: Overview of aggregated signal health score traces per type, demonstrating a network-
down period in late April

3.7 Model Evaluation

To verify our process, for each device type, for each time range, for each of 100 iterations we

randomly masked 25% of the devices rounded down as the testing set, using the remaining as the

training set. We then trained a representational encoder with the training data to encode the

test data features fed into another 100 independently trained classifiers. Finally, we aggregated

the classification results using the encoded features to predict whether or not the device location

is considered healthy. Our results shown in Figure 3.7 indicate a stabilization of an average of

greater than 80% accuracy when predicting health scores for the masked sensor locations over 100

runs. The results of all the runs using a 1 layer linear classifier and a decision tree classifier are
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summarized in Table 3.3 and Table 3.4, respectively. For all of our following analysis, we elect to

use the decision tree classifier because it gives us a better score than the one layer classifier overall.

Figure 3.7: Average accuracy over iterations per type for T1 over 100 runs

Time
Range

Device Prefix Accuracy Precision Recall

T0 DS 0.87 0.85 0.85
LL 0.83 0.83 0.82
TH 0.89 0.83 0.84

T1 DS 0.91 0.91 0.91
LL 0.86 0.85 0.83
TH 0.89 0.90 0.89

T2 DS 0.88 0.87 0.86
LL 0.82 0.81 0.80
TH 0.79 0.76 0.72

T3 DS 0.88 0.88 0.87
LL 0.94 0.94 0.94
TH 0.88 0.82 0.81

Table 3.3: 100 Run Average Decision Tree Classifier Results
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Time
Range

Device Prefix Accuracy Precision Recall

T0 DS 0.81 0.77 0.77
LL 0.81 0.82 0.79
TH 0.89 0.81 0.79

T1 DS 0.91 0.92 0.91
LL 0.84 0.83 0.81
TH 0.89 0.90 0.88

T2 DS 0.88 0.87 0.86
LL 0.80 0.80 0.79
TH 0.76 0.73 0.71

T3 DS 0.81 0.81 0.80
LL 0.91 0.91 0.91
TH 0.76 0.67 0.68

Table 3.4: 100 Run Average 1-Layer Linear Classifier Results

Figure 3.8: > 90% accuracy sampling during T3 (left) versus < 60% accuracy sampling during T0

(right), where the red circles represent the masked test sensors and the green circles the training
sensors. The yellow rectangle areas indicate additional attention required, and the red rectangle
areas indicate maintenance required.

3.7.1 High Accuracy Versus Low Accuracy Assessments

To assess the validity of our model as well as help us determine where are the topographically

similar areas with better signal health, we generate a value using the features at each pixel space

for its probability to be a healthy location. We demonstrate in Figure 3.8 a comparison between

one of the highest-performing sampling and one of the lowest-performing samples for the light level

sensors.

The masked sensors are marked in red, and the training sensors are marked in green. The alpha

of the red and green represents the health score for the sensor, which is also labeled next to the

sensor. The blue background color represents the aggregated prediction percentage for the pixel
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location. When the model is predicting accurately, as shown in the left image of Figure 3.8, then

that means that there are no misalignment between expected signals lost and the actual signals

loss. Large misalignment, as shown on the image on the right, indicate that the poorly performing

model requires additional diagnosis to detect: 1) whether or not the low signal health score sensor

is occurring at the edge of the healthy zones, and 2) whether the signal health is higher or lower

than anticipated. When a sensor signal is poor in an area where other sensor signals are healthy,

as in the red rectangle, then there is a larger likelihood of abnormal transmission patterns and the

sensor should be marked for maintenance. The detected abnormal sensors match the test sensors

we initially installed (LL4, LL8, as described in Section 3.5) when they are not selected as part of

the training set. The sensors marked in the yellow rectangle areas, while performing sub-optimally,

can still be permissible since they are operating out of range of the device specifications or at the

edge of the attenuated zones.

3.8 Discussion

The value of our current models relies on the assumption that most of the EH devices are operating

in stable harvesting conditions. For example, the predicted healthy signal areas using T3 likely

included data loss due to the reduced lighting schedule. Additionally, the accuracy of the prediction

also relies on the existence of similar topographically placed sensor.

As seen in Figure 3.9, during normal operations of the lab, even when multiple gateways are

within the transmission range of the sensor, the topography of the space influences the overall

received signal and data can be loss. This influence is sometimes the difference between losing

some of the data, and losing all of the data.

Furthermore, since the only way to check if the EH sensor is operating in sufficient lighting once

deployed in a dynamically lit area is to check if there are still data transmissions after its operation

time (how long it can operate in darkness), disambiguating data loss due to signal attenuation can

help the administrator diagnose between expected data loss and data loss that requires maintenance.

EH-HouseKeeper is demonstrated to capture this discrepancy for a variety of gateway configurations

and make indications for which sensors actually require maintenance.

Accordingly, a more proactive strategy could have been to install and sample the gateway and
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Figure 3.9: Using T1 to predict healthy signal zones for G3 for Temperature Humidity Sensors,
showing the predicted signal healthy zone less than the prescribed radii.

EH devices within the operation period of the all the installed devices and sample in that time

period to eliminate unhealthy signals due to power issues. With more sensors to be installed,

however, the solution would be infeasible, especially if further gateway location optimizations are

being performed or sensors being installed at different times. A workable solution, as in our

case, then, is to install the charged EH sensors and sample them during normal operations of the

building. Conceivably, another solution to further disambiguate connection-related data loss from

power-related data loss would be to control the energy source (i.e. lighting) of the space and see if

increasing the source output alters the device health score in the location.

While placing EH sensors in range of multiple energy sources (i.e. in view of a window (s) and

under artificial light(s)) would assist in the longevity of data transmissions, the power supply of

the EH sensors is still variable. For example, for light EH sensors, the consistency of the artificial

lights are dependant on the chronotype of the occupants for occupancy sensor triggers, the time

periods (i.e. holidays, weekends, workdays), and the weather. While one might argue that a steady

source of lighting is guaranteed because it is only relevant to collect data while the occupant is

present and therefore the lights are on, it could be worthwhile to consider that the lighting could

be sub-optimal in a way that the degradation of data transmission might only be noticeable after
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a few month’s time. Additionally, the variability of the power source while the occupant is absent

could also affect the device’s transmissions when they return. This is especially true if the time

frame of interest lie between the occupant’s arrival and the sensor’s charge up time, or if abnormal

behavior of the occupants increases the energy required to detect the events. Further studies into

EH sensors in sub-optimal harvesting conditions is needed to better understand the severity and

relevance of this data loss.

Also relevant to future deployments, we mirror the findings of Wagner et al. in chapter 6

regarding the importance of adhesives for sensor installation [6]. Some adhesives we installed

degraded over months, and it took additional efforts from the residents in the space to recover. We

propose applying more adhesives than considered necessary to reduce future maintenance efforts.

Finally, some outlets do not function as a consistent power source and have their own power

schedule (also noted by Hnat et al. [27]). This information is harder to detect in a multiple gateway

scenario because the drop in total received data corresponds with lowered occupant activities. If

possible, implementing a heartbeat logging mechanism to track the gateway itself on the database

can help diagnose the cause of a sensor signal health score drop for future deployments.

3.9 Limitations and Future Work

3.9.1 Noise Introduced in a Naturalistic Setting

The distance and trace used in our calculations are projections onto a 2D plane, so it does not

encompass the complexities of the 3D environment. For instance, additional work needs to be done

to extend the system to encompass multiple floors. In addition, EH-HouseKeeper does not account

for any of the discrepancies between the plan drawing and the real-world environment, nor does it

account for any signal attenuation due to the presence of furniture or occupants. The timing of the

data could also be further filtered. For example, distinguishing between daytime and night sensor

behaviors could further improve our model.

More work can also be done to scrutinize the data value itself (i.e. to identify non-fail-stop

failures such as calibration drifting). For example, do those event-triggered data points match

the data sheet described value thresholds? Is there a large unaccounted for discrepancy between

two data point values in the same proximity? Even in the same zones, the orientation of the
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sensor device could have a dramatic affect on how much light it receives from the surrounding

environment. While the location and orientation can be further optimized by calculating metrics

such as Useful Daylight Illuminance for the vertical or horizontal surface that the sensors resided,

for our installation we mainly faced the energy harvesting area towards sources of light (i.e. the

window, artificial light source).

3.9.2 Trying Out New Locations

One future goal for EH-HouseKeeper is to start learning patterns for wall typology that we can

transfer the attenuation patterns for other gateway locations in the same building, or different

buildings. Doing so potentially allows us to reduce the total number of gateways used while in-

creasing the signal health scores across the different devices. In addition, if we can validate model

for different spaces using the same techniques, we can begin to optimize for gateway and device

location virtually before deploying the system into a new environment.

3.9.3 Relating the Sensors to the Occupants

Since the number of sensors and gateways to deploy are limited, considerations must be made about

which space is more important to study, and therefore where is the optimal location for the devices

and what is an appropriate signal health score threshold. Simply improving the overall coverage

of the EH sensors by changing device locations might not sufficiently collect data from true areas

of interest that serve the occupant community (e.g. which what space an occupant feels the most

creative, the most productive, and why). Moving forward, we plan to conduct interviews with the

residents directly within the lab, to investigate what are the most desired attributes within a space

as judged by the residents, and to investigate if there are any quantifiable patterns for these spaces.

While there is still more work be done on scrutinizing both the quantity and quality of the

data, ultimately, deploying a system like EH-HouseKeeper that can continuously check for network,

gateway, and sensor compliance and notify the administrators of unexpected faults seems to be a

prerequisite to scaling up the number of EH sensors installed, or even just to carry out longitudinal

studies with existing EH sensors.
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3.10 Conclusion

Using energy-harvesting sensors in indoor environments is a promising technique for enabling data-

driven and real-time optimization in the millions of existing buildings already constructed. However,

these sensors add uncertainty to the data collection process due to intermittent energy availability

and unreliable wireless connectivity. To help building managers successfully adopt these emerging

sensors, we present EH-HouseKeeper to identify when a sensor has actually failed and to help guide

deployment upgrades over time. The health score provided by EH-HouseKeeper enables building

managers to rapidly correct faulty devices without the overhead of periodic inspections or unneces-

sary maintenance. We demonstrate over the course of half a year in a sensor-rich environment that

EH-HouseKeeper is effective, and show how it can help guide future deployments. EH-HouseKeeper

is an important step in making energy-harvesting sensors truly viable at the large scale needed to

reduce the energy consumption and increase the occupant utility of the world’s buildings.
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Conclusion

This dissertation integrates contextual data to improve instrumentation, utility, and maintenance

for living labs. The instrumentation chapter (Chapter 1) combines modern building simulation

techniques and joins them with key algorithms to optimize the deployment of IoT sensors. The work

demonstrates the approximate optimal location and quantity of sensors to deploy for its application.

It also showcases the methodology as a potential venue to limit privacy overreach by providing a

score equal to possible inferences. As more and more sensors are being integrated into buildings, the

distinction between data ownership and for whose benefit the data is being used will only grow more

critical [142]. This chapter demonstrates the first step towards scalably elucidating these trade-offs.

After sensor deployment, in the utility chapter (Chapter 2), commercial off-the-shelf environmental

sensors and medical data from a real hospital were combined to demonstrate statistically significant

variables and how those variables can improve patient (n = 38) sleep in a hospital environment.

The work illustrates how interdisciplinary collaborations and signal processing schemes coupled with

statistical models can be combined to inform patient care and recovery. Finally, the maintenance

chapter (Chapter 3) explores maintaining energy harvesting sensors for long-term environmental

sensing. Building information alongside knowledge of signal attenuation are utilized to predict data

package loss and diagnose sensing issues. Together, by integrating contextual data before, during,

and after sensor deployments, this dissertation contributes to practical improvements of living labs

and reduces the gap between architectural data, sensors, and computation. For future directions,

this dissertation anticipates using the concept of “Observability” [52], combining physical and

virtual sensors to make inferences. Additional utility is predicted if such a workflow was brought

89
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together in a similar open-source nature as Honeybee and Ladybug [49]. Further, finding ways

to sense environmental attributes at larger scales and ways that the indoor environment might

relate to more significant societal challenges, similar to [143], could be a useful metric that can help

inform local policy decision-making and lead to broader societal impacts. As sensors and simulation

platforms become more accessible, the gap between digital and physical, bits and atoms [144] will

only continue to shorten, hopefully, towards a better and more healthy future.
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[60] Carlos Ŕıcio and ApaFrancesca Panin. Acute Wards : a Literature Review. (February), 2020.

[61] Jun-Ki Min, Afsaneh Doryab, Jason Wiese, Shahriyar Amini, John Zimmerman, and Jason I

Hong. Toss’n’turn: smartphone as sleep and sleep quality detector. In Proceedings of the

SIGCHI conference on human factors in computing systems, pages 477–486, 2014.

[62] Hagen Fritz, Kerry A Kinney, Congyu Wu, David M Schnyer, and Zoltan Nagy. Data fusion of

mobile and environmental sensing devices to understand the effect of the indoor environment

on measured and self-reported sleep quality. Building and Environment, 214:108835, 2022.

[63] Brandon M Booth, Karel Mundnich, Tiantian Feng, Amrutha Nadarajan, Tiago H Falk,

Jennifer L Villatte, Emilio Ferrara, and Shrikanth Narayanan. Multimodal human and en-

vironmental sensing for longitudinal behavioral studies in naturalistic settings: Framework

for sensor selection, deployment, and management. Journal of medical Internet research,

21(8):e12832, 2019.

[64] Andrew D Krystal and Jack D Edinger. Measuring sleep quality. Sleep medicine, 9:S10–S17,

2008.

[65] Teofilo L Lee-Chiong. Sleep: a comprehensive handbook. John Wiley & Sons, 2005.

[66] Sallie Ann Keller, Stephanie S Shipp, Aaron D Schroeder, and Gizem Korkmaz. Doing data

science: A framework and case study. Harvard Data Science Review, 2(1), 2020.

[67] João Ramos, Joana Belo, Dário Silva, Carlos Diogo, Susana Marta Almeida, and Nuno Canha.

Influence of indoor air quality on sleep quality of university students in lisbon. Atmospheric

Pollution Research, 13(2):101301, 2022.

[68] Wan-qing He, Ai-jun Shi, Xia Shao, Lei Nie, Tian-yi Wang, and Guo-hao Li. Insights into the

comprehensive characteristics of volatile organic compounds from multiple cooking emissions

and aftertreatment control technologies application. Atmospheric Environment, 240:117646,

2020.

[69] Farman Hassan, Muhammad Hamza Mehmood, Babar Younis, Nasir Mehmood, Talha Imran,

and Usama Zafar. Comparative analysis of machine learning algorithms for classification of

environmental sounds and fall detection. Science and Technology, 4(1):163–174, 2022.



BIBLIOGRAPHY 99

[70] Ankush Manocha. Iot-assisted irregular environmental event determination for health anal-

ysis of pregnant females. Transactions on Emerging Telecommunications Technologies,

33(1):e4392, 2022.

[71] TA Bedrosian and RJ Nelson. Timing of light exposure affects mood and brain circuits.

Translational psychiatry, 7(1):e1017–e1017, 2017.

[72] C Jarboe, J Snyder, and MG Figueiro. The effectiveness of light-emitting diode lighting for

providing circadian stimulus in office spaces while minimizing energy use. Lighting Research

& Technology, 52(2):167–188, 2020.

[73] Helene Emsellem, K Knutson, D Hillygus, O Buxton, H Montgomery-Downs, M LeBourgeois,

and J Spilsbury. sleep in america poll: Sleep in the modern family. Arlington, VA: National

Sleep Foundation, 2014.

[74] Christoph Frank Reinhart. Daylighting handbook: fundamentals, designing with the sun.

Christoph Reinhart, 04 2014.

[75] David L. DiLaura, Kevin W. Houser, Richard G. Mistrick, and Gary R. Steffy. The lighting

handbook. 2011.

[76] Kathy Missildine, Nancy Bergstrom, Janet Meininger, Kathy Richards, and Marquis D Fore-

man. Sleep in hospitalized elders: a pilot study. Geriatric nursing, 31(4):263–271, 2010.

[77] Amy Stafford, Amy Haverland, and Elizabeth Bridges. Noise in the icu. AJN The American

Journal of Nursing, 114(5):57–63, 2014.

[78] Kenneth I Hume, Mark Brink, Mathias Basner, et al. Effects of environmental noise on sleep.

Noise and health, 14(61):297, 2012.

[79] Monica S Hammer, Tracy K Swinburn, and Richard L Neitzel. Environmental noise pollution

in the united states: developing an effective public health response. Environmental health

perspectives, 122(2):115–119, 2014.

[80] G Brooke Anderson, Michelle L Bell, and Roger D Peng. Methods to calculate the heat index



100 BIBLIOGRAPHY

as an exposure metric in environmental health research. Environmental health perspectives,

121(10):1111–1119, 2013.

[81] Peder Wolkoff. Indoor air humidity, air quality, and health–an overview. International journal

of hygiene and environmental health, 221(3):376–390, 2018.

[82] Cong Song, Tingting Zhao, Zhiyuan Song, and Yanfeng Liu. Effects of phased sleeping

thermal environment regulation on human thermal comfort and sleep quality. Building and

Environment, 181:107108, 2020.

[83] Md Dilshad Manzar, Mani Sethi, and M Ejaz Hussain. Humidity and sleep: a review on

thermal aspect. Biological Rhythm Research, 43(4):439–457, 2012.

[84] Li Lan, K Tsuzuki, YF Liu, and ZW Lian. Thermal environment and sleep quality: A review.

Energy and Buildings, 149:101–113, 2017.

[85] Zachary A Caddick, Kevin Gregory, Lucia Arsintescu, and Erin E Flynn-Evans. A review

of the environmental parameters necessary for an optimal sleep environment. Building and

environment, 132:11–20, 2018.

[86] Xiaojing Zhang, Guanzhang Luo, Jingchao Xie, and Jiaping Liu. Associations of bedroom

air temperature and co2 concentration with subjective perceptions and sleep quality during

transition seasons. Indoor air, 31(4):1004–1017, 2021.

[87] Bowen Du, Marlie C Tandoc, Michael L Mack, and Jeffrey A Siegel. Indoor co2 concentrations

and cognitive function: A critical review. Indoor Air, 30(6):1067–1082, 2020.

[88] Peter Strøm-Tejsen, D Zukowska, Pawel Wargocki, and David Peter Wyon. The effects of

bedroom air quality on sleep and next-day performance. Indoor air, 26(5):679–686, 2016.

[89] Lance A Wallace, Edo D Pellizzari, Tyler D Hartwell, Roy Whitmore, Charles Sparacino, and

Harvey Zelon. Total exposure assessment methodology (team) study: personal exposures,

indoor-outdoor relationships, and breath levels of volatile organic compounds in new jersey.

Environment International, 12(1-4):369–387, 1986.



BIBLIOGRAPHY 101

[90] Brandon E Boor, Michal P Spilak, Jelle Laverge, Atila Novoselac, and Ying Xu. Human

exposure to indoor air pollutants in sleep microenvironments: A literature review. Building

and Environment, 125:528–555, 2017.

[91] Hagen Fritz. Data fusion of mobile and environmental monitoring devices to understand

the effects of the indoor environment on sleep quality. Whole Communities-Whole Health-

Published Research, 2021.

[92] Xiaochen Tang, Pawel K Misztal, William W Nazaroff, and Allen H Goldstein. Volatile

organic compound emissions from humans indoors. Environmental science & technology,

50(23):12686–12694, 2016.

[93] Chien-Cheng Jung, Pei-Chih Wu, Chao-Heng Tseng, and Huey-Jen Su. Indoor air quality

varies with ventilation types and working areas in hospitals. Building and Environment,

85:190–195, 2015.

[94] Energy Corps. California air resources board. 2019.

[95] Lei Li, Weituo Zhang, Li Xie, Sinong Jia, Tienan Feng, Herbert Yu, Jie Huang, and Biyun

Qian. Effects of atmospheric particulate matter pollution on sleep disorders and sleep dura-

tion: a cross-sectional study in the uk biobank. Sleep medicine, 74:152–164, 2020.

[96] Environmental Protection Agency. REVISED AIR QUALITY STANDARDS FOR PAR-

TICLE POLLUTION AND UPDATES TO THE AIR QUALITY INDEX (AQI) . https:

//www.epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.pdf,

2012. [Online; accessed 12-June-2023].

[97] Liqiong Chang, Jiaqi Lu, Ju Wang, Xiaojiang Chen, Dingyi Fang, Zhanyong Tang, Petteri

Nurmi, and Zheng Wang. Sleepguard: Capturing rich sleep information using smartwatch

sensing data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2(3), sep 2018.

[98] Florian Wahl and Oliver Amft. Data and expert models for sleep timing and chronotype

estimation from smartphone context data and simulations. Proceedings of the ACM on In-

teractive, Mobile, Wearable and Ubiquitous Technologies, 2(3):1–28, 2018.

https://www.epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.pdf
https://www.epa.gov/sites/default/files/2016-04/documents/2012_aqi_factsheet.pdf


102 BIBLIOGRAPHY

[99] Ryan M. May, Kevin H. Goebbert, Jonathan E. Thielen, John R. Leeman, M. Drew Camron,

Zachary Bruick, Eric C. Bruning, Russell P. Manser, Sean C. Arms, and Patrick T. Marsh.

Metpy: A meteorological python library for data analysis and visualization. Bulletin of the

American Meteorological Society, 103(10):E2273 – E2284, 2022.

[100] Rakesh Malladi, Giridhar P Kalamangalam, and Behnaam Aazhang. Online bayesian change

point detection algorithms for segmentation of epileptic activity. In 2013 Asilomar Conference

on Signals, Systems and Computers, pages 1833–1837. IEEE, 2013.

[101] Arash Tavakoli, Shashwat Kumar, Xiang Guo, Vahid Balali, Mehdi Boukhechba, and Arsalan

Heydarian. Harmony: A human-centered multimodal driving study in the wild. IEEE Access,

9:23956–23978, 2021.

[102] Shashwat Kumar, Debajyoti Datta, Guimin Dong, Lihua Cai, Laura Barnes, and Mehdi

Boukhechba. Leveraging mobile sensing and bayesian change point analysis to monitor

community-scale behavioral interventions: a case study on covid-19, 12 2021.

[103] Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change point

detection methods. Signal Processing, 167:107299, 2020.

[104] Ariel B Neikrug and Sonia Ancoli-Israel. Sleep disturbances in nursing homes. The journal

of nutrition, health & aging, 14(3):207–211, 2010.

[105] David Clark-Carter. z scores. Encyclopedia of statistics in behavioral science, 2005.

[106] B Jason. Smote for imbalanced classification with python, 2021.

[107] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:

synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–

357, 2002.
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Chapter A

Appendix

@Algorithm 1 Greedy Set Cover Approximation (GSCA)

1: Input:

• Universe of elements UA

• Collection of sub universes U = {U1, U2, ...Un}

• Value function V (S)

2: Output: Array P , containing position(s) p of sensors as referenced by index in S

3:

4: I = {} ▷ Viewable Universe

5: P = {} ▷ The final indices of the selected points stored here

6: S′ = S ▷ Retain the original collection

7: while I ̸= U do

8: i = ( V (S0)
|S0−I| ,

V (S1)
|S1−I| , ...

V (S|S|)

|S|S|−I|) ▷ Find index of highest value in the remaining set of S

9: if Si ⊈ I then ▷ Only add the location if it is not a subset of the existing viewable

universe I

10: I = I
⋃
Si

11: end if

12: S′ = S′ \ Si ▷ Remove selected subset from consideration

13: Append index of Si in relation to S to P

14: if S′ = ∅ then ▷ If you reach the end without completing the universe

15: return No set cover exists

107



108 CHAPTER A. APPENDIX

16: end if

17: end while

18: return P
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Figure A.1: Example manual selection of 3 sensor positions, with the complex scenario (see Section
1.2.3) in mind, achieving a 95% (540/567) total inferable states.
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FallRiskTotal, NUDESC-Disorientation, NUDESC-InappropriateBehavior, NUDESC-
InappropriateCommunication, NUDESC-IllusionsandHallucinations, NUDESC-
PsychomotorRetardation, NuDESCScore, PainScale, PainRating, BERTCall, BERTReason,
METCall, Fall, DidFallCauseanInjury, O2DeliveryDevice, O2FlowRateLmin, SpO2, Nonnarcotic-
PainMedName, NonnarcoticPainMedRoute, NonnarcoticAction, OpioidMedName, OpioidMe-
dRoute, OpioidAction, BenzodiazepineReceptorAgonistsName, BenzodiazepineReceptorAgonists,
SedativeHypnoticMedName, SedativeHypnoticMedRoute, OtherMedsthatCouldAffectSleepan-
dorDeliriumName, OtherMedsthatCouldAffectSleepandorDeliriumRoute, OtherMedsAction-
Type, OtherInpatientSleepMedName, OtherInpatientSleepMedRoute, InpatientMelatoninUse,
MedNameDoseCodes, InpatientMedsforDelirium, InpatientMedsforDeliriumNameincludesdose,
InpatientMedsforDeliriumRoute, NighttimeEvent19000700VitalSignsTaken, NighttimeEventEKG,
NighttimeEventBloodGlucoseMeasured, NighttimeLabEvent, NighttimeAdministrationofMed-
sEXCLUDINGSPECIALMEDS, MedName, MedicationAction, NighttimeADTEvent, Night-
timeConsult, NighttimeProcedure, NighttimeLinesDrainsAirwayWound, OtherNighttimeEvent,
NighttimeEventCarePlanInterventionEvent, IOEventatNight, NeuroWDLB, IfnotWDL, Levelof-
Consciousness, Orientated, CommentRelatedtoSpecificEvent, CommentRelatedtoSubjectnotrelat-
edtoaspecificdatetime.

Figure A.2: The columns used from EPIC chosen by our nursing team

METCall,Fall,O2DeliveryDevice

Figure A.3: Individual Events Columns

NonnarcoticPainMedName,OpioidMedName,BenzodiazepineReceptorAgonistsName, Seda-
tiveHypnoticMedName,OtherMedsthatCouldAffectSleepandorDeliriumName, OtherInpa-
tientSleepMedName,InpatientMelatoninUse, InpatientMedsforDelirium

Figure A.4: Medication Administration Events Columns

NighttimeEvent19000700VitalSignsTaken,NighttimeEventEKG, NighttimeEventBloodGlucose-
Measured, NighttimeLabEvent,NighttimeAdministrationofMedsEXCLUDINGSPECIALMEDS,
NighttimeADTEvent,NighttimeConsult,NighttimeLinesDrainsAirwayWound, OtherNight-
timeEvent,NighttimeEventCarePlanInterventionEvent,IOEventatNight

Figure A.5: Other Nighttime Events Columns
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Figure A.6: Imbalanced class labels before SMOTE, where the no events class represents the
majority class.

Figure A.7: A strong negative relationship between temperature and humidity across patients and
room, leading to humidity’s removal in the final model. The number on top of each subgraph refers
to the patient id.
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Figure A.8: Weekend Versus Weekday PM2.5 and Sleep Disruption, showing peaks around 12 pm,
6 pm, and 12 am, indicating a relationship between perturbation and food consumption times.
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