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Abstract

Many diseases involve malfunction of several signaling pathways. After close to a

century of signaling research, we have access to a wealth of information about many

individual signaling pathways. However, in order to take our understanding to the

next level, we need to study signaling pathways in the context of each other. These

types of systematic studies require simultaneous measurement of multiple entities

across several time points. The resulting big and complex data sets can be simplified

and decoded by means of computational techniques such as mathematical model-

ing. The work in my thesis builds upon a prediction from a data-driven statistical

model using bioinformatics tools to extract hypotheses. These hypotheses are fur-

ther tested in vitro by means of molecular biology techniques and pharmacological

perturbations. Specifically, the model predicted that an early-phase, Akt-associated

signal downstream of insulin repressed a set of transcripts induced by TNF. Through

bioinformatics and cell-based experiments, we identified the Akt-repressed signal as

glycogen synthase kinase-3 (GSK3)-catalyzed phosphorylation of Ser37 on the long

form of the transcription factor GATA6. Phosphorylation of GATA6 on Ser37 pro-

moted its degradation, thereby inhibiting the ability of GATA6 to act as a repressor of

transcripts that are induced by TNF and attenuated by insulin. Our analysis showed

that insulin-induced signaling activity and TNF-induced transcriptional regulation is

integrated through phosphorylation of GATA6L.
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Chapter 1

Introduction

Cells are exposed to a sea of mixed, diverse and sometimes conflicting messages.

These signals shape the information network inside the cells including signaling path-

ways and gene expression programs which drive cellular decisions. A large body of

research has been conducted trying to understand individual signaling pathways in

isolation which has substantially increased our knowledge about the way a cell pro-

cesses each individual message. This information has translated into the discovery

and development of many drugs. Nevertheless ample scientific evidence suggests that

these pathways never work in isolation. One example is the mechanism of acquired

drug resistance in cancer therapy when only one pathway is targeted. Such observa-

tions trigger scientific curiosity to pursue several intriguing question: How do cells

process one stimulus in the context of others in these mixed sea of cues and yet make

the right decision? How do signaling pathways cross-communicate with each other?

What are those specific nodes of crosstalk between signaling pathways and how can

these be investigated in a systematic way? The emergence and accessibility of new

1
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high throughput technologies provides opportunities for scientists to dive in and study

these cellular pathways in the context of each other at a systems level. These systems

analysis methods enable researchers to quantify the information at different levels, as

it flows through the cell from the extracellular environment through the cytoplasm

into different compartments. Moreover, high throughput systems methods enable

scientists to take a global look at what is happening inside the cells by generating

big datasets. One challenge though would be to parse out the interesting information

within the data and discover new biology. The work in this dissertation demon-

strates an example where applying a combination of data-driven statistical modeling

and bioinformatics methods enabled us to extract testable hypotheses from signaling

and transcriptomics datasets. In addition, testing these hypotheses using molecular

biology techniques helped us to make a new discovery regarding an originally hidden

crosstalk node.

1.1 Network biology

Common diseases such as cancer, diabetes and asthma develop due to a complex

interplay between many genes, proteins and environmental factors. Reductionist

molecular biology approaches that study and target one factor at a time have failed to

increase the number of efficacious drugs as expected in the postgenomics era [1]. The

emergence and increased accessibility of high-throughput technologies has facilitated

the adoption of network-based approaches. These approaches allow for a more holistic
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understanding of biological systems which is the goal of systems biology. Systems

biology seeks answer to many unsolved problems in biology. For example, what

happens if the effects that biologists are seeking by performing experiments are not

10 fold or higher? Should one just leave that particular scientific question or nuances

and choose another question? It seems that scientific community has paid the price for

not focusing on these nuances and employing only reductionist traditional approaches.

1.2 Pathway crosstalk

A topic of great interest to both systems biologists and signaling biologists is path-

way crosstalk [2]. Receptor-mediated signaling pathways are densely connected and

exhibit nonadditive behaviors when stimulated with multiple input ligands [3–5].

Complexity increases even further when considering the consequences of signaling on

gene regulation [6–8]. Fortunately, signaling synergy-antagonism is not typically ob-

served with more than two inputs [9–12], suggesting that stimulus pairs are sufficient

to assess potential crosstalk.

1.2.1 Crosstalk types

Robin Donaldson and Mufty Calder [13] characterized five types of pathway crosstalk.

The authors further validated their proposed crosstalk categories using published ex-

perimental data [14]. These crosstalk categories are enumerated below and illustrated

in Figure 1.1, adopted from Harvey [15].
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• Signal flow crosstalk: a molecule in a pathway changes the activity of signaling

molecule (s) in another pathway.

• Substrate availability crosstalk: this type of crosstalk happens when two path-

ways share common components which they compete for.

• Receptor function crosstalk: a receptor’s function is altered in a way that sig-

naling can hppen in the absence of ligand.

• Gene expression crosstalk: two distinct signaling pathways have mutual effects

on a transcription factor and the subsequent gene expression.

• Intracellular communication crosstalk: this type of crosstalk happens when

one signaling pathway changes the amount of substrate availability for another

pathway.

It is important to note that these suggested mechanisms are not the only mech-

anisms of pathway cross-communication. Among others, signal from two inputs can

be integrated at the level of gene expression. In this type of crosstalk, different sig-

nals can activate pathways that each perturb a different transcription factor that

both mutually modulate the same set of genes. Alternatively, the two pathways can

modify the same common transcription factor post-translationally, thus modulating

the transcription of a set of genes (Figure 1.1D).
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Figure 1.1: Schematic representation on the different types of signaling crosstalk,
adopted from Harvey [15]. In signal flow crosstalk (a) a molecule in one pathway
affects the rate of activation of signaling molecules in a second pathway. Substrate
availability crosstalk (b) occurs when two pathways ‘compete’ for common compo-
nents. In receptor function crosstalk (c) an individual receptor’s ability to detect a
ligand is altered and signaling can occur in ligand absence. When gene expression
crosstalk (d) occurs, two pathways have reciprocal effects on transcription factor acti-
vation and subsequent gene expression. Lastly, intracellular communication crosstalk
(e) occurs when one pathway affects the amount of available ligand for a second path-
way.
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1.2.2 TNF-Insulin pathway crosstalk

Cytokine-cytokine crosstalk has an important role in both normal and disease states.

For example in Inflammatory Bowl Disease (IBD), TNF is a key player in mediating

the inflammation of the colonic epithelium [16]. TNF when combined with other

inflammatory cytokines can cause cultured colonic epithelial cells to apoptose [17]. On

the other hand, Insulin-like growth factor and Insulin signaling stimulate growth in

these same cells [18,19]. The opposing communication between the proinflammatory

cytokine TNF and insulin has been observed in other cell types as well. For example

in adipocytes it has been established that TNF antagonizes the effect of insulin

[20, 21]. Thus TNF and insulin are good candidate cytokines for studying pathway

crosstalk due to their documented potent and antagonistic effect in several cell and

disease contexts. A better understanding of TNF and insulin crosstalk can yield novel

therapeutics for conditions such as obesity, diabetes and inflammatory bowl disease.

1.3 GATA family of transcription factors

GATA is an evolutionary conserved family of zinc-finger transcription factors that

bind to the nucleotide sequence (A/T)GATA(A/G) in the regulatory region of genes

and activate or repress their expression. GATA transcription factors have been stud-

ied in the context of development, differentiation and oncogenesis. There are currently

six members in vertebrates. Based on initial studies of their tissue specific expression

patterns they have been divided into two subfamilies. GATA1, 2, and 3 belong to the
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hematopoietic subfamily known to be expressed in hematopoitic stem cells. GATA4,

5, and 6 are expressed mainly in mesoderm and endoderm-derived tissues such as

heart, gut, liver, lung and gonad [22]. However recent studies have shown a much

broader expression pattern for GATA factors beyond this initial categorization. One

example is the expression and important role of GATA3 in non-hematopoitic cells

such as mammary epithelial cells [23]. Another example is the important role of

GATA6 in the regulation of tissue macrophage proliferative renewal [24]. Genetic

perturbation studies have demonstrated that loss of all GATA factors other than

GATA5 is embryonically lethal [25–31].

At the amino acid level, GATA transcription factors are well conserved in their

two zinc finger domains (Figure 1.2A). However the sequence outside the zinc finger,

vary a lot among the different family members (Figure 1.2B). On the other hand each

GATA factor’s sequence seems to be well conserved across the different vertebrate

species. The variation in the sequence outside the zinc finger domain in GATA

proteins points to an existing regulatory potential in these regions.

1.4 GATA6

GATA6 is the sixth member of the GATA family of zinc finger transcription factors.

A number of perturbation studies point out the important role of this transcription

factor in early embryogenesis and tissue specification. Among other GATAs, GATA6

is required earliest in embryogenesis. According to global gene knockout studies
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Figure 1.2: Domain conservation in the sequence of human GATA transcription fac-
tors. Multiple sequence alignment of the zinc finger region (A) and the C-terminal
region (B) of human GATA factors using ‘Clustal Omega’.
* (asterisk) indicates positions which have a single, fully conserved residue.
: (colon) indicates conservation between groups of strongly similar properties.
. (period) indicates conservation between groups of weakly similar properties.



Chapter 1. Introduction 9

in mice, GATA6−/− mouse embryos die at E4.5-7.5 due to inability to develop to

gastrulation [30,31].

GATA6 was first PCR-cloned from pig and rat stomach extracts (initially named

GATA-GT1) along with GATA4 and GATA5 by Tamura S. et al. in Masamitsu

Futai lab in Osaka University in 1993. Later in the 90s, human GATA6 cDNA

encoding a 449-amino acid protein was cloned by several research groups [32–34].

Right around the same time, GATA6 cDNAs encoding similar-length proteins were

cloned from other vertebrates including xenopus, chicken, and mouse [30,35,36]. The

sequence of this form of GATA6, alternatively called S-type or short form GATA6

(GATA6S) has a high homology to other closely related GATAs, GATA4 and GATA5,

especially in the two zinc finger domains (Figure 1.2A). In 1999, Brewer et al. [37]

cloned full length human and mouse GATA6 cDNA which encode a longer version

of GATA6 protein. GATA6L or L-type GATA6 as first mentioned by Takeda et

al. in 2004, contains a 146-amino acid long N-terminal extension which is absent in

GATA6S. Both forms of GATA6 protein are translated from the same mRNA. The

second in frame methionine codon, Met147 is selected through a phenomenon called

ribosomal leaky scanning which results in the production of the short form of GATA6

protein [38]. Due to early misannotations of nonhuman genomes and a lack of proper

reagents, the majority of GATA6 literature has focused on GATA6S while the role of

the highly conserved N-terminal extension remains unclear.
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1.5 Post-translational regulation of transcription factors

Site-specific DNA-binding transcription factors function at the interface between sig-

naling pathways and gene expression programs. These important regulators integrate

external signal information relayed from signaling pathways into gene expression pro-

grams towards a particular cell fate. The activity of transcription factors (TF)

can be modulated by signaling pathways through post-translational modifications

(PTM) [39].

Among other modifications, phosphorylation of serine, threonine and tyrosine

residues in proteins is an evolutionary conserved mechanism used by cells to positively

or negatively regulate the activity of transcription factors. This reversible modifica-

tion is a common way that extracellular signals are integrated into changes in gene

programs that leads to appropriate cellular behaviours. Phosphorylation of a tran-

scription factor can affect its stability, localization, protein-protein or protein-DNA

interaction thus changing the function of these important regulators [40]. Identifying

functional phosphorylation sites on transcription factors provides a good opportunity

for perturbing these hardly druggable molecules.

1.6 GATA6 post-translational regulation

A number of unbiased proteomics studies have reported phosphorylation sites within

GATA6 protein [41–46]. The majority of published studies regarding GATA6 phos-

phorylation has been focused on the role of MAP kinases [47–49]. Adachi et al.
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reported a Ras-MEK-ERK mediated phosphorylation of GATA6 on Serine120 which

is Serine266 of the full length human GATA6 protein. Phosphorylation of Serine266

has also been reported by a number of proteomics studies [41, 45, 46]. Ushijima et

al. [48] suggested a JNK-mediated phosphorylation on GATA6 however they failed

to provide any site-specific evidence. It is noteworthy to mention that the GATA6

plasmid constructs used in these studies encode the short form of GATA6 protein

but not the full length protein that contains an extended N-terminal region.

1.7 Data driven modeling approaches

An ongoing challenge for systems and network biology is the integration of different

levels of biological information. Here we used a novel data driven modeling approach

to overcome this challenge and integrate signaling network data into gene expression

data. An important feature of these two datasets is that they are structurally similar

which enabled us to integrate them by data-driven statistical modeling. The inter-

relation of these two databases by a type of regression called “partial least square

regression” modeling approach helped us to first predict the gene fluctuations from

signaling information. More importantly, we were able to better grasp the complex

information network in response to complex inputs and examine how the statistical

model makes prediction(s). Thus, the modeling approach combined with bioinfor-

matics tools, further enabled us to generate hypotheses that were tested experimen-

tally by employing molecular biology techniques. The combinatorial approach led to
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novel discoveries regarding hidden nodes in the information network with no direct

biological measurements in the input databases.

The availability of high-throughput technologies for quantifying signaling, gene

expression and cellular responses has made it possible to collect large datasets on

different levels of the information flow inside the cells. These big and complex datasets

can be advantageous in that they provide a more holistic view of the information

flow inside the cells; however they can also bring confusion. Thus, there is a need

to employ approaches that simplify these datasets allowing us to grasp the data and

extract biological insight.

One important tool that can reduce the complexity of these big datasets is com-

putation and modeling approaches that systems biologists are equipped with. There

are diverse computational modeling approaches that can provide biological insights

if carefully used depending on the biological question being asked and the structure

of the data. One group of modeling approaches is “theory-driven” meaning that it is

rooted in prior biological knowledge of the pathways under study. In this approach,

the mathematical model specifications such as input-output relationship and model

parameters are defined based on published literature and previous experimental re-

sults. The adoption of these knowledge-based approaches have provided mechanistic

biological insight which are hard to achieve by pure experimental work [50].

However, even for well-studied pathways such as receptor tyrosine kinases [51],

these hypothesis driven models, including ordinary differential equation (ODE) ,
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partial differential equation (PDE) and stochastic models, quickly uncover gaps in

our understanding [52]. Often, the phenomenon of interest is so poorly characterized

that we only really have a sense of the pathways that are important and a rudimentary

rule set for how they could interact [53,54].

In these circumstances, it can be advantageous to pursue statistical models that do

not prescribe mechanisms but allow the data to define the system of interest [55,56].

In statistical modeling, one must first collect a systematic dataset that has been

designed to capture as many relevant variations and covariations as possible among

genes, proteins, and cellular phenotypes [57,58]. Although not absolutely required, it

is strongly recommended that the statistical approach be chosen conceptually before

the data acquisition. Each class of models has its own set of strengths and weak-

nesses [55], and ideally the dataset should be tailored to exploit a model’s strengths

and avoid its weaknesses.

Among the different statistical modeling approaches, techniques like partial least

squares are ideal for predicting new behaviors [55]. Statistical models may be “mech-

anism free”, but it is possible to guide models toward identifying new mechanisms

by selecting the right biomolecular measurements and designing the experiments ap-

propriately [56,59].

With current technologies in molecular biology, any laboratory can now generate

datasets that are highly multivariate. Statistical modeling serves as a powerful way

to extract as much information as possible from these often expensive and difficult-to-
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Figure 1.3: A data matrix of time points and three intracellular signals: v-akt murine
thymoma viral oncogene homologue (AKT) activity, C-jun N-terminal kinase (JNK)
activity, Glycogen synthase kinase-substrate (GSK3-sub).

conceptualize datasets. The resulting patterns and relationships identified by statis-

tical models are not always apparent when analyzing the full spectrum of the dataset,

as it often contains measurements not significant to the system. Thus, the class of

statistical models that we will discuss in this chapter centers around those that build

simplified representations of data to give a clearer picture of possible mechanisms

underlying the system.

Usually, in modern biological datasets, we have many more variables per obser-

vation than observations of each variable. These “short and fat” data tables (or

matrices) (Figure 1.7) are inherently underconstrained; in frequentist statistics, it

is equivalent to having fewer than zero degrees of freedom. Consequently, many of

the dimensions are redundant with one another, in that they can be expressed as

linear combinations of other variables. This redundancy allows the data matrix to be

“reduced” in interesting and useful ways, depending on the type of statistical model

and the overall goals of the study.

Here, we will review three main categories of statistical models that reduce the
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dimensions of multivariate datasets. We begin with singular value decomposition

(SVD), which draws on the concept of eigenvalues and eigenvectors in linear algebra

to decompose a matrix according to its eigenvalue spectrum. Then, we will discuss

principal components analysis (PCA), which is conceptually akin to SVD but yields

a factorized model that is more directly interpretable with respect to the starting

dataset. Finally, we will link reduced dimensions to the concept of predictive statis-

tical modeling through partial least squares regression (PLSR). The statistical model

that will be discussed in chapter 2 is a more modern implementation of PCA and

PLSR that involves tensor decomposition of data cubes or hypercubes of structured

datasets.

1.8 Singular value decomposition

Before going into detail about singular value decomposition (SVD) computation, it

is important to introduce some basic concepts from vector and matrix algebra. Most

datasets can be organized as matrices with the rows indicating experimental observa-

tion, such as treatments and time points and the columns indicating variables, such

as enzymatic activity and phosphoprotein levels. One way to simplify multidimen-

sional data is to focus on parts of the data that show the most variation. Linear

algebra serves this purpose by finding orthogonal or linearly independent vectors in

the data matrix. Since orthogonal vectors have zero projections into one another,

they can act as latent variables onto which the data can be mapped [60]. Orthogonal
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vectors of a data matrix can be identified by calculating eigenvectors. The nonzero

eigenvector (x) of matrix A satisfies equation 1.1:

Ax = λx (1.1)

Where A is a square matrix and λ is a scalar called “eigenvalue”. An eigenvector

can serve as a new dimension along which the data can be projected. By definition,

matrix A is an n × n square matrix. However, typical biological datasets have fewer

observations than variables and thus are rarely square matrices with full rank. One

way to solve this problem is by factorizing the data matrix using singular value

decomposition.

1.8.1 SVD: mathematical framework

Suppose that we define an m × n data matrix A that can be broken down into the

product of three other matrices U, S, and V. This factorization results in the following

equation:

Am×n = Um×lSl×lV
T
l×n (1.2)

Where U is an m × l left-singular matrix, S is a square l × l diagonal matrix,

V is an l × n right matrix, and U and VT are orthogonal matrices. The diagonal

entries in S are the singular values of A (square roots of non-zero eigenvalues of U
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Figure 1.4: SVD Decomposition Schematic. Decomposition of the yeast elutriation
data from Spellman et al. [62] into a left singular-value matrix, a square matrix of
eigenvalues (four eigenvalues shown), and a right singular-value matrix.

and VT) descending in magnitude from top left to bottom right, the columns in VT

are right-singular vectors and the columns in U are left-singular vectors [61]. Once

singular vectors are extracted, the significant ones can be determined and used for

visualizing the data.

1.8.2 Application of SVD to gene expression data analysis

Gene expression data is a good candidate for singular value decomposition based

analysis due to the inherent noise in the measurements that makes the detection of

small signals rather difficult. Alter et al. performed SVD analysis on the budding

yeast elutriation gene microarray data [62]. The elutriation dataset used by Alter

et al. contained 5,981 genes (n=5,981 genes) captured over the course of one yeast

cell cycle (fourteen time points; m=14). The dataset can be tabulated to an n × m

matrix with each row reflecting the expression of a single gene in 14 different time

points (14-arrays) and each column showing the expression of n-genes in a single

array (timepoint). SVD transforms this dataset from an n × m space to a reduced l-

eigengenes × l-eigenarrays subspace where l= [min m, n] (Figure 1.4). The diagonals
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in the l × l matrix ε are eigenvalues here called “eigenexpression levels” [εl] which

can be used to calculate “fractions of eigenexpression” for the lth eigenvalue from the

equation below:

pl =
ε2l∑l
k=1 ε

2
k

(1.3)

Alter et al. used fractions of eigenexpression as a mean to infer the significance

of eigengenes and their corresponding eigenarrays (singular vectors). Once the sig-

nificance of singular values (SVs) was determined, the relationship between these

mathematical concepts and biological processes or cellular states, in this case cell cy-

cle, were investigated. To this end, the authors visualized individual singular values

by plotting the expression level of each eigengene over time. Since the authors were

interested in gene programs involved in a specific cellular state, they filtered out the

first singular vector because it followed a steady state expression pattern. The next

three SVs showed biologically meaningful oscillations during cell cycle. The oscilla-

tions of the second and fourth SVs at early time points corresponded to a transient

response to elutriation. Thus SVD naturally decomposed the dynamical patterns of

gene expression in the yeast cell cycle.

1.9 Principal components analysis

Following SVD, principal components analysis (PCA) can be used to compress a

dataset to relevant measurements that approximate the data. Both computational
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and visual analysis is often hard to do in higher order datasets as each measurement

(observation) constitutes its own dimension in space and the value of each sample

(variable) constitutes a point in each of these dimensions. By transforming the data

using PCA, we can identify important relationships in the data.

First, eigenvalues and eigenvectors are derived from the data covariance ma-

trix [63, 64]. These eigenvectors make up an orthogonal basis set, or set of linearly

independent vectors that, when combined, can describe the data. The eigenvectors

paired with the smallest eigenvalues are eliminated to yield a compressed basis set.

This basis set of eigenvectors is then used to generate a transformed data matrix,

the dimensions of which are called latent dimensions or principle components (LVs

or PCs) [63–65]. A principal component is by analogy a singular vector in SVD.

A latent dimension is a new dimension created to capture the majority of in-

formation in multiple of the original dimensions [66] . Mathematically, a principle

component is a linear combination of the original data dimensions, weights for which

are determined by the magnitude of the eigenvector corresponding to that princi-

ple component [64, 67]. The eigenvector paired with the largest eigenvalue defines

the first principal component and captures the greatest amount of variance in the

data [64, 65]. In this component, the original dimensions with the most variance in

variable data will have the largest weighting. Because the PCs are orthogonal, the

second principal component will point in a direction perpendicular to the first com-

ponent and capture the majority of the leftover variance. This iteration continues
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for all subsequent PCs. Thus, the transformed dataset is usually only made up of

a handful of latent dimensions because they can capture the majority of the data

variance eliminating any statistical noise from subsequent PCs. This filtering makes

relevant relationships between samples more readily apparent.

Further, one can create predictive models with latent dimensions by searching

for relationships between PCs using principal components regression (PCR). This

method utilizes established regression techniques to find the relationship between

several variables (predictor variables) and dependent variables not included in the

predictors [67]. PCR uses the first few principal components to simplify the analysis

of many variables to linear or multilinear regression between the components (predic-

tors) and the desired measurements [64, 67]. Resulting coefficients of the PCs, fitted

using least-squares approaches, can be decomposed to regression coefficients of each

of the original variables in the component. The variable with the largest magnitude

coefficient is the most correlated to the desired dependent variable while the sign of

the coefficient indicates positive or negative correlation [67]. In this way, decomposi-

tion by PCR can be used to extract relationships between different variables in the

dataset. Thus, PCA and PCR can be used not only to generate hypotheses about

sample relationships but also to generate data-driven predictions. PCA is often used

to analyze DNA (or cDNA) microarrays by clustering observational data such that

relevant coregulations of genes or relevant similarities or disparities between cellular

samples such as different cancer tumors are exposed [68–70].
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Principal component analysis: mathematical framework

First, the dataset should be mean-centered so that the mean of each variable across

all observations is zero. This adjustment greatly simplifies the covariance matrix

calculation as well as eigenvector determination. For centering, the means of each

variable (column) should be subtracted from each observation of that variable (row)

in an element-wise manner as shown in Eqn (1.4).


M1,1 M1,2

M2,1 M2,2

−

M1 M2

M2 M2

 =


A1,1 A1,2

A2,1 A2,2

 (1.4)

Here M is a representative 2 × 2 data matrix and another matrix of the same

size, containing the means of each sample (columns), is subtracted to generate the

adjusted data matrix A. Notice that the mean of all columns should now be zero.

Now the covariance matrix of the dataset can be found from A. While in SVD

the original dataset was used for decomposition, in PCA the chief interest is in the

covariance of the data not the absolute magnitude [66]. Thus, the sample covariance

matrix is used for decomposition as shown in Eqn (1.5).

C =


cov(1, 1) K cov(1, N)

M O M

cov(M, 1) K cov(M,N)


=

1

N − 1

N∑
i=1

(Ai − A)(Ai − A)T (1.5)
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which simplifies to C = AAT/(N − 1)

Here C is a symmetric sample covariance matrix, where the elements of the matrix

are the covariances of each observation (row) with every other variable dimension, M

denotes the number of observations, and N is the number of variables (columns) in A.

Because A is mean-centered ( A = 0), this equation simplifies to AAT/(N−1). Using

this notation, we can find the eigenvectors of C by decomposing it into a diagonal

matrix D. [71].

We can rewrite Eqn (1.2) as,

C = V DV T (1.6)

such that the columns of V are the eigenvectors of A which correspond to the

eigenvalues in the diagonal matrix D. Here, eigenvalues correspond to the contribution

of that eigenvector to the reconstruction of C from the decomposition. For the

covariance matrix, small eigenvalues correspond to eigenvectors that contain a small

amount of the variance in the data. Thus, columns corresponding to low-magnitude

eigenvalues can be eliminated from V to yield a compressed eigenvector matrix (B)

that will make up the basis set of the data A [71].

Multiplying the compressed eigenvector matrix B with A transforms the adjusted

data into principle component space as given by Eqn (1.7).

P = BTA (1.7)
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Here P is the approximated data matrix where the rows correspond to latent

dimensions or principle components and the columns correspond to samples. The

elements of the matrix are the values of samples in each component. As previously

mentioned, the eigenvectors are ordered from greatest corresponding eigenvalue to

smallest. Therefore, the first principle component (first eigenvector) accounts for the

most variance in the data. If P is composed of three or fewer principal components,

the sample values can be plotted in a 2D or 3D fashion to group covarying samples.

1.10 Principal component regression (PCR) using total least

squares

After the principal components have been defined, there may be instances in which

knowing the relationship between principle components or principle components and

an independent observation dimension are useful. Linear or planar orthogonal re-

gression techniques can be used to determine these relationships [64, 67, 72]. In this

section we focus on total least squares regression (TLSR).

As opposed to ordinary least squares regression, TLSR aims to minimize the per-

pendicular residual error from the regression fit [72]. This is an important distinction

as it implies variance or measurement error in all the dimensions. Measurement inac-

curacies create uncertainty or associated variance in the position of each data point

in principal component space. Therefore, regression models should take this into

account when minimizing residual error to create an unbiased fit. For PCA, all the
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observation dimensions used to create latent dimensions are subject to measurement

error or variance [65].

First, appropriate PCs must be chosen as predictor variables. In most cases choos-

ing the first one or two principle components is the most relevant [64, 67]. However

this is not always the case and a more in-depth discussion of choosing appropri-

ate PCs can be found in [64]. Once predictor variables have been chosen, iterative

computational optimization algorithms, in environments like Matlab, can be used to

identify the best-fit line or plane. In general these computational methods attempt

to minimize Eqn (1.8).

E =
N∑
i=1

|ri|2 (1.8)

where E is the residual error and ri is the orthogonal distance of a data point (o)

from the regression. The schematic Figure 2 illustrates the orthogonal distance (ri)

of a representative data point (o) from the linear regression line.

While PCA is an unsupervised decomposition method that does not take into

account the inherent variance between variables, it can extract valuable information

from multidimensional datasets. This information can be used to generate simplified

regression models by using the principal components themselves as predictors rather

than the original observations.
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Figure 1.5: TSLR Orthogonal Residual Schematic. TLSR uses orthogonal residuals
(red–ri) to fit a regression line to data (o) displayed in PC space.

1.11 Partial least squares regression (PLSR)

As mentioned in the previous section with data matrices, PCA defines principal

components that are optimized to capture the overall variance in the data matrix A.

However, this does not mean that the resulting principal components are optimally

interpretable, nor that they are the best regressors for predicting another data matrix.

In such circumstances, it is preferred to rotate the leading principal components [60],

which is easily achieved in two dimensions with the following linear operator:


cosθ −sinθ

sinθ cosθ

 (1.9)

Similar operators can be defined for rotations in three dimensions. A key point
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is that this “subspace rotation” does not affect the overall variance captured by the

PCA model, because the solution is rotationally degenerate. Rather, it rebalances the

variance among the retained principal components. Subspace rotation is commonly

employed when building statistical models of biological processes [63,73].

For statistical modeling of signal transduction, PLSR has proved widely use-

ful and informative. Successful models have been built to link signaling to cell

death [63, 74–77], cell-cycle progression [76, 78], proliferation [79–81], and cytokine

secretion [74,77,80,82]. More-recent theoretical work has suggested that, because of

the fundamental chemical-reaction kinetics of biochemical networks, PLSR is virtu-

ally guaranteed to reduce a signaling circuit down to a handful of principal compo-

nents for follow-on analysis [83]. Of course, there are caveats about framing a proper

X → Y hypothesis [56], but it is reassuring to know that the approach is fundamen-

tally sound and highly versatile. Consequently, PLSR has entered into the standard

curricula for many systems-biology courses [84].

PLSR : mathematical framework

For regression modeling within high-dimensional datasets, there is a more effective

way of identifying correlated principal components than PCR followed by subspace

rotation. In partial least squares regression (PLSR), principal components are iden-

tified numerically that maximize the covariance between an independent data matrix

(X) and a dependent data matrix (Y). (Note the distinction from PCA, which simply
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maximizes capture of the overall variance of a single data matrix.) Computationally,

PLSR arrives at a covariance model by jointly factorizing X and Y as follows:

X = TP T (1.10)

Y = UQT (1.11)

Where T and U are scores vectors and P and Q are loading matrices

The regression between X and Y is linear between the “scores vectors” of the

independent and dependent matrices:

U = TB (1.12)

Thus,

Y = TBQT (1.13)

The simplest protocol for building a PLSR model is by using the nonlinear iter-

ative partial least squares (NIPALS) algorithm. In this algorithm, a row from Y is

randomly chosen as the first guess for a scores vector (u), and then X is projected

onto u to define the first guess at a “loadings vector”, p. Here, the exchange of scores

vectors (using u with X and t with Y) is critical for linking the two matrices together

and building a PLSR model that maximizes the covariance between X and Y [85].
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The first iteration of the loadings vector is then normalized and projected onto X to

define a provisional t, which is subsequently projected onto Y to calculate the first

iteration of its loadings vector, q. This loadings vector is normalized to unit length

as done previously for p, and then the normalized q is projected onto Y to define

the second iteration of u. This process continues until u converges to a fixed value

within a specified tolerance. Software for building PLSR models is readily available

in MATLAB, R, as well as independent commercial platforms [56].

1.12 Summary

Abnormal cross-communication between conflicting stimuli is the underlying cause

for many common diseases. In order to study the crosstalk between pathways, one

needs to get a more holistic view of cellular pathways. This view requires thousands

of measurements to be made which is readily possible with the increasing availability

of high-throughput technologies. The resulting big and complex datasets then need

to be viewed in a simple way in order to extract biological insight. Systems biology

is equipped with computational tools including the statistical methods mentioned in

this chapter thus well suited to handle these emerging complex datasets. Age-old

statistical techniques such as SVD, PCA and PLSR are useful tools that can reduce

the dimentionality of these big dataset and make predictions from the data.

Specifically, the statistical models introduced in this chapter are among the sim-

plest linear methods for reducing complex datasets. Simple models are more easily
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interpretable–by generating principal components that can be immediately mapped

back onto the primary data, the models stay grounded in what they were derived from.

Statistical models therefore avoid the pitfalls of machine-learning approaches, such as

support-vector machines and neural networks, which can make remarkable predictions

but leave the user confused about how the predictions were made [86,87]. Moreover,

the iterative methods for PCA and PLSR are very scalable to large datasets, because

they do not require calculating the covariance matrix as with older implementations

of SVD. Biologists are already accustomed to looking at their results–statistical mod-

els provide a more-formal way of inspecting complex data and illustrating the power

of computation in real terms [88]. Just as it is difficult to imagine life now with-

out a computer or a smartphone, biological research will soon become unfathomable

without the aid of statistical models.





Chapter 2

Linking Signaling and gene expression datasets through data

driven modeling and bioinformatics

Receptor-mediated signaling pathways are densely connected and exhibit non-

additive behaviors when two ligands activating different receptors are applied simul-

taneously [3–5]. Downstream of receptor activation and signal transduction, com-

plexity increases even further when considering the consequences of signaling on gene

regulation [6–8]. Fortunately, new signaling synergy or antagonism does not typi-

cally emerge with more than two inputs [9–12], suggesting that stimulus pairs are

sufficient to assess potential crosstalk. Towards systems-level discovery of crosstalk

within the signal-transduction and transcription networks, a quantitative signaling

data compendium as well as a condition-matched transcriptomics dataset were used

to build a data-driven model. The model was created by multilinear partial least

square regression (PLSR) and used to extract crosstalk hypothesis. The hypothesis

was further developed by bioinformatics. In this chapter we will expand upon the

31
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crosstalk hypothesis generation process using a combination of PLSR and bioinfor-

matics techniques.

2.1 Cytokine combinations elicit complex changes in signal-

ing and transcript abundance

For the signaling pathway measurements, we used data from our own previous stud-

ies [58, 89], which enabled us to combine these data with the transcriptomic data

generated here under the same experimental conditions. In the previous studies,

HT-29 cells were exposed to IFNγ, which primes HT-29 cells to apoptose upon stim-

ulation with TNF [90], and subsequently stimulated with saturating or subsaturating

doses of TNF, EGF, or insulin alone or in combination. Lysates were profiled at

13 time points over 24 hours for 19 intracellular signaling events measured by ki-

nase assay, immunoblot, or antibody array (Figure 2.1A and B) [91–93]. These

data provided quantitative, systematically collected information on phosphorylation-

mediated regulatory events, changes in protein abundance, and cleavage-dependent

protein activation.

To determine how the signaling events altered gene expression, we comple-

mented the signaling compendium with a matched set of transcriptomic profiles (Fig-

ure 2.1A). IFNγ-pretreated HT-29 cells were exposed to the same combinations of

TNFα-EGF-insulin and analyzed at a subset of the time points from the previous

signaling studies (Figure 2.1B). We collected transcriptomic profiles by microarray
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at intermediate-to-late times after cytokine simulation, thereby avoiding the bursts

of immediate-early transcripts that are already well characterized [94–96]. We se-

lected the time points for transcriptomic analysis according to earlier modeling of

the signaling compendium, which showed that signaling from 4-16 hours did not pre-

dict apoptosis accurately [58]. We reasoned that the loss of predictive ability was

because prolonged cytokine stimulation had transmitted the relevant information to

the downstream transcriptional network.

The microarray data revealed extensive transcriptional alterations with time and

stimulus condition (Figure 2.1C). Among 14,541 probe sets identified as present in

at least one sample, we identified significant changes in 10,319 with time, 4948 upon

TNF stimulation, 75 upon EGF stimulation, and 15 upon insulin stimulation after

correction for multiple hypothesis testing [four-way analysis of variance (ANOVA),

false-discovery rate = 5%]. One unanticipated complication was that many transcript

abundances changed with time in the mock stimulation condition lacking TNF, EGF,

and insulin (Figure 2.1C, leftmost column). We attributed these background tran-

scriptional dynamics to the ongoing IFNγ exposure. Extensive background drifts in

transcript abundance can confound interpretations from standard analyses of differ-

entially expressed genes that focus on time-dependent changes [97, 98]. Therefore,

alternative methods were required to identify meaningful changes in transcriptional

regulation and link them to the upstream signaling network.
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Figure 2.1: A compendium of ligand-induced signals and transcriptional responses.
(A) Overview of the experimental design. HT-29 cells were pretreated with IFNγ,
stimulated with various combinations and concentrations of TNF, EGF, and insulin,
and profiled for the indicated signaling receptors, adaptors, and effectors by kinase
assay (KA), immunoblot (IB), or antibody array (AA) and for the associated tran-
scriptomic signatures by microarray. The goal is to determine whether global ligand-
induced mRNA regulatory states (Y) can be predicted from the upstream signaling
network activation (X). (B) Hierarchical clustering of the signaling compendium for
saturating (High) and subsaturating (Low) concentrations of TNF, EGF, and insulin
[58, 89]. Data are shown as the mean of n = 3-6 independent biological replicates.
(C) Hierarchical clustering of the dynamic transcriptomic responses resulting from
the ligand combinations in (B). Data are shown as the mean of n = 2 independent
biological replicates.
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2.2 Models of dynamic, multivariate datasets are properly

structured as data tensors

Systematic biology experiments monitor the same signaling events or transcripts over

multiple time points and across multiple stimulus conditions [57,99]. Each data point

thus contains information about the various “modes” of its acquisition; for example,

which stimulus was added (Mode 1), the time after stimulus (Mode 2), and the

signal or transcript measured (Mode 3). Additional modes are possible if multiple

pharmacologic perturbations or cell types [76] are profiled systematically along with

the modes listed above.

For systematic measurements, the acquisition modes create a data structure that

is very powerful mathematically, because it conveys how different data points are

related to one another. This structure vanishes when, for example, a data cube

is sliced along one of its modes and “unfolded“ end-to-end as a series of matrices

(Figure 2.2A). When matrix-based algorithms are applied to unfolded data, each

unfolded measurement variable is treated independently and Modes 2 and greater

are lost. Using Figure 2-2A as an example, AKT measurements at two and four

hours post-stimulation (same signal, two time points) are not handled any differently

than AKT and epidermal growth factor receptor (EGFR) measurements at two hours

post-stimulation (two signals, same time point). The result of unfolding is a model

that is less interpretable because of too many fitted regression coefficients [100].

The alternative to unfolding is to retain datasets as cubes (three modes) or hy-
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Figure 2.2: Structuring and modeling biological datasets as tensors. (A) Structured
datasets are conventionally unfolded with time to create a concatenated data matrix
of ns signals and nt time points. Using the unfolded matrix, data-driven modeling
approaches [56] treat each time point of each signal as a separate predictor variable,
yielding ns × nt regression (regr) coefficients that must be inferred. (B) Recasting
stimulus-signal-time datasets as a third-order tensor. The tensor structure (X) con-
siders each time point as a predictor variable for all signals and each signal as a
predictor variable for all time points, resulting in ns + nt regression coefficients and
thus a more parsimonious model. (C) A dependent third-order transcriptomic tensor
(Y) structured by stimulus, nc gene clusters, and nt2 time points. (D) Decompos-
ing third-order data tensors as sums of latent variables comprised of triple products.
The decomposed tensor for each latent variable is reconstructed as the triple product
(purple) of a scores vector (t or u) and two weight vectors (wj and wk or ql and
qm). Latent variables are iteratively calculated to capture the maximum covariance
between X and Y that remains from the preceding latent variable. X and Y are con-
nected by a linear inner relationship between t and u with slope = b. (E) Prediction
with tensor models involves projecting a new stimulus onto the latent variables of X,
predicting the dependent scores vector u from the linear inner relationship (u = bt),
and then backprojecting onto the latent variables of Y.
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percubes (4+ modes) in the form of data “tensors”, which are the higher-dimensional

generalization of vectors (one mode) and matrices (two modes). For example, the

TNF-EGF-insulin signaling compendium naturally organizes as a third-order tensor

defined by stimulus, time point, and measured signaling event (Figure 2.2B). The

transcriptomic profiles likewise arrange as a third-order tensor according to stimu-

lus, time point, and transcript or cluster of transcripts (Figure 2.2C). Tensors reduce

the parameterization of a data-driven model, because free regression coefficients re-

main fixed across the other acquisition modes of each tensor (Figure 2.2B) [101,102].

In this instance, the stimulus-time point-signaling tensor (the “regressor” tensor) is

linked to the stimulus-time point-transcript tensor (the “regressand” tensor) by the

regression coefficients.

Biological data tensors have been used successfully for unsupervised purposes,

such as singular value decomposition [103], to analyze transcriptional kinetics dur-

ing DNA replication origin firing [104] and to identify consistent copy-number changes

across different array-based comparative genomic hybridization platforms [105]. Here,

we sought a supervised method that could connect the signaling tensor to the tran-

scriptomic tensor and predict gene-expression patterns from signaling-network dy-

namics. This application is ideal for the tensor generalization of partial least squares

regression (PLSR), a matrix implementation that has been used widely to model

signaling networks [56,60,63,74–82,84,106–110].

Tensor PLSR (equivalently, “multilinear PLS” [111]) is an established method
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that creates a data-driven model by jointly factorizing an independent “predictor”

tensor (X; here, the signaling tensor) and a dependent “predicted” tensor (Y; the

transcriptomic tensor). X and Y are factorized as an element-by-element product

of vectors, where the number of vector elements multiplied is equal to the number

of dimensions in the data tensor. Thus, if X is a third-order tensor, then X(1,1,1)

[the tensor element in X occupying the first position in Mode 1 (stimulus), the first

position in Mode 2 (time point), and the first position in Mode 3 (signal)] is factorized

as: X(1,1,1) = t(1)•wj(1)•wk(1) (Figure 2.2 D, purple). In the factorization, t(1)

is the first element of a “scores“ vector (t) that relates to the stimulus conditions

that are shared with the Y tensor. wj(1) and wk(1) are the first elements of two

“weight” vectors (wj and wk) that relate to Modes 2 and 3 of the tensor (here,

time and signal). A similar calculation is performed for Y by factorizing it into its

own scores (u) and weight (q1 and qm) vectors. X and Y are linked by an “inner

relationship” between their respective scores vectors: u = bt, where b is a linear

regression coefficient determined by the model. The inner relationship implies that

how a stimulus projects on t [through the signaling (wk) that occurs over time (wj)]

is directly proportional to its projection on u and thus how that stimulus changes

gene expression (qm) with time (q1).

The factorization of the two tensors is posed as a numerical optimization that

seeks to capture as much of the inner relationship between X and Y as possible. The

best first set of scores and weight vectors defines the first “latent variable” of the
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tensor PLSR model. Residual information (covariation) in X and Y not captured by

the first latent variable is then subjected to a second factorization, which is optimized

to capture as much covariance in the residual as possible (Figure 2.2D). By repeating

the algorithm, latent variables are iteratively calculated until there are no predictive

inner relationships remaining between the X and Y data tensors [56,63].

Predictions with a tensor PLSR model use wj and wk from each latent variable to

project an X-like observation onto t (Figure 2.2E). Then, the u = bt inner relation-

ship is used to predict u, which is backprojected with ql and qm to yield a predicted

set of values in the form of Y (time-dependent gene expression). The project-predict-

backproject sequence is important for making independent predictions with new data

and for crossvalidation of the model to identify the optimum number of latent vari-

ables [56, 63,85,88].

2.3 Tensor PLSR modeling identifies predictive links be-

tween signaling and transcriptional dynamics

We first constructed a tensor PLSR model of three latent variables that predicted

the 14,541 probe set fluorescence intensities of the transcriptomic dataset. Although

crossvalidated predictions of the model were 99% accurate (Figure 2.3A), the model

was strongly biased toward the differences in fluorescence intensities across probe

sets.

Consequently, changes in probe set intensities across treatment conditions were
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Figure 2.3: Tensor PLSR modeling predicts overall transcript abundance but cannot
link changes in transcript abundance to cytokine-induced signaling. (A) Measured
probeset intensities compared to crossvalidated predictions of the tensor PLSR model.
Pearson (R) and Spearman (ρ) correlations are shown. (B) Latent variable (LV) time
weights for the signaling and transcriptomic tensors. The third LV has a negative in-
ner relationship (yellow) indicating that LV #3 signaling is anticorrelated with LV #3
transcription. (C to E) Projections of the indicated stimulus conditions (C), signals
(D), and transcriptional clusters (E) onto the second and third LVs. Anticorrelated
scores in (C) indicate a poorly posed model.
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overlooked, and the resulting components of the model were uninterpretable (Fig-

ure 2.3B to E). To focus on recurrent stimulus-dependent changes in transcript abun-

dance shared by multiple genes, we condensed the transcriptomic dataset by using the

unbiased CLuster Identification via Connectivity Kernels (CLICK) algorithm [112].

Among the transcripts profiled, CLICK identified nine separable clusters comprised

of dozens to hundreds of genes, the mean trajectories of which were organized as

the Y data tensor (Figure 2.2C). Using the entire signaling compendium as X, we

constructed a tensor PLSR model of four latent variables that predicted gene-cluster

dynamics to within 72% (Figure 2.4A and Figure 2.5A). Although the model did

not predict certain cytokine-induced changes for some gene clusters (Figure 2.4A,

see EGF and insulin stimuli of Cluster #3), we considered the overall accuracy of

predictions remarkable considering that the model involved 10-fold fewer parameters

than previous PLSR models of TNF-induced apoptosis [58, 63,107].

Our principal motivation for building the tensor PLSR model was to use the

model to reveal undiscovered mechanisms of how signaling alters gene expression. To

identify which latent variables captured both signaling and gene-cluster dynamics, we

analyzed the time weights (wj and ql) and inner regression coefficients for X and Y

(Figure 2.4B). The leading two latent variables (LV#1 and LV#2) harbored signal-

ing time weights (wj1 and wj2) that were nearly constant from 0-24 hours, indicating

that time-dependent changes in signaling did not determine the projection of X along

LV#1 or LV#2. Accordingly, time weights for the gene clusters (ql1 and ql2) were time
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Figure 2.4: A tensor PLSR model linking ligand-induced signaling and changes in
transcript abundance. (A) Time-unfolded measurements of transcriptional clusters
(blue) compared to crossvalidated predictions of the tensor PLSR model (brown).
Standardized Z-scores of measured transcriptional clusters are shown as the mean
SD of n = 897 (#1), 841 (#2), 119 (#3), 106 (#4), 66 (#5), 49 (#6), 42 (#7), 33
(#8), and 26 (#9) probe sets. High (H) indicates saturating concentration of ligand,
0 indicates absence of ligand, and low (L) indicates subsaturating concentration of
ligand. (B) Latent variable (LV) time weights for the signaling and transcriptomic
tensors. The fourth LV has a negative inner relationship (orange), indicating that
LV#4 signaling is anticorrelated with LV#4 transcription. (C to E) Projections of
the indicated stimulus conditions (C), signals (D), and transcriptional clusters (E)
onto the third and fourth LVs. For (D) and (E), the null projections of reshuffled data
tensors are shown as the mean (solid gray) SD (dashed gray) of n = 500 randomiza-
tions [113]. In D, the type of assay used to measure the signaling protein is indicated
in parentheses (see Figure 2.1A for details). ClvC8, cleaved caspase 8; ProC3, procas-
pase 3; ProC8, procaspase 8; Lower case p prefix represents phosphorylated protein;
lowercase t prefix represents total protein; lowercase pt prefix represents the ratio of
phosphorylated protein to total protein.
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variant and derived from the stimulus-independent transcriptional changes of Clusters

#1, #2, and #7 (Figure 2.4, A and B), presumably resulting from IFNγ pretreat-

ment. Because latent variables are calculated iteratively (Figure 2.2D), LV#1 and

LV#2 eliminated the TNF-, EGF-, and insulin-independent transcriptional changes,

revealing paired signaling and gene-cluster dynamics in the third and fourth latent

variables (LV#3 and LV#4). LV#3 harbored time weights of late-phase signaling

(wk3) and sustained transcriptional activation (ql3). Conversely, LV#4 was weighted

with early-phase signaling (wk4) and late-phase transcriptional regulation (ql4). The

inner regression coefficient for this fourth latent variable was negative (Figure 2.4, or-

ange), implying a link between early-phase signaling and downstream transcriptional

repression.

Focusing on LV#3 and LV#4, we evaluated the relationship between the treat-

ment scores (t3 and t4; (Figure 2.4C). Relative to mock treatment, saturating TNF

stimulation projected almost entirely along LV#3, suggesting that LV#3 represented

a TNF “axis“. In contrast to TNF, we found that EGF and insulin projected in oppo-

site directions along LV#4, indicating that this latent variable distinguished between

the two growth-factor stimuli. Combinatorial stimulations exhibited intermediate

scores that approximately averaged the scores of the individual stimuli. For example,

TNF+EGF projected positively along LV#3 (like TNF) and negatively along LV#4

(like EGF). The interpolated response observed here for gene regulation contrasts

with prior work on apoptosis in which EGF and insulin each nonlinearly antagonized
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TNF-induced cell death [63].

To connect specific signals and gene clusters with the prevalent cytokine-induced

dynamics, we evaluated the signaling and gene-cluster weights along LV#3 (TNF,

late-phase signaling axis: wk3 and qm3) and LV#4 (EGF-insulin, early-phase signal-

ing axis: wj4 and qm4) (Figure 2.4C, D and E). Multiple signals–such as Ser636-

phosphorylated insulin receptor substrate-1 [pIRS1 (Ser636)], c-jun N-terminal ki-

nase (JNK) activity, and mitogen-activated protein kinase-activated protein kinase-2

(MK2) activity–were negligibly weighted (Figure 2.4D), implying that these early-

phase TNF-induced signals (Figure 2.1B) were statistically uninformative for predict-

ing Y (the transcriptional response). Gene cluster #1 was also unweighted along the

third and fourth latent variables, because its dynamics were almost entirely captured

by the first and second latent variables (Figure 2.4A, B, and E and Figure 2.5B).

To filter the weight vectors further, we randomly shuffled the signaling, gene-

cluster, and time information within each cytokine stimulation (Mode 1 slice) of X

and Y [113]. With hundreds of shuffled tensor PLSR models, we estimated a null

projection for the weight vectors of LV#3 and LV#4 (Figure 2.4D and E, gray line).

We considered signals and gene clusters outside one standard deviation (σ, gray

dashed lines) of the null projection as weighted strongly enough to warrant further

analysis (Figure 2.4D and E).

Among the strongest signaling weights, we found clear agreement with known

mechanisms of signal transduction (Figure 2.4D). For example, cleavage of apoptotic
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Figure 2.5: Accuracy of tensor PLSR predictions. (A) Measured CLICK cluster
dynamics plotted versus the leave-one-out crossvalidated predictions of the tensor
PLSR model. Pearson (R) and Spearman (ρ) correlations are shown. (B) The first
and second latent variables (LV#1 and LV#2) are sufficient to predict gene cluster #1
but not cluster #3. Time-unfolded measurements of transcriptional clusters (blue)
are compared to crossvalidated predictions of a tensor PLSR model comprised of
LV#1 and LV#2 only (brown). (C) DiRE promoter analysis [21] of the transcripts
in Clusters #3 and #6 that map strongly to TNF stimulation in the tensor PLSR
model. NF-κB subunits are highlighted in red.
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caspases [negative weighting for procaspase-8 (ProC8) and procaspase-3 (ProC3) and

positive weighting of cleaved caspase-8 (ClvC8)] was strongly aligned along LV#3,

which is consistent with late-phase caspase activation triggered by TNF [90, 114].

Along LV#4, insulin stimulation coincided with positive weights for three comple-

mentary measures of AKT activation, a recognized effector pathway [115]. Likewise,

multiple measures of EGFR phosphorylation were weighted in a direction that cor-

responded to EGF stimulation. Also strongly associated with EGF signaling was

phosphorylated insulin receptor substrate-1 [pIRS1 (Tyr896)], consistent with reports

that this site may be directly phosphorylated by active EGFR [58, 116]. Not all

signaling events were associated with individual stimuli. For instance, the weights

associated with inhibitor of nuclear factor-κB kinase (IKK) activation mapped not

only to TNF but also to insulin stimulation, possibly because AKT signaling can ac-

tivate IKK in certain contexts [117, 118]. Similarly, phosphorylated EGFR [pEGFR

(Tyr1068)] projected with early-phase EGF and also late-phase TNF signaling. The

latter is probably due to autocrine signaling by transforming growth factor-β, an

EGFR ligand that is released after TNF stimulation [89,119]. Together, the weights

of LV#3 and LV#4 provided a condensed map of the signaling compendium that

was optimized for predicting the observed transcriptomic profiles.

The inner regression coefficient (b3) connecting X and Y along LV#3 was a pos-

itive value, indicating gene activation; whereas the inner regression coefficient b4

was negative, indicating that signaling along LV#4 resulted in gene repression (Fig-
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ure 2.4B and E). Contrary to that of the signaling compendium, the projection of

gene clusters along LV#3 and LV#4 was surprising (Figure 2.4E). Amidst thousands

of time-dependent transcriptional changes, few clusters were weighted toward spe-

cific stimuli. Clusters #3 and #6 were primarily weighted along LV#3, indicating an

association with TNF stimulation. Accordingly, promoter analysis [120] of the tran-

scripts in these two clusters revealed a strong overrepresentation of binding sites for

nuclear factor-κB (NF-κB) (Figure 2.5C). Cluster #7 mapped along LV#4 because

of the mild suppression of transcripts observed with saturating insulin alone (Fig-

ure 2.4A and E). Only Cluster #9 projected strongly along both latent variables,

indicating that the transcripts in this cluster were induced by TNF and repressed by

insulin (Figure 2.6). TNF antagonism of insulin function has been well documented

in adipocytes [20, 21], but there are few reports of insulin antagonizing TNF [121].

Given this predicted TNF and insulin “crosstalk cluster”, we used the tensor PLSR

model to investigate its mechanism of regulation by the upstream signaling network.

With respect to its latent-variable projections, Cluster #9 was cartographically

most similar to IKK (Figure 2.5D and E). If these shared projections were indicative

of mechanism, however, it would imply that early-phase IKK activity (downstream

of TNF and insulin signaling) represses transcription of the crosstalk cluster, whereas

late-phase IKK (downstream of TNF signaling) promotes it. Repress-then-activate

kinetics are opposite of the prevailing view of IKK signaling [122]. Accordingly, we

found that TNF-induced responses of 85% of transcripts in Cluster #9 were not
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Figure 2.6: Induction of Cluster #9 probesets by TNF and repression by insulin.
Hierarchical clustering of probesets from Figure 2.1C corresponding to CLICK Clus-
ter #9 (Figure 2.4B) and their response to saturating (++) or subsaturating (+)
concentrations of TNF or insulin for the indicated times. Data are shown as the
standardized mean probeset fluorescence of n = 2 independent biological replicates.
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significantly affected when a phosphorylation- and degradation-resistant mutant of

IκBα was ectopically expressed in HT-29 cells (log-transformed Welch’s t test, false-

discovery rate = 15%; (Figure 2.7). We therefore considered alternatives that were

consistent with the tensor PLSR model.

One possible explanation was that the crosstalk cluster integrated two distinct

signaling inputs. An activating input could arise from a TNF-specific signal that

was either not measured or not projected strongly on the third and fourth latent

variables. In parallel, the cluster could be transcriptionally inhibited by an insulin-

specific signal, such as AKT (Figure 2.4D) or a downstream effector pathway of

AKT [125].

2.4 Promoter and signaling bioinformatics suggest a link be-

tween GSK3 and the crosstalk cluster through GATA6

First, we determined the reliability and generality of TNF-insulin crosstalk among

transcripts in Cluster #9. We repeated the stimulation experiments with an inde-

pendently obtained vial of HT-29 cells and assayed individual transcripts by quan-

titative reverse transcription polymerase chain reaction (qRT-PCR). This analysis

confirmed the expression of over 90% of the 22 Cluster #9 transcripts (SPRR1B

and PPARD from Figure 2.6 were false positives), and we detected an antagonistic

interaction between TNF and insulin from 2-8 hours after stimulation (Figure 2.8

and Figure 2.11A and B). At individual time points for specific genes, we observed
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Figure 2.7: Disruption of NF-κB signaling does not widely affect the TNF-induced
transcriptional response of Cluster #9. (A) HT-29 cells stably expressing FLAG-
tagged IκBα super-repressor (IκBα-SR) or pBabe puro control were stimulated with
100 ng/ml TNF for 15 minutes and immunoblotted for total IκBα and FLAG with
vinculin, Hsp90, and tubulin used as loading controls. Data are representative of n =
2 stable cell lines. (B) Confirmation of IκBα-SR perturbation of qRT-PCR analysis
of the classic NF-κB target gene, IL8 [123]. (C) Hierarchical clustering of qRT-
PCR measurements of Cluster #9 transcripts in control or IκBα-SR cells stimulated
with 100 ng/ml TNF for two hours. Significant perturbations in TNF response were
assessed by Welch’s two-sided t test after log transformation (FDR = 15%). (D
to F) Expanded view of the significant perturbations in MCL1 (D), BHLHE40 (E),
and PLAU (F), a recognized NF-κB-dependent transcript [124]. qRT-PCR data are
shown as the geometric mean ± log-transformed SEM of n = 4 biological replicates,
with changes in geometric means assessed by Welch’s two-sided t test.
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instances of antagonism represented by significant interaction P value (Pint < 0.05,

two-way ANOVA; (Figure 2.11A and B), an indication that TNF and insulin have

nonadditive effects on the expression of those genes. We also observed nonlinear sig-

nificant differences in gene expression for other transcripts even when the Pint was

not significantly different (Figure 2.11C and D). The qRT-PCR data thus confirmed

the microarray results and the tensor PLSR model, showing an early-phase suppres-

sion of TNF-induced Cluster #9 genes by insulin (Figure 2.4B to E). Furthermore,

these data indicated that the TNF-insulin crosstalk cannot be predicted by adding

the effect of insulin to the TNF response.

To identify candidate mediators of TNF-insulin crosstalk, we analyzed the

expression-verified transcripts of Cluster #9 with three orthogonal promoter-analysis

algorithms [119,120,126]. Only two transcription factors were suggested as candidate

regulators by all three algorithms: T-cell factor 4 (TCF4) and GATA (Figure 2.11E).

HT-29 cells harbor a truncating mutation in APC, a protein that inhibits the β-

catenin pathway, and this truncation renders β-catenin and its transcriptional part-

ner TCF4 constitutively active [127]. Moreover, no changes in β-catenin localization

were observed upon TNF simulation with or without insulin (Figure 2.10). There-

fore, we focused on GATA, a family of six transcription factors that are important

for development and differentiation [128].

Using qRT-PCR [129,130], we quantified the relative copy numbers of the GATA

family and found that GATA6 was the most abundant isoform (Figure 2.11 and
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Figure 2.8: Widespread TNF-insulin crosstalk among genes in transcriptional Cluster
#9. qRT-PCR validation of the Cluster #9 transcripts in HT-29 cells pretreated with
200 U/ml IFNγ for 24 hours and stimulated with 100 ng/ml TNF with or without
500 ng/ml insulin for the indicated times. Data are shown as the geometric mean n
= 3-16 biological replicates, with the interaction between TNF and insulin assessed
by log-transformed four-way ANOVA with the following factors: transcript, TNF,
insulin, and time.

Figure 2.9: HT-29 cells lack GATA1, GATA4, and GATA5. Presence of the indicated
GATA isoforms was assessed by RT-PCR followed by agarose gel electrophoresis.
293T cells (GATA4, GATA5) and K562 cells (GATA1) were used as positive controls
(+) for detection. Data are representative of n = 2 agarose gels and n = 5 biological
replicates. NTC, representative no template control. NRT, representative no reverse
transcription control.



Chapter 2. Linking signaling and gene expression datasets 53

Figure 2.10: Immunolocalization of β-catenin is not altered by TNF stimulation or
insulin costimulation of HT-29 cells. Cells were sensitized with 200 U/ml interferon-
γ for 24 hours and then treated with 100 ng/ml TNF ± 500 ng/ml insulin for one
hour, fixed, and immunostained for β-catenin (green). Nuclei were counterstained
with DAPI (blue) before imaging by widefield immunofluorescence. Data are repre-
sentative of three exposures from n = 2 biological replicates. Fluorescence channels
are shown overlaid on the corresponding differential inference contrast image (gray).
Scale bar is 20 µm.

Figure 2.9). Copies of GATA6 transcript also remained high during the early phase

of TNF-only and TNF + insulin stimulation, whereas GATA2 and GATA3 were

reduced two- to fourfold (Figure 2.11G to I). Notably, bioinformatic analysis [131]

of the full-length GATA6 protein sequence uncovered a cluster of highly conserved

serine residues that were candidate phosphorylation sites for GSK3 (Figure 2.11J).

Because GSK3 is a recognized substrate of AKT [115], these results suggested that

GATA6 could be an insulin-dependent regulator of the crosstalk cluster.

Full-length GATA6 (GATA6L) is distinguished by a long N-terminal extension

that is conserved across vertebrates but missing in other GATA family members (Fig-

ure 2.12). In addition, leaky ribosome scanning [38] onto an in-frame methionine

(Met147) gives rise to a short-form of GATA6 (GATA6S) that is comparable in size

( 45 kD) to the other GATA isoforms. GATA6S lacks the candidate GSK3 phospho-
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Figure 2.11: Multipronged bioinformatics of TNF-insulin crosstalk suggests post-
translational regulation from GSK3 to GATA6. (A to D) qRT-PCR validation of
selected Cluster #9 transcripts upon pretreatment of HT-29 cells with IFNγ and
stimulation with TNF with or without insulin for two (A and B) or six (C and D)
hours. Data are shown as the geometric mean ± log-transformed SEM of n = 4
or 16 biological replicates. Full Cluster #9 data are shown in Figure 2.8. (E) Pro-
moter bioinformatics [120,126,132] suggest GATA and TCF4 as candidate regulators
of TNF-insulin crosstalk. (F) Relative copy-number estimates [129, 130] for the six
GATA isoforms in HT-29 cells. Data are shown as the median ± range of n = 3
biological replicates. n.d., not detected. (G to I) Transcriptional dynamics of GATA
isoforms in response to TNF and insulin. Data are shown as the geometric mean ±
log-transformed SEM of n = 4 or 8 biological replicates. (J) Scansite [131] identifi-
cation of candidate GSK3 phosphorylation sites (red). Each site’s percentile rank is
averaged across the indicated sequences. (K) Phospho-mass spectrometry identifies
11 phosphorylation sites on GATA6L. Previously unreported sites (New) are shown
below the primary sequence, those consistent with reports in the literature [133] (Re-
ported) are shown above, and reported sites not detected in this study are gray.
Start methionines (arrows) for the long and short forms are indicated along with the
conserved GATA core and zinc finger (ZnF) domains.
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Figure 2.12: Phylogeny of the human GATA family. GATA isoforms are shown
organized by their sequence similarity and aligned according to the first zinc finger
(ZnF) domain. The N-terminal extension that distinguishes GATA6L from GATA6S

and other family members is highlighted in red.

rylation sites that reside at the N-terminus of GATA6L (Figure 2.11J), raising the

possibility of selective regulation of GATA6L by insulin.

Compared to GATA6S, GATA6L has been understudied due to early misanno-

tations of nonhuman genomes and a lack of suitable reagents. Common plasmid

repositories-including Addgene [134], the human ORFeome [135], and the Mammalian

Gene Collection [136]-possess only the short form or lack the gene entirely. The un-

usually slow electrophoretic mobility of GATA6 has created additional confusion, be-

cause commercial antibody vendors mistakenly label GATA6S as “GATA6”, implying

that the detected protein is the full-length form. As a result, the GATA6 literature

is incredibly ambiguous, with many papers inadvertently focusing on GATA6S.

To determine whether the predicted GSK3 phosphorylation sites of GATA6L could

be phosphorylated in HT-29 cells, we cloned the full-length gene with N-terminal

FLAG and C-terminal AU1 tags into a doxycycline (DOX)-inducible lentivector [137].

Stable HT-29 transductants were induced with DOX for 24 hours before lysis, and
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FLAG immunoprecipitates were subjected to phosphorylation analysis by mass spec-

trometry. We achieved 92% coverage of the GATA6L sequence and identified 11

phosphorylation sites, including seven that had not been previously reported (Fig-

ure 2.11K) [133]. Among sites in the N-terminal extension specific to GATA6L, two

(SER33 and Ser37) were consistent with the bioinformatic predictions of GSK3 phos-

phorylation (Figure 2.11J). Two N-terminal sites (Thr34 and Ser37) were also corrob-

orated by a proteomics study of proline-directed phosphorylation in 293T cells [42].

We concluded that SER33, Thr34, and Ser37 were the leading candidates for GATA6L

phosphorylation-mediated regulation by GSK3.

2.5 Summary

With the advent of high throughput technologies, it is becoming increasingly easy

for many life scientists to collect big data sets. The next big challenge is to under-

stand these complex data and use them to make new discoveries. Systems biologists

are equipped with the arsenal of computation to tackle this problem. Here we used

tensor partial least square regression modeling to integrate signaling and transcrip-

tomics data sets collected in human colonic epithelial cells. Model analysis together

with bioinformatics predicted a link between Akt-glycogen synthase kinase 3 (GSK3)

signaling and the inflammatory cytokine, tumor necrosis factor alpha via the endoder-

mal transcription factor, GATA6. In addition, phosphorylation mediated regulation

of GATA6 in the context of TNF and insulin can be a way that the signal from
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the two input ligands is integrated. Furthermore, identifying such type of crosstalk

node that link a transcription factor to an upstream enzyme e.g. kinase introduces

alternative drug targets for the diseases caused by these hardly druggable targets.





Chapter 3

GSK3-dependent phosphorylation of GATA6 and its effect

on GATA6L turnover and downstream gene expression

Mathematical modeling approaches such as ”tensor PLSR” described in chapter 2

are quite useful in handling the ever increasing complex data in biology. A combi-

nation of modeling and bioinformatics led us to hypothesize that phosphorylation of

endodermal transcription factor GATA6 within a conserved N-terminal serine stretch

is a way that insulin signaling cross-communicates with TNF-induced gene expres-

sion. Since the output of a model is not more than a prediction, in this chapter we

performed wet lab experiments in order to test a mechanistic crosstalk hypothesis

generated via statistical modeling and bioinformatics in chapter 2.

59



Chapter 3. GSK3-dependent phosphorylation of GATA6 and its impacts 60

3.1 Perturbation of basophilic kinases differentially affects

GATA6L and GATA6S

Studies of GATA6 phosphorylation have largely focused on its posttranslational reg-

ulation by mitogen-activated protein kinases (MAPKs) [47–49]. However, GATA6

is reportedly phosphorylated on Ser436 (Ser290 in GATA6S) and stabilized upon pro-

longed mechanistic target of rapamycin complex 1 (mTORC1) inhibition with ra-

pamycin and subsequent feedback activation of AKT2 in vascular smooth muscle

cells (VSMCs) [138]. Our mass spectrometry data on GATA6L did not include pep-

tides containing Ser436; thus, we could not rule out a role for Akt as a GATA6 kinase

activated by insulin stimulation.

To determine whether AKT-catalyzed stabilization of GATA6 was relevant to our

study, we treated HT-29 cells with the mTORC1 inhibitor rapamycin for three hours

and monitored targets by quantitative immunoblotting [93]. As expected, rapamycin

eliminated phosphorylation of ribosomal protein S6 and increased phosphorylation of

AKT by vtwofold; however, the abundances of GATA6S and GATA6L were essen-

tially unchanged (Figure 3.1).

In the context of pretreatment and TNF-insulin stimulation, we found that ra-

pamycin treatment for three hours altered the distribution of GATA6 forms by

decreasing the abundance of GATA6L relative to the abundance of GATA6S (Fig-

ure 3.2). The mechanism reported in VSMCs [138] might be restricted to mesodermal

tissues, so we repeated the experiment in AC16 ventricular cardiomyocytes [135]. In
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Figure 3.1: GATA6L abundance is not altered by prolonged rapamycin treatment
or feedback phosphorylation of AKT. (A) HT-29 cells exhibit rapamycin-induced
feedback phosphorylation of AKT, but do not stabilize GATA6. (B) AC16 cells
exhibit stabilization of GATA6S, but not GATA6L, without rapamycin-induced feed-
back phosphorylation of AKT. Vinculin, tubulin, and GAPDH used as loading con-
trols [93]. Quantitative immunoblot data are shown as the mean ± SEM of n = 4
biological replicates across two separate experiments.
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Figure 3.2: Prolonged rapamycin treatment alters the proportion of GATA6S to
GATA6L independently of TNF or insulin treatment. HT-29 cells were pretreated
with 200 U/ml IFNγ for 24 hours before inhibition with 20 nM rapamycin for two
hours and stimulation with 100 ng/ml TNF or 500 ng/ml insulin for one hour. Quan-
titative immunoblot data for the relative proportions of GATA6S (gray) and GATA6L

(black) are shown as the mean ± SEM of n = 6 biological replicates, with the effect
of rapamycin and its interaction with TNF, insulin, and the proportion of GATA6
forms by four-way ANOVA with the following factors: rapamycin presence or absence,
TNF, insulin, and GATA6 form.

these cells, S6 phosphorylation disappeared without subsequent feedback activation

of AKT, and yet GATA6S abundance increased modestly after three hours as re-

ported in VSMCs [138] (Figure 3.1B). Critically, under the same conditions in AC16

cells, we did not observe any alterations in the abundance of GATA6L. These exper-

iments illustrated that AKT feedback activation could be uncoupled from GATA6

stabilization, as could the posttranslational regulation of its long and short forms.
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3.2 GSK3-dependent phosphorylation of Ser37 accelerates

GATA6L turnover

To assess the importance of the GATA6L phosphorylation sites, we transfected single

alanine mutants of Ser33, Thr34, and Ser37 or the triple mutant (3SA) into 293T cells,

cells in which GATA6L phosphorylation has been detected previously (105). Com-

pared to the wild-type allele, we noted a pronounced electrophoretic downshift in the

major FLAG-immunoreactive band of the Ser37 and 3SA mutants (Figure 3.3A). The

mobility shift was larger than that expected for a single phosphorylation site, suggest-

ing that Ser37 phosphorylation was required for other phosphorylation events within

GATA6L. Iterative phosphorylation-dependent phosphorylation is characteristic of

many GSK3 substrates, such as glycogen synthase [139].

Careful inspection of endogenous GATA6L immunoreactivity in HT-29 extracts

revealed a slower migrating species that was similar to the electrophoretic shifts ob-

served in 293T cells transfected with the phosphorylation-deficient mutants. We iso-

lated this species from the faster migrating GATA6L through Phos-tag electrophore-

sis [140] followed by Gaussian mixture modeling of the densitometric traces. Acute

TNF treatment reduced the upper form of GATA6L but with a concomitant increase

in the lower form, such that total GATA6L abundance was not altered (Figure 3.3B).

Costimulation with insulin or pretreatment with the GSK3 inhibitor CT99021 [141]

did not alter the GATA6L downshift, despite insulin increasing GSK3 phosphoryla-

tion and CT99021 decreasing GSK3 activity (Figure 3.3C and D and Figure 3.4).
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Figure 3.3: Extensive phosphorylation of GATA6L is blocked by S37A mutation,
reversed by TNF stimulation, and stabilized in HT-29 cells. (A) Electrophoretic
mobility of FLAG-tagged GATA6L is downshifted upon S37A mutation in lipofected
293T cells. (B) Phos-tag electrophoresis [140] reveals that TNF stimulation for one
hour causes the dephosphorylation of GATA6L. (C and D) Phos-tag electrophoresis
(C) and quantification (D) of the upper and lower forms of GATA6L in response
to IFNγ sensitization for 24 hours, pretreatment with 1 M CT99021 for one hour,
and stimulation with TNF or insulin for one hour. Data are shown as the median
proportion ± range of n = 3 biological replicates. (E and F) Doxycycline (DOX)-
inducible addback in HT-29 cells replaces endogenous GATA6S with epitope-tagged
GATA6L. Cells were treated with 1 µg/ml DOX for 48 hours. (G and H) The less
phosphorylated form of wild-type (WT) GATA6L is unstable. Cells were treated with
100 ng/ml TNF + 50 µM cycloheximide for the indicated times, and half-lives were
estimated by nonlinear least-squares curve fitting. Quantitative immunoblot data are
shown as the mean ± SEM of n = 3 (F and H) or 5–6 (B) biological replicates.
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Figure 3.4: Insulin and CT99021 perturb GSK3 phosphorylation and activity. (A
and B) Insulin induces GSK3α phosphorylation (A) and CT99021 inhibits GSK3-
catalyzed phosphorylation of GS (B). HT-29 cells were sensitized with 200 U/ml IFNγ
for 24 hours before pretreatment with 1 µM CT99021 for one hour and stimulation
with 100 ng/ml TNF or 500 ng/ml insulin for one hour. Samples were immunoblotted
for p-GSK3 (Ser21), total GSK3α, p-GS (Ser641), and total GS with actin, GAPDH,
vinculin, and tubulin used as loading controls. Immunoblots are representative of n
= 23 independent biological replicates.

Because GATA6 mRNA was not induced by TNF (Figure 2.11I), these results in-

dicated that GATA6L is dephosphorylated on some residues in response to TNF

stimulation.

Our next goal was to evaluate the specific impact of Ser37 phosphorylation on

GATA6L in HT-29 cells. One challenge was that the endogenous abundance of

GATA6S was high compared to GATA6L (Figure 3.1), which could confound inter-

pretations of ectopically expressed proteins. Therefore, we inducibly knocked down

endogenous GATA6 with shRNA and added back epitope-tagged versions of wild-

type or S37A GATA6L so that the abundance was comparable to total endogenous

GATA6 (Figure 3.3E and F). DOX-induced addback in HT-29 cells recapitulated

the electrophoretic mobilities of GATA6L that were observed in transfected 293T

cells. The data suggested that the GATA6L modifications are not artifacts of over-
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expression, enabling use of the addback cells to examine the consequences of Ser37

phosphorylation.

Because GSK3 phosphorylation often accelerates substrate turnover [142], we

combined the Phos-tag analysis with the HT-29 addback lines to estimate half-lives

of wild-type and S37A GATA6L. We combined inhibition of protein synthesis with

TNF stimulation to enrich for the lower migrating form of wild-type GATA6L in

the addback cells. Under these conditions, we found that the half-life of more phos-

phorylated GATA6L was more than twice that of the wild-type GATA6L form that

was less phosphorylated (Figure 3.3G and H). Surprisingly, the half-life of the S37A

mutant was comparable to that of the more phosphorylated form of GATA6L, sug-

gesting that phosphorylation of Ser37 without subsequent additional phosphorylation

renders GATA6L unstable. Ser37 resides in the middle of a proline-glutamate-serine-

threonine (PEST) degradation motif of GATA6L, and this motif scores more strongly

as a PEST motif than those in other well-known unstable proteins (Figure 2.11J and

Table 3.1) [143, 144]. Ser37 phosphorylation might activate or expose the PEST

sequence for rapid proteolytic degradation of GATA6L, whereas additional phospho-

rylation at other sites could inhibit substrate recognition [143].

To monitor Ser37 phosphorylation specifically, we raised and affinity purified a

phospho-specific antibody against a monophosphorylated peptide fragment of the

PEST sequence in GATA6L (Figure 3.5). If Ser37 modification were a prerequisite

for subsequent phosphorylation, then the antibody would capture this initial phos-
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Table 3.1: Top-scoring PEST sequences in the indicated proteins according to PEST-
FIND.

phorylation event of GATA6L, with the caveat that phosphorylation on Ser33 and

Thr34 would ultimately disrupt the antibody epitope.

To evaluate the phospho-Ser37 antibody, we reassessed the immunoreactivity of to-

tal GATA6. The predicted molecular weights of GATA6S and GATA6L are 45.4 kD

and 60 kD, respectively. However, extensive posttranslational modifications (Fig-

ure 2.11K) cause most GATA6S and GATA6L to run at an apparent molecular

weight of v54 kD and v69-75 kD depending on electrophoresis conditions (Fig-

ure 3.6A). Multiply phosphorylated GATA6S (v54 kD) can be misinterpreted as

unmodified GATA6L (60 kD). Upon long exposure with a total GATA6 antibody,

we revealed an additional immunoreactive band at v60 kD that was eliminated by

GATA6 knockdown and reconstituted with addback of wild-type GATA6L and the

S37A mutant (Figure 3.6A). In contrast to the 75 kD form (Figure 3.3E), the v60

kD form of wild-type GATA6L was significantly less abundant than the S37A mu-

tant (Figure 3.6B), consistent with decreased stability. We interpreted the v60 kD

band as the unmodified form of GATA6L.
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Figure 3.5: p-GATA6L (Ser37) antiserum is specific for mobility-shifted wildtype
GATA6L but not the S37A GATA6L mutant. 293T cells were transfected with
pBabe puro control (–), 3×FLAG-tagged wildtype (WT) GATA6L, or 3×FLAG-
tagged S37A mutant and immunoblotted for p-GATA6L (Ser37) and FLAG with
vinculin and tubulin used as loading controls. Immunoblots are representative of n
= 2 separate antiserum bleeds and n = 2 independent immunizations.
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Figure 3.6: Phosphorylation and destabilization of endogenous GATA6L at 60 kD.
(A) Knockdown (shGATA6) and FLAG-tagged addback of GATA6L at v60 kD (red).
Samples were immunoblotted for total (modified and unmodified) GATA6 (upper),
FLAG (lower), and the indicated loading controls. (B) Destabilization of the 60 kD
form of wild-type GATA6L compared to the S37A-mutant addback cells. (C and
D) Endogenous p-GATA6L (Ser37) immunoreactivity is not detectably affected by
stimulation with TNF for one hour, inhibition with 20 µM CT99021 for six hours, or
both. (E and F) Phosphorylation and destabilization of the 60 kD form of GATA6L

upon serum starvation. Specificity was confirmed by preincubation of cells with 20
µM CT99021 for one hour before serum starvation. (G and H) p-GATA6L (Ser37) im-
munoprecipitation and total GATA6 immunoblot of HT-29 cells pretreated with IFNγ
and stimulated with TNF ± insulin for one hour. The gamma of the immunopre-
cipitation image is set to 1.5 to minimize background from the immunoprecipitating
antibody heavy chain. 0.5% input of each immunoprecipitate was immunoblotted
for total GATA6 and the indicated loading controls. Data are shown as the mean ±
SEM of n = 3 (B, E, F, H) or 6 (C and D) biological replicates.

Endogenous Ser37 phosphorylation of the 75 kD and 60 kD GATA6L forms was

not detectably altered in response to TNF treatment for one hour or CT99021 treat-

ment for six hours (Figure 3.6C and D). However, the endogenous 60 kD phospho-

GATA6L signal was barely above the detection limit and thus highly variable [coef-

ficient of variation (CV) v 40%], yielding only v50% statistical power for detecting

a 1.5-fold change. To evaluate phosphorylation of endogenous GATA6L on Ser37, we

serum starved the HT-29 cells to produce a stronger activation of GSK3 and con-

firmed specificity of the phosphorylation events with CT99021 pretreatment for one

hour (Figure 3.6E and F). As expected, serum starvation reduced GSK3 phosphoryla-

tion (increasing GSK3 activity) and increased phosphorylation of glycogen synthase

(GS) (Figure 3.6F). CT99021 reduced GS phosphorylation and total GSK3 abun-

dance but also transiently increased total GS. Notably, within one hour of serum with-
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Figure 3.7: GATA6L phosphorylation on Ser37 and GS phosphorylation on Ser641

are lost in a dose-dependent manner upon treatment with the GSK3 inhibitor,
CT99021. (A and B) HT-29 cells were preincubated with the indicated concentra-
tion of CT99021 (CT) for one hour, serum starved for one hour, and then analyzed
for phosphorylated and total GATA6L (A) or phosphorylated and total GS (B) by
quantitative immunoblotting [93]. Data are shown as the mean ± SEM of n = 3
biological replicates.

drawal, we observed a robust increase in the 60 kD form of phosphorylated GATA6L,

which coincided with the timing of GSK3 dephosphorylation and was blocked by

CT99021 in a dose-dependent manner (Figure 3.6E and Figure 3.7). By contrast,

phospho-Ser37 immunoreactivity of the 75 kD form of GATA6L was not altered by

serum starvation or CT99021 treatment, suggesting that Ser37 was already stably

phosphorylated in this form of GATA6L.

Total abundances of the different forms of GATA6L also showed dynamic changes.

GATA6L at 75 kD and GATA6S decreased significantly with CT99021 treatment,

whereas GATA6L at 60 kD increased compared to uninhibited control cells that were

serum starved (P < 0.05, two-way ANOVA). The time-dependent changes in 60 kD
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GATA6L abundance mirrored the changes in total GS and inversely correlated with

changes in 60 kD GATA6L phosphorylation at Ser37 (Figure 3.6E and F). These

experiments provide further evidence that Ser37 is a site phosphorylated by GSK3

and that phosphorylation at this site promotes turnover of GATA6L in the absence

of phosphorylation at additional sites.

With greater confidence in the p-GATA6L (Ser37) antibody, we revisited the origi-

nal biological context of -pretreated HT-29 cells stimulated with TNF and insulin. To

enable detection, we immunoprecipitated cell extracts with p-GATA6L (Ser37) antis-

era and immunoblotted for total GATA6 (Figure 3.6G). An extended electrophoresis

was required to separate the 60 kD form from the heavy chain of the immunoprecip-

itating antibody, causing a smear of immunoreactivity rather than a discrete band.

In response to TNF alone, we repeatedly observed a drop in 75 kD, but not 60 kD,

GATA6L phosphorylation (Figure 3.6H), corroborating the dephosphorylation pre-

viously noted by Phos-tag electrophoresis (Figure 3.3B). Moreover, the reduction in

75 kD p-GATA6L (Ser37) was blocked by insulin costimulation, indicating a specific

point of crosstalk between TNF and insulin. Insulin, by contrast, independently el-

evated the abundance of 60 kD GATA6L phosphorylation, suggesting that insulin

delays the turnover of this form beyond its effect on Ser37 phosphorylation. We con-

clude that the phosphorylation of endogenous GATA6L at Ser37 is consistent with the

antagonism and linear superposition in abundance of Cluster #9 transcripts observed

upon TNF + insulin stimulation (Figure 2.11A to D and Figure 2.8).
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3.3 GSK3-dependent phosphorylation of Ser37 alleviates

GATA6L repression of transcripts in the crosstalk cluster

We investigated the role of GATA6L phosphorylation in the regulation of transcripts

subject to TNF-insulin crosstalk. We inducibly overexpressed wild-type GATA6L in

HT-29 cells (Figure 3.8A) before stimulation with TNF for two hours and transcrip-

tomic profiling by microarray.

GATA6 can act as either a transcriptional activator or repressor [145], but we

found in the GATA6L-overexpressing HT-29 cells that the effects of GATA6L were

predominantly repressive: Without stimulation, GATA6L overexpression induced 51

transcripts and repressed 136 transcripts at a 5% false-discovery rate (P < 10−10,

binomial test).TNF stimulation increased the number of genes affected by GATA6L

overexpression, but the bias toward repression persisted (317 induced transcripts

versus 438 repressed transcripts; P < 10−5, binomial test).

Notably, the same repressive bias was observed for transcripts in the crosstalk

cluster (Figure 3.8B), and those with the strongest GATA6L-associated repression

were among the clearest examples of TNF-insulin crosstalk (Figure 2.11A to C). Using

chromatin immunoprecipitation, we confirmed binding of GATA6L to consensus sites

within the promoters of many TNF-insulin crosstalk genes (Figure 3.9), suggesting

that repression is direct.
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Figure 3.8: S37A mutation of GATA6L mimics and competes with the repression of
transcript abundance in the TNF-insulin crosstalk cluster. (A) Doxycycline (DOX)-
inducible overexpression of wild-type GATA6L in HT-29 cells. Cells were treated
with 1 g/ml DOX for 24 hours. (B) Ratio of TNF-induced transcript abundance
for crosstalk cluster genes in the presence or absence of GATA6L overexpression.
Data are shown as the mean ratio of n = 3 independent biological samples assessed
by microarray profiling, with bias in the ratio assessed by two-sided binomial test.
(C) S37A mutation of GATA6L mimics insulin stimulation (green) and antagonizes
TNF-insulin crosstalk (purple). qRT-PCR data for Cluster #9 genes in wild-type
(WT) and S37A mutant (S37A) GATA6L addback cells pretreated with IFNγ and
stimulated with TNF, insulin, or both for two or four hours. Data are shown as
row-standardized geometric means of n = 6 biological replicates across two separate
experiments, with interactions between GATA6 status and TNF or insulin assessed
by log-transformed five-way ANOVA with the following factors: GATA6, transcript,
TNF, insulin, and time. (D) Three-state conceptual model for GATA6L regulation
by TNF and insulin and its relation to the crosstalk cluster of transcripts. Ovals
annotate the figure subpanels supporting the links depicted.
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Figure 3.9: GATA6L occupies GATA binding sites in the promoters of genes within
the crosstalk cluster. (A and B) Chromatin immunoprecipitation quantitative PCR
(ChIP-qPCR) measurements of GATA6L DNA binding to the indicated loci of ARL14
(A) and CCRL2 (B). (C) Map indicating the positions of the loci containing GATA
binding sites in ARL14 and CCRL2. (D and E) ChIP-qPCR measurements of
GATA6L DNA binding to the indicated loci of CYP3A5 (D) and PLAU (E). (F)
Map indicating the positions of the loci containing GATA binding sites in CYP3A5
and PLAU. ChIP-qPCR data for wildtype and S37A addback HT-29 cells stimulated
with 100 ng/ml TNF for one hour are shown as the mean percent input ± SEM of
n = 34 independent experiments. ChIP experiments without anti-FLAG (α-FLAG)
antibody were substituted with an equivalent amount of naive mouse IgG.

If GATA6L mediates the insulin-stimulated repression of the crosstalk cluster and

is stabilized by inhibition of the GSK3 pathway, then phosphorylation of Ser37 would

provide a mechanism for TNF-insulin crosstalk. Furthermore, the S37A mutant of

GATA6L should mimic the effect of insulin on TNF-stimulated gene expression for

transcripts in the crosstalk cluster and dampen the crosstalk observed when insulin

is added to S37A mutant cells. We tested this prediction with the wild-type and

S37A addback lines (Figure 3.3E and F), inducing GATA6L and then stimulating

with TNF, insulin, or both. By qRT-PCR, we identified multiple instances in which

S37A addback reduced transcript abundance similar to that observed in wild-type

addback cells stimulated with insulin (Figure 3.8C), green. We also found many ex-

amples in which TNF + insulin-induced transcript abundance was higher in S37A

addback cells compared to wild-type addback cells (Figure 3.6C, purple) and more

similar to TNF-treated cells, suggesting reduced crosstalk. Analysis of the entire

Cluster#9 dataset revealed significant interactions between GATA6 and TNF or in-

sulin (interaction P <10−10, five-way ANOVA), indicating that the Ser37 genotype
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alters the transcriptional response to both stimuli. Taken together, our data support

a model whereby TNF promotes and insulin inhibits the formation and degradation

of GATA6L monophosphorylated on Ser37 (Figure 3.6D). This phosphoregulation is

ultimately reflected by the abundance of transcripts in the crosstalk cluster.

3.4 Ser37 phosphorylation of different GATA6L forms is ob-

served in diverse cell types

The model of GATA6L phosphorylation-mediated regulation (Figure 3.8D) may be

specific to HT-29 cells or could occur in other cell types. We immunoblotted various

cell lines with the phospho-Ser37 antibody in comparison to affinity-purified antisera

binding the nonphosphorylated peptide surrounding Ser37 and to other commercial

GATA6 antibodies [134, 146]. In HCT-8 and DLD-1 colorectal cancer lines, AC16

cardiomyocytes [147], and MCF10A-5E breast epithelial cells [148], we observed the

60 kD and 75 kD forms of GATA6L, which were phosphorylated to variable extents

according to phospho-Ser37 immunoreactivity (Figure 3.10A and B). Multiple GATA6

antibodies also recognized another species at v100 kD (Figure 3.10A to D), suggesting

that an even more phosphorylated form of GATA6L may remain to be characterized.

Indeed, the aggregate number of reported phosphorylation sites on GATA6L now

exceeds 20 (Figure 2.11K).
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Figure 3.10: Diversity of GATA6L forms across different cell lineages. Arrows in-
dicate the GATA6 forms confirmed earlier by knockdown or observed with multiple
antibodies. Red asterisks indicate nonspecific bands. The MCF10A-5E and AC16
samples are on an immunoblot; HT-29, HCT-8, and DLD-1 are on another blot.
The blots have been scaled to match. Data are representative of n 3 independent
experiments.
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Figure 3.11: phosphoS37GATA6L only has marginal effect on wound healing and
proliferation. Wound closure rate measured by scratch assay (A) and (B) Proliferation
rate measured by counting cells both in a dox-inducible addback model of GATA6L

in HT29 cells.

3.5 The effect of GATA6L on cellular phenotype

One member of cluster#9 genes that is significantly downregulated upon GATA6L

overexpression is “PLAU” (Figure 3.8B). PLAU encodes for a secreted serine pro-

teinase (uPA) that can activate other proteases capable of degrading ECM proteins.

PLAU also has been implicated to have a role in cellular migration. Thus, we de-

cided to look at cell migration as a candidate phenotype that GATA6-mediated reg-

ulation of PLAU gene would have effect on. To investigate the functional role of

serine37 phosphorylation on epithelial sheet migration, we performed wound healing

assays to assess changes in cell migration using HT29 cell inducibly expressing wt and

S37A-GATA6L. We observed that ectopic expression of GATA6L in a DOX-inducible

addback model of HT29 cells only marginally decrease the wound healing rate in a
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GATA6L and non-S37 dependent manner (Figure 3.11A). In addition, upon TNF

treatment both wtGATA6 and S37AGATA6 expressing cells heal the wound slightly

faster compared to the matched DOX-induced, no-treatment control. These effects

can not be explained by the differences in the proliferation of wt and mutant cell

lines (Figure 3.11A and B).

3.6 Summary

We found that GSK3 phosphorylation of Ser37 on the long form of GATA6 (GATA6L)

accelerated its degradation in cells. The increased turnover reduced transcriptional

repression by GATA6L of genes induced by TNF. Collectively, our results showed that

GATA6L integrated growth factor-induced signaling activity and inflammatory tran-

scriptional regulation. By coupling systematic experiments with statistical modeling

approaches, such as tensor PLSR, one can identify relationships that would otherwise

go unnoticed. Although it remains atypical to collect transcriptomic data as tensors,

we expect widespread systematization of transcriptomics as expression-profiling costs

drop. A model is just the first step, however, because the most surprising data-derived

connections will require the identification of previously unrecognized mechanisms to

explain them. These, in turn, require hypothesis-driven experiments with the best

molecular-genetic and pharmacologic perturbations available. For understanding how

gene expression is controlled by complex stimuli, the integration of molecular biology

and systems biology has yet to be fully exploited.





Chapter 4

Research Significance, Future Direction and Conclusion

4.1 Research significance

4.1.1 Developing proper reagents to study GATA6L

The majority of GATA6 studies so far, had been focusing on GATA6 mRNA detec-

tion. Fewer GATA6 studies investigated GATA6 protein levels inside the cells and

they either mostly had been studying only one proteoform of GATA6 (GATA6S) or

it is unclear which form they are referring to. The unavailability of proper commer-

cial reagents including DNA constructs that encode GATA6L and antibodies that

distinguish GATA6L from GATA6S have certainly played an important role in the

ambiguity of GATA6 literature. Since our research hypothesis suggested a role for

the N-terminal extension of GATA6L, we needed to develop proper GATA6L reagents

to test our hypothesis. Thus, we cloned the full length human GATA6 gene from an

HT29 cDNA library into a DOX-inducible lentivector. This full length human GATA6

plasmid was engineered to bear a 3×FLAG tag in its N-terminus and a 3×AU1 tag in

82
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its C-terminus. Furthermore, to isolate the role of GATA6L from GATA6S, we devel-

oped GATA6 addback cell lines in which the endogenous gene was knocked down and

the ectopic expression of GATA6L or GATA6S was titered close to endogenous lev-

els. Collectively these systems enabled us to reliably detect and distinguish different

forms of GATA6 and isolate a role for GATA6L in HT29 cells.

4.1.2 Resolving longstanding GATA6 riddle suggests new in-

terpretation of old data

Although GATA6L is less abundant than GATA6S in most cell types including HT29

cells, there is evidence that GATA6L is the more potent transcriptional regula-

tor [38,149]. Takada K. et al based on a series of GATA6 mutation studies, provided

evidence suggesting that the proline-glutamate-serine-threonine (PEST) degradation

motif (Glu31-Cys46) within the 146 amino acid N-terminal extension of the Long

form GATA6, plays a crucial role in the transcriptional potency of GATA6L. How-

ever the authors did not provide further evidence supporting a mechanism for their

observation. Interestingly, Ser37 is located within this serine-rich N-terminal region

(Glu31-Cys46). In addition, the same authors reported an unusual electrophoretic

mobility for GATA6L on SDS PAGE. This observation is in line with our primarily

puzzling observations detecting several GATA6-reactive bands on the immuno-blots

with a protein mass profile including but not limited to the reported size. I be-

lieve the molecular mechanism that we found and provided evidence for in previous
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chapters can explain the unusual size profile of GATA6 proteoforms. This mecha-

nism also can explain the previously documented higher transcriptional potency of

GATA6L based on the accepted notion that the stability of a transcription factor and

its transcriptional activity are inversely related [150].

In a recent publication [145], Wamaitha et al. demonstrated that GATA6 (or

GATA6L, not clear based on their plasmid vendor info) can simultaneously act as

a repressor and an activator in pluripotent cells. In the light of our findings about

GATA6 proteoform diversity and regulation together with previous work I could

envision at least two alternative mechanisms to explain the authors’ observations.

One possible mechanism through which the differential effect of GATA6 on different

promoters can be explained is the choice of GATA6 cofactor in each case. It remains to

be studied whether the PEST sequence within the evolutionary conserved N-terminal

extension of GATA6 plays a role in the choice of GATA6L co-interactor. Another

possible mechanism is that GATA6L and GATA6S may act antagonistically. This is a

plausible hypothesis supported by the evidence that GATA6L and GATA6S can form

dimers [149] added to the fact that both forms have intact DNA binding domains

(Fig 2.12). The heterodimers and homodimers of GATA6L and GATA6S can have

different affinities to GATA binding sites in the genome which has been previously

observed for translational isoforms of (C/EBP)β [151,152].
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4.1.3 The significance of findings

Collectively, I believe our findings can potentially change the interpretation of previ-

ous published observations regarding GATA6 function (specific examples mentioned

in Section 4.1.2 ) and change the future pursuit of research on this important regula-

tor. In conducting our research questions, we found it necessary to develop our own

reagents which proved to be crucial in unravelling part of GATA6 function. These

reagents can be used to leverage research on the role of GATA6 and the importance

or interchangeability of GATA6L and GATA6S. In lieu of our findings, I believe re-

searchers working on GATA6 need to be more cautious both in using the available

GATA6 reagents as well as making interpretations of their observations.

Transcription factors other than nuclear receptors are well recognized as difficult

drug targets. Thus, identifying either their downstream target genes or upstream

regulators provide possible alternative and easily druggable targets. Here in this

thesis, we found that the GSK3 mediated phosphorylation of GATA6 transcription

factor alters the turnover of GATA6L affecting the expression of a group of genes.

However, changes in GATA6L turnover does not significantly alter the occupancy

of GATA binding sites in our hands as assessed by ChIP assay(Figure 3.9). These

findings not only shed light on GATA6 biology but also suggest potential new drug

targets with sensitivity to small molecules for pathologic states in which GATA6 plays

a central role.
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4.1.4 The significance of approach: making new discoveries

by combining holistic and reductionist approaches

Our study here introduces and implements tensor PLSR as an approach for struc-

tured biological datasets. Considering that signaling dynamics often occur in discrete

temporal phases [91, 114,153,154], tensor PLSR provides an attractive means to de-

construct time-course data in a systematic manner. Although the mathematics have

been established for decades [111], data types that can exploit the tensor framework

are relatively new to cell signaling. For tensor generation, a multiplex technique that

simply measures many genes or proteins is insufficient. The method must also be

cost-effective, reproducible, and scalable for repeated use across multiple treatments,

time points, and perturbations. The newest technologies rarely meet these criteria,

prompting our use of long-established methods at a scale not typically considered.

We applied tensor PLSR with the goal of discovering molecular mechanisms that

connect signaling to transcriptional regulation. Ideally, the mechanisms would involve

proteins not originally included in the systematic dataset. Systems-level studies rarely

uncover these “hidden nodes” and validate them experimentally like we achieved

here for GATA6L [106, 155]. Testing model- or bioinformatics-derived predictions

requires a skill set entirely different from the one needed to perform the analysis. Our

findings argue for the benefits of dual training, where computationalists work at the

bench and experimentalists use quantitative models, gaining an appreciation for the

thematic similarities in each approach. For example, just as modeling assumptions
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should be subject to falsification [88], we sought to challenge the prevailing biological

assumptions about GATA6 and its different forms.

The deceptive electrophoretic mobilities of GATA6S and GATA6L have important

implications for biological function. Although GATA6L is generally less abundant

than GATA6S in most cell types, there is evidence that GATA6L is the more potent

transcriptional regulator [38]. GATA6 promotes the expression of the stem cell marker

LGR5 in colorectal cancer [146, 156]. Neither paper clarified whether the regulation

occurs through GATA6L, GATA6S, or both. However, insulin-like growth factor

inhibits GSK3 and promotes expansion of Lgr5+ stem cells in mice [115, 157]. Our

results indicate that one mechanism for this expansion is the stabilization of GATA6L.

The phosphorylation of Ser37 adds a GATA6L-specific mode of regulation to re-

ports of posttranslational modifications that would presumably target both long and

short forms [47, 49, 138]. Although we were unable to reproduce the mechanism

exactly [138], modification of Ser436 by AKT2 should coincide with loss of Ser37 phos-

phorylation to stabilize GATA6L synergistically in contexts where both pathways

operate. GATA6L phosphorylation-mediated regulation could prove important in en-

dothelial cells, a TNF- and insulin-responsive cell type in which GSK3 and GATA6

interact as a complex [158]. Our mass spectrometry study also uncovered other

GATA6L-specific proline-directed modification sites (Thr62 and Ser137) that could

function with the Ser266 site phosphorylated by ERK [47,49]. Such complex layers of

regulation should be expected of a transcription factor that is central to embryonic
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development and cell specification [128].

4.2 Future Direction

4.2.1 A brief summary of alternative hypothesis testing

As previously mentioned, phosphorylation of a protein can change its function

through different mechanisms. To study the functional consequences that phosphory-

lation of GATA6 on Ser37 entails, we tested several alternative hypotheses in parallel

that will be discussed briefly in the following paragraphs. For example, phosphory-

lation of Ser37 on GATA6L can hypothetically lead to a change in the localization of

GATA6L. Our preliminary studies of human GATA6L localization by immunofluores-

cent staining using a couple of different antibodies did not suggest any obvious change

in the localization of the GATA6L in a phosphoSer37-dependent manner. Another

possibility is that the phosphorylation of Ser37 changes the conformation of GATA6L

affecting its affinity for DNA. In order to test this hypothesis, we performed Chro-

matin Immuno-precipitation (ChIP)(Figure 3.9). We observed enrichment of both

wt-GATA6L and S37A-GATA6L on GATA binding sites in the promoters of genes

within the crosstalk cluster. Again, this promoter enrichment was not phosphoSer37–

dependent in our hands. Lastly, we moved on to test another hypothesis that can fur-

ther explain the observed repressory function of hyperphsophorylated-75kD-GATA6

(pGATA6L). We proposed that preferred interaction of pGATA6 with co-interactors

can lead to a decrease in the transcription of downstream genes. We first investigated
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Figure 4.1: P300 does not co-immunoprecipitate with GATA6 in a 293T overexpres-
sion system. 293T cells were co-transfected with either pBABE-3XFLAG-wtGATA6
or S37AGATA6 and pCMV-p300-myc followed by FLAG immunoprecipitation and
western blot analysis

this hypothesis by performing co-immuno precipitations (co-IPs) in a GATA6 over-

expression system with or without DSP cross-linker followed by commassie brilliant

blue staining of SDS PAGE gels. We did not detect any band that could correspond

to and suggest the presence of a GATA6 co-interactor in a phosphoS37-dependent

manner. Alternatively we co-expressed GATA6 and p300 a histone acetyl-transferase

and a suggested interactor of GATA6 [?] in HEK293T cells. In my hands, p300 did

not co-IP with GATA6 in our overexpression system (Figure 4.2.1). However, our

lab is currently developing new reagents to assess GATA6L co-interactors in a more

systematic way.
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4.2.2 New Research Directions

4.2.2.1 The functional impact of GATA6L/GATA6S ratio

As mentioned earlier, GATA6S in most cell types is more abundant than GATA6L

which is the more potent transcriptional regulator. One logical question that fol-

lows would be why then evolution supports the constant production of GATA6S

and does the GATA6S/GATA6L balance in cells have any biological consequence.

One good documented example regarding the functional significance of the ratio

of translational isoforms is the transcription factor CCAAT/enhancer binding pro-

tein (C/EBP)β [151, 152]. Similar to GATA6, (C/EBP)β mRNA can be translated

from two different in frame methionine resulting in the production of (C/EBP)βL

(LAP) and (C/EBP)βS(LIP). In these studies, the authors provided evidence that

(C/EBP)βL/(C/EBP)βS ratio is important and changes during liver terminal differ-

entiation and mammary gland morphogenesis, respectively. Interestingly they showed

that the two translational isoforms are mutually antagonistic using functional assays

in different cell contexts. Based on our observations regarding the cell type dependent

expression of different proteoforms of GATA6, it would be interesting to investigate

how these proteoform heterogeneities map into GATA6 function in different cell types.

To this end, a starting point would be to assess whether we can observe changes in

GATA6L forms in response to insulin, TNF or other relevant stimuli.

Given the documented critical role of GATA6 in early development [37], an inter-

esting line of investigation beyond the scope of this thesis would be to assess whether
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GATA6L/GATA6S ratio changes early in development or during intestinal differen-

tiation. This can elucidate the mechanism by which this critical master regulator is

regulated early in development as well as adult life. One platform for the preliminary

assessment of this research question could be the Caco-2 cell line. This human colon

carcinoma cell line can be induced to differentiation by growing cells into confluency

in a 2D culture dish. Then the GATA6L/GATA6S ratio can be quantified by west-

ern blotting before and after differentiation to assess a change in GATA6 levels that

coinside with a certain phenotype.

4.2.2.2 GATA6 regulated gene expression: GATA6 and CCRL2

Chemokine (CC motif) receptor-like 2 (CCRL2) is a member of the crosstalk gene

cluster. This 7-transmembrane receptor has recently been deorphaned by evidence

of interacting with ligands such as CCL5, CCL19 and chemerin. Among others,

chemerin, a natural non-chemokine chemoattractant ligand and an adipokine, binds

to CCRL2 and changes the bioavailability of this ligand. However, it does not induce

intracellular calcium flux, ligand internalization or cell migration unlike chemokine-

like receptor 1 (CMKLR1) and other chemerin signaling receptors [159,160]. CCRL2’s

expression has been studied in heamatopoitic cells, immune cells, endothelial cells,

airway epithelium and astrocytes. Interestingly, the expression of this receptor is

known to be induced by inflammatory stimuli including TNF [159]. CCRL2 is also a

member of the group of crosstalk transcripts which we demonstrated to be induced by
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TNF and attenuated by insulin through GATA6L-dependent mechanism. Moreover,

we observed enrichment of GATA6 transcription factor in the proximal promoter of

CCRL2 providing additional evidence supporting the GATA6 regulated expression

of this gene. Collectively, we identified a TNF-insulin-GATA6-CCRL2 circuit. Our

findings regarding this recently de-orphaned receptor suggest that CCRL2 transcript

is modulated in colonic epithelial cells in a GATA6-dependent manner in the context

of TNF and insulin. Moreover, chemerine is secreted from colonic epithelial cells and

that its bioavailability can be changed once bound to CCRL2. In addition, CCRL2−/−

mice display enhanced tissue inflammation and immune cell infiltration [161].Taken

together, the role of this GATA6 regulated, TNF-insulin crosstalk gene in disease

contexts that both stimuli are involved such as inflammatory bowl disease and dia-

betes is an interesting topic of investigation. For example, one can investigate the

changes in chemerine bioavailability upon single or cotreatment of TNF and insulin

and whether this can affect immune cell infiltration. Colonic epithelium or endothe-

lial cells are good candidate systems in which these questions can be pursued due

to their documented TNF and insulin responsiveness and GSK3-GATA6 as well as

chemerine-CCRL2 relevance [158,162].

4.3 Summary

Many common diseases are caused by malfunction of more than one factor in the sig-

nalling network inside the cells. After close to a century of cell signalling research [15],
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we have a wealth of information about many signalling pathways in isolation. How-

ever, the number of developed efficacious therapeutics compared to our knowledge

in the postgenomics era remains low. We believe that in order to take our under-

standing of cellular signalling to the next level, we need to study the pathways in the

context of other pathways. Systems biology is well suited to handle this challenge by

studying multiple pathways simultaneously. This network-based approach results in

the accumulation of big data sets that need to be analysed. This challenge can be

handled by computation, a tool that systems biologist are armed with.

With an interest in the cross-communication between signaling pathways within

the signaling network, here we sought to study two pathways that malfunction in a

number of common diseases. Taking a top-down approach here, we started with a

signaling data compendium and a condition-matched transcriptomics data set. Then

a data-derived tensor PLSR model was built. In addition, a careful inspection of the

model complemented by bioinformatics enabled us to generate a crosstalk hypothesis

(chapter 2). Notably, the hypothesis involved molecules with no direct quantita-

tive measurement within the original data sets. The hypothesis was then tested in

vitro using a collection of molecular biology techniques. Taken together, this work

demonstrate that combinatorial approaches which combine systems data collection

and computational methods with reductionist molecular biology techniques are ad-

vantageous in making exciting, new discoveries in the big data era.
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Methods

A.1 Cell culture

HT-29, 293T, DLD-1, and HCT-8 cells were obtained from the American Type Cul-

ture Collection and cultured according to their recommendations. The 5E clone of

MCF10A cells was cultured as described previously [148]. AC16 cells [147] were pur-

chased from M. Davidson (Columbia University) and cultured in Dulbecco’s modified

Eagle’s medium/F-12 medium (Life Technologies) with 12.5% tetracycline-free fetal

bovine serum (Clontech) and penicillin-streptomycin (Gibco).

A.2 Cell stimulation

HT-29 cells were plated at 50,000 cells/cm2 for 24 hours, sensitized with 200 U/ml hu-

man IFNγ for 24 hours (Roche), and then treated with 100 ng/ml TNF (Peprotech),

500 ng/ml insulin (Sigma), or both for the indicated times. HT-29 cells engineered

to express GATA6L inducibly were treated with 1 µg/ml DOX for 24 hours (overex-
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pression) or 48 hours (addback) before cytokine stimulation.

A.3 Plasmids

Wild-type GATA6L was amplified by PCR from HT-29 RNA that had been re-

verse transcribed with a GATA6-specific primer (CAAAAGCAGACACGAGTGGA).

An N-terminal 3×FLAG tag and a C-terminal 3×AU1 tag were added by PCR

before cloning into the BamHI and SalI sites of pBabe puro [163] the MfeI

and SpeI sites of pEN TTmiRc2 [137]. The pEN TT donor vector containing

GATA6L was then recombined with the pSLIKneo destination vector [137] by us-

ing LR clonase (Invitrogen). The shGATA6 sequence (CCCAGACCACTTGCTAT-

GAAA, #TRCN0000005390 from The RNAi Consortium) was cloned into tet-pLKO

puro [164] as described previously [130]. S33A, T34A, S37A, and 3SA point mutants

were prepared by site-directed mutagenesis (QuikChange XL II, Agilent). RNAi-

resistant mutants of wild-type and S37A GATA6L were prepared by introducing four

silent mutations into the sequence targeted by shGATA6, which replace with rare

mammalian codons that would minimize ectopic expression. The phosphorylation-

and degradation-resistant IκBα super-repressor plasmid has been previously de-

scribed [165]. All DNA constructs were verified by sequencing.
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A.4 Production and purification of phospho-GATA6L (Ser37)

antibody

The peptide sequence Ac-CREPSTPPpSPIS-amide was conjugated to keyhole limpet

hemocyanin and used to immunize rabbits according to the manufacturer’s recom-

mendations (Covance). Serum samples were tested by immunoblotting with positive

and negative controls for phospho-GATA6L (Ser37). Serum pooled from the pro-

duction and terminal bleeds was negatively selected on a CREPSTPPSPIS peptide-

conjugated N-hydroxysuccinimide (NHS) sepharose column. The bound IgG was

eluted as the nonphospho-GATA6L custom antibody while the flow through was ex-

posed to a second CREPSTPPpSPIS peptide-conjugated NHS sepharose column.

The bound IgG was eluted as the phospho-GATA6L (Ser37) antibody and used for

detection by immunoblotting.

A.5 Lentiviral packaging and transduction

Lentiviruses were prepared in HEK293T cells (ATCC) by calcium phosphate trans-

fection of the lentivector together with psPAX2 and pMD.2G (Addgene). Lentiviral

transduction of HT-29 cells was performed as described previously [129]. Transduced

cells were selected in growth medium containing 2 µg/ml puromycin or 600 µg/ml

G418 until control plates had cleared. For addback experiments, viral titers were

reduced to ensure single-virion transductants that matched the endogenous protein
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abundance as closely as possible.

A.6 Microarray profiling

HT-29 cells were plated at 50,000 cells/cm2 for 24 hours and sensitized with 200 U/ml

IFNγ (Roche) for 24 hours before stimulation with 0, 5, or 100 ng/ml TNF; 0, 1, or

100 ng/ml EGF; and 0, 5, or 500 ng/ml insulin for 4, 8, or 16 hours. RNA isolation

was performed with the RNeasy Mini Kit (Qiagen), and integrity of purified RNA was

confirmed on a Bioanalyzer (Agilent). Preparation of labeled complementary RNA,

hybridization to GeneChip Human Genome U133A Arrays (Affymetrix), microarray

scanning, and microarray processing were performed as previously described [166].

For inducible GATA6L overexpression, stably transduced HT-29 cells were plated

at 50,000 cells/cm2 for 24 hours, induced with 1 µg/ml DOX and sensitized with

200 U/ml IFNγ (Roche) for 24 hours before stimulation with 100 ng/ml TNF for

two hours. RNA was purified as described above and amplified with the Illumina

Total Prep-96 RNA Amplification Kit (Life Technologies) before hybridization to a

HumanHT-12 v4 Expression BeadChip.

A.7 Hierarchical and CLICK clustering

One-way hierarchical clustering of the signaling and transcriptomic compendia was

performed in MATLAB with the clustergram function using Euclidean distance and
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Ward’s linkage after row standardization. CLICK clustering was performed as de-

scribed [112] with the default homogeneity parameter.

A.8 Tensor PLSR

Tensor PLSR was performed in MATLAB with Version 2.02 of the NPLS Tool-

box [167]. The signaling compendium was structured by stimulus condition (mode

1), time point (mode 2), and measured signal (mode 3). The transcriptomic profiles

were structured by stimulus condition (mode 1), time point (mode 2), and CLICK

gene cluster (mode 3). Both data tensors were mean centered along mode 1 and

variance scaled along modes 2 and 3 before calculation of latent variables [100]. The

scores and time weights of the fourth latent variable of the signaling tensor were both

multiplied by -1 to improve model interpretability. Randomized models were con-

structed in MATLAB with the shufflematrix function applied within each stimulus

condition before preprocessing and calculation of latent variables.

A.9 Bioinformatic analyses of crosstalk cluster

The 20 transcripts from Cluster #9 confirmed present by qRT-PCR were submitted to

three promoter-analysis algorithms. First, the proximal promoter of each transcript

(defined as 2000 bp upstream and 500 bp downstream of the transcription start site)

was collected from NCBI and used as an input set for MEME, which uses expectation

maximization to define recurrent motifs in a set of sequences [168]. The top five
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enriched motifs were searched against a database of 843 binding specificities [169]

using TOMTOM [170] to identify known transcription factor recognition sequences.

A GATA motif was also enriched when using 2000 bp of upstream sequence alone or

1500 bp of upstream sequence and 500 bp of downstream sequence.

Expression-verified Cluster #9 transcripts were additionally analyzed with

DiRE [120], which uses interspecies sequence conservation to define motifs that are

searched against the TRANSFAC 10.2 database of roughly 400 transcription factor

binding motifs. In DiRE, the occurrence metric reflects the overall frequency of a

conserved binding motif in the input dataset, whereas the importance metric reflects

the specificity of the binding motif to the input dataset compared to a background

dataset of 5000 randomly selected genes. The top 20 motifs based on occurrence were

used as the DiRE predictions.

Last, X2K [132] was used to identify bioinformatic connections between Cluster

#9 transcripts and signaling pathways. X2K integrates the ChEA database [171]

of transcription factor binding sites detected by chromatin immunoprecipitation, the

JASPAR and TRANSFAC position weight matrices, as well as various protein-protein

interaction and kinase-substrate databases to connect kinase signaling events to gene

expression patterns. The top 20 transcription factors linked to signaling and Cluster

#9 transcripts in a 2011 analysis were used as the X2K predictions.
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A.10 Quantitative RT-PCR

RNA from cultured cells was isolated with the RNeasy Plus Mini kit (Qiagen) ac-

cording to the manufacturer’s protocol. First-strand cDNA synthesis and qRT-PCR

were performed as described [77]. Parental HT-29 samples were normalized to the

geometric mean of GAPDH, HINT1, PPIA, and PRDX6. GATA6L addback samples

were normalized to the geometric mean of GAPDH, HINT1, PPIA, PRDX6, B2M,

and GUSB. Primer sequences are available in table A.1.

A.11 Mass spectrometry

HT-29 cells stably expressing doxycycline-inducible 3×FLAG-GATA6L were induced

with 1 µg/ml doxycycline for 24 hours and lysed in Nonidet P-40 (NP-40) lysis buffer

plus protease and phosphatase inhibitors [93]. 60 mg of protein extract in 6 ml volume

was first cleared with 50 µl of mouse IgG-agarose beads (Sigma) for one hour at 4◦C

on a nutator.

The cleared lysates were subjected to immunopurification using 80 µl of anti-

FLAG M2 affinity gel (Sigma) for 34 hours followed by two washes with NP-40 lysis

buffer, one wash with 500 mM NaCl, and one wash with Tris-buffered saline. Im-

munoprecipitates were eluted with 500 ng/ml 3×FLAG peptide (Sigma) in 100 µl for

30 minutes at 4◦C on a nutator. The eluate was concentrated using an Amicon ultra

centrifugal filter (Millipore), and samples were prepared in dithiothreitol-containing

Laemmli sample buffer and separated by SDS PAGE on an 8% polyacrylamide gel
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Table A.1: qRT-PCR primer sequences.
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followed by coomassie brilliant blue staining. The stained bands were cut and sub-

sequently reduced, alkylated and digested with trypsin, chymotrypsin, or pepsin.

Peptides from each enzymatic digestion were acrylamide extracted and subjected to

LC-MS on a Thermo Electron Orbitrap Velos ETD mass spectrometer system. The

data were analyzed using the Sequest search algorithm against the IPI Human Pro-

teome Database and the predicted GATA6 protein sequence. Full mass spectrometry

details are available in the Supplementary text.

A.12 Immunoblotting

Quantitative immunoblotting was performed as described previously in detail [93]

with primary antibodies recognizing the following proteins or epitopes: p-GATA6L

(Ser37, Covance, 1:1000 for crude antiserum and 1:500 after affinity purification),

nonphospho-GATA6L (Ser37, Covance, 1:500), GATA6 (D61E4, Cell Signaling Tech-

nology #5851, 1:2000), GATA6 (H-92, Santa Cruz Biotechnology #9055, 1:600), p-

GS (Ser641, Cell Signaling Technology #3891, 1:1000), GS (Cell Signaling Technology

#3893, 1:1000), GSK3α (Cell Signaling Technology #9338, 1:1000), p-GSK3α (Ser21,

Cell Signaling Technology #9316, 1:1000), p-Akt (Ser473, Cell Signaling Technology

#4060, 1:1000), Akt (Cell Signaling Technology #9272, 1:1000), p-S6 (Ser240/244, Cell

Signaling Technology #5364, 1:1000), S6 (54D2, Cell Signaling Technology #2317,

1:1000), FLAG (M2, Sigma #F1804, 1:10,000), β-actin (Ambion #4302, 1:5000),

vinculin (Millipore #05-386, 1:10,000), GAPDH (Ambion #4300, 1:20,000), tubulin
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(Abcam #89984, 1:20,000), and p38 (C-20, Santa Cruz Biotechnology #535, 1:5000).

Membrane blocking, antibody probing, and near-infrared fluorescence detection were

performed as described [93], except for phospho-GATA6 (Ser37) immunoblotting,

where blocking with 5% nonfat skim milk and use of Tris-buffered saline buffers was

required.

Phos-tag immunoblotting was performed on a 6% polyacrylamide gel containing

10 µM Phos-tag acrylamide AAL-107 (Wako Chemical) and 0.1 µM MnCl2. Gels

were run with Wide-view prestained protein markers under constant current (40

mA) for 170 minutes. Before electrophoretic transfer, gels were incubated with 1 mM

EDTA in modified Towbin’s transfer buffer [93] for 15 minutes. Membrane blocking,

antibody probing, and near-infrared fluorescence detection were then performed as

described [93].

For Gaussian mixture modeling of GATA6L forms, raw 16-bit pixel intensities

were integrated horizontally across each lane and then plotted along the vertical

dimension. Using the fit function in MATLAB, the vertical trace was fit by nonlinear

least-squares to the following function:

where f(x) is height of the vertical trace as a function of the vertical position x, b

is a fixed background, w1 and w2 are the relative weights of the two bands, µ1 and

µ2 are the mean vertical positions of the two bands, and σ2 is a shared variance for
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the two bands. Normalized versions of w1 and w2 were taken as the relative band

densities for the two forms.

A.13 p-GATA6L (Ser37) immunoprecipitation

HT-29 cells were plated at 75,000 cells/cm2, pretreated with human IFNγ for 24

hours (Roche), and then treated with 100 ng/ml TNF (Peprotech), 500 ng/ml in-

sulin (Sigma), or both for one hour. Cells were lysed in NP-40 lysis buffer (51)

supplemented with 10 mM sodium pyrophosphate and 30 mM sodium fluoride, and

v4 mg of cellular extract (adjusted according to total GATA6L abundance based on

immunoblotting) was incubated with 10 µl of p-GATA6L (Ser37) antiserum overnight

on a nutator at 4◦C. The following day, 30 µl Protein A/G Plus UltraLink resin

(Thermo) was added to the immune complexes for 1 hour on a nutator at 4◦C. Beads

were washed twice with ice-cold supplemented NP-40 lysis buffer and twice with

ice-cold PBS before elution in Laemmli sample buffer [172].

A.14 Chromatin immunoprecipitation

Five million wild-type and S37A GATA6L-addback HT-29 cells were seeded in 10-cm

culture plates for 24 hours before inducing knockdown-addback with 1 µg/ml doxy-

cycline for 48 hours. Cells were fixed for 710 minutes by adding a 37% formaldehyde

stock to the culture medium to a final concentration of 1%. Fixation was quenched

with 1/20 volume of 2.5 M glycine for 710 minutes at room temperature. Cells were
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washed twice with cold PBS, scraped into 1 ml PBS, and centrifuged at 400 relative

centrifugal force (rcf) for 3 minutes. The cell pellets from four 10-cm plates were com-

bined and lysed in ChIP lysis buffer [129] to a final volume of 1.5 ml. Lysates were

incubated on ice for 10 minutes and then sonicated using a Branson digital sonifier

for 5 minutes at 40% amplitude with 0.7 sec “on” and 1.3 sec “off” pulse cycles. After

centrifugation at 14,000 rcf for 20 minutes, the supernatant was collected, and 20 µl

of the soluble chromatin was retained as the input fraction. Soluble chromatin was

diluted 10-fold in dilution buffer [129], precleared with 100 µl mouse IgG-conjugated

agarose beads (Sigma) for four hours at 4◦C with constant agitation, and then in-

cubated with 100 µl anti-FLAG M2 affinity gel (Sigma) or mouse IgG-conjugated

agarose beads overnight at 4◦C with constant agitation. Agarose beads were col-

lected and washed as previously described [129]. DNA from the beads and the input

fraction was eluted by reversing methylene cross-links with 500 µl elution buffer [129]

at 65◦C for five hours. Samples were then treated with 100 µg/ml RNase for 30

minutes at 37◦C and 200 µg/ml proteinase K for 90 minutes at 50◦C, followed by

phenol-chloroform extraction. The aqueous fraction was ethanol-precipitated, washed

once in 70% ethanol, air dried, and dissolved in nuclease-free water. The samples were

diluted tenfold in nuclease-free water and quantified by PCR with primers designed

for proximal promoter regions of selected crosstalk genes [156]. Primer sequences are

available in table A.2.
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Table A.2: ChIP primer sequences.

A.15 Statistical analysis

Microarray data were analyzed by four-way analysis of variance (factors: TNF, EGF,

insulin, and time) in MATLAB with the anovan function at a false-discovery rate

of 5%. qRT-PCR data of Cluster #9 genes were analyzed by four-way analysis of

variance (factors: transcript, TNF, insulin, and time) or, for GATA6L addback, by

five-way analysis of variance (factors: GATA6L genotype, transcript, TNF, insulin,

and time) in MATLAB with the anovan function after log transformation. Half-

lives of GATA6L forms were estimated by nonlinear least-squares curve fitting to the

following function:
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where g(t) is the relative band intensity as a function of time t, c is the scaling

coefficient, b is a fixed background, and τ1/2 is the half-life. Differences in means

were assessed by Welch’s t test, and differences in geometric means were assessed

by Welch’s t test after log transformation. One- or two-sidedness was based on prior

evidence or expectation for a directional change. Tests for enrichment were performed

by binomial test. Differences between immunoblotting time courses were assessed by

two-way analysis of variance.
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