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ABSTRACT 

A fundamental purpose of biomechanical testing and the field of injury biomechanics is the 

development of injury risk functions (IRFs). Up to the present, IRFs have usually been developed 

in a “top-down” approach by relating injury outcomes in cadaveric tests to dummy measures in 

matched crash conditions. While IRFs developed in the top-down approach have been commonly 

used in the automobile safety field, future initiatives for the development of IRFs may need to 

address 1) the limited number of cadaveric specimens available for testing and 2) the limited ability 

of scaling techniques to capture the complexity of the human body. 

The central idea of this study is that population-based finite element (FE) models, whose input 

distributions are based on subject-specific finite element (SS-FE) and statistical modeling 

approaches, may hold the key to overcoming the challenges facing the development of IRFs. SS-

FE models, incorporating specific skeletal geometry of specimens into the models, help 

researchers verify the predictive capability of FE models with given material properties and their 

parameter distributions by minimizing the geometric error between cadaveric specimens and the 

models. If accurate subject-specific modeling technique can be developed and validated, this may 

facilitate the development of statistical models that can analyze geometric variations across the 

population. In the end, assigning probabilistic distributions as input variables instead of a single 

value allows generation of population-based FE models which captures variabilities across the 

population. Among other applications, these population-based FE models could be utilized to 

develop IRFs whose range of variabilities are informed by observations from the population-based 
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FE model responses. In other words, the population-based FE modeling approach allows us to 

develop the IRFs in a “bottom-up” manner rather using the current “top-down” approach. 

The goal of this dissertation was to explore a framework for developing IRFs in a “bottom-up” 

approach based on the responses of parametrically-variable finite element (FE) models 

representing exemplar populations. To illustrate the process, first, subject-specific FE models of 

human femurs were developed and validated. Next, principal component analysis and regression 

were used to identify parametric geometric descriptors of the human femur and the distribution of 

those factors for three target occupant sizes (5th, 50th, and 95th percentile males). Also, 

distributions of material parameters of cortical bone were obtained using regression analysis based 

on the literature for three target occupant ages (25, 50, and 75 years). A Monte-Carlo method was 

then implemented to generate populations of FE models of the femur for target occupant sizes and 

ages. In total, 100 femur models incorporating the variation in the population of interest were 

generated for each target occupant and simulations were conducted with each of these models 

under three-point dynamic (1.5m/s) bending. In the end, model-based IRFs were developed using 

logistic regression analysis, based on the 500,000 observations (each 100 femur models with 5,000 

ultimate strains) of moment-at-fracture in the population-simulation dataset for each target 

occupant. In addition, to exemplify an application of the proposed framework, this dissertation 

developed a closed-form of model-based IRFs for the human femur under a frontal oblique car 

crash test, whose loading conditions were analyzed from the publicly-available NHTSA crash test 

database, using survival analysis with a multivariate logistic model based on 27 million 

observations of moment-at-fracture in the population-simulation dataset. 
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The framework proposed in this dissertation would be beneficial for developing IRFs in a bottom-

up manner, whose range of variabilities are informed by the observations of moment-at-fracture 

in population-based FE model responses. This method would be able to address challenges facing 

the current development procedure of IRFs for diverse or specialized populations: specifically, this 

method mitigates the uncertainties in applying empirical scaling and may improve IRF fidelity 

when a limited number of experimental specimens are available. 
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CHAPTER1: INTRODUCTION 

Background  

Advancement in Occupant Safety under Car Crashes 

A recent investigation of the fatality rate (per 100K registered vehicles) in motor vehicle crashes 

shows that the rate has declined by more than 75% since 1975 (Figure 1) (NHTSA, 2013). One of 

the main contributing factors to this remarkable achievement is increased knowledge of injury 

biomechanics, resulting in the development of injury countermeasures, changes in the vehicle 

structures and design, and incorporation of automobile safety standards. 

 
Figure 1 Motor vehicle crash fatalities (left axis) and fatality rate per 100K registered vehicles (right axis) from 1966 to 2013 
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Injury Biomechanics and Anthropomorphic Test Devices (ATDs) 

Injury biomechanics applies the principles of mechanics to the analysis of human response with 

the goal of identifying injury mechanism and tolerance (Crandall et al., 2011). Given an identified 

injury mechanism and tolerance, anthropomorphic test devices (ATDs) have been developed to be 

used for regulatory or consumer tests in the automobile safety field (Figure 2). The ATDs are 

synthesized mechanical devices - often called “dummies” - which have a simplified anatomical 

structure targeted at replicating the occupant responses under car crash conditions. Those ATDs 

enable engineers to develop effective injury countermeasures and to change the vehicle structures. 

The 50th percentile male ATD, nominally representing the average adult male, has served as the 

standard size ATD (Crandall et al., 2011). In addition to the standard size ATD, various sizes of 

ATDs have been developed to cover the anthropometric variability in size and gender of the 

population (Figure 2). Although ATDs play an important role in the advancement of automobile 

safety, they do not have the capability to assess failure directly. Rather, ATDs require the use of 

injury risk functions (IRFs) to predict the likelihood of injury using recorded measurements, such 

as force, acceleration, and deflection. 

 
Figure 2 Anthropomorphic test device (ATD) – Hybrid III series (left) and ATD used in car crash test (right) 
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Injury Risk Functions (IRFs) 

A fundamental purpose of biomechanical testing and the field of injury biomechanics is the 

development of risk functions (Kent & Funk, 2004). These IRFs are generally expressed as 

probability curves, rather than absolute thresholds or limits, since the likelihood of being injured 

varies by individual and are dependent on age, gender, physiologic condition, and other factors. 

(Crandall et al., 2011). For example, if 10kN of the peak femur axial load is recorded from a Hybrid 

III 50th percentile male dummy during a crash test, it represents a 35% risk of sustaining an AIS 

2+ injury according to the injury risk function proposed for that dummy (Eppinger et al., 1999) 

(Figure 3). Since the assessment of injury using ATDs highly relies on which IRFs were being 

used, the importance of IRFs should not be underestimated.  

 
Figure 3 Example of the assessment of injury using IRFs: 10kN of the peak femur load represents a 35% risk of sustaining an AIS 

2+ injury 

The conventional procedure for the development of IRFs is shown in Figure 4. The first step of 

the development is the biomechanical tests using surrogates (mostly the Post-Mortem Human 

Surrogates (PMHS) or specimens from the PMHS) subjected to loading conditions comparable to 
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an occupant in car crashes to record mechanical responses (such as force, accelerations, and 

deflection, etc.) and to observe injuries from them. After conducting the biomechanical tests, the 

responses of each specimen are generally normalized to standard size subject responses to 

compensate for the anthropometric differences using scaling techniques. Usually, peak values of 

the measured responses are used as predictors for IRFs. Finally, IRFs are generated using 

regression or survival analysis as a function of the predictor. Some IRFs are developed with 

consideration of specimen characteristics (such as age, height, or weight, etc.) as covariates. 

 
Figure 4 Current Procedure for Developing Injury Risk Functions 

Motivation 

While IRFs for the application to the ATDs have been developed and widely used in the 

automobile safety field, there are some challenges that need to be addressed in the current 

development procedure of IRFs. 

Challenges in Development of IRFs using Current Procedure 

Up to the present, IRFs have usually been developed in a “top-down” approach by relating injury 

occurrence in cadaveric tests to dummy measures in matched crash conditions (Forman et al., 

2012b). The usage of a top-down approach stems from a lack of knowledge of the relationship 
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between the human variabilities and the variation of injury outcome. The variabilities observed in 

the human population are the root cause of the variation of injury outcome between individuals. 

However, researchers usually do not have a clear understanding of the relationship between the 

variabilities and the injury outcome variation due to the complexity of the human body. Thus, 

researchers observe the injury outcome first from biomechanical tests using a number of specimens 

and apply probabilistic analysis to come up with IRFs. In other words, the human variabilities have 

been considered an “uncontrollable” factor. 

Scaling techniques are usually applied to compensate for anthropometric variability (which is 

likely to affect the injury outcome variation) between specimens. One of the main challenges in 

the development of IRFs in the top-down approach involves the usage these scaling techniques. 

The responses and injuries from biomechanical test data usually have a large variation due to the 

complexity of the human body, including anthropometric differences, local geometric differences, 

and other physical characteristics of specimens used in tests. Thus, various scaling techniques are 

sometimes used to normalize subject responses to estimate the response of a target subject size 

prior to developing injury risk functions. At present, a mass-based scaling technique is the most 

commonly used method in the field of injury biomechanics. This scaling technique normalizes 

human subject responses based on the mass ratio between the subjects assuming a constant density 

and modulus of elasticity among subjects between the scaled objects (Eppinger et al., 1984). 

Recently, a structure-based scaling technique has also been proposed, which assumes additional 

structural similarity by using idealized mechanical models to account for specific anatomy and 

expected loading condition (Nie et al., 2016). Although scaling techniques are applied in other 

engineering fields (such as ships and airplanes), the validity and effectiveness of those scaling 
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techniques for application to the field of injury biomechanics are still questionable (Moorhouse, 

2013); Since scaling techniques represent complex human structure and composition using a 

limited number of parameters, such as stature or mass, based on the assumption of geometric 

similarity (Figure 5), they are limited in their ability to capture the effect of variabilities in human 

body that may affect the responses of a human under car crash conditions. 

 
Figure 5  Geometrically similar objects; in the above cases, the model ratio is ½. 

Following the uncertainty of the scaling techniques, the limited number of biomechanical tests 

available for developing IRFs is another challenge that needs to be addressed. Since the 

development of IRFs relies on probabilistic analysis, increasing the number of specimens 

unequivocally improves the statistical power of the analysis. However, increasing the number of 

specimens is not easy with the usage of biological materials. Biomechanical tests are expensive, 

and it is hard to get specimens with particular characteristics, such as pediatric specimens or those 

with restricted anthropometry or age range;  it may take years to get specimens with particular 

characteristics (Kent et al., 2011). Thus, the developed IRFs, so far, usually have large confidence 

intervals, which gives uncertainty bounds for the location of the true population parameter. Also, 
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the question of the required number of tests for generation of IRFs is largely unanswered (Cutcliffe 

et al., 2012). 

Most of all, the uncertainty on scaling techniques and the limited number of specimens available 

are challenges intrinsic to the studying of the complex human body and the use of biological 

specimens, which may be difficult to overcome by just relying on the conventional top-down 

approach. Thus, there needs to be a consideration of new approaches to overcome the challenges 

facing the development of IRFs. 

Central Idea of the Study 

The central idea of this study is that population-based finite element (FE) models, whose input 

distributions are based on subject-specific finite element (SS-FE) and statistical modeling 

approaches, may hold the key to overcoming the challenges facing the development of IRFs. SS-

FE models, incorporating specific skeletal geometry of specimens into the models, help 

researchers verify the predictive capability of FE models with given material properties and their 

parameter distributions by minimizing the geometric error between cadaveric specimens and the 

models. If accurate subject-specific modeling technique can be developed and validated, this may 

facilitate the development of statistical models that can analyze geometric variations across the 

population. In the end, assigning probabilistic distributions as input variables instead of a single 

value allows generation of population-based FE models which captures variabilities across the 

population. Since the population-based FE models incorporate the variabilities across the 

population, the usage of the population-based FE modeling approach makes human variability a 

“controllable” factor. Most of all, since the variabilities in the human body are incorporated in the 
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FE models, researchers no longer need to rely on scaling techniques to compensate for 

anthropometric differences between individuals. Among other applications, this approach could 

be utilized to develop IRFs whose range of variabilities are informed by the population-based FE 

model responses. In other words, the population-based FE modeling approaches allows us to 

develop the IRFs in a “bottom-up” manner rather using the current “top-down” approach (Figure 

6). 

 
Figure 6 Schematic comparison between the top-down and the bottom-up approaches for developing IRFs 

To identify the geometric variabilities in the human body, statistical shape analysis using a medical 

image database can be introduced. Statistical shape analysis has the capability to analyze the shape 

variabilities among specimens to find the reduced-parametric representation of the variabilities in 

a large number of data sets based on a dimensionality reduction analysis, such as principal 

component analysis (PCA). It allows researchers not only to identify important parameters 

representing the variabilities in the human body but also to increase the number of data analyzed; 
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in general, the availability of the medical image database is greater than the ability to obtain 

specimens for biomechanical tests resulting in improved statistical power. 

Furthermore, the versatility of computational models can also enable engineers to develop IRFs 

with modified or additional loading conditions (such as different impact direction or speeds) for a 

given set of biomechanical test data within a range of conditions of which the models were 

validated. Designing a loading condition using a biological specimen to be comparable to that of 

an occupant in a car crash can be sometimes difficult due to the physical limitations of testing. If 

accurately validated computational models for that test condition are developed, the boundary 

conditions used in the test would be modified using the computational models.  

To sum up, the usage of subject-specific and statistical FE modeling approaches will be beneficial 

to developing IRFs, especially, by generating IRFs in a “bottom-up” manner: this method will be 

able to 1) incorporate variabilities across the population by using probabilistic distributions as 

input variables in FE models, 2) eliminate the uncertainties of using scaling techniques, 3) increase 

the number of data using an available medical image database resulting in improved statistical 

power, and 4) modify or add loading conditions for a given set of biomechanical test data. 

Application of Model-Based IRFs in conjunction with Parametric FE Human Body Models 

The parametric FE human body models (HBMs) are being developed in an effort to represent a 

wider range of the occupant population with rapid development time (Schoell et al., 2015; Shi et 

al., 2014). These parametric FE HBMs are aimed at the substitution of current ATDs. Even with 

these parametric FE HBMs available in the near future, IRFs still need to be developed to consider 

the effect of local variabilities in the human body because the models are targeting to predict the 
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average response of given occupant characteristics - even within the same target occupant 

characteristics, the human responses must have variations. Ideally, development of population-

based FE HBMs is the ultimate solution to represent all variabilities in the human body. However, 

it may not be feasible due to extremely increased computational costs for calculation. Hence, the 

parametric FE human body models in conjunction with IRFs developed in bottom-up approach 

would be an appropriate approach for assessment of injury risk of the human body under car 

crashes (Figure 7). 

 
Figure 7 Development of parametric statistical FE human body models and application of model-based IRF 
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Research Goal and Overview 

The goal of this dissertation was to explore a framework for developing injury risk functions 

(IRFs) in a bottom-up approach based on responses of population-based finite element models. 

To exemplify the proposed framework, this dissertation developed a closed-form of model-

based IRFs for application to the femur of the ATDs under a frontal oblique car crash test. Figure 

8 presents the overview of this dissertation. 

 
Figure 8 Overview of the dissertation 

Chapter 2 developed a method for developing the subject-specific finite element (SS-FE) models 

of the femurs by transforming the template femur FE model to the target subject geometry from 
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medical images. Chapter 3 validated the SS-FE models developed in Chapter 2 by comparing the 

response of the models to those of cadaveric specimens obtained from the biomechanical tests. In 

addition, material parameters for individual SS-FE models was estimated and compared to those 

from the literature. Then, distributions of the material parameters for three target occupant ages 

(25, 50, and 75 years) were obtained using a regression analysis. Once the accurate SS-FE models 

were developed and validated from Chapter 3, Chapter 4 conducted principal component analysis 

(PCA) and regression to identify parametric geometric descriptors of the human femur, and the 

distribution of those factors for three target occupant sizes (5th, 50th, and 95th percentile males). 

A Monte-Carlo method was then implemented to generate populations of FE models of the femur 

for target occupants in Chapter 5. In total, 100 femur models incorporating the variation in the 

population of interest were generated for each target occupant. Simulations were then conducted 

with each of these models under 3-point dynamic bending. Model-based IRFs were then developed 

using logistic regression analysis, based on 500,000 observations (each 100 femur models with 

5,000 ultimate strains) of the moment-at-fracture in the FE simulation. Finally, in Chapter 6, the 

framework proposed in this study was employed to develop a closed-form of model-based IRFs 

for application to the femurs of ATDs under a frontal oblique crash condition, whose loading 

conditions sustained were analyzed from the publicly-available NHTSA crash test database, using 

survival analysis with a multivariate logistic model using the occupant height, age, axial loading, 

and loading direction as covariates. 
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CHAPTER 2: DEVELOPMENT OF SUBJECT-SPECIFIC FINITE ELEMENT MODELS 

OF THE FEMURS 

To develop population-based FE models, as the first step, the predictive capability of subject-

specific FE (SS-FE) models for individual specimens needs to be ensured. The goal of this chapter 

is to construct a programmatic way of developing SS-FE models of the femur specimens using a 

template femur FE model and medical images, prior to evaluating the predictive capability of SS-

FE models in Chapter 3.  

2.1 Introduction 

The development of SS-FE models has been studied primarily in the field of orthopedic 

biomechanics (Giambini et al., 2015, An et al., 2015; Helgason et al., 2008; Nishiyama et al., 2013) 

(Figure 9). The studies in the field of orthopedic biomechanics mainly focused on proximal femurs 

since they were attempting to predict the risk of fracture during falls or were interested in implant 

design. However, SS-FE models focusing on the femoral shaft, which is commonly injured in 

automobile collisions, have not been addressed. 

  
Figure 9 Subject-specific FE  in orthopedic biomechanics: proximal femur (left) (Nishiyama et al., 2013), lumbar spine (right) 

(Giambini et al., 2015) 
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In the field of injury biomechanics, SS-FE modeling techniques have been studied focusing on the 

development of parametric FE human body models (HBMs) using morphing techniques in an 

effort to represent a wider range of the occupant population with rapid development time (Jolivet 

et al., 2015; Schoell et al., 2015; Vavalle et al., 2014) (Figure 10); these FE HBMs targeting to 

predict the average response of given target occupant characteristics, such as height, BMI, and age. 

Those studies have investigated a method to transform the geometry of template FE HBMs to 

target subject geometries on a whole-body level. Also, several researchers have demonstrated the 

benefit of using SS-FE models for the prediction of individual specimen responses in component 

level impact tests (Li et al., 2013; Untaroiu et al., 2008) and whole body level impact tests (Poulard 

et al., 2016); however, the number of specimens used in those studies was limited. 

  
Figure 10 Subject-specific FE models for whole human body: 50th percentile male (Jolivet et al., 2015) (left),  95th percentile 

male (Vavalle et al., 2014) (right) 

Also, in the morphing technique, digitizing the control points is extremely laborious and varies 

greatly between operators. Thus, there needs to be a consideration for developing a programmatic 

selection of control points. The goal of this task was to develop SS-FE models of the femur 

specimens with a programmatic selection of control points. 
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2.2 Methods 

The SS-FE models of the femur specimens used in two biomechanical tests (Forman et al., 

2012a; Funk et al., 2004) were developed using the computed tomography (CT) images recorded 

prior to the tests. In total, 20 specimens were introduced to develop SS-FE models (Table A1). 

The development of the SS-FE models of the femur specimens was divided into four steps: 1) 

model preparation, 2) registration, 3) selection of control points, and 4) morphing and evaluation 

(Figure 11).  

 
Figure 11 Steps to develop the SS-FE models of the femurs 



17 

 

 

 

The first step to developing the SS-FE models of the femurs was to develop the template FE model 

based on the femur geometry of the Global Human Body Model Consortium-owned GHBMC M50 

Seated Occupant Model (GHBMC) (Figure 12). 

 
Figure 12 Developed template FE model 

The femoral shaft region, mostly consisting of cortical bone, was modeled using 

hexahedral/pentahedral elements with three-layer along the radial direction. The proximal and 

distal parts of cortical bone, which were not regions of interest in this study due to the potting 

during the tests (Forman et al., 2012a; Funk et al., 2004), were modeled with thick shell elements 

with two-layer. The transition regions between the femoral shaft with three-layer elements and 
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proximal/distal end regions with two-layer were connected with pentahedral elements. Trabecular 

bones at a proximal and a distal region of the femur were modeled using tetrahedral elements, and 

the outside surface of the trabecular bone and the inside surface of cortical bone share the nodes. 

The femur FE models were covered by membrane elements, which were used as dummy elements 

only to calculate surface strain of the femurs. There are, in total, 14,926 hexa/pentahedral elements 

for cortical bone and 75,758 tetrahedral elements for trabecular bone. No element violated the 

criteria for element quality in the shaft region (Table 1). 

Table 1 Element quality check for developed template femur FE model 

Element Type Standard Failure 
Criteria 

Total 
number of 
elements 

Total number of 
elements not meeting 

criteria 

Failure ratio 
[%] 

HEX-PENTA 
(Femoral Shaft) 

Jacobian < 0.3 

7328 

0 0.0 
Warpage > 50 0 0.0 

Aspect ratio > 8 0 0.0 
Skew > 70 0 0.0 

HEX-PENTA 
(All) 

Jacobian < 0.3 

14926 

23 0.2 
Warpage > 50 21 0.1 

Aspect ratio > 8 650 4.4 
Skew > 70 9 0.1 

TETRA 

Tet collapse < 0.2 

75758 

6958 9.2 
Aspect ratio > 8 0 0.0 

Skew > 70 42 0.1 
Vol skew > 90 5752 7.6 

 

The number and shape of elements were determined based on the results of simulations, so-called 

the mesh sensitivity analysis, for Forman et al.’s test condition (Forman et al., 2012), which will 

be the target biomechanical test data for the validation of SS-FE models in Chapter 3, using five 

femur FE models with different number and shape of elements (Figure 13); the impact force time 

history and maximum principal strain of exterior femur surface at mid-shaft region were compared 
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(Table 2 and Figure B1). Based on the results, the element number and shape of elements for the 

template FE model was determined as they were located between those of the SENS3 and SENS4 

models. 

 
Figure 13 Five femur FE models with different number and shape of elements for mesh sensitivity analysis 

Table 2 Summary of mesh sensitivity analysis using five FE models with different number of elements 

 # of 
elements 

 Impact Force [kN] Max. Principal Strain [%] 

SENS #1 681 Peak [kN] 5.7 6.31 
difference [%] 1.38 13.92 

SENS #2 1195 Peak [kN] 5.72 6.73 
difference [%] 1.04 8.19 

SENS #3 8228 Peak [kN] 5.72 7.14 
difference [%] 1.04 2.59 

SENS #4 38535 Peak [kN] 5.73 7.22 
difference [%] 0.87 1.50 

SENS #5 154693 Peak [kN] 5.78 7.33 
difference [%] 0.00 0.00 

 



20 

 

 

 

Next, the geometry of each femur specimen was reconstructed from computed tomography (CT) 

images by a segmentation-with-thresholding method using Mimics (14.01, Materialise, Plymouth, 

MI). Based on a histogram analysis, voxels above 500 Hounsfield Unit (HU) value are marked as 

cortical bone; previous study recommended 600 of HU value for thresholding the cortical bone 

region of the femoral shaft (Aamodt et al., 1999). Whereas thresholding HU value exceeding 300 

was not sensitivity to the change of cross-sectional area of femoral shaft (Table B1), using HU=600 

as thresholding resulted in a poor segmentation due to a resolution of clinical CT scan. Thus, 

Thresholding HU value was reduced to 500 in this study. 

For the segmentation of the femur, an outer surface and an inner surface of the specimen were 

generated separately. Due to the resolution of CT images (pixel size of 0.289mm), proximal and 

distal regions of the femurs, which has a thin cortical thickness (usually less than 1 mm) were 

difficult to segment the inner surface. Thus, regions with a cortical thickness less than three voxels 

of CT images were assumed as a constant cortical thickness of size of three voxels. 

Before transforming the template FE model to target reconstructed subject geometry, a registration 

between two geometries was conducted (Figure 11); both geometries were centered and rigidly 

transformed using an iterative closest point (ICP) algorithm (Besl & McKay, 1992); the ICP 

algorithm finds a rigid-body transformation which aligns the template model geometry to a target 

geometry by finding the closest points in the target geometry to the template geometry. After 

applying the ICP, the target subject geometry was scaled in three directions (x, y, and z) to the 

template FE model to minimize the size difference between the two geometries. The scaling factors 

were recorded to scale-back the target subject geometry after searching control points for morphing. 
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Given aligned geometries of the template FE model and the target subject geometry, control points 

for morphing were selected using in-house MATLAB scripts (R2015a, The MathWorks Inc., 

Natick, MA). To select control points, first, the surface registration technique proposed by Bryan 

et al. (2010) was employed. This technique is based on the three-dimensional generalization of 

Burr’s elastic registration algorithm (Bryan et al., 2010). Prior to implementing this surface 

registration, the outer surface of the template FE model was divided into eight patches of the 

anatomical parts (femoral head, greater trochanter, lesser trochanter, medial/lateral condyles, 

medial/lateral epicondyles, and center of the condyle) (Figure 14). Then, the outer surface of the 

template FE model was transformed to the outer surface of the target subject geometry using the 

surface registration algorithm (Figure 11). 

 
Figure 14 pre-defined anatomical patches to select control points for the proximal and the distal regions 

After completion of the surface registration, control points for the femoral shaft and proximal and 

distal regions were selected. For the femoral shaft region, which has relatively simple geometry 

(hollow cylindrical shape), 39 sections, from the 12 percentile to the 88 percentile along the 
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longitudinal direction of the femur were selected, and each section had evenly distributed 40 

pseudo-landmarks (based on angle) around the outer and inner outlines of the section (Figure 11). 

To select control points for the proximal and distal regions, the parameterization and re-

parameterization of surfaces (Davies et al., 2008) were employed to manipulate correspondence 

between the pre-defined anatomical patches of the template FE model and the target subject 

geometry (Figure 15). After selection of control points for both the femoral and distal/proximal 

regions, all control points of the target subject geometry were scaled back using the scaling factors 

recorded during the previous scaling step. 

 
Figure 15 Manipulation of corresponding control points using parametrization and re-parametrization 

Finally, with selected control points, the geometry of the template femur FE model was 

transformed to the target subject geometry of each specimen using a morphing technique, 
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implementing a thin-plate spline with a radial basis function, an extension of the original thin-plate 

spline proposed by Bookstein (1989) to take into account landmark localization errors, (Rohr et 

al., 2001). 

The accuracy of developed SS-FE models was evaluated regarding the average minimum distance 

error (MDE) (the average distance between nodes on the surface of the FE model and the surface 

of the target subject geometry) and three cross-sectional areas (25, 50, 75 percentile along the long 

bone direction). Also, the element quality (Jacobian, warpage, aspect ratio, and skew) was 

evaluated for the shaft region which consists of hexa/pentahedral elements. 

2.3 Results 

Table 3 summarizes the geometric error analysis and the percentage of elements not meeting the 

target element quality of the developed SS-FE models. The difference in cross-sectional area was 

less than 3%, and the average minimum distance error was less than 1mm between the developed 

SS-FE models and the target subject geometries. The developed SS-FE models satisfied the 

element quality criteria about Jacobian, warpage, and skew while it showed 0.4% of the elements 

not meeting a criterion of aspect ratio. The errors of each SS-FE model are presented in Table B2. 

Figure 16 shows a visual comparison regarding the geometric accuracy of one of the developed 

SS-FE model and control points used as an example. 

Table 3 Summary of the geometric accuracy and the element quality of developed SS-FE models 

 Area [%] 
Min.  

distance 
[mm] 

% of elements not meeting target:  
HEX-PENTA (shaft) [%] 

 25% 50% 75% Outer Inner Jacobian Warpage Aspect ratio skew 
Average 2.9 3.0 0.9 0.33 0.84 0.00 0.00 0.37 0.00 
1 STD 2.7 0.7 0.8 0.03 0.19 0.00 0.00 0.80 0.00 
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Figure 16 comparison of the geometry between target subject and developed SS-FE models and control points used for the 

morphing for one of the specimens (F2012-M01) as an example 

2.4 Discussion 

In this chapter, geometrically accurate SS-FE models were created from CT images of the target 

specimens using the algorithm developed; the differences in cross-sectional area between the SS-

FE model and the target subject geometries were less than 3%, and the average minimum distance 

between the outer and inner surfaces of those two geometries was less than 1 mm. More 

importantly, the developed algorithm only requires a reconstructed geometry from CT images and 
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a template FE model. Then, given those two geometries, the SS-FE models were programmatically 

generated, which means the researcher does not need to manually select control points, which are 

laborious and the result largely varies between operators. This could be done by implementing 

several different algorithms from the literature: ICP, elastic registration, thin-plate spline, and 

parametrization/re-parametrization; implementing just one algorithm from the literature was not 

applicable for developing SS-FE models of the femurs in this study.  

The greatest difficulty in developing the algorithm for SS-FE models of the femurs in this study 

comes from the way control points are selected to ensure a geometrically corresponding location 

between the template and the target subject geometries. The selection of corresponding control 

points was easily made for a simple geometry, such as a hollow cylindrical shape in the femoral 

shaft, using evenly distributed control points with a programmatic selection of them. However, 

application of this method became difficult with complex geometry, such as the proximal and 

distal regions of the femurs. Thus, for those regions with complex geometries, anatomical 

landmarks have been manually picked as control points; however, the number of control points 

represented by only anatomical landmarks may not be sufficient to characterize the complex 

geometry. Klein et al. (2015) incorporated an extension of the thin plate spline method to morph 

the template femur FE models for statistical shape analysis. For the femoral shaft region, Klein et 

al. programmatically digitized control points using the equal distance method similar to the one 

used in this study. For proximal and distal regions, the authors manually selected 13 anatomical 

landmarks which were easily distinguishable. Due to the limited number of control points available, 

the reconstructed surfaces had large geometric differences compared to the target geometries in 

distal and proximal regions (maximum of 6mm error of average nodal distance) (Figure 17). A 
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similar approach was also initially adopted for this study (Park et al., 2017). However, this resulted 

in a large geometric error in the proximal and distal regions as shown in Klein et al.’s study.  

  
 Figure 17 Large geometric error in proximal and distal region using the limited number of control points represented by 

anatomical landmarks: (Klein et al., 2015) (left), (Park et al., 2017) (right) 

An alternative way of selecting control points for complex geometries, instead of the selection of 

anatomical landmarks, is to use all surface nodes as control points, rather than using a limited 

number of anatomical landmarks. In the field of orthopedic biomechanics, Bryan et al. (2010) 

developed statistical shape models of the femurs using a template FE model with 615,523 

tetrahedral elements, which had six times more elements than this study (Figure 18). Bryan et al. 

demonstrated that Burr’s elastic registration algorithm was successfully implemented to morph the 

surface of the template femur model to target geometries including proximal and distal regions in 

the femurs (Figure 18). It is noted that this algorithm was only applicable for the transformation 

of 2D surface geometry; application of this algorithm was not applicable to the morphing of the 

3D template FE model, which mostly consists of hexa/pentahedral elements, resulting in severely 
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distorted elements. Thus, Bryan et al. adopted an additional step to morph 3D geometry using the 

thin plate spline algorithm using nodes on the morphed surface as control points. 

   
Figure 18 Template FE femur model used (left) and accurate morphed FE model (middle) in Bryan et al. (2010). Morphed 

surface geometry in surface registration in this study (right) 

Even though the usage of directly morphed nodal points as control points successfully generated 

subject-specific geometries, control points used in the transformation do not guarantee a 

corresponding location between the two geometries. Correspondence between control points does 

not necessarily need to be ensured for the creation of SS-FE models. Besides, the correspondence 

between control points is a necessary condition for generation of parametric statistical models. 

Since the way of selecting control points will be used to statistical shape analysis in Chapter 4, 

corresponding points between the two geometries needs to be ensured in this chapter. However, 

correspondence between control points in two different geometries becomes more difficult to be 

ensured as geometry becomes complex or has the local geometric difference (Figure 19). This 

difficulty could be overcome by finding an explicit parameterization of the surfaces than equally 

spacing points in parameter space (Davies et al., 2008), as was done in this study. (Figure 15).  
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Figure 19 difficulty in finding corresponding points between target and template geometries 

To apply the developed algorithm in this chapter to other body regions, the algorithm should be 

adopted to each specific body region depending on the shape characteristics of the part. For 

example, for the kidney, an algorithm implementing 3D parametrization using a sphere or a cube 

would be a better algorithm than using a square (2D), as was used in this study (Figure 20). 

 
Figure 20 Example of 3D parameterization of non-spherical topology using sphere (Davies, 2002) 

The developed SS-FE models in this chapter incorporated all aspects of geometric variability into 

the models. Thus, the models would have the potential, at least, of capturing the response variation 

shown in biomechanical tests attributed to its geometric variability. In other words, using the 

developed SS-FE models allows analysis of the contribution of geometric variability relative to 

the other factors (mainly, material variability) contributing to the response and injury outcome 
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variations, which would be a necessary step to develop population-based FE models which require 

information of effective variabilities to the response and injury outcome variations. 

In Chapter 3, the SS-FE models developed in this chapter will be validated by comparing the model 

responses to those of cadaveric specimens. Most of all, the contribution of geometric variability to 

the response variation will be analyzed by decomposing the geometrical error using the SS-FE 

models. Also, the distribution of material parameters identified for individual specimens using the 

SS-FE models will be compared to those from the literature.
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CHAPTER 3: VALIDATION OF SUBJECT-SPECIFIC FINITE ELEMENT MODELS 

In Chapter 2, a method for developing the SS-FE models of the femurs was developed. Given the 

models, this chapter validated the models under a dynamic three-point bending condition by 

comparing the response of the models to those of cadaveric specimens from biomechanical tests. 

In addition, material parameters were identified for individual specimens via material parameter 

identifications with SS-FE models and compared to those from the literature. Then, distributions 

of the material parameters for three target occupant ages (25, 50, and 75 years) were obtained using 

a regression analysis. The results of this verified the predictive capability of the model for 

individual specimen responses with given material models and their parameter distributions and 

the required level of model complexity to capture the response variations shown in the tests. The 

distributions of the material parameters obtained from this chapter will be used as the input 

parameters for generation of the population-based FE models in Chapter 5. 

3.1 Introduction 

With the contemporary development of computational modeling and imaging technology, SS-FE 

models have been increasingly employed in the field of biomechanics. Since SS-FE models are 

able to incorporate detailed skeletal geometry as well as a spatial density distribution of specimens, 

they have the potential to predict the response of each specimen by capturing all aspects of 

geometric and compositional variabilities. If accurate subject-specific modeling techniques can be 

developed and validated, this may facilitate the development of parametric population-based FE 

models that can capture the effects of variabilities across the population. This approach will be 

able to 1) take into account variabilities across the population rather than considering the limited 
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range of the population, 2) eliminate uncertainties inherent to scaling techniques, 3) increase the 

amount of data available to the field using models developed from available medical images. To 

develop parametric population-based FE models, as the first step, the predictive capability of SS-

FE models needs to be evaluated. 

Even though SS-FE models have a potential to incorporate variabilities in the human body, one 

question still remains regarding SS-FE models, “how specific should SS-FE models be?” This 

issue has been largely unanswered and needs to be addressed to develop biofidelic SS-FE models 

with feasible model complexity. A recent study addressed the question using the FE HBMs under 

the side impact condition (Hwang et al., 2016). Hwang et al. compared the biofidelity of the full 

FE HBM using three different HBM (original generic HBM representing 50th percentile male size, 

a parametric HBM with occupant characteristics, and a subject-specific HBM) and demonstrated 

that the subject-specific HBM model showed the best biofidelity among three models. Also, 

through sensitivity analysis, Hwang et al. pointed out important contributing factors for the 

biofidelity of FE model: the body posture, the skeleton and body shape geometries. Whereas this 

study using whole body level HBM have provided insight into the potential of SS-FE modeling 

technique, validation of component-level test data would be a useful supplement for those studies 

to identify key validation goals for SS-FE models in more specific. Also, SS-FE modeling needs 

to be applied for various loading conditions because the answer of the posed question would be 

different case-by-case. 

Developed SS-FE models can be further utilized to decompose the contribution of geometric 

variability to response variations. The response variations shown in biological specimens mainly 

come from two variabilities: geometric variability and material property variability. Since the 
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developed SS-FE models incorporated all geometric information into the models, the response 

variations attributed to the geometric variability would be mostly reduced by the usage of the SS-

FE models. In other words, the SS-FE models allow decomposition of the contribution of the 

geometric variability from the response variations. Up to the present, some efforts to decompose 

the contribution of the geometric variability from the response variations have been made using 

analytical models (Forman et al., 2012a; Ivarsson et al., 2009). Forman et al. (2012a) analyzed the 

contributing effects of changes in bone geometry by a component decomposition using a simplified 

beam model. Ivarsson et al. (2009) estimated individual values of elastic modulus for the 

specimens using a developed analytical model characterizing the femurs as the curved beam. Since 

those analytical models employed femurs characterized using a limited number of factors, adopting 

SS-FE models for the decomposition analysis would better identify the contributing factors to the 

response variations. 

Most of all, SS-FE models, incorporating specific skeletal geometry of specimens into the models, 

help researchers verify the predictive capability of FE models with given material properties and 

their parameter distributions by minimizing the geometric error between cadaveric specimens and 

the models.  

The goals of this chapter were 1) to predict the structural response and the fracture of the femoral 

shaft under dynamic loading conditions using the SS-FE models, 2) to evaluate the predictive 

capability of the models with respect to the complexity of the model and 3) to obtain distributions 

of the material parameters for three target occupant ages by verifying that material parameters for 

individual SS-FE models are in the range of those from the literature. 
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First, dynamic three-point bending tests of fifteen bare femurs, described by Forman et al. (2012a), 

were simulated using the SS-FE models developed from Chapter 2. Second, the prediction 

capabilities of four different levels of model complexity were defined and evaluated: baseline, 

mass-based scaled, structure-based scaled, and the SS-FE models. Third, to ensure the robustness 

of developed SS-FE models, dynamic three-point bending tests of five bare femurs, described by 

Funk et al. (2004), were simulated and compared to the experimental results. Finally, individual 

material parameters for specimens were obtained by fitting material parameters to minimize the 

response errors between the SS-FE models and specimens tested. The material parameters for 

individual SS-FE models were then compared to those from the literature to verify the feasibility 

of using the material parameter distributions from the literature as input variables for generation 

of population-based FE models. Finally, the distributions of the material parameters were 

generated for target occupant ages using a regression analysis. 

3.2 Methods 

FE simulations 

Dynamic three-point bending tests of bare femurs (Forman et al., 2012a) were simulated (Figure 

21). The distal and proximal ends of the femur specimens were potted into cups, and the specimens 

were loaded at the mid-span in the latero-medial direction by an impactor at 1.5 m/s. In total, tests 

performed on 15 specimens (Table A1) were simulated using the SS-FE models developed in 

Chapter 2. 

In addition to the fifteen simulations for Forman et al.’s test, the robustness of the models for 

different loading directions with a wider range of the age span was checked using simulations of 
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the dynamic three-point bending tests of the femur specimens described by Funk et al. (2004) 

(Figure 21). The simulation condition was similar to that of Forman et al.’s with the exception that 

the impact speed was at 1.2 m/s and specimens with posterior-anterior loading direction were 

included. In total, tests performed on five specimens (Table A1) were simulated using the SS-FE 

models. 

 
Figure 21 Biomechanical tests (left) and FE simulations (right): three-point bending test conducted by Forman et al. (2012a) 

(top) and by Funk et al. (2004) (bottom) 

The inertia properties of the test apparatus were taken into account by using the 3D CAD geometry 

and density of each component. The potting material, inside the blocks of proximal and distal ends 

of the femur with a density of 1.0 [g/cm3], impactor, and test fixtures were assumed as rigid bodies. 

Also, the elements of femur inside the volume of potting material were assumed as a rigid body 

constrained by the potting volume. The friction coefficient between the block and bottom plates 

for Forman’s and Funk’s test conditions were defined as 0.2 and 0.0, respectively; friction 

coefficients were estimated by calculating the ratio of the normal force to the tangential force from 

the load cells placed under the plates in the tests. 
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Data Processing 

The impact force time histories were used as the reference curves for comparison, and the root 

mean square (RMS) errors between the responses of models and the tests were calculated to 

quantify the prediction error (the RMS errors were calculated until fracture occurred in the test 

data). To evaluate fracture prediction, differences in the impact force at the timing of fracture were 

calculated. The RMS errors and the fracture force differences between the baseline model, the 

mass-based and structure based scaled responses, and the SS-FE models were compared to 

evaluate the predictive capability of the models regarding the complexity of the FE models. Also, 

a paired student t-test was performed to check statistical differences between the responses. Time 

zero was assumed to be the time at which the impact force exceeded 0.4kN, and all model and 

experimental responses were shifted in time to match that time zero. All the test and model 

responses were filtered using the same filter class (CFC180) (SAE, 2003). 

Material Parameter Identification of SS-FE models and Determination of Fracture 

A piecewise linear plastic material model (LSTC, 2013) was selected as the material model for the 

femur SS-FE models (Table 4), and the fracture was identified if the maximum principal strain 

exceeded the ultimate strain during post-processing. Since a wide range of elastic moduli of 

cortical bone has been reported (McCalden et al., 1993; Zioupos, 2001), material parameter 

identification was conducted to assign estimated generalized material properties to the SS-FE 

models. In other words, a single common set of material parameters was identified from via 

parametric study and was assigned to all the SS-FE models (Table 4). The details of material 

parameter identification are presented in Appendix C. 
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Table 4 Common cortical bone material parameters for the SS-FE models identified by parametric study 

 
Elastic 

Modulus 
[GPa] 

Yield 
Stress 
[GPa] 

Tangent 
Modulus 
[GPa]*a 

Ultimate 
Strain*b 

Poisson’s  
Ratio 

Density 
[kg/mm3] 

Piecewise linear plasticity  17 0.125 0.935 0.045 0.3 2000 
*a: 5.5% of elastic modulus was assumed for tangent modulus based on the literature (Burstein et al., 1976) 
*b: Fracture strain was not directly assigned in the material model. Rather, the bone fracture was determined if the maximum principal strain of elements exceed a 
strain tolerance during the post-processing. 

 

In addition to identifying generalized material properties to the SS-FE models, individual material 

parameters, which minimize the RMS error and the fracture force difference, for specimens were 

obtained. The SS-FE models with material parameters obtained for individual specimen are 

referred to as “the SS-FE models with a material fit.”. Obtained material parameters were 

compared to those from coupon tests using human cortical bones in the literature (Kemper et al., 

2007, 2008; McCalden et al., 1997; Zioupos, 2001) to evaluate the validity of the SS-FE models. 

Linear regression analysis was conducted to obtain the distributions of the material parameters 

(elastic modulus and ultimate strain) as a function of the age using the material parameters from 

the literature which would be used to generate the population-based FE models in Chapter 5. Due 

to the limited data on the distribution of yield stress from the literature, yield stresses estimated for 

the individual specimens using the SS-FE models with a material fit were used to estimate the 

distribution of yield stress. Normal distribution was assumed as underlying the distribution of three 

material parameters. The normality of the samples was tested by using the Anderson‐Darling 

normality test with 5% significance level. 
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Model Complexity 

To evaluate the predictive accuracy of the models in relation to the model complexity, the level of 

model complexity was defined as Table 5. 

Table 5 the level of model complexity defined in this study 

Level Model Description 
1 Baseline single generic response prediction 
2 Mass-based Scaled subject-specific response prediction using one parameter 
3 Structure-based Scaled subject-specific response prediction using two parameters 
4 SS-FE subject-specific response prediction using all geometric factors 

 

Level 1 was defined as using the baseline template model for prediction; this level reflects the 

response that would be predicted by one generic model that does not consider variations in 

geometry between specimens. The model complexity Level 2 and 3 were defined as using scaling 

techniques to compensate for the geometric variability. Scaling techniques attempt to represent the 

geometric variability shown in specimens using a reduced number of geometric or mass parameters, 

mostly one or two. Each selected baseline response was scaled to the other fourteen target 

specimens using two scaling techniques: mass-based scaling (Eppinger et al., 1984) and structure-

based scaling (Nie et al., 2016). For mass-based scaling, the scaling factors were derived from the 

ratio of mass between the target femur specimen and the baseline model (Eq. 1). This scaled 

response using the mass-based scaling technique is, hereafter, referred to as “the mass-based 

scaled response.” The scaling factors for structure-based scaling were obtained using the ratio of 

mid-section area and femur length between the baseline model and target specimen (Eq. 2). This 

response is referred to as “the structure-based scaled response.” 
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 λforce = λmass
2/3, λtime = λmass

1/3 Eq. 1 

 λforce =
λArea

3/2

λlength
 , λtime = λlength Eq. 2 

The SS-FE models were defined as Level 4, as the SS-FE model incorporates all available detailed 

geometric factors into the model. 

To gain insight into how the overall comparison would change based on the choice of baseline 

geometry, each of the fifteen geometric SS-FE model responses was selected in series to serve as 

“the baseline response” against which all other models (of all other specimens) were compared. 

The results from each set of analyses (with different “baselines”) were then aggregated to 

determine mean and standard deviation error predictions (Figure 22). 

 
Figure 22 Schematic diagram for evaluation of predictive capability of FE model according to model complexity 
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3.3 Results 

The structural response and fracture prediction capabilities of four model complexities (the 

baseline, mass-based scaled, structure-based scaled, and SS-FE models) were evaluated using the 

RMS error and the fracture force difference (Figure 23). The SS-FE models showed a statistically 

significant (p <0.05) reduction of both the RMS error and the fracture force difference compared 

to those of baseline models. Both scaled responses using the mass-based, and the structure-based 

techniques did not show a statistically significant reduction in both the RMS error and the fracture 

force difference.  

  
Figure 23 Evaluation of scaling techniques and contribution of geometric variabilities to structural response (left) and fracture 

response (right) variations 

Figure 24 and Figure 25 compare the impact force time histories between the SS-FE models, the 

SS-FE models with a material fit, and femur specimens from the tests conducted by Forman et al. 

(2012a) and Funk et al. (2004). 
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Figure 24 Comparison of impact force histories between test, SS-FE and SS-FE models with a material fit for femur specimens of 

Forman et al. (2012a). X indicates the femur fracture 
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Figure 24 Comparison of impact force histories between test, SS-FE and SS-FE models with a material fit for femur specimens of 
Forman et al. (2012a). X indicates the femur fracture (continued) 
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Figure 25 Comparison of impact force histories between test, SS-FE and SS-FE models with a material fit for femur specimens of 
Funk et al. (2004). X indicates the femur fracture 

The material parameters fitted to individual specimens from the SS-FE models with a material fit 

were in the range of those from the literature (Figure 26). The material parameters of individual 

specimens are presented in Table C4. A regression analysis demonstrated that the ultimate strain 

was only a significant variable (p < 0.05) and showed a strong negative correlation with age (r=-
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0.59) while the elastic modulus (p=0.15, r=-0.13) and the yield stress (p=0.21, r=0.21) did not.  

Thus, only the distribution of ultimate strain was generated for three different target age occupants 

(Figure 27). The ultimate strain and the elastic modulus showed normal distributions (p > 0.05) 

while the hypothesis on the normality of the yield stress was rejected (p < 0.05) (Table D1).  

 
Figure 26 Comparison of material parameters (top) and distributions of the material parameters for three target occupant ages: 

coupon tests from literature (circle) and material fit using SS-FE (triangle) 

 
Figure 27 Distributions of the Elastic modulus (left), ultimate strain (middle), and yield stress (right) 
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3.4 Discussion 

Advantage of using the SS-FE Models for Prediction of the Structural Response and Fracture 

The SS-FE models showed a statistically significant improvement in the predictive capability of 

structural response and fracture compared to the baseline model (p < 0.05) (Figure 23). This result 

demonstrates the advantage of incorporating all aspects of the geometric variability into the model 

using the SS-FE modeling over using a single baseline model to predict the responses of individual 

femur specimens. 

Required Level of Model Complexity for Prediction of the Structural Response and Fracture 

Computational models always experience a trade-off between efficiency and accuracy. Given the 

fact that the cortical bone has a complex hierarchical composite structure spanning from a nano-

scale to macro-scale structure (Launey et al., 2010), identifying the required level of model 

complexity to predict the response of cortical bone, especially to capture the response and fracture 

variation between the subjects, is of great importance to developing the SS-FE models. 

The SS-FE models tended to result in significantly improved predictive capability for structural 

response and fracture compared to the mass-based or the structure-based scaled responses. The 

results showed that scaling techniques were not effective to reduce the prediction errors (Figure 

23). Thus, these results suggest that scaling techniques would not meet a level of model complexity 

needed to accurately predict the structural response and fracture of specific femur specimens under 

the type of loading studied here. In other words, increased model complexity, at least, to the SS-

FE models, is required to capture the response and injury outcome variation shown in the femur 

specimens.  
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In addition to model complexity regarding the geometric aspect, the result of this study informed 

the required complexity of the material model used. Specifically, the results suggested that a 

piecewise linear plasticity material model could be used to predict the structural response and 

fracture of the femoral shaft under a dynamic three-point bending loading condition if subject-

specific geometries are used. It is well known that cortical bone is rate-dependent and an 

anisotropic material as well showing asymmetric response between the loading under tension and 

compression. Thus, selection of a constitutive model to characterize the bone is one of the major 

factors for developing SS-FE models. This study used the piecewise linear plasticity material (with 

an elastic modulus, yield stress, and ultimate strain as material parameters) to characterize cortical 

bone, and the developed SS-FE models captured the force-time histories of the bare femur and the 

fracture (Figure 24 and Figure 25) for all 20 specimens. This result was consistent with previous 

studies on constitutive model regarding anisotropy of the human femur (Krone & Schuster, 2006; 

Untaroiu et al., 2006).  Krone and Schuster (2006) reported that the global structural response of a 

femur subjected to bending is sufficiently described by isotropic elastic material, and more 

complex materials (non-linear isotropic, linear transversely isotropic, and linear orthotropic 

materials) do not improve the predictive capability of the model. However, Krone and Schuster 

postulated that consideration of the directional property of the material model enhances the 

predictive capability of the femur FE model under the torsional loading condition. Also, Untaroiu 

et al. (2006) demonstrated that both isotropic elastic-plastic and elastic transversally isotropic 

constitutive models showed a good structural response and fracture prediction of the human femur 

specimen under three-point dynamic bending condition. Furthermore, the individual material 

parameters that were obtained through the inverse FE modeling technique were in the range of 
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values in the literature with cortical bone coupon tests (Figure 27). Thus, the results of this study 

demonstrated that the piecewise linear plasticity would be the required level of material model 

complexity for the prediction of structural response and fracture of the femurs, at least, under the 

dynamic three-point bending condition. More importantly, the results showed that the femur FE 

model has a capability for prediction of structural response and fracture of individual femur 

specimens if subject-specific geometry and a material model/parameters were accurately 

incorporated. 

For different body regions and loading conditions, a different level of model complexity may be 

required. It is well known that cortical bone is rate dependent and an anisotropic material. Also, 

bone has a different structure according to its function in the body. For example, the proximal 

region of the femur consists of the trabecular bone inside of a thin cortical shell to offer stability 

against compressive force. Hence, this SS-FE modeling technique should be extended to apply to 

various loading rates, loading methods, and other body regions. 

Violation of Geometric Similarity in Femur Specimens 

The reason for increased error in both scaled responses might arise from a violation of the 

fundamental assumption of scaling techniques: geometric similarity. Scaling techniques try to 

represent differences in complex geometries with one or two parameters using an assumption of 

geometric similarity. If the geometric similarity is not applicable for femur specimens, those 

techniques would be in error. 

The geometric similarity of the femur specimens was investigated in two ways (Figure 28). One 

way was to investigate the relationship between the length and square root area normalized by 
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their average of all fifteen specimens. For geometric similarity to hold, the length and the square 

root area should be correlated. The femur specimens were not correlated (R2=0.32). The other way 

to investigate geometric similarity was by analyzing a variation of the cross-sectional area along 

the longitudinal femur direction (normalized by the area of each specimen’s mid-section). For 

geometric similarity to hold, the cross-sectional area variation in the specimen should be similar 

between the specimens. The results indicate that the specimens showed up to 40% variation of the 

area along the longitudinal femur direction. Those results indicate a violation of the assumption of 

the geometric similarity of femur specimens. In other words, more geometric factors need to be 

incorporated into the FE model to capture the response variation attributed to the geometric 

variability. 

  
Figure 28 Violation of assumption of geometric similarity: the relationship between the normalized length and normalized square 

root area (left) and variation of area along the longitudinal femur direction (right) 

Decomposition of Geometric Contribution to Response Variation 

The results of this study showed the significant contributions of the geometric variability to the 

structural response and fracture variations relative to those of material variability and other sources 

of modeling error. Since the SS-FE models incorporated all the geometric variability into the 
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model, the improvement in the predictive capability would be interpreted as the contribution of 

the geometric variability to the response variations. By comparing the RMS errors and the fracture 

force differences, the contribution of the geometric variability to structural response and fracture 

variations were about 80% and 50% respectively. This result indicated that the geometry 

dominates the structural response, at least for a femur under the specific loading condition in this 

study. Contribution of the other factors, mainly material property, increased when it comes to the 

fracture outcome variation. 

Distribution of Material Parameters 

The results of this chapter demonstrated the biofidelity of the femur FE model with a given material 

model and material parameter distributions. Since the usage of SS-FE models minimizes the 

geometric error between the FE model and cadaveric speciemens, the material parameters were 

estimated for each individual specimen to minimize the RMS error and the fracture force 

differences. Those estimated individual material parameters were in the range of those from 

cortical bone coupon tests in the literature (Figure 27), which confirmed the biofidelity of the FE 

model, at least under the loading condition used in this study.   

Linear regression was performed to predict material parameters as a function of the age, and the 

result showed that only the ultimate strain showed a statistically significant correlation with age (p 

< 0.05). Therefore, the distribution of the ultimate strain was obtained for three different target 

ages (25, 50, and 75 years) and the distributions of the other two were generated regardless of the 

age.  
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This different correlation with age between elastic modulus and ultimate strain also demonstrate 

the difficulty of applying scaling techniques for generation of injury risk functions. Currently, for 

mechanical systems, the scaling factors for structural characteristics of the model are established 

by the ratios of three fundamental properties: the length, mass density and Elastic modulus (Nie et 

al., 2016). Even though the scaling factor for elastic modulus as a function of age was determined, 

this scaling factor could not be applicable for scaling the fracture force or moment. 

The underlying assumption on the assumed linear relationship between the material parameters 

and age could be enhanced by applying non-linear regression. Forman et al. (2012a) demonstrated 

that the ultimate stress of bone tended to be relatively consistent for the first 40 years followed by 

a decline. Thus, further investigation of the relationship between the material parameters and age 

needs to be addressed. Also, the distributions of the material parameters may need to be refined by 

sex. The material parameters obtained from the literature in this study did not consider the sex. 

However, the cortical bone tends to show a different ultimate stress (McCalden et al., 1993) and 

viscoelastic property (Wu et al., 2011) between male and female. Especially, the significant bone 

loss observed in older women, especially after menopause (Zebaze et al., 2010). Since this study 

targets male occupants, the result of this study was likely to overestimate the effect of age on the 

degradation of the ultimate strain. 

The sample distribution of the ultimate strain and elastic modulus were normally distributed (p > 

0.05 from Anderson-Darling test) while the yield stress was not. Non-normality of the yield stress 

may come from the limited number of data points. Material parameters (elastic modulus, ultimate 

strain, and yield stress) were obtained from the literature and estimated material parameters using 

the SS-FE models with a material fit. The average yield stress obtained from the SS-FE models 
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with a material fit in this study (135 MPa) was comparable to that from material testing in the 

literature (114 MPa) (Burstein et al., 1976); however, due to the limited information on the yield 

stress in the literature, the distribution of yield stress was generated only relying on the material 

parameters from the SS-FE models with a material fit which have fewer data points when 

compared to the other two material parameters. 

Application of the SS-FE models 

The distributions of the material parameters obtained from this chapter will be used to generate 

the population-based FE models in Chapter 5. In Chapter 4, statistical shape analysis with 

regression will be employed to analyze geometric descriptors explaining the geometric variability 

in the femur and their distributions. Given the geometric and material variables and their 

distributions, a Monte-Carlo method will be implemented to synthesize the population-based FE 

models in Chapter 5.  
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CHAPTER 4: STATISTICAL SHAPE ANALYSIS 

In Chapter 2 and Chapter 3, the SS-FE models were developed and validated, which confirms the 

biofidelity of the femur FE model with a given material model and parameter distributions. In this 

Chapter, the geometric variability in the human femurs was analyzed from clinical computed 

tomography (CT) images to identify significant geometric factors of the human femur using 

principal component analysis (PCA). The distributions of principal scores of the identified 

geometric descriptors for three target male occupant sizes (5th, 50th, and 95th) were then obtained 

using a regression analysis. The distributions of principal scores of the geometric descriptors 

obtained from this chapter will be used as input parameters for generation of the population-based 

FE models in Chapter 5. 

4.1 Introduction 

Statistical shape analysis has received attention  from the field of biomechanics due to its ability 

to analyze the shape and densitometry variabilities among specimens; it has been used to find 

reduced-parametric representations of the variabilities in a large number of data sets based on the 

dimensionality reduction analysis, such as principal component analysis (PCA). Given the 

information about geometric descriptors obtained from the statistical shape analysis, the geometric 

variability in the human body can be employed directly in computational FE models: a statistical 

finite element (FE) modeling approach; the models are assigned probabilistic distributions of 

subject characteristics as input variables instead of a single characteristic value. Thus, these 

statistical FE models allow researchers to overcome the intrinsic limitation of using biomechanical 

test data - the limited number of specimens - by using a large number from a medical image 
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database, such as clinical CT images, and generating large datasets of bones using statistical 

models. 

Several studies have been conducted to develop statistical models of femurs (Bryan et al., 2010; 

Zhang et al., 2016). Most of them were focused on the proximal region of the femur due to the 

intentions to predict the risk of fracture in falls or for use in the implant biomechanics. Since the 

proximal femur contains trabecular bone, the intensity information of CT images was also 

incorporated to generate statistical models in addition to the geometric information. While those 

studies give valuable insight and offer a methodology to analyze medical CT images, a study 

focused on the femoral shaft region, which is likely injured during a car crash or pedestrian impact, 

is of limited benefit. 

Recently, Klein et al. (2015) developed parametric statistical models - from clinical CT scan data 

of 62 men and 36 women, as functions of the age, body mass index (BMI), and femur length - 

using PCA and regression analysis. This study not only analyzed the shape of the proximal region 

but also focused on the femoral shaft region, especially the cross-sectional shape of the femoral 

shaft. This study claimed that the average error in mid-shaft cortical bone areas between the 

geometry from developed statistical models and that of CT scan data was 4.4%; While this study 

indicates the potential of parametric statistical models for capturing effects of anthropometric 

differences throughout the population using PCA analysis and regression, the authors did not 

report detailed information about the results of the PCA analysis, such as the principal components 

and the percentage of shape variance explained by each principal component. Also, the geometrical 

error of the reconstructed geometry of the proximal and the distal regions (maximum 6 mm 

difference between surfaces) needed to be improved in Klein et al.’s study. 
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The goal of this chapter was to conduct a statistical shape analysis to obtain geometric descriptors 

explaining the geometric variability in the human femurs. Also, the chapter was aimed at obtaining 

the distributions of principal scores of the geometric descriptors for three target male occupant 

sizes (5th, 50th, 95th percentiles). First, CT images of 122 male specimens were reconstructed using 

a thresholding based method. Second, landmark points were selected using the method developed 

in Chapter 2 ensuring corresponding points between the specimens. PCA was then employed to 

analyze the geometric variability in the human femur. Among principal components obtained from 

PCA, the required number of principal components (referred to as the geometric descriptors in this 

study) to reconstruct the geometry, the structural response, and fracture was identified using PCA-

based FE models. Finally, the distributions of principal scores of the geometric descriptors were 

generated for three target male occupant sizes (5th, 50th, 95th percentiles) using a regression analysis. 

4.2 Methods 

Clinical CT Images 

In total, the CT images from 122 male specimens at the Center for Applied Biomechanics Lab 

were introduced to analyze geometric variability between specimens. The specimens are referred 

to as “the training set.” The  average age, height, and weight of the training set were 61 ± 13 years, 

178 ± 7 cm, 81 ± 16 kg, respectively (Figure 29 and Table A3). For the convenience of analysis, 

the left femurs were reflected to the right femur with respect to the mid-sagittal plane.  
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Figure 29 Distribution of height (left), weight (middle), and age (right) of the training set 

Data Preparation (Establishing Point to Point Correspondence) 

The first step to conducting a statistical shape analysis is to establish a correspondence between 

subjects in such a way that the location at any given point in one model can be directly related to 

an equal point in another model (Bryan et al., 2010). The correspondence between femurs of the 

training set was established by employing the method developed for the development of SS-FE 

models in Chapter 2: 1) 3D shape models of the training set were generated from the CT images 

based on a segmentation-with-thresholding method. 2) 3D shape models were registered to the 

template FE model geometry and 3) landmarks were selected (Figure 11), refer to Chapter 2 for 

details). Then, the landmarks were considered as corresponding points between the femurs of the 

training set.  
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Statistical Shape Analysis 

Given the corresponding points between the femurs of the training set, statistical shape analysis 

(SSA) was conducted using principal component analysis (PCA) to analyze important geometric 

descriptors, which explain the shape variability of the femurs in the training set. PCA is a statistical 

technique to reduce the dimensionality of data to provide significant components of the variability 

in the large data set. A correlation based PCA was adopted in this study since the dimension of the 

long bone direction is greater than other directions (Bryan et al., 2010). 

First, 𝒙𝒙𝒊𝒊 was defined for each femur using nodal coordinates (x, y, and z) of the landmark points 

in series (Eq. 3). 

 𝒙𝒙𝒊𝒊 = [𝑥𝑥1𝑖𝑖   𝑦𝑦1𝑖𝑖  𝑧𝑧1𝑖𝑖  𝑥𝑥2𝑖𝑖   𝑦𝑦2𝑖𝑖  𝑧𝑧2𝑖𝑖   ⋯   𝑥𝑥𝑛𝑛𝑛𝑛  𝑦𝑦𝑛𝑛𝑛𝑛  𝑧𝑧𝑛𝑛𝑛𝑛]𝑇𝑇 ,   1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 Eq. 3 

Where N is the number of specimens in the training set and n is the number of landmarks points 

in each femur. Then, the matrix X was established by combining  𝒙𝒙𝒊𝒊 (Eq. 4) 

 𝐗𝐗 = [𝑥𝑥1  𝑥𝑥2  𝑥𝑥3   ⋯   𝑥𝑥𝑁𝑁]𝑇𝑇 ,   ℝ𝑁𝑁 ×3𝑛𝑛 Eq. 4 

Second, matrix X converted matrix Z by calculating the z-score of each row and PCA was applied 

using the function “PCA” implemented in MATLAB (R2015a, The MathWorks Inc., Natick, MA), 

which centers the data and uses the singular value decomposition algorithm by default. Applying 

PCA returns the principal component coefficients matrix, the principal component scores, the 

principal component variance, the percentage of the total variance explained by each principal 

component, and the mean of 𝒙𝒙 . Each column of the principal component coeffients matrix 
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(𝝍𝝍𝒎𝒎,𝑚𝑚 = 1 , 2,⋯ ,𝑁𝑁) contains coefficients for one principal component. The principal component 

varaince vector is denoted by 𝒗𝒗. 

The shape of mth principal component was identified by adding and subtracting 1.96 standard 

deviations of each principal component to the mean shape of the femur (Eq. 5). Finally, PCA with 

Z was returned back to nodal coordinates by using the mean and standard deviation of 𝒙𝒙. 

 𝑷𝑷𝒎𝒎 =  𝒙𝒙 ± 1.96𝑣𝑣𝑚𝑚𝝍𝝍𝒎𝒎 Eq. 5 

Reconstruction Error using PCA-based models 

The five femurs of the specimens used in Funk et al. (2004), whose SS-FE models were developed 

and validated in Chapter 2 and Chapter 3, were reconstructed using the different number of 

principal components (Eq. 6). These reconstructed models are referred to as “the PCA-FE” models. 

 𝑷𝑷 =  𝒙𝒙 ± �𝑣𝑣𝑘𝑘

𝑘𝑘

𝑖𝑖=1

𝝍𝝍𝒌𝒌  Eq. 6 

Where k denotes the number of principal components included in the models. For example, 

including the first 22 principal components, which explains 95% of shape variance, loses the 

information of 5% shape variance in the reconstruction of the femur models. The effect of loss of 

5% shape variation by including the limited number of principal components was analyzed in two 

aspects: the geometrical reconstruction error and the response reconstruction error. The average 

minimum distance error between the SS-FE and the PCA-FE models were calculated to evaluate 

the geometrical reconstruction error. For the response reconstruction error, the PCA-FE models 

were simulated as those of SS-FE models in Chapter 3, and the structural responses with the RMS 
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errors and the fracture force differences were calculated. Given the errors according to the number 

of principal components included in the PCA-FE models, the required number of principal 

components for generation of the population-based FE models was determined, and the reduced 

number of selected principal components are referred to as “the geometric descriptors” in this 

study. 

Principal Score Distributions of the Geometric descriptors 

Given the geometric descriptors selected, a linear regression analysis was employed to obtain the 

principal score distributions of the geometric descriptors (GDs) for three target male occupant 

sizes in terms of height (5th percentile: 164.7cm, 50th percentile: 175.5cm, 95th percentile: 

186.8cm). The GDs whose principal scores showed statistically significant correlation with 

occupant height (p < 0.05) were identified, and the distributions of their principal scores as a 

function of height were obtained. For the GDs whose principal scores were not correlated with 

height, the probabilistic distributions of principal scores were generated regardless of the occupant 

height. Normal distributions were assumed as underlying distribution, and the normality of 

distributions was tested by the Anderson‐Darling normality test with 5% significance level. The 

distributions which showed non-normality were generated using their empirical distributions 

instead of assuming a normal distribution. 

4.3 Results 

Figure 30 shows the landmarks registered in the coordinate system of the template FE model. The 

landmarks were used as corresponding points for statistical shape analysis.  
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Figure 30 Landmarks points used in PCA 

The results of PCA showed that 95% of the geometric variability was explained by the 22 principal 

components; the first principal component explained 40% of the geometric variability while 99% 

of the variability was captured by the first 54 principal components (Figure 31). Figure 32 shows 

principal shape modes of the first three principal components. The first mode was explained by 

the size of the femur; as increasing the length of the femur, cross-sectional areas of the femur 

increases radially. The second mode was related to the slenderness of femur. Unlike the first shape 

mode, increasing the length of the femur results in decreasing the size of the proximal femur region. 

The third mode was related to the cross-sectional shape and curvature of the femurs in the anterior-

posterior direction. 
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Figure 31 percentage of shape variance: first 13 modes explains 95% of shape variance 

 
Figure 32 First three principal modes: 1st mode=size of femur (left), 2nd mode=slenderness of femur (middle), 3rd mode= 

curvature of the shaft in the anterior-posterior direction (right), 
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The reconstruction error using the PCA-FE models in relation to the different number of principal 

components included are analyzed in Figure 33. Regarding the geometric reconstruction error, 

including 22 principal components explaining 95% of the geometric variability resulted in 0.56 ± 

0.08 mm of the average minimum distance error. This error reduced up to 0.38mm as increasing 

the number of the principal components up to 54, which explains 99% of the geometric variability. 

For the response prediction error aspect, the reconstructed models using 22 principal components 

showed less than 0.02 ± 0.02 [kN] (0.4% of the peak fracture force) and 0.13 ± 0.09 [kN] (2.5% 

of the peak fracture force) of the RMS error and the fracture force difference, respectively. Figure 

34 presents the average minimum distance error and the impact force time histories in relation to 

the different number of the selection of principal components for generation of PCA-FE model for 

one of the specimens as an example. Based on the results, the first 22 principal components were 

selected as the GDs in this study. Finally, the distributions of principal scores of the GDs were 

generated using a linear regression analysis and Figure 35 presents the distributions of the first 

three GDs as an example. The distributions of all GDs are presented in Figure D2.  

   
Figure 33 Reconstruction errors in relation to the different number of principal components included in PCA-FE model: 
geometric error (left), structural response (middle), and fracture force difference (right). The number in % indicates the 

percentage of variance explained by the principal components 
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82% 
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95% 
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Figure 34 geometric reconstruction error: RMS error vs. percentage of variance (top) and RMS error outer surface of F2004-

M03 as an example (bottom) 

 
Figure 35 regression analysis for the geometric descriptors (left) and the distributions of the geometric descriptors (right) for 

three occupant sizes: example of first three factors – 1st GD (top), 2nd GD (middle), and 3rd GD (bottom) 
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4.4 Discussion 

This chapter conducted statistical shape analysis and identified the geometric descriptors and their 

principal score distributions to explain the geometric variability across the population. 

Principal Component Analysis (PCA) 

Analysis of the principal components showed that 40% of the geometric variance in the human 

femur was explained by the first principal component and the first mode was mainly explained by 

the size of the femurs (Figure 32). Other researchers reported similar conclusion as this study 

(Bryan et al., 2010; Zhang et al., 2016); Bryan et al. demonstrated that the first principal component 

in the human femurs is mainly explained by the length and it explains 45% of the geometric 

variance. Also, Zhang et al. showed that the first principal component explains 35% of the shape 

variance and the mode was related to the length, anteversion angle, and cortical thickness of the 

femur. 

While the first principal component obtained from PCA in this study was in line with that from 

the literature, the second and third principal components were varied between the research groups. 

The second principal component of this study was related to the slenderness of the femur, and the 

third principal component exhibited the variation of the curvature of the femoral shaft in the 

anterior-posterior direction. On the other hand, Bryan et al. (2010) reported the second mode 

dominated by a bone thickness and the third mode was explained by some subtle geometric traits 

(head diameter, anteversion angle, etc.). Zhang et al. (2016) demonstrated that the second principal 

and the third components were dominated by anteversion angle and neck-shaft angle variations, 
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respectively. These different observations between the research groups might come from the 

difference in the sample distribution of medical images or the region of interests. 

Geometric descriptors (GDs) and Distributions 

In this study, 22 principal components explaining the 95% shape variation were considered as the 

geometric descriptors (GDs). How many principal components needed to be included for the 

generation of the population-based FE models would be different for different loading conditions 

and body regions. To identify the required number of principal components included for the 

generation of the population-based FE models for this study, the significance of the principal 

components was analyzed by three factors: geometric reconstruction, the structural response, and 

fracture force prediction errors. As expected, increasing the number of principal components 

reduced the errors (Figure 33). The slope of the average and the standard deviation of the errors 

largely decreased from the consideration of 95% shape variance. Thus, we decided to set 95% of 

shape variance, which includes the first 22 principal components, as the tolerance for selection of 

the GDs. 

Given the identified GDs, the distributions of them were generated using linear regression analysis 

(Figure 35 and Figure D1). Several geometric factors (5 out of 22) did not show the normality. In 

Chapter 5, to take into account the non-normal distribution of some of the GDs for generation of 

the population-based FE models, a sampling technique using an empirical distribution will be 

applied instead of assuming the normal distribution. 
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Subject Characteristics of Medical Image Database 

The principal components of the geometric variability would depend on medical images used for 

the analysis. Since only the CT images of male subjects were considered in this study, introducing 

female images for the analysis and identifying the difference between sexes would be a possible 

research topic following this study. Also, the effects of age and race may need to be further 

investigated; the age of subjects tended toward elderly (61 ± 13 years) white subjects. Thus, 

investigation of change in shape variability according to aging and the differences between races 

could be a topic for future investigation. 

On top of the needs for consideration of the differences in sex, race, and age, the effects of the 

number of medical images need further investigation. While increasing the number of images 

unequivocally improves the statistical power of the analysis, the question on the required number 

is still unknown. Thus, analysis of the requirement of the number of subjects analyzed would help 

improve accuracy and efficiency of the analysis. 

Application 

This chapter identified the GDs and the principal score distributions of the factors from the set of 

CT images. These distributions of principal scores of the GDs will be used to synthesize the 

population-based FE models of the human femurs with a Monte-Carlo method in Chapter 5. 
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CHAPTER 5: GENERATION OF POPULATION-BASED FINITE ELEMENT MODELS 

AND INJURY RISK FUNCTIONS 

Using SS-FE modeling technique, the capability of the femur FE models for prediction of 

structural responses and fracture forces of individual specimens was validated, and the 

distributions of material parameters were identified in Chapter 3. Also, the geometric descriptors, 

explaining the shape and response variabilities, and their principal score distributions were 

identified in Chapter 4. 

In this chapter, the population-based FE models of the femurs were generated for target occupants 

using a Monte-Carlo method by sampling points from identified distributions. FE simulations were 

then conducted with each of the population-based FE models under 3-point dynamic bending in 

lateral-medial direction. Model-based injury risk functions (IRFs) were then developed using 

logistic regression analysis, based on the moment-at-fracture observed in the FE simulations. 

5.1 Introduction 

A fundamental purpose of biomechanical testing and the field of injury biomechanics is the 

development of risk functions (Kent & Funk, 2004). Up to the present, IRFs have usually been 

developed in a “top-down” approach by relating injury occurrence in cadaveric tests to dummy 

measures in matched crash conditions (Forman et al., 2012b). While IRFs have been developed 

and widely used in the automotive safety field, there are some challenges that need to be addressed 

in the current development procedure of the IRFs: 1) a lack of understanding of the relationship 

between the human variabilities and the variation of injury outcome, 2) the uncertainty of the 
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scaling techniques used for compensating anthropometric differences between subjects, and 3) the 

limited number of biomechanical tests available. 

The central idea of this study is that IRFs could be developed in a bottom-up approach utilizing 

population-based FE models instead of being developed in the top-down approach. Contrary to the 

top-down approach, a range of variabilities of IRFs developed in the bottom-up approach would 

be informed by the population-based FE model responses. This method would be able to address 

challenges facing the current development procedure of IRFs for diverse or specialized populations: 

specifically, this method mitigates the uncertainties in applying empirical scaling and may improve 

IRF fidelity when a limited number of experimental specimens are available.  

The goal of this chapter was to demonstrate a framework for the generation of IRFs in a bottom-

up approach using the responses of the population-based FE models. To exemplify the framework, 

this chapter generated IRFs for the human femur under dynamic (1.5 m/s) 3-point bending in the 

lateral-medial direction for three target occupant sizes (5th percentile: 164.7cm, 50th percentile: 

175.5cm, 95h percentile: 186.8cm) with three ages (25, 50, 75 years).  
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5.2 Methods 

Generation of the Population-Based FE Models 

In Chapter 4, the geometric descriptors (GDs) of the human femur were identified, and the 

distributions of principal scores of the GDs were obtained. Also, the distributions of the material 

parameters (elastic modulus, ultimate strain, and yield stress) were generated using the data from 

the literature in Chapter 3 with regression analysis. In this chapter, given those distributions of 

principal scores of the GDs and the material parameters, A Monte-Carlo method was implemented 

to generate population-based FE models of the femur for target occupants: three occupant sizes 

(5th, 50th, and 95th percentile males) and three occupant ages  (25, 50, and 75 years).  

The principal scores of the GDs, the elastic modulus, and the yield stress were randomly sampled 

from the distributions for 100 trials. Given the principal scores and material parameters sampled, 

in total, 100 femur models were generated by using the way of reconstructing the PCA-FE models 

in Chapter 3 (see details in the Method section in Chapter 3). Also, the ultimate strain was 

randomly sampled for 5000 trials. These ultimate strains were used to determine the fracture of 

the femur during a post-processing step of the FE simulations. Therefore in total, the fractures of 

the 500,000 population-based FE models were analyzed (applying 5000 ultimate strains for each 

100 femur FE model) for each target occupant characteristics. These synthesized models are 

referred to as “the virtual population models (VPMs).” 

FE simulation and Data Processing 

Using the VPMs, dynamic 3-point bending tests of bare femurs were simulated (Figure 36). The 

boundary conditions were simplified from the test described by Forman et al. (2012a) (Figure 21); 
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the distal and proximal ends of the femur specimens were assumed as a rigid body, whose regions 

were potted into cups during the test. The distal and proximal ends of the femurs were only allowed 

to rotate along the x-axis. The specimens were loaded at the mid-span in the latero-medial direction 

by an impactor at 1.5 m/s. Foam, which was modeled with *MAT_LOW_DENSITY_FOAM in 

LS-DYNA (LSTC, 2013), covered the impactor to release the stress concentration. A stress-strain 

curve for the material model is presented in Figure E2. 

 
Figure 36 boundary conditions for the FE simulations 

After the FE simulations, the moment-at-fracture of the femurs was observed. The moment at the 

mid-section was estimated by the half of impact force times half of the initial length between the 

distal and proximal center of rotations. The time of fracture was determined as the maximum 

principal strain of any element in the femoral shaft region to exceed the ultimate strain sampled 

from the distribution. 
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Generation of Injury Risk Functions 

Given the moment-at-fracture from the FE simulations, the model-based IRFs were generated 

using logistic and Weibull regressions for three different occupant sizes (M05: 164.7cm, M50: 

175.5cm, M95: 186.8cm) with three different ages (25, 50, and 75 years).  

Comparison of Femur Geometry between VPMs and Anthropometry Database 

To examine how the geometries of the VPMs similar to those of the actual population, the 

intertrochanteric (along the bisector of the neck-shaft angle) and the femoral shaft  cross-sectional 

areas (20mm distal to the lesser trochanter) measured from DXA scans of 13,615 patients in the 

National Health and Nutrition Examination Survey (NHANES) (Beck, 2002) were compared to 

those of the VPMs. The femoral shaft and the intertrochanteric areas were automatically identified 

using an in-house MATLAB script (R2015a, The MathWorks Inc., Natick, MA); the location and 

angles of the planes of the cross-sectional areas were obtained using the center of the pre-defined 

patches of the femoral head, the lesser trochanter, and the femoral neck. 

Validation of Developed IRFs 

To check the validity of the model-based IRFs based on the responses of the VPMs, an IRF was 

generated from the cadaveric test data using logistic regression: the fracture moment of cadaveric 

specimens in the literature were compiled from previous biomechanical tests; in total, 23 male 

femurs loaded in lateral-medial direction were included (Forman et al., 2012a). The average age 

and weight of the specimens were 62.4years and 90.2kg, respectively (Table A4). 

Since the geometric distributions of this study were developed with the subject height information, 

for the purpose of comparison, the VPMs of the occupant with 62.4years and 90.2kg, the average 
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occupant characteristics of the test set, were re-generated, and the model-based IRF was then 

generated using logistic regression, based on the moment-at-fracture observed in the FE 

simulations.  

In addition, to answer the question about the required number of the VPMs for generation of IRFs, 

the coefficient of variation (CV) of the average of moment-at-fracture was calculated as increasing 

the number of sampling points for the VPMs. For the sampling of the principal scores of GDs, the 

elastic modulus, and the yield stress, 1000 femurs were regenerated assuming 3% of the ultimate 

strain as the fracture criterion (common fracture criterion was applied to all 1000 femurs).  Then, 

responses of the VPMs were randomly sampled assuming a uniform distribution without 

replacement as increasing the number of sampling from 10 to 1000 for 100 trials. Using the mean 

and one standard deviation of the moment-at-fracture of each trial, the CVs were calculated. For 

the sampling of the ultimate strain, the number of sampling was increased up to 10000 for 100 

trails using one of the VPMs (randomly selected one common VPM was used for all ultimate 

strains). 

Evaluation of IRFs using Scaling Techniques 

To check the effectiveness of the current scaling techniques for generation of IRFs, the model-

based IRF for 5th percentile subject developed in this chapter was scaled to that of the 95th 

percentile subject using the mass-based scaling technique (Eq. 1, in Chapter 3) using two different 

measures for calculation of the scaling factor: occupant height and femur length. These scaled 

IRFs for 95th percentile subject were compared to the model-based IRF. 
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5.3 Results 

The histograms of the principal scores of the GDs and the material parameters sampled from the 

Monte-Carlo method are presented in Figure 37 and Figure 38 and, respectively. 

   
GD #1 GD #2 GD #3 

   
GD #4 GD #5 GD #6 

   
GD #7 GD #8 GD #9 

   
GD #10 GD #11 GD #12 

Figure 37 histograms of the principle scores of the GDs 
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GD #13 GD #14 GD #15 

   
GD #16 GD #17 GD #18 

   
GD #19 GD #20 GD #21 

 

  

GD #22   
Figure 37 histograms of the principle scores of the GDs (continued) 

   
(a) Elastic Modulus (b) Ultimate Strain (c) Yield Stress 

Figure 38 histograms of the input material parameters 
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The model-based IRFs developed for dynamic 3-point bending of the human femur in the lateral-

medial direction for three occupant sizes and ages are presented in Figure 39; injury risks increased 

as increasing age and decreasing occupant size of the specimen.  

 
(a) 5th percentile male: height=164.7cm 

 
(b) 50th percentile male: height=175.5cm 

 
(c) 95th percentile male: height=186.8cm 

Figure 39 Model-based Injury risk functions for femurs under dynamic pure bending (lateral-medial direction) 
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The scaled IRFs using the occupant height and the femur height for the calculation of the scaling 

factor showed a 26% and a 4% higher fracture moment of 50% injury risk than that of the model-

based IRF, respectively (50% injury risk in VPM: 451Nm, Scaled w/ occupant height: 568Nm, 

and Scaled w/ femur height: 471Nm) (Figure 40). 

 
Figure 40 Compare to the scared IRF 

The cross-sectional areas of the intertrochanteric and the femoral shaft of the VPMs (Figure 41) 

varied from 251 mm to 735 mm and 332 mm to 669 mm, respectively. The range of distributions 

of the cross-sectional areas of the VPMs was compared to those from 13,615 patients (Figure 42). 

The cross-sectional shapes and areas of all VPMs (n=300) are presented in (Figure E1). 
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Figure 41 cross-section of intertrochanteric and femoral shaft of VPM #1 (M05) (left) and VPM#100 (right) 

 
Figure 42 Comparing cross-sectional areas of the VPMs to those from 13,615 patients in NHANES 

The model-based IRF for the male occupant with the weight of 90.2kg and age of 62years was 

located in the 95% confidence interval of the IRF generated from the biomechanical test data 

(Figure 43) for the range of 15% to 70% injury risks. The 95% confidence interval of the developed 

IRF was almost in line with the mean curve due to the large number (500,000) of data points.  
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Figure 43 Comparison of the model-based IRF to the IRF developed in a top-down approach 

As increasing the number of sampling points, the coefficient of variations was decreased. Less 

than 2% of the CVs were observed for 5000 trials for the sampling of the ultimate strain and 100 

trials for the sampling of the principal scores of GDs, the elastic modulus, and the yield stress 

(Figure 44).  

  
Figure 44 Convergence test: the principal scores of GD, elastic modulus, and yield stress (left) and ultimate strain (right) 
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5.4 Discussion 

This chapter demonstrated the framework for developing IRFs based on the VPM responses. A 

Monte-Carlo method was implemented to generate populations of FE models of the femur for 

target occupant characteristics (three different male sizes with three different ages). In total, 100 

femur models incorporating the variation in the population of interest were generated for each 

target occupant. The model-based IRFs were then developed for the femurs subjected to dynamic 

3-point bending for target populations. 

Significance of Model-Based IRFs 

One of the greatest benefits of model-based IRFs was that the range of variabilities was informed 

by VPM responses. The usage of a top-down approach for developing IRFs, which has been a 

conventional way of developing IRFs, comes from a lack of knowledge of the relationship between 

the human variabilities and response (or injury outcome) variations due to the complexity of the 

human body. In other words, the human variabilities have been considered an “uncontrollable” 

factor. Contrary to the top-down approach, the model-based IRFs developed in a bottom-up 

approach already incorporate the information of the human variabilities. Hence, the usage of 

population-based FE models for the generation of IRFs makes human variability a “controllable” 

factor. This method would be able to address challenges facing the current development procedure 

of IRFs for diverse or specialized populations: specifically, this method mitigates the uncertainties 

in applying empirical scaling and may improve IRF fidelity when a limited number of 

experimental specimens are available. 
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Evaluation of the Scaling Techniques Using Model-Based IRFs 

Since the information of variabilities in the human femur was already incorporated into the model-

based IRFs, the IRFs could be used as a tool for evaluating the effectiveness of applying the scaling 

techniques for generation of IRFs. The mass-based scaling technique was evaluated in two 

different ways: using the occupant height and the femur height to calculate the scaling factor. 

This result was somewhat obvious because 1) the femur length, in conjunction with the cross-

sectional moment of inertia, governs the response of the femur under bending and 2) the first 

geometric descriptor of the human femur explained 40% of shape variance (Figure 31) and varied 

up to 50mm length difference even in the same size occupant height. In other words, the mass-

based scaling with the occupant height to compensate for anthropometric differences between 

individuals ends up losing the key geometric variability in the human femur. On the other hand, 

the mass-based scaling using the femur height resulted in a 4% difference in the fracture moment 

for 50% injury risk to the model-based IRFs. This result demonstrated that applying the mass-

based scaling using the femur height would be a feasible way developing IRFs of the human femur 

(if the 4% difference is considered as an acceptable range). 

Model-Based IRFs for Diverse or Specialized Population 

Even though applying the mass-based scaling technique with the femur height would result in 

similar injury risks (4% difference in the fracture moment for 50% injury risk) to those of the 

model-based IRF, the model-based IRFs still have an advantage over IRFs developed in the top-

down approach. First, model-based IRFs would be able to result in a better fit for “tail” regions 

than IRFs developed in a top-down approach. The result of this study showed that the model-based 
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IRF showed more deviation in injury risk from that of the IRF developed in top-down approach as 

it approaches tail regions (Figure 43). This result may stem from a narrow range of distribution of 

specimens available. In other words, biomechanical specimens obtained for testing may tend to 

populate closer to the median of distribution than the tail of distributions. Contrary to IRFs 

developed in a top-down approach, the observations for developing model-based IRFs were 

sampled from probabilistic distributions covering up to 1.96 standard deviations. 

More importantly, the model-based IRF would become more beneficial when it comes to 

generating IRFs for diverse or specialized populations. It is noted that the scaling technique in this 

chapter was applied to the scaling of the fracture moment between the same sex and age. In other 

words, the assumption on material property similitude in the mass-scaling technique would be 

valid. However, if the scaling were applied to specimens with different sex or ages, the assumption 

on material property similitude would not be feasible. Since the model-based IRFs are able to 

incorporate the range of variabilities of the material parameters, this method would become more 

promising for generation of IRFs for diverse or specialized populations. Hence, further studies 

need to focus on investigating material parameters in those populations. 

Validity of VPMs and Model-Based IRFs 

The synthesized VPMs showed a similar range of shape variabilities (the cross-sectional areas of 

the intertrochanteric and the femoral shaft, 20mm distal to the lesser trochanter) to those from 

measurements of patients as well as the correlation between two geometric shapes (Figure 42). 

This result demonstrates the feasibility of the VPMs for representing the geometry of the target 

populations. 
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The model-based IRF for the male occupant with the weight of 90.2kg and age of 62years was 

generated and compared to the IRF developed based on responses of the femur from the tests to 

check the validity of the framework. The model-based IRF predicted a similar fracture moment 

for 50% injury risk to that of the IRF based on test responses. Also, the model-based IRF was 

located in the 95% confidence interval of the IRF based on test responses for the range of 15% to 

70% injury risks. It was noted that the 95% confidence interval of the model-based IRF was almost 

duplicated with the line of the IRF. These results not only confirmed the validity of the proposed 

framework but also showed a significantly improved IRF fidelity compared to the test-based IRF 

due to the large number of the dataset (the number of the dataset in the model-based IRF: 500,000 

and test-based IRF:23). 

In this study, 100 points were sampled from the distributions of principal scores of the GDs, the 

elastic modulus, and the yield stress and 5000 points were sampled from the ultimate strain. To 

answer the question on effects of the number of sampling points, the coefficient variations (CVs) 

were calculated as increasing the number of VPMs (Figure 44). Even though the number of 

sampling points for the principal scores of GDs, the elastic modulus, and the yield stress increased 

up to 1000 from 100, the injury risk showed a 1% difference in CV. Also, increasing the number 

of sampling points up to 10000 for the ultimate strain resulted in less than a 0.1% difference in CV 

compared to the case of 5000 sampling points. Besides, increasing the number of sampling points 

for three variables (geometric descriptors, the elastic modulus, and the yield stress) requires a 

significant increase in computational cost. Hence, the number of sampling points used in this study 

would be feasible with the consideration of both accuracy and efficiency of the models. 
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This study assumed the independence between the geometric descriptors and the material 

parameters. Thus, further analysis needs to address the correlation between them. On the other 

hand, the independence between the material parameters were valid since the correlation between 

the material parameters showed either the independence or weak correlation between the 

parameters (Figure 45): the elastic modulus and the ultimate strain showed a statistically 

significant (p < 0.05) but weak negative correlation (r=-0.23) while the correlation between the 

elastic modulus and ultimate strain, and the ultimate strain and the yield strain, did not show 

statistically significant correlation (p > 0.05). 

   
Figure 45 Correlation analysis between material parameters 

This study sampled ultimate strains separately from the sampling for the generation of population-

based femur FE models to improve the efficiency of the analysis. Rather, the sampling of the 

ultimate strain was conducted during the post-processing step; this method allowed to increase the 

number of observations without increasing the number of FE simulations. Thus, further study 

needs to be investigated focusing the effect of the separation of sampling of the ultimate strain 

from the generation of population-based FE models.   
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CHAPTER 6: A CLOSED-FORM OF MODEL-BASED INJURY RISK FUNCTIONS 

FOR APPLICATION TO FEMURS OF ANTHROPOMETRIC TEST DEVICES UNDER 

A FRONTAL OBLIQUE CAR CRASH TEST 

Chapter 5 demonstrated the framework for developing injury risk functions (IRFs) in the bottom-

up approach based on the responses of the population-based FE models. Using the framework 

demonstrated, this chapter generated a closed-form of IRFs for application to the femur of the 

ATDs under a frontal oblique car crash test. 

6.1 Introduction 

The recent analysis of types of injuries from car crashes showed that lower extremities were the 

leading injured body region, and femur fractures, as part of the knee-thigh-hip (KTH) complex, 

were observed for occupants in car crashes; injury to the KTH complex accounted for 

approximately 55% of AIS 2+ lower extremity injuries (Kuppa et al., 2001) and femoral shaft 

fractures explained 32% of the KTH injuries (Rupp, 2006). To assess the risk of femur fracture, 

the only injury criterion currently introduced in FMVSS208 and in NCAP is 10kN of axial femur 

force for the 50th percentile male (Kennedy et al., 2004). The assessment of the femur fracture 

using a peak femur axial load of the ATDs is based on the injury mechanism, an axial load 

transferred through the knee impacting the knee bolster, under frontal and offset test conditions. 

Although the current regulation has assessed the femur fracture solely relying on the axial femur 

force, it may not be sufficient to evaluate the femur fracture under car crash conditions. 

Specifically, the major loading path of the human femurs would be not only the axial load through 

the knee but also 1) the sagittal bending in frontal crashes due to the knee into the dash, slipping 
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below the lower dash, and impact of the thigh against the steering wheel or steering column (States, 

1986) and 2) the lateral bending in oblique or offset crashes, which has become of interest in the 

automobile safety field. On December 16th 2015 NHTSA released a Request for Comments (RFC) 

announcing the intension to introduce another USNCAP update. NHTSA announced the intention 

to introduce a new frontal oblique test. Hence, there needs to be a consideration of new femur 

injury criteion incorporated more loading components for the assessment of femur fracture under 

the new test condition.  

There is one study available focusing on the effect of bending with axial compression on femoral 

shaft fracture (Ivarsson et al., (2009); Ivarsson et al. investigated the effect of combined loading 

condition using cadaveric specimens and concluded that the bending of the femur in the posterior-

anterior direction reduces the tolerances of the femoral shaft to axial compression which would 

contribute to the high prevalence of femoral shaft fracture in frontal crashes. While this 

biomechanical test helps clarify the underlying mechanism of the femoral fracture under car crash 

conditions, IRFs for the human femur under car crash conditions resulting in complex loading 

modes to the femur have not been addressed. 

The goal of this chapter was to develop IRFs for application to the femur of the ATDs under a 

frontal oblique car crash condition. First, loading conditions of the femur sustained during car 

crashes were identified through the publicly-available NHTSA crash test database. Second, the 

SS-FE models of the femur under combined loading (bending with axial compression) conditions 

were developed and validated as the way conducted in Chapter 3. FE simulations of the human 

femur were then performed for various loading conditions according to the loading conditions 



84 

 

 

 

identified in the first step of this chapter. Finally, a closed-form of IRFs was generated based on 

the responses of the VPMs using survival analysis with a multivariate logistic model. 

6.2 Methods 

NHTSA Crash Database 

To elucidate the loading conditions of the human femur during a car crash, an analysis of crash 

tests in the publicly-available NHTSA crash test database was performed. The NHTSA crash test 

database was compiled for frontal and oblique full vehicle crash tests with NCAP-style barriers 

either with the THOR dummy or with the Hybrid III dummy. The sensor data collected from the 

femur load cell of the ATDs in the frontal driver seat and a range of forces and moments were 

analyzed for 75 tests (Table F1). The polarity of the femur load cell is presented in Figure 46 (SAE, 

1994).  

 
Figure 46 sign convention for the femur load cell of Hybrid III 
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Validation of the SS-FE Models for Combined Loading Conditions 

To ensure the fidelity of developed SS-FE models in Chapter 2 for complex loading conditions, 

the SS-FE models of the femurs under combined loading tests (bending with axial loading up to 

8kN) of twelve bare femurs (described by Ivarsson et al. (2009)) were generated (Figure 47). FE 

simulations were then conducted, and the results of the simulations were compared to the 

experimental results. The simulation condition was similar to that of the pure bending cases 

(Forman et al., 2012a) with the exception that three levels (0kN, 4kN, 8kN) of axial compression 

were added to the bending. In total, tests performed on 12 specimens (Table A2) were simulated 

using the SS-FE models. The inertia properties of the test apparatus were taken into account by 

using the 3D CAD geometry and density of each component. The potting material, inside the 

blocks of proximal and distal ends of the femur with a density of 1.0 [g/cm3], impactor, and test 

fixtures were assumed as a rigid body. Also, the elements of femur inside the volume of potting 

material were assumed as a rigid body constrained by the potting volume. 

 
Figure 47 Biomechanical tests (left) and FE simulations (right) for combined loading test conducted by Ivarsson et al. (2009) 

A piecewise linear plastic material model (LSTC, 2013) was used as the material model for the 

SS-FE models, and the maximum principal strain was used as fracture criterion for the analysis. 

The material parameters for the SS-FE model with a material fit were determined which minimized 
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the RMS error and the fracture force difference for each individual specimen. The identified 

material parameters were compared to those from the literature and the SS-FE models with 

material fit under dynamic bending in Chapter 3 (Figure 27). 

Generation of IRFs 

Given validated SS-FE models of the femurs under combined loading conditions, FE simulations 

were conducted using the VPMs of three target male occupant sizes (5th, 50th, 95th in height) and 

three ages (25, 50, 75 years) developed in Chapter 5. Two directions of bending (MX+ and MX-) 

with three levels of axial loading (0, 4, 8kN) were applied to the femur VPMs based on an analysis 

of the NHTSA crash database (see results section). Using the moment-at-fracture of VPMs under 

combined loading conditions from the FE simulations, a closed-form of the IRFs was generated 

using survival analysis with a multivariate logistic model using height, age, axial loading, and 

direction of loading as covariates. The MX- direction bending was coded as “0” and MX+ direction 

bending was coded as “1” in a regression model.  
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6.3 Results 

The loading conditions that the femur of the ATDs sustained during car crashes are presented in 

Figure 48. Axial compression (FZ-) and moment in the lateral-medial or medial-lateral directions 

(MX-) were the two main loading paths to the femurs followed by posterior-anterior bending 

(MY+). 

 

 
Figure 48 femur loads during car crash: forces (upper) and moments (lower) 

Figure 49 represents a visual illustration of the accuracy of the SS-FE models. The average 

minimum distance error is less than 1mm for both the outer and inner surfaces, and the difference 

in cross-sectional areas are less than 3% (Table B3). 
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Figure 49 Accuracy of SS-FE models for the specimens of Ivarsson et al. (2009) 

Figure 50 compares the impact force time histories between the SS-FE models with a material fit 

and femur specimens from the tests conducted by Ivarsson et al. (2009). The impact force time 

histories of the SS-FE models with a material fit showed a good correlation with those from the 

test specimens.  
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Figure 50 Comparison of impact force histories between test, SS-FE and SS-FE models with a material fit for femur specimens of 

Ivarsson et al. (2009). X indicates the femur fracture 
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Figure 50 Comparison of impact force histories between test, SS-FE and SS-FE models with a material fit for femur specimens of 

Ivarsson et al. (2009). X indicates the femur fracture (continued) 

The material parameters identified for individual specimens showed a similar range of 

distributions to those from the literature and to those identified from specimens under pure bending 

cases using the SS-FE model with a material fit in Chapter 3 (Figure 51). 



91 

 

 

 

 
Figure 51 comparison of material parameters: coupon tests from literature (circle) and material fit using SS-FE (triangle). 

Elastic modulus (left) and ultimate strain (right) 

The closed-form of IRFs for the application to the femur of the human surrogates (such as ATDs 

and FE HBMs) under a car crash was developed from 27 million observations (50k observations 

for each 9 target occupants with 6 loading cases) (Eq. 7). The moment-at-fracture (M) about x-

axis was used as a predictor in the equation. All four covariates (occupant height [H], age [A], 

level of axial compression [AC], and loading direction [D]) showed statistically significant effects 

on the response (p-value < 0.05). Figure 52 presents the effect of each covariate in Eq. 7 as an 

example.  

 P = 1 − �
1

1 + 𝑒𝑒{0.0140∙M−2.2494−0.0327∙(H)+0.0393∙(A)+0.1844∙(AC)+0.6240∙(D)}� Eq. 7 
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(a) height (b) age 

  
(c) axial compression (d) bending direction 

 
Figure 52 Example of model-based IRF for different covariates: baseline case (M50, 50years, 0kN axial load, lateral-medial 

direction) 

6.4 Discussion 

In this chapter, the closed-form of IRF for application to the femur of the human surrogates under 

car crash conditions was developed using survival analysis with a multivariate logistic model. 

Loading Conditions of the Femur under Car Crashes 

Based on the loading conditions identified, the femur of the ATDs was mainly loaded by axial 

loading and the bending moment in lateral-medial direction. The loading conditions identified 

from the NHTSA crash database included the oblique, offset, and frontal test conditions. Thus, 

axial loading might result from the interaction between knee and knee bolster or knee airbag, and 

the bending moment may mainly come from the interaction of the femur with side door panel or 
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occupant lateral/yaw motion due to inertia effect. Hence, these identified loading conditions from 

the NHTSA crash database demonstrated the limitation of using the axial compression for injury 

criterion to assess the femur fracture during car crashes. 

Application of Developed IRF 

The developed closed-form of IRFs could be used for the femurs of the ATDs (such as Hybrid III 

M50 and THOR M50 implemented with six-axis load cell) or parametric FE human body models. 

It is noted that this IRF is only applicable for male ATDs with different sizes. In other words, IRFs 

for female ATDs needs to be developed through the proposed framework in this study by 

consideration of female geometry in a statistical shape analysis and identification of material 

parameters. 

The closed-form of IRFs developed in this chapter took into account two main loading paths; axial 

compression and the lateral-medial direction bending. The third dominant loading path, the 

posterior-anterior direction bending, and the interaction effect between the bending directions 

needs to be further investigated following this study. 

Validation of the Femur SS-FE Models under Combined Loading 

The closed-form of IRFs developed in this chapter intended to include not only a bending moment 

but also an axial compression to represent the loading condition femur sustained during a frontal 

oblique crash test. Since the femur FE model was validated under the pure bending condition in 

Chapter 3, the validity of the femur FE model under the combined loading condition, a bending 

with an axial compression, was verified prior to developing the model-based IRFs using the 

framework in this study. 



94 

 

 

 

The femur FE models in this chapter implemented the piecewise linear plasticity model with the 

maximum principal strain as a fracture criterion. Previous studies demonstrated that the cortical 

bone showed asymmetric response under tension and compression (Burstein et al., 1976; Hansen 

et al., 2008). Even with this asymmetric characteristics of the cortical bone, the results of 

distributions of material parameters identified for individual SS-FE models, which is under the 

range of those from the literature, demonstrated that the piecewise linear plasticity model was still 

applicable for, at least, the loading conditions considered in this chapter. It may come from a little 

contribution of axial compression to offset the stress state in the femur. The level of axial loading 

(maximum: 8kN) induced 15 [MPa] compression stress for the femur, whose average mid-shaft 

cross-sectional is around 540 [mm2] based on the VPMs developed in Chapter 5. This levels of 

axial compression is 8% of the ultimate stress of the cortical bone under compression. In addition, 

even with the bending stress offset due to 15 [MPa] axial compression, the fracture was likely to 

occur at the tension side based on 45% ultimate stress difference in the cortical bone under tension 

and under compression (ultimate stress (tension) = 190 [MPa] / ultimate stress (compression) = 

130 [MPa]) (Burstein et al., 1976). Thus, the constitute model used in this chapter would be still 

valid under the loading condition of this chapter. Under the loading condition with more 

contribution of axial loading, the constitutive model considering asymmetric plasticity 

implemented in LS-DYNA (*MAT_PLASTICITY_COMPRESSION_TENSION, MAT124) 

would help model the asymmetric bone characteristic (Khor et al., 2016; LSTC, 2013). 
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CHAPTER 7: CONCLUSIONS 

7.1 Concluding Remarks 

The goal of this dissertation was to explore a framework for developing injury risk functions (IRFs) 

in a bottom-up approach based on responses of parametrically variable finite element (FE) models 

representing exemplar populations. To achieve the goal of the dissertation, in Chapter 2, the femur 

FE modeling tool was first developed to generate the subject-specific femur models using the 

geometric information from the medical images in a programmatic way. Given the template femur 

FE model and medical images of the target subject, the femur FE modeling tool automatically 

finds correspondence between two geometries and transformed the template model geometry to 

that of the target subject. The transformed femur FE models showed the average minimum distance 

error to the target surface less than 1mm for both inner and outer surfaces and less than 5% 

difference of cross-sectional area of the femoral shaft.  

Then in Chapter 3, using the femur FE modeling tool developed in Chapter 2, the FE models of 

the femur subjected to dynamic 3-point bending were validated through a SS-FE modeling 

approach. The results of SS-FE modeling confirmed the predictive capability of the femur FE 

model for the structural response and fracture force of individual specimens. Distributions of 

material parameters of the individual specimen from the SS-FE models with a material fit were 

compared to those from the literature; they were located in the range of material parameters from 

the literature. Thus, the result of the SS-FE modeling demonstrated that the femur FE models could 

predict the individual response and fracture of the femur under dynamic loading conditions if the 

models properly capture the geometric and material property variabilities of the human femurs. 
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Finally, the distributions of material parameters of cortical bone for three target occupant ages (25, 

50, and 75 years) were generated from distributions of the material parameters in the literature 

using regression analysis for the purpose of generation of population-based FE models in Chapter 

5.  

Following the SS-FE modeling approach, in Chapter 4, principal component analysis and 

regression were used to identify parametric geometric descriptors of the human femur, and the 

principal score distributions of those factors for three target occupant sizes (5th, 50th, and 95th 

percentile males). The results demonstrated that the first principal component (related to the size 

of the femur) explains 40% of the geometric variance shown in the femurs and the first 22 principal 

components account for 95% of the geometric variance. In addition, this study demonstrated that 

including the first 22 principal components, referred to as the geometric descriptors (GDs) in this 

study, for synthesizing a new femur shape (PCA-FE model), resulted in good reconstruction results 

regarding the geometry (0.56mm of the minimum distance error), the structural response (0.02kN 

of RMS error – 0.4% of the peak fracture force), and the fracture prediction (0.13kN of fracture 

force – 2.5% of the peak fracture force).  

Using the identified distributions of material parameters (Chapter 3) and principal scores of GDs 

(Chapter 4), a Monte-Carlo method was then implemented to generate populations-based FE 

models of the femur for target occupants in Chapter 5. In total, 100 femur models incorporating 

the variation in the population of interest were generated for each target occupant. Simulations 

were then conducted with each of these models under 3-point dynamic bending. Model-based IRFs 

were then developed using logistic regression analysis, based on 500,000 observations (100 femur 

models with 5,000 ultimate strains) of the moment-at-fracture in the FE simulations dataset. The 
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range of intertrochanteric and femoral shaft areas of the synthesized population models showed 

them to be in the similar range as the 13,614 patients in the National Health and Nutrition 

Examination Survey. The validity of the model-based IRF was confirmed; the model-based IRF 

was located in the 95% confidence interval of the IRF developed in a top-down approach using 

test data except for the tail regions. Also, the model-based IRF was utilized to evaluate the 

effectiveness of the mass-based scaling for generation of IRFs, and the results showed that using 

the femur height for calculation of the scaling factor resulted in a better accuracy (4% fracture 

force difference from that of model-based IRF) than using the occupant height (26% fracture force 

difference). 

Finally, in Chapter 6, the closed-form of the IRFs for the application to the femur of the ATDs 

under a frontal oblique crash condition was developed using survival analysis with a multivariate 

logistic model using the occupant height, age, axial loading, and loading direction as covariates. 

To identify the loading conditions of the femur during car crashes, the NHTSA crash test database 

was compiled. The result demonstrated the two main loading paths of the femur (axial loading, 

and the x-axis bending) and the need for consideration of combined loadings for assessment of 

femur fracture, rather than only using axial compression as the current injury criterion in 

regulations. Simulations were then conducted using the population-based FE models under the 

identified main loading paths. The closed-form of model-based IRFs was developed based on 27 

million observations of moment-at-fracture from the FE simulations. The closed-form of the IRFs 

was developed in a bottom-up approach that the range of injury outcome variation was informed 

by the population-based FE models, which incorporated the femur geometric and material 

variabilities of target occupant characteristics into the models. Also, it considered combined 
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(lateral bending with axial compression) loading conditions femur sustained during car crashes, 

instead of only considering axial force, as well as the occupant characteristics (the height and the 

age) for injury assessment. 

7.2 Contributions 

The main contribution of this dissertation is the demonstration of the framework for developing 

IRFs in a bottom-up approach using the population-based FE model responses, which has not been 

addressed in the field of injury biomechanics. The main benefit of the proposed framework over 

the conventional way of developing IRFs is that the model-based IRFs can incorporate the 

information about the range of variabilities informed by the population-based FE model responses. 

In other words, the variabilities in the human become controllable using the proposed framework. 

Most of all, this method mitigates the uncertainties in applying empirical scaling and may improve 

IRF fidelity when a limited number of experimental specimens are available, especially for the 

case of diverse or specialized populations. It is noted that if empirical scaling techniques were 

applied to scale the response between specimens with different sex or ages, the assumption on 

material property similitude may not be valid. Since model-based IRFs are able to incorporate 

different distributions of material parameters for target occupants with different sex or ages, this 

method would become more promising for generation of IRFs for diverse or specialized 

populations. Also, the model-based IRFs would be able to result in a better injury prediction for 

“tail” regions than the test-based IRFs. The result of this study showed that the model-based IRF 

showed more deviation in injury risk from that of the test-based IRF as it approaches tail regions. 

This result may stem from that the cadaveric specimens obtained for testing tend to populate closer 

to the median of distributions than the tail of distributions. Contrary to the test-based IRFs 
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developed in a top-down approach, the observations for developing model-based IRFs were 

sampled from probabilistic distributions covering the tail regions which would result in a better 

prediction for tail regions. Also, it was noted that the 95% confidence interval of the model-based 

IRF was almost duplicated with the line of the IRF due to the large number of the dataset (the 

number of the dataset in the model-based IRF: 500,000 and the test-based IRF:23), which indicates 

a significantly improved fidelity of injury prediction compared to the test-based IRF. 

Second contribution would be that this dissertation has developed the tool for the population-based 

FE modeling and the generation of model-based IRFs of the femur. Data required for analysis is 

only the outer and the inner surfaces of the femur in STL format from medical images. Given more 

medical images for different gender and wide age spans, this tool could be easily utilized for the 

future study of the population-based FE modeling of the femur. 

To exemplify the framework, this dissertation has developed the closed-form of model-based IRFs 

for the application of the femur of the ATDs and parametric FE HBMs under car crash conditions. 

So far, the assessment of the femur has relied solely on the axial compression. Due to increased 

interests in oblique and offset crash conditions in the automobile safety field, the IRF developed 

in this study would offer a better assessment of the risk of femur fracture than the current criterion. 

Also, this dissertation addressed the validation of the FE model using a component level SS-FE 

modeling technique. In the field of injury biomechanics, SS-FE modeling techniques have been 

studied by many researchers focusing on the development of morphed human body FE models. 

While previous studies on the morphed human body FE models have provided insight into the 

potential of these techniques, validation of component-level test data as the way conducted in this 
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study would be a useful supplement for those studies to identify key validation goals for SS-FE 

and population-based FE models. 

7.3 Future Research Directions and Limitations 

Following this study, further research on statistical shape analysis and material testing of female 

and pediatric specimens needs to be addressed to develop IRFs for a diverse population. Klein at 

al. (2015) showed the difference in the geometry of the femur regarding the cross-sectional area 

along the long bone direction. In addition to the geometric difference, McCalden et al. (1993) and 

Wu et al. (2011) claimed there was a difference in ultimate stress and viscoelastic property between 

male and female. Especially, the significant bone loss is observed in older women after menopause 

(Zebaze et al., 2010). Also, the material property of pediatric specimens would be quite different 

from that of adults. Hence, further analysis needs to focus on obtaining the geometric descriptors 

and material parameters of females and pediatrics. 

The subject-specific FE modeling approach in the framework proposed in this study needs to be 

extended to various loading rates, loading conditions, and other body regions. It is well known that 

cortical bone is rate dependent and an anisotropic material. Also, bone has a different structure 

according to its function in the body. For example, the proximal region of the femur consists of 

trabecular bone inside of a thin cortical shell to offer stability against compressive force. For 

different body regions and loading conditions, a different level of model complexity may be 

required. 

This study assumed an independence between geometric descriptors and material parameters. A 

further study focused on the correlation between them could refine the results of this study. This 
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work could be done by obtaining medical images of bulk specimens of coupons and applying a 

statistical shape analysis for them in addition to material testing to analyze a correlation between 

the material parameters and geometric descriptors. If the variables showed the correlation, 

sampling techniques for dependent variables, such as adding the constraint of the covariance 

matrix, needs to be introduced. 

This study sampled ultimate strains separately from the sampling for the generation of population-

based femur FE models to improve the efficiency of the analysis. Rather, the sampling of the 

ultimate strain was conducted during the post-processing step; this method allowed to increase the 

number of observations without increasing the number of FE simulations. Thus, further study 

needs to be investigated focusing the effect of the separation of sampling of the ultimate strain 

from the generation of population-based FE models. 

Further research on statistical shape analysis may need to be done using a larger number of medical 

images with closer sampling distributions to the actual occupant population. Due to the nature of 

the CT image database of PMHS used in this study, the age of subjects tended to toward elderly 

(61 ± 13 years) white subjects. Also, this study did not focus on the effect of the number of medical 

images. While increasing the number of images unequivocally improves the statistical power of 

the analysis, the optimal number needed for the best results is still unknown. Thus, analysis of the 

requirement of the number of subjects analyzed would help improve accuracy and efficiency of 

the analysis.
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APPENDIX A: BIOMECHANIAL TEST DATA 

Table A1 Subject characteristics for biomechanical tests of femurs subjected to dynamic pure bending from Forman et al. 
(2012a) and Funk et al. (2004) (n=20) 

code*a aspect age gender stature  
(cm) 

weight  
(kg) 

Loading  
Type 

Loading 
Direction *b 

F2012-M01 L 36 M N/A N/A Bend LM 
F2012-M02 R 20 M N/A N/A Bend LM 
F2012-M03 R 27 M N/A N/A Bend LM 
F2012-M04 R 43 M N/A N/A Bend LM 
F2012-M05 L 35 M N/A N/A Bend LM 
F2012-M06 L 19 M N/A N/A Bend LM 
F2012-M07 R 52 M N/A N/A Bend LM 
F2012-M08 L 27 M N/A N/A Bend LM 
F2012-M09 L 42 M N/A N/A Bend LM 
F2012-M10 L 25 M N/A N/A Bend LM 
F2012-M11 L 28 M N/A N/A Bend LM 
F2012-M12 R 35 M N/A N/A Bend LM 
F2012-M13 R 36 M N/A N/A Bend LM 
F2012-M14 R 28 M N/A N/A Bend LM 
F2012-M15 R 19 M N/A N/A Bend LM 
F2004-M01 R 69 M 162.6 91.6 Bend PA 
F2004-M02 R 70 M 167.6 73.0 Bend LM 
F2004-M03 R 51 M 188.0 123.4 Bend LM 
F2004-M04 L 51 M 188.0 123.4 Bend PA 
F2004-M05 L 69 M 162.6 91.6 Bend LM 

N/A = not available 
*a: F2012 = Forman et al., 2012a, F2004 = Funk et al., 2004 
*b: LM = lateral-medial, AP = anterior-posterior, PA = posterior-anterior 
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Table A2 Subject characteristics for biomechanical tests of femurs subjected to dynamic combined loading from Ivarsson et al. 
(2009) (n=12) 

Code Aspect Age Gender Height  
(cm) 

Weight  
(kg) 

Loading  
Type b 

Loading 
Direction a 

I2009-M01 L 39 M 184.0 79.4 Bending AP 
I2009-M02 R 63 M 180.3 89.0 Bending AP 
I2009-M03 R 51 M 175.0 54.9 Bending PA 
I2009-M04 L 45 M 175.3 68.1 Bending AP 
I2009-M05 L 62 M 177.8 81.8 Comb-4kN AP 
I2009-M06 R 62 M 185.4 100.0 Comb-4kN AP 
I2009-M07 L 62 M 182.9 90.9 Comb-4kN PA 
I2009-M08 R 62 M 177.8 81.8 Comb-4kN PA 
I2009-M09 R 58 M 182.9 141.0 Comb-8kN AP 
I2009-M10 L 65 M 182.9 90.9 Comb-8kN AP 
I2009-M11 L 49 M 193.0 100.0 Comb-8kN PA 
I2009-M12 R 44 M 193.0 81.8 Comb-8kN PA 

a: LM=lateral-medial, AP=anterior-posterior, PA=posterior-anterior 
b: comb = combined loading (bending + pre-axial loading) 
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Table A3 Subject characteristics of clinical CT image specimens 

Code Side CT# Gender Race 
 

Age 
 

Height 
 

Weight 
Femur 
Height 

(yrs) (cm) (kg) (mm) 
CABCT-M01 L 677 male W 54 180.0 54.0 477.29 
CABCT-M02 R 677 male W 54 180.0 54.0 479.73 
CABCT-M03 L 682 male W 54 183.0 57.0 472.51 
CABCT-M04 R 682 male W 54 183.0 57.0 471.71 
CABCT-M05 L 684 male W 65 175.0 59.0 481.60 
CABCT-M06 R 684 male W 65 175.0 59.0 482.94 
CABCT-M07 L 696 male W 49 175.0 61.0 483.74 
CABCT-M08 R 696 male W 49 175.0 61.0 483.49 
CABCT-M09 L 747 male W 70 178.0 56.7 502.03 
CABCT-M10 R 747 male W 70 178.0 56.7 498.76 
CABCT-M11 L 675 male W 73 182.0 65.0 520.25 
CABCT-M12 R 675 male W 73 182.0 65.0 516.14 
CABCT-M13 L 679 male W 56 185.0 68.0 496.47 
CABCT-M14 R 679 male W 56 185.0 68.0 498.70 
CABCT-M15 L 680 male W 58 175.0 63.0 480.85 
CABCT-M16 R 680 male W 58 175.0 63.0 485.06 
CABCT-M17 L 686 male W 72 173.0 66.0 515.10 
CABCT-M18 R 686 male W 72 173.0 66.0 510.49 
CABCT-M19 L 693 male W 47 173.0 68.0 475.26 
CABCT-M20 R 693 male W 47 173.0 68.0 475.81 
CABCT-M21 L 707 male W 36 180.0 62.0 479.21 
CABCT-M22 R 707 male W 36 180.0 62.0 479.70 
CABCT-M23 L 717 male W 65 178.0 68.0 474.52 
CABCT-M24 R 717 male W 65 178.0 68.0 469.54 
CABCT-M25 L 720 male W 61 170.0 68.0 446.90 
CABCT-M26 R 720 male W 61 170.0 68.0 450.53 
CABCT-M27 L 721 male W 60 178.0 64.0 466.72 
CABCT-M28 R 721 male W 60 178.0 64.0 468.07 
CABCT-M29 L 730 male W 77 178.0 63.0 493.15 
CABCT-M30 R 730 male W 77 178.0 63.0 490.64 
CABCT-M31 L 745 male W 84 167.6 65.3 430.76 
CABCT-M32 R 745 male W 84 167.6 65.3 430.26 
CABCT-M33 L 767 male B 67 172.7 77.1 496.05 
CABCT-M34 R 767 male B 67 172.7 77.1 492.71 
CABCT-M35 L 673 male W 67 180.0 72.0 480.84 
CABCT-M36 R 673 male W 67 180.0 72.0 485.28 
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Table A3 Subject characteristics of clinical CT image specimens (continued) 

Code Side CT# Gender Race 
 

Age 
 

Height 
 

Weight 
Femur 
Height 

(yrs) (cm) (kg) (mm) 
CABCT-M37 L 674 male W 67 178.0 72.0 474.33 
CABCT-M38 R 674 male W 67 178.0 72.0 483.31 
CABCT-M39 L 695 male W 74 178.0 73.0 490.12 
CABCT-M40 R 695 male W 74 178.0 73.0 490.42 
CABCT-M41 L 703 male W 76 183.0 73.0 511.27 
CABCT-M42 R 703 male W 76 183.0 73.0 526.02 
CABCT-M43 L 722 male W 64 185.0 73.0 506.06 
CABCT-M44 R 722 male W 64 185.0 73.0 511.78 
CABCT-M45 L 724 male W 73 189.0 73.0 519.09 
CABCT-M46 R 724 male W 73 189.0 73.0 520.16 
CABCT-M47 L 736 male W 67 170.0 70.0 464.90 
CABCT-M48 L 749 male W 22 182.9 69.4 495.90 
CABCT-M49 R 749 male W 22 182.9 69.4 501.33 
CABCT-M50 L 758 male W 69 168.0 72.0 475.58 
CABCT-M51 R 758 male W 69 168.0 72.0 475.01 
CABCT-M52 L 760 male W 74 170.2 71.7 443.28 
CABCT-M53 R 760 male W 74 170.2 71.7 440.27 
CABCT-M54 L 785 male W 55 177.8 75.0 476.03 
CABCT-M55 R 785 male W 55 177.8 75.0 471.17 
CABCT-M56 L 725 male W 53 178.0 78.0 471.54 
CABCT-M57 R 725 male W 53 178.0 78.0 466.05 
CABCT-M58 L 727 male B 54 183.0 82.0 520.71 
CABCT-M59 R 727 male B 54 183.0 82.0 515.56 
CABCT-M60 L 733 male W 74 178.0 84.0 490.32 
CABCT-M61 R 733 male W 74 178.0 84.0 489.30 
CABCT-M62 L 737 male W 50 191.0 95.0 488.68 
CABCT-M63 R 737 male W 50 191.0 95.0 489.72 
CABCT-M64 L 750 male W 66 172.7 76.2 433.09 
CABCT-M65 R 750 male W 66 172.7 76.2 435.51 
CABCT-M66 L 756 male W 67 180.3 79.8 484.64 
CABCT-M67 R 756 male W 67 180.3 79.8 485.87 
CABCT-M68 L 764 male W 65 182.9 86.2 478.63 
CABCT-M69 R 764 male W 65 182.9 86.2 481.61 
CABCT-M70 L 770 male W 72 182.9 68.0 456.17 
CABCT-M71 R 770 male W 72 182.9 68.0 454.11 
CABCT-M72 R 698 male W 41 175.0 84.0 465.18 

 



110 

 

 

 

Table A3 Subject characteristics of clinical CT image specimens (continued) 

Code Side CT# Gender Race 
 

Age 
 

Height 
 

Weight 
Femur 
Height 

(yrs) (cm) (kg) (mm) 
CABCT-M73 L 702 male W 42 178.0 86.0 473.36 
CABCT-M74 R 702 male W 42 178.0 86.0 475.19 
CABCT-M75 L 732 male W 57 175.0 88.0 446.52 
CABCT-M76 R 732 male W 57 175.0 88.0 445.57 
CABCT-M77 R 746 male W 74 180.3 87.5 490.58 
CABCT-M78 L 759 male W 66 185.0 88.0 504.47 
CABCT-M79 R 759 male W 66 185.0 88.0 510.55 
CABCT-M80 L 765 male W 67 177.8 85.3 437.35 
CABCT-M81 R 765 male W 67 177.8 85.3 445.15 
CABCT-M82 L 771 male W 68 168.0 82.0 463.58 
CABCT-M83 R 771 male W 68 168.0 82.0 463.79 
CABCT-M84 L 783 male W 67 180.3 85.3 490.66 
CABCT-M85 R 783 male W 67 180.3 85.3 488.11 
CABCT-M86 L 699 male W 50 175.0 89.0 480.78 
CABCT-M87 R 699 male W 50 175.0 89.0 483.08 
CABCT-M88 L 755 male W 37 183.0 91.0 460.58 
CABCT-M89 R 755 male W 37 183.0 91.0 457.31 
CABCT-M90 R 701 male W 67 180.0 99.0 483.88 
CABCT-M91 L 748 male W 75 185.4 98.0 496.26 
CABCT-M92 R 748 male W 75 185.4 98.0 494.01 
CABCT-M93 L 752 male W 27 183.0 97.0 493.58 
CABCT-M94 R 752 male W 27 183.0 97.0 496.95 
CABCT-M95 L 763 male B 48 178.0 99.0 497.56 
CABCT-M96 R 763 male B 48 178.0 99.0 492.66 
CABCT-M97 L 676 male W 73 193.0 105.0 528.87 
CABCT-M98 R 676 male W 73 193.0 105.0 521.00 
CABCT-M99 L 692 male W 65 180.0 104.0 480.61 
CABCT-M100 R 692 male W 65 180.0 104.0 483.64 
CABCT-M101 L 706 male W 76 188.0 106.0 492.38 
CABCT-M102 R 706 male W 76 188.0 106.0 489.47 
CABCT-M103 L 735 male W 54 185.0 103.0 503.38 
CABCT-M104 R 735 male W 54 185.0 103.0 502.34 
CABCT-M105 L 754 male W 59 185.0 103.0 461.22 
CABCT-M106 R 754 male W 59 185.0 103.0 466.27 
CABCT-M107 L 769 male W 61 177.8 106.6 476.20 
CABCT-M108 R 769 male W 61 177.8 106.6 478.63 
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Table A3 Subject characteristics of clinical CT image specimens (continued) 

Code Side CT# Gender Race 
 

Age 
 

Height 
 

Weight 
Femur 
Height 

(yrs) (cm) (kg) (mm) 
CABCT-M109 L 784 male W 82 180.3 105.2 481.61 
CABCT-M110 R 784 male W 82 180.3 105.2 479.45 
CABCT-M111 L 705 male W 46 180.3 113.4 488.66 
CABCT-M112 R 705 male W 46 180.3 113.4 491.87 
CABCT-M113 L 326 male W 62 154.0 72.6 419.37 
CABCT-M114 R 326 male W 62 154.0 72.6 422.95 
CABCT-M115 L 352 male W 64 161.0 86.2 419.17 
CABCT-M116 R 352 male W 64 161.0 86.2 422.25 

F2004-M01 R 116 male W 69 162.6 91.6 453.46 
F2004-M02 R 146 male W 70 167.6 73.0 453.71 
F2004-M03 R 139 male W 51 188.0 123.4 499.76 
F2004-M04 L 139 male W 51 188.0 123.4 502.10 
F2004-M05 L 116 male W 69 162.6 91.6 458.78 
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Table A4 Femur fracture moments from the biomechanical tests (Funk et al., 2004; Kennedy et al., 2004; Kerrigan et al., 2003) 
to generate IRFs 

Fracture Moment [Nm] Aspect Age Gender Reference 
275 65 68.9 M Kennedy et al. 2004 
384 49 106.6 M Kennedy et al. 2004 
468 62 89.1 M Kennedy et al. 2004 
371 83 66.4 M Kennedy et al. 2004 
376 65 84.7 M Kennedy et al. 2004 
343 64 65.8 M Kennedy et al. 2004 
384 62 99.3 M Kennedy et al. 2004 
279 71 71.2 M Kennedy et al. 2004 
242 61 107.1 M Kennedy et al. 2004 
355 61 116.6 M Kennedy et al. 2004 
429 64 90.7 M Kennedy et al. 2004 
302 78 104.8 M Kennedy et al. 2004 
358 62 99.3 M Kennedy et al. 2004 
319 61 107.1 M Kennedy et al. 2004 
309 61 116.6 M Kennedy et al. 2004 
435 67 64 M Funk et al. 2004 
497 59 108 M Funk et al. 2004 
528 40 70 M Funk et al. 2004 
389 55 64 M Funk et al. 2004 
356 70 73 M Funk et al. 2004 
419 69 92 M Funk et al. 2004 
543 51 124 M Funk et al. 2004 
632 55 85 M Kerrigan et al. 2003 
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APPENDIX B: EVALUATION OF ACCURACY MORPHED FEMUR FE MODEL 

  
Figure B1 Impact force (left) and maximum principal strain (right) time histories for Mesh sensitivity analysis using 

five FE models with different number of elements 
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Table B1 Sensitivity of thresholding HU value for one of the specimens (Forman2012-M01) 

HU value Cross-section of Femoral Shaft 

300 

 

400 

 

500 

 

600 
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Table B2 Morphing accuracy 

code  Area [mm2] 
Minimum 

distance Error 
[mm] 

% of elements not meeting target: 
HEX-PENTA (shaft) 

25% 50% 75% Outer Iner J*a W*b A*c S*d 

F2012-M01 
CT 267.2 450.0 533.8 

0.35 0.88 
    

SS-FE 270.1 434.7 553.9 0.00 0.01 3.40 0.00 
error[%] 1.1 3.4 3.8     

F2012-M02 
CT 238.7 506.5 554.6 

0.35 0.80 
    

SS-FE 269.3 490.8 549.6 0.00 0.00 1.23 0.00 
error[%] 12.8 3.1 0.9     

F2012-M03 
CT 497.6 574.0 625.7 

0.35 0.83 
    

SS-FE 482.3 552.5 622.3 0.00 0.00 0.03 0.00 
error[%] 3.1 3.7 0.5     

F2012-M04 
CT 288.7 445.6 498.1 

0.31 0.60 
    

SS-FE 283.4 430.1 495.6 0.00 0.00 0.35 0.00 
error[%] 1.8 3.5 0.5     

F2012-M05 
CT 282.5 437.1 510.8 

0.33 0.66 
    

SS-FE 271.7 422.9 506.9 0.00 0.00 0.93 0.00 
error[%] 3.8 3.2 0.8     

F2012-M06 
CT 304.2 500.9 518.7 

0.33 0.75 
    

SS-FE 311.7 483.4 516.2 0.00 0.00 0.00 0.00 
error[%] 2.5 3.5 0.5     

F2012-M07 
CT 320.8 533.2 589.5 

0.36 0.67 
    

SS-FE 329.9 516.1 581.0 0.00 0.00 0.00 0.00 
error[%] 2.8 3.2 1.5     

F2012-M08 
CT 339.9 511.9 558.6 

0.38 0.72 
    

SS-FE 345.2 502.7 555.2 0.00 0.00 0.00 0.00 
error[%] 1.6 1.8 0.6     

F2012-M09 
CT 331.4 493.9 579.1 

0.36 0.75 
    

SS-FE 342.0 482.1 572.9 0.00 0.00 0.08 0.00 
error[%] 3.2 2.4 1.1     

F2012-M10 
CT 264.1 333.8 362.9 

0.33 0.98 
    

SS-FE 266.4 326.1 363.3 0.00 0.00 0.11 0.00 
error[%] 0.9 2.3 0.1     

F2012-M11 
CT 303.3 473.0 506.3 

0.32 0.58 
    

SS-FE 306.9 463.9 503.2 0.00 0.00 0.00 0.00 
error[%] 1.2 1.9 0.6     

*a = Jacobian, *b = Warpage, *c = Aspect Ratio, *d = Skew 
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Table B1 Morphing accuracy (continued) 

code  Area [mm2] 
Minimum 

distance Error 
[mm] 

% of elements not meeting target: 
HEX-PENTA (shaft) 

25% 50% 75% Outer Iner J*a W*b A*c S*d 

F2012-M12 
CT 283.0 447.8 511.9 

0.34 1.27 
    

SS-FE 286.4 433.3 505.6 0.00 0.00 0.11 0.00 
error[%] 1.2 3.2 1.2     

F2012-M13 
CT 267.2 450.0 533.8 

0.35 0.83 
    

SS-FE 270.1 434.7 553.9 0.00 0.00 0.00 0.00 
error[%] 1.1 3.4 3.8     

F2012-M14 
CT 267.2 450.0 533.8 

0.26 0.69 
    

SS-FE 270.1 434.7 553.9 0.00 0.00 0.00 0.00 
error[%] 1.1 3.4 3.8     

F2012-M15 
CT 238.7 506.5 554.6 

0.34 0.71 
    

SS-FE 269.3 490.8 549.6 0.00 0.00 0.00 0.00 
error[%] 12.8 3.1 0.9     

F2004-M01 
CT 497.6 574.0 625.7 

0.28 1.21 
    

SS-FE 482.3 552.5 622.3 0.00 0.00 0.00 0.00 
error[%] 3.1 3.7 0.5     

F2004-M02 
CT 288.7 445.6 498.1 

0.29 1.10 
    

SS-FE 283.4 430.1 495.6 0.00 0.00 0.00 0.00 
error[%] 1.8 3.5 0.5     

F2004-M03 
CT 282.5 437.1 510.8 

0.31 0.88 
    

SS-FE 271.7 422.9 506.9 0.00 0.00 0.00 0.00 
error[%] 3.8 3.2 0.8     

F2004-M04 
CT 304.2 500.9 518.7 

0.30 0.99 
    

SS-FE 311.7 483.4 516.2 0.00 0.00 0.31 0.00 
error[%] 2.5 3.5 0.5     

F2004-M05 
CT 320.8 533.2 589.5 

0.30 0.99 
    

SS-FE 329.9 516.1 581.0 0.00 0.00 0.80 0.00 
error[%] 2.8 3.2 1.5     

*a = Jacobian, *b = Warpage, *c = Aspect Ratio, *d = Skew 
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Table B3 Morphing accuracy for combined loading (Ivarsson et al. (2009) 

code  Area [mm2] 
Minimum 

distance Error 
[mm] 

% of elements not meeting target: 
HEX-PENTA (shaft) 

25% 50% 75% Outer Iner J*a W*b A*c S*d 

I2009-M01 
CT 411.0 456.0 533.9 

0.51 0.60 
    

SS-FE 400.8 452.4 533.7 0.00 0.00 0.00 0.00 
error[%] 2.5 0.8 0.0     

I2009-M02 
CT 401.4 491.2 506.3 

0.48 0.49 
    

SS-FE 392.0 489.9 508.3 0.00 0.00 0.00 0.00 
error[%] 2.3 0.3 0.4     

I2009-M03 
CT 436.4 470.8 467.3 

0.53 0.65 
    

SS-FE 425.8 466.2 464.2 0.00 0.00 0.00 0.00 
error[%] 2.4 1.0 0.6     

I2009-M04 
CT 390.4 450.9 477.8 

0.66 0.76 
    

SS-FE 380.0 443.1 476.4 0.00 0.00 0.30 0.00 
error[%] 2.7 1.7 0.3     

I2009-M05 
CT 430.7 503.5 541.6 

0.58 0.61 
    

SS-FE 419.2 498.1 540.8 0.00 0.00 0.07 0.00 
error[%] 2.7 1.1 0.2     

I2009-M06 
CT 397.1 470.6 539.0 

0.42 0.46 
    

SS-FE 391.6 469.2 537.5 0.00 0.00 0.23 0.00 
error[%] 1.4 0.3 0.3     

I2009-M07 
CT 465.1 561.1 624.2 

0.56 0.57 
    

SS-FE 451.1 554.4 622.1 0.00 0.00 0.00 0.00 
error[%] 3.0 1.2 0.3     

I2009-M08 
CT 428.4 508.4 558.5 

0.59 0.63 
    

SS-FE 417.6 503.0 560.2 0.00 0.00 0.00 0.00 
error[%] 2.5 1.1 0.3     

I2009-M09 
CT 535.8 656.0 692.1 

0.57 0.56 
    

SS-FE 524.2 649.1 688.5 0.00 0.00 0.00 0.00 
error[%] 2.2 1.1 0.5     

I2009-M10 
CT 376.9 446.0 488.7 

0.50 0.50 
    

SS-FE 368.6 440.8 486.6 0.00 0.00 0.00 0.00 
error[%] 2.2 1.2 0.4     

I2009-M11 
CT 455.3 547.2 610.5 

0.58 0.57 
    

SS-FE 442.5 540.3 610.6 0.00 0.00 0.00 0.00 
error[%] 2.8 1.3 0.0     

I2009-M12 
CT 418.0 491.7 528.4 

0.52 0.55 
    

SS-FE 408.3 486.1 528.2 0.00 0.00 0.67 0.00 
error[%] 2.3 1.1 0.0     

*a = Jacobian, *b = Warpage, *c = Aspect Ratio, *d = Skew 
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F2012-M01 (age=36) 

 
Figure B2 Comparison of CT and Morphed FE model 
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F2012-M02 (age=20) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M03 (age=27) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M04 (age=43) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M05 (age=35) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M06 (age=19) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M07 (age=52) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M08 (age=27) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M09 (age=42) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M10 (age=25) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M11 (age=28) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M12 (age=35) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M13 (age=36) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M14 (age=28) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2012-M15 (age=19) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2004-M01 (age=69) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2004-M02 (age=70) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2004-M03 (age=51) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2004-M04 (age=51) 

 
Figure B1 Comparison of CT and Morphed FE model (continued) 
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F2004-M05 (age=69) 

 
Figure B1 Comparison of CT and Morphed FE model (continued)  
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I2012-M01 (age=39) 

 
Figure B3 Comparison of CT and Morphed FE models for combined loadings 
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I2012-M02 (age=63) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M03 (age=51) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M04 (age=45) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M05 (age=62) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M06 (age=62) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M07 (age=62) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M08 (age=62) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M09 (age=58) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M10 (age=65) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M11 (age=49) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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I2012-M12 (age=44) 

 
Figure B2 Comparison of CT and Morphed FE models for combined loadings (continued) 
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APPENDIX C: MATERIAL PARAMETER IDENTIFICATION 

A piecewise linear plastic material model (LSTC, 2013) was used as the material model for the 

SS-FE models (Table 4). The piecewise linear plasticity material model is defined by the elastic 

modulus, yield stress, tangent modulus, fracture strain, density, and Poisson’s ratio. For a cortical 

bone of femoral diaphysis, a wide range of elastic modulus has been reported. Thus, to identify a 

general elastic modulus for simulations, a parametric study for elastic modulus from 11GPa to 21 

GPa (every 1 GPa) was conducted using the fifteen SS-FE femur models (targeting the PMHS 

specimens used in Forman’s test (Forman et al., 2012a). A parametric study for yield stress from 

50MPa to 200MPa (every 25MPa) was conducted. Since the yield stress of the cortical bone has 

not been reported in the literature, the range of the yield stress was assumed in this study. The sum 

of the RMS errors for fifteen cases was calculated for the material parameters; the 17GPa of the 

elastic modulus and 125MPa of the yield stress, which gave a minimum RMS error, were selected 

as the general elastic modulus for the SS-FE models. Also, a parametric study for the ultimate 

strain from 0.01 to 0.06 (every 0.05) was conducted, and 0.045 of the ultimate strain was selected 

as the common material parameter which minimizes the both the fracture force differences and the 

fracture timing. The density and Poisson’s ratio of compact bone were assumed as 2000 kg/m3 

and 0.3, respectively. 

 

 

 

 



151 

 

 

 

Table C1 Material identification (Elastic Modulus): the sum of RMS error for 15 specimens 

 Yield Stress [GPa] 
0.05 0.075 0.1 0.125 0.15 0.175 0.2 10 

Elastic 
Modulus 

[GPa] 

11 1.99 1.06 0.70 0.60 0.57 0.57 0.57 0.57 
12 1.90 0.95 0.57 0.44 0.41 0.40 0.40 0.40 
13 1.82 0.47 0.44 0.31 0.28 0.27 0.27 0.27 
14 1.74 0.77 0.35 0.21 0.18 0.18 0.19 0.19 
15 1.68 0.71 0.28 0.16 0.14 0.15 0.16 0.17 
16 1.62 0.64 0.23 0.13 0.13 0.16 0.18 0.19 
17 1.56 0.60 0.20 0.12 0.15 0.20 0.24 0.27 
18 1.51 0.56 0.18 0.13 0.20 0.28 0.34 0.39 
19 1.46 0.53 0.18 0.16 0.26 0.39 0.47 0.57 
20 1.42 0.50 0.18 0.19 0.35 0.51 0.63 0.77 
21 1.37 0.48 0.19 0.25 0.45 0.66 0.82 0.98 

 

Table C2 Material identification (Ultimate Strain): the sum of the fracture force and timing differences for 15 specimens 

 Ultimate Strain 
 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 

Force [kN] 2.60 2.02 1.00 0.80 0.74 0.62 0.54 0.45 0.44 0.43 0.43 
Timing [ms] 7.09 5.51 4.41 3.13 2.19 1.70 1.41 1.39 1.76 2.36 3.03 
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Table C3 Material parameters identified for individual SS-FE models for pure bending cases 

code age stature weight H*a Area*b E*c σy *d εu
*e 25% 50% 75% 

  [cm] [kg] [mm] [mm2] [mm2] [mm2] [GPa] [GPa] [%] 
F2012-M01 36 N/A N/A 448 267 450 534 19.0 0.18 1.7 
F2012-M02 20 N/A N/A 502 239 506 555 16.0 0.15 4.3 
F2012-M03 27 N/A N/A 494 498 574 626 16.0 0.20 2.9 
F2012-M04 43 N/A N/A 467 289 446 498 15.0 0.13 6.0 
F2012-M05 35 N/A N/A 479 283 437 511 16.0 0.13 3.7 
F2012-M06 19 N/A N/A 460 304 501 519 15.0 0.15 3.7 
F2012-M07 52 N/A N/A 475 321 533 590 15.0 0.18 4.0 
F2012-M08 27 N/A N/A 497 340 512 559 16.0 0.13 4.1 
F2012-M09 42 N/A N/A 516 331 494 579 15.0 0.13 4.7 
F2012-M10 25 N/A N/A 443 264 334 363 19.0 0.10 3.8 
F2012-M11 28 N/A N/A 445 303 473 506 16.0 0.20 3.2 
F2012-M12 35 N/A N/A 480 283 448 512 19.0 0.10 3.5 
F2012-M13 36 N/A N/A 458 363 527 596 18.0 0.13 4.7 
F2012-M14 28 N/A N/A 445 246 456 494 18.0 0.13 3.7 
F2012-M15 19 N/A N/A 456 299 495 509 15.0 0.13 4.1 
F2004-M01 69 162.6 91.6 453 387 426 437 19.0 0.13 3.1 
F2004-M02 70 167.6 73.0 454 404 529 549 16.0 0.10 2.9 
F2004-M03 51 188.0 123.4 500 316 639 674 16.0 0.13 3.7 
F2004-M04 51 188.0 123.4 502 391 606 638 15.0 0.10 4.5 
F2004-M05 69 162.6 91.6 459 375 499 525 16.0 0.13 3.0 
N/A = not available 
*a: height, *b: cross-sectional area along long bone direction, *c: Elastic modulus, *d: yield stress, *e: ultimate strain 

Table C4 Material parameters identified for individual SS-FE models for combined loading cases 

code age stature weight E*c σy *d εu
*e 

  [cm] [kg] [GPa] [GPa] [%] 
I2009-M01 36 184.0 79.4 12.0 0.15 4.0 
I2009-M02 20 180.3 89.0 11.0 0.13 3.6 
I2009-M03 27 175.0 54.9 10.0 0.15 3.5 
I2009-M04 43 175.3 68.1 12.0 0.13 4.9 
I2009-M05 35 177.8 81.8 13.0 0.13 2.6 
I2009-M06 19 185.4 100.0 14.0 0.13 4.4 
I2009-M07 52 182.9 90.9 15.0 0.05 2.1 
I2009-M08 27 177.8 81.8 10.0 0.10 5.3 
I2009-M09 42 182.9 141.0 16.0 0.18 3.6 
I2009-M10 25 182.9 90.9 12.0 0.13 5.3 
I2009-M11 28 193.0 100.0 10.0 0.08 3.4 
I2009-M12 35 193.0 81.8 10.0 0.10 5.8 

*c: Elastic modulus, *d: yield stress, *e: ultimate strain 
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APPENDIX D: DISTRIBUTIONS FOR POPULATION-BASED FE MODELS 

 

 

 
Figure D1 scatter plots (geometric descriptors vs. age, weight, height) 
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Figure D1 scatter plots (geometric descriptors vs. age, weight, height) (continued) 
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Figure D1 scatter plots (geometric descriptors vs. age, weight, height) (continued) 

 

 



156 

 

 

 

 

 

 
Figure D1 scatter plots (geometric descriptors vs. age, weight, height) (continued) 
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Figure D1 scatter plots (geometric descriptors vs. age, weight, height) (continued) 
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Figure D1 scatter plots (geometric descriptors vs. age, weight, height) (continued) 
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Figure D1 scatter plots (geometric descriptors vs. age, weight, height) (continued) 

 



160 

 

 

 

   
GD #1 GD #2 GD #3 

   
GD #4 GD #5 GD #6 

   
GD #7 GD #8 GD #9 

   
GD #10 GD #11 GD #12 

Figure D2 distributions of the geometric descriptors (GD) 
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GD #13 GD #14 GD #15 

   
GD #16 GD #17 GD #18 

   
GD #19 GD #20 GD #21 

 

  

GD #22   
Figure D2 distributions of the geometric descriptors (GD) (continued) 
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Table D1 Normality test (Anderson Darling test) for Input Distributions: p-value less than 0.05 indicates the failure of the 
normality test (yellow cell) 

p-value (Material Parameters) 
Elastic Modulus Ultimate Strain Yield Stress   

0.0791 0.0790 0.000   
p-value (Geometric descriptors) 

GD #1 GD #2 GD #3 GD #4 GD #5 
0.119 0.954 0.726 0.0119 0.0545 

GD #6 GD #7 GD #8 GD #9 GD #10 
0.001 0.117 0.398 0.0982 0.011 

GD #11 GD #12 GD #13 GD #14 GD #15 
0.001 0.015 0.565 0.043 0.512 

GD #16 GD #17 GD #18 GD #19 GD #20 
0.006 0.149 0.491 0.884 0.489 

GD #21 GD #22    
0.001 0.277    
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APPENDIX E: DEVELOPED VPM AND INJURY RISK FUNCTIONS 

   
VPM#1 (M05) VPM#2 (M05) VPM#3 (M05) 

   
VPM#4 (M05) VPM#5 (M05) VPM#6 (M05) 

   
VPM#7 (M05) VPM#7 (M05) VPM#9 (M05) 

Figure E1 Geometry of VPMs 



164 

 

 

 

   
VPM#10 (M05) VPM#11 (M05) VPM#12 (M05) 

   
VPM#13 (M05) VPM#14 (M05) VPM#15 (M05) 

   
VPM#16 (M05) VPM#17 (M05) VPM#18 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#19 (M05) VPM#20 (M05) VPM#21 (M05) 

   
VPM#22 (M05) VPM#23 (M05) VPM#24 (M05) 

   
VPM#25 (M05) VPM#26 (M05) VPM#27 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#28 (M05) VPM#29 (M05) VPM#30 (M05) 

   
VPM#31 (M05) VPM#32 (M05) VPM#33 (M05) 

   
VPM#34 (M05) VPM#35 (M05) VPM#36 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#37 (M05) VPM#38 (M05) VPM#39 (M05) 

   
VPM#40 (M05) VPM#41 (M05) VPM#42 (M05) 

   
VPM#43 (M05) VPM#44 (M05) VPM#45 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#46 (M05) VPM#47 (M05) VPM#48 (M05) 

   
VPM#49 (M05) VPM#50 (M05) VPM#51 (M05) 

   
VPM#52 (M05) VPM#53 (M05) VPM#54 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#55 (M05) VPM#56 (M05) VPM#57 (M05) 

   
VPM#58 (M05) VPM#59 (M05) VPM#60 (M05) 

   
VPM#61 (M05) VPM#62 (M05) VPM#63 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#64 (M05) VPM#65 (M05) VPM#66 (M05) 

   
VPM#67 (M05) VPM#68 (M05) VPM#69 (M05) 

   
VPM#70 (M05) VPM#71 (M05) VPM#72 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#73 (M05) VPM#74 (M05) VPM#75 (M05) 

   
VPM#76 (M05) VPM#77 (M05) VPM#78 (M05) 

   
VPM#79 (M05) VPM#80 (M05) VPM#81 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#82 (M05) VPM#83 (M05) VPM#84 (M05) 

   
VPM#85 (M05) VPM#86 (M05) VPM#87 (M05) 

   
VPM#88 (M05) VPM#89 (M05) VPM#90 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#91 (M05) VPM#92 (M05) VPM#93 (M05) 

   
VPM#94 (M05) VPM#95 (M05) VPM#96 (M05) 

   
VPM#97 (M05) VPM#98 (M05) VPM#99 (M05) 

Figure E1 Geometry of VPMs (continued) 
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VPM#100 (M05) VPM#1 (M50) VPM#2 (M50) 

   
VPM#3 (M50) VPM#4 (M50) VPM#5 (M50) 

   
VPM#6 (M50) VPM#7 (M50) VPM#8 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#9 (M50) VPM#10 (M50) VPM#11 (M50) 

   
VPM#12 (M50) VPM#13 (M50) VPM#14 (M50) 

   
VPM#15 (M50) VPM#16 (M50) VPM#17 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#18 (M50) VPM#19 (M50) VPM#20 (M50) 

   
VPM#21 (M50) VPM#22 (M50) VPM#23 (M50) 

   
VPM#24 (M50) VPM#25 (M50) VPM#26 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#27 (M50) VPM#28 (M50) VPM#29 (M50) 

   
VPM#30 (M50) VPM#31 (M50) VPM#32 (M50) 

   
VPM#33 (M50) VPM#34 (M50) VPM#35 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#36 (M50) VPM#37 (M50) VPM#38 (M50) 

   
VPM#39 (M50) VPM#40 (M50) VPM#41 (M50) 

   
VPM#42 (M50) VPM#43 (M50) VPM#44 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#45 (M50) VPM#46 (M50) VPM#47 (M50) 

   
VPM#48 (M50) VPM#49 (M50) VPM#50 (M50) 

   
VPM#51 (M50) VPM#52 (M50) VPM#53 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#54 (M50) VPM#55 (M50) VPM#56 (M50) 

   
VPM#57 (M50) VPM#58 (M50) VPM#59 (M50) 

   
VPM#60 (M50) VPM#61 (M50) VPM#62 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#63 (M50) VPM#64 (M50) VPM#65 (M50) 

   
VPM#66 (M50) VPM#67 (M50) VPM#68 (M50) 

   
VPM#69 (M50) VPM#70 (M50) VPM#71 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#72 (M50) VPM#73 (M50) VPM#74 (M50) 

   
VPM#75 (M50) VPM#76 (M50) VPM#77 (M50) 

   
VPM#78 (M50) VPM#79 (M50) VPM#80 (M50) 

Figure E1 Geometry of VPMs (continued) 



183 

 

 

 

   
VPM#81 (M50) VPM#82 (M50) VPM#83 (M50) 

   
VPM#84 (M50) VPM#85 (M50) VPM#86 (M50) 

   
VPM#87 (M50) VPM#88 (M50) VPM#89 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#90 (M50) VPM#91 (M50) VPM#92 (M50) 

   
VPM#93 (M50) VPM#94 (M50) VPM#95 (M50) 

   
VPM#96 (M50) VPM#97 (M50) VPM#98 (M50) 

Figure E1 Geometry of VPMs (continued) 
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VPM#99 (M50) VPM#100 (M50) VPM#1 (M95) 

   
VPM#2 (M95) VPM#3 (M95) VPM#4 (M95) 

   
VPM#5 (M95) VPM#6 (M95) VPM#7 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#8 (M95) VPM#9 (M95) VPM#10 (M95) 

   
VPM#11 (M95) VPM#12 (M95) VPM#13 (M95) 

   
VPM#14 (M95) VPM#15 (M95) VPM#16 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#17 (M95) VPM#18 (M95) VPM#19 (M95) 

   
VPM#20 (M95) VPM#21 (M95) VPM#22 (M95) 

   
VPM#23 (M95) VPM#24 (M95) VPM#25 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#26 (M95) VPM#27 (M95) VPM#28 (M95) 

   
VPM#29 (M95) VPM#30 (M95) VPM#31 (M95) 

   
VPM#32 (M95) VPM#33 (M95) VPM#34 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#35 (M95) VPM#36 (M95) VPM#37 (M95) 

   
VPM#38 (M95) VPM#39 (M95) VPM#40 (M95) 

   
VPM#41 (M95) VPM#42 (M95) VPM#43 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#44 (M95) VPM#45 (M95) VPM#46 (M95) 

   
VPM#47 (M95) VPM#48 (M95) VPM#49 (M95) 

   
VPM#50 (M95) VPM#51 (M95) VPM#52 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#53 (M95) VPM#54 (M95) VPM#55 (M95) 

   
VPM#56 (M95) VPM#57 (M95) VPM#58 (M95) 

   
VPM#59 (M95) VPM#60 (M95) VPM#61 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#62 (M95) VPM#63 (M95) VPM#64 (M95) 

   
VPM#65 (M95) VPM#66 (M95) VPM#67 (M95) 

   
VPM#68 (M95) VPM#69 (M95) VPM#70 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#71 (M95) VPM#72 (M95) VPM#73 (M95) 

   
VPM#74 (M95) VPM#75 (M95) VPM#76 (M95) 

   
VPM#77 (M95) VPM#78 (M95) VPM#79 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#80 (M95) VPM#81 (M95) VPM#82 (M95) 

   
VPM#83 (M95) VPM#84 (M95) VPM#85 (M95) 

   
VPM#86 (M95) VPM#87 (M95) VPM#88 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#89 (M95) VPM#90 (M95) VPM#91 (M95) 

   
VPM#92 (M95) VPM#93 (M95) VPM#94 (M95) 

   
VPM#95 (M95) VPM#96 (M95) VPM#97 (M95) 

Figure E1 Geometry of VPMs (continued) 
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VPM#98 (M95) VPM#99 (M95) VPM#100 (M95) 

Figure E1 Geometry of VPMs (continued) 

 
Figure E2 Stress-strain curve for the foam material 
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(a) M05 

 
(b) M50 

 
(c) M95 

Figure E3 IRF for bending with Weibull distribution 
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APPENDIX F: CRASH DATABASE 

Table F1 NHTSA Crash Database 

# Test # 
                       Vehicle V Overlap Ang 

Side Dummy 
Model year [kph] [%] [deg] 

1 7851 Chevrolet Cruze 2011 90.1 35 15 L THOR M50 
2 7852 Chevrolet Cruze 2011 90.1 35 15 L THOR M50 
3 8089 Hyundai Elantra 2013 90.1 35 15 L THOR M50 
4 8475 Volvo Xc60 2013 90.1 35 15 L THOR M50 
5 8476 Dodge Dart 2013 90.1 35 15 L THOR M50 
6 8477 Honda Civic 2013 90.1 35 15 L THOR M50 
7 8478 Subaru Forester 2014 90.1 35 15 L THOR M50 
8 8488 Volvo S60 Four Door Sedan 2012 90.1 35 15 L THOR M50 
9 8787 Mazda 3 2014 90.1 35 15 L THOR M50 
10 8788 Mazda Cx-5 2014 90.1 35 15 L THOR M50 
11 8789 Honda Accord 2014 90.1 35 15 L THOR M50 
12 8790 Toyota Camry 2014 90.1 35 15 L THOR M50 
13 8791 Honda Odyssey 2014 90.1 35 15 L THOR M50 
14 8998 Mazda Cx-5 2014 90.1 35 15 R THOR M50 
15 8999 Mazda 3 2014 90.1 35 15 R THOR M50 
16 9042 Honda Accord 2014 90.1 35 15 R THOR M50 
17 9043 Honda Fit 2015 90.1 35 15 L THOR M50 
18 9110 Nissan Versa 2013 90.1 35 15 R THOR M50 
19 9121 Toyota Camry 2012 90.1 35 15 R THOR M50 
20 9122 Nissan Versa 2013 90.1 35 15 L THOR M50 
21 9124 Toyota Camry 2012 90.1 35 15 L THOR M50 
22 9125 Ford Taurus 2013 90.1 35 15 L THOR M50 
23 9126 Honda Cr-V 2012 90.1 35 15 L THOR M50 
24 9127 Honda Odyssey 2012 90.1 35 15 L THOR M50 
25 9135 Research Vehicle 8572   90.1 35 15 L THOR M50 
26 9137 Research Vehicle 3A   90.1 35 15 L THOR M50 
27 9138 Research Vehicle 3B   90.1 35 15 L THOR M50 
28 9139 Research Vehicle Cal2661   90.1 35 15 L THOR M50 
29 9140 Research Vehicle 25002   90.1 35 15 L THOR M50 
30 9141 Research Vehicle 25000   90.1 35 15 L HIII 
31 9142 Research Vehicle 9293   90.1 35 15 L THOR M50 
32 9143 Research Vehicle 3100   90.1 35 15 L THOR M50 
33 9144 Research Vehicle 0028   90.1 35 15 L THOR M50 
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Table F1 NHTSA Crash Database (continued) 

# Test # 
                       Vehicle V Overlap Ang 

Side Dummy 
Model year [kph] [%] [deg] 

34 9145 Research Vehicle 4969   90.1 35 15 L THOR M50 
35 9146 Research Vehicle 1236   90.1 35 15 L THOR M50 
36 9147 Research Vehicle Cal2674   90.1 35 15 L THOR M50 
37 9148 Research Vehicle 8200   90.1 35 15 L THOR M50 
38 9149 Research Vehicle Cal2676   90.1 20 7 L THOR M50 
39 9150 Research Vehicle 2677   90.1 35 15 L THOR M50 
40 9151 Research Vehicle 2678   90.1 35 15 L THOR M50 
41 9152 Research Vehicle 2712s   90.1 35 15 L THOR M50 
42 9153 Research Vehicle 3698   90.1 35 15 L THOR M50 
43 9154 Research Vehicle 0304   90.1 35 15 L THOR M50 
44 9155 Research Vehicle 0306   90.1 35 15 L THOR M50 
45 9200 Ford Taurus  2007 90.1 35 15 L THOR M50 
46 9201 Ford Taurus 2007 97.2 18 7 L THOR M50 
47 9202 Toyota Yaris 2010 90.1 35 15 L THOR M50 
48 9203 Toyota Yaris 2010 86.7 20.6 7 L THOR M50 
49 9204 Ford 500 2007 90.1 35 15 L THOR M50 
50 9205 Ford Fusion 2010 90.1 20 7 L THOR M50 
51 9210 Ford Fiesta 2011 90.1 20 7 L THOR M50 
52 9211 Ford Fiesta 2011 90.1 35 15 L THOR M50 
53 9212 Toyota Yaris 2011 90.1 35 15 L THOR M50 
54 9219 Chevrolet Cruze 2011 90.1 20 7 L THOR M50 
55 9220 Chevrolet Cruze 2011 90.1 20 7 L THOR M50 
56 9221 Volvo S60 2012 90.1 20 7 L THOR M50 
57 9222 Fiat 500 2012 90.1 20 7 L THOR M50 
58 9223 Research Vehicle 1A   90.1 35 15 L THOR M50 
59 9226 Small SUV-Research   90.1 20 7 L THOR M50 
60 9228 Honda Accord 2013 90.1 35 15 L THOR M50 
61 9229 Research Vehicle 2175   90.1 35 15 L THOR M50 
62 9354 Subaru Forester 2015 90.1 35 15 R THOR M50 
63 9476 Chevrolet Malibu 2015 90.1 35 15 L THOR M50 
64 9477 Chevrolet Malibu 2015 90.1 35 15 R THOR M50 
65 9478 Ford F-150 2015 90.1 35 15 R THOR M50 
66 9479 Ford F-150 2015 90.1 35 15 L THOR M50 
67 9480 Toyota Highlander 2015 90.1 35 15 R THOR M50 
68 9481 Toyota Highlander 2015 90.1 35 15 L THOR M50 
69 9482 Honda Fit 2015 90.1 35 15 R THOR M50 
70 9483 Volvo S60 2015 90.1 35 15 R THOR M50 
71 9574 Nissan Rogue 2016 90.1 35 15 L THOR M50 
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Table F1 NHTSA Crash Database (continued) 

# Test # 
                       Vehicle  V Overlap Ang 

Side Dummy 
Model year  [kph] [%] [deg] 

72 9585 Toyota Sienna 2015  90.1 35 15 L THOR M50 
73 9586 Chevrolet Tahoe 2016  90.1 35 15 L THOR M50 
74 9587 Ford F-150 2016  90.1 35 15 L THOR M50 
5 9727 Chevrolet Malibu 2015  90.1 35 15 R THOR M50 

 

 
Figure F1 Time histories from Crash Database 
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