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Abstract 
 

Electron dynamics in dipole-dipole (DD) coupled Rydberg atoms show some unique 

properties that do not exist in individual atoms. The goal of the research in this dissertation is 

to reveal and control the electron dynamics influenced by DD interaction in cold Rydberg gases. 

We have studied the decay of Rydberg excitations in a cold Rb gas and find no evidence 

for superradiance. The decay rates and population redistribution we observe are consistent with 

a model that considers only spontaneous emission from, and blackbody redistribution within, 

isolated atoms. Suppression of superradiant emission is likely due to variations in transition 

energies across the cold Rydberg atom sample. For initial s states, these variations are 

dominated by inhomogeneities in DD exchange interactions within the random ensemble. Such 

inhomogeneities will necessarily be present in any measurement involving a large number of 

atoms where the separation between atoms is not well defined. For initial p states, the 

suppression is likely due to a combination of DD exchange and electric field inhomogeneities. 

We have also explored the evolution of Rydberg wavepackets in the presence of strong 

dipole-dipole interactions in a frozen gas. The distribution of atom separations results in an 

inhomogeneity in the strength of the exchange coupling between neighboring atoms, causing 

a dephasing of the macroscopic coherence.  

We have also explored the mechanism of wavepacket coherence transfer from one Rydberg 

atom to a neighboring Rydberg atom via DD interactions utilizing the resonant DD coupling 

transition 25s33s↔24p34p. The phase-shift of the observed interference modulations in the 

34p signal, relative to that in 25s, is a signature of wavepacket coherence transfer between 

atoms driven by electron correlations resulting from the controlled DD coupling between them. 
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CHAPTER 1. INTRODUCTION 1 

 
 
 

1 Introduction 

The electronic and nuclear motion degrees of freedom in Rydberg atoms are coupled 

by long-range dipole-dipole (DD) interactions [1]. This coupling is responsible for rich 

few- and many-body quantum dynamics, and its coherent manipulation can enable potential 

applications in the quantum control of few- and many-body systems, quantum information 

processing, quantum computing, etc. [2-10]. The research discussed in this dissertation 

focuses on the influence of DD interactions on electron dynamics within cold Rydberg 

atoms. This is experimentally challenging due to the large separation of time and distance 

scales associated with the electronic and nuclear motion, respectively. As summarized 

below, the results of three sub-projects are described in this dissertation. Details of the 

common experimental setups, computational approaches, and background knowledge are 

also provided.  
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1.1 Motivation 

Our group’s primary research involves the exploration and manipulation of quantum 

dynamics in atomic and molecular systems. This dissertation describes a series of sub-

projects designed to further this effort. Our results provide new insight into fundamental 

problems in atomic physics. More than that, they may contribute to practical applications 

from designing many-body systems that simulate model condensed matter systems, to 

quantum information storage and processing, to the development of new radiation sources 

and detectors. 

Recent work done by previous graduates Xiangdong Zhang [11] and Mary Kutteruf [12] 

provided much of the foundation and motivation for the work presented here. The project 

“Probing Time-Dependent Electron Interactions in Double Rydberg Wavepackets” done 

by Xiangdong Zhang helps us understand more about time-dependent electron-electron 

interactions within individual atoms. The project “Coherence in Rydberg Atoms: 

Measurement and Control” done by Mary Kutteruf explored the use of electric fields to 

control and measure coherence, both in electronic wavepackets and between coupled atoms 

in Rydberg ensembles. My project is an extension of their work but is the first to explicitly 

examine the impact of DD interactions between atoms on electron wavepacket dynamics 

within them. Another current graduate student Brian Richards is working on utilizing 

controlled DD interactions to manipulate the position correlation function of cold trapped 

atoms. Our projects are like puzzle chunks, working together to develop new capabilities 

and make the scientific picture more complete. 

My project exploring the influence of DD interactions on Rydberg wavepackets has 

been divided into three sub-projects. The first one explores the role of DD interactions in 

suppressing collective decay (“superradiance”) in an ensemble of cold Rydberg atoms 

(Chapter 4). The second one characterizes the role of DD interactions in dephasing the 
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macroscopic coherence of an ensemble of Rydberg wavepackets (Chapter 5). The final one 

examines the transfer of wavepacket coherence between atoms via DD interactions 

(Chapter 6). These three sub-projects help us understand better how the DD interactions 

influence electron dynamics in an ensemble, and explore the use of controlled atom-atom 

coupling to induce coherent wavepacket motion within those atoms. The latter provides an 

effective demonstration of coherent control beyond unimolecular photo-reactions. 

1.2 Rydberg Atoms and Dipole-Dipole Interactions 

Rydberg atoms are atoms in which an electron is excited to a state with a high principal 

quantum number, n ≥ 10. They are good systems for studying atom dynamics. The details 

about Rydberg atoms and their properties can be found in references such as [1], and are 

described in Chapter 3. 

DD interactions can influence neighboring Rydberg atoms. Classically the interaction 

is the result of the electric forces between charges, electrons and the positively charged ion 

cores to which they are bound. When coupled by DD interactions, Rydberg atoms should 

not be considered as individuals but rather a system. Details of DD interactions, both from 

a classical view and a quantum physics perspective, can be found in Chapter 3.  

1.3 Atomic Units 

Atomic units (au or a.u.) are commonly used in atomic physics research. For 

convenience, we define:  

 ℏ = 𝑚J = 𝑒 = 4𝜋𝜀O = 1 (1.1) 

where ℏ  is Planck’s constant divided by 2𝜋 , 𝑚J  is the mass of the electron, -𝑒  is the 

electron charge and 𝜀O is the permittivity of free space. The conversion factors between a.u. 

and SI units are shown in Table 1.1. 
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Quantity  Value in atomic units Value in SI units 
Length 1 5.2917721092(17)×10−11 m 

Energy 1 4.35974417(75)×10−18 J 

Time 1 2.418884326505(16)×10−17 s 

Velocity 1 2.1876912633(73)×106 m·s−1 

Force 1 8.2387225(14)×10−8 N 

Temperature 1 3.1577464(55)×105 K 

Pressure 1 2.9421912(19) ×1013 Pa 

Electric field 1 5.14220652(11)×1011 V·m−1 

Electric potential 1 2.721138505(60)×101 V 

Electric dipole moment 1 8.47835326(19)×10−30 C·m 

Magnetic field 1 2.35×105 T 
 

Table 1.1: Atomic units to SI units conversion factors. 

 

1.4 Dissertation Structure 

Subsequent chapters describe the experimental approach, numerical simulations and 

several distinct projects. Each project contains both an experimental description and details 

on relevant simulations. Additional introductory material and common aspects of all 

experiments are found in chapters 2 and 3.  

Chapter 2 provides the information about experimental setups. It introduces the 

apparatus commonly used in the experiments, as well as daily operation procedures. More 

details about some instruments can be found in their respective manuals and the 

dissertations from previous students who worked in this lab.  

Chapter 3 introduces physics concepts commonly involved in the experiments, and 

their mathematical expression in simulations. It is not practical to include in this 

dissertation every single line of simulation code that was used during the research, but by 
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following the models described in Chapter 3, one could reconstruct the simulations in a 

fairly straightforward way. 

Chapter 4 describes a search for collective decay (i.e. “superradiance”) in cold Rydberg 

gases. We found no evidence for superradiance, despite the results reported by other groups. 

Our analysis suggests that, due to DD dephasing, our null result is the expected one for 

highly excited Rydberg atoms in the typical magneto-optical-trap geometry.  

Chapter 5 describes an exploration of Rydberg wavepacket evolution in DD coupled 

atoms. Our results show, through experiment and simulation, that electronic wavepackets 

in DD coupled atoms do not evolve independently. As a result, variations in the coupling 

strength between pairs of atoms lead to macroscopic dephasing of the electronic 

wavepacket motion.  

Chapter 6 describes a study of coherence transfer between wavepackets on different 

atoms via resonant DD interactions. We observe evidence for the development of 

wavepacket motion in one set of atoms resonantly driven by wavepacket evolution in 

neighboring atoms. We confirm the coherence transfer by measuring the relative phase 

between the initial and induced wavepacket oscillations, suggesting the creation of 

entangled atom pair states with a dynamically evolving Rydberg wavepacket on one, and 

only one, atom in each pair. Simulations support our interpretation. 

Chapter 7 summarizes the work done in this dissertation and briefly discusses the 

possibilities for future experiments following those results. 
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2 Experimental Setup 

This chapter describes the general experimental setup for the research discussed in this 

dissertation. It introduces the apparatus and procedure for state excitation, laser cooling, 

pulse amplification, THz pulse generation, data collection, etc. It also provides procedures 

for maintenance and daily operation. All experiments are performed on Newport RS 3000 

optical tables to reduce mechanical vibrations in a temperature controlled room to reduce 

external thermal fluctuations. Other than specifically noted, the repetition rate of all 

experiments is 15 Hz. Before beginning experiments in the lab, participants must have 

taken the laboratory safety training.  
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2.1 Magneto-Optical Trap 

Since its invention in 1987 [1], the Magneto-Optical Trap (MOT) has become a very 

important and useful tool for atomic physics research, and it is widely used to create 

ensembles of cold neutral atoms. The trap combines a magnetic field gradient with counter-

propagating laser beams. The magnetic field gradient generates position dependent energy 

levels of atoms. Atoms not in the trap center preferentially absorb laser light that tends to 

push them back to the center.  

Due to its ease of operation and relatively low cost, the MOT has been used to trap cold 

atoms for all the experiments described in this dissertation. We use RbPQ  as the atom source 

in all experiments. The MOT system includes a high vacuum chamber, pump and repump 

lasers, pressure gauges, an atom source, etc. A complete and detailed description of the 

system appears in Mary Kutturf’s thesis [4], so only a brief version will be provided here.  

2.1.1 Principle of the Magneto-Optical Trap 

A simplified two-state model can help to understand the trapping process. As shown in 

Figure 2.1, suppose an atom has a ground state J = 0 and an excited states J = 1. Assume a 

weak inhomogeneous magnetic field that varies linearly with z such that 𝐵S 𝑧 = 𝑀𝑧 

where M is a constant. Due to the Zeeman effect ∆𝐸 = 𝜇𝑚Y𝐵 = 𝜇𝑚Y𝑀𝑧 , the field splits 

the degeneracy of the excited states, creating position-dependent energies for the atoms.  

Now assume a beam of  𝜎[ circularly polarized light propagates in the −𝑧 direction and 

another beam with 𝜎] polarization propagates in the opposite direction. Both beams are red 

detuned from (i.e. on the low frequency side of) the zero-field resonance.  



CHAPTER 2. EXPERIMENTAL SETUP 
10 

 

Figure 2.1: Simplified one dimensional model for a MOT [2]. The dashed line 
shows the energy of the laser seen by a stationary atom. 

 

Initially, ground state atoms are located in random positions and moving in both 

directions with random velocities. Suppose an atom passes the center where z = 0, with a 

velocity –v and reaches a –z position. It encounters the slightly red detuning 𝜎] beam. Due 

to the Doppler shift, the atom sees photons with a frequency w + 𝛿, where w is the frequency 

of the 𝜎] beam and 𝛿 is the Doppler shift. When w + 𝛿 is close to the energy gap between 

the ground state and the excited 𝑚Y = −1 state, the atoms absorbs a 𝜎] photon. It later 

emits a photon through spontaneous decay, but the direction of the emitted photon is 

random. So the overall effect is that the photon gives the atom a push in +z direction and 

this atom has been “slowed down” a little. This process repeats when the atom continues 

to move in the -z direction and creates a damped force on the atom. More than that, for a 

ground atom with position z < 0, because the energy gap between ground state and the 

excited 𝑚Y = −1 state is smaller than the gap between the ground state and the 𝑚Y = +1 

state, it is more likely to absorb photons from 𝜎] beam and get “pushed” towards z = 0.  

! = 1	%& = +1

J = 1	%& = −1

! = 0	%& = 0

J= 1	%& = 0

+	field

Energy

detuning
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78 79
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Similar rules apply to the atoms with position z > 0. So the motion of an atom in the MOT 

is similar to a damped harmonic oscillator (for most cases, it is an overdamped harmonic 

oscillator). The atom is cooled and trapped by the MOT.  

 
Figure 2.2: Schematic for a MOT. It’s involves a pair of anti-Helmholtz coils and six 
counter-propagating laser beams.  

 
As shown in Figure 2.2, a three dimensional Magneto-Optical Trap is an extension of 

the one dimensional model. The gradient magnetic field in a three dimensional MOT is 

provided by anti-Helmholtz coils. Other than the main pair of anti-Helmholtz coils shown 

in this schematic, there are three additional shim coil pairs which enable cancelation of 

Earth’s magnetic field and fine tuning of the magnetic field inside the MOT. The six laser 

beams are derived from the same laser. We use three beam splitters to split the primary 

beam into three equal parts. These three beams are then reflected by mirrors to generate six 

counter-propagating beams in total. Before retro-reflection, the beam polarizations are 

rotated by waveplates placed in front of the mirrors to establish the proper 𝜎] , 𝜎[ 

orientations on each axis.  
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The above discussion gives an idea about trapping two-level atoms. When dealing with 

RbPQ , there are more states involved, although the basic principal is the same. As shown in 

Figure 2.3, there are complicated hyperfine levels involved in the trapping of real atoms in 

a MOT. For RbPQ , the 5𝑠`/a	ground state is split into two hyperfine levels F = 2 and F = 3. 

In addition, the excited 5𝑝c/a state is split into four hyperfine levels F = 1, 2, 3, 4. Ideally, 

the trap operates on the transfer between two of these levels, from 5𝑠`/a F = 3 to 5𝑝c/a F 

= 4. But because of the small energy difference between the  5𝑝c/a F = 3 and 5𝑝c/a F = 4 

state, the trap laser transfers a portion of atoms to 5𝑝c/a F = 3. Atoms in 5𝑝c/a F = 3 will 

quickly decay back to 5𝑠`/a F = 2 and escape from the MOT. To avoid such a loss, a weak 

“repump” laser is introduced into the system. The repump laser transfers atoms in 5𝑠`/a F 

= 2 back to 5𝑝c/a F = 3. These atoms can later decay back to 5𝑠`/a F = 3, where they 

continue to cycle via the trap laser. 
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Figure 2.3: Hyperfine energy structure of RbPQ . The trap laser drives the transition, 
5𝑠`/a F = 3 to 5𝑝c/a F = 4, and the repump laser drives the transition, 5𝑠`/a F = 2 
to 5𝑝c/a F = 3. 

 

2.1.2 Saturated Absorption Spectroscopy 

To establish and maintain well-defined frequencies from the trap and repump lasers, 

the lasers are frequency locked using feedback from Saturated Absorption Spectroscopy or 

SAS. Our implementation of SAS is outlined below: 

1. Split off a small fraction from the main beam of the laser, and direct it through 

a cell containing Rb vapor at room temperature. This beam is called the “pump” 

beam and it is sufficiently intense to saturate the Rb absorption along its path. 

2. Retro-reflect the pump beam as the “probe” beam.  

F=4 
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Trap ~780 nm 

Repump ~780 nm 
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3. Detect the probe intensity using a photo detector.  If the beam frequency is 

slightly detuned from resonance, then due to the Doppler effect, different atoms 

in the cell moving at different velocities will absorb light from the pump and 

probe beams, respectively. If the laser frequency is tuned to resonance, only 

zero-velocity atoms can absorb photons from the pump beam. Since the pump 

beam saturates the absorption, there are no additional zero-velocity atoms 

available to absorb photons from the probe, and it passes through the cell 

unattenuated. Thus there is an intensity increase of the probe beam when the 

frequency of the beam is scanned over the resonance frequency.  

In the experiment, the actual setup is a little more complicated than the above 

description. After passing through the cell, the beam is further split into two beams. One 

comes back as the probe and the other, the reference is incident on a photo-detector directly. 

The detected signal from the probe is then subtracted from the reference, enabling a 

differential measurement. In this way, we can remove any fluctuations in the laser intensity 

and stabilize the absorption spectrum.  

The SAS signal vs trap and repump laser frequencies are shown in Figure 2.4. These 

signals are generated by sweeping the grating piezo voltage of the external cavity diode 

lasers with a triangle or sine wave. They help us lock the laser frequencies, which would 

otherwise drift away from resonance in a very short time.  

The peaks other than the marked transition peak shown in Figure 2.4 are called 

“crossover” peaks. They are generated by non-zero velocity atoms when the laser frequency 

matches the mean frequency of each pair of true hyperfine transition peaks. We use servo-

loops to lock both the trap and repump lasers to the side of convenient resonances. When 

locked, the saturated absorption signal is compared to a constant offset voltage and the error 
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signal is fed back to an amplifier which drives the piezo. This provides negative feedback 

to lock the lasers. 

For the trap laser, the setpoint is usually placed on the side of a crossover peak, between 

it and the F = 3 to 𝐹e = 4 resonance peak. The frequency gap between this setpoint and the 

F = 3 to 𝐹e = 4 resonance peak is ~58 MHz. In the lab, before the SAS beam has been sent 

to the absorption cell, it is blue detuned by 36 MHz using an Acousto-optic modulator 

(AOM). So, when the trap laser has been locked, it is red detuned by ~22 MHz from the 

real F = 3 to 𝐹e  = 4 resonance. This red detuning value provides optimal cooling and 

trapping as determined from daily operation.  

We find that the repump laser has a much higher tolerance for imperfect locking than 

the trap laser. This is expected because the repump is not directly responsible for cooling 

or trapping and influences only the small number of atoms which decay to the F = 2 ground 

state. The red dotted arrow in Figure 2.4 gives the approximate setpoint frequency. The 

setpoint changed somewhat and there is no significant change in the MOT characteristics.  
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Figure 2.4: The saturated absorption spectra for the Rb 5𝑠`/a  to 5𝑝`/a  hyperfine 
transitions and their crossover peaks [3]. Small dark arrows identify the real 
resonances. The blue dotted arrow, pointing to the side of the crossover peak, 
indicates the point at which the trap laser is locked. The red dotted arrow indicates 
the position at which the repump laser is locked. 

 

2.1.3 High Vacuum Chamber 

At high pressures, collisions with high speed background atoms reduce the number of 

cold Rb atoms that can be collected and held in the trap. So a high vacuum environment is 

necessary for the MOT. In our lab, the MOT is positioned inside a high vacuum chamber, 

which is evacuated using an ion pump. 
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The pressure in the HV chamber can be measured by two types of gauges: 

thermocouple and Bayard-Alpert ionization gauges, both of which are monitored by a 

Varian senTorr gauge. The thermocouple gauge measures pressure from 10[c to 10a torr. 

It is used during rough pumping process. The ion gauge can measure as low as 2×10[`` 

torr. Turning it on creates a lot of ions and electrons which can affect the MOT so we don’t 

use it during experiment. We usually refer to the approximate ion pump pressure reading 

for daily operation. The typical operating pressure according to the ion pump is between 

10[f torr and 10[P torr. 

2.1.4 Characterization of the MOT 

The temperature of the atoms trapped in the MOT is ~70 𝜇K. Details on how the MOT’s 

temperature is measured are provided by Mary Kutteruf in [4].  

To measure the density of the MOT, we use an optical imaging method. A CCD camera 

detects the fluorescence from the MOT. The spatial extent and brightness of the detected 

signal are compared to a density calibrated signal, originally prepared by Mary Kutteruf [4] 

and more recently by B. Richards. The atom density range is typically from 10f cm[c to 

10`O  cm[c  in our lab. The value of the magnetic field gradient along the coils axis is 

approximately 15 Gauss/cm, twice that in the radial direction. And the pressure reading 

from the ion pump is on the order of 10−9 torr. The current through the Rb getter source is 

varied to obtain the desired MOT density and atom number.  
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2.2 Lasers and Amplifiers 

2.2.1 Nd:YAG Lasers 

Nd:YAG lasers are solid state lasers. The lasing medium is neodymium-doped yttrium 

aluminum garnet (Nd: YcAlQO`a	or	Nd: YAG). The medium is pumped by flash lamps and 

absorbs mostly in the bands between 730–760 nm and 790–820 nm [5]. It then emits light 

primarily centered at 1064 nm. For our pulsed Nd:YAG lasers, a Q-switch closes the optical 

cavity at the optimal time to extract maximal energy in a 5-10 ns pulse from the cavity 

following the pulsed flashlamp excitation [refer to Figure 2.6]. The infrared output is not 

very useful either for directly pumping dye lasers or exciting atoms in our experiments, but 

it can be used to generate beams of other frequencies. For the experiments described in later 

chapters, Potassium Dihydrogen Phosphate (KDP) crystals are used to generate 2nd or 3rd 

harmonics of the source frequency. The 2nd and 3rd harmonic beams have wavelengths of 

532 nm and 355 nm, respectively. We use the green light at 532 nm from two different 

Nd:YAG lasers to pump regenerative and multi-pass Ti:Sapphire amplifiers for THz 

generation and a dye laser for Rydberg excitation. The ultraviolet light at 355 nm is used 

to pump several dye amplifiers for Rydberg excitation. 
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Figure 2.5: Schematic of Nd:YAG lasing [6]. It is a typical four-level lasing scheme.  

 

 

Figure 2.6: Layout of Continuum Surelite Nd:YAG laser. It generates beams at the 
1064 nm fundamental as well as the 2nd and 3rd harmonics [5].  

 
One Nd:YAG laser combined with KDP can produce 2nd and 3rd harmonic pulses at the 

same time. But some measurements require 2nd and 3rd harmonic pulses at substantially 

different times. So two Nd:YAG lasers are used for the experiments. One is a Spectra-

Physics GCR-100 Series. Its function is to generate 532 nm green laser light for pumping 

the regenerative amplifier and the multi-pass amplifier, both of which will be discussed 

later. The other Nd:YAG laser is a Continuum Surelite. It is used to generate ultraviolet 
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355 nm laser light, to pump dye lasers and dye amplifiers for the experiments. Both lasers 

produce pulses with durations of 5-10 ns and fire at a 15 Hz repetition rate. 

2.2.2 Diode Lasers 

Diode lasers are lasers use a p-n junction or a p-i-n structure to generate optical gain 

from electronic current. Semiconductor lasers are usually compact, efficient and 

inexpensive, so diode lasers are commonly used whenever possible. Another advantage of 

diode lasers is that their output frequency is tunable. The frequency of an external cavity in 

a diode laser can be controlled by angle tuning of a small grating in the diode laser head 

using a piezo. The following diode lasers are used in the experiments. 

• Vortex tunable continuous wave (CW) diode lasers from New Focus. Typical 

output frequency is 780 nm and output power 40 mW. They are used as trap and 

repump lasers for the MOT. 

• TA-SHG pro high power frequency-doubled tunable diode laser system from 

Toptica Photonics. Typical output frequency is ~490 nm and output power 150 mW. 

It is used for Rydberg excitation.  

2.2.3 Mode-Lock Laser 

The experiments also utilize pulses from a KMLabs model MTS mini Ti:Sapphire 

mode-locked laser. It uses passive Kerr-lens mode-locking. Its diagram is shown in Figure 

2.7. The cavity is designed to have lower loss for pulsed rather than CW operation. The 

shorter the duration of the pulse in the cavity, the higher its intensity, the greater the effect 

of Kerr-lensing in the gain medium, and the lower the loss.  The routine operation to initiate 

mode-locking is to displace one of the two prisms used for group velocity dispersion (GVD) 

compensation. The disturbance develops into a single short pulse oscillating in the cavity 
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with durations as short as 15 fs at a repetition rate of ~90 MHz. The output pulse spectrum 

is monitored using a spectrometer. If the output is not mode-locked, it is a CW beam and 

the spectrum is a line with a narrow bandwidth. For well mode-locked pulses, the spectrum 

is very stable and has a large (~50 nm) bandwidth. The temporal narrowness of the output 

pulses is more than sufficient for our experiment but the pulse energy is much too small. 

To generate short pulses with large enough power, we use pulses from the mode-lock laser 

to “seed” an amplifier. The amplification process is discussed in 2.2.4.  

 
Figure 2.7: Basic layout of the mode-lock laser [13]. The green line is the pump light 
from Millennia Vs laser and the red line is the mode-locked beam in the cavity which 
is centered at 780-800 nm. The prism pair is used to compensate for group velocity 
dispersion (GVD). By tapping the 2nd prism, we can produce an optical transient that 
develops into a stable, isolated fs pulse oscillating in the cavity. 

 

2.2.4 Chirped Pulse Amplification 

As mentioned above, the output from the mode-locked laser has a very short duration 

but its amplitude is not large enough for the experiments. So pulses from the mode-lock 

laser, or the so called “seed light”, has to be amplified. This is achieved through a popular 

technology called “Chirped Pulse Amplification”. The basic idea is this:  

1. Temporally stretch the 20 fs pulses to a duration of ~100 ps to reduce the peak 

intensity. As shown in Figure 2.8, the combination of reflecting mirrors, a grating 

and a lens in the stretcher acts as a pair of gratings and disperses the seed light’s 
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spectrum. In the stretcher, the low-frequency components of the laser pulse travel 

a shorter path than the high-frequency components. So after the stretcher, the pulse 

is temporally “chirped” and the duration is thousands of times longer than the 

original.  

2. Amplify the stretched pulses using a regenerative amplifier and a multi-pass 

amplifier. Since the pulse duration is long, the peak intensity is relatively small so 

that it does not damage the optics.  

3. Compress the amplified stretched pulses to high intensity short pulses using a 

compressor. The compressor acts as the inverse of the stretcher, and it also utilizes 

a grating. In the experiments, the compressor is adjusted to optimize the non-linear 

Thz generation for experiments.   
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Figure 2.8: Schematic of the chirped pulse amplification system. The seed light is 
first stretched using the stretcher. Then the stretched pulse gets amplified. Finally 
the pulse is again compressed to something close to its original duration, but with 
much greater (10s − 10t times) energy. 

2.2.5 Regenerative Amplifier 

The first amplifier in the chirped pulse amplification is a regenerative amplifier. It uses 

Ti:Sapphire as the gain medium. The schematic is shown in Figure 2.9. A fast pulse “pickup” 

Pockels cell cooperating with a polarizer, picks a single pulse from the mode-locked pulse 

train before sending it into the regenerative amplifier. The input pulse has a vertical 
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polarization to the paper surface and is reflected by the first polarizer to the “switch-in” 

Pockels cell. The switch-in Pockels cell has a high voltage applied on it. It works as a 

quarter waveplate and rotates the pulse’s polarization from vertical to horizontal before it 

comes back to the first polarizer. As soon as the pulse changes the polarization to horizontal, 

the switch-in Pockels cell is triggered off and does not affect the pulse’s polarization during 

the pulse’s journey in the cavity. Now the switch-in Pockels cell also prevents any small 

amplitude leakage pulses from the pick-up Pockels cell from entering the cavity. The 

switched-in pulse, with horizontal polarization, goes through the first polarizer and passes 

through the gain medium where it is amplified. It then goes through the switch-out Pockels 

cell, which is off, and is then reflected back to the cavity. After multiple runs (usually 20 

runs) in the cavity to gain maximum intensity, the switch-out Pockels cell is triggered on, 

and the pulse is switched out with a vertical polarization.  

 
Figure 2.9: Schematic of the regenerative amplifier. The switch-in Pockels cell 
controls when a seed pulse is trapped in the resonator and the switch-out Pockels cell 
controls when the pulse is ejected from the cavity. 

2.2.6 Muti-pass Amplifier 

An additional multi-pass or “linear” amplifier is used when the pulse energy from the 

regenerative amplifier (≈ 3 mJ) is not large enough for the experiments. The pulse obtains 

gain medium 

pump pulse 

polarizer 1 

switch-in Pockels cell 

polarizer 2 

input single pulse 

output pulse 
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additional amplification by making three passes through another Nd:YAG laser pumped 

Ti:Sapphire crystal. The highest output from the linear amplifier in our lab is over 40 mJ 

(prior to the compressor). It is shown schematically in Figure 2.10.  

 
Figure 2.10: Schematic of the linear amplifier. The beam passes the Nd:YAG 
pumped gain medium three times and gets amplified. Pump light enters the 
Ti:Sapphire gain medium from two different directions to reduce the total beam flux 
on either surface of the crystal. 

2.2.7 Dye Laser and Dye Amplifier 

In our experiments, a Hansch-style dye laser [7] has been used for Rydberg excitations. 

This dye laser is used to generate 25s Rydberg atoms. The proper laser dye is LDS 925, 

which is dissolved in methanol solvent, with a concentration of 250 mg/L. This solution is 

pumped by the 2nd harmonic from Continuum Surelite. The pump light has been focused 

about a millimeter into the dye cell by a cylindrical lens, creating a line of gain medium 

across the face of the cell.  The dye cell works as a fluorescence generator, as well as an 

amplifier. The telescope expands and collimates the beam to illuminate more grating lines 

for narrower line width. The grating is rotatable, which determines the frequency of the 

light diffracted back to the cavity. 

pump pulse

input pulse

output pulse

pump pulse
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Figure 2.11: Schematic for a Hansch dye laser and its 2
nd

 harmonic generation. The 
angle of the tuning grating determines the output frequency. 

 
The infrared (~970 nm) output of this laser is then frequency doubled to generate blue 

laser pulses at 486 nm. The spectrum of the output beam is the convolution of the input 

spectrum with itself. With a 486 nm dye laser, on some shots there is no light of the proper 

transition frequency. Compared to that, spikes in the original dye laser spectrum are 

suppressed and broadened, and gaps between these spikes are partially filled in. When sent 

through a saturated amplifier, the gaps between spikes are further filled in ensuring that 

there is always some light of the Rydberg excitation frequency. An etalon (1 mm thickness) 

is put after the doubling crystal and changing its angle fine tunes the output frequency, 

before the beam is sent to the saturated amplifier. The amplified beam is then sent to the 

chamber, and drives Rb atoms from 5p state to 25s state.  

A flowing dye cell without cavities can serve as an amplifier as shown in Figure 2.12. 

The double amplifier shown is used to amplify laser pulses from dye or diode lasers. Before 

performing measurements, we ensure that the Rydberg transition has been saturated by the 

amplified beams. If there is no significant reduction of the Rydberg population on a state 

Nd:YAG light

tuning grating telescope
dye cell

output coupler

output

doubling crystal
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(e.g, 25s) when an 80% transmission filter is inserted in the beam path, we are confident 

that the transition is saturated. 

 
Figure 2.12: Schematic for the double cell dye amplifier used in the lab. 

 

2.3 THz Pulses  

The duration of the THz pulses generated in our lab is on the order of a few ps (a typical 

THz pulse generated in the lab is shown in Figure 2.13). The THz pulses can coherently 

redistribute Rydberg population on time scales that are negligible compared to the 

relatively long time required for other interactions (such as Dipole-Dipole interactions). So 

we use THz pulses to induce and probe coherent population distribution in the experiments 

described in chapters 5 and 6. The THz setup for experiments in this dissertation follows 

that developed by Sha Li for her research. For a detailed discussion of THz generation and 

characterization, one can refer to her dissertation [9]. A brief introduction of THz 

generation will be provided in this chapter.  

dye cell 1 dye cell 2 

pump beam 1 pump beam 2 

seed light amplified light 
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Figure 2.13: A typical THz pulse generated in the lab [9]. The duration is about 5 ps 
and the peak frequency is 0.2-0.4 THz. This pulse is generated using tilted-pulse-
front-pumping optical rectification and the temporal profile of the pulse is 
characterized using the electro-optic sampling method [14]. The spectrum is then 
derived from the time-domain profile.  

 
The THz pulses used in the experiments are generated via tilted-pulse-front-pumping 

(TPFP) optical rectification of femtosecond laser pulses in a LiNbOc crystal [8]. It utilizes 

the so called difference frequency generation (DFG) phenomenon and is actually a 

cascaded intrapulse DFG [10]. When an ultrafast laser pulse (broad bandwidth) passes 

through a nonlinear crystal with non-vanishing 𝜒a, it creates a polarization that follows the 

intensity envelope of the pump field. The induced polarization is a source of 

electromagnetic radiation. The frequency bandwidth of our femtosecond pulses lies in THz 

regime (e.g. a sinusoidal pulse with Gaussian envelope, ∆𝜏xyz{ = 100 fs has a bandwidth 

of ∆𝑓xyz{ = 4.41 THz), thus optical rectification of ultrafast femtosecond laser pulses can 

be used to generate THz radiation. 

Efficient nonlinear conversion requires phase matching. Hebling et al. proposed a 

tilted-pulse-front-pumping scheme for phase matching [11]. In the TPFP scheme, the 

intensity front of the near-infrared (NIR) pump pulse is tilted by an angle of γ inside the 

crystal via grating diffraction [8], and the crystal is cut at this angle to obtain a beam exiting 
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normal to the crystal surface. As shown in Figure 2.14, when 𝑣~��
�� ×𝑐𝑜𝑠𝛾 = 𝑣�zS, where 

𝑣~��
�� 	 is the group velocity of near-infrared light beam in the crystal, the propagation 

direction of the generated THz radiation is perpendicular to the intensity front of the pump, 

and normal to the exit face of the prism shaped crystal.  

 

Figure 2.14: Schematic of the TPFP THz generation setup [9]. 

2.4 Detection and Data Collection 

2.4.1 State-Selective Field Ionization 

As an efficient state distribution detection technology, State-Selective Field Ionization 

(SSFI) has been used widely to measure the state distribution of atoms  [12]. 

In alkali atoms, the outermost electron is bound in a potential trap that at large distances 

r, has the form, V(r) ~ 1/r. When a static field is applied to the atom, the potential tips to 

one side as shown in Figure 2.15. This lowers the barrier that traps the electron. When the 

barrier is low enough, the electron is able to escape from the potential trap. In a rising field 
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ramp, higher energy electrons tend to be ionized sooner than low energy electrons, so that 

the probability that the atom was initially in a state with a particular principal, and (perhaps) 

angular momentum quantum number, is proportional to the ionization signal at a particular 

time. 

In the MOT chamber, there are four metal rods. Two of them are connected to a high 

voltage pulse supply and the other two are connected to ground or low static voltage. Pulsed 

voltages applied to these 4 rods create strong electric fields with 1 𝜇s (slow ionization field) 

or 500 ns (fast ionization field which rises to half maximum in only 100 ns) rise time to 

reach maximum. Atoms in the field will be ionized and the ions will fly in the ionization 

field toward a detector composed of micro-channel plates (MCP). Atoms in different states 

are ionized at different times, so the population in different states can be distinguished in 

the time dependent current from the MCP detector. 

 

Figure 2.15: Schematic of the tipping of atomic binding potential. The solid line is 
the ~1/r potential when there is no external field applied to the atom. The dashed line 
shows the potential when a field is applied to the atom. Solid strips represent energy 
levels. When the field is strong enough, electrons are able to escape from the trap. 
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2.4.2 Synchronization System 

Before making any measurements, the lasers and electric field pulses must be 

synchronized. The synchronization is controlled by a timing system in the lab. It introduces 

a combination of clocks, delay generators and synchronization boxes. The system is 

flexible enough to readily adapt to changes in the experimental approach. Figure 2.16 

shows the synchronization system working in the experiment described in Chapter 6. Small 

changes are needed for other experiments. The “master” clock is a divider which divides 

the commercial 60 Hz electrical supply by 4 and provides a 15 Hz clock to trigger a multi-

channel digital delay/pulse generator, Model DG535 from Stanford Research Systems. One 

channel of this delay generator triggers a second DG535 which controls the firing of the 

lamps inside the Surelite Nd:YAG laser. Another channel triggers the lamp of GCR-100 

Nd:YAG laser. The GCR-100 provides a “ready” signal at the optimal time for firing its Q-

switch. This Q-switch request signal is delayed by up to one period of the mode-locked 

pulse train from the Ti:Sapphire oscillator in the SM-1 synchronization box. The SM-1 

output is synchronized with the mode-locked pulse train and triggers the GCR-100 Q-

switch as well as two additional digital delay generators (a DG535 and a DG645). The 

DG535 controls the Pockels cells in the regenerative amplifier. The DG645 controls the Q-

switch of the Surelite Nd:YAG, and triggers the ionization field, oscilloscopes, etc. The 

delays are easy to change on these delay generators so this system can handle different 

timing for different experiments.  
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Figure 2.16: Schematic of the synchronization system. White circles are inputs and 
dark circles are outputs. 

2.4.3 Measurement Operation 

The time-dependent ionization signal from the MCP detector is collected using 

oscilloscopes, and the oscilloscopes transfer the data to computers via data collection 

programs written in Labview. A typical electric signal representing a state population is a 

peak with some temporal width. Usually, the larger a state’s population is, the higher the 

peak is. But the height alone is not an accurate measure of the population. Instead, the area 

of peak is proportional to the state population. As shown in Figure 2.17, the peak within 

the temporal gate or window is the ionization signal associated with a particular state. Using 

the Labview code, we can record, on each laser shot, the area under the peak in the user 

defined gate. After subtracting this signal area by the background area recorded when there 

DG535

DG535 DG645

SM-1

GCR	YAG

Seed Light Pulses

Master

Lamp trigger 
for Surelite

Q-switch 
trigger for 
Surelite

Trigger for 
Ionization 
pulse

Trigger for 
scopes

DG535

Q-switch 
trigger for 
GCR

Trigger for 
pockels cells



CHAPTER 2. EXPERIMENTAL SETUP 
33 

is no ionization, we obtain the Rydberg population. As the population changes, the 

integrated value in the gate changes accordingly.  

 
Figure 2.17: A typical ionization signal shown on an oscilloscope. The central peak 
representing the population of state 32s. The measurement program uses a user 
defined gate and integrates the area under the peak within the gate. 

2.5 Maintenance and Daily Operation 

Before doing experiments, participants must have finished the laboratory safety 

training.  

Before turning on lasers, the laboratory main interlock switch has to be flipped on. It 

enables the lasers in the lab. When the switch is on, a red light bulb outside the lab is 

illuminated to indicate “laser on” status. 

2.5.1 Daily Examination 

1. Check the MOT chamber pressure. The reading from the ion pump should be no more 

than the order of 10−8 torr. A pressure reading higher than this indicates a problem, e.g. 

a vacuum leak or failing pump. 

2. Check the pressure of the nitrogen tank which is used to keep the GCR-100 laser head 

clean and dry. The flow meter should read above zero and the output pressure on the 
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tank should be around 5 psi. From previous experience, the nitrogen tank needs to be 

replaced every two to three weeks. 

3. Check the room temperature. The readings should be from 72 FO  to 74 FO . On some 

days, the temperature may be out of this range, leading to laser and beam misalignment. 

4. Check the temperature of the cooling water from external sources. The supply water 

should have a temperature around 60 FO .  

5. Check the cooling water level within each laser or chiller before turning on the laser. 

The water level should be in the proper range marked on the reservoir.  

6. Check the fume hoods to make sure they are working properly.  

2.5.2 Operation of the Regenerative Amplifier 

Turn on the seed light pump laser power switch. When the temperature is stabilized, 

turn on the laser. The pump should be in mode “power” and the setup for power is “3.75 

W” shown on the display screen.  

1. Let the pump laser for the regenerative amplifier warm for at least half an hour. Then 

initiate the mode-locking. If the mode-lock is not very stable, usually it’s because the 

laser alignment is off and it needs adjustment.  

2. Turn on the regenerative pump GCR-100 Nd:YAG laser. Ensure beam blocks and/or 

the power meter head are in place, preventing light from entering either amplifier. 

Slowly increase the power of the pumping lamp until it reaches the maximum. It usually 

takes several seconds or minutes for the simmer light to turn on. If it takes too long, it’s 

probably because there are too many ions in the cooling system and the charge of lamps 

is not working properly. Reflush the cooling system using deionized water if that 

happens and try again.  
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3. Let the Nd:YAG laser warm for at least one hour to obtain thermal balance.  

4. Change the output Pockels cell’s timing to the long timing setpoint, which is 4 us longer 

than the short timing set point (which should be almost the same every day). This is to 

enable self lasing of the amplifier. Switch on all the Pockels cells in the setup. Increase 

the Nd:YAG pump light to be a little higher than the threshold. (The threshold may 

vary a little bit every day. The recent value should be marked down in the log book.) 

5. There should be a bright spot showing in the TV monitor, which means the regenerative 

amplifier is now lasing itself. If there is no bright spot, increase the pump light a little 

higher but not larger than the normal pump level. Adjust the coupling mirrors to make 

sure the threshold is minimized.  

6. Block the pump light. Change the output Pockels cell’s timing to the short timing 

setting. Increase the pump light to the ordinary operation level (which is also written 

down in the log book). Unblock the pump light. Now on the scope, there should be a 

stably increasing pulse train, as observed on the photodiode detecting the light leakage 

through the regenerative amplifier cavity mirror.  

At this point, the regenerative amplifier is ready. Fine tuning includes decreasing the 

threshold and making the pulse train more stable. The lamps in the Nd:YAG laser must be 

replaced every 700 hours, or so, under current repetition frequency. The normal output and 

the last replacement date are marked underneath the laser head on the optical table.   

2.5.3 Operation of the MOT 

The MOT is very sensitive to external perturbations. So during experiments, try not to 

make large noises or vibrations.  

1. First turn on the cooling water valves. Check the flow meter to make sure cold water is 

flowing through the MOT coils’ cooling tubes. If there is no flow or the flow is too 
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slow, the power supply for the main anti-Helmholtz coils should not be turned on. 

Check the paddle wheel flow meter to make sure water is flowing. The normal input 

pressure is 14 psi. Make sure there is no leakage of water from the cooling tubes.  

2. Turn on the diode lasers for the trap and repump beams.  

3. Turn on the AOM driver, voltage ramp for the diode grating, scopes, TV monitors and 

coil power supplies. Increase the output of the power supply of the main coils to 10V. 

The resistance of the main coils is 1 ohm, so the output current of the power supply 

should be around 10A.  

4. Turn on the Rb getter current and slowly increase it to the operating value. A normal 

operating current is from 1.9 A to 2.5 A. When this value has to be as large as 3.5 A to 

generate an observable MOT on the TV monitor, it means the getter charge has been 

mostly used up. Under ordinary usage, this process could take about 4 to 5 years. Once 

the getter has been used up, it should be replaced by a new one. 

5. Let the trap and repump lasers warm for at least one hour to achieve thermal balance. 

Then adjust the piezo voltage of the lasers to find the right absorption signal. If the 

absorption signal is not similar to the proper pattern, use a spectrometer to check the 

output frequency. For the trap laser, the output frequency range should cover the value 

384232.6 GHz and for the repump laser 384231.2 GHz. If either diode laser fails to 

reach the required value, it is possible that the piezo in the laser head is damaged and 

needs to be replaced. Lock lasers. 

At this point, there should be a bright spot shown on the TV monitors. It is the scattered 

infrared light from the cold atoms. A good MOT on the screen is a bright stable spot with 

a clear circular shape on both TV monitors. If the spot is not stable or the shape is not round, 

the first step is to adjust the current of the shim coils. If the shim coils do not do the job, 
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usually it is because the alignment of the trap beams needs to be adjusted. Follow these 

troubleshooting procedures (refer to Figure 2.18): 

1. Check the two windows for beams A and B respectively at the bottom of the chamber. 

There should be a mask on each window. These masks make the trap beam’s spatial 

modes well defined.  

2. There are four additional masks, two are big and two are small, which help to align the 

trap beams. Attach the two big masks to the front and the back windows, and adjust 

mirrors to make sure the trap beam C can go through the centers of the masks and be 

retro-reflected through them. Attach the two smaller ones to the top windows for beams 

A and B respectively. Make sure the beams’ centers are the same as the masks’ centers. 

Adjust mirrors so that beams A and B are retro-reflected. The retro-reflected beams 

should not totally overlap the incoming beams as feedback from the returning beams 

causes laser instability.  

3. Take off the masks. Turn on the electronic switch (based on an IGBT transistor) which 

reduces the magnetic field to zero in 4 ms at a 15 Hz repetition rate. If the fluoresce 

signal is not a round spot but rather has an irregular shape with one or more “tails”, 

indicating the directions the atoms in the MOT tend to escape, then adjust the shim 

coils and the mirrors to get rid of these “tails”.  

4. Turn off the magnetic field switch. Now the MOT signal monitored by the camera 

should be a bright spot. If it is still not very steady or has blurry edges, fine tune the 

current to the shim coils to improve it. 

5. Adjust the repump beam to find the best performance of the MOT. The repump 

alignment does not affect the MOT much, so this step is not often required. 
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Figure 2.18: Front view of the chamber that houses the MOT. A, B, and C represent 
the three trap beams. 
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3 Models in Simulation 

This chapter introduces general knowledge about the computational models used in the 

research. The topics include Rydberg atoms, a two-atom model, a dipole-dipole interaction 

model, blackbody radiation, etc. The mathematical equations presented provide a 

background for the simulations implemented in chapters 4, 5 and 6. Unless specifically 

noted, atomic units are used throughout this dissertation. 
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3.1 Rydberg Atoms 

Back in 1885, Balmer found the wavelengths of the visible series of atomic H are given 

by [1]: 

 𝜆 =
𝑏𝑛a

𝑛a − 4 (3.1) 

where b = 3464.6 Å. We now know equation (3.1) is the formula for the wavelengths of the 

Balmer series of transitions between the n = 2 states and higher lying levels. 

After quantitatively describing the wavelengths from H, people started to work on other 

atoms to unravel the mystery of atomic spectroscopy. Living and Dewar found that the 

observed spectral lines of Na could be grouped into different series [2].Hartley found the 

significance of describing Balmer’s formula in terms of the wavenumber or frequency of 

the observed lines instead of the wavelength during his reach on spectra of Mg, Zn, and Cd 

[3]:  

 𝜈 = `
q�
(`
q
−	 `

��
).	 (3.2) 

This equation makes it more clear that the lines Balmer discovered reflect the energy 

differences between the n = 2 and higher lying levels. 

Following those pioneering measurements, Rydberg began to classify the spectra of 

other atoms, notably alkali atoms, into sharp, principal, and diffuse series of lines [4]. For 

example, he found the frequencies associated with transitions between the s and p series, 

are given by: 

 ±ν =
Ry

(m − δ�)a
−

Ry
(n − δ�)a

	 (3.3) 

where the + sign and constant n describe sharp transitions involving series of s states, and 

the minus sign and a constant m describe transition involving the principal series of p states. 

If 𝛿� = 𝛿� = 0 and m = 2 we recover Balmer’s formula for the H transition from n = 2.  
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Due to his significant contribution, people now refer to atoms in states of high principal 

quantum number as “Rydberg Atoms”.  

3.1.1 Modern Picture of Rydberg Atoms 

If we consider Rydberg states of H and Na, as shown in Figure 3.1, they are quite 

similar. The only difference is that Na atom has a core which is composed of 11 positive 

charges and 10 electrons. In classical terms, at most of times, the high energy Rydberg 

electron is far from the core, where the difference between Na, H and all Rydberg atoms is 

trivial. But when the Rydberg electron comes near the core, it can both polarize and 

penetrate the Na]  core, altering the wavefunctions and energies of Na Rydberg states 

relative to their hydrongenic counterparts. 

 

Figure 3.1: Classical view of Rydberg orbits of (a) H and (b) Na. In H the electron 
orbits around the proton. In Na it orbits around the +11 nuclear charge and ten inner 
shell electrons. In high ℓ states, Na behaves nearly identically to H, but in low ℓ states 
the Na electron penetrates and polarizes the inner shell electrons of the Na] core [5]. 

 
We know how to calculate wavefunctions of H [6]. This process can be easily extended 

to generate wavefunctions for single valence electron atoms with spherical ionic cores. 

Such an approach is called Quantum Defect Theory [7]. Quantum Defect Theory (QDT) 
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assumes that the Na] core is spherically symmetric and frozen in place. So the effective 

potential, 𝑉~� seen by the valence electron is spherically symmetric and only depends on r. 

This potential is different from the coulomb -1/r potential only at small r. Typically, the 

effect is to increase the electron’s kinetic energy and decrease the wavelength of the radial 

oscillations in the wavefunction relative to H. In general, the bound state radial 

wavefunctions are given by:   

 𝜌 𝑟 = 𝑓 𝑊, ℓ, 𝑟 𝑐𝑜𝑠𝜏 − 𝑔 𝑊, ℓ, 𝑟 𝑠𝑖𝑛𝜏 (3.4) 

where 𝑓 𝑊, ℓ, 𝑟  and 𝑔 𝑊, ℓ, 𝑟  are commonly termed the regular and irregular coulomb 

functions and 𝜏 is the phase shift which is related to the quantum defect, 𝛿ℓ. For a give 

principal quantum number, the Rydberg atom has allowed eigen energies: 

 𝑊� = 	−
1

2(𝑛 − 𝛿ℓ)a
 (3.5) 

where n is an integer. Equation (3.5) can be used to calculate the energies of Rydberg atoms 

if the quantum defects 𝛿ℓ are known. Table 3.1 gives the 0th order approximation of the 

quantum defects for Rb.  

 𝑠`/a 𝑝`/a 𝑝c/a 𝑑c/a,Q/a 𝑓Q/a,t/a 

𝛿ℓ 3.13109 2.65456 2.64145 1.347157 0.016312 

 

Table 3.1:Quantum defects for low-ℓ states of Rb [5]. 

From Table 3.1 we see that, for larger ℓ, the quantum defect is smaller. This is to be 

expected as the centrifugal barrier reduces the probability of finding the electron near the 

nucleus as ℓ increases. 
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3.1.2 Properties of Rydberg Atoms 

Table 3.2 summarizes the dependence on principal quantum number n of some 

properties of Rydberg atoms [12].   

property n dependences 

Binding energy 
Energy between adjacent n states 
Orbital radius 
Orbital period 
Geometric cross section 
Dipole moment <ns|er|np> 
Polarizability 
Radiative lifetime 
Fine-structure interval 

𝑛[a 
𝑛[c 
𝑛a 
𝑛c 
𝑛q 
𝑛a 
𝑛t 
𝑛c 
𝑛[c 

 

Table 3.2: Properties of Rydberg Atoms. 

 

Because Rydberg wavefunctions extend far from the ion core, they are easily affected 

by external fields, including the fields created by other atoms. For example, as introduced 

in later sections, the magnitude of the dipole-dipole interaction between Rydberg atoms is 

proportional to the product of two transition dipole moments and, therefore, scales as 𝑛q 

for atoms in states of similar n. In addition, the very long lifetime of Rydberg atoms makes 

it possible to perform complex control operations on the the atoms prior to their decay. 

These superior properties make them ideal objects for researching coherent dipole-dipole 

interactions and the control of electron dynamics. 
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3.2 Two-Atom Model 

3.2.1 Introduction to the Two-Atom Model 

When talking about the interactions (which will be introduced in detail in 3.3) between 

atoms, a simplified two-atom DD model is often used. In this model, we suppose one atom 

is only affected by its nearest neighbor. Such an assumption is not completely accurate of 

course, because nearest neighbor interactions do not preclude the influence from other 

atoms. However, due to the inverse cube dependence of the DD coupling on atom 

separation, nearest neighbor interactions are typically several times larger than the next-

nearest neighbor couplings. Moreover, compared to a many-atom picture, the two-atom 

model provides a concise way of thinking about and charactering interactions between 

atoms in an ensemble [5]. In addition, at sufficiently low densities where the atom 

separation is much larger than extent of the Rydberg wavefunctions, the principal atom-

atom interaction is of the DD form [9]. As discussed later, in the experiments described 

here, the interaction between nearest neighbor atoms dominates over interactions with more 

distant neighbors. Therefore, the following discussion focuses on the coupling between 

nearest neighbor pairs.  
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Figure 3.2: Schematic of atom pairs in a MOT. For each atom in the MOT, we only 
consider the effect of its nearest neighbor. One atom and its nearest neighbor is 
considered to be “a pair of atoms”. 

 
For each pair of atoms, we can write their electronic state, in a non-interacting basis, as 

the product of their individual states. For example, for two atoms, one in an ns state and 

the other in an np state, respectively, we can write the state of the pair as nsnp. We call 

this state a “pair state”. Such a convention is followed in all sections of this dissertation. 

3.2.2 Nearest Neighbor Distribution 

We need to know the distance between atoms to determine the DD coupling between 

them. We use the so called “nearest neighbor distribution” to express the probability that 

an atom and its nearest neighbor in a random ensemble have a particular separation. The 

nearest neighbor distribution function H(r) for point particles in a D-dimensional system is 

[12][13]: 
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 𝐻 𝑟 = 	𝜌
d𝜈¤(𝑟)
d𝑟 exp	[−𝜌𝜈¤ 𝑟 ] (3.6) 

where 𝜌 is the density of the atoms and 𝜈¤(𝑟) is the volume of the D-dimensional sphere. 

For a 3-D system, we get the distribution function: 

 𝐻 𝑟 = 	4𝜋𝜌𝑟aexp	[− q
c
𝜋𝜌𝑟c]. (3.7) 

From Equation (3.7), we find that the most possible nearest neighbor distance between 

atoms in a random ensemble is:  

 𝑅 ≃ `
a«¬

­  . 
(3.8) 

For a MOT with density 𝜌 ≈ 10f	cm[c and a temperature T~100 𝜇K, the most possible 

distance between one Rb atom and its nearest neighbor is about 5 𝜇m and the velocity of 

the atoms is on the order of 10 cm/s. In 1 𝜇s, each atom can move about 0.1 𝜇m on average, 

which is much smaller than the distance between two atoms. So we consider the atoms as 

“frozen” or static in the MOT for experiments involving DD integration times < 1 𝜇s.  

3.2.3 Förster Resonant Energy Transfer 

Förster Resonant Energy Transfer (FRET) is a mechanism describing energy transfer 

between two atoms or molecules. It happens when two neighboring atoms are dipole-dipole 

coupled to higher and lower states with equal energy spacing [10][14][20]. This mechanism 

can be described very easily using the two-atom picture. As shown in Figure 3.3, one atom 

acts as an energy donor and the other one, an accepter. The atoms exchange energy as the 

donor is de-excited to a lower state and the accepter is excited to a higher state via the DD 

interaction.   



CHAPTER 3. MODELS IN SIMULATION 
49 

 

Figure 3.3: Schematic for typical FRET. Black circles represent the initial pair states 
and gray circles the final pair states. (a) is 𝑝𝑝 → 𝑠𝑠e, (b) 𝑝𝑠 → 𝑠𝑝 and (c) 𝑝𝑠′ → 𝑠′𝑝 
[14].  

 

3.3 Dipole-Dipole Interaction 

In the above discussion, the DD interaction has been mentioned several times. For 

Rydberg atoms in the two-atom approximation, it is straightforward to explicitly derive the 

form of the interaction.  

3.3.1 Dipole Moment 

As noted previously, a classical Rydberg electron spends most of the time far from the 

positive core that binds it. Although the atom as a whole is neutral, classically it has a time 

dependent dipole moment: 

 𝜇 = 𝑞𝑟 (3.9) 

where q is the electron charge and 𝑟 is the vector from the negative charge to the positive 

charge. This classical physics perspective can help us understand the dipole-dipole 

interaction better.  

 In quantum physics, in the absence of external fields, an atom in an electronic eigenstate 

has no permanent dipole moment. However, an external electric field, or neighboring atoms 

can induce a dipole moment. A state which is a linear combination of angular moment 
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eigenstates of different parity, can exhibit a permanent or time dependent dipole moment. 

This dipole moment depends on the “transition dipole moment” between different field free 

states:  

 𝜇`a = 1 𝑟 2  (3.10) 

for q=e=1. From Equation (3.10) we see that if state 1 and state 2 are the same angular 

momentum eigenstates, then the transition dipole moment is 0. Thus the transition dipole 

moment appears as an off-diagonal matrix element in the system Hamiltonian.  

The preceding discussion on atomic dipole moments has been divided into classical 

and quantum physics views. Similar to that, our DD interaction model will also be explored 

from both views. 

3.3.2 Dipole-Dipole Interaction in the Classical Picture 

The classic dipole-dipole interaction picture provides the basis for the interaction 

between quantum atoms, and helps us to understand the quantum picture.  

If there is only one dipole, the potential of this dipole is merely provided by the 

attractive force between the positive charge and negative charge. When two dipoles are in 

close proximity, the potential energy of such a system also induces interactions between 

them. Figure 3.4 illustrates the interaction between two dipoles. The total potential energy 

of this system does not only contain the inner coulomb potential of each individual dipole 

but also the potential caused by atom-atom interaction. The atom-atom interaction potential 

energy can be written as:  

 𝑉 =
1
𝑅 −

1
𝑟 − 𝑅

−
1

𝑟a + 𝑅
+

1
𝑟 − 𝑟a − 𝑅

. (3.11) 

From reference [15], assuming 𝑟 , 𝑟a ≪ 𝑅, Equation (3.11) can be simplified to: 
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 𝑉 ≈ 𝑉¤¤ =
𝑟 ∙ 𝑟a − 3(𝑟 ∙ 𝑅)(𝑟a ∙ 𝑅)

𝑅c ,	 (3.12) 

where 𝑉¤¤ is the dipole-dipole interaction.  
Expressed in terms of dipole moments, Equation (3.12) can also be written as: 

 
𝑉¤¤ =

𝜇` ∙ 𝜇a − 3(𝜇` ∙ 𝑅)(𝜇a ∙ 𝑅)
𝑅c  

(3.13) 

where 𝜇` is the dipole moment of atom 1 and 𝜇a is the dipole moment of atom 2. From this 

expression, we see that the interaction energy can be positive or negative depending on the 

relative orientation of the dipole moments and the line connecting them.  

From Equation (3.13) we can also see the dipole-dipole interaction is strongly affected 

by the distance between the dipoles or Rydberg atoms. This is one reason why the nearest 

neighbor interaction typically dominates in an ensemble of frozen atoms.   

Setting 𝑅 = 𝑧, Equation (3.12) can be written as: 

 𝑉¤¤ =
𝑥`𝑥a + 𝑦`𝑦a − 2𝑧`𝑧a

𝑅c 	 (3.14) 

where 𝑥µ, 𝑦µ, and 𝑧µ specify the position of the Rydberg electron in the ith atom relative to 

its nucleus.  

 
Figure 3.4: Schematic of the interaction between two classical dipoles. 
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3.3.3 Dipole-Dipole Interaction in the Quantum Picture 

The quantum DD model derives from the classical picture. As an example, we consider 

a resonant interaction such as that shown in Figure 3.3a. Suppose an atom pair is initially 

in state pp (ignoring 𝑚ℓ), and we want to explore the evolution of the wavefunction in such 

a system. We define: 

 𝜓· = 𝑝𝑝, 𝑎𝑛𝑑	𝜓¹ = 𝑠𝑠′. (3.15) 

The total Hamiltonian of the system is 𝐻 = 𝐻O + 𝑉, where V is the potential associated 

with the classical dipole-dipole interaction. The solution of the time-dependent Schrodinger 

equation, 𝐻𝛹 = 𝑖𝜕𝛹/𝜕𝑡  yields the pair wavefunction which, in general, is a linear 

combination of 𝜓· and 𝜓¹: 

 𝛹 = 𝐶· 𝑡 𝜓· + 𝐶¹(𝑡)𝜓¹ (3.16) 

where all of the time dependence is contained in the coefficients 𝐶· 𝑡  and 𝐶¹ 𝑡 . The 

Schrodinger equation can be written as: 

 
 

(3.17) 

where  𝑉�¾ = 𝜓� 𝑉 𝜓¾ , with p and q representing pair states. 𝑉·· = 𝑉¹¹ = 0. By solving 

Equation (3.17) we can get two eigen energy values: 

 
𝐸` =

(𝐸· + 𝐸¹) + 𝐸· + 𝐸¹ a − 4(𝐸·𝐸¹ − 𝜀a)
2

𝐸a =
𝐸· + 𝐸¹ − 𝐸· + 𝐸¹ a − 4(𝐸·𝐸¹ − 𝜀a)

2

 (3.18) 

where 𝜀 is expressed as: 

 𝜀 = 𝑝𝑝 𝑉 𝑠𝑠e ∝
𝑝 𝑟 𝑠 ∙ 𝑝 𝑟a 𝑠e

𝑅c =
𝜇�� ∙ 𝜇��e
𝑅c . (3.19) 
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This expression utilizes the concept of transition dipole moment mentioned in section 3.3.1. 

When in resonance, 𝐸· = 𝐸¹ = 𝐸, Equation (3.18) evolves to:  

 𝐸` = 𝐸 + 𝜀
𝐸a = 𝐸 − 𝜀	. (3.20) 

 We can also obtain the two eigenstates from Equation (3.17) at resonance: 

 𝜓` = (𝜓· + 𝜓¹)/ 2
𝜓a = (𝜓· − 𝜓¹)/ 2

. (3.21) 

 So the complete solution of the Equation (3.17) is: 

 𝛹 = 𝐶`𝜓`𝑒[µÀÁÂ + 𝐶a𝜓a𝑒[µÀ�Â (3.22) 

in which 𝐶`and 𝐶a are constants determined by the initial condition.  

 The energy shifts that occur in the presence of resonant interactions act to decouple 

nearest neighbor pairs from surrounding atoms. As a result, the dynamics are dominated by 

the nearest neighbor coupling [9][11].  

The above discussion gives the approach for dealing with DD interactions in a simple 

two-state system. To calculate the matrix elements for such a system and more complicated 

systems, we need to go deeper and consider the relative orientation of the atomic dipole 

relative to the inter nuclear axis. By separating the radial part and the angular parts of the 

interaction matrix element, the calculation is implemented as follows.  

From Equation (3.14), using the relations between the Cartesian coordinates and the 

spherical harmonics (𝑌ÄÅ),	 

 
𝑥 =

2𝜋
3 𝑟 −𝑌 ` + 𝑌 [` 	 (3.23) 
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𝑦 = 𝑖
2𝜋
3 𝑟 𝑌 ` + 𝑌 [` 	 

𝑧 =
4𝜋
3 𝑟𝑌 O	 

 
the DD interaction can be written in terms of spherical harmonics as: 

 𝑉¤¤ = −
𝑟 𝑟a
𝑅c 	 ∙

4𝜋
3 ∙ ( 𝑌 `

` 𝑌 [`
a + 𝑌 [`

` 𝑌 `
a + 2 𝑌 O

` 𝑌 O
a ) (3.24) 

where 𝑌ÄÅµ  is a spherical harmonic operator acting on the Rydberg electron of the ith atom, 

and  𝑟Æ is the purely radial part of the transition matrix element in atom j. 

To compute the matrix elements, Edmond’s C-tensors are introduced [16]. The relation 

between the spherical harmonic tensors and the C-tensors is: 

 
𝐶¾È =

q«
aÈ]`

𝑌È¾. (3.25) 

So the dipole-dipole interaction in form of C-tensors is: 

 𝑉¤¤ = − �Á��
�­
	(𝐶``𝐶[`` + 𝐶[`` 𝐶`` + 2𝐶O`𝐶O`). (3.26) 

In Equation (3.26), a pair of C’s implies that the first C acts on the first atom and the second 

C on the second atom. 

Equation (3.26) is used in the simulations described in forthcoming chapters to 

calculate the DD matrix element. As an example, the DD matrix element between 𝑝Á
�	
Á
	�
𝑝Á
�	
Á
�
 

and 𝑠Á
�	
Á
�
𝑠Á
�	
Á
�

e  is expressed as: 

 𝑝`
a	
`
a
𝑝`
a	
`
a
|	𝑉¤¤|	𝑠`

a	
`
a
𝑠`
a	
`
a

e = −
𝑟 𝑟a
𝑅c 𝑝`

a
`
	a
|𝐶O`|𝑠`

a	
`
a

𝑝`
a
`
	a
|𝐶O`|𝑠`

a	
`
a

e  (3.27) 

where the state of each atom is expressed as ℓÆ	ÅÊ. The radial part of the matrix elements 

are calculated using a numerical Numerov integration algorithm [19]. 
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3.3.4 Dipole-Dipole Coupled System in an Electric Field 

In some of the experiments, we utilize THz pulses to coherently redistribute population 

among Rydberg states. The THz pulse can be treated as a time-dependent electric field. To 

simulate the redistribution process, we need to model the effect of the THz field in the 

presence of the DD coupling. 

 The model is based on the picture shown in Figure 3.5. We define the vector pointing 

from one atom core to the other core as the z-axis. The electric field has an angle 𝜃 relative 

to the z axis. We define the plane containing the electric field vector and the z axis as the 

xz plane. 

 

Figure 3.5: Schematic for a DD system in an electric field.  

As shown in Figure 3.5, for the electron in atom 1, the interaction with the electric field 

has the form: 

 
𝐻` = −𝑞𝐸 ∙ 𝑟 = −𝑞𝐸O(𝑠𝑖𝑛𝜃𝑥` + 𝑐𝑜𝑠𝜃𝑧`) (3.28) 

where EO is the amplitude of the THz field.  

From Equation (3.23) and (3.25), the above equation can be re-expressed as: 

-q
+q

-q

!" = $"+%"

&

'

+q

!( = $(+%(
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	 𝐻` = −𝑞𝐸 ∙ 𝑟 = −𝑞𝐸O𝑟
𝑠𝑖𝑛𝜃
2

𝐶`` + 𝐶-`` + 𝑐𝑜𝑠𝜃𝐶O` .	 (3.29) 

For a randomly distributed ensemble composed of many pairs of atoms, each pair has its 

own defined z axis and it is chosen as the quantization axis for that pair, thus 𝜃 is different 

for different pairs.  

A similar expression applies to atom 2. So the Hamiltonian associated with the applied 

electric field in a DD system is: 

 𝐻À = 𝐻` + 𝐻a. (3.30) 

 We already know the form of DD interaction. Using perturbation theory or numerical 

integration, we can calculate the evolution of wavepackets in a random ensemble under the 

influence of dipole-dipole interaction, as well as the state redistribution when the THz 

pulses are applied to the atoms. 

3.4 Rydberg Decay Model 

Rydberg atoms are strongly affected by blackbody radiation, even at room temperature. 

The strong influence of thermal radiation is due to two reasons [5]. First, the energy spacing 

between adjacent Rydberg levels is small (∆𝐸 ∝ 𝑛[c), so that ∆𝐸 can be < K𝑇 at 300K. 

Second, the dipole matrix elements for transitions between adjacent Rydberg states are 

enormous, scaling as 𝑛a , providing a large coupling between atoms and the thermal 

radiation. Because of this strong coupling, population initially in one state can rapidly 

diffuse to other energetically nearby states due to blackbody radiation. 
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3.4.1 Blackbody Induced Transitions 

The spontaneous decay rate of a state nℓ to a lower lying state 𝑛′ℓ′ is given by the 

Einstein A coefficient 𝐴�'ℓ',�ℓ [17]. The thermal radiation induced stimulated emission rate 

is: 

 𝐾�'ℓ',�ℓ = 𝑛𝐴�'ℓ',�ℓ	,	 (3.31) 

where 𝑛 is the photon occupation number [18] of the thermal radiation,  

In terms of the average oscillator strength, Equation (3.31) can be reexpressed as: 

 𝐾�'ℓ',�ℓ = 2𝑛𝛼c𝑤�'ℓ',�ℓ
a |𝑓�'ℓ',�ℓ| (3.32) 

where 𝛼 is the fine structure constant, w�ÕℓÕ,�ℓ is the energy difference 𝑊�'ℓ'-𝑊�ℓ,  

 𝑓�'ℓ',�ℓ =
a
c
𝑤�'ℓ',�ℓ

ℓÖ×Ø
aℓ]`

| 𝑛eℓe 𝑟 𝑛ℓ |a,	 (3.33) 

and ℓÙÚÛ is the larger of ℓ and ℓe [5].  

Equation (3.32) and Equation (3.33) are used in Chapter 4 to calculate the blackbody 

radiation induced transition rate between nearby Rydberg levels. 

3.4.2 Radiative Transitions 

When considering the decay of the population from a single Rydberg state, as described 

in Chapter 4, radiation models similar to the schematic in Figure 3.6 are used. There is 

spontaneous decay into lower lying states. There are blackbody induced transitions between 

the starting state and its higher and lower energy neighbors. There is also blackbody 

radiation between one neighbor and the neighbor’s neighbors, and so on.  
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Figure 3.6: Decay model for atoms starting from the 40s state as an example. The 
red dash lines between two states indicate blackbody stimulated transitions between 
those two states. The blue dashed curves represent spontaneous decay. 

 

In reality, there are more states involved in the decay and transition process and the 

situation is much more complicated. But for calculation convenience, a limited number of 

nearby states are chosen. To make sure such a simplification is reasonable, results based on 

different numbers of states are compared to find an essential set of nearby states for which 

the calculations agree well with those performed with additional states.  
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4 Absence of Collective Decay in a 
Cold Rydberg Gas 

 
 

Abstract 

We have studied the decay of Rydberg excitations in a cold Rb gas. A 10 ns, pulsed-

dye-amplified diode laser excites Rb atoms at 70 µK in a magneto-optical trap to ns or np 

Rydberg states with principal quantum numbers 26 ≤ 𝑛 ≤ 40 . Time-delayed state-

selective field ionization is used to directly monitor the population in the initial and 

neighboring Rydberg levels. The measured time dependence of the Rydberg population is 

well described by numerical simulations which consider only spontaneous emission and 

population transfer by blackbody radiation. No evidence for collective decay is found at 

atom densities up to 3 × 10

	

fcm[c. This result is in contrast to a previous study [Wang et 

al., Phys. Rev. A 75, 033802 (2007)], in which superradiant decay was theoretically 

predicted and experimentally inferred for atom density and laser focal volume conditions 

very similar to those considered here. Suppression of collective emission is likely due to 

variations in transition energies within the atom sample, dominated by inhomogeneities in 

dipole-dipole exchange interactions for initial s states, or by a combination of dipole-dipole 

and electric field inhomogeneities for the initial p states. 
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4.1 Introduction 

Atoms within cold Rydberg ensembles are coupled by strong long-range dipole-dipole 

(DD) interactions [1], making them interesting systems for exploring few- and many-body 

quantum dynamics in general and applications in quantum information in particular [2–35] 

(The properties of Rydberg Atoms are described in Chapter 3). Of course, unlike in ground-

state systems, finite Rydberg lifetimes limit the types of measurements and number of 

coherent manipulations that can be performed in a given experiment. Fortunately, isolated 

Rydberg atoms exhibit low spontaneous decay rates [1], potentially enabling processing 

over micro- to millisecond time scales. At first glance this stability against radiative decay 

might seem surprising given the large transition matrix elements between adjacent Rydberg 

states, which scale as 𝑛a. However, spontaneous decay to nearby levels via low-frequency 

emission is strongly suppressed by the 𝜔c dependence of the Einstein A coefficient. As a 

result, the predominant decay path for  isolated Rydberg atoms in low-angular-momentum 

states is to the ground or low-lying excited levels, resulting in an 𝑛[c  scaling of the 

spontaneous emission rate. 

That said, neighboring Rydberg levels can play a dominant role in the decay of a large 

number N of atoms which either are simultaneously excited in a volume with dimensions 

smaller than the wavelength λ of the emitted light, or are sequentially excited throughout a 

cylindrical volume with length L≫ λ [36,37]. In his seminal paper [38], Dicke predicted 

that a dense collection of N radiators, either in very close proximity or in a properly phased 

extended distribution, could develop spontaneous correlations and collectively emit 

radiation at rates greatly exceeding (“superradiance”), or much smaller than 

(“subradiance”), those of individuals in the sample. For the two-level systems considered 

by Dicke, correlations between a large number of emitting atoms can initiate collective 

superradiant emission at a per atom rate up to N/4 times larger than that between the same 
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two levels in an isolated atom [38]. Collective emission remains a subject of considerable 

interest in many different contexts, including Rydberg atoms [39–51]. 

The presence of blackbody radiation, the existence of multiple photo decay channels in 

a Rydberg ladder, and strong DD interactions between atoms, all explicitly neglected in 

Dicke’s original paper (and in many subsequent treatments) [38,52,53], make it much more 

difficult to observe, characterize, and quantitatively predict collective decay phenomena in 

Rydberg gases. In particular, DD interactions can suppress superradiance. In a thermal gas, 

this suppression results from DD-mediated collisions that homogeneously dephase the 

individual emitters in the ensemble at a rate greater than the superradiance rate [50]. In a 

frozen gas, DD exchange interactions couple pairs, or larger groups, of atoms leading to a 

variation in transition energies across the ensemble. Such inhomogeneities squelch the 

correlations that underlie superradiance, along with the collective emission [47]. That said, 

a clear signature of superradiance between Rydberg states, a fluorescence cascade from a 

Rydberg ladder proceeding at a rate much greater than spontaneous emission of isolated 

atoms, was first observed following pulsed-laser excitation of an elongated volume (L ≫	λ) 

in a thermal cell [36]. More recently, direct evidence for superradiance was found in the 

millimeter-wave emission from a large cylindrical volume of Ca Rydberg atoms in a 

supersonic expansion, also with L	≫ λ [49,50]. As pointed out in the latter work, the rates 

for superradiant decay and DD dephasing within a given decay channel are essentially 

identical, up to a multiplicative geometric factor L/λ in the superradiance rate formula. 

Accordingly, it was suggested that collective decay should not play a major role in Rydberg 

depopulation unless L	≫	λ [50]. 

Still, despite competing DD effects, under certain conditions superradiance should play 

some role in cold ensembles where the dimensions of the excited volume are less than or 

comparable to λ. Indeed, evidence of reduced Rydberg lifetimes has been reported in 

several such experiments [39,48,51,54,55]. For example, Feng et al. observed a density-
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dependent lifetime suppression of Cs Rydberg atoms in a magneto-optical trap (MOT) [54]. 

They attribute the suppression to a combination of neutral Rydberg atom collisions and 

superradiance. However, the evidence for superradiance appears tenuous as their 

calculations with and without superradiant contributions both fall within their measurement 

uncertainty (see their Fig. 2). In addition, if one applies their values for Rydberg collision 

velocity and cross section, the collisional depopulation rates are over three orders of 

magnitude too small to account for their observations. Han and Maeda attributed population 

transfer from initial to neighboring Rb Rydberg states to superradiance, but provided no 

evidence ruling out other possible population transfer mechanisms [56]. In other 

measurements, using fluorescence detection, Day et al. found Rydberg depopulation rates 

that were roughly twice that expected from single-atom spontaneous emission over a range 

of n states and at low densities, ρ ∼ 1 × 10t cm[c [48]. The small variation of the lifetime 

suppression with principal quantum number coupled with trap loss measurements argued 

against collisional depopulation and blackbody ionization.  Instead, the enhanced Rydberg 

decay rate was found to be qualitatively consistent with a simplified collective decay model. 

In other experiments, the inclusion of superradiant decay channels was found to improve 

the quality of model fits to electromagnetically induced transparency measurements in cold 

Rydberg gases [51,55]. 

Certainly, a substantial decrease in Rydberg lifetimes due to collective emission would 

have a significant impact on most cold Rydberg atom experiments. Perhaps more important, 

in the context of the exploration and control of few- or many-body Rydberg dynamics, are 

the influences of the spontaneous quantum correlations that are predicted to develop with 

the emission of the first photon from the sample and evolve as the Rydberg population 

descends through a ladder of Dicke states [38,53]. Interestingly, Wang et al. presented a 

sophisticated theoretical treatment of photo decay in a multilevel Rydberg system which 

makes definite predictions as to whether superradiance should occur for a given initial 
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principal quantum number, atom density, and experimental volume [39]. The theory 

apparently reproduced the rapid decay, at a rate approximately 40 times greater than 

predicted from spontaneous emission alone, of  an initial population of 43p atoms in a MOT 

at a density of ρ∼5×10P	cm[c. 

We have used pulsed-laser excitation of Rb Rydberg atoms in a MOT under conditions 

ostensibly similar to those used in Ref. [39] in an attempt to test the predictions of their 

Rydberg superradiance theory. We employ state-selective field ionization (SSFI) to 

measure the population in the initial and neighboring Rydberg states as a function of delay 

after the laser excitation. We find no evidence for the predicted collective decay over a 

range of principal quantum numbers 26 ≤ 𝑛 ≤ 40, and atom densities ρ ∼ 3 × 10f cm[c, 

despite the fact that, for these states, our highest density is more than two orders of 

magnitude above the predicted superradiance threshold [39]. Instead, our measurements 

are consistent with noncorrelated spontaneous decay combined with population 

redistribution via blackbody radiation. 

4.2 Experimental Procedure and Results 

General information about the setup could be found in Chapter 2. This section provides 

some particular information about the experiment approach. 

In the experiments, 𝑅𝑏PQ  atoms at 70 µK are held in a MOT. The full width at half 

maximum (FWHM) diameter of the atom cloud is 0.4 mm. The MOT is positioned at the 

center of four parallel rods which facilitate the application of static and pulsed electric fields 

in the y direction for exciting and detecting Rydberg atoms in the MOT. A 10 ns pulsed, 

tunable, dye-amplified, ∼480 nm diode laser propagating in the x direction is focused into 

the center of the MOT, creating a cylindrically shaped volume of cold Rydberg atoms with 

a FWHM diameter of ∼0.1 mm and a length of 0.4 mm. The MOT and Rydberg lasers are 
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non collinear, preventing the excitation of Rydberg atoms throughout any extended volume 

from the lower-density background of thermal Rb atoms in the chamber. The ∼100 MHz 

bandwidth of the Rydberg excitation laser ensures that there is no excitation suppression 

via dipole blockade [2,3]. At a variable time τ after the laser excitation, a ramped voltage 

is applied to two of the rods, ionizing any Rydberg atoms in the interaction region and 

pushing the resulting ions toward a micro channel plate (MCP) detector. Ions originating 

from different Rydberg states arrive at the detector at different times. The integrated signals 

in different time bins are proportional to the populations in different Rydberg states and are 

recorded for each laser shot as a function of the ionization time τ. The experiment proceeds 

at the 15 Hz dye-laser repetition rate. 

The diode laser is tuned to selectively excite atoms from the upper 5p trap level to ns 

and np Rydberg states with 26≤ 𝑛 ≤ 40 . Excitation of np states is facilitated by the 

application of a weak static electric field (from 30 V/cm at n=26, 16 V/cm at n=32, to 7 

V/cm at n=40). By saturating the Rydberg excitation using high laser fluence, we ensure 

that approximately 50% of the 5p atoms within the interaction volume are excited to 

Rydberg states, enabling us to determine the Rydberg atom density [57]. Subsidiary 

experiments on resonant energy transfer between Rydberg atoms are consistent with the 

Rydberg density determination [57,58]. The MOT fluorescence is monitored throughout 

the lifetime measurements, ensuring that the number of atoms in the MOT is constant to 

within a few percent as τ is scanned. Care is taken to minimize the amplified spontaneous 

emission from the dye-amplified laser pulse, eliminating direct photoionization of 5p atoms. 

For the s-state measurements, a small, ∼1.5 V/cm, residual electric field persists in the 

interaction region due to imperfect shielding of the high voltage biased MCP (a larger field 

is present for initial p states). This field is sufficient to eject any ions or electrons from the 

interaction region, eliminating extended interactions between charged particles and neutral 

Rydberg atoms, and preventing the spontaneous evolution of the Rydberg gas into a plasma 
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[59,60]. Neither the small static field employed for the p-state measurements nor the 

smaller residual field present during the s-state measurements substantially alters the rates 

for spontaneous emission or population transfer induced by blackbody radiation. The 

potential influence of the field inhomogeneity on superradiant decay is considered in the 

Analysis and Discussion section below. 

Figure 4.1 and Figure 4.2 show our principal experimental results. In Figure 4.1 (a) and 

(c), the probabilities for finding atoms in the 26s + 25p, 32s, and 40s states are plotted as 

functions of detection time τ for the maximum densities explored, ρ ∼ 3 × 10f cm[c and ρ 

∼ 1.5 × 10f cm[c, respectively. Note that for the lowest initial n state the sum of the 26s 

and 25p populations is shown since their corresponding features could not be adequately 

separated in the time-resolved field-ionization signal. Within experimental uncertainties, 

the decays for the three initial s states are identical at the two densities shown. Additional 

measurements were made at Rydberg densities as low as ρ ∼ 2 × 10P cm[c (for 32s initial 

states) and ρ ∼ 5 × 10P  cm[c  (for 32p initial states), but no statistically significant 

differences were observed in the decays.  

For spontaneous decay of isolated atoms at absolute zero, one would expect lifetimes 

of 28 and 58 µs for the 32s and 40s atoms, respectively [61]. The measured lifetimes for 

the 32s and 40s states are substantially smaller, 19 and 38 µs, respectively, due to population 

redistribution by blackbody radiation from the 300 K environment surrounding the MOT. 

Indeed, redistributed population is detected in neighboring Rydberg levels. In particular, 

Figure 4.1 (b) and (d) show the delay-dependent population in the p states (26p, 32p, and 

40p) that lie immediately above the respective initial s states. Although we would expect 

to find some atoms in the adjacent, lower-lying p states as well, small features reflecting 

that population in the time-of-ionization signal lie within the initial-state peak (for the case 

of 26s) or are masked by the tail of the larger, initial-state peak which precedes it. 
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Figure 4.1:  (a), (c) Probabilities for finding atoms in 26s + 25p (green, fastest decay), 
32s (red, intermediate decay), and 40s (blue, slowest decay) as a function of 
detection time τ for Rydberg densities of ρ ∼3×10f cm[c (a) and ρ ∼1.5×10P cm[c 
(c).Note that the sum of the 26s and 25p populations is shown since their 
corresponding features could not be adequately separated in the field-ionization 
signal. Vertical bars show the experimental data with uncertainties, and the solid 
curves are calculated as described in the text. Measurements and calculations for the 
40s decay extend to 500 µs where the remaining population is negligible. (b), (d) 
Probabilities for finding atoms in 26p (green, fastest rise and decay), 32p (red, 
intermediate rise and decay), and 40p (blue, slowest rise and decay) levels as a 
function of detection time τ. The states are populated by blackbody redistribution 
from the initial 26s, 32s, and 40s levels, respectively. The data were measured 
simultaneously with those shown in (a) and (c). Vertical bars show the experimental 
data with uncertainties, and the solid curves are calculated as described in the text. 
The measured p-state probabilities are normalized to the calculations as described in 
the text. The calculations have no free parameters and consider only the effects of 
spontaneous emission and blackbody radiation on isolated atoms. 

The measured lifetime for the combined 26s + 25p states is 14 µs, the same as that 

expected from spontaneous decay of the 26s level alone [61]. Simulations (described in 

detail below) indicate that this apparent agreement is not due to the absence of blackbody 

transfer out of 26s. Rather, the small longer-lived 25p component of the signal masks much 

of the change in the 26s decay, with a predicted effective lifetime of 13 µs for the 26s + 25p 

combination, similar to what we observe. We note that due to the slow rate of the ionizing 

field, there is a distribution of ionization times and, therefore, of detection efficiencies for 
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atoms in different states. As a result, each of the measured p-state populations in Figure 4.1 

(b) and (d) has been multiplied by a normalization factor to obtain the best agreement with 

the calculated decay curves that are shown in the figures and described in the next section. 

Figure 4.2 shows analogous data for the decay of initially excited 26p, 32p, and 40p 

states. Again, due to blackbody redistribution, the lifetimes associated with these decays 

(18, 31, and 51 µs), are considerably smaller than expected from spontaneous emission 

alone (37, 75, and 155 µs) [61]. However, in this case, no substantial population is detected 

in the neighboring s or d levels. The analysis described in the next section indicates that the 

populations in these states are not detectable within our signal-to-noise ratio, remaining at 

or below the few percent level due to the relatively rapid spontaneous emission rate out of 

the s states, and smaller p → s and p → d blackbody transition rates. 

 
Figure 4.2: Probabilities for finding atoms in 26p (green, fastest decay), 32p (red, 
intermediate decay), and 40p (blue, slowest decay) as functions of detection time τ 
for Rydberg densities of ρ∼3×10f cm[c (a) and ρ∼1.5×10f cm[c (b). Vertical bars 
show the experimental data with uncertainties, and the solid curves are calculated as 
described in the text. Measurements and calculations for the 40p decay extend to 500 
µs where the remaining population is negligible. The calculations have no free 
parameters and consider only the effects of spontaneous emission and blackbody 
radiation on isolated atoms. 
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4.3 Analysis and Discussion 

To determine if collective processes play any significant role in the decays we observe, 

we compare the measurements to the results of a simple rate equation model which has an 

example schematic shown in Figure 3.6. The model includes population transfer via 

stimulated emission and absorption of blackbody radiation between an essential set of s, p, 

and d Rydberg states neighboring the initial level, as well as spontaneous emission out of 

those essential states to (undetected) lower-lying levels. We calculate the blackbody 

transition rates between the essential states [1] as well as the known total spontaneous 

emission rates of the s, p, and d Rydberg levels. 

 For example, for an initially excited 40s state, the rate equation describing the time-

dependent population in the initial 40s level is: 

 

𝑑𝑁qO�
𝑑𝑡 = −𝐴qO� − 𝐵qO�→qO� − 𝐵qO�→cf� 𝑁qO� 

																														+𝐵cf�→qO�𝑁cf� +	𝐵qO�→qO�𝑁qO�  
(4.1) 

where 𝑁�ℓ  is the population in state 𝑛ℓ , 𝐴qO�  is the 40s spontaneous decay rate, and 

𝐵�ℓ→�ÕℓÕ is the blackbody transition rate from 𝑛ℓ to 𝑛eℓe: 

 𝐵�'ℓ',�ℓ = 2𝑛𝛼c𝑤�'ℓ',�ℓ
a |𝑓�'ℓ',�ℓ| (4.2) 

which is mentioned in Chapter 3. We use the spontaneous emission rates calculated by 

Gounnad [61]. 

The populations in the secondary states 39p and 40p are computed using similar rate 

equations that include the total spontaneous decay rate out of those levels as well as 

blackbody transitions to and from pairs of s and d levels that lie immediately above and 

below each p state. We truncate the system of equations with rate equations that include 

spontaneous decay from the tertiary s and d levels and their blackbody couplings with the 

secondary states. Analogous systems of equations are used to compute the Rydberg 
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population decay following initial p-state excitation. We note that, for initial or 

intermediate p states in particular, blackbody radiation redistributes a small, but non-

negligible, fraction of the initial population beyond the nearest-neighbor s and d states. 

Therefore, an approximate expression [1] 

 𝐵�ℓ =
4𝛼c𝑘𝑇
3𝑛a  (4.3) 

for the total blackbody decay rate from each p level is used to more accurately account for 

the net transfer out of these states. 

The results of our calculation, which ignore any collective decay phenomena, are 

shown with the data in Figure 4.1. Overall, the agreement is reasonable. Aside from the 

previously noted renormalization of the experimental p-state population, no parameter 

adjustments have been made to obtain the level of agreement shown. The data provide no 

evidence of a significant reduction in the Rydberg lifetimes due to superradiance. This is 

true over a range of principal quantum numbers and atom densities where superradiant 

emission has been predicted to be the dominant decay path [39]. 

It is well established that superradiance is suppressed by inhomogeneities in transition 

energies across a sample of emitters [47], and we suspect that this is the case in our, and 

many other, cold atom experiments. In our experiments, three different effects contribute 

to such inhomogeneities. The first, and dominant mechanism for some of our measurements, 

is the DD exchange interaction. Consider a pair of identical atoms with two levels s and p 

and interatomic separation R. Spontaneous emission from the initial upper pair state ss 

results in the population of the bright configuration of the lower-energy pair state (sp + 

ps)/ 2. However, due to the DD coupling between the atoms, 𝑉¤¤ ∝ |⟨𝑠|𝑟|𝑝⟩|a/𝑅c, the 

energy of this state is not the same as that for two atoms at infinite separation [1]. 

Accordingly, in a large ensemble of randomly spaced atoms, every possible configuration 

of 𝑁� s atoms and 𝑁� p atoms has a different energy, depending on the separation (and 
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relative orientation) between the p atoms and their neighboring s atoms. As a result, any 

Dicke state, the bright linear combination of all possible configurations of 𝑁� s atoms and 

𝑁�  p atoms [38], is nonstationary. The phases of the constituent N-atom product states 

evolve at different rates, as determined by their DD energy shifts relative to their energies 

at infinite separation. The emission from these nonstationary Dicke states dephases at a rate 

comparable to the typical dipole-dipole energy shift 𝑉¤¤ for pairs of atoms in the ensemble. 

Superradiance cannot occur unless the system transitions down each step in the Dicke 

ladder more rapidly than this dephasing. A similar argument has been made by Gross and 

Haroche [62]. In the frequency domain, atoms with different transition energies at different 

locations in the ensemble do not collectively emit into the same field unless that emission 

occurs in a very short burst with a sufficiently broad, coherent bandwidth. 

To determine the DD dephasing rate, we use the most probable nearest-neighbor 

separation in a random ensemble as we mentioned in 3.2.2, R ≃ (2𝜋𝜌)[c, and average over 

all orientations of the Rydberg states on any two neighboring atoms ns and  𝑛e𝑝  to obtain 

[63,64]: 

 𝑉¤¤ =
8𝜋
9 𝜌 < 𝑛𝑠 𝑟|𝑛'𝑝 > |a (4.4) 

Using a numerical Numerov integration algorithm to compute the relevant radial matrix 

elements [65], at the highest density studied (ρ = 3 × 10f 𝑐𝑚[c) we obtain values for the 

DD exchange coupling between the ns and (n − 1)p states, 𝑉¤¤= 2.4, 6.2, and 17 MHz, for 

n = 26, 32, and 40, respectively. These interaction strengths set effective lower limits for 

the rates at which collective emission from ns to (n − 1)p can occur. Similarly, for initial 

np states and ρ = 3 × 10f 𝑐𝑚[c, the relevant exchange coupling is to the nearest lower-

lying s states, with , 𝑉¤¤= 3.1, 7.8, and 20 MHz, for n = 26, 32, and 40, respectively. 

The magnetic field gradient in the MOT is another source of energy inhomogeneities 

in our ensemble. As in Ref. [39], the magnetic field remains on during our measurements, 
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resulting in a transition energy variation of approximately 1 MHz across the MOT. This 

inhomogeneity is smaller, or much smaller, than that due to dipole-dipole interactions at 

sufficiently high densities. It should not play a principal role in suppressing superradiance 

under the conditions used to produce Figure 4.1 and Figure 4.2. 

The third contributor to the Rydberg energy variations across the ensemble is electric 

field inhomogeneity. While the voltages applied to the field rods produce a field that is 

quite uniform over the MOT (predicted field variations of 0.07%, corresponding to 21 

mV/cm for the largest applied field of 30 V/cm for the 26p measurements) the residual field 

from the MCP is not as uniform. Using a combination of spectroscopic measurements and 

accurate Stark energy calculations, we determine an upper limit for the Rydberg energy 

inhomogeneity due to the nonuniformity of the electric field F in the interaction region. 

First, we measure the transition frequencies for excitation of 32𝑝c/a |𝑚Æ | = 1/2,3/2, from 

the 5𝑝c/a upper trap state as a function of the voltage applied to the field rods (see Figure 

4.3). For convenience, in the following discussion we refer to the field produced by the 

rods as the “applied” field. The experimental geometry is identical to that used for the 

lifetime measurements, but the Rydberg excitation is performed with an unamplified, 3 µs 

pulse chopped from the ∼1 MHz bandwidth cw diode laser. The Rydberg excitation pulse 

has ∼1 µs rise and fall times and is formed using an acousto-optic modulator. We use a 

temperature- and pressure-stabilized Fabry-Pérot interferometer to track the relative 

frequency of the Rydberg laser as it is scanned. The population in |𝑚Æ |  = 1/2 is distinguished 

from that in |𝑚Æ | = 3/2 using SSFI. By recording the signal in two different time bins we 

obtain (nominally) separate excitation profiles to the two |𝑚Æ |  states in the same laser 

frequency scan. Therefore, the energy splitting between the two 𝑚Æ  states can be accurately 

determined to well within the excitation bandwidth which is dominated by the 6.07 MHz 

natural linewidth of the initial 5𝑝c/a level. 
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In zero electric field, the excitation profiles associated with the population in the two 

|𝑚Æ | levels should exhibit maxima at the same laser frequency, i.e., have zero energy 

splitting. However, as shown in Figure 4.4, we observe a minimum splitting of 2 MHz at 

an applied field of −2.8 V/cm. The minimum splitting at nonzero applied field allows us to 

determine the components of the MCP field parallel and perpendicular to applied field. 

Apparently, the application of a −2.8 V/cm rod field minimizes the net field in the 

interaction region. Accordingly, there must be a parallel, 2.8 V/cm, MCP field component 

which we call the “offset” field. Using the variation in the |𝑚Æ |  splitting as a function of 

applied field, we can also extract a value, 1.5 V/cm, for the perpendicular, i.e., “residual,” 

MCP field component. The solid curve shown with the data in Figure 4.4 is the predicted 

32𝑝c/a |𝑚Æ | = 1/2,3/2 splitting as a function of applied field (extracted from a full numerical 

Stark map calculation based on the method of Zimmerman et al. [65]), assuming MCP 

offset and residual fields of 2.8 and 1.5 V/cm, respectively. The good agreement with 

experiment confirms the accuracy of the calculation as well as the offset and residual field 

determinations. 

At, and near, the minimum splitting (i.e., in the presence of the residual field alone 

where the s-state decay measurements are performed), the |𝑚Æ |  excitation resonances have 

minimum linewidths of 8 MHz (see Figure 4.3). As noted above, the predominant 

contribution to this linewidth is the 6.07 MHz natural width of the 5𝑝c/a level. However, 

the laser bandwidth, Zeeman shifts due to magnetic field inhomogeneities, and Stark shifts 

due to inhomogeneities in the 1.5 V/cm residual field also contribute. Assuming that the 

laser spectrum and field distributions are Gaussian, we deconvolute the primary line shape 

as a Voigt profile, and extract a bandwidth of   3.9 MHz for the total Gaussian contribution. 

Accordingly, we obtain an upper-limit estimate for the electric field inhomogeneity by 

assuming it is the sole contributor to this width. From the Stark shift of the 32𝑝c/a 𝑚Æ = 1/2 

level,  E = 6.5 MHz/(V/cm)a 𝐹a, we determine that the maximum possible variation of the 
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residual field across the interaction region is  𝐹�J�  = 0.20 V/cm. Using this field 

inhomogeneity with the field-dependent Stark shifts of the respective levels, we can 

compute the maximum range of transition energies between the initial s states and the p 

states immediately below them (to which the dipole coupling is the strongest). For the 26s 

→ 25p, 32s → 31p, and 40s → 39p transitions, the maximum energy variations across the 

excitation region (with only the residual field present) are 0.43, 2.2, and 12 MHz, 

respectively. The transition energy variations are smaller for transitions to lower lying p 

states due to the 𝑛t scaling of the Rydberg polarizability. So, at the highest densities we 

have explored, the energy inhomogeneities associated with the residual electric field are 

less, or much less, than those associated with the dipole-dipole exchange interaction. 

Therefore, the electric field inhomogeneities do not hold the primary responsibility for the 

suppression of superradiance from any of the initial s states. 

 



CHAPTER 4. DECAY IN A COLD RYDBERG GAS 
76 

 

Figure 4.3: Measured 32𝑝c/a	 |𝑚Æ | = 1/2 (bold line) and 	 |𝑚Æ | = 3/2 (thin line) 
excitation probabilities as a function of Rydberg laser frequency in zero applied field. 
The two data curves are obtained simultaneously in the same laser frequency scan. 
The small feature on the left (right) of the main 	|𝑚Æ | = 1/2 (3/2) peak is the result of 
imperfect discrimination of the 	 |𝑚Æ | − 1/2 and 3/2 components via SSFI. The 
additional peak on the right of the main feature in each trace is due to the trap-laser 
dressing of the 5𝑝c/a and 5s levels. Its frequency shift from the main peak reflects 
the Autler-Townes splitting of the 5𝑝c/a initial state. 
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Figure 4.4: Difference (i.e., splitting) in the transition energies for exciting 32𝑝c/a 
|𝑚Æ |= 1/2,3/2 from 5𝑝c/a as a function of applied electric field. Filled circles are 
measurements and the solid curve is the result of a numerical Stark map calculation 
assuming orthogonal “offset” and “residual” electric field components due to the 
MCP of 2.8 and 1.5 V/cm, respectively. The inset shows a magnified view of the 
portion of the main figure within the dashed window. 

 
The situation with the initial p states is somewhat different, as they are excited in a 

nonzero applied field that is considerably larger than the orthogonal residual field. As a 

result, the residual field and its inhomogeneity have essentially no effect on the transition 

energies. However, the spatial variations in the MCP offset field, which is parallel to the 

applied field, cannot be neglected. We use measurements of DD-mediated resonant energy 

transfer between Rydberg atoms to obtain an upper-limit estimate for the MCP offset field 

inhomogeneity. Those experiments use the same experimental geometry as the Rydberg 

decay measurements [58,64]. In the experiments, the probability for resonant population 

transfer from one pair of Rydberg states to another (e.g., 25s + 33s → 24p + 34p [64]) is 

recorded as a function of an applied field which Stark-tunes the total energies of the atom 
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pair in the two different configurations. In a uniform field, the line shape describing the 

field-dependent energy transfer probability is characterized by a peak at the “resonance” 

condition, where the total energies of the two sets of atom pair states are identical, and a 

width that is proportional to the Rydberg density. In a nonuniform field, the line shape has 

a nonzero minimum width as the density approaches zero, due to variations in the local 

field at different locations within the sample. Consider the 25s + 33s →  24p + 34p 

resonance [64] for which maximum population transfer occurs in an electric field of F ∼ 

3.4 V/cm. Assuming that the nonzero resonance width that is observed at very low Rydberg 

density [64] is due solely to the inhomogeneity in the electric field (i.e., ignoring magnetic 

field inhomogeneities and any other broadening effects) we obtain the maximum possible 

variation in the offset field, 𝐹ãää = 0.08 V/cm, across the Rydberg sample. As an additional 

check, we consider a different energy transfer resonance, 32p + 32p → 33s + 32s, that is 

centered at a substantially higher field F ∼ 11.5 V/cm [58]. The nonzero low-density width 

for this energy transfer resonance gives the same maximum value for the offset field 

inhomogeneity, 𝐹ãää  = 0.08 V/cm.  

Given  𝐹ãää , we can compute the maximum possible variations in the energies, 

associated with transitions between initial p states and the nearest lower-lying s state, due 

to the inhomogeneous field. Using  𝐹ãää, the calculated Stark shifts of each of the states 

involved in the transitions 26p → 26s, 32p → 32s, and 40p → 40s, and the applied fields 

employed for the respective p-state excitations, we obtain the maximum possible transition 

energy variations due to the inhomogeneous electric field. These are 4.9, 13, and 30 MHz 

for the 26p, 32p, and 40p initial states, respectively. Accordingly, for the p-state decays, 

the maximum energy variations due to the field are comparable to, but up to a factor of 

1.7× larger than, those due to dipole-dipole interactions. Given our likely overestimate of 



CHAPTER 4. DECAY IN A COLD RYDBERG GAS 
79 

the field inhomogeneity, both may play a role in suppressing collective emission from the 

ensemble. 

4.4 Conclusion 

We have studied the decay of Rydberg excitations in a cold Rb gas and find no evidence 

for the dramatic decrease in lifetimes predicted by Wang et al. [39]. The decay rates and 

population redistribution we observe are consistent with a model that considers only 

spontaneous emission from, and blackbody redistribution within, isolated atoms. In our 

experiments, a small electric field in the interaction region ejects any free electrons or ions 

from the excitation volume, preventing ionization or population transfer due to interactions 

with charged particles. In addition, the lack of spatial overlap between the trapping lasers 

and the Rydberg excitation laser well outside of the cold atom cloud ensures that there is 

no Rydberg excitation within an extended volume of lower-density, background Rb atoms 

in the chamber. In the experiment Wang et al. [39], the excitation of such an extended 

volume may have enabled collective emission in the L>>𝜆 regime, resulting in the rapid 

depopulation that was observed. More generally, in the L< 	𝜆  regime, suppression of 

superradiant emission should occur due to variations in transition energies across the cold 

Rydberg atom sample. These energy variations, can be due to inhomogeneous fields and/or 

variations in the DD coupling between atoms throughout the ensemble. The latter of which 

will be present any time the separation between atoms is not fixed. In our measurements, 

for initial s states, DD exchange interactions within the random ensemble dominate the 

inhomogeneities. For initial p  states, the suppression is likely due to a combination of DD 

exchange and electric field inhomogeneities.
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5 Rydberg Wavepacket Evolution in 
A Frozen Gas of DD Coupled 
Atoms 

 
 

Abstract 

We have studied the evolution of Rydberg wavepackets in the presence of interatomic 

dipole- dipole interactions in a frozen Rb gas. Rb atoms in a MOT are first laser-excited to 

ns Rydberg eigenstates. A picosecond THz pulse further excites them into coherent 

superposition states involving the initial-level and neighboring np-states. A second, 

identical, time-delayed THz pulse probes the wavepacket dynamics. As the wavepackets 

evolve they are influenced by dipole-dipole interactions, predominantly pairwise 

excitation-exchange processes of the form |s⟩|p⟩ ↔ |p⟩|s⟩. The coherent electronic evolution 

of the ensemble dephases due to the variation in dipole-dipole coupling strength between 

atom pairs in the MOT. The experimental results are in good agreement with numerical 

calculations that simulate the interactions between nearest neighbors in a frozen gas. 
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5.1 Introduction 

As we mentioned in Chapter 3, the large size of Rydberg atoms endows them with 

extreme properties which, when properly harnessed, can be exploited to study fundamental 

problems and applications involving the quantum control of matter in single-, few-, and 

many-body systems. For example, Rydberg atoms are highly-sensitivity to applied electric 

fields and, accordingly, to neighboring atoms, as these can induce substantial energy-shifts 

and/or quantum-state modification. They also exhibit long electronic time-scales, τ = 2π/E, 

which characterize the evolution of superpositions of Rydberg states with small energy 

separations, E. 

The strong, long-range dipole-dipole interactions that exist between neighboring 

Rydberg atoms couple their electronic and center-of-mass degrees of freedom [1]. Control 

over this coupling could enable coherent manipulation of multi-atom correlations and 

entanglement [2–13] with potential applications to quantum information processing [14–

18] or explorations of few- and many-body quantum mechanics. That said, the time- and 

energy-scales associated with electronic motion within individual atoms can differ 

substantially from those relevant to dipole-dipole couplings between atoms [1]. This 

disparity of scales has encouraged the segregation of work in this area, with studies of 

electron dynamics within atoms performed separately from those investigating interactions 

between atoms. 

For example, in experiments exploring interactions between Rydberg atoms (e.g. 

resonant energy transfer [19–30], dipole blockade [2, 13, 31–36], quantum-logic gate 

implementation [14–18]) the interatomic coupling strengths typically range from kHz to 

tens of MHz with associated time-scales for the development of correlations ranging from 

tens of nanoseconds to milliseconds. Frequency-domain techniques and cold atomic 

ensembles are usually employed to enable selective excitation or high-resolution 
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spectroscopy of the few- or many-body eigenstates and to limit effects associated with atom 

motion. Since the coupling between atoms depends on their separation, both Rydberg atom 

density, ρ and temperature, T, play an important role as these determine the strength and 

length-scales of correlations as well as the time-scales over which coherence can be 

maintained. 

Conversely, experiments aimed at coherently manipulating and viewing the evolution 

of one-electron [37–41] and two-electron [42–52] Rydberg wavepackets typically utilize 

time- domain methods involving ultra-fast optical and/or electric-field pulses to first excite 

coherent superposition states and then probe their behavior. For atoms with principal 

quantum number n <100 or so, the relevant dynamics in these experiments usually fall in 

the picosecond or femtosecond regime. Over these time-scales relative atom motion is 

completely negligible, even in thermal beams. Moreover, interactions between atoms can 

be ignored since their influence on the electronic evolution develops only after orders of 

magnitude longer times (tens of nanoseconds to milliseconds). 

More generally, however, both ultrafast electron evolution and atom-atom correlations 

play a role in the quantum dynamics of Rydberg systems. Electron dynamics in isolated 

atoms set the scale for how rapidly correlations between atoms can be modified, whereas 

the coupling between atoms determines the minimum-time required for entanglement 

between pairs or groups of atoms to influence electronic evolution within them. 

Accordingly, potential applications may require the coherent manipulation of groups, pairs, 

or individual Rydberg atoms over time- and energy- scales spanning many orders of 

magnitude. Thus, these systems provide challenging platforms on which to explore few- 

and many-body quantum control. 

As a step towards addressing this problem, we examine the influence of strong, resonant 

dipole-dipole interactions between atoms on the evolution of Rydberg wavepackets within 



CHAPTER 5 WAVEPACKETS AND DIPOLE DIPOLE INTERACTION 
88 

those atoms. Specifically, we consider the pulsed, coherent excitation of atoms from a 

Rydberg eigenstate |s⟩, to an adjacent level of opposite parity, |p⟩, at at time t = 0. In an 

extremely diffuse ensemble where the separation between atoms R → ∞, the excitation 

would result in the creation of identical Rydberg wavepackets in each atom 

 𝛹 𝑡 = 𝑐𝑜𝑠𝜃 𝑠 + 𝑒[µ(ÀÂ]å)𝑠𝑖𝑛𝜃|𝑝⟩ (5.1) 

where E is the energy separation between the eigenstates, θ is an admixture coefficient, 𝜙 

is an arbitrary phase related to the details of the excitation and, unless otherwise noted, 

atomic units are used throughout. The wavepackets are characterized by identical time- 

dependent electric dipole-moments which oscillate with a period, τ = 2π/E, where E is the 

energy spacing between s and p. 

At higher densities the Rydberg electrons on each atom do not evolve independently. 

Each electron is affected by the multi-pole fields produced by neighboring Rydberg atoms 

[1]. The correlations resulting from these interactions can be non-negligible even for 

separations R of several microns or more [30]. In the density regime explored here, 10P× 

cm[c< ρ < 3 × 10f cm[c, R ≫ 𝑟O where 𝑟O  ∼ 2𝑛a is the radial extent of the Rydberg 

wavefunction on each atom. Accordingly, resonant dipole-dipole exchange between 

nearest-neighbor atoms [23, 24, 27, 53] with a coupling strength on the order of 𝑛q/𝑅c ( ∼5 

MHz at n = 30 and ρ = 10f 𝑐𝑚[c), dominates the atom-atom interaction. The coupling 

alters the eigenstates of atom pairs and, accordingly, modifies the electric-dipole 

oscillations within them. We measure, as a function of density, the influence of the dipole-

dipole exchange interaction on the coherent dipole oscillations in the Rydberg ensemble. 

5.2 Experimental Procedure 

In Chapter 2, we talked about the general experiment setup. More details about the 

experimental approach of this project is provided below. 
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In the experiments, 𝑅𝑏PQ  atoms at ∼70 µK in a magneto-optical trap (MOT) are laser- 

excited from the 5𝑝c/a upper cycling-level to the 32s Rydberg state. The atoms are then 

exposed to a picosecond THz pulse which coherently redistributes a fraction ∼ 20% of the 

32s population to neighboring 31p and 32p levels which lie approximately 4.79𝑐𝑚[` and 

4.35𝑐𝑚[`  below and above the initial state, respectively. Excitation of other levels is 

negligible. The mixed-parity Rydberg wavepackets are allowed to freely evolve for a 

variable time ∆t before they are subjected to a second, identical THz pulse. The probability 

amplitude transfer during the second THz pulse interferes with that from the first, resulting 

in a ∆t-dependent modulation in the net population in each Rydberg state. State-selective 

field ionization (SSFI) is used to measure the final Rydberg eigenstate distribution as a 

function of ∆t and ρ. 

The initial Rydberg excitation is performed using a 10 ns, dye-amplified pulse from a 

∼ 482 nm cw diode laser. A 10 ns pulse is switched in from the cw laser by applying a high- 

voltage pulse to a Pockells cell that is positioned between crossed polarizers. The two-stage 

dye-amplifier is pumped at 15 Hz by the third harmonic of a Nd:YAG laser. The 482nm 

laser pulse is focused into the MOT using a 500 mm spherical lens. The freely propagating 

picosecond THz pulses are produced via optical rectification of 2 mJ, 150 fs, 790 nm laser 

pulses in LiNbOc, using a tilted-pulse-front pumping scheme [54, 55]. The 790nm pulses 

are generated in a 15 Hz Ti:Sapphire regenerative amplifier. A Michelson interferometer, 

with a variable-length delay-stage in one arm, is used to split each 790 nm pulse into a 

pump-probe pair with a delay 0 ≤ ∆t < 16 ns. The two 790 nm pulses are collinearly 

incident on the LiNbOc crystal, producing a pair of identical, co-propagating broadband 

single-cycle THz pulses [56]. After exiting the LiNbOc  crystal, the THz beam is collected 

by a 50 mm diameter, 50 mm focal length off-axis paraboloid. It is then weakly focused by 

a Teflon lens, through a thin fused silica window, into the MOT. The ramped-field that 
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performs the SSFI is applied to the atoms approximately 100 ns after the second THz pulse. 

Four thin, parallel, stainless steel rods are positioned in a rectangular array surrounding the 

0.5 mm diameter atom cloud, and enable the application of a spatially-uniform field while 

providing optical access for the trapping beams, Rydberg excitation laser, and THz pulses. 

Rb ions produced during the field ramp are pushed toward a micro-channel plate detector 

and, in principle, population in different Rydberg states can be distinguished by different 

ionization times in the ramped field. In practice, the signals associated with the 32s and 31p 

states appear at the same time, thus we do not separately measure the populations in these 

two states. The delay, ∆t between the THz pulses is scanned continuously while integrating 

the SSFI signals across two time bins, yielding the populations in 32s+31p states and 32p 

level, respectively. The Rydberg atom density, 10P cm[c< ρ < 3 × 10f cm[c, is varied by 

changing the current to the getters that supply the Rb atoms to the MOT. At these densities, 

with T = 70 µK, relative atom motion due to thermal energy or dipole-dipole forces is 

negligible during the ∼ 100 ns duration of the experiments. 

5.3 Experimental Results  

Figure 5.1 shows the measured population in the 32s+31p states as a function of the 

delay ∆t between the two THz pulses. The modulations in the population have a frequency 

of 4.35 cm[`, corresponding to the energy separation between the 32s and the 32p states, 

and reflect the oscillation of the electric dipole-moment of the wavepacket that is created 

by the first THz pulse. Oscillations at the same frequency are observed in the 32p 

population, but are 180 degrees out of phase. The modulations can be interpreted as the 

result of time-domain Ramsey interference in the 32s and 32p amplitudes created by the 

first and second THz pulses [57, 58]. Accordingly, the amplitude of the oscillations 

provides a measure of the macroscopic wavepacket coherence. Although the broadband 

THz pulses also excites atoms from 32s to 31p we do not observe any significant signal 
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modulations at 4.79 cm[`, the frequency corresponding to the 32s − 31p energy interval. 

For the weak population transfers studied here, any oscillations in the 32s population would 

be out of phase with those in 31p, resulting in no net modulation in the combined 32s+31p 

signal that we detect. Moreover, the small variations in the 32s amplitude associated with 

the 31p excitation have negligible influence on the population transfer to 32p, so no 4.79 

cm[` beat is observed in the 32p signal. 

 

Figure 5.1: Measured population in the combined 32s+31p states as a function of the 
delay ∆t between two THz pulses. The left panels show data collected at low 
Rydberg density, ρ ∼ 3 × 10P	cm[c, for (a) short (∆t ≃ 0) and (b) long (∆t ≃ 15ns) 
delays, respectively. The right panels show data collected at high Rydberg density, 
ρ ∼ 2 × 10f	cm[c, for c) short (∆t ≃ 0) and d) long (∆t ≃ 15ns) delays, respectively. 
The decrease in oscillation amplitude at high density and long delays is apparent. 

 
Figure 5.1a and 5.1b show the situation at low density ρ ∼ 3×10P cm[c for short (∆t ≃ 

0) and long (∆t ≃ 15 ns) delays, respectively. Analogous plots at higher density ρ ∼ 2 × 10f 

cm[c are shown in Figure 5.1c and 5.1d. At low density, the average oscillation amplitudes 

are similar at short and long delays. However, at higher densities, there is a notable decrease 
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in oscillation amplitude with increasing delay. This density-dependent decay in the 

macroscopic wavepacket coherence, i.e. dephasing, is the principal focus of this chapter. 

To quantify the average oscillation amplitude during a given time interval, we Fourier 

transform the delay-dependent data, and compute the area under the spectral feature 

(between 4.0 cm[` and 4.6 cm[`) corresponding to the 32s − 32p quantum beat. Figure 5.2 

shows the Fourier transforms of the data in Figure 5.1. For each Rydberg density, we 

compute a decay factor, η, defined as the ratio of the spectral area measured near delay ∆t 

= 15 ns to that measured near ∆t = 0. 

 

Figure 5.2: Fast Fourier transform (FFT) of the delay-dependent populations shown 
in Figure 5.1. 

The experimentally determined values of η are plotted vs Rydberg density in Figure 5.3 

along with the results of a quantum simulation that considers the dipole-dipole interaction 

between nearest neighbor atoms in a frozen ensemble of randomly distributed Rydberg 

atoms. The simulation is in good agreement with the measurements. Before discussing the 
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details of the full simulation, we present a simple model that captures the essential physics. 

Namely, the decrease in η with increasing density is due to the variation in the strength of 

the dipole-dipole exchange interaction for different pairs of nearest neighbor atoms. 

 

Figure 5.3: Measured (filled circles) and simulated (solid curve) decay ratio, η, as a 
function of Rydberg density. 

 

5.4 Discussion 

Consider a two-level Rydberg atom with opposite parity, non-degenerate eigenstates, 

|s⟩ and |p⟩, that are split by an energy 𝐸O. Ignoring the azimuthal degrees of freedom, the 

eigenstates for a pair of atoms with a large separation R → ∞ are: |ss⟩, |sp⟩, |ps⟩, and |pp⟩, 

with energies as shown on the left in Figure 5.4. For smaller values of R, the pair eigenstates 

are modified due to the interactions between the atoms. Provided that R remains sufficiently 

large that the Rydberg wavefunctions of the individual atoms do not overlap, the 

predominant interaction between the atoms is given by the dipole-dipole coupling [53], 

 𝑉 = [𝜇· ∙ 𝜇¹ − 3 𝜇· ∙ 𝑅 𝜇¹ ∙ 𝑅 ]/𝑅c (5.2) 
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as we mentioned in Chapter 4. The matrix elements coupling |ss⟩ or |pp⟩ to |sp⟩ and |ps⟩ are 

identically zero. In addition, provided 2𝐸O is much greater than the magnitude of the matrix 

element connecting |ss⟩ and |pp⟩, the Hamiltonian is approximately diagonalized by 

considering only the coupling between the degenerate states |sp⟩, |ps⟩, i.e. the dipole-dipole 

exchange interaction. The modified energy levels are shown on the right in Figure 5.4, with 

eigenstates |+⟩ and |−⟩ corresponding to symmetric and antisymmetric combinations of |sp⟩, 

|ps⟩. The exchange splitting between this pair of entangled states is 2𝜀 = 2⟨ps|V |sp⟩ which 

implicitly depends on the atom separation, R. 

A THz pulse with a central frequency 𝐸O and a bandwidth ≫ 𝜀 can excite the atom pair 

from |ss⟩ to |+⟩, via a one-photon excitation, or to |pp⟩ through two-photon absorption. 

However, |−⟩ is not populated since the transition matrix elements connecting it to all other 

levels are identically zero. For a relatively weak THz pulse, the |pp⟩ excitation probability 

is negligible, so an electronic coherence is established between |ss⟩ and |+⟩, and the 

electronic wavefunction has the form, 𝛹 𝑡 = 𝑐𝑜𝑠𝜃 𝑠𝑠 + 𝑒[µ(ÀÂ]å)𝑠𝑖𝑛𝜃|+⟩ , where θ 

depends on the excitation probability and 𝜙 is an excitation phase. This wavepacket has the 

same form as the single electron wavepacket in Equation (5.1) and, similarly, is 

characterized by a time-dependent dipole moment which oscillates sinusoidally at a 

frequency, E = 𝐸O  + 𝜀 . When the atoms are exposed to a second THz pulse, the net 

population transfer from |ss⟩ to |+⟩ is delay-dependent, oscillating at a frequency E. This 

modulation can be observed in the total population of individual atoms in states |s⟩ or |p⟩. 

It can be viewed as the result of time-domain Ramsey interference in the probability 

amplitude transferred from |ss⟩ to |+⟩ in each of the two THz pulses [57, 58]. Alternatively, 

but equivalently, it can be attributed to the variations in the wavepacket’s instantaneous 

electric dipole moment during the second THz pulse. 
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Figure 5.4: Schematic energy level diagram for the eigenstates of a pair of two level 
atoms. The diagrams on the left and right sides of the figure depict the situation at 
large and small interatomic spacing, R, respectively. 

 

In a random ensemble of atoms, the dominant coupling is between each atom and its 

nearest neighbor. Due to the variation in R for different atom pairs, there is a broad 

distribution of dipole-dipole exchange energies 2𝜀 and, accordingly, a range of wavepacket 

oscillation frequencies E across the sample. This inhomogeneity results in a dephasing of 

the detected oscillations in the |s⟩ and |p⟩ populations. The dephasing time decreases with 

increasing Rydberg density, since the range of possible exchange energies grows with the 

probability of finding atom pairs with smaller R. It is important to note, however, that the 

macroscopic dephasing is not an indicator of microscopic decoherence of individual atom 

pairs. 

In the experiments, limitations in the maximum path length difference in the arms of 

the Michelson interferometer preclude our measurement of the wavepacket evolution from 

its initiation through complete dephasing. Instead, we use η as a measure of the dephasing 

rate. Since smaller values of η reflect more rapid dephasing, the data in Figure 5.3 confirm 

the qualitative prediction of the model presented in the preceding paragraphs. 

To determine if nearest neighbor interactions are sufficient to cause the density-

dependent dephasing that is observed, we perform quantum simulations to obtain a 
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quantitative prediction of the dephasing rate. Specifically, we numerically integrate the 

time-dependent Schroedinger equation to calculate the delay-dependent probability for 

finding atoms in a range of essential Rydberg states following the exposure of a random 

ensemble of 32s atoms to two single-cycle THz pulses [56] like those used in the 

experiments. We include 33s, 32p, 32s, and 31p states, with fine-structure, and consider the 

excitation to, and from, Rydberg-Rydberg pairs with all allowable values of M, the quantum 

number corresponding to the projection of total angular momentum along 𝑅. Atom pairs 

with different M possess different interaction energies, even for the same value of R, 

providing an additional source of inhomogeneity in the oscillation frequency of different 

wavepackets in the ensemble [29, 59]. Radial matrix elements are computed using a 

Numerov algorithm [60] with the known quantum defects of the Rb ns and np states. The 

simulation results for individual atom pairs are integrated over the nearest neighbor 

distribution function for R for a given Rydberg density [61]. Since the quantization axis for 

each atom pair is chosen to lie along 𝑅, the THz polarization angle relative to that axis is 

varies from one atom pair to the next (refer to 3.3.4). We find that the simulation results 

are insensitive to whether we explicitly perform the calculation over all polarization angles 

and average those results, or if we fix the polarization angle at a value for which the 

interaction potential is equal to angle-averaged value. Since the latter method substantially 

improves the calculation speed, we use it for the results shown in Figure 5.3. 

Inspection of Figure 5.3 shows that the agreement between the data and simulation is 

good. The fact that there are no adjustable parameters in the calculation, indicates that 

nearest neighbor interactions are sufficient to explain the observed dephasing. Beyond the 

limited pump-probe delay range available to the experiment, the simulations show that the 

degree and rate of dephasing continue to increase at longer delays and at higher densities, 

respectively. 
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5.5 Conclusion 

We have explored the evolution of Rydberg wavepackets in the presence of strong 

dipole-dipole interactions in a frozen gas. The time-scales associated with oscillation of the 

Rydberg electric dipole moment ( ∼8 ps) and the interatomic excitation exchange ( ∼200 ns) 

differ by over four orders of magnitude yet we are able to probe the system for a sufficiently 

long time to observe the influence of the atom-atom coupling. The distribution of atom 

separations results in an inhomogeneity in the strength of the exchange coupling between 

neighboring atoms, causing a dephasing of the macroscopic coherence in tens of ns. In 

analogy to recent work with cold polar molecules [62], future experiments may take 

advantage of optical confinement of atoms at well-defined separations to explore the use 

of the dipole-dipole coupling as a controllable tool for manipulating multi-electron 

correlation and dynamics. 
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6 Wavepacket Coherence Transfer 
via DD interactions 

 
Abstract 

We have shown that electron correlations, induced by controlled DD interactions, can 

enable the coherent transfer of electronic wavepacket motion from atoms to their neighbors. 

In the experiment, a 5 ns tunable dye laser excites Rb atoms in a MOT to the 25s state in a 

weak static electric field for which the tunable 25s33s↔24p34p DD interaction is resonant. 

A picosecond THz pulse then further excites each Rydberg atom into a coherent 

superposition, of 25s and 24p states. The evolution of this mixed-parity wavepacket is 

characterized by time-dependent oscillations in the electric dipole moment, with a period 

of 2.9 ps. Approximately 5 ns after the wavepacket creation, a second 5 ns dye-laser 

promotes a second set of atoms from the 5p level into the 33s state. Because of the DD 

interaction, the second dye laser actually creates atom pairs whose electronic states are 

correlated via the resonant DD coupling. A 33s+34p wavepacket, oscillating with the same 

2.9 ps period as the 25s+24p wavepacket, develops on the second set of atoms as a result 

of the correlation. A second, time-delayed ps THz pulse enables the detection of the 

coherent wavepacket motion on the two sets of atoms. 
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6.1 Introduction 

Quantum control aims to steer a quantum system from an initial state to a target state 

via an external field. Because of its potential scientific benefits and practical applications, 

ranging from chemical reactions [1][2] to nuclear magnetic resonance (NMR) [3], and from 

laser cooling [4][5] to quantum information processing [6][7], it has attracted considerable 

interest in recent years. In this chapter, we describe an experiment which utilizes coherent 

manipulation of DD interactions to exert quantum control over correlated electronic 

wavepacket motion on neighboring atoms in a frozen gas. 

In radio and telecommunications, an oscillating current (usually a semi-sinusoidal wave) 

drives the two poles of an antenna, creating a transmitter [8]. The transmitter broadcasts an 

electromagnetic wave which, in turns drives the two poles of a properly tuned receiver 

antenna. This process can be viewed as a macroscopic classical physics example of 

resonant coherence and energy transfer. At the microscopic scale, DD interactions can 

enable analogous resonant transfer via near-field, rather than far field, electromagnetic 

coupling. For example, in photosynthetic systems, light-harvesting antennas transmit light 

energy to reaction centers via DD interactions [9]. There is currently significant debate as 

to whether quantum coherence is maintained in this process.  

We have explored a similar situation in a system where quantum coherence should be 

maintained. Consider a Rydberg atom in a coherent superposition of s and p states: 𝜑 =

( 𝑠 + |𝑝⟩𝑒[µ∆ÀÂ)/ 2, where ∆𝐸 is the energy gap between the s and p states. The time-

dependent dipole moment of this atom is 𝜑 𝑧 𝜑 = 	2𝑐𝑜𝑠	(∆𝐸𝑡) 𝑠 𝑧 𝑝 . As the electronic 

wavepacket evolves, the dipole moment of this atom is changing periodically or 

“oscillating”, in analogy to a classical dipole transmitter. We consider the case where there 

is a microscopic “receiver” (another Rydberg atom) in the vicinity such that the wavepacket 
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motion on one atom can induce a wavepacket with a coherently oscillating dipole moment 

on the other.   

Consider an atom pair AB initially in state 𝜑 0 = 𝑠 𝑠′  in a system where resonant 

energy transfer can occur to a second pair state 𝑠 𝑠′  ↔ 𝑝 𝑝′ . At resonance, the 

wavefunction of this atom pair can be written as: 

 𝜑 𝑡 =
1
2
(| + ⟩𝑒[µèÂ + | − ⟩𝑒µèÂ)	 (6.1) 

where | + ⟩= `
a
(|𝑠⟩|𝑠′⟩ + |𝑝⟩|𝑝′⟩), | − ⟩= `

a
( 𝑠⟩ 𝑠e⟩ − |𝑝⟩|𝑝′⟩) and 𝜀 is the DD interaction 

strength (see Figure 6.1). Equation (6.1) can also be written as: 

 𝜑 𝑡 = 𝑐𝑜𝑠𝜀𝑡 𝑠 𝑠′ − 𝑖𝑠𝑖𝑛𝜀𝑡 𝑝 𝑝e .		 (6.2) 

When t = ~«
è

, Equation (6.2) shows that the pair has returned to the initial 𝑠 𝑠′  state. 

When t = (a~]`)«
aè

, the pair has been transferred with unit probability to 𝑝 𝑝e . In general, 

there is a non-zero probability of finding atoms A and B in states 𝑠  and 𝑝  and 𝑠′  and 

𝑝′ , respectively. However, at no time is there a coherent wavepacket with well defined 

phases on the individual atoms. Instead, 𝜑 𝑡  is an entangled state and there is no separable 

wavepacket on either atom A or B. If we measure the dipole moment on either A or B 

separately, we obtain zero.  

To enable the observation of wavepacket coherence transfer from one atom to another, 

we consider the case where one atom in the pair is initially prepared in a coherent 

superposition state and the other is in an eigenstate. In this pair, atom A starts from a 

wavepacket composed of states 𝑠  and 𝑝 , and acts as the “transmitter”, while atom B 

starts from an eigen state 𝑠′  and acts as the “receiver”. We further assume that there is a 

resonant coupling between the pair states, 𝑠 𝑠′  ↔ 𝑝 𝑝′ .  

Suppose, initially at t = 0, the wavefunction of this pair is:  
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 𝜑 𝑡 = 0 =
1
2
|𝑠⟩ + |𝑝⟩ |𝑠e⟩.	 (6.3) 

Due to the DD coupling, after a time T, the wavefunction can be written in a coupled 
atom basis as: 

 𝜑 𝑇 =
1
2
(| + ⟩𝑒[µè� + | − ⟩𝑒µè�) +

1
2
|𝑝⟩|𝑠e⟩𝑒µ∆À�. (6.4) 

where ∆𝐸 is the energy gap between |𝑠⟩ and |𝑝⟩, as well as between |𝑠⟩|𝑠′⟩ and |𝑝⟩|𝑠′⟩ (see 

Figure 6.1). Rewriting equation (6.4) in the independent atom basis:  

𝜑 𝑇 =
1
2 2

( 𝑠⟩ 𝑠e⟩	 + p⟩ 𝑝e⟩)𝑒[µè� + 𝑠⟩ 𝑠e⟩	 − p⟩ 𝑝e⟩ 𝑒µè�  

                          + `
a
𝑝⟩ 𝑠e⟩𝑒µ∆𝐸𝑇. 

(6.5) 

Assuming the DD coupling is switched off for t > T, we can write 
 

 
𝜑 𝑡 = (𝑐𝑜𝑠𝜀𝑇 𝑠⟩ 𝑠e⟩ − 𝑖𝑠𝑖𝑛𝜀𝑇 p⟩ 𝑝e⟩ + 𝑝⟩ 𝑠e⟩𝑒µ∆ÀÂ)/ 2 (6.6) 

or 

𝜑 𝑡 =
1
2
𝑐𝑜𝑠𝜀𝑇( 𝑠⟩ + 𝑐𝑜𝑠𝜀𝑇|𝑝⟩𝑒µ∆ÀÂ) 𝑠e⟩	

																																												−
𝑖
2
𝑠𝑖𝑛𝜀𝑇 p⟩( 𝑝e⟩ + 𝑖𝑠𝑖𝑛𝜀𝑇|𝑠e⟩𝑒µ∆ÀÂ)	

(6.7) 

Equation (6.7) describes an entangled state where the wavepacket is on either atom, but 

on one, and only one, of the two atoms. When T = ~«
è

, atom A is in a superposition state 

and B is in an eigenstate. When T = (a~]`)«
aè

, due to the DD coupling, atom A is left in an 

eigenstate while a coherent superposition state has developed on atom B. So the DD 

interaction coherently splits the atom pair into two distinct pieces, with atom A (or B) in an 

eigenstate and atom B (or A) in a coherent superposition (see Figure 6.2 and Figure 6.3). 

The two wavepackets exhibit time-dependent dipole moments oscillating with the same 

period and well-defined, but different phases. Because the wavepackets on both atoms have 

well defined phases, we should be able to detect the wavepackets on both of them using the 

optical Ramsey method [10], as described in Chapter 5. 
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Figure 6.1: Schematic energy level diagram of an atom pair. As described in previous 
chapters, DD interactions break the energy degeneracy and create an energy gap 
between the coupled pair states.  

 

Figure 6.2: Calculated time dependent dipole moment along the z axis for each atom 
in an atom pair in the presence of a resonant energy coupling 25s33s↔24𝑝`/a34𝑝c/a. 
Atom A is initially in a coherent superposition of 25s + 24p (left figure) and atom B 
is initially in an eigenstate 33s (right figure). The dipole moment on each atom has 
a fast oscillation (not resolved in the figure) with a period of ~2.9 ps modulated by a 
slow oscillation with a period of ~0.8 µs, associated with the strength of the DD 
interaction. The distance between the two atoms is set to be ~4 µm the most probable 
nearest-neighbor separation in an ensemble at a density of ~2×10f	cm[c . The 
magnitude of the DD interaction is ~7 MHz. The figures show that the wavepacket 
coherence travels back and forth between the atoms in one pair.  
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Figure 6.3: Magnified view of the dipole oscillation shown in Figure 6.2. Note the 
identical period of, but 90O phase difference between, the oscillations on the two 
atoms. 

For a single pair of frozen atoms, the DD interaction strength is fixed, the coherence of 

the correlated wavepacket is maintained, and the dipole motion continues to oscillate back 

and forth between the two atoms. There is no dephasing as the dipole oscillation and 

wavepacket transfer frequencies are constant and well-defined. However, for a random 

ensemble of atoms, the wavepacket motion should dephase due to the variation in the DD 

coupling strength for different atom pairs in the MOT. For a random ensemble containing 

~10q atoms, it is a big challenge to maintain macroscopic wavepacket coherence over the 

ensemble [11]. Specifically, it is necessary to detect the wavepacket transfer before the 

dephasing is complete.   

6.2 Experimental Procedure 

We use a system that has been explored in detail [12][13] to demonstrate wavepacket 

transfer between atoms via electron correlation. Specifically, we consider the resonant 

reaction: 25s33s↔24𝑝`/a34𝑝c/a. To relate to the theory discussed above, we define s = 25s, 

𝑠e	= 33s, p = 24𝑝`/a and 𝑝e = 34𝑝c/a.	For simplicity, 34p is used to represent 34𝑝c/a and 

24p to represent 24𝑝`/a in the following discussion, unless stated otherwise. When a static 

offset field of about 3 V/cm is applied, the energy gap between 25s and 24𝑝`/a is ~11.4 
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cm[`, which is the same as the gap between 33s and 34𝑝, so that resonant coupling between 

the atom pairs can occur.  

In the experiment, cold Rb atoms are trapped in a MOT. A nanosecond dye laser pulse 

saturates the transition from the upper trap state, 5𝑝c/a , to 25s. These Rydberg atoms, 

considered as atoms A, are then exposed to a picosecond pulse of THz radiation to create a 

coherent superposition state composed of a roughly equal admixture of 25s and 24p. 

Immediately after the THz pulse, a second nanosecond dye laser pulse promotes another 

portion of the 5𝑝c/a amplitude in the trapped atoms to 33s. Technically, in each laser shot, 

all atoms are excited to both a 25s+24p wavepacket and to the 33s state with some 

probability. However, since there is no phase coherence between the dye laser pulses which 

excite 25s and 33s, respectively, in practice the problem is identical to one in which some 

atoms are excited to 25s+24p and others are excited to 33s. The 33s atoms are considered 

to be atoms B. Our measurements are most sensitive to nearest neighbor atom pairs (|25s⟩ 

+ |24p⟩)|33s⟩	for which resonant coupling can produce atoms in the 34p states.   

After the second dye laser excitation, the atoms are allowed to interact resonantly for a 

period T until they are ionized by a ramped field. If a coherent superposition of 33s and 34p 

is formed in atoms B, the wavepacket motion can be probed by applying a second 

picosecond THz pulse at the end of the interaction time T, just before the field ionization 

ramp, as described below (refer to Figure 6.4).  
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Figure 6.4: Time line for experiment operation. The first laser pulse excites a portion 
of atoms from 5p to 25s, generating atoms A. The first THz pulse creates a 
wavepacket composed of 25s, 24p, and 25p (not shown in the diagram for simplicity) 
on atoms A and this point could be considered as the t = 0 point in Equation (6.3). 
Right after the first THz pulse, a second laser pulse excites another portion of atoms 
from 5p to 33s, creating atoms B. After the creation of atoms B, the DD interaction 
enables population transfer between 25s and 24p, and 33s and 34p. The DD 
interaction lasts for 90 ns, and then a second THz pulse, working as a probe, 
redistributes the population in each state. The field ionization ramp is applied as soon 
as practical after the 2nd THz pulse to make sure ∆𝑇, which is the time interval 
between the total shut off of DD interactions and the second THz pulse, is set as 
close to 0 as possible. The ion signal collected by the MCP reveals the population in 
each state. A Michelson interferometer, with a variable-length delay-stage in one 
arm, is used to split each 790 nm pulse which is to generate THz radiation pulses, 
into a pump-probe pair with a delay ~90 ns.  

The delay between the two THz pulses is scanned over a short time interval (~0.5 ns). 

Depending on the temporal separation of the two THz pulses, amplitude transferred from 

33s to 34p by the second THz pulse will interfere constructively or destructively with 

amplitude transferred to 34p via the DD interaction. This interference produces a 

modulation in the measured 34p population as a function of relative THz pulse delay [14]. 

Assuming the 34p population is measured immediately after the 2nd THz pulse, any delay 

dependent interference in the 34p yield indicates that coherent wavepacket motion has been 
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induced on atoms B. Accordingly, it implies the establishment of correlated electron 

wavepackets on neighboring atoms (see Equation (6.7)) through controlled DD interactions. 

Of course, the experiment is performed with a randomly distributed ensemble in the 

MOT instead of a single atom pair. So it is necessary to consider the macroscopic dephasing 

that will result from the variation in DD coupling strength between atom pairs in the MOT. 

Figure 6.5 shows the rapid dephasing of the wavepackets as computed using a simulation 

similar to that used to produce Figure 6.2 and Figure 6.3, but including an integration over 

the random nearest neighbor separations in the MOT ensemble. In order to detect the 

oscillation of the induced wavepacket, the integral of the interaction strength, 𝜀, over the 

interaction time, T, should be kept less than 𝜋/2 for the majority of the atoms so that the 

wavepacket oscillations on these atoms remain in phase. Accordingly, for an ensemble with 

a density ~2×10f	cm[c, the DD interaction time should be kept to less than 400 ns.  

 

 

Figure 6.5: Calculated average dipole moment on individual atoms for coupled via 
DD interactions. The plots are analogous to those shown in Figure 6.2, but a random 
ensemble. The density of the ensemble is ~2×10f	cm[c. Compared to Figure 6.3, 
macroscopic coherence is quickly lost because of the dephasing of the wavepackets 
on different atom pairs.  

Beyond decoherence, the other factor affecting the choice of the experimental DD 

interaction time is the magnitude of the 34p population. If the DD interaction time is too 

(a) (b)
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short, it is hard to detect the small 34p population, much less the population interference. 

So when determining the DD interaction time, there is a balance between maintaining 

wavepacket coherence and generating detectable 34p interference. Figure 6.6 shows the 

34p population generated via the resonant energy transfer as a function of the DD 

interaction time in the experiment.  

Considering the wavepacket dephasing, the range of Rydberg densities that can be 

readily produced in the MOT, the dependence of the 34p signal on interaction time, and the 

difficulty producing an optical delay line with a maximum pulse separation >100 ns, we 

determine an optimum density ~2×10f	cm[c  and interaction time T ≈  90 ns for the 

experiment.  

  

 

Figure 6.6: Measured population transfer to 34p as a function of interaction time T 
for a density ~2×10f	cm[c. The initial state is (|25s⟩ + |24p⟩)|33s⟩.	 After T~200 ns, 
the transfer is saturated, due to the dephasing of the DD mediated population transfer 
process. 
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as soon as possible following the 2nd THz pulse. The resulting ions are collected by the 

MCP. 

Figure 6.7 shows the population interference when scanning the THz delay. It appears 

to suggest a coherent wavepacket motion on atoms B. However, additional spectral analysis 

of the signal (Figure 6.8) shows that there is another, less interesting, effect that is at least 

partially responsible for the population interference.  

If the signal modulations were produced solely by an interference between the 34p 

amplitude produced by the resonant DD interaction and that excited by the second THz 

pulse, then there should be only one peak (matching the	33𝑠 → 34𝑝	transition	at 11.4 

cm[`) in the spectrum obtained by fast Fourier transforming (FFT) the delay-dependent 

34p signal. However, the FFT analysis clearly shows two additional peaks. The feature at 

9.9 cm[` corresponds to the energy splitting between the 25s and 25𝑝c/a states. The peak 

at 11.1 cm[`  matches the 25s and 24𝑝c/a  transition energy. Also, it is important to 

remember that the feature at 11.4 cm[`  also matches the 25s→24𝑝`/a  energy interval. 

Apparently, all of the spectral peaks observed in the 34p population signal might be due to 

coherence involving the 25s state. 



CHAPTER 6 COHERENCE TRANSFER VIA DD INTERACTIONS 
113 

For comparison, Figure 6.9 shows the time dependent population in the 25s state as a 

function of delay between the two THz pulses and Figure 6.10 shows its Fourier transform. 

As with the 34p signal, the second THz pulse probes a previously created coherence. In this 

case, that coherence is associated with the 25s + 24p wavepacket produced by the first THz 

pulse. Although taken under slightly different THz conditions in which the pulse spectrum 

was not as well optimized for preferential excitation of 33s→34p, the same spectral features 

that appear in the 34p population are clearly observed in the 25s population.  

 

 
Figure 6.7: 34p population over a short range of THz delays. Shown is the averaged 
result from 20 measurements. The main period of the oscillation is ~2.9 ns. The y-
values do not accurately represent the modulation amplitude to DC background. In 
experiment, the oscillation amplitude is about ¼ of the DC background.  
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Figure 6.8: FFT of the delay-dependent 34p population obtained with a short delay 
∆𝑇 ≅ 10 ns, between the 2nd THz pulse and the FI ramp. The three peaks shown in 
the plot (from left to right)  are 9.9 cm[` (25s->25𝑝c/a), 11.1 cm[` (25s->24𝑝c/a), 
and 11.4 cm[` (25s->24𝑝`/a and 33s->34𝑝c/a), respectively. 

 

Due to the wavepacket motion initiated by the first THz pulse, the modulations in the 

25s population produced by the second THz pulse are large and have fairly high contrast. 

At the same time, due to the small population transfer to 34p, the population in 33s is 

relatively unchanged by the DD interaction between the two THz pulses. Any population 

transfer to 34p via the resonant DD coupling after the 2nd THz pulse is directly proportional 

to the populations in 25s and 33s during that time interval.  As a result, if the DD interaction 

is allowed to continue for a time, ∆𝑇, after the second THz pulse, the 34p population that 

is produced via the 25s33s↔24p34p coupling during that time will be modulated with the 

same phase and frequency as the 25s population. Unfortunately, we cannot instantaneously 

shut off the DD coupling after the second THz pulse due to the small (<10 ns) uncertainty 

in precisely when the atoms are exposed to the THz and FI pulses and the time during the 

rise (~100 ns to reach its half maximum) of FI pulse at which the atoms are decoupled and 

M
ag
ni
tu
de
	(a

rb
.	u
ni
ts
)

Wavenumber	(cm#$)

25s->25&'/)

25s->24&'/)

25s->24&$/)
33s->34&'/)

Frequency (cm#$)

Ma
gn
itu
de
	(a
rb
.u
nit
s)



CHAPTER 6 COHERENCE TRANSFER VIA DD INTERACTIONS 
115 

can no longer interact. Thus, the 34p signal is always “contaminated” by this imperfect 

measurement artifact which can actually dominate the delay dependence in the 34p signal.  

Fortunately, the 11.4 cm[`  oscillation which is associated with the DD coherence 

transfer which we are attempting to observe is also predicted to be 90O out of phase with 

the 25s modulation artifact at the same frequency (see Figure 6.3). Accordingly, a non-zero 

phase shift of the 11.4 cm[` oscillation in 34p, relative to those in 25s, is a signature of the 

development of wavepacket motion on atoms B due to the electron dynamics on atoms A 

and the correlations between the two sets of atoms. As shown in Figure 6.11, the degree of 

the phase-shift is expected to depend on the magnitude of the signal contribution from the 

coherence transfer relative to that due to the artifact.  

Conveniently, the oscillations in the 25s and 34p signals at the additional 25s→np 

transition energies, which are unrelated to the coherence transfer, should be perfectly in-

phase. Thus, their relative phases can be (and are) used as an independent check of the 

quality of individual data runs and our ability to accurately retrieve the relative phase of 

interest at 11.4 cm[`. 

For experimental convenience, in the actual data collection runs, we do not compare 

the phases of the modulations in the 25s and 34p populations as this would require that we 

collect consecutive data sets with significantly different FI ramp amplitudes. Instead, we 

compare the 34p signal acquired with a minimal delay, ∆𝑇 ≅10 ns between the second THz 

pulse and the FI ramp with that obtained with a much longer ∆𝑇 ≅ 600 ns delay. For the 

long delay, the population transfer to 34p is completely dominated by the interaction time 

after the 2nd THz pulse. Thus, for all frequencies, the strong 34p modulations observed with 

the long delay are purely due to the artifact (see Figure 6.12) and should be in phase with 

the corresponding modulations in the 25s signal. We have confirmed experimentally that, 

for ∆𝑇 ≅600 ns, the 34p and 25s modulations are indeed in-phase (0±3O).  
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Figure 6.9: Measured 25s population over a short range of THz delays. 

 

Figure 6.10: FFT of the delay-dependent 25s population. The four peaks shown in 
the plot (from left to right)  are 9.7 cm[` (25s->25𝑝`/a), 9.9 cm[` (25s->25𝑝c/a), 
11.1 cm[` (25s->24𝑝c/a), and 11.4 cm[` (25s->24𝑝`/a) respectively. 
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Figure 6.11: Phasor diagram illustrating the contributions to the detected 34p signal 
modulations as well as the phase difference 𝜃 between the measured oscillations in 
34p and 25s. If the coherence transfer contribution is very small compared to the 
delayed detection associated with the 25s population modulation, then the presence 
of coherence transfer has little effect on the magnitude of the 11.4  cm[` oscillation 
in the 34p signal. However, the presence of the coherence transfer can be detected 
through the phase shift, 𝜃. 

 

 
Figure 6.12: FFT of the time-dependent 34p population at large ∆𝑇 (> 600 ns). Peaks 
associated with various coherences are labeled. 

 
In the experiment, a THz delay scan at a small ∆𝑇	(~10 ns) and a large ∆𝑇 (~600 ns) 

are performed. The two data sets compose a “pair scan”. About 30 total pair scans were 

collected over a total of 6 different days. Ten of these data pairs were rejected due to the 

large phase differences (> 36O) between the reference oscillations at 9.9 cm[`  or 11.1 

cm[`. The other 20 pair scans have small phase differences (< 18O) at these reference 

frequencies. Note that the magnitude of the 11.9 cm[`  frequency component is 
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considerably larger than that of the references. Thus, the uncertainty in the 11.4 cm[` phase 

is substantially small. Each of these pairs shows a positive phase advance of the 34p 

population modulation at small ∆𝑇 relative to that at large ∆𝑇. The average phase shift 

obtained from the 20 individual pair scans is 21O ± 9O. 

Figure 6.13 shows the 34p population variations, for small and large ∆𝑇, as a function 

of the relative THz delay. The two curves are obtained by averaging the 20 data pairs used 

to determine the relative phase shift. The time axis for the different pairs were shifted to 

account for temporal drifts between scans taken at very different times. With the shifts,  we 

define a phase of 0O  for the 11.4 cm[`  peak in the long delay scans, but preserve the 

relative phase shift between long and short delay scans in the each pair. The phase advance 

in the short delay scans (~20O) is clearly visible, providing strong evidence for the predicted 

wavepacket coherence transfer between atoms. 

 

Figure 6.13: Averaged 34p population variation as a function of relative THz delays 
for short (∆𝑇~10	𝑛𝑠,  red solid) and long (∆𝑇~600	𝑛𝑠 , blue dashed) ionization 
delays. The signal variation at long delays ∆𝑇 has been reduced by a factor of 3 to 
make a better comparison with the interference at small ∆𝑇. The signal variation at 
large and small ∆𝑇 are about ¼ of their DC backgrounds, repectively. 
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6.3 Analysis and Discussion 

A simulation has been performed to examine if the measured 21O phase difference is 

reasonable. The simulation calculates the phase difference between the modulations in the 

34p and 25s populations as a function of the detection delay ∆𝑇, while keeping the DD 

interaction time, T ≅	90 ns a constant. Results are shown in Figure 6.14. 

While every attempt is made to capture the essential features of the experiment, the 

simulation is only approximate. First, the range of states is limited. Only the following 

states are included: 25s, 24𝑝`/a, 24𝑝c/a, 25𝑝`/a, 25𝑝c/a, 33s, 33𝑝`/a, 33𝑝c/a, 34𝑝`/a, 34𝑝c/a. 

Second, atom motion and beyond nearest neighbor interactions are completely neglected. 

Third, the time-dependence of the THz pulses and their amplitudes are not precisely known. 

However, different combinations of pulse parameters have been used to ensure that the 

population redistribution by the THz pulses is as close as possible to that measured. In the 

experiment, we estimate the amplitude of the 2nd THz pulse to be approximately half of that 

of the 1st THz pulse.  

The predicted 90O phase shift in the 34p and 25s population is based on a perturbation 

model of the THz-atom interaction. As shown in Figure 6.14, different amplitudes of the 

2nd THz pulse result in different phase differences. As expected, the phase difference 

declines rapidly with increasing ∆𝑇.  

Another source of uncertainty comes from the Rydberg density measurement. Previous 

measurements of resonant energy transfer [11][15] indicate that the density measurement 

is accurate to approximately 50%. If the actual density in the experiment is higher than we 

estimate, the DD interactions would be stronger, accelerating the decrease in phase 

difference as a function of ∆𝑇.  
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While the simulation does not perfectly reproduce the experimental observations, it 

qualitatively supports our principal findings. As shown in Figure 6.14, the phase difference 

between the 34p and 25s interferences is indeed positive and smaller than 90O. Moreover, 

the phase shift rapidly approaches 0 with increasing ∆𝑇.  

 

Figure 6.14: Calculated phase difference between the 34p and 25s population 
oscillations as a function of ∆𝑇 for different amplitudes of the 2nd THz pulse. The 
density of the ensemble is ~2×10f	cm[c. 𝑉O is the field amplitude of the 1st THz 
pulse, which is chosen to be 50 V/cm to match the 25s→24p population transfer 
observed in the experiment. 

6.4 Conclusion 

We have explored the mechanism of wavepacket coherence transfer from one Rydberg 

atom to a neighboring Rydberg atom via DD interactions utilizing the resonant DD 

coupling transition 25s33s↔24p34p. The phase-shift of the observed interference 

modulations in the 34p signal, relative to that in 25s, is a signature of wavepacket coherence 

transfer between atoms driven by electron correlations resulting from the controlled DD 

coupling between them. 

Future experiments may take advantage of ensembles having more well-defined atom 

separations to observe the complete transfer of wavepacket motion, back and forth, between 

initial and induced wavepackets. 
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7 Summary and Future Directions 
 

This chapter summarizes the results of the projects described in this dissertation and 

provides some thoughts on possible extensions for future study.  
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Electron dynamics in DD coupled Rydberg atoms show some unique properties that do 

not exist in individual atoms. The goal of the research in this dissertation is to reveal and 

control the electron dynamics influenced by DD interaction in cold Rydberg gases. Our 

results have clarified and provides further insight into, fundamental few body physics 

problems in atomic physics, and could potentially benefit practical applications involving 

quantum control of few- and many-body systems, from quantum simulation and 

information processing, to the quantum control of energy transport in photosynthetic 

systems.  

The project in Chapter 4 examines the decay of ns and np Rydberg states with high 

principal quantum numbers (from 26 to 40) in a cold Rb gas. The measured time 

dependence of the Rydberg population is well described by numerical simulations which 

consider only spontaneous emission and population transfer by blackbody radiation. No 

evidence for the previously reported collective decay is found at atom densities up to 3 × 

10

	

fcm[c. Our conclusion is that the suppression of collective emission is likely due to 

variations in transition energies within the atom sample, dominated by inhomogeneities in 

dipole-dipole exchange interactions for initial s states, or by a combination of DD and 

electric field inhomogeneities for the initial p states. We propose that DD exchange process 

will dephase superradiance unless the geometric enhancement factor 𝐿 λ 	≫ 1 . An 

interesting future experiment would be to measure the lifetimes of lower n-states at constant 

sample excitation length, L and observe a transition from predominantly single atom to 

superradiance decay as 𝐿 λ increases from < 1 to ≫ 1. 

The project in Chapter 5 characterizes the role of DD interactions in the evolution of 

Rydberg wavepackets. As the wavepackets evolve they are influenced by DD interactions, 

predominantly pairwise excitation-exchange processes of the form |s⟩|p⟩ ↔ |p⟩|s⟩. The 

coherent electronic evolution of the ensemble dephases due to the variation in DD coupling 
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strength between atom pairs in the MOT. An extension of this experiment would be to 

measure the macroscopic coherence in an ensemble which has better controlled separations 

between atoms than a random ensemble. The expectation is that the macroscopic coherence 

would be maintained in a separation controlled ensemble than a random ensemble, since 

the variation in DD coupling strength is smaller. Indeed, long term macroscopic coherence 

could serve as an indicator of uniform atom separation in the MOT. Brian Richards is 

currently attempting to utilize controlled DD interactions to manipulate the position 

correlation function of cold trapped atoms. If his project is successful, his technique would 

enable this measurement. 

The project in Chapter 6 utilizes the resonant energy transfer 25s33s↔24p34p to 

demonstrate that electron correlations, induced by controlled DD interactions, can enable 

the coherent transfer of electronic wavepacket motion from atoms to their neighbors. The 

mixed-parity wavepacket composed of 25s and 24p on one set of atoms induces, via DD 

interactions, wavepacket generation on another set of atoms, which are initially on state 

33s. The coherence transfer is observed by measuring the phase difference between the 

initial and induced wavepacket oscillations. A future experiment based on this project 

might systematically investigate the disappearance of coherence transfer signal due to the 

varying separation between atoms in the ensemble. As the atom density or the interaction 

time (as mentioned in Chapter 6) increases, the variation in the induced wavepackets phase 

over the MOT should preclude detection of the wavepacket oscillations. Alternatively, if 

the atom separation can be unified, complete transfer of wavepacket motion, back and forth, 

between initial and induced wavepackets might be observed. This would also open up the 

possibility for exploring beyond nearest neighbor effects in the wavepacket transfer.  

 


