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Abstract 

Manufacturing system is more interconnected and transparent with the deployment of 

distributed sensors and automatic machinery, as well as data storage and processing 

capabilities due to increasing availability of computing resources. Machine learning 

techniques are very promising in gaining useful insights from the huge volume of real-time 

data to facilitate system performance analysis and control decision makings. Despite of 

exciting advances in machine learning research and application in the past decade, it 

remains a challenging task to apply those techniques in the context of manufacturing 

industry. The expected improvements in productivity, quality and efficiency are still 

hampered by the salient gaps in real-time system modeling, system performance evaluation 

and prediction, and theory and algorithms for integrated decision making and optimization 

in the manufacturing domain. 

In particular, reinforcement learning (RL) and multi-agent reinforcement learning 

(MARL), which aim at understanding the dynamics of the process/system and finding the 

optimization strategy through interactions with the environment, have opened up a new 

research avenue of the intended system performance enhancement without a rigid rulebook. 

However, manufacturing system is a complex engineering system with very high 

stochasticity and nonlinearity as well as great varieties in processes/products and scales. 

The system dynamics is deeply coupled with individual machines and processes, and 

constantly evolving due to not only internal factors, e.g., machine and process constraints, 

but also external circumstances like customer demands. This dissertation demonstrates a 

systematic way to use domain knowledge and systematic understanding of the 

manufacturing system to formulate typical control problems in RL/MARL framework in 

the manufacturing domain. In this dissertation, we start from analytical system modeling 

based on basic physics and then derive system properties, which are further used to guide 



 

iv 

 

the problem formulation and algorithm implementation in a variety of significant 

prediction and control problems. The dissertation contributes to the body of research in 

manufacturing systems regarding the following aspects: 

(1) A data-enabled system model for multi-product manufacturing system is 

established based on basic physic law, i.e., the conservation of the flow. The 

product-dependent cycle time and tool setup time are considered in the model. 

It closely connects the data collected from distributed sensors to the system 

states. The model shed lights on knowledge-guided machine learning problems 

formulation and solution. 

(2) A hybrid framework combining deep learning and system modeling is 

developed to predict product completion time, which is critical to downstream 

tasks including production scheduling. Guided by system properties, a recurrent 

sequence in the prediction problem is discovered, and hence Long Short-Term 

Memory, a variant of Recurrent Neural Network, is applied. 

(3) The preventive maintenance control problem is tackled using deep RL 

techniques. It demonstrates the formulation of manufacturing system control 

problems in the RL/MARL frameworks. By implementing both deep RL and 

deep MARL algorithms, it covers the preventive maintenance decision making 

in all spectra of manufacturing systems regarding the sizes and maintenance 

options. 

(4) An innovative multi-agent control framework that integrates multiple levels of 

a manufacturing industry, including system level, process level and machine 

level, are proposed with the aim to optimize system performance considering 

both productivity and quality. The graph model and graph neural networks are 

applied to encode and integrate information across multiple levels and machines. 

Recursive Bayesian Estimation is applied to graph node feature engineering. 
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Chapter 1. Introduction 

NIST (National Institute of Standards and Technology) defines smart 

manufacturing as “fully-integrated and collaborative manufacturing systems that 

respond in real time to meet the changing demands and conditions in the factory, 

supply network, and customer needs” [1]. It marks a historical stage of the 

development of modern manufacturing industry characterized by substantial 

innovations and changes driven by digitization, increased integration of sensors 

into production equipment, increasingly available data, and advances in robotics 

and automaton. The combination of these advances provides unprecedented 

opportunities to develop new and better ways of doing manufacturing [2]–[4]. 

However, the expected improvements in productivity, quality and efficiency are 

still hampered by the salient gaps in real-time system modeling, system 

performance evaluation and prediction, health management for manufacturing 

equipment and systems, and theory and algorithms for integrated decision making 

and optimization in the manufacturing domain. 

On the one hand, there has been a notable lack of modeling method that reflects 

the real-time dynamics of manufacturing systems. A manufacturing system is a 

combination of humans, machinery, and equipment that are bound by a common 

material and information flow [5]. Such systems are inherently stochastic, complex, 

and dynamic, as different components closely interact with each other in a highly 

stochastic environment. Traditional system modeling methods, e.g., those based on 

Markov chain [6]–[8], are mostly based on simplified system structure and 

assumptions. These modeling methods are aimed to evaluate the long-run system 

performance of a manufacturing system given system parameters, e.g., machine 

cycle times and buffer capacities. They are usually applied to the system planning 
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and design stage. A manufacturing system suffers from random disruptions, such 

as a random machine downtime and material shortage, or control inputs, such as 

preventive maintenance actions and production scheduling. The wide deployment 

of the smart manufacturing technologies largely increased the system transparency 

by providing detailed data regarding these random disruptions and system 

component status in a real-time fashion [9]–[11]. A novel system modeling method 

must be developed to describe and track the real-time system dynamics, and form 

the basis for performance analysis, prediction, and effective control in today’s smart 

manufacturing systems, despite the challenges posed by the increased complexity 

of the system structure and more diversified product types. 

On the other hand, innovative and rigorous system modeling paves the way for 

acquiring meaningful systematic understandings and knowledge, which are 

fundamental to implementing knowledge-guided machine learning and 

reinforcement learning. In recent years, the availability of large datasets combined 

with the improvement in algorithms and the exponential growth in computing 

power led to an unparalleled surge of interest in the topic of machine learning and 

reinforcement learning [12]. Machine learning has also seen increasing utilization 

across all levels of the manufacturing system hierarchy [13]–[16]. However, 

compared with the successes of machine learning in specific applications of process 

monitoring, optimization, utilization is limited at the system level of analysis and 

decision-making. This is primarily attributable to the stochastic and non-linear 

dynamical nature of manufacturing systems and the complex multi-stage processes 

and dependencies among vast amounts of heterogeneous data generated therein. An 

in-depth understanding of a problem, its causes, consequences, and desired solution 

state must be known or well investigated to improve the likelihood of effective 

machine learning tool selection and subsequent model building, data analysis, and 

interpretation. These matters all deal with the need to have adequate domain 

expertise during the problem definition phase which is vital to ensure that all 

aspects of the problem are well understood, and no key data or assumption is 

overlooked [17]. Therefore, an innovative system modeling method will be 

established utilizing the sensor data. Based on the modeling and domain knowledge, 
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important topics including system performance evaluation/prediction and real-time 

control problems will be discussed in this dissertation. The remainder of this 

dissertation is organized as follows: 

Chapter 2: An analytical modeling method for multi-product system based on 

conservation of the flow is established. 

Chapter 3: A hybrid framework combining deep learning and system modeling 

is built to predict the product completion time in multi-product system. 

Chapter 4: Rolling horizon method for corrective maintenance control. 

Chapter 5: Preventive maintenance policies based on reinforcement learning 

and multi-agent reinforcement learning are proposed. 

Chapter 6: An integrated manufacturing process-system control framework is 

proposed based on graph neural network and multi-agent reinforcement learning. 

Chapter 7: Summary of scientific contributions, remarks on knowledge-guided 

machine learning and future work directions. 
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Chapter 2. Multi-Product System Modeling 

2.1. Background 

To meet the diverse customer demands, the manufacturing companies strive to 

expand their product lines. Rather than building separate and specific production 

lines for new product types, it is preferable to incorporate similar products into one 

common production line. On the one hand, the capital investment on equipment 

could be reduced tremendously by sharing common machines and tools in a multi-

product line. On the other hand, multi-product line is more flexible in product 

throughputs, and thus can better cope with the fluctuations in market demands. 

Therefore, the multi-product system has been the dominant architecture of 

manufacturing system in many industries, including the automotive industry, the 

semi-conductor industry, etc. 

A high-fidelity modeling for manufacturing is the foundation for systematic 

analysis, performance prediction, and effective control. In the past, there have been 

a lot of research efforts devoted to modeling the multi-product systems [18]–[20]. 

For example, Dasci & Karakul [18] adopt the decomposition approach for modeling 

a single-stage two-product system. But this modeling method is limited to single-

stage systems, and cannot be generalized to multi-machine systems, in which 

machines have complicated interactions among each other, e.g., blockages and 

starvations. Sagawa et al. [19] modeled the multi-product system with apt analogy 

between production system and electronic system, based on which the state space 

equation for multi-product system is established. However, the modeling method 

has an underlying assumption that the buffer capacities are always infinite. It 

excludes a major portion of the production systems in the real industry, where the 

buffer capacity is often limited by spaces and costs. Another important realistic 
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consideration in the system modeling is the tool setup time. The multi-product 

system usually saves a lot of capital investment on machine and equipment since 

they can be shared among different product types [21]. It requires process engineers 

take considerable efforts to incorporate the process needs of all product types into 

shared equipment or tools. Despite this, sometimes it is unavoidable that some 

dedicated tools have to be designed for specific product types. In this case, the 

machine has to set up dedicated tools between two consecutive products if they are 

of different types, and the extra time used to change the tools are referred to as tool 

setup time. The setup time further adds to the complications in modeling the multi-

product system, and therefore a lot of modeling methods [18], [19] just assume non-

delay changeover between product types. Therefore, it is crucial to consider the 

complex interactions among machines due to various factors, including random 

machine failures and finite buffer capacities etc., as well as the tool setup time, only 

based on which can we further explore and understand the system properties. 

2.2. System modeling 

 

Figure 2.1. General structure of a serial production system 

A manufacturing system as shown in Figure 2.1 is a stochastic dynamic system, 

which can be modeled by the state space equation: 

�̇�(𝑡) = 𝑭(𝒃(𝑡),𝑼(𝑡),𝑾(𝑡)) (2.1) 

𝒀(𝑡) = 𝑯(𝒃(𝑡)) (2.2) 

The physical meanings of the variables and functions are as the following: 

• 𝒃(𝑡) = [𝑏2(𝑡), 𝑏3(𝑡), … , 𝑏𝑀(𝑡)]𝑇 are the buffer levels at time 𝑡. The buffer 

level is treated as the system state in this model; 
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• 𝑼(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑀(𝑡)]𝑇 are the control inputs for machines at time 

𝑡. In this research, 𝑼(𝑡) are the control decisions of production scheduling 

for each machine; 

• 𝑾(𝑡) = [𝑊1(𝑡),𝑊2(𝑡), … ,𝑊𝑀(𝑡)]𝑇  are the random disturbances to the 

system. In this research, it refers to the machine random failures. 

𝑊𝑖(𝑡) = {
1, if machine 𝑆𝑖 is down at time 𝑡
0, otherwise                                       

(2.3) 

• 𝑭(∗) = [𝐹2(∗), 𝐹2(∗), … , 𝐹𝑀(∗)]𝑇  is the dynamic function for the system 

state; 

• 𝒀(𝑡) = [𝑌1(𝑡), 𝑌2(𝑡), … , 𝑌𝑀(𝑡)]𝑇 is the system output at time 𝑡, where 𝑌𝑖(𝑡) 

denotes the accumulated production count of machine 𝑆𝑖 up to time 𝑡; 

• 𝑯(∗) = [𝐻1(∗), 𝐻2(∗),… , 𝐻𝑀(∗)]𝑇  is the observation function, which 

relates the system state to the system output; 

For multi-product lines, the system dynamics is heavily coupled with the 

production sequence. In this research, one product is represented with a 𝐾 × 1 

vector 𝒒𝑛, where 𝑛 ∈ ℤ+ is the index of the product. The 𝑘𝑡ℎ entry is one if product 

𝒒𝑛 is of type 𝑘, and other entries are all zeros, i.e. 

𝒒𝑛(𝑘) = {
1,   if the type of 𝑛𝑡ℎ product is 𝑘
0,   otherwise                                    

(2.4) 

A product sequence is a matrix that assembles all the product in sequence. Let 

𝑸(𝑡) denote the product sequence at time 𝑡, where 

𝑸(𝑡) = [𝒒1, 𝒒2, … , 𝒒𝑛, … ] (2.5) 

For example, the product sequence for a production line that processes three 

product types may have the following form: 

𝑸 = [
0 1 1 0 …
1 0 0 0 …
0 0 0 1 …

] 

Based on this product sequence, the first product 𝒒1 = [0, 1, 0]𝑇 is of type two, 

the second and third products, denoted as 𝒒2 = [1, 0, 0]𝑇  and 𝒒3 = [1, 0, 0]𝑇 
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respectively, are both of type one, and the fourth product 𝒒4 = [0, 0, 1]𝑇 is of type 

three; 

For every machine, it has a fixed cycle time when processing a particular 

product type. Therefore, the cycle time of a machine can be different when it is 

processing different types of products. The cycle time for machine 𝑆𝑖 is represented 

as 

𝑻𝑖 = [𝑇𝑖1, 𝑇𝑖2, … , 𝑇𝑖𝐾]𝑇 (2.6) 

where 𝑇𝑖𝑘, 𝑘 = 1, 2, … , 𝐾, is the cycle time of machine 𝑆𝑖 when process a product 

of type 𝑘. 

When one machine processes two consecutive products of different types, it 

might require additional time to set up dedicated tools for the incoming product. 

The additional time needed when switching product type is referred to as tool setup 

time. The setup time for machine 𝑆𝑖 is denoted with a 𝐾 × 𝐾 matrix 

𝑻𝒊
𝒔𝒕 = [𝑇𝑖,𝑘𝑙

𝑠𝑡 ]
𝐾×𝐾

(2.7) 

where 𝑇𝑖,𝑘𝑙
𝑠𝑡 ≥ 0 is the tool setup time when machine 𝑆𝑖 switches from product type 

𝑘 to type 𝑙. To be concrete, the setup time matrix 𝑻𝑖
𝑠𝑡 has the following form. 

𝑻𝑖
𝑠𝑡 =

[
 
 
 
 

0 𝑇𝑖,12
𝑠𝑡 ⋯ 𝑇𝑖,1𝐾

𝑠𝑡

𝑇𝑖,21
𝑠𝑡 0 ⋯ 𝑇𝑖,2𝐾

𝑠𝑡

⋮ ⋮ ⋱ ⋮
𝑇𝑖,𝐾1

𝑠𝑡 𝑇𝑖,𝐾2
𝑠𝑡 ⋯ 0 ]

 
 
 
 

(2.8) 

The tool setup time representation proposed in this paper implies that the setup 

time can be sequence-dependent, as 𝑇𝑖,𝑘𝑙
𝑠𝑡  and 𝑇𝑖,𝑙𝑘

𝑠𝑡  are not necessarily equal, i.e., 

tool setup time for machine 𝑆𝑖  switching from product type 𝑘  to type 𝑙  can be 

different from switching product types of the other way. 

The cycle time of machine 𝑆𝑖 can be calculated as 𝒒𝑛
𝑇𝑻𝑖, when machine 𝑆𝑖 is 

processing product 𝒒𝑛. In addition, there could be a setup time if product 𝒒𝑛 and 

𝒒𝑛−1 are of different types. Leveraging the setup time representation, the setup time 

can be conveniently calculated as 𝒒𝑛−1
𝑇 𝑻𝑖

𝑠𝑡𝒒𝑛
𝑇 . The processing time needed for 
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product 𝒒𝑛, i.e., the actual cycle time, is the summation of the original cycle time 

𝒒𝑛
𝑇𝑻𝑖 and the setup time 𝒒𝑛−1

𝑇 𝑻𝑖
𝑠𝑡𝒒𝑛. 

2.3. Model derivation based on conservation of flow 

The dynamic function is derived based on the conservation of the flow. At any 

time 𝑡, the production counts of any two machines 𝑆𝑖 and 𝑆𝑗, ∀𝑖 ≠ 𝑗, satisfy: 

𝑌𝑖(𝑡) − 𝑌𝑗(𝑡) = {
∑ 𝑏𝑘(𝑡) −

𝑗
𝑘=𝑖+1 ∑ 𝑏𝑘(0)𝑗

𝑘=𝑖+1 , 𝑖 < 𝑗

∑ 𝑏𝑘(0)𝑖
𝑘=𝑗+1 − ∑ 𝑏𝑘(𝑡), 𝑖 > 𝑗𝑖

𝑘=𝑗+1

(2.9) 

The production difference cannot exceed a certain boundary 𝛽𝑖𝑗, where 𝛽𝑖𝑗 is 

the condition that the buffer levels between two machines are full (𝑖 < 𝑗) or empty 

(𝑖 > 𝑗). 

𝛽𝑖𝑗 = {
∑ 𝐵𝑘

𝑗
𝑘=𝑖+1 − ∑ 𝑏𝑘(0)𝑗

𝑘=𝑖+1 ,       𝑖 < 𝑗

∑ 𝑏𝑘(0)𝑖
𝑘=𝑗+1 ,                              𝑖 > 𝑗

(2.10) 

When 𝑌𝑖(𝑡) − 𝑌𝑗(𝑡) < 𝛽𝑖𝑗 , machine 𝑆𝑗  does not constrain machine 𝑆𝑖 ; when 

𝑌𝑖(𝑡) − 𝑌𝑗(𝑡) = 𝛽𝑖𝑗, machine 𝑆𝑖 is referred to be starved (if 𝑖 > 𝑗) or blocked (if 𝑖 <

𝑗 ) by machine 𝑆𝑗 . Let 𝜃𝑖(𝑡), 𝑖 = 1,2, … ,𝑀 , denotes the operational status of 

machine 𝑆𝑖  at time 𝑡 . Since we only consider machine random failures in this 

research, we have 

𝜃𝑖(𝑡) = 1 − 𝑊𝑖(𝑡) (2.11) 

Let 𝜻(𝑡) = [𝜁𝑖𝑗(𝑡)]𝑀×𝑀
 be a matrix used to indicate the interactions among 

machines: 

𝜁𝑖𝑗(𝑡) = {
1,     𝑖𝑓 𝑌𝑖(𝑡) − 𝑌𝑗(𝑡) = 𝛽𝑖𝑗, 𝑖 ≠ 𝑗

∞,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             
(2.12) 

It is noted that machine 𝑆𝑖 has to operate at the processing speed of machine 𝑆𝑗 

if 𝑆𝑖 is constrained by 𝑆𝑖. 
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𝑣𝑖(𝑡) = min {
𝜁𝑖𝑗(𝑡)𝜃𝑗(𝑡)

𝑇𝑗(𝑡)
,
𝜃𝑖(𝑡)

𝑇𝑖(𝑡)
} (2.13) 

where 𝑇𝑖(𝑡) is the actual cycle time of machine 𝑆𝑖 at time 𝑡. In a single-product 

system, the cycle time is a fixed value for each machine, however, in a multi-

product system the cycle time of a machine is dependent on the product type it is 

processing. 

To determine the actual cycle time of one machine at a particular time 𝑡, one 

just needs to identify the product index 𝑛 that the machine is processing at that time 

point. Let 𝑛𝑖(𝑡) be the index of the product that machine 𝑆𝑖 is processing at time 𝑡, 

then we have 

𝑛𝑖(𝑡) = ⌊𝑌𝑖(𝑡) + ∑ 𝑏𝑗(0)

𝑀

𝑗=𝑖+1

⌋ + 1 (2.14) 

where ⌊∗⌋ is the floor operator, e.g., ⌊3.14⌋ = 3, and 𝑏𝑗(0) is the initial buffer level 

of buffer 𝐵𝑗. Therefore, the cycle time of machine 𝑆𝑖 at time 𝑡 is 

𝑇𝑖(𝑡) = 𝒒𝑛𝑖(𝑡)
𝑇 𝑻𝑖 + 𝒒𝑛𝑖(𝑡)−1

𝑇 𝑻𝑖
𝑠𝑡𝒒𝑛𝑖(𝑡)

(2.15) 

We can extend Eq. (2.15) by considering the interactions between machine 𝑆𝑖 

and all the other machines in the line. 

𝑣𝑖(𝑡) = min {
𝜁𝑖1(𝑡)𝜃1(𝑡)

𝑇1(𝑡)
,
𝜁𝑖2(𝑡)𝜃2(𝑡)

𝑇2(𝑡)
, … ,

𝜃𝑖(𝑡)

𝑇𝑖(𝑡)
, … ,

𝜁𝑖𝑀(𝑡)𝜃𝑀(𝑡)

𝑇𝑀(𝑡)
 } (2.16) 

The change rate of 𝑏𝑖(𝑡)  is the speed difference between its downstream 

machine 𝑆𝑖 and upstream machine 𝑆𝑖−1. 

𝑏�̇�(𝑡) = 𝑣𝑖(𝑡) − 𝑣𝑖−1(𝑡) = 𝐹𝑖(𝒃(𝑡)) (2.17) 

The accumulated production count of machine 𝑆𝑖 is 

𝑌𝑖(𝑡) = ∫ 𝑣𝑖(𝜏)𝑑𝜏
𝑡

0

= 𝐻𝑖(𝒃(𝑡)) (2.18) 
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Thus, the dynamic function 𝑭(∗)  and the measurement function 𝑯(∗)  are 

derived for the multi-product serial production line. With this model, the system 

states and other important variables at any time point can be obtained as long as the 

production sequence 𝑸(𝑡) and machine random failures 𝑾(𝑡) up to that time point 

is known. 

2.4. System identification use case 

There are a lot of potential applications of the derived mathematical model for 

multi-product system, including product completion time prediction in Chapter 3. 

In this chapter, a simple example on system identification will be demonstrated. 

Based on the modeling method proposed in the preceding section, we will conduct 

the analysis on the performance of a two-machine-one-buffer system with two 

product types. The tool setup time is not considered in this demonstrated case. The 

system architecture is as shown in Figure 2.2. 

 

Figure 2.2. A simple two-machine-two-product system 

For single-product systems, people usually take the production counts within a 

given period of time, e.g., one shift, one week, etc., as the performance measure. 

However, for multi-product systems, the production counts cannot serve as a 

justified performance measure, since during a given time period, the production 

count varies with product types. 

To find a proper measure for multi-product system, we should take a look into 

the daily operation of a manufacturing system. The total number of a particular 

product type to be produced is not arbitrary. The production manager would receive 

a specific production order from the production planning department. The 

production manager aims to arrange the production sequence such that the order 
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could be processed efficiently. Therefore, the total time it takes to finish all the 

orders could be a direct measure of the efficiency. 

Suppose the production order is {𝑁1, 𝑁2}, which means 𝑁1 products of type 1 

and 𝑁2 products of type 2 are demanded, then the total number of the products to 

be produced is 

𝑁 = 𝑁1 + 𝑁2 (2.19) 

The performance measure for the two-machine-one-buffer system is the order 

finish time, denotes as 𝑇. 

𝑇 = inf{𝑡|𝑌2(𝑡) = 𝑁} (2.20) 

The order finish time 𝑇 highly depends on the production sequence 𝑸 and the 

system architecture. The exact relationship among them has yet to be investigated. 

In this section, we will give an upper bound and a lower bound for the order finish 

time. 

𝑇𝐿 ≤ 𝑇 ≤ 𝑇𝑈 (2.21) 

where 

𝑇𝐿 = max
𝑖 =1,2

{𝑁1𝑇𝑖1 + 𝑁2𝑇𝑖2} (2.22) 

and 

𝑇𝑈 = 𝑁1 max
𝑖=1,2

{𝑇𝑖1} + 𝑁2 max
𝑖=1,2

{𝑇𝑖2} (2.23) 

The upper bound is derived by assuming that the buffer capacity is zero. Then 

the two machines are aggregated to one virtual machine with cycle times max
𝑖=1,2

{𝑇𝑖1} 

for product type 1 and max
𝑖=1,2

{𝑇𝑖2} for product type 2. Then the total time it takes to 

finish 𝑁1 product type 1 and 𝑁2 product type 2 is 𝑁1 max
𝑖=1,2

{𝑇𝑖1} + 𝑁2 max
𝑖=1,2

{𝑇𝑖2}. 

From the perspective of manufacturing process, the cycle time is the least time 

for one machine to finish all the process on a single product. The essential time for 

machine 𝑆𝑖 to finish all the processes on 𝑁1 product 1 and 𝑁2 product 2 is 𝑁1𝑇𝑖1 +
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𝑁2𝑇𝑖2. Regardless the system architecture and production sequence, the order finish 

time can never be less than max
𝑖 =1,2

{𝑁1𝑇𝑖1 + 𝑁2𝑇𝑖2}, which yields the lower bound. 

These bounds would provide the production manager with a quick reference for 

the order finish time. More importantly, the lower bound 𝑇𝐿 renders a clear target 

of order finish time for the production manager, who endeavors to arrange the 

production sequence 𝑸 to achieve a better performance. 

Definition 2.1. For a two-machine-one-buffer production line with 

intermediate buffer capacity 𝐵2, given the production order {𝑁1, 𝑁2} and the cycle 

times 𝑻1 and 𝑻2, if there exists a production sequence 𝑸, such that the order finish 

time 𝑇 achieves the lower bound 𝑇𝐿, i.e. 𝑇 = 𝑇𝐿 = 𝑚𝑎𝑥
𝑖=1,2

{𝑁1𝑇𝑖1 + 𝑁2𝑇𝑖2}, then the 

production sequence 𝑸 belongs to the best sequences. 

Based on the definition, the best sequence might not be unique. The problem of 

interest is that given the system architecture and the production order, whether or 

not the best production sequences exist. 

Let 𝜂1 and 𝜂2 be the ratio of product 1 and 2 in the production order, i.e., 𝜂1 =

𝑁1/𝑁 and 𝜂2 = 𝑁2/𝑁. Then 𝑇𝐿 can be rewritten as: 

𝑇𝐿 = 𝑁 ⋅ max
𝑖 =1,2

{𝜂1𝑇𝑖1 + 𝜂2𝑇𝑖2} (2.24) 

The machine corresponds to 𝑇𝐿  is said to be the slowest machine for the 

production order {𝑁1, 𝑁2}, denoted as 𝑆𝑀∗, where 

𝑀∗ = argmax
𝑖=1,2

{𝜂1𝑇𝑖1 + 𝜂2𝑇𝑖2} (2.25) 

This is closely analogous to the slowest machine in the single-product system. 

In a single-product system, the system capacity is directly determined by the 

slowest machine and any stoppage of the slowest machine would lead to permanent 

production loss [22], [23]. Similarly, in multi-product scenario, the slowest 

machine 𝑆𝑀∗ should also always process the products at its rated speeds, otherwise, 

the best system performance, i.e., lower bound of order finish time 𝑇𝐿, can never be 

achieved. 
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Therefore, a production sequence belongs to the best sequences only when the 

slowest machine 𝑆𝑀∗  is not constrained, i.e., blocked or starved, during the 

processing of the whole production order. 

Note that the slowest machine 𝑆𝑀∗  in multi-product systems is not necessarily 

the slowest machine for a particular product type. Machine 𝑆𝑀1
∗  and 𝑆𝑀2

∗  are said to 

be the slowest machine for product type 1 and type 2 respectively, where 𝑀1
∗ =

argmax
𝑖=1,2

{𝑇𝑖1} and 𝑀2
∗ = arg max

𝑖=1,2
{𝑇𝑖2}. 

There are three cases regarding the relationship among the slowest machines 

for product types and that for the production order, see Table. 1. Note that the 

situation where 𝑀1
∗ = 𝑀2

∗ ≠ 𝑀∗ (the last two columns) does not exist. 

Table 2.1. Different scenarios for slowest machine locations 

Slowest Machines 𝑀∗ 𝑀1
∗ 𝑀2

∗ 

Case 1 

1 1 1 

2 2 2 

Case 2 

2 1 2 

2 2 1 

Case 3 

1 2 1 

1 1 2 

Not Exist 

2 1 1 

1 2 2 

 

In the following, we will conduct case-by-case discussions on the relationship 

between the existence of the best sequences and the system architecture. 

Case 1: 𝑴∗ = 𝑴𝟏
∗ = 𝑴𝟐

∗  

In this case, the slowest machine for the production order is the same to the 

slowest machine for each product type. The lower bound 𝑇𝐿 can be rewritten as 

𝑇𝐿 = max
𝑖 =1,2

{𝑁1𝑇𝑖1 + 𝑁2𝑇𝑖2} = 𝑁1𝑇𝑀∗1 + 𝑁2𝑇𝑀∗2 . The upper bound 𝑇𝑈  can be 
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rewritten as 𝑇𝑈 = 𝑁1 max
𝑖=1,2

{𝑇𝑖1} + 𝑁2 max
𝑖=1,2

{𝑇𝑖2} = 𝑁1𝑇𝑀1
∗1 + 𝑁2𝑇𝑀2

∗2 = 𝑁1𝑇𝑀∗1 +

𝑁2𝑇𝑀∗2.Compare upper and lower bounds, we have 𝑇 = 𝑇𝐿 = 𝑇𝑈. It is noted that 

the above derivation is independent of the production sequence 𝑸. Therefore, in 

Case 1, any production sequence is the best sequence. In clean case scenario, the 

system performance is exactly the same regardless of the production sequence and 

buffer capacity. 

Case 2: 𝑴𝟏
∗ ≠ 𝑴𝟐

∗  and 𝑴∗ = 𝟐 

Without loss of generality, we conduct the analysis based on 𝑀∗ = 𝑀2
∗ = 2 and 

𝑀1
∗ = 1. In this case, the slowest machine, i.e., machine 𝑆2, should never be starved 

in order to achieve a best sequence. 

The simple fact is that feeding product 2 to the system would help accumulate 

the buffer level, which is preferable, and feeding product 1 would drain the buffer, 

which leads to starvation when the buffer is empty. 

To avoid such starvation, at time 𝑡 = 0, the first product fed to the system 

should be product 2, which helps accumulate the buffer level. After the buffer 

reaches a desirable level, product type 1 can be fed to the system such that the 

starvation would not arise. 

Let 𝛾 be the critical number of product 2 fed to the system, such that at least 

one product of type 1 can be processed without causing starvation. Together they 

form a small product bundle (Figure 2.3). The buffer level goes back to zero exactly 

when the bundle is finished. And then another bundle can be fed to the system. 

 

Figure 2.3. Bundled sequence for case 2 
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Now we try to find the critical value 𝛾. The buffer level after feeding 𝛾 products 

2 is 𝛾𝑇12(1/𝑇12 − 1/𝑇22). The critical condition is that the time for machine 𝑆1 to 

process one product of type 1 should be equal to that for machine 𝑆2 to process all 

the remaining product 2 in the buffer and one product of type 1, i.e., 

𝑇11 = 𝛾𝑇12 (
1

𝑇12
−

1

𝑇22
) ⋅ 𝑇22 + 𝑇21 (2.26) 

Solve the equation for the value of 𝛾. 

𝛾 =
𝑇11 − 𝑇21

𝑇22 − 𝑇12

(2.27) 

There are two things to note. Firstly, there is a minimum requirement for the 

ratio of product 2 in the order to ensure that we can pair every one product 1 with 

at least 𝛾 product 2, i.e., 

𝜂2: 𝜂1 ≥ 𝛾: 1 (2.28) 

Insert Eq. (2.27) into Eq. (2.28), yields 

𝜂1𝑇21 + 𝜂2𝑇22 ≥ 𝜂1𝑇11 + 𝜂2𝑇12 (2.29) 

Actually, this inequality always holds, since machine 𝑆2 is the slowest machine. 

Therefore, the requirement for the product ratio is always fulfilled. 

Additionally, during the processing of the bundle, there is a maximum value of 

the buffer level, which can be interpreted as the requirement for the buffer capacity. 

In other words, if the buffer capacity is lower than the maximum buffer level during 

the processing of the bundle, then product 1 would always cause starvation no 

matter how many product 2 has been fed to the system before it. 

If 𝑇11 ≥ 𝑇22, the buffer level starts to decline once product 1 has been fed to the 

system. The peak level is the buffer level after 𝛾 product 2 have been fed to the 

system. Since 𝛾 might not always be an integer, we need to round it to its ceil. 

𝐵2 ≥ ⌈
𝑇11 − 𝑇21

𝑇22 − 𝑇12
⌉
𝑇22 − 𝑇12

𝑇22

(2.30) 
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If 𝑇11 < 𝑇22, the buffer level continues to grow when product 1 is fed to the 

system and starts to decline only when all the remaining product 2 has left the buffer. 

𝐵2 ≥ ⌈𝛾⌉
𝑇22 − 𝑇12

𝑇22
+ (

1

𝑇11
−

1

𝑇22
) ⌈𝛾⌉

𝑇22 − 𝑇12

𝑇22

(2.31) 

Simplify the equation, we have 

𝐵2 ≥ ⌈
𝑇11 − 𝑇21

𝑇22 − 𝑇12
⌉
𝑇22 − 𝑇12

𝑇11

(2.32) 

Combine Eq. (2.31) and Eq. (2.32), the best sequence exists only if the buffer 

capacity meets the following requirement 

𝐵2 ≥ ⌈
𝑇11 − 𝑇21

𝑇22 − 𝑇12
⌉

𝑇22 − 𝑇12

min{𝑇11, 𝑇22}
(2.33) 

In conclusion, for Case 2, the best production sequence exists if the buffer 

capacity satisfies the above condition. If the condition is satisfied, then one of the 

best production sequences is as shown in Figure 2.3. We call the production 

sequence as smallest bundle sequence, since you cannot further reduce the number 

of each product types in the bundle. The smallest bundle sequence is the one that 

requires the least buffer capacity to be best sequence. 

Case 3: 𝑴𝟏
∗ ≠ 𝑴𝟐

∗  and 𝑴∗ = 𝟏 

Similarly, we only conduct the analysis based on 𝑀∗ = 𝑀2
∗ = 1 and 𝑀1

∗ = 2. In 

order to achieve the best sequence, the slowest machine, i.e., machine 𝑆1, should 

never be blocked. 

If the buffer capacity is infinite, then machine 𝑆1 would never be blocked, and 

any production sequence is the best sequence. In contrast, if the buffer capacity is 

zero, then 𝑆1  is blocked whenever product 1 is fed to the system and the best 

sequence does not exist. Therefore, there must also exist a critical buffer capacity 

in this case, which directly determines the existence of the best production 

sequences. 
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Figure 2.4. Bundled sequence for case 3 

Again, we try to process the products with the smallest bundle, since it requires 

the least buffer capacity. The bundle contains only one product 1 and 𝛾 product 2 

(Figure 2.4). The buffer level after feeding product 1 is 𝑇11(1/𝑇11 − 1/𝑇21). And 

𝛾 is the critical number of product 2 fed to the system after product 1 such that the 

buffer level resumes empty. Following the same procedure, we will have 

𝜂1𝑇11 + 𝜂2𝑇12 ≥ 𝜂1𝑇21 + 𝜂2𝑇22 (2.34) 

This inequality always holds since machine 𝑆1  is the slowest machine. 

Therefore, the existence of the best production sequence is always independent of 

the specific production order. 

Similar to the previous case, the buffer capacity should be larger than the 

maximum buffer level during the processing of the smallest bundle. If 𝑇12 ≥ 𝑇21, 

the buffer starts to decline once product 2 is fed to the system. 

𝐵2 ≥
𝑇21 − 𝑇11

𝑇21

(2.35) 

If 𝑇12 < 𝑇21, the buffer level continues to grow when product 2 is fed to the 

system and starts to decline only when all the remaining product 1 has left the buffer. 

𝐵2 ≥
𝑇21 − 𝑇11

𝑇21
+ (

1

𝑇12
−

1

𝑇21
) ⋅ (

𝑇21 − 𝑇11

𝑇21
) ⋅ 𝑇21 (2.36) 

Simplify the above equation, yields 

𝐵2 ≥
𝑇21 − 𝑇11

𝑇12

(2.37) 
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We combine Equation (40) and (42), then the requirement for the existence of 

the best production sequence is: 

𝐵2 ≥
𝑇21 − 𝑇11

min{𝑇12, 𝑇21}
(2.38) 

Therefore, for Case 3, the only condition for the existence of best production 

sequences is the buffer capacity requirement in Eq. (2.38). 

2.5. Summary 

In this chapter, an analytical system model for multi-product system is proposed. 

The product-dependent cycle time and tool set-up time are considered in the model. 

The model is analytically derived based on the conservation of the flow. It provides 

a solid foundation for system performance prediction and control. A use case for 

analyzing the best sequence in two-machine-two-product system is also 

demonstrated in this chapter. 

2.6. Related work 

Part of the results presented in this chapter have been published in [24]–[29]. 
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Chapter 3. Product Completion Time 

Prediction 

3.1. Background 

Product completion time (PCT), sometimes also referred to as makespan, 

remaining time, lead time or flow time, is the time needed to complete the required 

manufacturing processes on the product. In manufacturing systems, the accurate 

prediction of PCT is fundamental to production scheduling [30]–[32]. The latest 

evolvements of manufacturing systems have posed new challenges in PCT 

prediction. On the one hand, driven by intense market competitions, notable 

increases in product diversity and product system complexity have made it more 

difficult to predict PCT. On the other hand, with the rise of Manufacturing as a 

Service (MaaS) [33], [34], PCT is no longer just an internal reference for production 

manager to schedule productions, but also has become a major commitment to 

customers. Therefore, effective PCT prediction is much needed in the context of 

today’s smart and customer-oriented manufacturing. 

The existing methods for PCT prediction could be categorized into three 

categories, namely, analytical, simulation and data-driven methods. The analytical 

methods are mostly built on stochastic process models, e.g., queueing models and 

Markov Chain etc. For example, Altendorfer & Jodlbaure [35] derive the expected 

PCT in M/M/1 production systems using queueing theory, where M/M/1 denotes a 

single-machine production system whose processing time and time between order 

arrivals both follow exponential distribution. Savasaneril et al. [36] discusses the 

lead time quotation problem in a similar production system but with the 

consideration of inventory level. The applications of analytical methods are mostly 
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limited to simple systems with strict assumptions. The production system 

investigated in this paper is the multi-product serial production line, which is known 

to have extremely complex, non-linear and stochastic dynamics in nature. 

Rajagopalan & Karimi [37] manages to analytically derive the PCT in multi-

product serial production line considering transfer time and setup time, but only by 

assuming there is no stochastic factors. 

Unlike analytical methods, simulation methods [38]–[41] should work for most 

types of production systems as long as a reliable simulator can be established. Hubl 

et al. [38] introduces a flexible discrete event simulation model for PCT prediction 

considering stochastic factors in processing times, tool setup times and purchasing 

lead times. In [40], a method based on Petri Net is proposed to predict PCT in 

flexible manufacturing systems. In essence, the simulation based PCT prediction 

relies on large numbers of repetitive simulations to obtain sufficient amounts of 

random samples, so as to compute the expected PCT. Consequently, the nuisance 

of simulation methods is that it requires long computing time and enormous 

computing resources, which prohibits the simulation methods from being used in 

real-time production scheduling scenarios. 

The data-driven methods [42]–[45] take advantages of the historical data to 

discover the hidden patterns mapping from input observations to PCT with 

statistical learning techniques. For example, Lingitz et al. [44] conducts a case study 

on PCT prediction using real data from a semiconductor production system. The 

raw data are lumped into several different regression models, including linear 

model, Random Forest, Support Vector Machine and K-Nearest Neighbors etc., in 

order to find the optimal model with the highest prediction accuracy. Recently, 

researchers have also attempted to apply deep learning techniques to PCT 

prediction. In [45], a real-time PCT prediction method is proposed based on Deep 

Belief Network (DBN) [46], [47]. The types and waiting list of all work-in-process 

(WIP) products are captured using Radio-Frequency Identification (RFID), and 

then the data is fed to the DBN to predict the PCT in a real-time fashion. However, 

the referred research [45] does not consider the frequent random disturbances in the 
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production system. In [42], besides the RFID data that reflect the WIP product 

status, Fang et al. [42] further includes real-time data regarding machine and tool 

conditions in the proposed PCT method using Deep Stacked Sparse Autoencoder 

(S-SAE) model [48]. 

Thanks to the easy access to computing resources and availability of abundant 

real-time data on today’s plant floor, data-driven methods, especially those based 

on deep learning, have taken the PCT prediction to the next level. However, the 

deep learning-based method also has its disadvantages. In [42], [45], the deep 

learning model, either DBN or S-SAE, developed for completion time prediction 

almost works as a ‘black box’ – all kinds of data collected from plant floor are 

indiscriminately lumped into deep learning algorithms. In these studies, PCT 

prediction is approached as purely machine learning problems. Few studies in this 

area are based themselves on a clear system model and not much domain 

knowledge is incorporated into the machine learning model construction, which 

turns out to be a great challenge facing the deep learning-based methods for PCT 

prediction. 

In this context, we propose to a hybrid approach for product completion time 

prediction by integrating a novel system model and deep learning technique. The 

system model and knowledge are not only used to guide the deep learning model 

development. More importantly, the system model is directly used in the process of 

predicting PCT. The advantages of the proposed hybrid approach are two-fold. 

Firstly, the training efficiency and prediction accuracy of the deep learning model 

could be greatly improved with the guidance of domain knowledge. Secondly, 

compared to pure deep learning approach, the production managers in real industry 

would be more likely to embrace the proposed hybrid approach as it incorporates 

the rigorously derived system understanding and knowledge acquired from plant 

floor. 
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3.2. Problem descriptions 

In this chapter, PCT of product 𝒒𝑛  refers to the time duration it takes to 

complete all the remaining processes for the product. In literatures, PCT is also 

referred to as makespan, remaining time, lead time or flow time, although 

sometimes they might have slightly different meanings. We will consistently use 

the term PCT in this paper. The formal definition of PCT is given in the following. 

Definition 3.1. Given a product sequence 𝑸, at time 𝑡, the product completion time 

(PCT) for the 𝑛𝑡ℎ product 𝒒𝑛 in product sequence 𝑸, denoted as 𝑦𝑛(𝑡), is defined 

as 

𝑦𝑛(𝑡) = 𝑚𝑎𝑥{0, 𝑖𝑛𝑓{𝑡′ ∈ ℝ+|𝑌𝑀(𝑡′) ≥ 𝑛} − 𝑡} (3.1) 

where 𝑌𝑀(𝑡′) is the accumulative production count of the end-of-line machine 𝑆𝑀 

at time 𝑡′. 

In the definition, 𝑌𝑀(𝑡′) ≥ 𝑛  means that the accumulative production count 

𝑌𝑀(𝑡′) of the end-of-line machine 𝑆𝑀 has surpassed the product index 𝑛 at time 𝑡′, 

and inf{𝑡′ ∈ ℝ+|𝑌𝑀(𝑡′) ≥ 𝑛} is the exact time point when product 𝒒𝑛 leaves the 

system and is deemed as a completed product. Therefore, 

inf{𝑡′ ∈ ℝ+|𝑌𝑀(𝑡′) ≥ 𝑛} − 𝑡  is the time needed to complete product 𝒒𝑛  from 

current time 𝑡, which is defined as PCT. 

Compared to traditional PCT definitions, the proposed definition extends the 

concept of PCT to product level and real-time scenario, which would meet the 

practical needs in modern manufacturing systems. On the one hand, the proposed 

definition extends the concept of product completion time to every single product 

in the sequence, including not only incoming product, but also WIP products that 

are already in the line, as traditional PCT predictions mostly concern only the 

former case. Clear information on when a customized product could be completed, 

either it is yet to be processed or it is being processed at the moment, would add 

massive value to the business. On the other hand, the PCT defined in this paper is 

evaluated in real time. It answers the question that how much time needed to 
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complete the product starting from current time 𝑡 given real-time system status. 

Therefore, we can leverage abundant data collected from smart manufacturing 

system regarding the fast-changing system status to make more precise predictions 

on PCT. 

However, the PCT prediction is not a trivial task. PCT of a product can be 

decomposed into two parts, i.e., the time duration the product is being processed by 

machines, and the time duration it waits in the queue to be processed. Therefore, 

PCT is partially affected by machine random failures. For single-machine system 

or closely connected production system without intermediate buffers, any random 

failures on machine(s) before a product is completed can be directly added to PCT. 

The PCT prediction on these systems is equivalent to predicting total durations of 

machine random failures in a given time period. However, PCT prediction in multi-

product system described in this paper is far more complicated than just predicting 

machine random failures. It is hard to determine the real impacts of machine 

random failures on PCT in multi-product serial lines with considering intermediate 

buffers, since it is coupled with real-time system status such as buffer contents and 

preceding products. There is not even a closed-form representation for PCT if all 

the future random failures are known. Therefore, there is an enormous state space 

in PCT prediction problem that is intractable if only with analytical model. 
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Figure 3.1. Framework for real-time PCT prediction in production system 

The general approach of the proposed PCT prediction can be described as below. 

As shown in Figure 3.1, the sensors keep monitoring the real-time system status 

and transmitting the data to factory cloud. These data might include: (1) machine 

operation status; (2) WIP product types and locations in the system; (3) products 

incoming or the production manager intends to add to the incoming queue. A PCT 

prediction system will process these data in a real-time fashion to predict the PCT 

for every product, either WIP or incoming. The predicted PCT may serve multiple 

purposes, for example, production manager can schedule productions by trying 

different incoming production sequence to compare the PCTs, or customers that 

already placed their orders can track the PCT in real time. 
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3.3. System properties 

 

Figure 3.2. Real-time status of a multi-product system 

Given a multi-product system as shown in Figure 3.2, the formal definition of 

the product completion time is given in the following. 

Definition 3.2. Given a product sequence 𝑸, at time 𝑡, the product completion 

time (PCT) for the 𝑛𝑡ℎ  product 𝒒𝑛  in product sequence 𝑸, denoted as 𝑦𝑛(𝑡), is 

defined as 

𝑦𝑛(𝑡) = 𝑚𝑎𝑥{0, 𝑖𝑛𝑓{𝑡′ ∈ ℝ+|𝑌𝑀(𝑡′) ≥ 𝑛} − 𝑡} (3.2) 

where 𝑌𝑀(𝑡′) is the accumulative production count of the end-of-line machine 𝑆𝑀 

at time 𝑡′. 

In addition, three important properties are derived based on the proposed model 

and systematic understandings.  

Property 3.1. There exists a strict lower bound �̂�𝑛(𝑡) for the PCT of product 

𝒒𝑛, denoted as 𝑦𝑛(𝑡), at time 𝑡, and it can be evaluated as 

�̃�𝑛(𝑡) = 𝑚𝑎𝑥{0, 𝑖𝑛𝑓{𝑡′ ∈ ℝ+|𝑌𝑀(𝑡′; 𝒘(𝑡′′) = 𝟎, ∀𝑡′′ > 𝑡) ≥ 𝑛} − 𝑡} (3.3) 

where �̃�𝑛(𝑡) denotes the strict lower bound for 𝑦𝑛(𝑡) and 𝑌𝑀(𝑡′; 𝒘(𝑡′′) = 𝟎, ∀𝑡′′ >

𝑡) is the production count of the end-of-line machine 𝑆𝑀 at time 𝑡′ assuming there 

are not any random downtime events in the system starting from time 𝑡 , i.e. 

𝒘(𝑡′′) = 𝟎, ∀𝑡′′ > 𝑡. 
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Remark 1: This property arises from the observation that machine downtime 

events, if impacting PCT, would only lead to delay of production and elongation of 

the PCT. Therefore, PCT lower bound is derived by assuming clean case beginning 

from the time when we evaluate PCT. Note that the lower bound �̃�𝑛(𝑡)  is a 

deterministic number given the system status at time 𝑡. In general cases, it does not 

have a closed-form representation due to complex interactions among machines. 

However, we can utilize the proposed system model to recursively calculate �̂�𝑛(𝑡) 

by assigning 𝒘(𝑡′′) = 𝟎, ∀𝑡′′ > 𝑡. This property lays the foundation for a hybrid 

approach to the PCT prediction. 

Property 3.2. The PCT of product 𝒒𝑛 is independent of that of any products 

coming after 𝒒𝑛 in the product sequence 𝑸, i.e. 

𝑝(𝑦𝑛(𝑡)|𝑦𝑛′(𝑡)) = 𝑝(𝑦𝑛(𝑡)), ∀𝑛′ > 𝑛, ∀𝑡 ≥ 0 (3.4) 

Remark 2: Property 3.2 states the correlations of PCT among products. As 

products are processed in sequence, a product could be processed by a machine 

only when all the products waiting before it has been processed. Therefore, the PCT 

of 𝒒𝑛 could only be affected by its preceding products. In other words, any products 

in behind would not affect the product 𝒒𝑛 regarding PCT at all. 

Property 3.3. At time 𝑡, the PCT of product 𝒒𝑛 is independent of the status of 

machines if 𝒒𝑛 has already completed the process on those machines, i.e. 

𝑝(𝑦𝑛(𝑡)|𝑤𝑖(𝑡)) = 𝑝(𝑦𝑛(𝑡)), ∀𝑡 ≥ 0, 𝑖𝑓 𝑛 > 𝑛𝑖(𝑡) (3.5) 

Remark 3: Similar to Property 3.2, this property states that the completion of 

product 𝒒𝑛 is independent of machines in behind. These two properties inspire the 

construction of a recurrent structure in the PCT prediction problem, which leads to 

the use of a deep learning model specialized in sequence input. 
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3.4. Hybrid deep learning framework 

3.4.1. Long Short-Term Memory 

Neural networks are set of algorithms which closely resemble the human brain 

and are designed to learn the relationship between inputs and outputs through data. 

As neural network is applied to many different problems, the basic feedforward 

structure no longer meets some particular needs, and therefore there have been 

some special neural networks, among which is the recurrent neural network (RNN) 

[49]. RNN is a family of neural network that is specialized for processing sequential 

inputs. 

 

Figure 3.3. Recurrent Neural Network structure [22] 

Let 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛, … ] denotes the sequential inputs. RNN assumes that the 

output from current step is depending on previous steps in the sequence. As shown 

in Figure 3.3, RNN has the form of a chain of repeating modules of neural network. 

It has an output ℎ𝑛 for each step and takes output from previous step and current 

input to generate output for current step, i.e., 

ℎ𝑛 = 𝑓(ℎ𝑛−1, 𝑥𝑛; 𝜃) (3.6) 

where ℎ𝑛−1 is the state of previous step, 𝑥𝑛 is the input of the current step, 𝑓(∗; 𝜃) 

is the recurrent function defined by parameters 𝜃. As sequential dependencies are 

very common in many practical problems, there have been a number of successful 

applications of RNN or its variants, e.g., machine translation, prediction problems 

and video tagging etc. One of the most prominent variants of RNN is the Long 

Short-Term Memory (LSTM) [50]. The LSTM shares the same chain-like structure 

in Figure 3.3, but there is an internal hidden state called as cell state 𝑐𝑛  inside 

LSTM cells (Figure 3.4). The LSTM has the ability to remove or add information 

to the cell state, carefully regulated by structures called gates. 
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Figure 3.4. Internal structure of recurrent unit in LSTM [23] 

In brief, there are an ‘input gate’ that ensures the cell state 𝐶𝑛 only absorb useful 

information from the new input 𝑥𝑛 , a ‘forget gate’ that discards obsolete 

information in cell state 𝐶𝑛, and an ‘output gate’ that generates output ℎ𝑛. One can 

refer to [50] for detailed updating rule in LSTM cell given input 𝑥𝑛 and output ℎ𝑛−1 

from previous step. With cell state and special gates setting, LSTM is able to keep 

useful information from many steps ago, and therefore it is especially capable of 

capturing long-term dependencies. In this paper, we will use LSTM and the system 

model proposed in Section 3 to establish a hybrid approach to PCT prediction. 

3.4.2. Recurrent sequence discovery in PCT prediction 

Based on Properties 3.2 and 3.3, the products and machines in the system can 

be modeled as recurrent units. For example, the completion time of product 𝒒𝑛𝑀(𝑡) 

only depends on its own features, e.g., product type and cycle time etc., and the 

status of machine 𝑆𝑀 . Therefore, a recurrent sequence is constructed beginning 

from the end-of-line machine 𝑆𝑀 and propagates backwards along the line. Figure 

3.5 also shows how the production line in real time is mapped to a recurrent 

sequence. 
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Figure 3.5. The multi-product line in real time corresponds to a recurrent sequence 

After establishment of the recurrent sequence, one important task is to identify 

the inputs to the recurrent units in LSTM. Since our goal is to predict PCT, any 

factors that affect PCT should be included in the inputs. For machine 𝑆𝑖, these real-

time factors can be represented as 𝑠𝑖(𝑡). 

𝑠𝑖(𝑡) = [
𝑤𝑖(𝑡)

𝑟𝑖(𝑡)
] (3.7) 

where 𝑤𝑖(𝑡) indicates if machine is up or down at time 𝑡, and 𝑟𝑖(𝑡) ∈ (0,1) denotes 

the ratio of process machine 𝑆𝑖 has completed on its current product 𝒒𝑛𝑖(𝑡)
. 

For product 𝒒𝑛, either WIP or incoming, it is the actual cycle time on each 

machine that could affect the final PCT. Let 𝛿𝑛  denotes the processing time, 

including cycle time and tool setup time, of product 𝒒𝑛 on each machine, we have 

𝛿𝑛 =

[
 
 
 
𝒒𝑛

𝑇𝑻1 + 𝒒𝑛−1
𝑇 𝑻1

𝑠𝑡𝒒𝑛

𝒒𝑛
𝑇𝑻2 + 𝒒𝑛−1

𝑇 𝑻2
𝑠𝑡𝒒𝑛

⋮
𝒒𝑛

𝑇𝑻𝑀 + 𝒒𝑛−1
𝑇 𝑻𝑀

𝑠𝑡𝒒𝑛]
 
 
 

(3.8) 

Therefore, the sequential input 𝒙  to the LSTM is obtained by arranging 

machines and products in the correct sequence. 

𝒙 = [𝑠𝑀(𝑡), 𝛿𝑛𝑀(𝑡), 𝛿𝑛𝑀(𝑡)+1, … , 𝛿𝑛1(𝑡)−1, 𝑠1(𝑡), 𝛿𝑛1(𝑡), 𝛿𝑛1(𝑡)+1, … , 𝛿𝑛1(𝑡)+𝑁] (3.9) 

where 𝑁 is the number of incoming products that one wants to include for PCT 

prediction in a given sequence. Consequently, a recurrent sequence has been 

established for PCT prediction. 
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3.4.3. Hybrid framework combining LSTM and system model 

In this research, PCT is predicted with a hybrid approach by combining the 

strengths of both deep learning and system model. The overall architecture of the 

proposed hybrid approach is shown in Figure 3.6. 

 

Figure 3.6. A hybrid PCT prediction model combining LSTM and system model 

Given the recurrent sequence 𝒙, LSTM will have output for each recurrent unit. 

Following the updating rules in the LSTM, we can calculate the outputs from 

recurrent units in sequence. Note that there might be multiple LSTM layers, since 

it is not uncommon for people to stack two or more LSTM layers to refine the 

outputs in complicated problems. In PCT prediction problem, we are not interested 

in the outputs from units representing machines, since there are no predictions 

associated with them. The machine units are only used to provide LSTM with 

necessary information regarding their operation status that could affect PCT. Let 

ℎ𝑛 represents the output from recurrent units representing product 𝒒𝑛 with input 𝛿𝑛, 

then LSTM outputs 𝒉 corresponding to inputs 𝒙 are 

𝒉 = [ℎ𝑛𝑀(𝑡), ℎ𝑛𝑀(𝑡)+1, … , ℎ𝑛1(𝑡)−1, ℎ𝑛1(𝑡), ℎ𝑛1(𝑡)+1, … , ℎ𝑛1(𝑡)+𝑁] (3.10) 

The output ℎ𝑛 is further processed with fully connected (FC) layers to reduce 

the dimension to one, since PCT is a single scalar for each product. In our problem, 
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the final output could have been a real number that represents the PCT. However, 

according to Property 1, for any product 𝒒𝑛, there exists a strict lower bound �̃�𝑛 for 

its actual PCT 𝑦𝑛 , where �̃�𝑛  is a deterministic number given the system status. 

Instead of directly predicting the PCT from the deep learning model, we will train 

the model to only predict the distance from the lower bound to its target PCT. Let 

𝑜𝑛 be the non-negative output of FC layers connected to ℎ𝑛, then 

𝑜𝑛 = 𝑔(ℎ𝑛; 𝜃2) (3.11) 

where 𝑔(∗; 𝜃2)  denotes the FC layers with parameters 𝜃2 . As mentioned in 

previous section, lower bound �̃�𝑛 can be directly computed using the system model. 

Therefore, the final PCT prediction of product 𝒒𝑛 is given by combining the results 

from the deep learning model and analytical system model, i.e. 

�̂�𝑛 = �̃�𝑛 + 𝑜𝑛 (3.12) 

where �̂�𝑛 denotes the predicted value of the PCT 𝑦𝑛. In training time of the LSTM, 

the loss function is the mean square error between target PCT 𝑦𝑛 given by training 

data and predicted PCT �̂�𝑛 given by the hybrid approach, i.e. 

min
𝜃

{
1

(𝑛1(𝑡) + 𝑁 − 𝑛𝑀(𝑡))
∑ (𝑦𝑛 − (�̃�𝑛 + 𝑜𝑛))

2
 

𝑛1(𝑡)+𝑁

𝑛=𝑛𝑀(𝑡)

} (3.13) 

where 𝜃 = [𝜃1, 𝜃2]  is the parameters for the deep learning model, including 

parameters 𝜃1 for the LSTM layers and parameters 𝜃2 for the FC layers. In this way, 

a hybrid framework for PCT prediction has been established, since system model 

computes �̃�𝑛, while deep learning model predicts 𝑜𝑛. 

The proposed hybrid approach has the following advantages: 

(1) The proposed framework would increase the training efficiency and 

prediction accuracy compared to the pure deep learning approach, as we 

have incorporated precise estimation on part of the final result using the 

analytical system model. 
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(2) The proposed framework would effectively avoid unrealistic predictions 

that underestimate PCT. In Eq. (28), 𝑜𝑛 given by LSTM is a non-negative 

number. Hence, the proposed framework would never give a prediction that 

is lower than �̃�𝑛. However, a pure deep learning approach does not carry the 

same guarantee. 

(3) The proposed framework has a good compatibility with the ever-changing 

system status by using LSTM. Regular neural networks mostly require a 

fixed-sized input, but the number of WIP products, as well as the incoming 

products, in the production system is always changing over time. In contrast 

to regular neural networks, LSTM is designed to process variable sequenced 

inputs, and there is no limitation on the length of the sequence it can process. 

(4) The proposed framework largely simplifies the input data structure for the 

deep learning model. In LSTM, a lot of information regarding system status 

are implicitly embedded in the recurrent sequence. By arranging machine 

status 𝑠𝑖(𝑡) or product feature 𝛿𝑛 in a recurrent sequence, we are actually 

providing the deep learning model with abundant information regarding 

current system-level status, e.g., buffer levels, blockages, and preceding 

products etc. 

3.5. Experiments and validation 

3.5.1. Numerical experiment setup 

A numerical experiment is conducted in a six-machine-eight-product 

production system. The production system in this case study has six machines and 

five buffers, i.e. 𝑀 = 8 . Each buffer has a capacity of five, i.e., 𝐵𝑖 = 5, ∀𝑖 =

2,3… ,8. The system is capable of processing ten different product types, i.e., 𝐾 =

10. The cycle times fall in a range of [1,4], and the setup times have a range of 

[0,1]. 

The training data has two possible sources. The first possible source is the real 

historical data collected from plant floor, while the second is the simulation, as it is 
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convenient to construct a reliable simulator based on the system model proposed in 

this paper. In practice, the choice of the training data sources should be discussed 

case by case. Sometimes, one can even take a mixed approach by combining data 

from the two sources. In whichever case, it is important to figure out if the machine 

status is Markovian or non-Markovian. For non-Markovian machines, the machine 

status in the future depends on not only current status but also the status history 

before reaching current status. In this scenario, we will have to either stack machine 

status 𝑤𝑖 over a period of time or use another RNN to extract the machine hidden 

state. In this paper, however, for demonstration purpose we will use dataset 

generated from simulation based on Markovian machines. The machine reliability 

parameters as shown in Table 3.1. 𝑀𝑇𝐵𝐹 denotes the mean time between failures, 

and 𝑀𝑇𝑇𝑅 is the mean time to repair. 

Table 3.1. Machine reliability parameters in this case study 

Machine 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 

MTBF 150 152 102 132 111 135 126 155 

MTTR 6 5 3 5 8 4 7 8 

 

Using the simulation based on our model, we have generated around 10,000 

data points in total. Each data point consists of input 𝒙, which includes real-time 

machine status and product features, and target makespan 𝒚. The dataset is split by 

a ratio of 70:30 to construct a training set and a testing set respectively. 

3.5.2. Training process and results 

We have conducted 10-fold validation to find the optimal neural network hyper-

parameters for our model. In the final model, there are two LSTM layers, and each 

layer has 128 hidden units. The LSTM layers are followed by two FC hidden layers 

with 128 hidden units each. The outputs of both LSTM layers are normalized before 

any further processing. We concatenate the outputs from both LSTM layers to be 

the input to FC layers. The activation function for the fully connected layer is 

‘ReLU’. LSTM often experiences the problem of gradient exploding [51]. 

Therefore, the gradient clipping technique is adopted to clip the gradient value by 
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range [−1,1] in order to avoid gradient exploding. In order to overcome overfitting, 

a dropout rate of 0.2 is used in the two LSTM layers [52]. As for FC layers, we use 

both L1 and L2 regularization technique, and the penalty coefficients are 0.08 and 

0.1 respectively. 

The training process of the hybrid model is as shown in Figure 3.7Figure 3.7. 

Training progress for the hybrid deep learning model. The optimizer used in this 

case study is RMSProp with learning rate 𝛼 = 0.0001 and other parameters set as 

defaulted. The training batch size is 32. The deep neural network model is deployed 

on TensorFlow platform. Both training loss and testing loss decrease substantially 

with the training epochs. 

 

Figure 3.7. Training progress for the hybrid deep learning model 

3.5.3. Model performance comparison and interpretation 

The proposed hybrid PCT prediction is compared with other machine learning 

models [53], including linear regression (LR), multi-layer perceptron (MLP), and 

random forest (RF), and k-nearest neighbors (KNN). In order to validate if the use 

of model in the hybrid approach improves the performance, we also train a pure 

LSTM model for PCT prediction. . Since these models have a different input format 

from that for LSTM, we construct the training dataset following the format given 

in [42], in which each data point represents a single product. Note that the newly 

constructed training dataset represents the same system status in the original dataset. 
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The only difference is the way that data is formatted for the needs of these 

comparison machine learning models. Each data point contains the following 

categories: 

• Real-time production task: task composition and total WIP level. 

• Real-time production status: WIP waiting in buffer, WIP in processing, 

planned processing time. 

• Real-time machine condition: real-time machine status. 

• Product index. 

The output is the PCT 𝑦𝑖  of the product corresponding to the product index 

given in the input. Following the dataset structure, the input has a dimension of 80. 

The newly constructed dataset has a total number of 240,080 data points. Given the 

dataset, the details of the comparison machine learning models are as follows. 

(1) LR: The LR model predicts the PCT by a linear combination of given input 

variables. 

(2) MLP: Through cross-validation, the MLP model is determined to have three 

hidden layers with 128 units in each layer. The activation function is ‘Relu’, 

while the L2 regularization is set to be 0.3 to avoid overfitting. 

(3) RF: This is an ensemble learning method that constructs a multitude of 

decision trees and outputs the prediction averaged across all individual trees. 

The maximum depth in this model is eight. We use the RF regressor in the 

scikit learn package in Python to construct the RF model. 

(4) KNN: The only hyper-parameter in KNN is 𝑘, which is the number of nearest 

neighbors to take into consideration when predicting the output of a new 

datapoint. In this demonstrated case, we find 𝑘 = 3 to be the optimal choice. 

(5) Pure LSTM: In this model, we still use the original dataset with recurrent 

format. The only difference from the proposed hybrid model is that we do 

not use the analytical model to compute PCT bound. Instead, we rely on the 
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LSTM to predict the entire PCT value. We use the same LSTM architecture 

in the proposed hybrid model and increase the training epochs to 300 from 

200. 

These models are compared regarding five performance metrics commonly 

used in regression tasks, including mean absolute error (𝑀𝐴𝐸), mean absolute 

percentage error (𝑀𝐴𝑃𝐸), root mean squared error (𝑅𝑀𝑆𝐸), R-square (𝑅2), and 

realistic prediction ratio (𝑅𝑃𝑅). 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

(3.14) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1

× 100% (3.15) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

(3.16) 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)𝑛
𝑖=1

(3.17) 

𝑅𝑃𝑅 =
∑ [�̂�𝑖 ≥ �̃�𝑖]

𝑛
𝑖=1

𝑛
× 100% (3.18) 

where 𝑦𝑖 is target PCT, �̂�𝑖 is predicted PCT, �̅� is the mean of target PCT, and 𝑛 is 

the total number of products that are considered in the test dataset. Note that RPR 

is a performance metric specially designed for PCT prediction problem. If a 

prediction model gives PCT prediction �̂�𝑖  lower than its bound �̃�𝑖 , according to 

PCT Property 1, the prediction is unrealistic in the real world. These misleading 

predictions unrealistically underestimate PCT and might present production 

managers with problems in production scheduling and customer satisfaction etc. 

The metric 𝑅𝑃𝑅  is designed to evaluate the percentage of predictions that are 

realistic, i.e., �̂�𝑖 ≥ �̃�𝑖, among all products considered in the test dataset. Apparently, 
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one should pursue higher 𝑅𝑃𝑅  when designing PCT prediction models. The 

performance comparison is presented in Table 3.2 and Figure 3.8. 

Table 3.2. Performance comparison among different machine learning models 

Model LR MLP RF KNN Pure LSTM Hybrid Model 

MAE 5.77 7.21 5.62 7.94 5.42 5.02 

MAPE 35.10% 32.86% 23.08% 63.47% 34.04% 10.81% 

RMSE 8.742 8.60 8.81 12.39 8.61 8.32 

R2 0.905 0.902 0.904 0.804 0.908 0.914 

RPR 89.91% 99.09% 91.29% 70.61% 91.09% 100% 

 

For the comparison models, the inputs contain all the available data in the 

system, some of which, according to our analysis, are not relevant in the prediction 

target. For example, the number of incoming products would never affect the PCT 

of any WIP products. By using LSTM, we avoid including these irrelevant data in 

the prediction. However, through the comparison between Pure LSTM and hybrid 

model, it is noted that LSTM alone, although has slightly better performance than 

other comparison models, is still not enough to deliver satisfactory prediction 

performance. More importantly, it does not convey the guarantee that all 

predictions are realistic. Therefore, the use of analytical model in the hybrid 

approach is indispensable. Furthermore, the fact that Pure LSTM requires more 

training epochs, i.e., 300 epochs compared to 200 for hybrid model, indicates that 

the hybrid model reduces the computing time and resource needed for training the 

deep learning model in PCT prediction. 

In Figure 3.8, we plot all the datapoints in the test dataset with real PCT as the 

horizontal axis and predicted PCT as the vertical axis. We use blue dots to represent 

realistic predictions, i.e., �̂�𝑖 ≥ �̃�𝑖 , and magenta dots to represent unrealistic 

predictions, i.e., �̂�𝑖 < �̃�𝑖. The 𝑅𝑃𝑅𝑠 for LR, RF and Pure LSTM are around 90%. 

In other words, these models provide production managers with around 10% of the 

total predictions that can never be realized. MLP has a 𝑅𝑃𝑅 as high as 99.09%, 

however, its overall prediction accuracy is not satisfactory. The 100% 𝑅𝑃𝑅 from 

the proposed hybrid model is theoretically guaranteed when we construct the 

prediction model. 
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Figure 3.8. The plots of true PCT vs. predicted PCT for all datapoints in test dataset 

3.5.4. PCT prediction output demonstration 

Figure 3.9 present a typical output given a system status input from the test 

dataset. The output has the same recurrent sequence as the input. Since recurrent 

unit representing a machine has not output, we place a tick on the horizontal axis. 

The prediction output can be conveniently interpreted. As shown in Figure 3.9, 

based on the ticks, we can tell that there are three WIP products in buffer 𝐵8 and 

the hybrid model gives PCT predictions that are very close to real PCT, while there 

is no product in buffer 𝐵7  that locates between machine 𝑆6  and 𝑆7 . Some 

annotations along with the PCT bounds are added in the graph for better illustrating 

the prediction output. 
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Figure 3.9. PCT prediction output interpretation 

Further, we select another 12 datapoints from the test dataset and show their 

outputs in Figure 3.10. Since the production system is dynamic, we can find that 

the numbers of products in the system vary among different system status. Products 

closer to the right in the graph are closer to being completed, and hence have smaller 

PCT values. In most cases, the prediction errors tend to be smaller for products with 

smaller PCT. PCT can also be interpreted as the time a product has to stay within 

the system before it is completed. When the staying time is longer, there could be 

more random failures and therefore the PCT is more likely to be affected. Therefore, 

the PCT of a product with larger product index is not only larger than that of a 

product with smaller product index but also more uncertain. However, since we 

predict PCT in a real-time fashion, in practice we would continue to observe system 

status and output predictions. Consequently, given one specific product we will 

have more confident predictions as time passes. 
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Figure 3.10. Predictions from hybrid model given different system status as inputs 

To sum up the case demonstrated in this section, we successfully implement the 

hybrid PCT prediction model in a dataset generated from simulation. The 

comparisons with other models indicate that the hybrid model is consistently better 

than other models regarding all performance metrics. The hybrid model as it is 

derived and constructed guarantee 100% 𝑅𝑃𝑅, which means it would never give 

predictions that are unrealistic unlike other comparison models. Therefore, the case 

study presented in this section proves that the proposed hybrid model for PCT 

prediction in multi-product system is effective. 
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3.6. Summary 

This chapter proposes a hybrid approach to PCT prediction, which combines 

the strengths of both analytical system model and deep learning technique. To 

achieve effective PCT prediction, the mathematical model for multi-product serial 

production line in Chapter 2 is utilized. Based on the characteristics of production 

system, a recurrent sequence is discovered in PCT prediction problem, in which 

machines and products are modeled as recurrent units in LSTM, a prominent variant 

of RNN that is specialized in sequential prediction problem. Instead of adopting a 

pure deep learning approach, we combine system model and LSTM to establish a 

hybrid model for PCT prediction, which is proved to be effective in a demonstration 

case. In this research, the system model and domain knowledge are not only used 

to guide the construction of deep learning model, but also, more importantly, the 

system model is directly integrated with the deep learning model in prediction task. 

3.7. Related work 

Part of the results presented in this chapter have been published in [26], [54]. 
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Chapter 4. Rolling Horizon Method for 

Corrective Maintenance Control 

4.1. Background 

Manufacturers are seeking to operate the production in a more efficient and 

cost-effective way when facing the growing competition and globalization. Since 

capital expenditure incurred by maintenance accounts for a large portion of the 

overall cost in production activities, optimal maintenance decision making is one 

of the fundamental aspects in achieving this end. 

Random failure occurs when a machine deteriorates to a certain level due to 

usage and aging. Upon the random failure, a maintenance action has to be carried 

out in order to restore the machine to an acceptable operation condition. In 

industrial practice, maintenance is not necessarily to completely replace the failed 

machine with a new one. Based on the structure of the machine, multi-level 

maintenance options could be available. A perfect maintenance, or replacement, is 

recovering the machine ‘as good as new’, while a minimal maintenance is 

recovering the machine ‘as bad as old’, which only resumes its operation without 

changing deterioration status. Imperfect maintenances are recovering the machine 

to somewhere between old and new. 

The options of different maintenance levels largely expand the research on 

maintenance. Based on the levels of maintenance effects, a lot of maintenance 

policies have been proposed in the past decades [55]–[57], most of which were 

based on single-unit system. Decision making on maintenance is essentially a trade-

off between production performance and machine reliability. For single-unit 

systems, the unavailability of the system during maintenance can be directly 
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counted towards the production loss. Therefore, the maintenances scheduling, 

which is modeled as a stochastic process, can be conveniently optimized such that 

some long-term criterion, such as maintenance cost rate or system unavailability, is 

minimized. 

In contrast with the single-unit system, Wang [58] concludes that the traditional 

maintenance policies for multi-unit system fall into two categories, i.e. group 

maintenance policies [59], [60] and opportunistic policies[61], [62]. These policies 

generally originate from the observation that in a multi-unit system the failure of 

any one component will immediately halt the whole system, during when other 

components can be maintained simultaneously without incurring extra production 

losses. However, it is not necessarily the case in a general multi-stage 

manufacturing system, where machines work asynchronously, and intermediate 

buffers reduce the spread of stoppages. It is noted that some studies [63], [64] on 

maintenance in multi-stage manufacturing systems are also based on the 

assumption that there are no buffers between machines. These studies, along with 

the policies for single-unit and multi-unit systems, might not work well for a 

general multi-stage manufacturing system. 

Multi-stage manufacturing systems are characterized by their complex 

structures of strongly interconnected machines and stochastic dynamics. [65] It is 

difficult to obtain the optimal maintenance policy in a general multi-stage 

manufacturing system. First, the relationship between machine stoppage due to 

maintenance and system production loss is unclear. Our previous studies [66] reveal 

that the system production loss of machine stoppage heavily depends on the system 

states. For example, given the same maintenance duration on the same machine at 

different time, the production loss could be very different since the system states 

are dynamic. But the system state at any time is very difficult to evaluate with 

transition probability, because it is well known that the close-form solution of 

system states only exists for two-machine-one-buffer system and systems with 

infinite buffers or no buffers [67]. As a result, it is nearly impossible to obtain a 
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globally optimal maintenance policy in the long run for a multi-stage manufacturing 

system. 

To address the complexity, some simulation-based studies have been conducted 

to find the optimal maintenance schedule [68]. For instance, Arab et al. [69] 

incorporated remaining reliability of machines and work-in-process inventories 

into the simulation model to search for the optimal maintenance schedule. However, 

changes on the process and equipment, which are norm in today’s manufacturing 

industry, will lead to corresponding changes and reconstructions in the simulation 

models, and subsequently a higher resource consumption. Nahas et al. [70] 

attempted to allocate the buffers subject to a limited total buffer space aiming at 

minimizing the maintenance costs. This is applicable in system design stage rather 

than the maintenance control on an existing system. References [71], [72] both 

study the integration of maintenance control and quality control in multi-stage 

manufacturing systems, but they focus on the relationship between machine status 

and product quality. Some works [66], [73], [74] try to find the opportunities for 

maintenance in multi-stage manufacturing system, but the machine reliability and 

aging is ignored. Therefore, a systematic method is desired to manage maintenance 

through both careful analysis of the machine reliability and production dynamics 

[75]. 

While information about production systems has become increasingly 

transparent, detailed, and real-time, some researchers attempted to obtain optimal 

control strategy on the system by utilizing the real-time data collected by distributed 

sensors. Zou et al.[76] was able to establish a data-driven model for production 

system analysis, in which the diagnosis and prognosis of production losses were 

established. The model has been applied to energy control [77], gantry assignment 

[78] and etc. in multi-stage manufacturing systems. Consequently, it is feasible to 

utilize a maintenance policy based on real-time system information and 

implemented in real-time manner instead of a globally optimal maintenance policy. 

In this paper, the production losses of maintenance actions are properly estimated 

based on the real-time system information. The real-time maintenance cost rate is 
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established. A real-time maintenance policy of selecting the proper level of 

maintenance upon machine failure is proposed in this chapter. 

4.2. Sequential decision-making formulation and solutions 

Most of the control problems in manufacturing systems can be mathematically 

represented as an objective function and relevant constraints. Due to the dynamic 

nature of manufacturing systems, the sequential decision-making is an appropriate 

framework for most control problems.  

 

Figure 4.1. Sequential decision-making framework illustration 

As shown in Figure 4.1, the continuous time within the planning horizon, e.g., 

a shift or a day etc., is discretized into steps. The discretion is based on specific 

problems but generally falls into two possible categories. One is the event-triggered 

mechanism, which means the time step is the time when a decision or an action is 

needed to respond to an event. For example, in this chapter, the CM decision is 

triggered by a random failure. The other is discretion over equal time intervals. For 

example, in PC decision making presented in later chapter, an equal time interval 

is chosen to consider PM decisions. 

At each step 𝑡𝑘, a state 𝑠𝑡𝑘  representing the real-time status of the system can 

be observed. Based on the state, an action 𝑎𝑡𝑘 is chosen and then implemented in 

the system. Upon next time step 𝑡𝑘+1, a reward is given by the system to reflect the 

goodness of the chosen action. If one can guarantee that the maximization of 

accumulated rewards is equivalent to maximization/minimization of the objective 

function, then the control problem can be solved by solving this sequential decision-

making problem. 
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Figure 4.2. Sequential decision making as a search tree 

The sequential decision making is challenging because of its enormous search 

space due to large state space. In Figure 4.2, the sequential decision-making process 

is expanded to reflect all the possible transitions. The goal is to find a policy or 

rationale to choose actions given a state. There are two methods to solve such a 

sequential decision-making problem, namely, rolling horizon method and 

reinforcement learning method. 

Rolling horizon method only consider a look-ahead time window (e.g., until 

next failure). By limiting the consideration within a certain time window, we 

effectively trim the depth of the search tree. Subsequently, we find approximation 

of future state transitions and rewards within the time window, which effectively 

trim the width of the search tree. By these two steps of approximation, suboptimal 

solutions can be found to optimize system performance, but only within a certain 

time window. Usually, rolling horizon method is fast during online execution and 

requires no training process. However, a good approximation is not always 

available to a given control problem. Further, due to the approximation, if available, 

there is no guarantee on solution optimality. 

Reinforcement learning (RL) uses state values to represent the expected 

accumulated reward starting from one state. The state values are obtained through 
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iterative training conducted offline. The policy is executed by choosing action 

towards the subsequent states that have the highest state value. RL is also fast 

during online execution but needs large amounts of computing time and resource 

for training. It has some guarantee on policy optimality. It fits some control 

problems in manufacturing systems well since a lot of historical data are available 

and can be leveraged to construct simulation environment. In this dissertation, both 

methods will be demonstrated for different problems. In this chapter, the CM 

problem is solved by a rolling horizon methods. 

4.3. Corrective maintenance modeling and cost analysis 

Given the failure-time distribution 𝑝𝑖(𝑡
∗) of machine 𝑆𝑖, the failure rate is 

𝜆𝑖(𝑡
∗) =

𝑝𝑖(𝑡
∗)

1 − ∫ 𝑝𝑖(𝜏)𝑑𝜏
𝑡∗

0

(4.1) 

It can be shown that the failure rate 𝜆𝑖(𝑡
∗) is increasing when the failure-time 

distribution of the machine has the positive aging property. In this scenario, the 

imperfect maintenance or perfect maintenance options are preferred. Otherwise, if 

the failure rate 𝜆𝑖(𝑡
∗) of the machine is decreasing with respect to its age, a minimal 

maintenance is always preferred. The imperfect maintenance has been modeled 

through several approaches, including failure-rate reduction [79] and virtual-age 

reduction [80]. For the ease of derivation, we adopt the virtual-age approach to 

model the maintenance effects. 
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Figure 4.3. Maintenance actions taken at a machine 

The age of machine 𝑆𝑖 is continuously increasing with time until it breaks down 

and a maintenance has to be imposed. If the maintenance effect is not perfect, the 

machine after maintenance will behave as if it already has an initial age, which is 

referred to as virtual age. The virtual age of machine 𝑆𝑖  right after its 𝑗𝑡ℎ 

maintenance action is denoted as 𝑣𝑖𝑗
𝑚. The superscript 𝑚 is used to denote a value 

derived by assuming that the maintenance level is 𝑚. When the maintenance level 

has been determined, the superscript would be forsaken hereafter. The virtual age  

𝑣𝑖𝑗
𝑚 is 

𝑣𝑖𝑗
𝑚 = 𝐴𝑖

𝑚(𝑣𝑖(𝑗−1) + 𝑧𝑖(𝑗−1)) (4.2) 

where 𝑣𝑖(𝑗−1) is the virtual age of machine 𝑆𝑖 right after its (𝑗 − 1)𝑡ℎ maintenance 

action, 𝑧𝑖(𝑗−1) is its survival time after (𝑗 − 1)𝑡ℎ maintenance action, and 𝐴𝑖
𝑚 is the 

age reduction factor of maintenance level 𝑚. Clearly, 𝐴𝑖
𝑚 = 0 corresponds to a 

replacement since the virtual age of machine is reduced to zero. 𝐴𝑖
𝑚 = 0 

corresponds to a minimal maintenance while 0 < 𝐴𝑖
𝑚 < 1  relates to imperfect 

maintenances. 

The time to failure 𝑡∗ follows the distribution conditioning on the machine’s 

virtual age 𝑣𝑖𝑗
𝑚, i.e., 

𝑝𝑖(𝑡
∗|𝑣𝑖𝑗

𝑚)   =
𝑝𝑖(𝑡

∗ + 𝑣𝑖𝑗
𝑚)

∫ 𝑝𝑖(𝜏)𝑑𝜏
∞

𝑣𝑖𝑗
𝑚

, 𝑡∗ > 0 (4.3) 



 

49 

 

The maintenance cost consists of resource cost and production loss due to 

machine stoppage. The resource cost includes part replacement and other 

consumable expenses, which varies with maintenance level. Given a maintenance 

action 𝑒𝑖𝑗 = (𝑖,𝑚, 𝑡𝑖𝑗 , 𝑑𝑖𝑗
𝑚), depending on the maintenance level 𝑚, the cost of 𝑗𝑡ℎ 

maintenance action on machine 𝑆𝑖 is evaluated as 

𝐶𝑖𝑗
𝑚 = 𝑐𝑖

𝑚 + 𝑐𝑝  (𝑃𝐿𝑒𝑖𝑗

𝑚 + 𝑃𝐿𝑅𝑒𝑖𝑗

𝑚 ) (4.4) 

where 𝑐𝑖
𝑚  is the resource cost. 𝑐𝑝 is the profit per part. 𝑃𝐿𝑒𝑖𝑗

𝑚  and 𝑃𝐿𝑅𝑒𝑖𝑗

𝑚  are the 

permanent production loss and production loss risk caused by 𝑒𝑖𝑗 respectively. The 

latter two terms heavily rely on system states, and they will be derived in following 

sections through careful analysis on the production line dynamics 

An optimal maintenance decision cannot be made directly based on the cost, 

since a replacement probably costs much higher than a minimal one, but it ensures 

the machine operate for a longer period of time. Therefore, the real-time 

maintenance cost rate 𝑅𝑖𝑗
𝑚 is introduced as maintenance cost per unit time before 

next failure arrives. 

𝑅𝑖𝑗
𝑚 =

𝐶𝑖𝑗
𝑚

𝑧𝑖𝑗
𝑚 + 𝑑𝑖𝑗

𝑚 (4.5) 

where 𝑑𝑖𝑗
𝑚 is the duration of maintenance, which is a deterministic value related to 

the maintenance type 𝑚, and 𝑧𝑖𝑗
𝑚 is the lifetime of machine 𝑆𝑖 after the maintenance, 

which is an unknown random variable following distribution 𝑝𝑖(𝑡
∗|𝑣𝑖𝑗

𝑚)  in 

Equation (3). The expected cost rate after its 𝑗𝑡ℎ maintenance is 

𝐸[𝑅𝑖𝑗
𝑚] = ∫

𝐶𝑖𝑗
𝑚

𝑡∗ + 𝑑𝑖𝑗
𝑚 𝑝𝑖(𝑡

∗|𝑣𝑖𝑗
𝑚)𝑑𝑡∗

∞

0

(4.6) 

𝐸[𝑅𝑖𝑗
𝑚] is the expected cost per unit time before the next failure. When a random 

failure occurs at a machine, a maintenance of a proper level should be chosen to 

minimize the expected cost rate. This cost rate formulation will be used to guide 

optimal decision making on maintenance levels. 
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4.4. Product loss and production loss risk evaluation 

The maintenance action causes machine stoppage and leads to different system 

states. The impacts of a maintenance action 𝑒𝑖𝑗  on the system are twofold, i.e., 

permanent production loss 𝑃𝐿𝑒𝑖𝑗
 and production loss risk 𝑃𝐿𝑅𝑒𝑖𝑗

. The permanent 

production loss is the direct outcome of the machine stoppage, and the production 

loss risk results from the disturbance to overall system states caused by 𝑒𝑖𝑗. 

4.4.1. Permanent production loss evaluation 

Opportunity window is the largest possible stoppage duration of a machine 

before such stoppage induces permanent production loss [22], [81], [82]. As 

discussed in previous section, the opportunity window depends not only the current 

buffer status but also the downtime events 𝑬 . In stochastic scenario, the full 

downtime event list 𝑬 is unknown since there will be unexpected random failures 

in the future. However, in the context of maintenance, a subset �̂� of downtime 

events 𝑬 is known, namely those maintenance actions already initiated before or 

right at current time 𝑡 and lasting beyond time 𝑡. 

Since �̂� ⊂ 𝑬 , it can be concluded that 𝑃𝐿�̂� ≤ 𝑃𝐿𝑬 . Then the opportunity 

window estimated with �̂� is the lower bound of that computed with 𝑬. Therefore, 

the subset �̂� can be used instead of 𝑬 to safely estimate 𝑂𝑊𝑖(𝑡). 

𝑂𝑊𝑖(𝑡) = 𝑂𝑊̅̅ ̅̅
�̅�(𝑡) + 𝑃𝐿�̂�[𝑡, 𝑡 + 𝑂𝑊𝑖(𝑡)] ⋅ 𝑇𝑀∗ (4.7) 

Consider a maintenance action 𝑒𝑖𝑗 = (𝑖,𝑚𝑖𝑗, 𝑡𝑖𝑗 , 𝑑𝑖𝑗) , if 𝑑𝑖𝑗 ≤ 𝑂𝑊𝑖(𝑡) , the 

maintenance won’t incur permanent production loss; however, if 𝑑𝑖𝑗 > 𝑂𝑊𝑖(𝑡), 

then the slowest machine will be stopped and the production time loss is the 

excessive time that 𝑒𝑖𝑗  lasts beyond 𝑂𝑊𝑖(𝑡) . To conclude, the permanent 

production loss of a maintenance action 𝑒𝑖𝑗, denoted as 𝑃𝐿𝑒𝑖𝑗
, is 

𝑃𝐿𝑒𝑖𝑗
= max {

𝑑𝑖𝑗 − 𝑂𝑊𝑖(𝑡𝑖𝑗)

𝑇𝑀∗
, 0} (4.8) 
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4.4.2. Production loss risk evaluation 

Given a maintenance 𝑒𝑖𝑗 , it causes permanent production loss 𝑃𝐿𝑒𝑖𝑗
 when it 

lasts longer than its opportunity window and the loss last until 𝑒𝑖𝑗 is completed. 

Hence 𝑃𝐿𝑒𝑖𝑗
 only measures the impact of 𝑒𝑖𝑗 on the system within its presence. But 

the downtime event 𝑒𝑖𝑗 will impact the system in a more profound manner since it 

leads to totally different system states. The impact of a maintenance action beyond 

the “current” permanent production loss will be evaluated in this section. 

The stoppage at machine 𝑆𝑖  due to maintenance action 𝑒𝑖𝑗  spread to nearby 

machines sequentially when it causes blockage or starvation. The opportunity 

windows of nearby machines gradually alter. Considering a subsequent downtime 

event, the permanent production loss incurred by 𝑒𝑘∗ may also be changed due to 

the altered opportunity windows. In principle, the total loss cannot be directly 

attributed to the initial action 𝑒𝑖𝑗 , but 𝑒𝑖𝑗  does indirectly impact the loss of the 

subsequent downtime event. 

To ensure the resilience of the system to future random failures, we take the 

difference of production losses of the very first subsequent downtime event with 

and without 𝑒𝑖𝑗 as production loss risk, denoted as 𝑃𝐿𝑅𝑒𝑖𝑗
. 

Suppose that after time 𝑡𝑖𝑗 , the very first random failure occurs on machine 

𝑆𝑘 (𝑘 = 1, 2, … ,𝑀) at time 𝑡∗  and a replacement is taken. Since 𝑒𝑘∗  is the first 

random failure after time 𝑡𝑖𝑗 , there is no other downtime event between 𝑡𝑖𝑗  and 

𝑡𝑖𝑗 + 𝑡∗. Only downtime events 𝑒𝑖𝑗 and 𝑒𝑘∗ are appended to the known downtime 

list �̂�. The full downtime list 𝑬 is 

𝑬 = [�̂�, 𝑒𝑖𝑗, 𝑒𝑘∗] (4.9) 

With the current system state and fully observed downtimes 𝑬 in the future, the 

buffer levels 𝒃(𝑡𝑖𝑗 + 𝑡∗) at time 𝑡𝑖𝑗 + 𝑡∗ can be derived, which further can be used 

to compute opportunity window 𝑂𝑊𝑘(𝑡𝑖𝑗 + 𝑡∗). Then the permanent production 

loss 𝑃𝐿𝑒𝑘∗
(𝑡∗) caused by 𝑒𝑘∗ can be evaluated as 
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𝑃𝐿𝑒𝑘∗
(𝑡∗) = max {

𝑑𝑘
1𝑐 − 𝑂𝑊𝑘(𝑡𝑖𝑗 + 𝑡∗)

𝑇𝑀∗
, 0} (4.10) 

The probability associated with 𝑃𝐿𝑒𝑘∗
(𝑡∗)  is 𝑝(𝑘, 𝑡𝑖𝑗 , 𝑡

∗) , which is the 

probability that the first random failure arrives at machine 𝑆𝑘 at time 𝑡𝑖𝑗 + 𝑡∗. The 

machines are independent with each other regarding reliability. Therefore 

𝑝(𝑘, 𝑡𝑖𝑗 , 𝑡
∗) is the joint probability of 𝑀 machines, i.e. 

𝑝(𝑘, 𝑡𝑖𝑗, 𝑡
∗) = 𝑝𝑘(𝑡𝑖𝑗, 𝑡

∗) ∏ [1 − ∫ 𝑝𝑙(𝑡𝑖𝑗, 𝜏)𝑑𝜏
𝑡∗

0

]

𝑀

𝑙=1,𝑙≠𝑘

(4.11) 

The expected value of production loss of first downtime event with 𝑒𝑖𝑗 can be 

evaluated as 

𝐸[𝑃𝐿𝑒𝑘∗
] = ∑ ∫ 𝑝(𝑘, 𝑡𝑖𝑗, 𝑡

∗)𝑃𝐿𝑒𝑘∗
(𝑡∗)𝑑𝑡∗

∞

0

𝑀

𝑘=1

(4.12) 

Note that 𝑃𝐿𝑒𝑘∗
(𝑡∗) is directly caused by the potential random failure 𝑒𝑘∗, not 

the initial downtime event 𝑒𝑖𝑗. The impact of 𝑒𝑖𝑗 lies in that it might alter the value 

of 𝑃𝐿𝑒𝑘∗
(𝑡∗). The production loss of 𝑒𝑘∗ without 𝑒𝑖𝑗  should also be evaluated in 

order to identify the real impact of 𝑒𝑖𝑗 . Considering a scenario without the 

downtime event 𝑒𝑖𝑗, the full downtime list �̃� is 

�̃� = [�̂�, 𝑒𝑘∗] (4.13) 

Following the similar aforementioned procedure , at time 𝑡𝑖𝑗 + 𝑡∗, the buffer 

levels �̃�(𝑡𝑖𝑗 + 𝑡∗) , opportunity window 𝑂�̃�𝑘(𝑡𝑖𝑗 + 𝑡∗) , and production loss 

𝑃�̃�𝑒𝑘∗
(𝑡∗) can be computed in sequence. Therefore, the expected production loss of 

first downtime event 𝑒𝑘∗ without 𝑒𝑖𝑗 is 

𝐸[𝑃�̃�𝑒𝑘∗
] = ∑ ∫ 𝑝(𝑘, 𝑡𝑖𝑗, 𝑡

∗)𝑃�̃�𝑒𝑘∗
(𝑡∗)𝑑𝑡∗

∞

0

𝑀

𝑘=1

(4.14) 
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where 𝑝(𝑘, 𝑡𝑖𝑗 , 𝑡
∗) is the probability that machine 𝑆𝑘 fails at time 𝑡𝑖𝑗 + 𝑡∗. Note that 

𝑝(𝑘, 𝑡𝑖𝑗 , 𝑡
∗) ≠ 𝑝(𝑘, 𝑡𝑖𝑗, 𝑡

∗), since 𝑝(𝑘, 𝑡𝑖𝑗, 𝑡
∗) is derived by assuming that machine 

𝑆𝑖  doesn’t receive 𝑒𝑖𝑗 . Finally, 𝑃𝐿𝑅𝑒𝑖𝑗
 can be estimated by the difference of 

expected production losses with and without 𝑒𝑖𝑗. 

𝑃𝐿𝑅𝑒𝑖𝑗
= 𝐸[𝑃𝐿𝑒𝑘∗

] − 𝐸[𝑃�̃�𝑒𝑘∗
] (4.15) 

The term 𝑃𝐿𝑅𝑒𝑖𝑗
 is the impact of 𝑒𝑖𝑗  on the production loss of next random 

failure. By incorporating it into the maintenance cost rate function, a maintenance 

decision at current time would always consider its impact on the whole system in 

future time. 

4.5. CM control based on rolling horizon method 

From the evaluation of production losses, we can conclude that the maintenance 

cost for machines in a manufacturing system heavily depends on the real-time 

system state. As discussed in Section I, it is extremely difficult to find an optimal 

maintenance policy for a global time horizon. Therefore, a feasible approach is to 

develop a control policy implemented on a real-time basis to obtain the near-

optimal maintenance decisions. 

At any time 𝑡 , distributed sensors monitor machine operation status in the 

system. If random failure at machine 𝑆𝑖  is detected, i.e., 𝑊𝑖(𝑡) = 1 , then a 

maintenance action should be taken on machine 𝑆𝑖. Depending on the structure of 

the machine, maintenance of multiple levels 𝑚𝑖 = 1𝑐, 2𝑐, … ,𝑁𝑖𝑐  might be 

available for the failed machine. For each eligible maintenance level 𝑚𝑖 , the 

duration of maintenance 𝑑𝑚 and age reduction factor 𝐴𝑖
𝑚 are known. By assuming 

a maintenance action 𝑒𝑖∗ = (𝑖,𝑚, 𝑡, 𝑑𝑖∗
𝑚) at machine 𝑆𝑖, the expected maintenance 

cost rate 𝐸[𝑅𝑖∗
𝑚]  can be derived according to Equation (6). Then the optimal 

maintenance level 𝑚𝑖∗ should minimize the expected cost rate, i.e. 

𝑚𝑖∗ = argmin
𝑚

{𝐸[𝑅𝑖∗
𝑚],𝑚 = ,1𝑐, 2𝑐, … , 𝑁𝑖𝑐} (4.16) 
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4.6. Experiments and validation 

To demonstrate the effectiveness of the proposed real-time maintenance policy, 

extensive numerical studies are performed. In baseline policies, upon random 

failures, the maintenance level is static. The other policy is the real-time 

maintenance policy proposed in this paper. The overall profit of the system, denoted 

as 𝒫(𝑇), is taken as the main performance measure. 

𝒫(𝑇) = 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑐𝑝 ⋅ 𝑋𝑀(𝑇) − ℳ(𝑇) (4.17) 

where 𝑐𝑝 ⋅ 𝑋𝑀(𝑇) is the production revenue and ℳ(𝑇) is the total maintenance 

resource cost during time span [0, 𝑇]. Let 𝐾𝑖
𝑚(𝑇),𝑚 = 1𝑐, 2𝑐, … denotes the total 

number of level-m maintenance received by the machine 𝑆𝑖 up to time 𝑇. The total 

maintenance resource cost is 

ℳ(𝑇) = ∑ ∑ 𝐾𝑖
𝑚(𝑇)𝑐𝑖

𝑚

𝑎𝑙𝑙 𝑚
𝑚=1𝑐,…,𝑁𝑖𝑐

𝑀

𝑖=1

(4.18) 

We construct 50 different serial production lines by randomly selecting 

machine and buffer parameters from the following sets: 

𝑀 ∈ {3, 20} 

𝑇𝑖 ∈ [1, 5] 𝑚𝑖𝑛, 𝑖 = 1, 2, … ,𝑀 

𝐵𝑖 ∈ [2, 40], 𝑖 = 2, 3, … ,𝑀 

𝑏𝑖(0) ∈ [0, 𝐵𝑖], 𝑖 = 2, 3, … ,𝑀 

In this case study, failure-time of the machines are assumed to follow Weibull 

distribution, which is a typical increasing-failure-rate distribution widely used in 

machine reliability analysis. The probability density function of failure-time of 

machine 𝑆𝑖 is given as 

𝑝𝑖(𝑡
∗) = exp(−(

𝑡∗

𝛼𝑖
)
𝛽𝑖

) (4.19) 
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where 𝛼𝑖  is the scale parameter, and 𝛽𝑖  is the shape parameter. The conditional 

probability of fail-time given its virtual age 𝑣𝑖𝑗
𝑚 is 

𝑝𝑖(𝑡
∗|𝑣𝑖𝑗

𝑚) =
𝛽𝑖

𝛼𝑖
(
𝑡∗ + 𝑣𝑖𝑗

𝑚

𝛼𝑖
)

𝛽𝑖

exp((
𝑣𝑖𝑗

𝑚

𝛼𝑖
)

𝛽𝑖

− (
𝑡∗ + 𝑣𝑖𝑗

𝑚

𝛼𝑖
 )

𝛽𝑖

 ) (4.20) 

For every machine 𝑆𝑖  in randomly generated production lines, the shape 

parameter is 𝛽𝑖 = 2 , and the scale parameter 𝛼𝑖  and initial virtual age 𝑣𝑖0  are 

randomly generated according to following set: 

𝛼𝑖 ∈ [500, 2000] 𝑚𝑖𝑛 

𝑣𝑖0 ∈ [0,1000] 𝑚𝑖𝑛 

For the ease of implementation and further analysis, the maintenance 

parameters of each machine are set to be identical. Four maintenance levels for each 

machine are given, namely replacement (1𝑐), minimal maintenance (4𝑐), and two 

levels of imperfect maintenance ( 2𝑐, 3𝑐 ). The parameters regarding each 

maintenance level is as shown in Table 4.1.  

Table 4.1. Maintenance parameters for CM control case study 

Maintenance Level 𝑚 
Age Reduction Factor 

𝐴𝑖
𝑚 

CM Duration 𝑑𝑖
𝑚 Resource Cost 𝑐𝑖

𝑚 

1𝑐 0 30 2000 

2𝑐 0.3 20 1200 

3𝑐 0.6 15 900 

4𝑐 1.0 5 300 

 

Three static maintenance policies, i.e., policy 1𝑐, policy 2𝑐 and policy 3𝑐, are 

adopted for comparison. In these policies, upon random failures the machine will 

always receive a maintenance of level 1𝑐, 2𝑐 and 3𝑐 respectively. 

The profit per part is 𝑐𝑝 = 200 $ . Each production line is simulated to 

continuously run for 4 weeks, i.e., the simulation time horizon is 𝑇 = 40320 𝑚𝑖𝑛. 
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For each randomly generated production line and each policy, the simulation is 

repeated for 10 times to compute the average overall profit. 

 

Figure 4.4. The comparison of overall profits among policies 

Figure 4.4 illustrates the simulation result comparison. In all 50 production lines, 

the overall profits using real-time policy are greater than those using static 

maintenance policies. On average, the overall profit using real-time policy is 

31.36%, 11.48% and 15.37% greater than those using policy 1𝑐, policy 2𝑐, and 

policy 3𝑐 respectively. 

To further analyze our policy, a special production line is constructed. All six 

machines in the line have identical reliability parameters, but different cycle time 
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due to process planning. The slowest machine in the line is 𝑆4. We calculate the 

total numbers of replacement and imperfect maintenance (including minimal 

maintenance) under the real-time maintenance policy during one-time simulation. 

Table 4.2. Maintenance records for the CM case study 

Machine 
Total replacement 

count 𝐾𝑖
1𝑐 

Total imperfect maintenance 

count  ∑ 𝐾𝑖
𝑚

𝑚=2𝑐,3𝑐,4𝑐  

Total maintenance 

count ∑𝐾𝑖
𝑚 

𝑆1 27 66 93 

𝑆2 27 66 93 

𝑆3 28 63 91 

𝑆4 (slowest) 32 45 77 

𝑆5 29 54 83 

𝑆6 27 79 106 

 

As shown in Table 4.2, although all the machines are identical regarding 

reliability parameters, it is noted that the slowest machine 𝑆4  received more 

replacements and less imperfect maintenances than any other machines. The 

replacement number decreases, and imperfect maintenance number increases for 

the machine further away from the slowest machine. The machine far away from 

the slowest machine is more likely to take imperfect maintenance than replacement. 

Besides the stochastic factors, the reason for this phenomenon is mainly that the 

opportunity window tends to be larger for the machines far away from the slowest 

machine. Imperfect maintenances, which typically last shorter than a replacement, 

is less likely to induce permanent production loss on these machines and therefore 

is preferable to replacement. 

One may also note that the total maintenance number are increasing with the 

distance from the slowest machine. The decrease in replacement times would 

inevitably impair the reliability of the machine, and thus more random failures can 

be expected. However, since these machines have larger opportunity windows, they 

are more resilient to random failures. It is reasonable for these machines to take 
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more imperfect maintenances in order to reduce resource costs. This case illustrates 

that the maintenance decisions could be very different for identical machines when 

they are placed at different locations in a multi-stage manufacturing system. 

To conclude, the real-time maintenance policy proposed in this paper is 

effective to choose proper maintenance levels in accordance with the production 

system dynamics. 

4.7. Summary 

In this chapter, a rolling horizon method is used to solve the corrective 

maintenance decision making problem in manufacturing systems. The real-time 

maintenance cost rate is established to facilitate the real-time decision making on 

multi-level maintenance in a multi-stage manufacturing system. Based on the data-

driven mathematical model of the manufacturing system, the permanent production 

loss and production loss risk incurred by the maintenance action are derived. The 

proposed control framework is able to make cost-effective maintenance decisions 

considering multiple maintenance levels. 

4.8. Related work 

Part of the results presented in this chapter have been published in [83]–[85]. 
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Chapter 5. Reinforcement Learning for 

Preventive Maintenance Control 

5.1. Background 

Preventive maintenance (PM) is an intricate matter as it relates to many other 

aspects of modern industrial practices [86]. The PM policy aims in improving 

system reliability, preventing the occurrence of system failures, and reducing 

maintenance costs [56]. It is shaped by the specific application scenario and the 

characteristics of the target system. Regarding the structure of the system of interest, 

the maintenance policies can be categorized into single-unit policies and multi-unit 

policies. The single-unit policies are designated for those standalone systems and 

they have been extensively investigated by Wang [56]. Some examples are age-

dependent policies [87] and periodic PM policies etc. Since the single-unit system 

operates independently, the relationship, either deterministic [87] or stochastic [88], 

between the maintenance decision and the overall maintenance cost is usually 

known. Therefore, the single-unit maintenance could often be modeled as a 

stochastic process, in which optimal PM decision variables can be obtained by 

minimizing the maintenance cost rate, or, equivalently, maximizing the machine 

availability in some circumstances. For the serial production line, the maximum 

machine availability does not guarantee an optimal maintenance cost. The system 

production loss caused by a maintenance action is conditioning on the buffer states 

[89], [90], for which in general we cannot derive the probability distribution [67]. 

Furthermore. it is noteworthy that real manufacturing systems vary with 

different available maintenance actions, and machine maintenance requirements, 

and system size. Random failure occurs when a machine deteriorates to a certain 
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level due to usage and aging. Upon the random failure, a maintenance action has to 

be carried out in order to restore the machine to an acceptable operating condition. 

Such a maintenance option is referred to as corrective maintenance (CM). The 

consequences of machine random failures can be unpredictable, and even 

catastrophic in some situations [56]. To reduce such random failures, the preventive 

maintenance (PM) is much needed, which proactively maintains a machine even it 

is not failed and keeps machines in a desired reliability level. Besides, in industrial 

practice, maintenance is not necessarily to replace the machine with a new one. 

Based on the structure of the system, multi-level maintenance options could be 

available. A perfect maintenance, or replacement, is recovering the machine ‘as 

good as new’, while a minimal maintenance is recovering the machine ‘as bad as 

old’, which only resumes its operation without changing the deterioration status. 

Imperfect maintenances are recovering the machine to somewhere between old and 

new. 

Unlike in the single-unit system, the components within the multi-unit system 

have structural or operational dependencies on each other. Maintenance policies 

have been developed based on the specific structures of the systems, including 

serial systems [91], the parallel systems [92] and k-out-of-n systems [93] etc. The 

“group maintenance” and “opportunistic maintenance” are the building blocks for 

most of the existing maintenance policies for the close-interconnected serial 

systems. The group maintenance policy [59], [94] conducts multiple maintenance 

actions simultaneously to merge and reduce the production losses, while the 

opportunistic maintenance policy [95]–[97] identifies the time window, in which 

the inserted PM will not incur extra production losses. They are inspired by the 

observation that when one machine is under maintenance, the others can receive 

maintenance at the same time without incurring extra production loss. However, it 

does not hold in a general serial production line because the buffers among 

machines could delay the propagation of the machine stoppage from the maintained 

machine to its adjacent machines [89], [98]. 



 

61 

 

It turns out that neither traditional single-unit policies nor multi-unit policies 

could be directly applicable to the serial production lines. Therefore, considerable 

research efforts have been devoted to deriving feasible maintenance policies for the 

serial production lines. There are several works [99]–[101] that are aimed to derive 

maintenance policy for two-machine-one-buffer serial production lines. Fitouhi et 

al. [99] presented a Markov Chain based method to evaluate the system 

performance under different PM policies, however, the policy considered in this 

work failed to incorporate the system dynamics since PM actions were determined 

based on only two variables, i.e. degradation states of the two machines. In the 

contrast, Karamatsoukis et al. [100] included the buffer levels in the state definition 

when they tried to obtain PM policies using Markov Decision Process (MDP). 

Wang et al. [101] derived the PM policy based on semi-MDP for a two-machine-

one-buffer production line considering quality inspections. Machine degradation 

states are assumed to be directly related to product quality performance and non-

conforming parts would be scrapped immediately. Although these works found 

feasible PM policies under different assumptions, the approaches proposed in [100], 

[101] lack scalability and cannot be extended to the more general cases with more 

machines and buffers. 

For longer serial production lines, Arab et al. [69] searched for the optimal 

maintenance schedule using genetic algorithm in order to maximize the throughput. 

Ramirez-Hernandez et al. [102] used approximate dynamic programming (ADP) to 

optimize the maintenance schedule in a five-machine production line. However, 

both works simplifies the maintenance problem as inserting known maintenance 

tasks, in the form of downtime events, into the production shifts, and assumed that 

the maintenance schedules would not impact the machine reliability status at all. 

Kang et al. [103] proposed an aggregation-based approximation method for 

obtaining maintenance policies for the synchronous production line, i.e. the cycle 

time for each machine is identical. But real production lines are usually not 

perfectly balanced, so that it is important to consider the different machine 

processing speeds when optimizing PM policies [99]. In [104], a CM policy 

considering imperfect maintenance effects was proposed for the serial production 
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line, but the PM was not included in the work. Therefore, a systematic approach to 

deriving PM policies for general serial production lines must be developed to 

address the above challenges. 

Regarding the mathematical techniques used in obtaining maintenance policies, 

quite a few methods have been applied in literatures, including renewal process 

[87], Markov Chain [99], heuristic methods [69], and MDP [99]–[103] etc. It is 

noted that MDP is a particularly common modeling method for maintenance 

problem in complex systems including serial production lines, since maintenance 

is often a sequential decision-making problem with multi-dimensional states and 

actions. However, it is important to realize that the performance of MDP-based 

maintenance policies can vary tremendously depending on the problem formulation 

and solving techniques. 

On the one hand, the problem formulation refers to properly defining the three 

components, namely state, action, and reward, according to the problem 

characteristics and objective. It requires thorough understanding of system 

dynamics in serial production lines. For example, if some key variables are not 

included in the state definition, the PM decisions would fail to reflect the real 

system dynamics. In [99], the buffer level is not considered when making PM 

decisions, hence the PM decision might be the identical no matter the buffer is full 

or empty. But one should also strive not to include redundant variables, especially 

in today’s manufacturing systems, which usually have huge amounts of data from 

various sensors. In this paper, the PM problem is also formulated as an MDP but 

with the guidance of our previously derived systematic knowledge of the serial 

production lines. 

For years, scheduled and other “preventive” maintenance strategies have been 

the norm – achieving maintenance objectives through regular equipment 

inspections and scheduled maintenance at pre-determined intervals based on 

operational time, cycles, units, etc. However, this “fixed” PM policy may ignore a 

machine’s real degradation and its impact on system level throughput loss. The 

complexity of a production system leads to an extremely large state space of the 
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maintenance problem. In the industrial practice, PM schedules are usually planned 

solely based on individual machine’s ages recommended by machine vendors, 

which tend to be conservative and largely ignore the intricate interactions among 

machines in the serial production line. As the information of the production systems 

have been increasingly transparent and detailed, a PM policy would be preferable 

if all necessary machine-level and system-level information are fully incorporated 

into the policy. However, it inevitably leads to a problem with an enormous state 

space, which is intractable with traditional model-based planning methods. It is 

promising to embrace new tools and methodologies emerging in artificial 

intelligence and machine learning areas to develop intelligent decision-making 

support systems for production and maintenance management. 

On the other hand, the solution to an MDP is an optimal policy that gives the 

best action for each state, such that the expected accumulated reward is maximized. 

There have been a lot of techniques that can effectively solve the MDP, and some 

of them have been applied to maintenance problems. Dynamic Programming (DP) 

is an exact and model-based approach to solving MDP, where model refers to the 

complete transition probabilities among states. Therefore, in the context of PM 

problem in serial production lines, DP is only applicable to two-machine-one-

buffer line [100], or needs cruel approximations when applied to longer lines [103]. 

In the contrast, Reinforcement Learning (RL) is a category of techniques obtaining 

the optimal policy for MDP through the interactions between agents and the 

uncertain environment [105]. Most of the RL algorithms is model-free, i.e., the state 

transition probabilities are not required. Therefore, the model-free RL algorithms 

well suit the PM problem in general production lines, for which the system state 

space explodes exponentially with increased machine numbers. Instead of the 

transition probabilities, a reliable simulator, or experiment if feasible, that faithfully 

reflects the uncertain environment needs to be set up for the implementation of RL 

algorithms. Regarding the serial production line, the general-purpose commercial 

software, e.g., Simul8 and Simulink etc., have long been used for its simulation. 

However, the simulation setup is often arduous, and the efficiency and accuracy are 

not guaranteed. In [98], a data-driven model for production lines is established 
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based on dynamic system and conservation of the flow. The model is derived 

analytically, and therefore it is not only accurate but also has high computation 

efficiency compared to general-purpose simulation software. In this paper, we will 

leverage it to simulate the production system dynamics under PM for training 

process of the RL agent. 

The selection of the RL algorithms is also a crucial question. According to how 

the policy is represented, RL algorithms can be categorized into policy-based 

methods, value-based methods, and actor-critic [105]. In RL, policy is a function 

mapping from state to action. The policy-based methods seek to directly 

parameterize the policy. Simple parameterizations could be, for example, linear 

combination of polynomial features or basis functions. The performance of policy-

based methods heavily depends on how the features or basis functions are 

constructed. For problems with high dimension and inherent complexity, simple 

parameterizations are not sufficient due to their limitations on representation power. 

In contrast to policy-based methods, value-based methods represent the policy 

implicitly with state-values or state-action-values, where ‘value’ is the expected 

accumulated reward starting from a given state or taking a given action. The naïve 

Q-learning is one of the most widely used value-based methods in researches on 

PM problems because of its simplicity and robustness. Wang et al. [101] presents 

the application of naïve Q-learning to PM problem in two-machine-one-buffer line. 

However, to some extent, naïve Q-learning also suffers from the “curse of 

dimensionality” mainly because the naïve Q-learning uses a table to record the Q-

value for all state-action pairs. The problem with large state spaces is not just the 

memory needed for large tables, but the time and data needed to fill them accurately 

[105]. The actor-critic method adopts both policy parameterization and value 

function in its algorithm, and therefore suffers from the drawbacks of both. In 

conclusion, despite the fact that these primitive RL algorithms are robust and 

accessible, the lack of scalability is preventing them from being applied to solve a 

range of real-world problems with large state space like the PM problem discussed 

in this paper. To this end, in recent years, the emergence of deep learning allows 

the RL to go ‘deep’ as well and results in a series of DRL algorithms. The DRL 
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scales RL to interesting decision-making problems in practice that were previously 

intractable [106]. Some of the DRL applications in recent years include, for 

example, Atari video games [107], [108] and the game of Go [109] etc. Thanks to 

its good scalability and efficiency, the DRL shows great potential to solve complex 

problems in the manufacturing industry that are unsolvable with conventional 

techniques. 

5.2. PM problem description 

We consider a serial production line that consists of 𝑀 machines and  𝑀 − 1 

buffers with limited capabilities as shown in Figure 5.1. The arrows depict the 

direction of material flow in the system. The material is referred to as a final product 

once it has been processed by all machines sequentially. Otherwise, it is said to be 

an intermediate part. 

 

Figure 5.1. The structure of a serial production line 

The serial production line is described as follows: 

• Each buffer 𝐵𝑖  has a finite capacity. With the abuse of notation, the 

maximum capacity of buffer 𝐵𝑖 is also denoted as 𝐵𝑖. 

• Each machine 𝑆𝑖 has a rated cycle time 𝑇𝑖. 

• The lifetime of machine 𝑆𝑖 follows a known distribution 𝑝𝑖(𝑥), which can 

usually be obtained by experiments or from vendors. 

• The maintenance durations 𝑑𝑖
𝑃𝑀  and 𝑑𝑖

𝐶𝑀  include not only the time 

performing maintenance but also the response time and preparation time 

needed before the maintenance starts. 

• Both CM and PM would incur some fixed resource costs, including costs 

of new parts and all other consumable expenses. The resource costs of a 

CM and a PM on machine 𝑆𝑖 are 𝑐𝑖
𝐶𝑀 and 𝑐𝑖

𝑃𝑀 respectively. 
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An intermediate part finished by machine 𝑆𝑖  flows to its downstream buffer 

𝐵𝑖+1  if buffer 𝐵𝑖+1 is not full, and otherwise machine 𝑆𝑖  is said to be blocked. 

Machine 𝑆𝑖 starts a new cycle by receiving one part from its upstream buffer 𝐵𝑖 if 

buffer 𝐵𝑖 is not empty, and otherwise machine 𝑆𝑖 is said to be starved. The blockage 

or starvation makes an operational machine to stand idle. If one machine is 

undergoing maintenance, its downstream buffers gradually drain, and upstream 

buffers fill up due to the machine stoppage and thus causing blockage or starvation 

in its adjacent operational machines. The stoppage and idleness of these machines 

might finally lead to the system-level production loss. The production loss due to 

the maintenance activities accounts for a significant portion of the overall 

maintenance related costs. We denote the system production loss caused by the 

maintenance activities as 𝑃𝐿. 

The extent to which the maintenance action can restore a machine’s health state 

is referred to as maintenance effect. In this work, we use Kijima Model II [110] to 

model the effects of different levels of maintenance actions. Let 𝑔𝑖  denote the 

machine’s age prior to maintenance, then the machine’s age immediately after the 

maintenance, denoted by 𝑔𝑖
′, is given by  

𝑔𝑖
′ = 𝑔𝑖 × 𝑟𝑖 (4.1) 

where 0 ≤ 𝑟𝑖< 1 is the recovery factor of the maintenance on machine 𝑆𝑖. 𝑟𝑖 = 0 

indicates a perfect maintenance since the machine age 𝑔𝑖
′ is set to be zero after 

maintenance. By contrast, 0 < 𝑟𝑖 < 1 relates to an imperfect maintenance, as the 

post-maintenance age 𝑔𝑖
′ , also referred to as ‘virtual age’ in Kijima (1989), starts 

somewhere between zero and the original age 𝑔𝑖 . In other words, imperfect 

maintenance does not fully restore machine’s health condition and hence earlier. 

Let 𝜋 denotes the PM policy for a serial production line. The PM policy 𝜋 

instructs when and which machine should be turned off and receive a PM. Let 

𝐶(𝑡; 𝜋) denotes all the costs caused by the maintenance activities up to time 𝑡 under 

the PM policy 𝜋, then 
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𝐶(𝑡; 𝜋) = 𝑐𝑝 ⋅ ∫ 𝑃𝐿(𝑡)𝑑𝑡
𝑡

0

+ ∑𝑐𝑖
𝑃𝑀𝑁𝑖

𝑃𝑀(𝑡)

𝑀

𝑖=1

+ ∑𝑐𝑖
𝐶𝑀𝑁𝑖

𝐶𝑀(𝑡)

𝑀

𝑖=1

(4.2) 

where 𝑐𝑝  is the profit per part and ∫ 𝑃𝐿(𝑡)𝑑𝑡
𝑡

0
 is the accumulative system 

production loss up to time 𝑡. 𝑁𝑖
𝑃𝑀(𝑡) and 𝑁𝑖

𝐶𝑀(𝑡) are the total PM and CM times 

conducted on machine 𝑆𝑖 up to time 𝑡 respectively. 

𝑁𝑖
𝑃𝑀(𝑡) = ∫ 𝑎𝑖(𝜏)𝑑𝜏

𝑡

0

(4.3) 

𝑁𝑖
𝐶𝑀(𝑡) = ∫ 𝑤𝑖(𝜏)𝑑𝜏

𝑡

0

(4.4) 

An optimal PM policy 𝜋∗ should minimize the long-run maintenance cost rate, 

which is maintenance cost per unit time. Therefore, the objective of the 

maintenance problem in this paper can be represented as: 

𝜋∗ = argmin
𝜋

{lim
𝑡→∞

𝐶(𝑡; 𝜋)

𝑡
} (4.5) 

With this objective function, the problem to be studied in this paper is to 

develop methods to find the optimal PM policy 𝜋∗ for the serial production line, 

such that the long-run maintenance cost rate is minimized. Since the production 

systems vary dramatically in their scales, ranging from two-machine line to systems 

consisting of dozens of machines, it is important to ensure that the developed 

methods should cover all those different scales. 

5.3. Deep RL for PM decision making 

The PM decision making problem in manufacturing system is formulated as a 

reinforcement learning problem. In the context of PM problems, the stepwise 

decision is to determine whether or not we conduct PM actions on machines. The 

rule governing the action selection is referred to as a policy, denoted as 𝜋(𝑎|𝑠). 

𝜋(𝑎|𝑠) = Pr(𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠) (4.6) 
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Subsequently, a scalar reward 𝑟𝑡 will be observed, which reflects the goodness 

of the action 𝑎𝑡 in state 𝑠𝑡. The accumulated reward is referred to as return, denoted 

as 𝐺𝑡. 

𝐺𝑡 = 𝑟𝑡 + ∑ 𝛾𝑘𝑟𝑡+𝑘

∞

𝑘=1

(4.7) 

where 𝛾 is a discount factor, which is used to make a trade-off between immediate 

reward and future rewards. If the immediate reward is preferred, a small 𝛾 will be 

used and vice versa. An optimal policy 𝜋∗ is supposed to maximize the expected 

return, i.e. 

𝜋∗ = argmax
𝜋

{𝔼𝜋[𝐺𝑡]|𝑠 = 𝑠𝑡} (4.8) 

Before we can apply RL algorithms to obtaining the ultimate PM policy 𝜋∗, we 

need to first define the three key components properly, i.e., state 𝑠𝑡, action 𝑎𝑡, and 

reward function 𝑟𝑡, in the MDP that models the PM problem in serial production 

lines. 

Given the state 𝑠𝑡 , one should be able to fully comprehend the production 

system status such that an action that suits the status can be determined. Three 

factors are essential for the PM decision making in the serial production line, 

namely 

• The machine ages 𝑔𝑖(𝑡), 𝑖 = 1,2, … ,𝑀 , specify the probability of 

random failures on each machine; 

• The buffer levels 𝑏𝑖(𝑡), 𝑖 = 2,3, … ,𝑀 , denote the status of the 

production line, which directly relate to the system production losses 

caused by PM actions and random failures; 

• The remaining maintenance duration 𝑑𝑖
𝑟(𝑡), 𝑖 = 1,2, … ,𝑀, indicate all 

the ongoing maintenance activities on each machine. 

Consequently, the state 𝑠𝑡 is defined as: 

𝑠𝑡 = [𝑔1(𝑡), … , 𝑔𝑀(𝑡), 𝑏2(𝑡), … , 𝑏𝑀(𝑡), 𝑑1
𝑟(𝑡), … , 𝑑𝑀

𝑟 (𝑡)] (4.9) 
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In contrast with the PM, the CM is passively triggered by a random failure, 

which is beyond the control of the agent. Therefore, the action 𝑎𝑡 is limited to the 

PM decisions. The action 𝑎𝑡 is a vector consisting of 𝑀 binary variables indicating 

whether we turn off machines for PM or not at time 𝑡. 

𝑎𝑡 = [𝑎1(𝑡), 𝑎2(𝑡),… , 𝑎𝑀(𝑡)] (4.10) 

where,  

𝑎𝑖(𝑡) = {
0,       leave machine 𝑆𝑖 as it is     
1,      turn off machine 𝑆𝑖 for PM

(4.11) 

Note that 𝑑𝑖
𝑟(𝑡) > 0 implies that there is an ongoing maintenance on machine 

𝑆𝑖, and thus machine 𝑆𝑖 cannot receive a PM under such circumstance. The action 

𝑎𝑡 is said to be illegal if it intends to assign a PM on machine 𝑆𝑖 given 𝑑𝑖
𝑟(𝑡) > 0. 

At each time step, it is only allowed to select an action from the legal action sets 

𝐴(𝑠𝑡). 

𝐴(𝑠𝑡) = {𝑎𝑡|∀𝑖, 𝑎𝑖(𝑡) = 0, if 𝑑𝑖
𝑟(𝑡) > 0} (4.12) 

For simple serial systems without intermediate buffers, any machine stoppage 

would immediately count towards the system production loss. However, with the 

existence of intermediate buffers, the relationship between system production loss 

and machine stoppage duration is not trivial. It has been proved in [89] that in a 

serial production line a maintenance action causes system production loss if and 

only if the slowest machine is impeded, i.e. blocked or starved, by the stoppage. Let 

𝑆𝑀∗  denotes the slowest machine in a serial production line, where 𝑀∗ =

argmax
𝑖

{𝑇𝑖, 𝑖 = 1,2, … ,𝑀} . In the stepwise simulation scenario, the system 

production loss 𝑃𝐿(𝑡) can also be conveniently calculated as 

𝑃𝐿(𝑡) =
1

𝑇𝑀∗
− (𝑌𝑀∗(𝑡) − 𝑌𝑀∗(𝑡 − 1)) (4.13) 

where 1/𝑇𝑀∗ is the ideal production increment of the slowest machine 𝑆𝑀∗ without 

any disturbance, and the second term 𝑌𝑀∗(𝑡) − 𝑌𝑀∗(𝑡 − 1) is the actual incremental 

production counts of the slowest machine 𝑆𝑀∗. The difference between them is the 

system production loss during the time step. The overall maintenance cost includes 
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the resource cost of all PMs and CMs, and the system production loss caused by 

those maintenances. Therefore, the reward function 𝑟𝑡 is defined as: 

𝑟𝑡 = −𝑐𝑝 ⋅ 𝑃𝐿(𝑡) − ∑𝑤𝑖(𝑡)𝑐𝑖
𝐶𝑀

𝑀

𝑖=1

− ∑𝑎𝑖(𝑡)𝑐𝑖
𝑃𝑀

𝑀

𝑖=1

(4.14) 

where ∑ 𝑤𝑖(𝑡)𝑐𝑖
𝐶𝑀𝑀

𝑖=1  and ∑ 𝑎𝑖(𝑡)𝑐𝑖
𝑃𝑀𝑀

𝑖=1  are the resource costs at time step 𝑡 

incurred by CMs and PMs respectively, and 𝑐𝑝 ⋅ 𝑃𝐿(𝑡) is the profit loss caused by 

the system production loss 𝑃𝐿(𝑡) during the time step. The reward is negative 

because we seek to maximize the accumulated reward, and equivalently the overall 

maintenance cost can be minimized. 

5.4. Deep MARL for scaled up problem 

The RL-based framework has issues being generalized to larger scaled 

applications due to action space explosion. In comparison, MARL is less prone to 

action space explosion as its action space is independent of number of agents in the 

system [101], [111], [112]. This is because, under the MARL’s decentralized 

setting, the agents make decisions independently. 

 

Figure 5.2. Comparison of action space size between RL and MARL formulation 

Figure 5.2 depicts the action spaces of a 𝑛-machine production line under RL 

and MARL respectively. For MARL formulation that employs the CTDE 

framework, agents condition their actions on the local partial observations and are 

optimized by the gradients that are dependent on global states. Therefore, we need 

to design local observations 𝑜 that provide the basis for agents’ actions and global 
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states 𝑠 that encapsulate information that is useful for training. Given a machine 𝑆𝑖 

three factors that are essential to its PM decision making are: 

• The age of machine 𝑆𝑖, 𝑔𝑖. 

• The upstream and downstream buffer status related to 𝑏𝑖−1 and 𝑏𝑖. 

• Machine’s remaining maintenance duration, 𝑑𝑖
𝑟 , if applicable. In 

addition, the status of 𝑆𝑖’s immediate adjacent machines is also useful 

because it might relate to the blockage or starvation of machine 𝑆𝑖. 

Consequently, the local observation for machine 𝑀𝑎 is defined as: 

𝑜𝑛  =  [𝑔𝑖 , 𝑔𝑖−1, 𝑔𝑖+1, 𝑏𝑖−1, 𝐵𝑖 − 𝑏𝑖, 𝑑𝑖
𝑟 , 𝑑𝑖−1

𝑟 , 𝑑𝑖+1
𝑟 ] (4.15) 

Note that we use buffer vacancy 𝐵𝑖 − 𝑏𝑖 instead of buffer level 𝑏𝑖 to represent 

the real-time status of the downstream buffer. This is because the buffer vacancy is 

a more sufficient criteria than buffer level in determining if the machine is blocked 

or not. Furthermore, the 𝑠 that represents the global state of the production line is 

obtained by concatenating local observations from all machines and it is written as: 

𝑠 = [𝑜1, 𝑜2, … , 𝑜𝑀] (4.16) 

Action definition and reward definitions are similar to those in RL formulation. 

The minor difference is that the action is tweaked to include more levels of 

imperfect maintenance actions. 

5.5. Experiments and validation 

5.5.1. Double Deep Q-Network for PM control 

Traditional tabular Q-learning uses a table to keep records of all the state-action 

values. However, when the state space of the problem is larger, tabular Q-learning 

can be inefficient and even infeasible. Given the definition of the state 𝑠𝑡  in 

previous section, the machine ages 𝑔𝑖(𝑡) ∈ [0,∞) , the buffer levels 𝑏𝑖(𝑡) ∈

{0,1, … , 𝐵𝑖}, and remaining maintenance time 𝑑𝑖
𝑟(𝑡) ∈ [0, 𝑑𝑖

𝐶𝑀]. Theoretically, the 

state space of the problem discussed in this paper is infinite. To deal with such 
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problems with extremely large state space, researchers strived to approximate the 

Q-values 𝑄(𝑠, 𝑎) with some functions �̂�(𝑠, 𝑎; 𝜽). 

�̂�(𝑠, 𝑎; 𝜽) ≈ 𝑄(𝑠, 𝑎) (4.17) 

where 𝜽 is the parameters of the approximation function. Instead of learning the 

exact Q-values for all state-action pairs, the agent learns the parameters 𝜽 that can 

generalize a function well to approximate all the Q-values. Among the existing Q-

learning algorithms with function approximations, the Double Deep Q-Network 

(DDQN) [108] is the state-of-the-art algorithm. In the DDQN, the ‘network’ refers 

to the neural network [113] that is used to approximate the state-action values. The 

typical architecture of the neural network for the state-action value approximation 

is as shown in Figure 5.3. The inputs are the state 𝑠, and the outputs are state-action 

values �̂�(𝑠, 𝑎𝑛; 𝜽), 𝑛 = 1,2, … ,𝑁, where 𝑁 is the total number of possible actions. 

In a serial production line with 𝑀 machines, the number of possible actions is 𝑁 =

2𝑀. 

 

Figure 5.3. A typical architecture of the Q-network 

The reinforcement learning problem formulated for PM decision making is 

trained through DDQN, shown in Figure 5.4. The neural network has two fully 

connected hidden layers, and each layer has 64 hidden units. Since the machine 

number is 4, the size of the input layer is 11 and that of output layer is 16. The size 

of the experience memory is 𝑁𝑚𝑒𝑚= 500,000. The minibatch size is 𝑏 =32. The 

step intervals for the state randomization and neural network duplication are 𝐶1 =

1,000 and 𝐶2 = 10,000. The decision time interval during training is chosen as 𝑘 = 

30 mins, i.e., every 30 minutes the agent needs to determine a PM action and input 
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it to the production system. The future reward discount factor is set to be 𝛾 = 0.95. 

The parameter for 𝜖-greedy is initially set to be 0.8, linearly reduced to 0.1 when 

the iteration reaches 300,000 steps and fixed to 0.1 afterwards. Regarding the 

gradient descent, the optimizer used in this case is RMSprop [114], in which three 

parameters are 𝜂=0.00025, 𝜖′ = 0.01, and 𝜌=0.95. We implement the proposed 

algorithm using TensorFlow with 4 GPUs and 4 CPUs. The total training steps are 

2,000,000. 

 

Figure 5.4. The flowchart of the DQN training process for PM decision making 

To monitor the training progress, every 10,000 steps we run the production 

system with the PM policy defined by the latest neural network parameters 𝜽 for 

100,000 minutes and observe the average rewards per minute, which is as shown in 

Figure 5.5. It can be observed that the agent is making steady progress throughout 

the training iterations despite some noises. 
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Figure 5.5. DQN training progress shows convergence 

To evaluate the performance of the learned policy, three other scenarios are 

considered, including the run-to-failure scenario, the age-dependent PM policy, and 

opportunistic PM policy. 

Run-to-Failure (R2F): The Run-to-Failure scenario is used to evaluate the 

system performance if no PM is conducted throughout the time horizon. Each 

machine in the production line keeps running until it encounters a random failure. 

Hence, CM is the only type of maintenance that is conducted in this scenario. Any 

other PM policy is deemed as effective only when it improves system performance 

from the Run-to-Failure scenario. 

Age-Dependent Policy: In this policy, we follow the traditional norm - one 

machine will receive a PM whenever its age exceeds a predetermined age threshold. 

The age-dependent policy is the most widely used PM policy in the real industry. 

The optimal age threshold is derived to minimize the cost rate of each individual 

machine according to Ross [87]. 
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Opportunistic Maintenance (OM): OM policy is inspired from the 

observation that once there is a machine undergoing CM, other machines can 

receive PM without incurring extra system production losses. Under OM policy, 

whenever one or multiple machines fails in the serial production line, we will 

conduct CM on those failed machines. In the meantime, we will turn off all other 

operational machines for PM. 

According to the experiment results, all the three policies are effective PM 

policies, because they all improve the system performance from the run-to-failure 

scenario. However, the learned policy outperforms both the age-dependent policy 

and opportunistic policy in all the ten initial states sets. On average, the learned 

policy reduces the overall maintenance cost rate by 8.77% and 6.25% comparing 

to the age-dependent policy and opportunistic policy, respectively. Table 5.1 also 

lists the 95% confidence interval for the average maintenance cost rates under 

difference PM policies. We can observe that the 95% confidence intervals of the 

average cost rates for the learned policy are much lower and have no overlap with 

that for other policies, which indicates strong statistical significance. 

Table 5.1. Average maintenance cost rates and 95% confidence intervals 

Initial State Run-to-failure 
Age-dependent 

Policy 

Opportunistic Policy 
Learned Policy 

1 
7.92 6.68 6.56 6.18 

[7.81, 8.02] [6.53, 6.83] [6.41, 6.7] [6.06, 6.31] 

2 
7.98 6.84 6.57 6.15 

[7.9, 8.07] [6.72, 6.95] [6.44, 6.69] [6.03, 6.28] 

3 
7.89 6.86 6.54 6.12 

[7.77, 8.01] [6.75, 6.96] [6.41, 6.68] [6.0, 6.24] 

4 
7.88 6.71 6.6 6.1 

[7.76, 7.99] [6.59, 6.82] [6.49, 6.71] [5.98, 6.22] 

5 
7.92 6.72 6.47 6.16 

[7.82, 8.02] [6.59, 6.86] [6.36, 6.58] [6.03, 6.28] 

6 
7.8 6.61 6.53 6.18 

[7.69, 7.92] [6.48, 6.74] [6.41, 6.66] [6.04, 6.33] 

7 
7.93 6.78 6.49 6.09 

[7.81, 8.04] [6.65, 6.9] [6.38, 6.6] [5.97, 6.21] 

8 
7.78 6.7 6.51 6.03 

[7.66, 7.9] [6.55, 6.84] [6.36, 6.65] [5.92, 6.14] 

9 7.9 6.64 6.59 6.09 
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[7.77, 8.03] [6.51, 6.77] [6.47, 6.72] [5.99, 6.2] 

10 
7.8 6.65 6.53 6.2 

[7.69, 7.92] [6.53, 6.76] [6.39, 6.67] [6.09, 6.31] 

 

To closely examine the learned policy, we take a random initial state and run 

the production line with the learned policy. 20 consecutive maintenance records 

along with the states when each maintenance was conducted are drawn from the 

maintenance history. The records are listed in Table 5.2. 

 

Table 5.2. Maintenance record and GM/OM analysis 

Time 𝒕 

(min) 
PM/CM 

Failed 

machines 
Machine ages 𝒈𝒊(𝒕) PM Decisions 𝒂𝒕 GM OM 

5781 CM 𝑆6 [326, 17, 104, 101, 100, 152] -   

5782 PM - [327, 18, 105, 102, 101, 0] [1, 0, 0, 0, 0, 0]  Y 

6018 CM 𝑆6 [227, 254, 341, 338, 337, 212] -   

6019 PM - [228, 255, 342, 339, 338, 0] [1, 0, 0, 1, 1, 0] Y Y 

6020 PM - [0, 256, 343, 0, 0, 0] [0, 0, 1, 0, 0, 0]  Y 

6044 CM 𝑆2 [16, 280, 17, 15, 14, 1] -   

6217 CM 𝑆2 [189, 142, 190, 188, 187, 174] -   

6218 PM - [190, 0, 191, 189, 188, 175] [0, 0, 1, 1, 1, 1] Y Y 

6219 PM - [191, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0]  Y 

6588 PM - [360, 340, 361, 358, 357, 360] [0, 0, 1, 1, 1, 1] Y  

6589 PM - [361, 341, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0]   

6680 CM 𝑆1 [81, 432, 85, 82, 81, 84] -   

6916 CM 𝑆5 [208, 668, 321, 318, 317, 320] -   

6917 PM - [209, 669, 322, 319, 0, 321] [0, 0, 1, 1, 0, 0] Y Y 

6918 PM - [210, 670, 0, 0, 0, 322] [1, 1, 0, 0, 0, 1] Y Y 

 

The 15 consecutive maintenances include 9 PMs and 6 CMs. Interestingly, the 

“opportunistic maintenance” (OM) and the “group maintenance” (GM) can be 

observed in the records. To be specific, OM is to conduct PMs on certain machines 

when there is an unscheduled failure or repair “opportunity” on other machines, 

and GM is to conduct PMs on multiple machines simultaneously to reduce the total 

maintenance related cost. In many existing studies on the maintenance problem in 

multi-unit systems, the GM and OM are the starting points for deriving maintenance 

policies [59], [96]. In other words, those studies first restrict the maintenance 

actions to GM or OM, and further optimize the decision variables for GM and OM 

to obtain the final policies. For example, the opportunistic PM policy that was used 
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for comparison purpose in this research has one significant decision variable 𝜏, 

which is the time interval to conduct PM on all machines. However, in this research 

we do not take this heuristic approach. Rather, we formulate the policy as a learning 

problem based on system property (i.e., permanent production loss) and indeed the 

learned policy is able to make GM and OM decisions when appropriate. From the 

construction of the reward function, the agent is never explicitly rewarded if it 

conducts the GM or OM. The decisions of OM and GM are something that the 

agent learned itself throughout the training process. 

When looking into the learning process, it is not difficult to explain the 

phenomenon. For the GM, the action space includes all the possible combinations 

of the PM actions on each machine, which means that the GMs are always available 

for the agent to select. If the GM action in some state yielded better accumulated 

reward, then the algorithm would increase state-action value to favor the GM in the 

particular state in the future. Similarly, during the training process the agent might 

also conduct OM when there are random failures on other machines, which would 

also change the state-action value to encourage or discourage the OM in the future. 

Therefore, the GM and OM observed in the learned policy is a logical outcome 

as long as the problem formulation is rational, and the solution technique is 

effective. This interesting finding further validates the deep reinforcement learning 

based approach proposed in this dissertation. 

5.5.2. MARL for scaled up PM control problems 

In this experiment, the Value Decomposition Actor Critic (VDAC) [115] is 

applied to the MARL policy training. VDAC consists of distributed actors that 

make decisions for designated machines and a central critic that estimate the global 

state-value. The architecture of VDAC is as shown in Figure 5.6 
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Figure 5.6. VADC architecture 

VDAC consists of distributed actors that make decisions for designated 

machines and a central critic that estimate the global state-value 𝑉𝑡𝑜𝑡. As shown 

Figure 5.6, the actor network takes inputs as observations 𝑜𝑡
𝑎 and actions 𝑢𝑡−1

𝑎  of 

the previous step 𝑡 − 1, outputs a multinomial policy 𝜋(𝑜𝑡
𝑎) for timestep 𝑡. It also 

estimates the state-value of the local observation 𝑉(𝑜𝑡
𝑎). To capture the temporal 

dependencies within agents' trajectories, Gated Recurrent Unit (GRU) is 

Incorporated in actor networks. Note that to speed up training as well as save 

memory, actor networks share the same weights. The recent advance of MARL 

literature [111], [112], [116], [117] is coupled by this parameter sharing technique. 

The value mixing network, which takes input as local state-values 𝑉(𝑜𝑡
𝑎)  and 

outputs the global state-value 𝑉𝑡𝑜𝑡(𝑠), serves as a central critic. To incorporate the 

global state information that is unavailable to actors, the parameters of the value 

mixing network is generated from a hypernetwork which takes input as the global 

state 𝑠𝑡. 

Actors are optimized by following gradients that depend on the central critic. 

Let 𝜃𝜋 to denote actor network parameters and 𝜃𝑉 to denote hypernet parameters 

for generality. The actor network is optimized by following the policy gradient 

given by: 

∇𝜃𝜋
𝐽 = 𝔼𝜋 [∑∇𝜃𝜋

log 𝜋(𝑢𝑛|𝜏𝑛)

𝑛

(𝑄(𝑠, 𝒖) − 𝑉(𝑠))] (4.18) 
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where 𝑉(𝑠) is estimated by a central critic and 𝑄(𝑠, 𝒖) = 𝑟 + 𝛾𝑉(𝑠′). The critic is 

optimized by minibatch gradient descent to minimize the following loss: 

𝐿𝑡(𝜃𝑉) = (𝑦𝑡 − 𝑉𝑡𝑜𝑡(𝑠𝑡; 𝜃𝑉))
2

(4.19) 

where 𝑦𝑡 = ∑ 𝛾𝑖𝑟𝑡
𝑘−1
𝑖=0 + 𝛾𝑘𝑉(𝑠𝑡+𝑘) is the target value. 

The training process of VDAC is conducted using distributed A2C framework, 

where multiple simulation episodes are rolled out parallelly to increase the 

computing efficiency. The training procedure for the PM control problem is as 

shown in Figure 5.7. The training procedure can be generally divided into two parts: 

(1) Obtaining experience, and (2) optimizing parameters. In the phase of obtaining 

experience, multiple episodes are rolled out independently to increase experience 

sampling efficiency. Note that central critic is absent during this phase. During the 

parameter optimization phase, the data acquired in the sampling phase will be 

discarded once it is used to optimize network parameters. Therefore, no experience 

replay buffer is needed. 

 

Figure 5.7. Training process of VDAC for PM problem 

The training monitoring as shown in Figure 5.8 indicates steady improvement 

and finally convergence of the training process. 
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Figure 5.8. Training progress shows convergence 

The learned distributed policies are tested against several benchmarks, 

including DDQN. In this experiment, run-to-failure and opportunistic maintenance 

(OM) policy are considered along with other three policies that work for situations 

where imperfect maintenance effect is considered: 

Deep Q-learning (DQN): The single-agent RL approach also presented in this 

chapter. DQN algorithm works well for a six-machine-five-buffer system when 
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only considering perfect maintenance effect. In this case study, both the number of 

machines and number of PM options are increased, which lead to a much larger 

action space. 

Group Maintenance (GM): Given GM policy, all the machines would receive 

PM simultaneously. GM policy tends to reduce the impacts of PM on the whole 

system by enforcing concurrent machine stoppages. There is one pivotal decision 

variable in GM policy, which is the time interval 𝜏 for carrying out group PM. Since 

there is no analytical method to derive 𝜏 due to the ultra-complexity of the 

production system, the optimal 𝜏 can be found through Monte Carlo simulation. 

Opportunistic Group Maintenance (OGM): OGM policy is a combination of 

OM policy and GM policy. Similar to GM, there is also a predefined time interval 

𝜏. If there is a random failure occurs before the time interval 𝜏 arrives, OM policy 

would be triggered, i.e., all other operational machines are turned off for PM. If the 

time interval 𝜏 is reached without machine random failures, GM policy would be 

carried out so that all the machines receive PM simultaneously. We also leverage 

Monte Carlo simulation to derive the optimal 𝜏. 

 

Figure 5.9. Performance comparison between different policies 

In general, all methods other than R2F are effective policies. This is because 

they achieved higher average profit over R2F, as shown in Figure 5.9. Among the 

effective policies, MARL policy reports the best average profit and throughput per 
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episode. OM policy performs slightly better than OGM in profit although the OM 

policy reports less throughput than OGM. And GM has the least profit compared 

with other 3 effective policies. For baseline policies such as OGM, OM, and GM, 

they are set to either always perform level 1 PM or always perform level 2 PM. 

Since level 1 PM required less resource and time, the best performance is achieved 

by choosing level 1 PM. OGM and GM have a decision variable 𝜏  which is 

searched through a pyramid number of simulation and therefore possibly captures 

the dynamics in the production line. 

Table 5.3. A portion of maintenance records by MARL agents for GM examination 

Time Machine age Action GM 

649 [89, 57, 267, 341, 197, 497] [0, 0, 0, 0, 0, 2]  

759 [199, 167, 377, 451, 307, 101] [0, 0, 0, 2, 0, 0]  

814 [254, 222, 432, 44, 362, 156] [0, 0, 2, 0, 0, 0]  

847 [287, 255, 25, 77, 395, 189] [2, 0, 0, 0, 0, 0]  

585 [1, 266, 36, 88, 406, 200] [0, 0, 0, 0, 2, 0]  

891 [34, 299, 69, 121, 21, 233] [0, 2, 0, 0, 0, 0]  

1144 [287, 244, 322, 374, 274, 486] [2, 0, 0, 0, 0, 0]  

1155 [1, 255, 333, 385, 285, 497] [0, 0, 0, 0, 0, 2]  

1188 [34, 288, 366, 418, 318, 24] [0, 2, 0, 0, 0, 0]  

1221 [67, 24, 399, 451, 351, 57] [0, 0, 0, 2, 2, 0] Y 

 

To examine the MARL policies patterns, a portion of maintenance records is 

also pulled from the simulation history as shown in Table 5.3. At 𝑡 = 1221 , 

machines 𝑆4 and 𝑆5 conduct PM simultaneously. Note that machine 𝑆5 conducts 

PM at an age of 406 at 𝑡 = 858, whereas it conducts PM at an age of 351 when 

𝑡 = 1221 . The PM at 𝑡 = 1221  can be seen as an GM as machine 𝑆5 

accommodates its maintenance schedule to that of machine 𝑆4 . Therefore, by 

extending from single-agent RL to MARL, the GM pattern is preserved, which 

implies that the PM problem formulation in MARL is also effective. In conclusion, 

the proposed MARL framework is validated by the numerical experiments. The 

learned policy outperforms all other benchmarks. 
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5.6. Summary 

The PM decision making in a serial production line is a complex problem due 

to its exploding state space and complicated interactions among machines. The 

problem is proposed to be solved using a deep reinforcement learning approach in 

this paper. One of the important prerequisites to successfully solving the problem 

is that a modeling method for the serial production line is adopted, such that we can 

correctly capture the dynamics of the system and ensure the good computation 

efficiency during learning process. 

The numerical experiment proves that a good maintenance policy for the serial 

production line can be obtained by using the proposed deep reinforcement learning 

approach. In addition, we observe group maintenance and opportunistic 

maintenance in the learned policy. As two of the most important building blocks 

for the maintenance policies in the multi-unit systems, the group maintenance and 

opportunistic maintenance were originated from human reasoning. In this research, 

they are obtained by reinforcement learning without giving the agent any prior 

concepts and rules. Therefore, if the problems are properly formulated based on 

thorough understanding of the system properties, we can further exploit the great 

potentials of the artificial intelligence (AI) and machine learning techniques to 

facilitate complicated decision-makings in the manufacturing industry. 

5.7. Related work 

Part of the results presented in this chapter have been published in [83], [84], 

[118], [119]. 
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Chapter 6. Manufacturing Process-System 

Integrated Control 

6.1. Background 

As manufacturing systems become increasingly interconnected to meet the 

accelerating demand of productivity, efficiency, and flexibility [1], challenges arise 

constantly for finding new methods supporting efficient operation of smart 

manufacturing system. There have been a lot of research efforts dedicated to 

improving each aspect of manufacturing systems, including throughput 

improvement [7], [8], [120], quality assurance [71], [72], [121]–[123], tool state 

monitoring [124]–[130] etc. However, these related research works are mostly 

separate. An integrated approach to combining these aspects for global operation 

optimization. which could have undoubtedly benefitted from advances in these 

subareas, is missing in both literature and real-world applications. 

At the system level, traditional system-level modeling and analysis methods 

mostly only take aggregate parameters from process or machine as inputs, e.g., 

average cycle times and machine reliability distributions etc., and therefore tend to 

ignore the delicate dynamics at the machine and process level. For example, one of 

the prominent research problems in this area is the long-term steady-state system 

performance evaluation for production systems [131]. Related research assumes 

known and fixed cycle times and buffer capacities, as well as machine reliability 

distributions, which typically could be Bernoulli, Geometric, or Exponential 

distributions. Based on these aggregate parameters, the goal is often to calculate 

performance metrics in steady state, such as throughput and work-in-process, 

through approximation methods like aggregation and decomposition. However, 
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variations at process level and machine level, which could easily lead to changes in 

cycle time and machine status, are not considered in these works. For instance, in 

machining processes, sometimes it is not uncommon to adjust process control 

parameters such as spindle speed when appropriate. These adjustments could result 

in frequent shifts from average cycle time and violate the major assumption in 

existing methods. Another category of system-level analysis methods pursues 

production loss diagnosis in real time through sensor data [29]. This line of research 

is more aligned with the control purpose as of this paper. However, process-level 

quality performance is not entertained in these methods either, as both throughput 

and production loss are metrics in overall production quantities without 

distinguishing compliant products from defective ones. Therefore, a more 

comprehensive modeling method that could seamlessly integrate various aspects, 

including system-, process-, and machine-level dynamics, are much needed to 

facilitate integrated control of the manufacturing systems. In this paper, we will 

model a manufacturing system with graph model by treating each machine as node 

and material flow as links. With the graph model, we can incorporate all relevant 

information from system/process/machine as well as the interactions among 

machines in the dynamic node feature. 

At the machine level, tool state is one of the most important as well as most 

dynamic facets of machine conditions. For example, in machining systems, 

machines utilize cutting or grinding tools to remove excessive materials in order to 

complete the desired process. However, machine tool state is subject to 

deterioration due to continuous usage, which could affect both process-level and 

system-level dynamics. On the one hand, process-level quality performance is 

heavily dependent on machine tool state, e.g., a worn-out cutting tool tends to be 

extremely inefficient in removing materials from the part. The real-time tool state 

is a requisite in order to determine the process control parameters that best fit the 

tool state and guarantee desired process quality performance. For example, one 

could strategically increase the cutting time to compensate for the tool inefficiency 

if tool wears out moderately. On the other hand, treatment or replace operations 

that aim to restore the tool condition are warranted if the tool state deteriorates to a 
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certain level. The extra time needed for tool treatment (e.g., dressing in grinding 

process) or replacement effectively introduces downtime events to the system, 

which is one of the dominant factors influencing the system-level dynamics [132]. 

The major challenge in machine tool state monitoring/identification lies in that 

tool state is not directly observable due to physical constraints. Usually, sensor 

technologies and machine learning models are adopted to monitor real-time tool 

state in an indirect manner. For grinding machines, researchers use acoustic 

emission sensors to collect acoustic data from exterior of grinding machine, and 

then apply different machine learning models, e.g., clustering, neural networks, and 

support vector machine etc., to classify the underlying status of grinding wheel 

[124], [133]. Lenz et al. [127] propose a holistic data analytics framework to collect 

and process data to gain insights into various aspects of machine conditions, 

including tool wear status, machine energy consumption, and process quality etc. 

Recently, it is reported that state-of-the-art deep learning architectures, including 

convolutional neural networks and recurrent neural networks, have been intensively 

used to work on raw sensor data to identify underlying machine health conditions 

[134]. 

Despite these exciting advances in sensor and machine learning based tool state 

inference, there are two obstacles that we have to overcome to take full advantage 

of these advances to facilitate the integrated control. First, the tool state inference 

results are not directly actionable at system level. Machines have complicated 

interactions among each other in a manufacturing system. Unfavorable tool state in 

one machine does not always warrant an immediate stoppage and replacement 

action, because its stoppage could potentially propagate to its downstream or 

upstream machines due to starvation and blockage. Decision making at system level 

requires careful coordination among machines. A similar problem is the 

maintenance decision making in serial production lines. Decision frameworks 

based on (multi-agent) reinforcement learning have been proved to be effective to 

tackle ultra-complexity in such problems [118], [119]. Second, the tool state 

inference results are inherently unreliable due to uncertainties in sensor readings 
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and/or irreducible errors in machine learning models. Therefore, it is unadvisable 

to directly use the tool state inference results in downstream control framework. 

Therefore, in this paper we will use Recursive Bayesian Estimation to preprocess 

the tool state inference result to reduce its uncertainty level, in order to facilitate a 

more informed decision making. 

In summary, processes, machines, and system are entangled with each other in 

a manufacturing system to jointly impact the overall system performance. As 

research progressing for each individual level, opportunity arises for a systematic 

approach to integrating these different levels and achieving optimal system 

performance regarding not only production quantity but also product quality. 

Undoubtedly, it requires adoption of an array of innovative methods and algorithms 

to cope with the intricate nature of the problem. With the increasing data 

availability and computing resources, data-driven machine learning methods are 

particularly promising in solving such problem. 

6.2. Problem description 

In this paper, we consider a typical multi-stage manufacturing system 

consisting of multiple machines and buffers. A part is completed after being 

processed sequentially through all the stages. Figure 6.1 shows a simplified 

camshaft production line with four stages. 

 

Figure 6.1. A portion of the grinding line for camshaft manufacturing system 

Corresponding to the production line, each of the stage or machine has a 

underlying process model as shown in Figure 6.2. A product can be described by 

several key features, which would evolve through the processing at each stage. The 
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product feature at stage 𝑗, 𝑗 ∈ [1, … ,𝑚], is denoted as 𝑞𝑗. In essence, the process 

model describes the relationship between two consecutive stages and its 

dependency on process control parameters and tool state [135], [136]. In order to 

take other random factors into consideration, we may represent the process model 

for machine 𝑖 at stage 𝑗 in a probabilistic form: 

𝑝(𝑞𝑗|𝑞𝑗−1, 𝑢𝑖 , 𝑥𝑖,𝑘
𝑡 ) (6.1) 

where 𝑢𝑖,𝑗  the process control input for machine 𝑖 at stage 𝑗, and 𝑥𝑖,𝑘
𝑡  is the tool 

state for machine 𝑖 at 𝑘𝑡ℎ pass. The feature of the final product is denoted as 𝑞𝑀, 

where 𝑀 is the numbering of final stage. In order to determine the quality of the 

product, the final product feature will be compared against a quality standard 𝑄∗, 

i.e., product is compliant if 𝑞𝑀 ∈ 𝑄∗, and defective otherwise. 

 

Figure 6.2. The underlying process models for the production line 

In current industrial practice, the parameter control 𝑢𝑖 is often set to be fixed or 

determined only to optimize local process performance. In this paper, however, we 

aim at adaptively adjusting the process control parameter 𝑢𝑖 considering not only 

local conditions but also the status at system level, as well as real-time tool state. 

6.3. Problem formulation 

To formulate the research problem, two quantities that relate to the performance 

of both processes and system are denoted in this work: 

• Yield 𝑦: number of qualified products among total output. 

• Defect 𝑑: number of defective products among total output. 

Accordingly, the problem studied in this paper is then presented as follows: 
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Given the manufacturing system as described, establish an integrated process-

system modelling approach, and build an automated control scheme to find optimal 

adaptive policies for each machine to adjust process parameters for each product 

with the aim of maximizing the system yield, i.e., 

𝑢𝑖,𝑗(𝑡) = arg max
𝑢𝑖,𝑗(𝑡)

{𝑦(𝑇)} , ∀𝑡 ∈ [0, 𝑇] (6.2) 

where 𝑦(𝑇) = 𝑓({𝑞𝑚, 𝑢𝑖,𝑗, 𝑥𝑖,𝑗
𝑡 |𝑚 ∈ 𝑴, 𝑛 ∈ 𝑵}) is the total system yield during a 

given time horizon 𝑇. All the constraints at different levels are denoted by 𝑪. 

With the manufacturing system modelled by a graph model, the node feature 

should embed all relevant real-time information across all levels. Particularly, in 

order to address the uncertainties in tool state inference, we will not directly plug 

tool state reference results, e.g., sensor reading or machine learning output, into the 

node feature. Instead, Recursive Bayesian Estimation (RBE) will be applied to 

construct a tool state belief based on domain knowledge on tool deterioration and 

sensor/model uncertainty. Graph Neural Network (GNN), specifically Graph 

Attention Network (GAT), will be applied to process the node features to learn 

meaningful node embedding that incorporates both local and global information 

through GNN operations. For the integrated control purpose, each node will then 

be treated as an agent in the Multi-Agent Reinforcement Learning (MARL) 

framework. State-of-the-art GNN and MARL algorithms will be implemented to 

train learnable parameters in GNN-MARL networks to learn the optimal multi-

agent policy for adaptively adjusting process parameters to optimize overall 

performance. 

6.4. Manufacturing system graph and GNN 

In this subsection, we will model the manufacturing system with graph model. 

Firstly, general manufacturing systems often have non-Euclidian structures, for 

example, due to flexible routings with parallel machines. Graph model has ultra-

high flexibility since dependencies among any two machines can be represented as 

links. Secondly, graph model allows us to incorporate heterogenous information 
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from multiple levels by simply putting these information in the node feature. Last 

but not the least, GNN as a special type of neural network directly operating on a 

graph provide an efficient way to further processing these node features to 

comprehensively integrate information across machines for downstream control 

task. 

6.4.1. Graph model and node feature definition 

The manufacturing system graph is defined by treating each machine as node 

and material flows between machines as links. In the integrated control problem, 

the node feature is defined as: 

𝑥𝑛 = [𝑏𝑙𝑛, 𝑏𝑣𝑛, 𝑥𝑘
𝑡 , 𝑤𝑛, 𝛼𝑛, 𝑟𝑛, 𝑢𝑛, 𝑛,𝑚] (6.3) 

The node feature contains information across different levels of the 

manufacturing system: 

• 𝑏𝑙𝑛 and 𝑏𝑣𝑛 denote the machine’s immediate upstream buffer level and 

downstream buffer vacancy respectively. 

• 𝑥𝑘
𝑡  is the tool state. 

• 𝑤𝑛 and 𝛼𝑛 describe the machine operating status, where 𝑤𝑛 is a binary 

variable indicating whether machine is stopped by random interruptions 

or tool changes, and 𝛼𝑛 denotes the completion ratio of current product. 

• 𝑟𝑛 is the feature of the product currently being processed by the machine. 

• 𝑢𝑛  is the process control parameters previously applied on current 

machine. This past action is included to form an observation-action 

trajectory to help local agent reason the true system state. 

• 𝑛 and 𝑚 are machine number and stage number respectively. Since the 

proposed control framework is based on deep MARL, 𝑛  and 𝑚  are 

included to uniquely identify the machine to facilitate the parameter 

sharing in neural networks. 
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The node feature only represents the local status of the machine. In Section 4.2, 

these node features will be further processed through GNN to generate node 

embeddings that incorporate both local and global status. 

6.4.2. Recursive Bayesian Estimation for tool state belief 

Apparently, it is not advisable to directly use realized observation �̃�𝑘 for control 

or decision making, especially when the uncertainty in observation is ineligible. 

Recursive Bayesian Estimation (RBE) is an effective method to reduce the 

observation uncertainty using the domain knowledge represented by the transition 

model and observation model [137]–[139]. Give the tool state belief at (𝑘 − 1)𝑡ℎ 

pass, one step of prediction is conducted to update the belief using transition model: 

𝑝(𝑥𝑘
𝑡 |�̃�1:𝑘−1) = ∑ 𝑝(𝑥𝑘

𝑡 |𝑥𝑘−1)𝑝(𝑥𝑘−1
𝑡 |�̃�1:𝑘−1)

𝒯

𝑥𝑘−1=1

(6.4) 

Note that 𝑝(𝑥𝑘|�̃�1:𝑘−1) is updated purely based on the transition model. We 

need to correct this tool state belief using what we observed as tool status at 𝑘𝑡ℎ 

pass, denoted as �̃�𝑘, and our knowledge on observation uncertainty. The one-step 

correction is hence conducted to obtain the tool state belief at 𝑘𝑡ℎ pass: 

𝑝(𝑥𝑘
𝑡 |�̃�1:𝑘) =

𝑙(𝑥𝑘
𝑡 |�̃�𝑘)𝑝(𝑥𝑘

𝑡 |�̃�1:𝑘−1)

∑ 𝑙(𝑥𝑘
𝑡 |�̃�𝑘)𝑝(𝑥𝑘

𝑡 |�̃�1:𝑘−1)
𝒯
𝑥𝑘=1

(6.5) 

where 𝑙(𝑥𝑘
𝑡 |�̃�𝑘) is the likelihood function corresponding to the observation model 

𝑝(𝑧𝑘|𝑥𝑘
𝑡). In the integrated control proposed in this paper, we will use tool belief 

𝑝(𝑥𝑘|�̃�1:𝑘)  instead of the observation �̃�𝑘  to represent the tool status. Note that 

transition model and observation model do not need to be perfect in order to carry 

out RBE. Rather, RBE would fully exploit domain knowledge to infer underlying 

tool state from imperfect models and observations. 

6.4.3. Graph neural network for node embedding 

In a multi-agent control framework, it is important to have a communication 

mechanism among machines, so that each machine is aware of not only its own 

status but also others’ conditions in the neighborhood. In this way, machines are 



 

92 

 

more likely to make coordinated and informed decisions, which is critical to 

achieving the common goal, i.e., maximization of system yield. 

 

Figure 6.3. Graph neural network on manufacturing system graph 

In this paper, we will use graph attention network (GAT) [140], [141] to process 

the node features 𝑥𝑛 to generate the node embeddings ℎ𝑛
𝐿 . By setting ℎ𝑛

0 = 𝑥𝑛, the 

embedding of node 𝑛 can be obtained by the following Aggregate & Combine rule: 

ℎ𝑛
𝑙+1 = 𝜎 (∑ 𝛼𝑛𝑗

𝑙 ℎ𝑗
𝑙𝑊𝑉

𝑙

𝑗∈(𝑚∪𝑛)
) (6.6) 

where 𝜎(∗) is an activation function, 𝑚 denotes all immediate neighboring nodes 

to node 𝑛, 𝑊𝑉
𝑙  is learnable weight matrix applied to embedding ℎ𝑗

𝑙 on previous layer, 

and 𝛼𝑛𝑗
𝑙  is the attention weight assigned to node 𝑗 . The attention weight is a 

dynamic coefficient that determines the amount of information pulled from node 𝑗. 

It is calculated using a multi-head dot-product attention (MHDPA) with learnable 

query matrix 𝑊𝑄
𝑙  and key matrix 𝑊𝐾

𝑙  [142], [143]. The attention weight 𝛼𝑛𝑚
𝑙  can be 

written as: 

𝛼𝑛𝑚
𝑙 =

exp(
ℎ𝑛

𝑙 𝑊𝑄
𝑙(ℎ𝑚

𝑙 𝑊𝐾
𝑙)

𝑇

√𝑑𝑘

)

∑ exp(
ℎ𝑛

𝑙 𝑊𝑄
𝑙(ℎ𝑘

𝑙 𝑊𝐾
𝑙)

𝑇

√𝑑𝑘

)𝑘∈(𝑚∪𝑛)

(6.7) 
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where 𝑑𝑘 is the dimension of the latent feature at layer 𝑙. By stacking 𝐿 GAT layers, 

one can obtain the node embedding of the node. Essentially, it is a process of 

aggregating and refining information from neighbors further and further away with 

increased layers. Compared to the initial node feature, the final node embedding 

combines both local and global information. Learnable parameters 𝑊𝑉
𝑙 ,𝑊𝑄

𝑙  and 𝑊𝐾
𝑙  

are initialized to random numbers and trained with downstream tasks. 

6.5. MARL control problem formulation 

The reasons for adopting a multi-agent scheme in the integrated control are two-

fold. Firstly, individual process control often has a moderate or even large action 

space. For example, if one machining process has two discretized control 

parameters with 10 options each, then the action space for individual machine sums 

up to 100. If this problem is formulated in single-agent RL framework, the total 

action space for the system increases exponentially with number of machines in the 

system, which could be computationally intractable and lead to divergence of the 

RL training process. Second, the manufacturing system is a typical multi-

component system and a global objective, i.e., system yield, is available. It is 

natural to define individual agent and a common play game, which could fit into 

the MARL framework well. In this work, we will formulate the MARL-based 

integrated control problem using the Dec-POMDP framework. In this subsection, 

we will define the definitions for observation 𝑜𝑛, action 𝑢𝑛, and reward function 𝑟𝑡 

in the Dec-POMDP. 

• Observation definition 

Since node embedding incorporates both machine’s local operating status and 

global status at the system level, it is a far better choice for the agent observation 

than the local node feature. Therefore, the observation 𝑜𝑛 for agent 𝑛 is defined to 

be 

𝑜𝑛 = ℎ𝑛
𝐿 (6.8) 
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where 𝐿 is the number of layers in GNN, and ℎ𝑛
𝐿  is the final node embedding output 

from the 𝐿-layer GNN. For training purpose, the global state should also be defined. 

In MARL, the concatenation of agent observations can serve as the global state. 

Since our observation definition is different from traditional MARL problem, it is 

sufficient to concatenate the node features rather than the node embeddings. The 

global state can be represented as: 

𝑠 = [𝑥1, … , 𝑥𝑁] (6.9) 

• Action definition 

In the integrated control problem, for each machine represented by agent, the 

control action is to set appropriate process control parameters. The controllable 

parameters depend on specific manufacturing process and even the machine 

type/series. To make the discussion more concrete, the grinding process will be 

used as an example. In grinding process, the controllable parameters often include 

the depth of cut 𝑐 and grinding speed 𝑣. Therefore, the action space for a grinding 

machine is  

𝑈𝑛 = {[𝑐, 𝑣]} (6.10) 

• Decision time 

The decision time means the time point when the observations need to be 

collected and a control decision needs to be made. The continuous time is 

discretized by those decision times. In the integrated control problem, the decision 

time is when any of the machines loads a part from upstream buffer and prepares 

to process it. At this time point, the machine is awaiting a control decision, i.e., as 

set of process control parameters, from the control framework. Due to the 

heterogeneity in machine operations, not all of the machines are up for a control 

decision at one decision time point. Therefore, we add a dummy action for those 

machines that do not require control actions at that moment, during which other 

actions will be masked out. 

• Reward definition 
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The reward setting is nontrivial in RL/MARL applications in manufacturing 

systems [117], [144]. In MARL, reward function is used to evaluate the goodness 

of the joint action given the system state. The reward drives the agents to 

continuously improve their policies accordingly to pursue better system 

performance. In this paper, we define the reward function as: 

𝑟𝑡 = 𝑦𝑡 − 𝑑𝑡 (6.11) 

where 𝑦𝑡 is the stepwise system yield, and 𝑑𝑡 is the stepwise defect. The reward 

function is aligned with the problem objective, i.e., maximization of system yield, 

with slight difference by adding negative rewards for defective products. Therefore, 

it would not only reward the agents when compliant products are produced, but also 

penalize them when defective ones emerge. We will demonstrate that faster 

convergence is guaranteed by adding the defect penalty in the experiments. 

6.6. Experiments and validation 

The manufacturing system considered in this case study has four grinding stages. 

Three intermediate buffers are placed between stages and each of them has a 

capacity of ten. There are six grinding machines in total. Both Stage 2 and Stage 4 

have two parallel machines. Therefore, the system forms a graph consisting of six 

nodes, and machine nodes in consecutive stages are connected through links. At the 

machine level, the grinding wheel has four states, including sharp, intermediate, 

dull, and worn. The tool state transition model 𝑝(𝑥𝑘
𝑡 |𝑥𝑘−1

𝑡 ) and observation model 

𝑝(𝑧𝑘
𝑡 |𝑥𝑘

𝑡) for the grinding wheel state are: 

𝑝(𝑥𝑘
𝑡 |𝑥𝑘−1

𝑡 ) = [

0.60 0.27 0.08 0.05
0 0.65 0.26 0.09
0 0 0.70 0.30
0 0 0 1.00

] 

𝑝(𝑧𝑘
𝑡 |𝑥𝑘

𝑡) = [

0.70 0.17 0.12 0.01
0.10 0.70 0.16 0.04
0.25 0.10 0.60 0.05
0.22 0.18 0.05 0.55

] 
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The tool state transition model strongly suggests that the tool state, if not staying 

the same, would only deteriorate towards worse. The observation model reveals 

that the observation is not perfect. The grinding wheel restores its condition as sharp 

when a dressing or replacement operation is conducted every 10 passes. We assume 

that such an operation takes 3 units of time, during which the machine is unavailable. 

Hence, the dressing operation effectively introduces downtimes to the system. The 

system is assumed to run on a ten-hour shift, i.e., the simulation episode time 

horizon is set to be 600 minutes. 

At the process level, we adopted a simplified grinding process model [145] for 

demonstration purpose. The key feature of the product is characterized by the 

surface roughness of the four sequential grinding processes, i.e., 𝑞 = [𝑞1, 𝑞2, 𝑞3, 𝑞4]. 

The final product is deemed qualified if ∑ 𝑞𝑚
4
𝑚=1 ≤ 5 μm, or defective otherwise. 

We adopt a simplified grinding process model [13] to relate the surface roughness 

and cycle time to process parameters, machining speed 𝑣𝑛  and depth of cut 𝑎𝑛. 

Therefore, the MARL agent’s action space is 𝑈𝑛 = {[𝑐𝑛, 𝑣𝑛]}, where 𝑐𝑛 ∈{12.0, 

13.5, 15.0, 16.5, 18.0} μm and 𝑣𝑛 ∈{0.30, 0.35, 0.40, 0.45, 0.50} m/s. Table 6.1 

shows the process model and cycle time model for each stage given the tool state 

is sharp. 

Table 6.1. Process models for the grinding system 

Stage Process Model Cycle time 

1 𝑞1~𝑁 ((
𝑣1𝑐1

30
)

0.9

, 5.48𝑣1
2𝑐1

1.4) 𝑇1 =
0.005

𝑣1𝑐1

 

2 𝑞2~𝑁((
𝑣2𝑐2

30
)

0.85

, 5.48𝑣2
2𝑐2

1.35) 𝑇2 =
0.010

𝑣2𝑐2

 

3 𝑞3~𝑁((
𝑣3𝑐3

30
)

0.9

, 5.48𝑣3
2𝑐3

1.5) 𝑇3 =
0.007

𝑣3𝑐3

 

4 𝑞4~𝑁 ((
𝑣4𝑐4

30
)

0.85

, 5.48𝑣4
2𝑐4

1.3) 𝑇4 =
0.010

𝑣4𝑐4

 

 

In general, as grinding wheel wears, the surface of the grinding wheel becomes 

finer, which could lead to lower surface roughness on product as well. However, 
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its cutting efficiency drops significantly, and therefore more time is required to 

remove the desired amount of material from the part to fulfil dimension standards. 

Using the process models in sharp tool state as baselines, the process models under 

other tool states are modelled with two series of coefficients. The coefficients for 

surface roughness models and cycle times are [1.0, 0.99, 0.98, 0.96] and [1.0, 1.2, 

1.4, 2.1] respectively. For example, given dull tool state and same process control 

parameters, the surface roughness is 0.98 of that under sharp tool state on average, 

but it needs 40% more cycle time to finish the process at that stage. Therefore, 

rational process control decisions require best knowledge of the current tool state, 

given which the trade-off between surface roughness and production efficiency 

needs to be well balanced to achieve high system yield. Since process modeling is 

not the focus of this paper, we adopt a simplified process model in this case study. 

Due to the model-free nature of the MARL algorithm and hence the proposed 

integrated control framework, one can fit in more accurate and specific process 

models as needed. 

6.6.1. GNN-MARL architecture and training process 

The GNN and actor network architectures are as shown in Figure 6.4. A skip 

connection is used to connect node feature to node embedding in order to preserve 

more information from the local node. The critic network architecture is as shown 

in Figure 6.5. The algorithm alternates between sampling experience from parallel 

simulation episodes and optimizing network parameters. The training is conducted 

with a step limit of 10 million. 
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Figure 6.4. GNN and actor network architecture 

 

Figure 6.5. Critic network architecture 

The training process is halted every 10,000 steps and test episodes are rolled 

out based on the policies at that moment to observe training progress. From Figure 

6.6 we can see that the test return, i.e., accumulated reward, improves significantly 

since the training begins. After around three to four million steps, the test return 

stays stable, which strongly indicates convergence. 
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Figure 6.6. Training progress shows convergence 

Since return is more of an algorithm-wise term, we also monitor the training 

progress in the control problem context. The outputs, yields, and defects in those 

test episodes are also recorded as shown in Figure 6.7. In the beginning, the output 

is high but most of them are defective parts. Over time, the overall production speed 

is slowed, and system yield is improved, which means agents learn to coordinate 

with each other to improve the ratio of compliant products. When the training 

converges, a high system yield is achieved, while the defect is kept at a very low 

level. Therefore, the training process of GNN-MARL successfully converges, and 

produces desired distributed control policies for machines. 

 

Figure 6.7. System performance improvement throughout training process 

The above shows the training process given the quality standard ∑ 𝑞𝑚𝑚 ≤

5 μm. In order to further validate the effectiveness of the proposed framework, 

additional experiments are conducted with different quality standards. First, we 

tighten the quality standard to 4 μm  and rerun the training with same 
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hyperparameters. As shown in Figure 6.8(a), the convergence is reached although 

taking more steps, which is reasonable since the task is more difficult than the 

original one as shown in Figure 6.8(b). Similarly, we loosen the quality standard to 

6 μm  and also reach convergence as shown in Figure 6.8(c). These additional 

experiments further demonstrate that the convergence and performance of the 

proposed framework. 

 

Figure 6.8. Convergences under different quality standards 

6.6.2. Numerical analysis on reward function setting 

In this paper, we propose the reward function as 𝑟𝑡 = 𝑦𝑡 − 𝑑𝑡, which includes 

a defect penalty. There could be a more intuitive alternative: 𝑟𝑡 = 𝑦𝑡, which is more 

aligned with the problem objective of maximizing yield. In this subsection, we 

conducted extra experiments with the alternative reward function, and compare its 

performance with our proposal. Using the alternative reward function, we rerun the 

training process for three different quality standards. The training process for 4 μm 

fail to converge as shown in Figure 6.9(a). The training process for 5 μm and 6 μm 

do converge as shown in Figure 6.9(b) and Figure 6.9(c) respectively, but the 

performance is worse than the original reward setting as shown in Figure 6.8(b) and 

Figure 6.8(c). 
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Figure 6.9. Training results without defect penalty in reward function 

The results prove that inclusion of defect penalty is necessary. We can take a 

closer look into the return improvement as shown in Figure 6.10 for 4 μm quality 

standard. There is barely any improvement throughout the ten million steps. 

 

Figure 6.10. Stalled training progress without defect penalty 

In the same case, we further analyze the reward signals received by the agents 

given different reward functions. 

 

(a) Step rewards during training with defect penalty in reward function 
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(b) Step rewards during training without defect penalty in reward function 

Figure 6.11. Step rewards during training given different reward settings 

As shown in Figure 6.11, agents receive very sparse reward in the reward setting 

without defect penalty. In that case, agents have little feedback on how good/bad 

their actions are. It impedes their improvements and leaves the agents exploring 

blindly in random directions. Therefore, the learning process is too slow to achieve 

convergence. That explains the learning curve in Figure 6.10, which does not show 

divergence but very slow improvement. Therefore, the analysis on reward setting 

stresses the importance of proper reward setting in RL applications within the 

manufacturing industry. 

6.6.3. Demonstration of RBE for tool state estimation 

In this subsection, the results from tool state belief are presented. As shown in 

Figure 6.12, in ten passes, the belief updated by RBE closely follows the true tool 

state, which is hidden. Although the observations make errors in some of the steps, 

the beliefs are able to correct that error by sticking to the true state with high 

confidence. For example, in step 10 the belief rejects the wrong observation. Ther 

reason is that the domain knowledge in state transition suggests that the tool is only 

getting worse over time. It is not likely that the tool has a steady state after so several 

observations suggesting severe deterioration. Therefore, the RBE for node feature 

engineering is an effective method to link tool state inference to its practical 

applications in control problems. 
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(a) True tool state evolves in 10 grinding passes 

 

(b) Tool state as indirectly observed with uncertainties 

 

(c) Tool state beliefs obtained by RBE 

Figure 6.12. Illustration of RBE applied to tool state inference 

Different from the observation, the belief represents the tool state in a 

probabilistic form by assigning a probability to each of the possible tool states. The 

belief follows the true tool state very well. RBE is able to correct the wrong 

observations. It even totally rejects the wrong observation at pass 10. This could be 
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because the domain knowledge on tool state transition strongly suggests that tool 

state would not become better unless a dressing/replacement takes place. The belief 

over the first nine passes already indicates a worst tool state. Therefore, at pass 10 

RBE directly rejects the wrong observation of a better tool state. In conclusion, the 

proposed tool state estimation based on RBE in this paper is effective. 

Comparing the framework with and without RBE, it is found that RBE does 

improve the system performance significantly as shown in Figure 6.13. The method 

with RBE has higher a system yield. 

 

Figure 6.13. Comparison of system performance with and without RBE 

6.7. Summary 

An integrated method for manufacturing processes and system modelling and 

distributed adaptive control are developed for multi-stage manufacturing system, 

based on GNN and MARL. GNN encodes complex system dynamics in machine 

nodes by aggregating real-time information from the neighboring machines. MARL 

models each machine as individual agent and learns adaptive process parameter 

control policy to cooperatively achieve the goal of global maximization of system 

yield. It is numerically proved that the use of Recursive Bayesian Network 

improves the system performance significantly as it reduces the error in tool state 

observations. In addition, it also demonstrates that the reward function setting is a 

critical issue in control problems in the manufacturing systems. 
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6.8. Related work 

Part of the results shown in this chapter have been in [146]. 
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Chapter 7. Concluding Remarks 

7.1. Summary of scientific contributions 

Entering the stage of smart manufacturing, data regarding the real-time system, 

process, and machine operation status are increasingly available. However, it is a 

serious research problem to find ways to better use those data. Machine learning 

and reinforcement learning have demonstrated success in a lot of areas outside of 

manufacturing industry. However, it requires thorough understanding and domain 

knowledge of the manufacturing to formulate problems and identify meaningful 

solution approaches. In this dissertation, system modeling and system properties 

discussion have laid the foundation for further applications of machine learning and 

reinforcement learning methods to important performance prediction and control 

problems. The contributions of this dissertation are listed as follows: 

(1) Establish a system modeling for multi-product system considering 

product-dependent cycle time and tool setup time. The model is 

analytically derived from basic physics, i.e., conservation of the flow. 

Using the past sensor data, one can efficiently evaluate the system states 

in a recursive manner based on the state-space formulation of the system 

model. 

(2) Derive useful properties from the system modeling, guided by which a 

recurrent prediction problem is formulated for the product completion 

time prediction. We refrain from taking a pure data-driven approach to 

the problem. Instead, the deep learning architecture (LSTM) is 

combined with the system model to deliver more accurate prediction 

result, which is critical to downstream tasks, including production 

scheduling, and customer satisfaction. 
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(3) Formulate the preventive maintenance control as a sequential decision-

making problem and pave the way of the application of deep 

reinforcement learning technique. It demonstrates a systematic way to 

formulate control problems in the manufacturing to fit in the deep 

reinforcement learning domain. The reward setting is guided by system 

understanding, namely, the evaluation of permanent production loss. 

(4) Demonstrate the derivation process to choose appropriate reinforcement 

learning algorithms for different application scenarios: single-agent 

DDQN algorithm for moderate problem scale, and multi-agent VDAC 

algorithm for large-scale systems considering imperfect maintenance 

effects. 

(5) Prove the effectiveness of the RL-based preventive maintenance 

policies by observing agent’s behavior. We discover that RL agents 

occasionally conduct patterns that are originally derived from human 

reasoning. It reveals that state-of-the-art machine learning algorithms 

are particularly promising to solve complex problems in manufacturing 

industries, given correct problem formulation and appropriate method 

selection. 

(6) Establish the process-system multi-level control framework. The system 

is modeled using a graph by treating each machine as node and material 

flow as link. Graph modeling along with powerful GNN allows 

integration of real-time information from multiple levels. It bridges the 

gap between process, machine, and system analysis, which are typically 

separate in existing research. It paves the way for smarter manufacturing 

and could significantly improve the system performance. 

7.2. Remarks on knowledge-guided machine learning 

In recent years, machine learning, including deep learning and reinforcement 

learning, have demonstrated great successes in several well-defined problems, 

including image classification, natural language processing, and recommendation 

systems etc. However, there are many more areas that could benefit from machine 
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learning, including manufacturing systems discussed in this dissertation. Apart 

from the technical details presented throughout this dissertation, there are some 

further remarks on knowledge-guided machine learning: 

(1) It is important to understand the source of randomness in a problem. For 

example, for manufacturing systems, the major source of randomness is the 

machine downtimes, which are dependent on machine reliability, while the 

randomness in tool state originates from the material-wise wear. However, 

the system states are evolving on a real-time and stochastic basis due to a 

combination of both deterministic mechanisms and random factors. In 

manufacturing systems, the changes in buffer states are deterministic if 

those random factors are realized. It should be clear throughout the problem 

formulation process. 

(2) Problem formulation is more important than specific algorithms. There are 

new machine learning algorithms emerging on a regular basis [147], [148]. 

It is unwise to tie the problem formulation to any specific algorithms, since 

one algorithm can be outperformed by another in years if not months. 

Therefore, the general framework should be employed. For example, MDP 

and Dec-POMDP are two frameworks for formulating RL and MARL 

respectively. Once the control problems are formulated in these frameworks, 

with preset interface, the problem can be solved by any state-of-the-art 

RL/MARL algorithms. 

(3) Exploration is an important technique. In RL, exploration is the key to 

improve RL policy. It is also true for knowledge-guided machine learning. 

Since there is a lack of rigorous derivations of optimal hyperparameters in 

machine learning, one should explore more possible architectures and 

settings in machine learning to improve the system performance. It is also 

important to test the proposed solution against more diverse system scales 

and characteristics. For example, in this dissertation the MARL based PM 

policy is proposed since it was found that RL agent diverges when machine 

number increases. The reward setting in process-system integrated control 

is also validated by changing the quality standards. 
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7.3. Future work 

As manufacturing systems varies from one to another, there are still a lot of 

open questions regarding the applications of machine learning and reinforcement 

learning, which could be addressed in the future. This dissertation will name a few 

potential working directions: 

(1) Human-AI collaboration [149]–[153]. AI and human have each other’s 

complementary strengths. AI has the speed, scalability, and accuracy in 

dealing with huge amount of data, while it lacks creativity and 

adaptiveness facing situations beyond quantitative aspects. Human is 

not known for its quantitative capability, but has the deductive 

reasoning, specialist expertise, and social skills that are not achievable 

by current AI systems. Therefore, it is promising to integrate human into 

the AI system for better system performance. 

(2) Continuous learning for constantly changing system dynamics and 

environment. RL relies on accurate simulation environments to learn its 

policies. However, the simulated environment might well deviate from 

the real world due to, for example, inference error, hidden states etc. 

Another factor is that manufacturing system states transition model 

could change over time. Therefore, the continuous learning related 

techniques [154], [155] could be a potential tool to address these 

challenges. 

(3) Multi-functional RL agent. Control problems in manufacturing systems 

are often dealt with separately. Even though the RL could be applied to 

different problems, it is common to formulate separate RL problems. 

However, these decisions from different RL agents could couple with 

each other, which could impair the performance regarding one or all of 

the control problem objectives. It could be beneficial, if possible, to train 

one multi-functional RL agent that are capable of making decisions for 

multiple control tasks. 
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