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Abstract

Manufacturing system is more interconnected and transparent with the deployment of
distributed sensors and automatic machinery, as well as data storage and processing
capabilities due to increasing availability of computing resources. Machine learning
techniques are very promising in gaining useful insights from the huge volume of real-time
data to facilitate system performance analysis and control decision makings. Despite of
exciting advances in machine learning research and application in the past decade, it
remains a challenging task to apply those techniques in the context of manufacturing
industry. The expected improvements in productivity, quality and efficiency are still
hampered by the salient gaps in real-time system modeling, system performance evaluation
and prediction, and theory and algorithms for integrated decision making and optimization

in the manufacturing domain.

In particular, reinforcement learning (RL) and multi-agent reinforcement learning
(MARL), which aim at understanding the dynamics of the process/system and finding the
optimization strategy through interactions with the environment, have opened up a new
research avenue of the intended system performance enhancement without a rigid rulebook.
However, manufacturing system is a complex engineering system with very high
stochasticity and nonlinearity as well as great varieties in processes/products and scales.
The system dynamics is deeply coupled with individual machines and processes, and
constantly evolving due to not only internal factors, e.g., machine and process constraints,
but also external circumstances like customer demands. This dissertation demonstrates a
systematic way to use domain knowledge and systematic understanding of the
manufacturing system to formulate typical control problems in RL/MARL framework in
the manufacturing domain. In this dissertation, we start from analytical system modeling

based on basic physics and then derive system properties, which are further used to guide



the problem formulation and algorithm implementation in a variety of significant
prediction and control problems. The dissertation contributes to the body of research in

manufacturing systems regarding the following aspects:

(1) A data-enabled system model for multi-product manufacturing system is
established based on basic physic law, i.e., the conservation of the flow. The
product-dependent cycle time and tool setup time are considered in the model.
It closely connects the data collected from distributed sensors to the system
states. The model shed lights on knowledge-guided machine learning problems
formulation and solution.

(2) A hybrid framework combining deep learning and system modeling is
developed to predict product completion time, which is critical to downstream
tasks including production scheduling. Guided by system properties, a recurrent
sequence in the prediction problem is discovered, and hence Long Short-Term
Memory, a variant of Recurrent Neural Network, is applied.

(3) The preventive maintenance control problem is tackled using deep RL
techniques. It demonstrates the formulation of manufacturing system control
problems in the RL/MARL frameworks. By implementing both deep RL and
deep MARL algorithms, it covers the preventive maintenance decision making
in all spectra of manufacturing systems regarding the sizes and maintenance
options.

(4) An innovative multi-agent control framework that integrates multiple levels of
a manufacturing industry, including system level, process level and machine
level, are proposed with the aim to optimize system performance considering
both productivity and quality. The graph model and graph neural networks are
applied to encode and integrate information across multiple levels and machines.

Recursive Bayesian Estimation is applied to graph node feature engineering.
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Chapter 1. Introduction

NIST (National Institute of Standards and Technology) defines smart
manufacturing as “fully-integrated and collaborative manufacturing systems that
respond in real time to meet the changing demands and conditions in the factory,
supply network, and customer needs” [1]. It marks a historical stage of the
development of modern manufacturing industry characterized by substantial
innovations and changes driven by digitization, increased integration of sensors
into production equipment, increasingly available data, and advances in robotics
and automaton. The combination of these advances provides unprecedented
opportunities to develop new and better ways of doing manufacturing [2]-[4].
However, the expected improvements in productivity, quality and efficiency are
still hampered by the salient gaps in real-time system modeling, system
performance evaluation and prediction, health management for manufacturing
equipment and systems, and theory and algorithms for integrated decision making

and optimization in the manufacturing domain.

On the one hand, there has been a notable lack of modeling method that reflects
the real-time dynamics of manufacturing systems. A manufacturing system is a
combination of humans, machinery, and equipment that are bound by a common
material and information flow [5]. Such systems are inherently stochastic, complex,
and dynamic, as different components closely interact with each other in a highly
stochastic environment. Traditional system modeling methods, e.g., those based on
Markov chain [6]-[8], are mostly based on simplified system structure and
assumptions. These modeling methods are aimed to evaluate the long-run system
performance of a manufacturing system given system parameters, e.g., machine

cycle times and buffer capacities. They are usually applied to the system planning



and design stage. A manufacturing system suffers from random disruptions, such
as a random machine downtime and material shortage, or control inputs, such as
preventive maintenance actions and production scheduling. The wide deployment
of the smart manufacturing technologies largely increased the system transparency
by providing detailed data regarding these random disruptions and system
component status in a real-time fashion [9]-[11]. A novel system modeling method
must be developed to describe and track the real-time system dynamics, and form
the basis for performance analysis, prediction, and effective control in today’s smart
manufacturing systems, despite the challenges posed by the increased complexity

of the system structure and more diversified product types.

On the other hand, innovative and rigorous system modeling paves the way for
acquiring meaningful systematic understandings and knowledge, which are
fundamental to implementing knowledge-guided machine learning and
reinforcement learning. In recent years, the availability of large datasets combined
with the improvement in algorithms and the exponential growth in computing
power led to an unparalleled surge of interest in the topic of machine learning and
reinforcement learning [12]. Machine learning has also seen increasing utilization
across all levels of the manufacturing system hierarchy [13]-[16]. However,
compared with the successes of machine learning in specific applications of process
monitoring, optimization, utilization is limited at the system level of analysis and
decision-making. This is primarily attributable to the stochastic and non-linear
dynamical nature of manufacturing systems and the complex multi-stage processes
and dependencies among vast amounts of heterogeneous data generated therein. An
in-depth understanding of a problem, its causes, consequences, and desired solution
state must be known or well investigated to improve the likelihood of effective
machine learning tool selection and subsequent model building, data analysis, and
interpretation. These matters all deal with the need to have adequate domain
expertise during the problem definition phase which is vital to ensure that all
aspects of the problem are well understood, and no key data or assumption is
overlooked [17]. Therefore, an innovative system modeling method will be
established utilizing the sensor data. Based on the modeling and domain knowledge,
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important topics including system performance evaluation/prediction and real-time
control problems will be discussed in this dissertation. The remainder of this

dissertation is organized as follows:

Chapter 2: An analytical modeling method for multi-product system based on

conservation of the flow is established.

Chapter 3: A hybrid framework combining deep learning and system modeling

is built to predict the product completion time in multi-product system.
Chapter 4: Rolling horizon method for corrective maintenance control.

Chapter 5: Preventive maintenance policies based on reinforcement learning

and multi-agent reinforcement learning are proposed.

Chapter 6: An integrated manufacturing process-system control framework is

proposed based on graph neural network and multi-agent reinforcement learning.

Chapter 7: Summary of scientific contributions, remarks on knowledge-guided

machine learning and future work directions.



Chapter 2. Multi-Product System Modeling

2.1.Background

To meet the diverse customer demands, the manufacturing companies strive to
expand their product lines. Rather than building separate and specific production
lines for new product types, it is preferable to incorporate similar products into one
common production line. On the one hand, the capital investment on equipment
could be reduced tremendously by sharing common machines and tools in a multi-
product line. On the other hand, multi-product line is more flexible in product
throughputs, and thus can better cope with the fluctuations in market demands.
Therefore, the multi-product system has been the dominant architecture of
manufacturing system in many industries, including the automotive industry, the

semi-conductor industry, etc.

A high-fidelity modeling for manufacturing is the foundation for systematic
analysis, performance prediction, and effective control. In the past, there have been
a lot of research efforts devoted to modeling the multi-product systems [18]-[20].
For example, Dasci & Karakul [18] adopt the decomposition approach for modeling
a single-stage two-product system. But this modeling method is limited to single-
stage systems, and cannot be generalized to multi-machine systems, in which
machines have complicated interactions among each other, e.g., blockages and
starvations. Sagawa et al. [19] modeled the multi-product system with apt analogy
between production system and electronic system, based on which the state space
equation for multi-product system is established. However, the modeling method
has an underlying assumption that the buffer capacities are always infinite. It
excludes a major portion of the production systems in the real industry, where the
buffer capacity is often limited by spaces and costs. Another important realistic
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consideration in the system modeling is the tool setup time. The multi-product
system usually saves a lot of capital investment on machine and equipment since
they can be shared among different product types [21]. It requires process engineers
take considerable efforts to incorporate the process needs of all product types into
shared equipment or tools. Despite this, sometimes it is unavoidable that some
dedicated tools have to be designed for specific product types. In this case, the
machine has to set up dedicated tools between two consecutive products if they are
of different types, and the extra time used to change the tools are referred to as tool
setup time. The setup time further adds to the complications in modeling the multi-
product system, and therefore a lot of modeling methods [18], [19] just assume non-
delay changeover between product types. Therefore, it is crucial to consider the
complex interactions among machines due to various factors, including random
machine failures and finite buffer capacities etc., as well as the tool setup time, only

based on which can we further explore and understand the system properties.

2.2.System modeling

OO A OO

S B; S2 By Sp-1 By Sm

Figure 2.1. General structure of a serial production system

A manufacturing system as shown in Figure 2.1 is a stochastic dynamic system,

which can be modeled by the state space equation:
b(t) = F(b(t), U(t), W(t)) (2.1)
Y(¢t) = H(b(t)) (2.2)
The physical meanings of the variables and functions are as the following:

e b(t) = [by(t),b3(t), ..., by (t)]T are the buffer levels at time t. The buffer

level is treated as the system state in this model;



o U(t) = [u(t), uy(t), ..., uy(t)]" are the control inputs for machines at time
t. In this research, U(t) are the control decisions of production scheduling
for each machine;

o W(t) = [W,(t), Wy(t),..., Wy (t)]T are the random disturbances to the
system. In this research, it refers to the machine random failures.

1,if machine S; is down at time t

0, otherwise (2.3)

Wi =

o F(x) = [F,(%),F,(%),...,F,y(*)]T is the dynamic function for the system
state;

o Y(t) =[Y1(0), Y5(b), ..., Y (t)]T is the system output at time ¢, where Y;(t)
denotes the accumulated production count of machine S; up to time ¢;

o H(x) =[H (%),H,(%),...,Hy(x)]T is the observation function, which

relates the system state to the system output;

For multi-product lines, the system dynamics is heavily coupled with the
production sequence. In this research, one product is represented with a K x 1
vector q,,, where n € Z* is the index of the product. The k" entry is one if product

q. is of type k, and other entries are all zeros, i.e.

.. (k) = {1, if the type of nt* product is k (2.4)

0, otherwise

A product sequence is a matrix that assembles all the product in sequence. Let

Q(t) denote the product sequence at time t, where

Q(t) = [qll qu "'an' ] (25)

For example, the product sequence for a production line that processes three

product types may have the following form:

011 0 ..
Q=1 0 0 0 ..
0 0 0 1 ..
Based on this product sequence, the first product gq; = [0, 1, 0]” is of type two,

the second and third products, denoted as g, = [1,0,0]" and g5 = [1,0,0]"

6



respectively, are both of type one, and the fourth product g, = [0, 0, 1]7 is of type

three;

For every machine, it has a fixed cycle time when processing a particular
product type. Therefore, the cycle time of a machine can be different when it is
processing different types of products. The cycle time for machine S; is represented

as
T; = [T, Tigy oo, Tigl" (2.6)

where Ty, k = 1,2, ..., K, is the cycle time of machine S; when process a product

of type k.

When one machine processes two consecutive products of different types, it
might require additional time to set up dedicated tools for the incoming product.
The additional time needed when switching product type is referred to as tool setup

time. The setup time for machine S; is denoted with a K x K matrix

T§ = TS (2.7)

L l]KxK

where Tif,ﬁl > 0 is the tool setup time when machine S; switches from product type

k to type L. To be concrete, the setup time matrix T;* has the following form.

0 Ti?1t2 Ti:gltK
o | 0 o Tk 28)
Tiflgl Tiflt(z 0

The tool setup time representation proposed in this paper implies that the setup
time can be sequence-dependent, as T}, and T}, are not necessarily equal, i.e.,
tool setup time for machine S; switching from product type k to type [ can be

different from switching product types of the other way.

The cycle time of machine S; can be calculated as g T;, when machine S; is
processing product q,,. In addition, there could be a setup time if product q,, and
q.- are of different types. Leveraging the setup time representation, the setup time
can be conveniently calculated as q7_,T$'q%. The processing time needed for

7



product q,,, i.e., the actual cycle time, is the summation of the original cycle time

q%T; and the setup time q%;_,T'q,,.

2.3.Model derivation based on conservation of flow

The dynamic function is derived based on the conservation of the flow. At any

time ¢, the production counts of any two machines S; and S;, Vi # j, satisfy:

S bk () =L b(0), i <

Y(0) ~ % (0) ={ ket (29)

The production difference cannot exceed a certain boundary f;;, where g;; is

the condition that the buffer levels between two machines are full (i < j) or empty

(i>)).

,Bij — { {€=i+lBk - ‘II(=i+1 bk(o) ’ i <] (210)

Theejar i (0), N

When Y;(t) — Y;(t) < B;;, machine S; does not constrain machine S;; when
Y;(t) — Y;(t) = B;;, machine S; is referred to be starved (if i > j) or blocked (if i <
j) by machine S;. Let 6;(t),i =1,2,..,M, denotes the operational status of

machine S; at time t. Since we only consider machine random failures in this

research, we have
Let {(t) = [{ij(t)]MxM be a matrix used to indicate the interactions among
machines:

L, if @) -Y@) =By i#j

2.12
co, otherwise ( )

¢ij (0 ={

It is noted that machine S; has to operate at the processing speed of machine S;

if S; is constrained by S;.



(2.13)

»:(£) = min {fij(t)gj(t) Hi(t)}

T;(©) T
where T;(t) is the actual cycle time of machine S; at time t. In a single-product
system, the cycle time is a fixed value for each machine, however, in a multi-
product system the cycle time of a machine is dependent on the product type it is

processing.

To determine the actual cycle time of one machine at a particular time t, one
just needs to identify the product index n that the machine is processing at that time
point. Let n;(t) be the index of the product that machine S; is processing at time ¢,

then we have

M

n® = %O+ ) BO)|+1 (2.14)

j=i+1
where |*] is the floor operator, e.g., |3.14] = 3, and b;(0) is the initial buffer level
of buffer B;. Therefore, the cycle time of machine S; at time ¢ is

T;(t) = qﬁi(t)Ti + qzli(t)—letqni(t) (2.15)

We can extend Eq. (2.15) by considering the interactions between machine S;

and all the other machines in the line.

§u(06:(8) C2(06,(1)  6:(1)  Gim(©)Ou (L)
()~ LO O Tu()

v;(t) = min{ } (2.16)

The change rate of b;(t) is the speed difference between its downstream

machine S; and upstream machine S;_;.

b (t) = v;(t) — vi_1(t) = Fi(b(1)) (2.17)

The accumulated production count of machine S; is

Y:(t) = Jtvi(r)dr = Hl-(b(t)) (2.18)
0



Thus, the dynamic function F(x) and the measurement function H(*) are
derived for the multi-product serial production line. With this model, the system
states and other important variables at any time point can be obtained as long as the
production sequence Q(t) and machine random failures W (t) up to that time point

is known.

2.4.System identification use case

There are a lot of potential applications of the derived mathematical model for
multi-product system, including product completion time prediction in Chapter 3.
In this chapter, a simple example on system identification will be demonstrated.
Based on the modeling method proposed in the preceding section, we will conduct
the analysis on the performance of a two-machine-one-buffer system with two
product types. The tool setup time is not considered in this demonstrated case. The

system architecture is as shown in Figure 2.2.

s, s,

Product Type 1 T11 T21

Product Type 2 Tiz Ts,

Figure 2.2. A simple two-machine-two-product system

For single-product systems, people usually take the production counts within a
given period of time, e.g., one shift, one week, etc., as the performance measure.
However, for multi-product systems, the production counts cannot serve as a
justified performance measure, since during a given time period, the production

count varies with product types.

To find a proper measure for multi-product system, we should take a look into
the daily operation of a manufacturing system. The total number of a particular
product type to be produced is not arbitrary. The production manager would receive
a specific production order from the production planning department. The

production manager aims to arrange the production sequence such that the order

10



could be processed efficiently. Therefore, the total time it takes to finish all the

orders could be a direct measure of the efficiency.

Suppose the production order is {N;, N,}, which means N; products of type 1
and N, products of type 2 are demanded, then the total number of the products to

be produced is
N =N; + N, (2.19)

The performance measure for the two-machine-one-buffer system is the order

finish time, denotes as T'.
T = inf{t|Y,(t) = N} (2.20)

The order finish time T highly depends on the production sequence @ and the
system architecture. The exact relationship among them has yet to be investigated.
In this section, we will give an upper bound and a lower bound for the order finish

time.
T,<T<Ty, (2.21)
where
T, = inléll,)é{NlTil + N, Tio} (2.22)
and
Ty = Nymax{Ti,} + N, max{T;;} (2.23)

The upper bound is derived by assuming that the buffer capacity is zero. Then

the two machines are aggregated to one virtual machine with cycle times m’ivzi{Til}
=1,
for product type 1 and m;la>2<{Tl-2} for product type 2. Then the total time it takes to
=1,
finish N; product type 1 and N, product type 2 is N; HI?)Z({TH} + N, m?)z({T"Z}'
1=1, =1,
From the perspective of manufacturing process, the cycle time is the least time

for one machine to finish all the process on a single product. The essential time for

machine S; to finish all the processes on N; product 1 and N, product 2 is N;T;; +

11



N,T;,. Regardless the system architecture and production sequence, the order finish

time can never be less than m(fiué{NlTil + N, T;,}, which yields the lower bound.
1=1,

These bounds would provide the production manager with a quick reference for
the order finish time. More importantly, the lower bound T;, renders a clear target
of order finish time for the production manager, who endeavors to arrange the

production sequence Q to achieve a better performance.

Definition 2.1. For a two-machine-one-buffer production line with
intermediate buffer capacity B, given the production order {N;, N,} and the cycle
times T, and T, if there exists a production sequence @, such that the order finish

time T achieves the lower bound T, i.e. T =T, = mngc{NlTi1 + N,T;,}, then the
=1,
production sequence Q belongs to the best sequences.

Based on the definition, the best sequence might not be unique. The problem of
interest is that given the system architecture and the production order, whether or

not the best production sequences exist.

Let n, and n, be the ratio of product 1 and 2 in the production order, i.e., n; =

N,;/N and n, = N,/N. Then T, can be rewritten as:

T,=N- irr;elvg{mTu + 13Tz} (2.24)

The machine corresponds to T, is said to be the slowest machine for the

production order {N,, N,}, denoted as S+, where

M* = arg {E?g{mTu + 12Tz} (2.25)

This is closely analogous to the slowest machine in the single-product system.
In a single-product system, the system capacity is directly determined by the
slowest machine and any stoppage of the slowest machine would lead to permanent
production loss [22], [23]. Similarly, in multi-product scenario, the slowest
machine S,,+ should also always process the products at its rated speeds, otherwise,
the best system performance, i.e., lower bound of order finish time T, can never be

achieved.

12



Therefore, a production sequence belongs to the best sequences only when the
slowest machine Sy« is not constrained, i.e., blocked or starved, during the

processing of the whole production order.

Note that the slowest machine Sy« in multi-product systems is not necessarily
the slowest machine for a particular product type. Machine Sy;- and S,; are said to
be the slowest machine for product type 1 and type 2 respectively, where M; =

arg max{T;; } and M; = arg max{T;,}.
1=1,2 1=1,2

There are three cases regarding the relationship among the slowest machines
for product types and that for the production order, see Table. 1. Note that the

situation where M; = M, + M* (the last two columns) does not exist.

Table 2.1. Different scenarios for slowest machine locations

Slowest Machines M* M7 M;
1 1 1
Case 1
2 2 2
2 1 2
Case 2
2 2 1
1 2 1
Case 3
1 1 2
2 1 1
Not Exist
1 2 2

In the following, we will conduct case-by-case discussions on the relationship

between the existence of the best sequences and the system architecture.
Case 1: M* = M; = M,

In this case, the slowest machine for the production order is the same to the
slowest machine for each product type. The lower bound T, can be rewritten as
1=1,
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reertten as TU = N1 m?)z({Tll} + NZ m?)z({le} == NlTMil + NZTM;Z = NlTM*l +
=1, =1,

N, Ty+,.Compare upper and lower bounds, we have T = T; = Ty. It is noted that
the above derivation is independent of the production sequence Q. Therefore, in
Case 1, any production sequence is the best sequence. In clean case scenario, the
system performance is exactly the same regardless of the production sequence and
buffer capacity.

Case 2: M} # M, and M* = 2

Without loss of generality, we conduct the analysis based on M* = M; = 2 and
M7 = 1. Inthis case, the slowest machine, i.e., machine S,, should never be starved

in order to achieve a best sequence.

The simple fact is that feeding product 2 to the system would help accumulate
the buffer level, which is preferable, and feeding product 1 would drain the buffer,

which leads to starvation when the buffer is empty.

To avoid such starvation, at time t = 0, the first product fed to the system
should be product 2, which helps accumulate the buffer level. After the buffer
reaches a desirable level, product type 1 can be fed to the system such that the

starvation would not arise.

Let y be the critical number of product 2 fed to the system, such that at least
one product of type 1 can be processed without causing starvation. Together they
form a small product bundle (Figure 2.3). The buffer level goes back to zero exactly

when the bundle is finished. And then another bundle can be fed to the system.

q1 9yl diy1+1

|~

¥l Lyl

Product 1 i Product 2 Product Bundle

Figure 2.3. Bundled sequence for case 2
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Now we try to find the critical value y. The buffer level after feeding y products
2isyT;,(1/T,, — 1/T,,). The critical condition is that the time for machine S; to
process one product of type 1 should be equal to that for machine S, to process all

the remaining product 2 in the buffer and one product of type 1, i.e.,

1

1
Ty, = yTi, (_ - _> “Tyy + Ty (2.26)
Ty, Ty

Solve the equation for the value of y.

T11 - T21

y=ot 2t (2.27)
T22 - T12

There are two things to note. Firstly, there is a minimum requirement for the
ratio of product 2 in the order to ensure that we can pair every one product 1 with

at least y product 2, i.e.,
N =v:1 (2.28)
Insert Eq. (2.27) into Eq. (2.28), yields
MT21 + 12122 211 T11 + 12712 (2.29)

Actually, this inequality always holds, since machine S, is the slowest machine.

Therefore, the requirement for the product ratio is always fulfilled.

Additionally, during the processing of the bundle, there is a maximum value of
the buffer level, which can be interpreted as the requirement for the buffer capacity.
In other words, if the buffer capacity is lower than the maximum buffer level during
the processing of the bundle, then product 1 would always cause starvation no

matter how many product 2 has been fed to the system before it.

If T,; = T,,, the buffer level starts to decline once product 1 has been fed to the
system. The peak level is the buffer level after y product 2 have been fed to the

system. Since y might not always be an integer, we need to round it to its ceil.

B, >

Ty, — T21] Ty, —Tiz (2.30)

T22 - T12 T22
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If Ty, < T,,, the buffer level continues to grow when product 1 is fed to the

system and starts to decline only when all the remaining product 2 has left the buffer.

T22 - T12 1 1 T22 - T12
B 2[y]—+<———) YI————— (2.31)
? Tya Ty T Tya
Simplify the equation, we have
T1 — T>1T,, — T
B, > 11 21] 22 12 (2.32)
T22 - T12 T11

Combine Eq. (2.31) and Eq. (2.32), the best sequence exists only if the buffer
capacity meets the following requirement

Ty — T3] Taz—Tiz
Ty2 — Tyl min{T;;, T, }

B, > (2.33)

In conclusion, for Case 2, the best production sequence exists if the buffer
capacity satisfies the above condition. If the condition is satisfied, then one of the
best production sequences is as shown in Figure 2.3. We call the production
sequence as smallest bundle sequence, since you cannot further reduce the number
of each product types in the bundle. The smallest bundle sequence is the one that

requires the least buffer capacity to be best sequence.
Case3: M] # M,and M* =1

Similarly, we only conduct the analysis based on M* = M; = 1 and M; = 2.In
order to achieve the best sequence, the slowest machine, i.e., machine S;, should

never be blocked.

If the buffer capacity is infinite, then machine S; would never be blocked, and
any production sequence is the best sequence. In contrast, if the buffer capacity is
zero, then S; is blocked whenever product 1 is fed to the system and the best
sequence does not exist. Therefore, there must also exist a critical buffer capacity
in this case, which directly determines the existence of the best production

sequences.
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Figure 2.4. Bundled sequence for case 3

Again, we try to process the products with the smallest bundle, since it requires
the least buffer capacity. The bundle contains only one product 1 and y product 2
(Figure 2.4). The buffer level after feeding product 1 is T;;(1/T;; — 1/T,1). And
y is the critical number of product 2 fed to the system after product 1 such that the

buffer level resumes empty. Following the same procedure, we will have
MT11 + 12T 2 M1T20 + 1272, (2.34)

This inequality always holds since machine S; is the slowest machine.
Therefore, the existence of the best production sequence is always independent of
the specific production order.

Similar to the previous case, the buffer capacity should be larger than the
maximum buffer level during the processing of the smallest bundle. If T;, = T,4,

the buffer starts to decline once product 2 is fed to the system.

B, > T21 _Tll
2 _

= (2.35)
T2

If Ty, < T,q, the buffer level continues to grow when product 2 is fed to the

system and starts to decline only when all the remaining product 1 has left the buffer.

T,, —T 1 1 T,, —T
B, >z, (___> . (u>-T21 (2.36)
T21 Tz Ty T21

Simplify the above equation, yields

B, >—*—— (2.37)



We combine Equation (40) and (42), then the requirement for the existence of
the best production sequence is:

T21 - T11

> (2.38)
2 min{T;,, T4}

Therefore, for Case 3, the only condition for the existence of best production

sequences is the buffer capacity requirement in Eq. (2.38).

2.5.Summary

In this chapter, an analytical system model for multi-product system is proposed.
The product-dependent cycle time and tool set-up time are considered in the model.
The model is analytically derived based on the conservation of the flow. It provides
a solid foundation for system performance prediction and control. A use case for
analyzing the best sequence in two-machine-two-product system is also

demonstrated in this chapter.

2.6.Related work

Part of the results presented in this chapter have been published in [24]-[29].
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Chapter 3. Product Completion Time

Prediction

3.1.Background

Product completion time (PCT), sometimes also referred to as makespan,
remaining time, lead time or flow time, is the time needed to complete the required
manufacturing processes on the product. In manufacturing systems, the accurate
prediction of PCT is fundamental to production scheduling [30]-[32]. The latest
evolvements of manufacturing systems have posed new challenges in PCT
prediction. On the one hand, driven by intense market competitions, notable
increases in product diversity and product system complexity have made it more
difficult to predict PCT. On the other hand, with the rise of Manufacturing as a
Service (MaaS) [33], [34], PCT is no longer just an internal reference for production
manager to schedule productions, but also has become a major commitment to
customers. Therefore, effective PCT prediction is much needed in the context of

today’s smart and customer-oriented manufacturing.

The existing methods for PCT prediction could be categorized into three
categories, namely, analytical, simulation and data-driven methods. The analytical
methods are mostly built on stochastic process models, e.g., queueing models and
Markov Chain etc. For example, Altendorfer & Jodlbaure [35] derive the expected
PCT in M/M/1 production systems using queueing theory, where M/M/1 denotes a
single-machine production system whose processing time and time between order
arrivals both follow exponential distribution. Savasaneril et al. [36] discusses the
lead time quotation problem in a similar production system but with the

consideration of inventory level. The applications of analytical methods are mostly
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limited to simple systems with strict assumptions. The production system
investigated in this paper is the multi-product serial production line, which is known
to have extremely complex, non-linear and stochastic dynamics in nature.
Rajagopalan & Karimi [37] manages to analytically derive the PCT in multi-
product serial production line considering transfer time and setup time, but only by

assuming there is no stochastic factors.

Unlike analytical methods, simulation methods [38]-[41] should work for most
types of production systems as long as a reliable simulator can be established. Hubl
et al. [38] introduces a flexible discrete event simulation model for PCT prediction
considering stochastic factors in processing times, tool setup times and purchasing
lead times. In [40], a method based on Petri Net is proposed to predict PCT in
flexible manufacturing systems. In essence, the simulation based PCT prediction
relies on large numbers of repetitive simulations to obtain sufficient amounts of
random samples, so as to compute the expected PCT. Consequently, the nuisance
of simulation methods is that it requires long computing time and enormous
computing resources, which prohibits the simulation methods from being used in

real-time production scheduling scenarios.

The data-driven methods [42]-[45] take advantages of the historical data to
discover the hidden patterns mapping from input observations to PCT with
statistical learning techniques. For example, Lingitz et al. [44] conducts a case study
on PCT prediction using real data from a semiconductor production system. The
raw data are lumped into several different regression models, including linear
model, Random Forest, Support Vector Machine and K-Nearest Neighbors etc., in
order to find the optimal model with the highest prediction accuracy. Recently,
researchers have also attempted to apply deep learning techniques to PCT
prediction. In [45], a real-time PCT prediction method is proposed based on Deep
Belief Network (DBN) [46], [47]. The types and waiting list of all work-in-process
(WIP) products are captured using Radio-Frequency Identification (RFID), and
then the data is fed to the DBN to predict the PCT in a real-time fashion. However,
the referred research [45] does not consider the frequent random disturbances in the
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production system. In [42], besides the RFID data that reflect the WIP product
status, Fang et al. [42] further includes real-time data regarding machine and tool
conditions in the proposed PCT method using Deep Stacked Sparse Autoencoder
(S-SAE) model [48].

Thanks to the easy access to computing resources and availability of abundant
real-time data on today’s plant floor, data-driven methods, especially those based
on deep learning, have taken the PCT prediction to the next level. However, the
deep learning-based method also has its disadvantages. In [42], [45], the deep
learning model, either DBN or S-SAE, developed for completion time prediction
almost works as a ‘black box’ — all kinds of data collected from plant floor are
indiscriminately lumped into deep learning algorithms. In these studies, PCT
prediction is approached as purely machine learning problems. Few studies in this
area are based themselves on a clear system model and not much domain
knowledge is incorporated into the machine learning model construction, which
turns out to be a great challenge facing the deep learning-based methods for PCT

prediction.

In this context, we propose to a hybrid approach for product completion time
prediction by integrating a novel system model and deep learning technique. The
system model and knowledge are not only used to guide the deep learning model
development. More importantly, the system model is directly used in the process of
predicting PCT. The advantages of the proposed hybrid approach are two-fold.
Firstly, the training efficiency and prediction accuracy of the deep learning model
could be greatly improved with the guidance of domain knowledge. Secondly,
compared to pure deep learning approach, the production managers in real industry
would be more likely to embrace the proposed hybrid approach as it incorporates
the rigorously derived system understanding and knowledge acquired from plant

floor.
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3.2.Problem descriptions

In this chapter, PCT of product q,, refers to the time duration it takes to
complete all the remaining processes for the product. In literatures, PCT is also
referred to as makespan, remaining time, lead time or flow time, although
sometimes they might have slightly different meanings. We will consistently use
the term PCT in this paper. The formal definition of PCT is given in the following.

Definition 3.1. Given a product sequence @, at time t, the product completion time
(PCT) for the n*" product q,, in product sequence Q, denoted as v, (t), is defined

as
¥ (t) = max{0,inf{t’ € R*|Yy,(t") =n} —t} (3.1)

where Y, (t") is the accumulative production count of the end-of-line machine Sy,

attime t'.

In the definition, Y),(t') = n means that the accumulative production count
Yy (t") of the end-of-line machine S,, has surpassed the product index n at time t’,
and inf{t" € R*|Y),(t") = n} is the exact time point when product q,, leaves the
system and is deemed as a completed product. Therefore,
inf{t" € R*|Yy,(t") =n}—t is the time needed to complete product q, from

current time ¢, which is defined as PCT.

Compared to traditional PCT definitions, the proposed definition extends the
concept of PCT to product level and real-time scenario, which would meet the
practical needs in modern manufacturing systems. On the one hand, the proposed
definition extends the concept of product completion time to every single product
in the sequence, including not only incoming product, but also WIP products that
are already in the line, as traditional PCT predictions mostly concern only the
former case. Clear information on when a customized product could be completed,
either it is yet to be processed or it is being processed at the moment, would add
massive value to the business. On the other hand, the PCT defined in this paper is

evaluated in real time. It answers the question that how much time needed to
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complete the product starting from current time t given real-time system status.
Therefore, we can leverage abundant data collected from smart manufacturing
system regarding the fast-changing system status to make more precise predictions
on PCT.

However, the PCT prediction is not a trivial task. PCT of a product can be
decomposed into two parts, i.e., the time duration the product is being processed by
machines, and the time duration it waits in the queue to be processed. Therefore,
PCT is partially affected by machine random failures. For single-machine system
or closely connected production system without intermediate buffers, any random
failures on machine(s) before a product is completed can be directly added to PCT.
The PCT prediction on these systems is equivalent to predicting total durations of
machine random failures in a given time period. However, PCT prediction in multi-
product system described in this paper is far more complicated than just predicting
machine random failures. It is hard to determine the real impacts of machine
random failures on PCT in multi-product serial lines with considering intermediate
buffers, since it is coupled with real-time system status such as buffer contents and
preceding products. There is not even a closed-form representation for PCT if all
the future random failures are known. Therefore, there is an enormous state space

in PCT prediction problem that is intractable if only with analytical model.
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Figure 3.1. Framework for real-time PCT prediction in production system

The general approach of the proposed PCT prediction can be described as below.
As shown in Figure 3.1, the sensors keep monitoring the real-time system status
and transmitting the data to factory cloud. These data might include: (1) machine
operation status; (2) WIP product types and locations in the system; (3) products
incoming or the production manager intends to add to the incoming queue. A PCT
prediction system will process these data in a real-time fashion to predict the PCT
for every product, either WIP or incoming. The predicted PCT may serve multiple
purposes, for example, production manager can schedule productions by trying
different incoming production sequence to compare the PCTs, or customers that

already placed their orders can track the PCT in real time.
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3.3.System properties
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Figure 3.2. Real-time status of a multi-product system

Given a multi-product system as shown in Figure 3.2, the formal definition of

the product completion time is given in the following.

Definition 3.2. Given a product sequence @, at time t, the product completion
time (PCT) for the nt" product q,, in product sequence Q, denoted as y,, (t), is

defined as
¥ (t) = max{0,inf{t’ € R*|Yy,(t") = n} —t} (3.2)

where Y, (t") is the accumulative production count of the end-of-line machine Sy,

attime t'.

In addition, three important properties are derived based on the proposed model

and systematic understandings.

Property 3.1. There exists a strict lower bound ¥, (t) for the PCT of product

q., denoted as y,, (t), at time ¢, and it can be evaluated as
P (t) = max{0,inf{t' € R*|Yy,(t;w(t")=0,vt" >t) =n}—t} (3.3)

where ¥, (t) denotes the strict lower bound for y,, (t) and Yy, (t’; w(t') = 0,vt" >
t) is the production count of the end-of-line machine S,, at time t’ assuming there
are not any random downtime events in the system starting from time t, i.e.

w(t'") =0,vt" > t.
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Remark 1: This property arises from the observation that machine downtime
events, if impacting PCT, would only lead to delay of production and elongation of
the PCT. Therefore, PCT lower bound is derived by assuming clean case beginning
from the time when we evaluate PCT. Note that the lower bound 3, (t) is a
deterministic number given the system status at time ¢t. In general cases, it does not
have a closed-form representation due to complex interactions among machines.
However, we can utilize the proposed system model to recursively calculate y,,(t)
by assigning w(t'") = 0,vt" > t. This property lays the foundation for a hybrid
approach to the PCT prediction.

Property 3.2. The PCT of product q,, is independent of that of any products

coming after q,, in the product sequence Q, i.e.

POy (©) = p(y (), V' >n, vt =0 (3.4)

Remark 2: Property 3.2 states the correlations of PCT among products. As
products are processed in sequence, a product could be processed by a machine
only when all the products waiting before it has been processed. Therefore, the PCT
of q,, could only be affected by its preceding products. In other words, any products

in behind would not affect the product q,, regarding PCT at all.

Property 3.3. At time t, the PCT of product q,, is independent of the status of

machines if q,, has already completed the process on those machines, i.e.

p(yn @O Iwi (D) = p(y (D), Ve = 0,if n > n;(¢) (3.5)

Remark 3: Similar to Property 3.2, this property states that the completion of
product q,, is independent of machines in behind. These two properties inspire the
construction of a recurrent structure in the PCT prediction problem, which leads to

the use of a deep learning model specialized in sequence input.
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3.4.Hybrid deep learning framework

3.4.1. Long Short-Term Memory

Neural networks are set of algorithms which closely resemble the human brain
and are designed to learn the relationship between inputs and outputs through data.
As neural network is applied to many different problems, the basic feedforward
structure no longer meets some particular needs, and therefore there have been
some special neural networks, among which is the recurrent neural network (RNN)
[49]. RNN is a family of neural network that is specialized for processing sequential

inputs.

hy h, hy hy

el
T T

X1 X2 X3 Xn

Figure 3.3. Recurrent Neural Network structure [22]

Let x = [xq, X3, ..., Xy, ... | denotes the sequential inputs. RNN assumes that the
output from current step is depending on previous steps in the sequence. As shown
in Figure 3.3, RNN has the form of a chain of repeating modules of neural network.
It has an output h,, for each step and takes output from previous step and current
input to generate output for current step, i.e.,

h, = f(hn—l'xn; 9) (3-6)

where h,,_ is the state of previous step, x,, is the input of the current step, f(x; 8)
is the recurrent function defined by parameters 6. As sequential dependencies are
very common in many practical problems, there have been a number of successful
applications of RNN or its variants, e.g., machine translation, prediction problems
and video tagging etc. One of the most prominent variants of RNN is the Long
Short-Term Memory (LSTM) [50]. The LSTM shares the same chain-like structure
in Figure 3.3, but there is an internal hidden state called as cell state c,, inside
LSTM cells (Figure 3.4). The LSTM has the ability to remove or add information
to the cell state, carefully regulated by structures called gates.
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Figure 3.4. Internal structure of recurrent unit in LSTM [23]

In brief, there are an ‘input gate’ that ensures the cell state C,, only absorb useful
information from the new input x,,, a ‘forget gate’ that discards obsolete
information in cell state C,,, and an ‘output gate’ that generates output h,,. One can
refer to [50] for detailed updating rule in LSTM cell given input x,, and output h,,_,
from previous step. With cell state and special gates setting, LSTM is able to keep
useful information from many steps ago, and therefore it is especially capable of
capturing long-term dependencies. In this paper, we will use LSTM and the system

model proposed in Section 3 to establish a hybrid approach to PCT prediction.

3.4.2. Recurrent sequence discovery in PCT prediction

Based on Properties 3.2 and 3.3, the products and machines in the system can
be modeled as recurrent units. For example, the completion time of product gy, 1)
only depends on its own features, e.g., product type and cycle time etc., and the
status of machine S,,. Therefore, a recurrent sequence is constructed beginning
from the end-of-line machine S,, and propagates backwards along the line. Figure
3.5 also shows how the production line in real time is mapped to a recurrent

sequence.
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Figure 3.5. The multi-product line in real time corresponds to a recurrent sequence
After establishment of the recurrent sequence, one important task is to identify
the inputs to the recurrent units in LSTM. Since our goal is to predict PCT, any
factors that affect PCT should be included in the inputs. For machine S;, these real-
time factors can be represented as s;(t).

w; ()

ri() (3.7)

s;{(t) =

where w; (t) indicates if machine is up or down at time ¢, and r;(t) € (0,1) denotes

the ratio of process machine S; has completed on its current product g, ().

For product q,,, either WIP or incoming, it is the actual cycle time on each
machine that could affect the final PCT. Let §,, denotes the processing time,

including cycle time and tool setup time, of product q,, on each machine, we have

q;T; + qn 1Tty
5, = q.T, + Qn 1T3'q, (3.8)

anM + Qn lTqu

Therefore, the sequential input x to the LSTM is obtained by arranging

machines and products in the correct sequence.

x = [53(8), 8yt Oy (@415 -+ » Oy ()=1551(8), 8y (6 Oy ()45 +os Oy (4w ] (3-9)

where N is the number of incoming products that one wants to include for PCT
prediction in a given sequence. Consequently, a recurrent sequence has been
established for PCT prediction.
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3.4.3. Hybrid framework combining LSTM and system model

In this research, PCT is predicted with a hybrid approach by combining the
strengths of both deep learning and system model. The overall architecture of the
proposed hybrid approach is shown in Figure 3.6.
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Figure 3.6. A hybrid PCT prediction model combining LSTM and system model

Given the recurrent sequence x, LSTM will have output for each recurrent unit.
Following the updating rules in the LSTM, we can calculate the outputs from
recurrent units in sequence. Note that there might be multiple LSTM layers, since
it is not uncommon for people to stack two or more LSTM layers to refine the
outputs in complicated problems. In PCT prediction problem, we are not interested
in the outputs from units representing machines, since there are no predictions
associated with them. The machine units are only used to provide LSTM with
necessary information regarding their operation status that could affect PCT. Let
h,, represents the output from recurrent units representing product q,, with input &,

then LSTM outputs h corresponding to inputs x are

h = [Ray (09 By (0415 =0 oy ©)=10 oy (00 By (09415 o0 Py (040 (3.10)

The output h,, is further processed with fully connected (FC) layers to reduce

the dimension to one, since PCT is a single scalar for each product. In our problem,
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the final output could have been a real number that represents the PCT. However,
according to Property 1, for any product q,,, there exists a strict lower bound 7, for
its actual PCT y,, where ¥, is a deterministic number given the system status.
Instead of directly predicting the PCT from the deep learning model, we will train
the model to only predict the distance from the lower bound to its target PCT. Let

o, be the non-negative output of FC layers connected to h,,, then

0, = g(hy; 05) (3.11)

where g(*;6,) denotes the FC layers with parameters 6,. As mentioned in
previous section, lower bound ¥, can be directly computed using the system model.
Therefore, the final PCT prediction of product q,, is given by combining the results

from the deep learning model and analytical system model, i.e.

yn = Jn + 0y (3-12)

where ¥,, denotes the predicted value of the PCT y,. In training time of the LSTM,
the loss function is the mean square error between target PCT y,, given by training

data and predicted PCT 9,, given by the hybrid approach, i.e.

Tll(t)+N
1

BN O N @) |

- 2
(% = G + 01)) (3.13)

=np(t)

where 6 = [6,,0,] is the parameters for the deep learning model, including

parameters 6, for the LSTM layers and parameters 6, for the FC layers. In this way,

a hybrid framework for PCT prediction has been established, since system model

computes ¥,, while deep learning model predicts o,,.
The proposed hybrid approach has the following advantages:

(1) The proposed framework would increase the training efficiency and
prediction accuracy compared to the pure deep learning approach, as we
have incorporated precise estimation on part of the final result using the

analytical system model.
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(2) The proposed framework would effectively avoid unrealistic predictions
that underestimate PCT. In Eq. (28), o,, given by LSTM is a non-negative
number. Hence, the proposed framework would never give a prediction that
is lower than 3,,. However, a pure deep learning approach does not carry the

same guarantee.

(3) The proposed framework has a good compatibility with the ever-changing
system status by using LSTM. Regular neural networks mostly require a
fixed-sized input, but the number of WIP products, as well as the incoming
products, in the production system is always changing over time. In contrast
to regular neural networks, LSTM is designed to process variable sequenced

inputs, and there is no limitation on the length of the sequence it can process.

(4) The proposed framework largely simplifies the input data structure for the
deep learning model. In LSTM, a lot of information regarding system status
are implicitly embedded in the recurrent sequence. By arranging machine
status s;(t) or product feature §,, in a recurrent sequence, we are actually
providing the deep learning model with abundant information regarding
current system-level status, e.g., buffer levels, blockages, and preceding

products etc.

3.5.Experiments and validation

3.5.1. Numerical experiment setup

A numerical experiment is conducted in a six-machine-eight-product
production system. The production system in this case study has six machines and
five buffers, i.e. M = 8. Each buffer has a capacity of five, i.e., B; =5,Vi =
2,3 ...,8. The system is capable of processing ten different product types, i.e., K =
10. The cycle times fall in a range of [1,4], and the setup times have a range of
[0,1].

The training data has two possible sources. The first possible source is the real

historical data collected from plant floor, while the second is the simulation, as it is
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convenient to construct a reliable simulator based on the system model proposed in
this paper. In practice, the choice of the training data sources should be discussed
case by case. Sometimes, one can even take a mixed approach by combining data
from the two sources. In whichever case, it is important to figure out if the machine
status is Markovian or non-Markovian. For non-Markovian machines, the machine
status in the future depends on not only current status but also the status history
before reaching current status. In this scenario, we will have to either stack machine
status w; over a period of time or use another RNN to extract the machine hidden
state. In this paper, however, for demonstration purpose we will use dataset
generated from simulation based on Markovian machines. The machine reliability
parameters as shown in Table 3.1. MTBF denotes the mean time between failures,

and MTTR is the mean time to repair.

Table 3.1. Machine reliability parameters in this case study

Machine S4 S, S;3 Ss Ss Se S5 Sg
MTBF 150 152 102 132 111 135 126 155
MTTR 6 5 3 5 8 4 7 8

Using the simulation based on our model, we have generated around 10,000
data points in total. Each data point consists of input x, which includes real-time
machine status and product features, and target makespan y. The dataset is split by

a ratio of 70:30 to construct a training set and a testing set respectively.

3.5.2. Training process and results

We have conducted 10-fold validation to find the optimal neural network hyper-
parameters for our model. In the final model, there are two LSTM layers, and each
layer has 128 hidden units. The LSTM layers are followed by two FC hidden layers
with 128 hidden units each. The outputs of both LSTM layers are normalized before
any further processing. We concatenate the outputs from both LSTM layers to be
the input to FC layers. The activation function for the fully connected layer is
‘ReLU’. LSTM often experiences the problem of gradient exploding [51].
Therefore, the gradient clipping technique is adopted to clip the gradient value by
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range [—1,1] in order to avoid gradient exploding. In order to overcome overfitting,
a dropout rate of 0.2 is used in the two LSTM layers [52]. As for FC layers, we use
both L1 and L2 regularization technique, and the penalty coefficients are 0.08 and

0.1 respectively.

The training process of the hybrid model is as shown in Figure 3.7Figure 3.7.
Training progress for the hybrid deep learning model. The optimizer used in this
case study is RMSProp with learning rate « = 0.0001 and other parameters set as
defaulted. The training batch size is 32. The deep neural network model is deployed
on TensorFlow platform. Both training loss and testing loss decrease substantially

with the training epochs.
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Figure 3.7. Training progress for the hybrid deep learning model

3.5.3. Model performance comparison and interpretation

The proposed hybrid PCT prediction is compared with other machine learning
models [53], including linear regression (LR), multi-layer perceptron (MLP), and
random forest (RF), and k-nearest neighbors (KNN). In order to validate if the use
of model in the hybrid approach improves the performance, we also train a pure
LSTM model for PCT prediction. . Since these models have a different input format
from that for LSTM, we construct the training dataset following the format given
in [42], in which each data point represents a single product. Note that the newly

constructed training dataset represents the same system status in the original dataset.
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The only difference is the way that data is formatted for the needs of these
comparison machine learning models. Each data point contains the following

categories:
¢ Real-time production task: task composition and total WIP level.

e Real-time production status: WIP waiting in buffer, WIP in processing,

planned processing time.
e Real-time machine condition: real-time machine status.
e Product index.

The output is the PCT y; of the product corresponding to the product index
given in the input. Following the dataset structure, the input has a dimension of 80.
The newly constructed dataset has a total number of 240,080 data points. Given the

dataset, the details of the comparison machine learning models are as follows.

(1) LR: The LR model predicts the PCT by a linear combination of given input

variables.

(2) MLP: Through cross-validation, the MLP model is determined to have three
hidden layers with 128 units in each layer. The activation function is ‘Relu’,

while the L2 regularization is set to be 0.3 to avoid overfitting.

(3) RF: This is an ensemble learning method that constructs a multitude of
decision trees and outputs the prediction averaged across all individual trees.
The maximum depth in this model is eight. We use the RF regressor in the
scikit learn package in Python to construct the RF model.

(4) KNN: The only hyper-parameter in KNN is k, which is the number of nearest
neighbors to take into consideration when predicting the output of a new

datapoint. In this demonstrated case, we find k = 3 to be the optimal choice.

(5) Pure LSTM: In this model, we still use the original dataset with recurrent
format. The only difference from the proposed hybrid model is that we do

not use the analytical model to compute PCT bound. Instead, we rely on the
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LSTM to predict the entire PCT value. We use the same LSTM architecture
in the proposed hybrid model and increase the training epochs to 300 from
200.

These models are compared regarding five performance metrics commonly
used in regression tasks, including mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean squared error (RMSE), R-square (R?), and

realistic prediction ratio (RPR).

n
1
MAE == [y = 9 (314)
i=1
1% 9
MAPE = —Z Yi y‘| x 100% (3.15)
et Y
n
1
RMSE = |~ (= 9,)? (3.16)
i=1
n b — A.
R2=1- 22—151((%' _31‘)) (3.17)
i=1 yl y
n 9, = 9
RPR = # x 100% (3.18)

where y; is target PCT, 9; is predicted PCT, y is the mean of target PCT, and n is
the total number of products that are considered in the test dataset. Note that RPR
is a performance metric specially designed for PCT prediction problem. If a
prediction model gives PCT prediction 9; lower than its bound ¥;, according to
PCT Property 1, the prediction is unrealistic in the real world. These misleading
predictions unrealistically underestimate PCT and might present production
managers with problems in production scheduling and customer satisfaction etc.
The metric RPR is designed to evaluate the percentage of predictions that are

realistic, i.e., y; = ¥;, among all products considered in the test dataset. Apparently,
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one should pursue higher RPR when designing PCT prediction models. The

performance comparison is presented in Table 3.2 and Figure 3.8.

Table 3.2. Performance comparison among different machine learning models

Model LR MLP RF KNN Pure LSTM Hybrid Model
MAE 5.77 7.21 5.62 7.94 5.42 5.02

MAPE 35.10% 32.86% 23.08% 63.47% 34.04% 10.81%
RMSE 8.742 8.60 8.81 12.39 8.61 8.32

R? 0.905 0.902 0.904 0.804 0.908 0.914

RPR 89.91% 99.09% 91.29% 70.61% 91.09% 100%

For the comparison models, the inputs contain all the available data in the
system, some of which, according to our analysis, are not relevant in the prediction
target. For example, the number of incoming products would never affect the PCT
of any WIP products. By using LSTM, we avoid including these irrelevant data in
the prediction. However, through the comparison between Pure LSTM and hybrid
model, it is noted that LSTM alone, although has slightly better performance than
other comparison models, is still not enough to deliver satisfactory prediction
performance. More importantly, it does not convey the guarantee that all
predictions are realistic. Therefore, the use of analytical model in the hybrid
approach is indispensable. Furthermore, the fact that Pure LSTM requires more
training epochs, i.e., 300 epochs compared to 200 for hybrid model, indicates that
the hybrid model reduces the computing time and resource needed for training the

deep learning model in PCT prediction.

In Figure 3.8, we plot all the datapoints in the test dataset with real PCT as the
horizontal axis and predicted PCT as the vertical axis. We use blue dots to represent
realistic predictions, i.e., ¥; = ¥;, and magenta dots to represent unrealistic
predictions, i.e., y; < ¥;. The RPRs for LR, RF and Pure LSTM are around 90%.
In other words, these models provide production managers with around 10% of the
total predictions that can never be realized. MLP has a RPR as high as 99.09%,
however, its overall prediction accuracy is not satisfactory. The 100% RPR from
the proposed hybrid model is theoretically guaranteed when we construct the

prediction model.
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Figure 3.8. The plots of true PCT vs. predicted PCT for all datapoints in test dataset

3.5.4. PCT prediction output demonstration

Figure 3.9 present a typical output given a system status input from the test

dataset. The output has the same recurrent sequence as the input. Since recurrent

unit representing a machine has not output, we place a tick on the horizontal axis.

The prediction output can be conveniently interpreted. As shown in Figure 3.9,

based on the ticks, we can tell that there are three WIP products in buffer Bg and

the hybrid model gives PCT predictions that are very close to real PCT, while there

is no product in buffer B, that locates between machine S¢ and S,. Some

annotations along with the PCT bounds are added in the graph for better illustrating

the prediction output.
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Figure 3.9. PCT prediction output interpretation

Further, we select another 12 datapoints from the test dataset and show their
outputs in Figure 3.10. Since the production system is dynamic, we can find that
the numbers of products in the system vary among different system status. Products
closer to the right in the graph are closer to being completed, and hence have smaller
PCT values. In most cases, the prediction errors tend to be smaller for products with
smaller PCT. PCT can also be interpreted as the time a product has to stay within
the system before it is completed. When the staying time is longer, there could be
more random failures and therefore the PCT is more likely to be affected. Therefore,
the PCT of a product with larger product index is not only larger than that of a
product with smaller product index but also more uncertain. However, since we
predict PCT in a real-time fashion, in practice we would continue to observe system
status and output predictions. Consequently, given one specific product we will

have more confident predictions as time passes.
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Figure 3.10. Predictions from hybrid model given different system status as inputs

To sum up the case demonstrated in this section, we successfully implement the
hybrid PCT prediction model in a dataset generated from simulation. The
comparisons with other models indicate that the hybrid model is consistently better
than other models regarding all performance metrics. The hybrid model as it is
derived and constructed guarantee 100% RPR, which means it would never give
predictions that are unrealistic unlike other comparison models. Therefore, the case
study presented in this section proves that the proposed hybrid model for PCT
prediction in multi-product system is effective.



3.6.Summary

This chapter proposes a hybrid approach to PCT prediction, which combines
the strengths of both analytical system model and deep learning technique. To
achieve effective PCT prediction, the mathematical model for multi-product serial
production line in Chapter 2 is utilized. Based on the characteristics of production
system, a recurrent sequence is discovered in PCT prediction problem, in which
machines and products are modeled as recurrent units in LSTM, a prominent variant
of RNN that is specialized in sequential prediction problem. Instead of adopting a
pure deep learning approach, we combine system model and LSTM to establish a
hybrid model for PCT prediction, which is proved to be effective in a demonstration
case. In this research, the system model and domain knowledge are not only used
to guide the construction of deep learning model, but also, more importantly, the
system model is directly integrated with the deep learning model in prediction task.

3.7.Related work

Part of the results presented in this chapter have been published in [26], [54].
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Chapter 4. Rolling Horizon Method for

Corrective Maintenance Control

4.1.Background

Manufacturers are seeking to operate the production in a more efficient and
cost-effective way when facing the growing competition and globalization. Since
capital expenditure incurred by maintenance accounts for a large portion of the
overall cost in production activities, optimal maintenance decision making is one

of the fundamental aspects in achieving this end.

Random failure occurs when a machine deteriorates to a certain level due to
usage and aging. Upon the random failure, a maintenance action has to be carried
out in order to restore the machine to an acceptable operation condition. In
industrial practice, maintenance is not necessarily to completely replace the failed
machine with a new one. Based on the structure of the machine, multi-level
maintenance options could be available. A perfect maintenance, or replacement, is
recovering the machine ‘as good as new’, while a minimal maintenance is
recovering the machine ‘as bad as old’, which only resumes its operation without
changing deterioration status. Imperfect maintenances are recovering the machine

to somewhere between old and new.

The options of different maintenance levels largely expand the research on
maintenance. Based on the levels of maintenance effects, a lot of maintenance
policies have been proposed in the past decades [55]-[57], most of which were
based on single-unit system. Decision making on maintenance is essentially a trade-
off between production performance and machine reliability. For single-unit

systems, the unavailability of the system during maintenance can be directly
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counted towards the production loss. Therefore, the maintenances scheduling,
which is modeled as a stochastic process, can be conveniently optimized such that
some long-term criterion, such as maintenance cost rate or system unavailability, is

minimized.

In contrast with the single-unit system, Wang [58] concludes that the traditional
maintenance policies for multi-unit system fall into two categories, i.e. group
maintenance policies [59], [60] and opportunistic policies[61], [62]. These policies
generally originate from the observation that in a multi-unit system the failure of
any one component will immediately halt the whole system, during when other
components can be maintained simultaneously without incurring extra production
losses. However, it is not necessarily the case in a general multi-stage
manufacturing system, where machines work asynchronously, and intermediate
buffers reduce the spread of stoppages. It is noted that some studies [63], [64] on
maintenance in multi-stage manufacturing systems are also based on the
assumption that there are no buffers between machines. These studies, along with
the policies for single-unit and multi-unit systems, might not work well for a

general multi-stage manufacturing system.

Multi-stage manufacturing systems are characterized by their complex
structures of strongly interconnected machines and stochastic dynamics. [65] It is
difficult to obtain the optimal maintenance policy in a general multi-stage
manufacturing system. First, the relationship between machine stoppage due to
maintenance and system production loss is unclear. Our previous studies [66] reveal
that the system production loss of machine stoppage heavily depends on the system
states. For example, given the same maintenance duration on the same machine at
different time, the production loss could be very different since the system states
are dynamic. But the system state at any time is very difficult to evaluate with
transition probability, because it is well known that the close-form solution of
system states only exists for two-machine-one-buffer system and systems with

infinite buffers or no buffers [67]. As a result, it is nearly impossible to obtain a
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globally optimal maintenance policy in the long run for a multi-stage manufacturing

system.

To address the complexity, some simulation-based studies have been conducted
to find the optimal maintenance schedule [68]. For instance, Arab et al. [69]
incorporated remaining reliability of machines and work-in-process inventories
into the simulation model to search for the optimal maintenance schedule. However,
changes on the process and equipment, which are norm in today’s manufacturing
industry, will lead to corresponding changes and reconstructions in the simulation
models, and subsequently a higher resource consumption. Nahas et al. [70]
attempted to allocate the buffers subject to a limited total buffer space aiming at
minimizing the maintenance costs. This is applicable in system design stage rather
than the maintenance control on an existing system. References [71], [72] both
study the integration of maintenance control and quality control in multi-stage
manufacturing systems, but they focus on the relationship between machine status
and product quality. Some works [66], [73], [74] try to find the opportunities for
maintenance in multi-stage manufacturing system, but the machine reliability and
aging is ignored. Therefore, a systematic method is desired to manage maintenance
through both careful analysis of the machine reliability and production dynamics
[75].

While information about production systems has become increasingly
transparent, detailed, and real-time, some researchers attempted to obtain optimal
control strategy on the system by utilizing the real-time data collected by distributed
sensors. Zou et al.[76] was able to establish a data-driven model for production
system analysis, in which the diagnosis and prognosis of production losses were
established. The model has been applied to energy control [77], gantry assignment
[78] and etc. in multi-stage manufacturing systems. Consequently, it is feasible to
utilize a maintenance policy based on real-time system information and
implemented in real-time manner instead of a globally optimal maintenance policy.
In this paper, the production losses of maintenance actions are properly estimated

based on the real-time system information. The real-time maintenance cost rate is
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established. A real-time maintenance policy of selecting the proper level of

maintenance upon machine failure is proposed in this chapter.

4.2.Sequential decision-making formulation and solutions

Most of the control problems in manufacturing systems can be mathematically
represented as an objective function and relevant constraints. Due to the dynamic
nature of manufacturing systems, the sequential decision-making is an appropriate

framework for most control problems.
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Figure 4.1. Sequential decision-making framework illustration

As shown in Figure 4.1, the continuous time within the planning horizon, e.g.,
a shift or a day etc., is discretized into steps. The discretion is based on specific
problems but generally falls into two possible categories. One is the event-triggered
mechanism, which means the time step is the time when a decision or an action is
needed to respond to an event. For example, in this chapter, the CM decision is
triggered by a random failure. The other is discretion over equal time intervals. For
example, in PC decision making presented in later chapter, an equal time interval
is chosen to consider PM decisions.

At each step ty, a state s;, representing the real-time status of the system can
be observed. Based on the state, an action a,, is chosen and then implemented in
the system. Upon next time step t, 1, a reward is given by the system to reflect the
goodness of the chosen action. If one can guarantee that the maximization of
accumulated rewards is equivalent to maximization/minimization of the objective
function, then the control problem can be solved by solving this sequential decision-

making problem.
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The sequential decision making is challenging because of its enormous search
space due to large state space. In Figure 4.2, the sequential decision-making process
is expanded to reflect all the possible transitions. The goal is to find a policy or
rationale to choose actions given a state. There are two methods to solve such a
sequential decision-making problem, namely, rolling horizon method and

reinforcement learning method.

Rolling horizon method only consider a look-ahead time window (e.g., until
next failure). By limiting the consideration within a certain time window, we
effectively trim the depth of the search tree. Subsequently, we find approximation
of future state transitions and rewards within the time window, which effectively
trim the width of the search tree. By these two steps of approximation, suboptimal
solutions can be found to optimize system performance, but only within a certain
time window. Usually, rolling horizon method is fast during online execution and
requires no training process. However, a good approximation is not always
available to a given control problem. Further, due to the approximation, if available,

there is no guarantee on solution optimality.

Reinforcement learning (RL) uses state values to represent the expected

accumulated reward starting from one state. The state values are obtained through
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iterative training conducted offline. The policy is executed by choosing action
towards the subsequent states that have the highest state value. RL is also fast
during online execution but needs large amounts of computing time and resource
for training. It has some guarantee on policy optimality. It fits some control
problems in manufacturing systems well since a lot of historical data are available
and can be leveraged to construct simulation environment. In this dissertation, both
methods will be demonstrated for different problems. In this chapter, the CM
problem is solved by a rolling horizon methods.

4.3.Corrective maintenance modeling and cost analysis

Given the failure-time distribution p; (t*) of machine S;, the failure rate is

pi(t*)
1- fot* pi(v)dt

A7) = (4.1)

It can be shown that the failure rate A;(t) is increasing when the failure-time
distribution of the machine has the positive aging property. In this scenario, the
imperfect maintenance or perfect maintenance options are preferred. Otherwise, if
the failure rate A;(t*) of the machine is decreasing with respect to its age, a minimal
maintenance is always preferred. The imperfect maintenance has been modeled
through several approaches, including failure-rate reduction [79] and virtual-age
reduction [80]. For the ease of derivation, we adopt the virtual-age approach to
model the maintenance effects.
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The age of machine S; is continuously increasing with time until it breaks down
and a maintenance has to be imposed. If the maintenance effect is not perfect, the
machine after maintenance will behave as if it already has an initial age, which is
referred to as virtual age. The virtual age of machine S; right after its j*
maintenance action is denoted as v;}'. The superscript m is used to denote a value
derived by assuming that the maintenance level is m. When the maintenance level
has been determined, the superscript would be forsaken hereafter. The virtual age

i} is
vij = A;n(vi(j—l) + Zi(j—l)) (4.2)

where v;(;_q) is the virtual age of machine S; right after its (j — 1)" maintenance
action, z;¢;_y) is its survival time after (j — 1)*" maintenance action, and A}* is the
age reduction factor of maintenance level m. Clearly, A7* = 0 corresponds to a
replacement since the virtual age of machine is reduced to zero. A" =

corresponds to a minimal maintenance while 0 < A7* < 1 relates to imperfect

maintenances.

The time to failure t* follows the distribution conditioning on the machine’s

m

virtual age v;7, i.e.,

3 pi(t* + v}
fv?? pi(D)dt’

pi(t*|vi} t*>0 (4.3)
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The maintenance cost consists of resource cost and production loss due to
machine stoppage. The resource cost includes part replacement and other
consumable expenses, which varies with maintenance level. Given a maintenance

action é;; = (i,m, t;;, d;}), depending on the maintenance level m, the cost of jth

l]’

maintenance action on machine S; is evaluated as
— m m
Ct =" +c, (PLE. + PLRT.) (4.4)

where ¢/™ is the resource cost. c,, is the profit per part. png,]_ and PLRgl?j are the

permanent production loss and production loss risk caused by é;; respectively. The

latter two terms heavily rely on system states, and they will be derived in following
sections through careful analysis on the production line dynamics

An optimal maintenance decision cannot be made directly based on the cost,
since a replacement probably costs much higher than a minimal one, but it ensures
the machine operate for a longer period of time. Therefore, the real-time

maintenance cost rate R} is introduced as maintenance cost per unit time before

next failure arrives.

cm

where d;} is the duration of maintenance, which is a deterministic value related to

the maintenance type m, and z;} is the lifetime of machine S; after the maintenance,

which is an unknown random variable following distribution p; in
Equation (3). The expected cost rate after its j* maintenance is
@ Cp
E[R}}] =f0 t*+dmpl(t lvm)dt* (4.6)

E[R]}] is the expected cost per unit time before the next failure. When a random

failure occurs at a machine, a maintenance of a proper level should be chosen to
minimize the expected cost rate. This cost rate formulation will be used to guide

optimal decision making on maintenance levels.
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4.4.Product loss and production loss risk evaluation

The maintenance action causes machine stoppage and leads to different system
states. The impacts of a maintenance action é;; on the system are twofold, i.e.,

permanent production loss PLg,, and production loss risk PLRg, . The permanent

production loss is the direct outcome of the machine stoppage, and the production

loss risk results from the disturbance to overall system states caused by é;;.

4.4.1. Permanent production loss evaluation

Opportunity window is the largest possible stoppage duration of a machine
before such stoppage induces permanent production loss [22], [81], [82]. As
discussed in previous section, the opportunity window depends not only the current
buffer status but also the downtime events E. In stochastic scenario, the full
downtime event list E is unknown since there will be unexpected random failures
in the future. However, in the context of maintenance, a subset E of downtime
events E is known, namely those maintenance actions already initiated before or

right at current time t and lasting beyond time t.

Since E c E, it can be concluded that PLz < PLg. Then the opportunity
window estimated with E is the lower bound of that computed with E. Therefore,

the subset E can be used instead of E to safely estimate OW;(t).
OW;(t) = OW,;(t) + PLg[t, t + OW;(t)] - Ty (4.7)

Consider a maintenance action é;; = (i, mj, t dij), if di; < OW;(¢), the

ij
maintenance won’t incur permanent production loss; however, if d;; > OW;(t),
then the slowest machine will be stopped and the production time loss is the
excessive time that €;; lasts beyond OW;(t). To conclude, the permanent

production loss of a maintenance action €;;, denoted as PLg,,, IS

(4.8)

d:: — OW:(¢t::
PLgij = max{ Y l( ”),O}

Ty-
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4.4.2. Production loss risk evaluation

Given a maintenance é;;, it causes permanent production loss PLg, when it

lasts longer than its opportunity window and the loss last until é;; is completed.

Hence PLg,, only measures the impact of é;; on the system within its presence. But

the downtime event é;; will impact the system in a more profound manner since it

leads to totally different system states. The impact of a maintenance action beyond

the “current” permanent production loss will be evaluated in this section.

The stoppage at machine S; due to maintenance action é;; spread to nearby
machines sequentially when it causes blockage or starvation. The opportunity
windows of nearby machines gradually alter. Considering a subsequent downtime
event, the permanent production loss incurred by é,, may also be changed due to
the altered opportunity windows. In principle, the total loss cannot be directly

attributed to the initial action €;;, but €;; does indirectly impact the loss of the

subsequent downtime event.

To ensure the resilience of the system to future random failures, we take the
difference of production losses of the very first subsequent downtime event with

and without é;; as production loss risk, denoted as PLRg,..

Suppose that after time t;;, the very first random failure occurs on machine

j!
Sy (k=1,2,..,M) at time t* and a replacement is taken. Since &, is the first

random failure after time ¢;;, there is no other downtime event between t;; and

j1
t;j +t*. Only downtime events é;; and €, are appended to the known downtime

list E. The full downtime list E is
E = [E, gij' gk*] (49)

With the current system state and fully observed downtimes E in the future, the

buffer levels b(t;; + t*) attime ¢;; + t* can be derived, which further can be used
to compute opportunity window OW,(¢;; + t*). Then the permanent production

loss PLg,, (t*) caused by é. can be evaluated as
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di = OWi (¢ + ') 0} (4.10)

PLg, (t*) = max{ T

The probability associated with PLz, (t*) is p(k,t;;,t*), which is the
probability that the first random failure arrives at machine S at time t;; + t*. The
machines are independent with each other regarding reliability. Therefore

p(k, t;;, t*) is the joint probability of M machines, i.e.

M £
p(k, tij’t*) = pk(tij»t*) 1_[ Il —.l; pl(tij,T)dTl (4‘11)

l1=1,l#k

The expected value of production loss of first downtime event with é;; can be

evaluated as

M oo
E[PLs, | = Zfo p(k, t;j, t*)PLg,, (t*)dt" (4.12)
k=1

Note that PLg, (t*) is directly caused by the potential random failure é., not
the initial downtime event €;;. The impact of €;; lies in that it might alter the value
of PLg,, (t*). The production loss of &, without é;; should also be evaluated in
order to identify the real impact of é;;. Considering a scenario without the

downtime event €;;, the full downtime list Eis
E=|Eé.] (4.13)

Following the similar aforementioned procedure , at time ¢;; + t*, the buffer
levels b(t;; +t*), opportunity window OW;(t;; +t*), and production loss
Pngk* (t™) can be computed in sequence. Therefore, the expected production loss of

first downtime event &, without é;; is

M (o]
E[PL;, ] = ZJO p(k, t;j, t*)PLg, (t")dt* (4.14)
k=1
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where p(k, t;;, t*) is the probability that machine S, fails attime ¢;; + t*. Note that

j»
p(k,t;,t*) # p(k, t;;, t*), since p(k, t;;, t*) is derived by assuming that machine
S; doesn’t receive é;;. Finally, PLRg,; can be estimated by the difference of

expected production losses with and without é;;.

(4.15)

€«

PLR;, = E[PLg, | — E[PLs

The term PLRg,, is the impact of €;; on the production loss of next random

failure. By incorporating it into the maintenance cost rate function, a maintenance
decision at current time would always consider its impact on the whole system in

future time.

4.5.CM control based on rolling horizon method

From the evaluation of production losses, we can conclude that the maintenance
cost for machines in a manufacturing system heavily depends on the real-time
system state. As discussed in Section I, it is extremely difficult to find an optimal
maintenance policy for a global time horizon. Therefore, a feasible approach is to
develop a control policy implemented on a real-time basis to obtain the near-

optimal maintenance decisions.

At any time t, distributed sensors monitor machine operation status in the
system. If random failure at machine S; is detected, i.e., W;(t) =1, then a
maintenance action should be taken on machine S;. Depending on the structure of
the machine, maintenance of multiple levels m; = 1c, 2c, ..., N;c might be
available for the failed machine. For each eligible maintenance level m;, the
duration of maintenance d,, and age reduction factor A{"* are known. By assuming
a maintenance action é;, = (i, m, t,d]}) at machine S;, the expected maintenance
cost rate E[R}] can be derived according to Equation (6). Then the optimal

maintenance level m;, should minimize the expected cost rate, i.e.

m;, = argmin{E[R]}],m = ,1c, 2c, ..., Nic} (4.16)
m
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4.6.Experiments and validation

To demonstrate the effectiveness of the proposed real-time maintenance policy,
extensive numerical studies are performed. In baseline policies, upon random
failures, the maintenance level is static. The other policy is the real-time
maintenance policy proposed in this paper. The overall profit of the system, denoted

as P(T), is taken as the main performance measure.
P(T) = Total Revenue — Total Cost = c,, - Xy (T) — M (T) (4.17)

where ¢, - X)y(T) is the production revenue and M (T) is the total maintenance
resource cost during time span [0, T]. Let K/"(T), m = 1c, 2c, ... denotes the total
number of level-m maintenance received by the machine S; up to time T. The total

maintenance resource cost is

M(T)zi Z K™(T)c (4.18)

i=1 allm
m=1c,..,N;c

We construct 50 different serial production lines by randomly selecting

machine and buffer parameters from the following sets:
M € {3,20}
T; € [1,5] min,i =1,2,..,M
B; €[2,40],i = 2,3,..,.M
b;(0) € [0,B;],i =2,3,...,M

In this case study, failure-time of the machines are assumed to follow Weibull
distribution, which is a typical increasing-failure-rate distribution widely used in
machine reliability analysis. The probability density function of failure-time of

machine S; is given as

p;(t*) = exp <— (Z—Z)ﬁi> (4.19)
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where «a; is the scale parameter, and S; is the shape parameter. The conditional

probability of fail-time given its virtual age v;j’ is

e+ pm\ P o™\ Pi t* 4 pm\Pi
vi’}? = & <—”> exp ((L) — <—”> (4.20)
a; a; a; a;

For every machine S; in randomly generated production lines, the shape

Pi(t*

parameter is 8; = 2, and the scale parameter «; and initial virtual age v;, are

randomly generated according to following set:
a; € [500,2000] min
vip € [0,1000] min

For the ease of implementation and further analysis, the maintenance
parameters of each machine are set to be identical. Four maintenance levels for each
machine are given, namely replacement (1c), minimal maintenance (4c), and two
levels of imperfect maintenance ( 2c¢,3c ). The parameters regarding each

maintenance level is as shown in Table 4.1.

Table 4.1. Maintenance parameters for CM control case study

Age Reduction Factor

Maintenance Level m A CM Duration df* Resource Cost ¢
i
1c 0 30 2000
2c 0.3 20 1200
3c 0.6 15 900
4c 1.0 5 300

Three static maintenance policies, i.e., policy 1c, policy 2¢ and policy 3c, are
adopted for comparison. In these policies, upon random failures the machine will

always receive a maintenance of level 1c, 2c and 3c respectively.

The profit per part is ¢, = 200 $. Each production line is simulated to

continuously run for 4 weeks, i.e., the simulation time horizon is T = 40320 min.
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For each randomly generated production line and each policy, the simulation is

repeated for 10 times to compute the average overall profit.

u Policy 1c Policy 2¢ Policy 3c Real-time Policy

5.00E+05
4.00E+05
3.00E+05

200E+05

Overall Profit (%)

1.OOE+O5

(LOOE+OO | I LN 1L | |

|
1 23 4 56 78 910111213141516171819202122232425
Production Line Number

S5.00E+D5
4.00E+03
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0.00E+00

Production Line Number

Figure 4.4. The comparison of overall profits among policies
Figure 4.4 illustrates the simulation result comparison. In all 50 production lines,
the overall profits using real-time policy are greater than those using static
maintenance policies. On average, the overall profit using real-time policy is
31.36%, 11.48% and 15.37% greater than those using policy 1c, policy 2¢, and

policy 3c respectively.

To further analyze our policy, a special production line is constructed. All six

machines in the line have identical reliability parameters, but different cycle time
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due to process planning. The slowest machine in the line is S,. We calculate the
total numbers of replacement and imperfect maintenance (including minimal

maintenance) under the real-time maintenance policy during one-time simulation.

Table 4.2. Maintenance records for the CM case study

. Total replacement Total imperfect maintenance Total maintenance
Machine count K¢ count Yn-zcacac Kt count ¥ K™
S, 27 66 93
S, 27 66 93
S; 28 63 91
S, (slowest) 32 45 77
Ss 29 54 83
Se 27 79 106

As shown in Table 4.2, although all the machines are identical regarding
reliability parameters, it is noted that the slowest machine S, received more
replacements and less imperfect maintenances than any other machines. The
replacement number decreases, and imperfect maintenance number increases for
the machine further away from the slowest machine. The machine far away from
the slowest machine is more likely to take imperfect maintenance than replacement.
Besides the stochastic factors, the reason for this phenomenon is mainly that the
opportunity window tends to be larger for the machines far away from the slowest
machine. Imperfect maintenances, which typically last shorter than a replacement,
is less likely to induce permanent production loss on these machines and therefore

is preferable to replacement.

One may also note that the total maintenance number are increasing with the
distance from the slowest machine. The decrease in replacement times would
inevitably impair the reliability of the machine, and thus more random failures can
be expected. However, since these machines have larger opportunity windows, they

are more resilient to random failures. It is reasonable for these machines to take
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more imperfect maintenances in order to reduce resource costs. This case illustrates
that the maintenance decisions could be very different for identical machines when

they are placed at different locations in a multi-stage manufacturing system.

To conclude, the real-time maintenance policy proposed in this paper is
effective to choose proper maintenance levels in accordance with the production

system dynamics.

4.7.Summary

In this chapter, a rolling horizon method is used to solve the corrective
maintenance decision making problem in manufacturing systems. The real-time
maintenance cost rate is established to facilitate the real-time decision making on
multi-level maintenance in a multi-stage manufacturing system. Based on the data-
driven mathematical model of the manufacturing system, the permanent production
loss and production loss risk incurred by the maintenance action are derived. The
proposed control framework is able to make cost-effective maintenance decisions

considering multiple maintenance levels.

4.8.Related work

Part of the results presented in this chapter have been published in [83]-[85].
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Chapter 5. Reinforcement Learning for

Preventive Maintenance Control

5.1.Background

Preventive maintenance (PM) is an intricate matter as it relates to many other
aspects of modern industrial practices [86]. The PM policy aims in improving
system reliability, preventing the occurrence of system failures, and reducing
maintenance costs [56]. It is shaped by the specific application scenario and the
characteristics of the target system. Regarding the structure of the system of interest,
the maintenance policies can be categorized into single-unit policies and multi-unit
policies. The single-unit policies are designated for those standalone systems and
they have been extensively investigated by Wang [56]. Some examples are age-
dependent policies [87] and periodic PM policies etc. Since the single-unit system
operates independently, the relationship, either deterministic [87] or stochastic [88],
between the maintenance decision and the overall maintenance cost is usually
known. Therefore, the single-unit maintenance could often be modeled as a
stochastic process, in which optimal PM decision variables can be obtained by
minimizing the maintenance cost rate, or, equivalently, maximizing the machine
availability in some circumstances. For the serial production line, the maximum
machine availability does not guarantee an optimal maintenance cost. The system
production loss caused by a maintenance action is conditioning on the buffer states

[89], [90], for which in general we cannot derive the probability distribution [67].

Furthermore. it is noteworthy that real manufacturing systems vary with
different available maintenance actions, and machine maintenance requirements,

and system size. Random failure occurs when a machine deteriorates to a certain
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level due to usage and aging. Upon the random failure, a maintenance action has to
be carried out in order to restore the machine to an acceptable operating condition.
Such a maintenance option is referred to as corrective maintenance (CM). The
consequences of machine random failures can be unpredictable, and even
catastrophic in some situations [56]. To reduce such random failures, the preventive
maintenance (PM) is much needed, which proactively maintains a machine even it
is not failed and keeps machines in a desired reliability level. Besides, in industrial
practice, maintenance is not necessarily to replace the machine with a new one.
Based on the structure of the system, multi-level maintenance options could be
available. A perfect maintenance, or replacement, is recovering the machine ‘as
good as new’, while a minimal maintenance is recovering the machine ‘as bad as
old’, which only resumes its operation without changing the deterioration status.
Imperfect maintenances are recovering the machine to somewhere between old and

new.

Unlike in the single-unit system, the components within the multi-unit system
have structural or operational dependencies on each other. Maintenance policies
have been developed based on the specific structures of the systems, including
serial systems [91], the parallel systems [92] and k-out-of-n systems [93] etc. The
“group maintenance” and “opportunistic maintenance” are the building blocks for
most of the existing maintenance policies for the close-interconnected serial
systems. The group maintenance policy [59], [94] conducts multiple maintenance
actions simultaneously to merge and reduce the production losses, while the
opportunistic maintenance policy [95]-[97] identifies the time window, in which
the inserted PM will not incur extra production losses. They are inspired by the
observation that when one machine is under maintenance, the others can receive
maintenance at the same time without incurring extra production loss. However, it
does not hold in a general serial production line because the buffers among
machines could delay the propagation of the machine stoppage from the maintained

machine to its adjacent machines [89], [98].
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It turns out that neither traditional single-unit policies nor multi-unit policies
could be directly applicable to the serial production lines. Therefore, considerable
research efforts have been devoted to deriving feasible maintenance policies for the
serial production lines. There are several works [99]-[101] that are aimed to derive
maintenance policy for two-machine-one-buffer serial production lines. Fitouhi et
al. [99] presented a Markov Chain based method to evaluate the system
performance under different PM policies, however, the policy considered in this
work failed to incorporate the system dynamics since PM actions were determined
based on only two variables, i.e. degradation states of the two machines. In the
contrast, Karamatsoukis et al. [100] included the buffer levels in the state definition
when they tried to obtain PM policies using Markov Decision Process (MDP).
Wang et al. [101] derived the PM policy based on semi-MDP for a two-machine-
one-buffer production line considering quality inspections. Machine degradation
states are assumed to be directly related to product quality performance and non-
conforming parts would be scrapped immediately. Although these works found
feasible PM policies under different assumptions, the approaches proposed in [100],
[101] lack scalability and cannot be extended to the more general cases with more

machines and buffers.

For longer serial production lines, Arab et al. [69] searched for the optimal
maintenance schedule using genetic algorithm in order to maximize the throughput.
Ramirez-Hernandez et al. [102] used approximate dynamic programming (ADP) to
optimize the maintenance schedule in a five-machine production line. However,
both works simplifies the maintenance problem as inserting known maintenance
tasks, in the form of downtime events, into the production shifts, and assumed that
the maintenance schedules would not impact the machine reliability status at all.
Kang et al. [103] proposed an aggregation-based approximation method for
obtaining maintenance policies for the synchronous production line, i.e. the cycle
time for each machine is identical. But real production lines are usually not
perfectly balanced, so that it is important to consider the different machine
processing speeds when optimizing PM policies [99]. In [104], a CM policy
considering imperfect maintenance effects was proposed for the serial production
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line, but the PM was not included in the work. Therefore, a systematic approach to
deriving PM policies for general serial production lines must be developed to

address the above challenges.

Regarding the mathematical techniques used in obtaining maintenance policies,
quite a few methods have been applied in literatures, including renewal process
[87], Markov Chain [99], heuristic methods [69], and MDP [99]-[103] etc. It is
noted that MDP is a particularly common modeling method for maintenance
problem in complex systems including serial production lines, since maintenance
is often a sequential decision-making problem with multi-dimensional states and
actions. However, it is important to realize that the performance of MDP-based
maintenance policies can vary tremendously depending on the problem formulation

and solving techniques.

On the one hand, the problem formulation refers to properly defining the three
components, namely state, action, and reward, according to the problem
characteristics and objective. It requires thorough understanding of system
dynamics in serial production lines. For example, if some key variables are not
included in the state definition, the PM decisions would fail to reflect the real
system dynamics. In [99], the buffer level is not considered when making PM
decisions, hence the PM decision might be the identical no matter the buffer is full
or empty. But one should also strive not to include redundant variables, especially
in today’s manufacturing systems, which usually have huge amounts of data from
various sensors. In this paper, the PM problem is also formulated as an MDP but
with the guidance of our previously derived systematic knowledge of the serial

production lines.

For years, scheduled and other “preventive” maintenance strategies have been
the norm - achieving maintenance objectives through regular equipment
inspections and scheduled maintenance at pre-determined intervals based on
operational time, cycles, units, etc. However, this “fixed” PM policy may ignore a
machine’s real degradation and its impact on system level throughput loss. The

complexity of a production system leads to an extremely large state space of the
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maintenance problem. In the industrial practice, PM schedules are usually planned
solely based on individual machine’s ages recommended by machine vendors,
which tend to be conservative and largely ignore the intricate interactions among
machines in the serial production line. As the information of the production systems
have been increasingly transparent and detailed, a PM policy would be preferable
if all necessary machine-level and system-level information are fully incorporated
into the policy. However, it inevitably leads to a problem with an enormous state
space, which is intractable with traditional model-based planning methods. It is
promising to embrace new tools and methodologies emerging in artificial
intelligence and machine learning areas to develop intelligent decision-making

support systems for production and maintenance management.

On the other hand, the solution to an MDP is an optimal policy that gives the
best action for each state, such that the expected accumulated reward is maximized.
There have been a lot of techniques that can effectively solve the MDP, and some
of them have been applied to maintenance problems. Dynamic Programming (DP)
is an exact and model-based approach to solving MDP, where model refers to the
complete transition probabilities among states. Therefore, in the context of PM
problem in serial production lines, DP is only applicable to two-machine-one-
buffer line [100], or needs cruel approximations when applied to longer lines [103].
In the contrast, Reinforcement Learning (RL) is a category of techniques obtaining
the optimal policy for MDP through the interactions between agents and the
uncertain environment [105]. Most of the RL algorithms is model-free, i.e., the state
transition probabilities are not required. Therefore, the model-free RL algorithms
well suit the PM problem in general production lines, for which the system state
space explodes exponentially with increased machine numbers. Instead of the
transition probabilities, a reliable simulator, or experiment if feasible, that faithfully
reflects the uncertain environment needs to be set up for the implementation of RL
algorithms. Regarding the serial production line, the general-purpose commercial
software, e.g., Simul8 and Simulink etc., have long been used for its simulation.
However, the simulation setup is often arduous, and the efficiency and accuracy are

not guaranteed. In [98], a data-driven model for production lines is established
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based on dynamic system and conservation of the flow. The model is derived
analytically, and therefore it is not only accurate but also has high computation
efficiency compared to general-purpose simulation software. In this paper, we will
leverage it to simulate the production system dynamics under PM for training

process of the RL agent.

The selection of the RL algorithms is also a crucial question. According to how
the policy is represented, RL algorithms can be categorized into policy-based
methods, value-based methods, and actor-critic [105]. In RL, policy is a function
mapping from state to action. The policy-based methods seek to directly
parameterize the policy. Simple parameterizations could be, for example, linear
combination of polynomial features or basis functions. The performance of policy-
based methods heavily depends on how the features or basis functions are
constructed. For problems with high dimension and inherent complexity, simple
parameterizations are not sufficient due to their limitations on representation power.
In contrast to policy-based methods, value-based methods represent the policy
implicitly with state-values or state-action-values, where ‘value’ is the expected
accumulated reward starting from a given state or taking a given action. The naive
Q-learning is one of the most widely used value-based methods in researches on
PM problems because of its simplicity and robustness. Wang et al. [101] presents
the application of naive Q-learning to PM problem in two-machine-one-buffer line.
However, to some extent, naive Q-learning also suffers from the “curse of
dimensionality” mainly because the naive Q-learning uses a table to record the Q-
value for all state-action pairs. The problem with large state spaces is not just the
memory needed for large tables, but the time and data needed to fill them accurately
[105]. The actor-critic method adopts both policy parameterization and value
function in its algorithm, and therefore suffers from the drawbacks of both. In
conclusion, despite the fact that these primitive RL algorithms are robust and
accessible, the lack of scalability is preventing them from being applied to solve a
range of real-world problems with large state space like the PM problem discussed
in this paper. To this end, in recent years, the emergence of deep learning allows
the RL to go ‘deep’ as well and results in a series of DRL algorithms. The DRL
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scales RL to interesting decision-making problems in practice that were previously
intractable [106]. Some of the DRL applications in recent years include, for
example, Atari video games [107], [108] and the game of Go [109] etc. Thanks to
its good scalability and efficiency, the DRL shows great potential to solve complex
problems in the manufacturing industry that are unsolvable with conventional

techniques.

5.2.PM problem description

We consider a serial production line that consists of M machines and M — 1
buffers with limited capabilities as shown in Figure 5.1. The arrows depict the
direction of material flow in the system. The material is referred to as a final product
once it has been processed by all machines sequentially. Otherwise, it is said to be

an intermediate part.

S s, b - @ SM.I Sut

Figure 5.1. The structure of a serial production line

The serial production line is described as follows:

e Each buffer B; has a finite capacity. With the abuse of notation, the
maximum capacity of buffer B; is also denoted as B,;.

e Each machine S; has a rated cycle time T;.

e The lifetime of machine S; follows a known distribution p;(x), which can
usually be obtained by experiments or from vendors.

e The maintenance durations df™ and d{™ include not only the time
performing maintenance but also the response time and preparation time
needed before the maintenance starts.

e Both CM and PM would incur some fixed resource costs, including costs
of new parts and all other consumable expenses. The resource costs of a

CM and a PM on machine S; are cf™ and ¢/ respectively.
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An intermediate part finished by machine S; flows to its downstream buffer
B, if buffer B;,, is not full, and otherwise machine S; is said to be blocked.
Machine S; starts a new cycle by receiving one part from its upstream buffer B; if
buffer B; is not empty, and otherwise machine S; is said to be starved. The blockage
or starvation makes an operational machine to stand idle. If one machine is
undergoing maintenance, its downstream buffers gradually drain, and upstream
buffers fill up due to the machine stoppage and thus causing blockage or starvation
in its adjacent operational machines. The stoppage and idleness of these machines
might finally lead to the system-level production loss. The production loss due to
the maintenance activities accounts for a significant portion of the overall
maintenance related costs. We denote the system production loss caused by the

maintenance activities as PL.

The extent to which the maintenance action can restore a machine’s health state
is referred to as maintenance effect. In this work, we use Kijima Model Il [110] to
model the effects of different levels of maintenance actions. Let g; denote the
machine’s age prior to maintenance, then the machine’s age immediately after the

maintenance, denoted by g;, is given by

gi = gi X1 (4.1)
where 0 <7;< 1 is the recovery factor of the maintenance on machine S;.; = 0
indicates a perfect maintenance since the machine age g; is set to be zero after
maintenance. By contrast, 0 <r; < 1 relates to an imperfect maintenance, as the
post-maintenance age g; , also referred to as ‘virtual age’ in Kijima (1989), starts
somewhere between zero and the original age g;. In other words, imperfect

maintenance does not fully restore machine’s health condition and hence earlier.

Let  denotes the PM policy for a serial production line. The PM policy
instructs when and which machine should be turned off and receive a PM. Let
C(t; ) denotes all the costs caused by the maintenance activities up to time ¢ under

the PM policy m, then
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¢ M M
Clt;m) =c, - f PL()dt + z cPMNPM (1) 4 Z CMNEM(E)  (4.2)
0 i=1 i=1

where ¢, is the profit per part and fOtPL(t)dt is the accumulative system

production loss up to time t. N/M(t) and N (t) are the total PM and CM times

conducted on machine S; up to time t respectively.

t
NPM (D) =f a;(t)dr (4.3)

0

t

NFM(t) = j w;(t)dt (4.4)
0

An optimal PM policy =* should minimize the long-run maintenance cost rate,
which is maintenance cost per unit time. Therefore, the objective of the
maintenance problem in this paper can be represented as:

. . { C(t;n)}
n* = argmin lim
T

(4.5)

t—oo t

With this objective function, the problem to be studied in this paper is to
develop methods to find the optimal PM policy * for the serial production line,
such that the long-run maintenance cost rate is minimized. Since the production
systems vary dramatically in their scales, ranging from two-machine line to systems
consisting of dozens of machines, it is important to ensure that the developed
methods should cover all those different scales.

5.3.Deep RL for PM decision making

The PM decision making problem in manufacturing system is formulated as a
reinforcement learning problem. In the context of PM problems, the stepwise
decision is to determine whether or not we conduct PM actions on machines. The

rule governing the action selection is referred to as a policy, denoted as w(a|s).

n(als) = Pr(a; = als; = s) (4.6)
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Subsequently, a scalar reward r; will be observed, which reflects the goodness
of the action a; in state s,. The accumulated reward is referred to as return, denoted

as Gy.

Ge =1+ z YTk (4.7)
k=1

where y is a discount factor, which is used to make a trade-off between immediate
reward and future rewards. If the immediate reward is preferred, a small y will be
used and vice versa. An optimal policy ™ is supposed to maximize the expected

return, i.e.

n* = argmax{E,[G:]|s = s;:} (4.8)
V3

Before we can apply RL algorithms to obtaining the ultimate PM policy *, we
need to first define the three key components properly, i.e., state s;, action a;, and
reward function r;, in the MDP that models the PM problem in serial production

lines.

Given the state s;, one should be able to fully comprehend the production
system status such that an action that suits the status can be determined. Three
factors are essential for the PM decision making in the serial production line,

namely

e The machine ages g;(t),i =1,2,...,M, specify the probability of
random failures on each machine;

e The buffer levels b;(t),i =2,3,..,M , denote the status of the
production line, which directly relate to the system production losses
caused by PM actions and random failures;

e The remaining maintenance duration d; (t), i = 1,2, ..., M, indicate all

the ongoing maintenance activities on each machine.

Consequently, the state s, is defined as:

st = [g1(8), .., gu (©), b2 (8), ..., by (), d1 (0), ..., diy ()] (4.9)
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In contrast with the PM, the CM is passively triggered by a random failure,
which is beyond the control of the agent. Therefore, the action a, is limited to the
PM decisions. The action a; is a vector consisting of M binary variables indicating

whether we turn off machines for PM or not at time ¢.

a’t = [al (t)r a’Z(t)' ey a'M (t)] (410)
where,
_ (0, leave machine S; asitis
a;(t) = {1, turn off machine S; for PM (4.11)

Note that d} (t) > 0 implies that there is an ongoing maintenance on machine
S;, and thus machine S; cannot receive a PM under such circumstance. The action
a, is said to be illegal if it intends to assign a PM on machine S; given d; (t) > 0.

At each time step, it is only allowed to select an action from the legal action sets
A(sy).

A(sp) = {a,IVi, a;(¢) = 0,if dT(¢) > 0} (4.12)

For simple serial systems without intermediate buffers, any machine stoppage
would immediately count towards the system production loss. However, with the
existence of intermediate buffers, the relationship between system production loss
and machine stoppage duration is not trivial. It has been proved in [89] that in a
serial production line a maintenance action causes system production loss if and
only if the slowest machine is impeded, i.e. blocked or starved, by the stoppage. Let
Sy+ denotes the slowest machine in a serial production line, where M* =

argmax{T;,i = 1,2,...,M}. In the stepwise simulation scenario, the system
l
production loss PL(t) can also be conveniently calculated as

1
Ty

PL(t) = — — (Y= (t) = Ve (£ — 1)) (4.13)

where 1/Ty,+ is the ideal production increment of the slowest machine Sy,+ without
any disturbance, and the second term Yy« (t) — Yy« (t — 1) is the actual incremental
production counts of the slowest machine S,,-. The difference between them is the

system production loss during the time step. The overall maintenance cost includes
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the resource cost of all PMs and CMs, and the system production loss caused by

those maintenances. Therefore, the reward function r; is defined as:

M M
1, = —cp - PL(t) — Z w;(t)cfM — Z a;(t)ctM (4.14)
i=1 i=1

where Y™ w;(t)cf™ and M, a;(t)cP™ are the resource costs at time step t
incurred by CMs and PMs respectively, and ¢, - PL(t) is the profit loss caused by
the system production loss PL(t) during the time step. The reward is negative
because we seek to maximize the accumulated reward, and equivalently the overall

maintenance cost can be minimized.

5.4.Deep MARL for scaled up problem

The RL-based framework has issues being generalized to larger scaled
applications due to action space explosion. In comparison, MARL is less prone to
action space explosion as its action space is independent of number of agents in the
system [101], [111], [112]. This is because, under the MARL’s decentralized

setting, the agents make decisions independently.
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(a) Serial production line RL formulation (b) Serial production line MARL formulation

Figure 5.2. Comparison of action space size between RL and MARL formulation
Figure 5.2 depicts the action spaces of a n-machine production line under RL
and MARL respectively. For MARL formulation that employs the CTDE
framework, agents condition their actions on the local partial observations and are
optimized by the gradients that are dependent on global states. Therefore, we need

to design local observations o that provide the basis for agents’ actions and global
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states s that encapsulate information that is useful for training. Given a machine S;

three factors that are essential to its PM decision making are:

e The age of machine S;, g;.

e The upstream and downstream buffer status related to b;_, and b;.

e Machine’s remaining maintenance duration, d; , if applicable. In
addition, the status of S;’s immediate adjacent machines is also useful

because it might relate to the blockage or starvation of machine S;.
Consequently, the local observation for machine Ma is defined as:
o" = [gi,9i-1, Gir1 bi-1, Bi — by, di, di_q, di 4] (4.15)

Note that we use buffer vacancy B; — b; instead of buffer level b; to represent
the real-time status of the downstream buffer. This is because the buffer vacancy is
a more sufficient criteria than buffer level in determining if the machine is blocked
or not. Furthermore, the s that represents the global state of the production line is

obtained by concatenating local observations from all machines and it is written as:
s = [0}, 0%, ..., 0M] (4.16)

Action definition and reward definitions are similar to those in RL formulation.
The minor difference is that the action is tweaked to include more levels of

imperfect maintenance actions.

5.5.Experiments and validation

5.5.1. Double Deep Q-Network for PM control

Traditional tabular Q-learning uses a table to keep records of all the state-action
values. However, when the state space of the problem is larger, tabular Q-learning
can be inefficient and even infeasible. Given the definition of the state s; in
previous section, the machine ages g;(t) € [0,), the buffer levels b;(t) €
{0,1, ..., B;}, and remaining maintenance time d! (t) € [0, df"]. Theoretically, the

state space of the problem discussed in this paper is infinite. To deal with such
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problems with extremely large state space, researchers strived to approximate the

Q-values Q(s, a) with some functions Q(s, a; 0).

Q(s,a;0) = Q(s,a) (4.17)

where @ is the parameters of the approximation function. Instead of learning the
exact Q-values for all state-action pairs, the agent learns the parameters 6 that can
generalize a function well to approximate all the Q-values. Among the existing Q-
learning algorithms with function approximations, the Double Deep Q-Network
(DDQN) [108] is the state-of-the-art algorithm. In the DDQN, the ‘network’ refers
to the neural network [113] that is used to approximate the state-action values. The
typical architecture of the neural network for the state-action value approximation
is as shown in Figure 5.3. The inputs are the state s, and the outputs are state-action
values Q(s,a™; 8),n = 1,2, ..., N, where N is the total number of possible actions.
In a serial production line with M machines, the number of possible actions is N =
2M,

state s

Figure 5.3. A typical architecture of the Q-network

The reinforcement learning problem formulated for PM decision making is
trained through DDQN, shown in Figure 5.4. The neural network has two fully
connected hidden layers, and each layer has 64 hidden units. Since the machine
number is 4, the size of the input layer is 11 and that of output layer is 16. The size
of the experience memory is N,,,.,,= 500,000. The minibatch size is b =32. The
step intervals for the state randomization and neural network duplication are C; =
1,000 and C, = 10,000. The decision time interval during training is chosen as k =

30 mins, i.e., every 30 minutes the agent needs to determine a PM action and input
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it to the production system. The future reward discount factor is set to be y = 0.95.

The parameter for e-greedy is initially set to be 0.8, linearly reduced to 0.1 when

the iteration reaches 300,000 steps and fixed to 0.1 afterwards. Regarding the

gradient descent, the optimizer used in this case is RMSprop [114], in which three

parameters are n=0.00025, ¢’ = 0.01, and p=0.95. We implement the proposed

algorithm using TensorFlow with 4 GPUs and 4 CPUs. The total training steps are

2,000,000.
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Figure 5.4. The flowchart of the DQN training process for PM decision making

To monitor the training progress, every 10,000 steps we run the production

system with the PM policy defined by the latest neural network parameters 0 for

100,000 minutes and observe the average rewards per minute, which is as shown in

Figure 5.5. It can be observed that the agent is making steady progress throughout

the training iterations despite some noises.
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Figure 5.5. DQN training progress shows convergence

To evaluate the performance of the learned policy, three other scenarios are
considered, including the run-to-failure scenario, the age-dependent PM policy, and

opportunistic PM policy.

Run-to-Failure (R2F): The Run-to-Failure scenario is used to evaluate the
system performance if no PM is conducted throughout the time horizon. Each
machine in the production line keeps running until it encounters a random failure.
Hence, CM is the only type of maintenance that is conducted in this scenario. Any
other PM policy is deemed as effective only when it improves system performance

from the Run-to-Failure scenario.

Age-Dependent Policy: In this policy, we follow the traditional norm - one
machine will receive a PM whenever its age exceeds a predetermined age threshold.
The age-dependent policy is the most widely used PM policy in the real industry.
The optimal age threshold is derived to minimize the cost rate of each individual
machine according to Ross [87].
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Opportunistic Maintenance (OM): OM policy is inspired from the
observation that once there is a machine undergoing CM, other machines can
receive PM without incurring extra system production losses. Under OM policy,
whenever one or multiple machines fails in the serial production line, we will
conduct CM on those failed machines. In the meantime, we will turn off all other

operational machines for PM.

According to the experiment results, all the three policies are effective PM
policies, because they all improve the system performance from the run-to-failure
scenario. However, the learned policy outperforms both the age-dependent policy
and opportunistic policy in all the ten initial states sets. On average, the learned
policy reduces the overall maintenance cost rate by 8.77% and 6.25% comparing
to the age-dependent policy and opportunistic policy, respectively. Table 5.1 also
lists the 95% confidence interval for the average maintenance cost rates under
difference PM policies. We can observe that the 95% confidence intervals of the
average cost rates for the learned policy are much lower and have no overlap with

that for other policies, which indicates strong statistical significance.

Table 5.1. Average maintenance cost rates and 95% confidence intervals

Age-dependent Opportunistic Policy

Initial State Run-to-failure . Learned Policy
Policy
1 7.92 6.68 6.56 6.18
[7.81,8.02] [6.53, 6.83] [6.41,6.7] [6.06, 6.31]
) 7.98 6.84 6.57 6.15
[7.9,8.07] [6.72, 6.95] [6.44, 6.69] [6.03, 6.28]
3 7.89 6.86 6.54 6.12
[7.77,8.01] [6.75, 6.96] [6.41, 6.68] [6.0, 6.24]
4 7.88 6.71 6.6 6.1
[7.76, 7.99] [6.59, 6.82] [6.49, 6.71] [5.98, 6.22]
7.92 6.72 6.47 6.16
> [7.82,8.02] [6.59, 6.86] [6.36, 6.58] [6.03, 6.28]
7.8 6.61 6.53 6.18
0 [7.69, 7.92] [6.48, 6.74] [6.41, 6.66] [6.04, 6.33]
; 7.93 6.78 6.49 6.09
[7.81,8.04] [6.65, 6.9] [6.38, 6.6] [5.97, 6.21]
8 7.78 6.7 6.51 6.03
[7.66, 7.9] [6.55, 6.84] [6.36, 6.65] [5.92, 6.14]
9 7.9 6.64 6.59 6.09
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[7.77,8.03] [6.51, 6.77] [6.47, 6.72] [5.99, 6.2]
78 6.65 6.53 6.2
[7.69, 7.92] [6.53, 6.76] [6.39, 6.67] [6.09, 6.31]

10

To closely examine the learned policy, we take a random initial state and run
the production line with the learned policy. 20 consecutive maintenance records
along with the states when each maintenance was conducted are drawn from the

maintenance history. The records are listed in Table 5.2.

Table 5.2. Maintenance record and GM/OM analysis

'(I'r:1rlnne) t PM/CM ;aglci?nes Machine ages g;(t) PM Decisions a, GM oM
5781 CcM Se [326, 17, 104, 101, 100, 152]

5782 PM - [327, 18, 105, 102, 101, 0] [1,0,0,0,0,0] Y
6018 CM Se [227, 254, 341, 338, 337, 212] -

6019 PM - [228, 255, 342, 339, 338, 0] [1,0,0,1,1,0] Y Y
6020 PM - [0, 256, 343, 0, 0, 0] [0,0,1,0,0,0] Y
6044 CM S, [16, 280, 17, 15, 14, 1] -

6217 CM S, [189, 142, 190, 188, 187, 174] -

6218 PM - [190, 0, 191, 189, 188, 175] [0,0,1,1,1,1] Y Y
6219 PM - [191,0,0,0,0,0] [1,0,0,0,0,0] Y
6588 PM - [360, 340, 361, 358, 357, 360] [0,0,1,1,1,1] Y

6589 PM - [361,341,0,0,0,0] [1,0,0,0,0,0]

6680 CM S [81, 432, 85, 82, 81, 84] -

6916 CM S [208, 668, 321, 318, 317, 320] -

6917 PM - [209, 669, 322, 319, 0, 321] [0,0,1,1,0,0] Y Y
6918 PM - [210, 670, 0, 0, 0, 322] [1,1,0,0,0,1] Y Y

The 15 consecutive maintenances include 9 PMs and 6 CMs. Interestingly, the
“opportunistic maintenance” (OM) and the “group maintenance” (GM) can be
observed in the records. To be specific, OM is to conduct PMs on certain machines
when there is an unscheduled failure or repair “opportunity” on other machines,
and GM is to conduct PMs on multiple machines simultaneously to reduce the total
maintenance related cost. In many existing studies on the maintenance problem in
multi-unit systems, the GM and OM are the starting points for deriving maintenance
policies [59], [96]. In other words, those studies first restrict the maintenance
actions to GM or OM, and further optimize the decision variables for GM and OM

to obtain the final policies. For example, the opportunistic PM policy that was used
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for comparison purpose in this research has one significant decision variable T,
which is the time interval to conduct PM on all machines. However, in this research
we do not take this heuristic approach. Rather, we formulate the policy as a learning
problem based on system property (i.e., permanent production loss) and indeed the
learned policy is able to make GM and OM decisions when appropriate. From the
construction of the reward function, the agent is never explicitly rewarded if it
conducts the GM or OM. The decisions of OM and GM are something that the
agent learned itself throughout the training process.

When looking into the learning process, it is not difficult to explain the
phenomenon. For the GM, the action space includes all the possible combinations
of the PM actions on each machine, which means that the GMs are always available
for the agent to select. If the GM action in some state yielded better accumulated
reward, then the algorithm would increase state-action value to favor the GM in the
particular state in the future. Similarly, during the training process the agent might
also conduct OM when there are random failures on other machines, which would

also change the state-action value to encourage or discourage the OM in the future.

Therefore, the GM and OM observed in the learned policy is a logical outcome
as long as the problem formulation is rational, and the solution technique is
effective. This interesting finding further validates the deep reinforcement learning

based approach proposed in this dissertation.

5.5.2. MARL for scaled up PM control problems

In this experiment, the Value Decomposition Actor Critic (VDAC) [115] is
applied to the MARL policy training. VDAC consists of distributed actors that
make decisions for designated machines and a central critic that estimate the global
state-value. The architecture of VDAC is as shown in Figure 5.6
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Figure 5.6. VADC architecture

VDAC consists of distributed actors that make decisions for designated
machines and a central critic that estimate the global state-value V;,;. As shown
Figure 5.6, the actor network takes inputs as observations o and actions uf*_, of
the previous step t — 1, outputs a multinomial policy m(of) for timestep t. It also
estimates the state-value of the local observation V(o). To capture the temporal
dependencies within agents' trajectories, Gated Recurrent Unit (GRU) is
Incorporated in actor networks. Note that to speed up training as well as save
memory, actor networks share the same weights. The recent advance of MARL
literature [111], [112], [116], [117] is coupled by this parameter sharing technique.
The value mixing network, which takes input as local state-values V(o) and
outputs the global state-value V;,:(s), serves as a central critic. To incorporate the
global state information that is unavailable to actors, the parameters of the value
mixing network is generated from a hypernetwork which takes input as the global

state s,.

Actors are optimized by following gradients that depend on the central critic.
Let 8,; to denote actor network parameters and 6y, to denote hypernet parameters
for generality. The actor network is optimized by following the policy gradient

given by:

Vo) = E, [Z Ve, log m(wt™) (Q(s,u) — V(s)) (4.18)
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where V (s) is estimated by a central critic and Q(s,u) = r + yV(s"). The critic is

optimized by minibatch gradient descent to minimize the following loss:

2
L:(6y) = (J’t — Veot (St5 QV)) (4.19)
where y, = Y Lyir, + y*V (s.4,) is the target value.

The training process of VDAC is conducted using distributed A2C framework,
where multiple simulation episodes are rolled out parallelly to increase the
computing efficiency. The training procedure for the PM control problem is as
shown in Figure 5.7. The training procedure can be generally divided into two parts:
(1) Obtaining experience, and (2) optimizing parameters. In the phase of obtaining
experience, multiple episodes are rolled out independently to increase experience
sampling efficiency. Note that central critic is absent during this phase. During the
parameter optimization phase, the data acquired in the sampling phase will be
discarded once it is used to optimize network parameters. Therefore, no experience

replay buffer is needed.
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Figure 5.7. Training process of VDAC for PM problem

The training monitoring as shown in Figure 5.8 indicates steady improvement

and finally convergence of the training process.
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Figure 5.8. Training progress shows convergence

The learned distributed policies are tested against several benchmarks,
including DDQN. In this experiment, run-to-failure and opportunistic maintenance
(OM) policy are considered along with other three policies that work for situations

where imperfect maintenance effect is considered:

Deep Q-learning (DQN): The single-agent RL approach also presented in this
chapter. DQN algorithm works well for a six-machine-five-buffer system when
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only considering perfect maintenance effect. In this case study, both the number of
machines and number of PM options are increased, which lead to a much larger

action space.

Group Maintenance (GM): Given GM policy, all the machines would receive
PM simultaneously. GM policy tends to reduce the impacts of PM on the whole
system by enforcing concurrent machine stoppages. There is one pivotal decision
variable in GM policy, which is the time interval t for carrying out group PM. Since
there is no analytical method to derive 7 due to the ultra-complexity of the

production system, the optimal T can be found through Monte Carlo simulation.

Opportunistic Group Maintenance (OGM): OGM policy is a combination of
OM policy and GM policy. Similar to GM, there is also a predefined time interval
. If there is a random failure occurs before the time interval t arrives, OM policy
would be triggered, i.e., all other operational machines are turned off for PM. If the
time interval t is reached without machine random failures, GM policy would be
carried out so that all the machines receive PM simultaneously. We also leverage

Monte Carlo simulation to derive the optimal .
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Figure 5.9. Performance comparison between different policies

Overall Profits $

In general, all methods other than R2F are effective policies. This is because
they achieved higher average profit over R2F, as shown in Figure 5.9. Among the

effective policies, MARL policy reports the best average profit and throughput per
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episode. OM policy performs slightly better than OGM in profit although the OM
policy reports less throughput than OGM. And GM has the least profit compared
with other 3 effective policies. For baseline policies such as OGM, OM, and GM,
they are set to either always perform level 1 PM or always perform level 2 PM.
Since level 1 PM required less resource and time, the best performance is achieved
by choosing level 1 PM. OGM and GM have a decision variable T which is
searched through a pyramid number of simulation and therefore possibly captures

the dynamics in the production line.

Table 5.3. A portion of maintenance records by MARL agents for GM examination

Time Machine age Action GM
649 [89, 57, 267, 341, 197, 497] [0,0,0,0,0,2]

759 [199, 167, 377, 451, 307, 101] [0,0,0,2,0,0]

814 [254, 222, 432, 44, 362, 156] [0,0,2,0,0,0]

847 [287, 255, 25, 77, 395, 189] [2,0,0,0,0,0]

585 [1, 266, 36, 88, 406, 200] [0,0,0,0,2,0]

891 [34, 299, 69, 121, 21, 233] [0,2,0,0,0,0]

1144 [287, 244, 322, 374, 274, 486] [2,0,0,0,0,0]

1155 [1, 255, 333, 385, 285, 497] [0,0,0,0,0,2]

1188 [34, 288, 366, 418, 318, 24] [0,2,0,0,0,0]

1221 [67, 24, 399, 451, 351, 57] [0,0,0,2,2,0] Y

To examine the MARL policies patterns, a portion of maintenance records is
also pulled from the simulation history as shown in Table 5.3. At t = 1221,
machines S, and Sc conduct PM simultaneously. Note that machine S5 conducts
PM at an age of 406 at t = 858, whereas it conducts PM at an age of 351 when
t =1221. The PM at t =1221 can be seen as an GM as machine Sg
accommodates its maintenance schedule to that of machine S,. Therefore, by
extending from single-agent RL to MARL, the GM pattern is preserved, which
implies that the PM problem formulation in MARL is also effective. In conclusion,
the proposed MARL framework is validated by the numerical experiments. The

learned policy outperforms all other benchmarks.
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5.6.Summary

The PM decision making in a serial production line is a complex problem due
to its exploding state space and complicated interactions among machines. The
problem is proposed to be solved using a deep reinforcement learning approach in
this paper. One of the important prerequisites to successfully solving the problem
is that a modeling method for the serial production line is adopted, such that we can
correctly capture the dynamics of the system and ensure the good computation
efficiency during learning process.

The numerical experiment proves that a good maintenance policy for the serial
production line can be obtained by using the proposed deep reinforcement learning
approach. In addition, we observe group maintenance and opportunistic
maintenance in the learned policy. As two of the most important building blocks
for the maintenance policies in the multi-unit systems, the group maintenance and
opportunistic maintenance were originated from human reasoning. In this research,
they are obtained by reinforcement learning without giving the agent any prior
concepts and rules. Therefore, if the problems are properly formulated based on
thorough understanding of the system properties, we can further exploit the great
potentials of the artificial intelligence (Al) and machine learning techniques to
facilitate complicated decision-makings in the manufacturing industry.

5.7.Related work

Part of the results presented in this chapter have been published in [83], [84],
[118], [119].
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Chapter 6. Manufacturing Process-System

Integrated Control

6.1.Background

As manufacturing systems become increasingly interconnected to meet the
accelerating demand of productivity, efficiency, and flexibility [1], challenges arise
constantly for finding new methods supporting efficient operation of smart
manufacturing system. There have been a lot of research efforts dedicated to
improving each aspect of manufacturing systems, including throughput
improvement [7], [8], [120], quality assurance [71], [72], [121]-[123], tool state
monitoring [124]-[130] etc. However, these related research works are mostly
separate. An integrated approach to combining these aspects for global operation
optimization. which could have undoubtedly benefitted from advances in these

subareas, is missing in both literature and real-world applications.

At the system level, traditional system-level modeling and analysis methods
mostly only take aggregate parameters from process or machine as inputs, e.g.,
average cycle times and machine reliability distributions etc., and therefore tend to
ignore the delicate dynamics at the machine and process level. For example, one of
the prominent research problems in this area is the long-term steady-state system
performance evaluation for production systems [131]. Related research assumes
known and fixed cycle times and buffer capacities, as well as machine reliability
distributions, which typically could be Bernoulli, Geometric, or Exponential
distributions. Based on these aggregate parameters, the goal is often to calculate
performance metrics in steady state, such as throughput and work-in-process,

through approximation methods like aggregation and decomposition. However,
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variations at process level and machine level, which could easily lead to changes in
cycle time and machine status, are not considered in these works. For instance, in
machining processes, sometimes it is not uncommon to adjust process control
parameters such as spindle speed when appropriate. These adjustments could result
in frequent shifts from average cycle time and violate the major assumption in
existing methods. Another category of system-level analysis methods pursues
production loss diagnosis in real time through sensor data [29]. This line of research
is more aligned with the control purpose as of this paper. However, process-level
quality performance is not entertained in these methods either, as both throughput
and production loss are metrics in overall production quantities without
distinguishing compliant products from defective ones. Therefore, a more
comprehensive modeling method that could seamlessly integrate various aspects,
including system-, process-, and machine-level dynamics, are much needed to
facilitate integrated control of the manufacturing systems. In this paper, we will
model a manufacturing system with graph model by treating each machine as node
and material flow as links. With the graph model, we can incorporate all relevant
information from system/process/machine as well as the interactions among

machines in the dynamic node feature.

At the machine level, tool state is one of the most important as well as most
dynamic facets of machine conditions. For example, in machining systems,
machines utilize cutting or grinding tools to remove excessive materials in order to
complete the desired process. However, machine tool state is subject to
deterioration due to continuous usage, which could affect both process-level and
system-level dynamics. On the one hand, process-level quality performance is
heavily dependent on machine tool state, e.g., a worn-out cutting tool tends to be
extremely inefficient in removing materials from the part. The real-time tool state
IS a requisite in order to determine the process control parameters that best fit the
tool state and guarantee desired process quality performance. For example, one
could strategically increase the cutting time to compensate for the tool inefficiency
if tool wears out moderately. On the other hand, treatment or replace operations
that aim to restore the tool condition are warranted if the tool state deteriorates to a
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certain level. The extra time needed for tool treatment (e.g., dressing in grinding
process) or replacement effectively introduces downtime events to the system,

which is one of the dominant factors influencing the system-level dynamics [132].

The major challenge in machine tool state monitoring/identification lies in that
tool state is not directly observable due to physical constraints. Usually, sensor
technologies and machine learning models are adopted to monitor real-time tool
state in an indirect manner. For grinding machines, researchers use acoustic
emission sensors to collect acoustic data from exterior of grinding machine, and
then apply different machine learning models, e.g., clustering, neural networks, and
support vector machine etc., to classify the underlying status of grinding wheel
[124], [133]. Lenz et al. [127] propose a holistic data analytics framework to collect
and process data to gain insights into various aspects of machine conditions,
including tool wear status, machine energy consumption, and process quality etc.
Recently, it is reported that state-of-the-art deep learning architectures, including
convolutional neural networks and recurrent neural networks, have been intensively
used to work on raw sensor data to identify underlying machine health conditions
[134].

Despite these exciting advances in sensor and machine learning based tool state
inference, there are two obstacles that we have to overcome to take full advantage
of these advances to facilitate the integrated control. First, the tool state inference
results are not directly actionable at system level. Machines have complicated
interactions among each other in a manufacturing system. Unfavorable tool state in
one machine does not always warrant an immediate stoppage and replacement
action, because its stoppage could potentially propagate to its downstream or
upstream machines due to starvation and blockage. Decision making at system level
requires careful coordination among machines. A similar problem is the
maintenance decision making in serial production lines. Decision frameworks
based on (multi-agent) reinforcement learning have been proved to be effective to
tackle ultra-complexity in such problems [118], [119]. Second, the tool state

inference results are inherently unreliable due to uncertainties in sensor readings
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and/or irreducible errors in machine learning models. Therefore, it is unadvisable
to directly use the tool state inference results in downstream control framework.
Therefore, in this paper we will use Recursive Bayesian Estimation to preprocess
the tool state inference result to reduce its uncertainty level, in order to facilitate a

more informed decision making.

In summary, processes, machines, and system are entangled with each other in
a manufacturing system to jointly impact the overall system performance. As
research progressing for each individual level, opportunity arises for a systematic
approach to integrating these different levels and achieving optimal system
performance regarding not only production quantity but also product quality.
Undoubtedly, it requires adoption of an array of innovative methods and algorithms
to cope with the intricate nature of the problem. With the increasing data
availability and computing resources, data-driven machine learning methods are

particularly promising in solving such problem.

6.2.Problem description

In this paper, we consider a typical multi-stage manufacturing system
consisting of multiple machines and buffers. A part is completed after being
processed sequentially through all the stages. Figure 6.1 shows a simplified
camshaft production line with four stages.

Stage 1 Stage 2 Stage 3 Stage 4
*Parallel Machines *Parallel Machines
) Buffer s Buffer A_w Buffer
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— 777 7 27| B ™ Quali

L = i3 - - | < ty
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Figure 6.1. A portion of the grinding line for camshaft manufacturing system

Corresponding to the production line, each of the stage or machine has a
underlying process model as shown in Figure 6.2. A product can be described by

several key features, which would evolve through the processing at each stage. The
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product feature at stage j, j € [1, ..., m], is denoted as q;. In essence, the process
model describes the relationship between two consecutive stages and its
dependency on process control parameters and tool state [135], [136]. In order to
take other random factors into consideration, we may represent the process model

for machine i at stage j in a probabilistic form:

p(q;1q-1, ui xty) (6.1)

where u; ; the process control input for machine i at stage j, and xﬁk is the tool
state for machine i at k" pass. The feature of the final product is denoted as q,,,
where M is the numbering of final stage. In order to determine the quality of the
product, the final product feature will be compared against a quality standard Q*,

i.e., product is compliant if g,, € Q*, and defective otherwise.
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Figure 6.2. The underlying process models for the production line

In current industrial practice, the parameter control u; is often set to be fixed or
determined only to optimize local process performance. In this paper, however, we
aim at adaptively adjusting the process control parameter u; considering not only

local conditions but also the status at system level, as well as real-time tool state.

6.3.Problem formulation

To formulate the research problem, two quantities that relate to the performance

of both processes and system are denoted in this work:

e Yield y: number of qualified products among total output.

o Defect d: number of defective products among total output.

Accordingly, the problem studied in this paper is then presented as follows:
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Given the manufacturing system as described, establish an integrated process-
system modelling approach, and build an automated control scheme to find optimal
adaptive policies for each machine to adjust process parameters for each product
with the aim of maximizing the system yield, i.e.,

u; j(t) = arg zgr}?(lgg{y(T)},Vt €[0,T] (6.2)

where y(T) = f({qm, s j, x{;|m € M,n € N}) is the total system yield during a

given time horizon T. All the constraints at different levels are denoted by C.

With the manufacturing system modelled by a graph model, the node feature
should embed all relevant real-time information across all levels. Particularly, in
order to address the uncertainties in tool state inference, we will not directly plug
tool state reference results, e.g., sensor reading or machine learning output, into the
node feature. Instead, Recursive Bayesian Estimation (RBE) will be applied to
construct a tool state belief based on domain knowledge on tool deterioration and
sensor/model uncertainty. Graph Neural Network (GNN), specifically Graph
Attention Network (GAT), will be applied to process the node features to learn
meaningful node embedding that incorporates both local and global information
through GNN operations. For the integrated control purpose, each node will then
be treated as an agent in the Multi-Agent Reinforcement Learning (MARL)
framework. State-of-the-art GNN and MARL algorithms will be implemented to
train learnable parameters in GNN-MARL networks to learn the optimal multi-
agent policy for adaptively adjusting process parameters to optimize overall

performance.

6.4.Manufacturing system graph and GNN

In this subsection, we will model the manufacturing system with graph model.
Firstly, general manufacturing systems often have non-Euclidian structures, for
example, due to flexible routings with parallel machines. Graph model has ultra-
high flexibility since dependencies among any two machines can be represented as

links. Secondly, graph model allows us to incorporate heterogenous information
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from multiple levels by simply putting these information in the node feature. Last
but not the least, GNN as a special type of neural network directly operating on a
graph provide an efficient way to further processing these node features to
comprehensively integrate information across machines for downstream control
task.

6.4.1. Graph model and node feature definition

The manufacturing system graph is defined by treating each machine as node
and material flows between machines as links. In the integrated control problem,

the node feature is defined as:
Xy = [bly, bvy, XE, Wr, @, Ty, U, 1, M (6.3)

The node feature contains information across different levels of the

manufacturing system:

e bl, and bv, denote the machine’s immediate upstream buffer level and
downstream buffer vacancy respectively.

e xf is the tool state.

e w, and a,, describe the machine operating status, where w,, is a binary
variable indicating whether machine is stopped by random interruptions
or tool changes, and «,, denotes the completion ratio of current product.

e 1, isthe feature of the product currently being processed by the machine.

e u, is the process control parameters previously applied on current
machine. This past action is included to form an observation-action
trajectory to help local agent reason the true system state.

e n and m are machine number and stage number respectively. Since the
proposed control framework is based on deep MARL, n and m are
included to uniquely identify the machine to facilitate the parameter

sharing in neural networks.
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The node feature only represents the local status of the machine. In Section 4.2,
these node features will be further processed through GNN to generate node

embeddings that incorporate both local and global status.

6.4.2. Recursive Bayesian Estimation for tool state belief

Apparently, it is not advisable to directly use realized observation Z, for control
or decision making, especially when the uncertainty in observation is ineligible.
Recursive Bayesian Estimation (RBE) is an effective method to reduce the
observation uncertainty using the domain knowledge represented by the transition
model and observation model [137]-[139]. Give the tool state belief at (k — 1)*"

pass, one step of prediction is conducted to update the belief using transition model:

T
p (x| Zyk-1) = Z P (x| )P (K- 11 Z1.00-1) (6.4)
Xg-1=1
Note that p(xy|Z;.k—1) is updated purely based on the transition model. We
need to correct this tool state belief using what we observed as tool status at k"
pass, denoted as Z,, and our knowledge on observation uncertainty. The one-step

correction is hence conducted to obtain the tool state belief at k" pass:

Sl = ICATAIC AT
S XN TC AT A TIC T LA

(6.5)

where [(x}|Z,) is the likelihood function corresponding to the observation model
p(z,|xL). In the integrated control proposed in this paper, we will use tool belief
p(xx1Z1.5) instead of the observation Z;, to represent the tool status. Note that
transition model and observation model do not need to be perfect in order to carry
out RBE. Rather, RBE would fully exploit domain knowledge to infer underlying

tool state from imperfect models and observations.

6.4.3. Graph neural network for node embedding

In a multi-agent control framework, it is important to have a communication
mechanism among machines, so that each machine is aware of not only its own

status but also others’ conditions in the neighborhood. In this way, machines are
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more likely to make coordinated and informed decisions, which is critical to

achieving the common goal, i.e., maximization of system yield.
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Figure 6.3. Graph neural network on manufacturing system graph
In this paper, we will use graph attention network (GAT) [140], [141] to process
the node features x,, to generate the node embeddings h%. By setting A9 = x,,, the

embedding of node n can be obtained by the following Aggregate & Combine rule:

Rl = g <Z afljh;W‘}> (6.6)
je(mun)

where () is an activation function, m denotes all immediate neighboring nodes

to node n, W} is learnable weight matrix applied to embedding h} on previous layer,

and ay;

is the attention weight assigned to node j. The attention weight is a
dynamic coefficient that determines the amount of information pulled from node ;.
It is calculated using a multi-head dot-product attention (MHDPA) with learnable
query matrix W} and key matrix Wy [142], [143]. The attention weight a},,, can be

written as:

(haWé(hiané)T
exp
Ja
Lyl i\ T
hnWQ(thK)>

Zke(mun) e€xp ( \/d—
k
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where dj, is the dimension of the latent feature at layer [. By stacking L GAT layers,
one can obtain the node embedding of the node. Essentially, it is a process of
aggregating and refining information from neighbors further and further away with
increased layers. Compared to the initial node feature, the final node embedding

combines both local and global information. Learnable parameters W, WQ’ and Wi

are initialized to random numbers and trained with downstream tasks.

6.5.MARL control problem formulation

The reasons for adopting a multi-agent scheme in the integrated control are two-
fold. Firstly, individual process control often has a moderate or even large action
space. For example, if one machining process has two discretized control
parameters with 10 options each, then the action space for individual machine sums
up to 100. If this problem is formulated in single-agent RL framework, the total
action space for the system increases exponentially with number of machines in the
system, which could be computationally intractable and lead to divergence of the
RL training process. Second, the manufacturing system is a typical multi-
component system and a global objective, i.e., system vyield, is available. It is
natural to define individual agent and a common play game, which could fit into
the MARL framework well. In this work, we will formulate the MARL-based
integrated control problem using the Dec-POMDP framework. In this subsection,
we will define the definitions for observation o™, action u™, and reward function r;
in the Dec-POMDP.

e Observation definition

Since node embedding incorporates both machine’s local operating status and
global status at the system level, it is a far better choice for the agent observation
than the local node feature. Therefore, the observation o™ for agent n is defined to
be

o™ = ht (6.8)
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where L is the number of layers in GNN, and A% is the final node embedding output
from the L-layer GNN. For training purpose, the global state should also be defined.
In MARL, the concatenation of agent observations can serve as the global state.
Since our observation definition is different from traditional MARL problem, it is
sufficient to concatenate the node features rather than the node embeddings. The

global state can be represented as:
s = [xq, ..., Xy] (6.9)
e Action definition

In the integrated control problem, for each machine represented by agent, the
control action is to set appropriate process control parameters. The controllable
parameters depend on specific manufacturing process and even the machine
type/series. To make the discussion more concrete, the grinding process will be
used as an example. In grinding process, the controllable parameters often include
the depth of cut ¢ and grinding speed v. Therefore, the action space for a grinding

machine is
Ut = {[c,v]} (6.10)
e Decision time

The decision time means the time point when the observations need to be
collected and a control decision needs to be made. The continuous time is
discretized by those decision times. In the integrated control problem, the decision
time is when any of the machines loads a part from upstream buffer and prepares
to process it. At this time point, the machine is awaiting a control decision, i.e., as
set of process control parameters, from the control framework. Due to the
heterogeneity in machine operations, not all of the machines are up for a control
decision at one decision time point. Therefore, we add a dummy action for those
machines that do not require control actions at that moment, during which other

actions will be masked out.

e Reward definition

94



The reward setting is nontrivial in RL/MARL applications in manufacturing
systems [117], [144]. In MARL, reward function is used to evaluate the goodness
of the joint action given the system state. The reward drives the agents to
continuously improve their policies accordingly to pursue better system

performance. In this paper, we define the reward function as:
=Yy —dg (6.11)

where y, is the stepwise system vyield, and d; is the stepwise defect. The reward
function is aligned with the problem objective, i.e., maximization of system yield,
with slight difference by adding negative rewards for defective products. Therefore,
it would not only reward the agents when compliant products are produced, but also
penalize them when defective ones emerge. We will demonstrate that faster

convergence is guaranteed by adding the defect penalty in the experiments.

6.6.Experiments and validation

The manufacturing system considered in this case study has four grinding stages.
Three intermediate buffers are placed between stages and each of them has a
capacity of ten. There are six grinding machines in total. Both Stage 2 and Stage 4
have two parallel machines. Therefore, the system forms a graph consisting of six
nodes, and machine nodes in consecutive stages are connected through links. At the
machine level, the grinding wheel has four states, including sharp, intermediate,
dull, and worn. The tool state transition model p(x%|xt_,) and observation model
p(z;|xL) for the grinding wheel state are:

0.60 0.27 0.08 0.05
0 0.65 0.26 0.09

0 0 070 0.30
0 0 0 1.00

p(xlilxli—l) =

0.70 0.17 0.12 0.01
0.10 0.70 0.16 0.04
0.25 0.10 0.60 0.05
0.22 0.18 0.05 0.55

p(z|x) =
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The tool state transition model strongly suggests that the tool state, if not staying
the same, would only deteriorate towards worse. The observation model reveals
that the observation is not perfect. The grinding wheel restores its condition as sharp
when a dressing or replacement operation is conducted every 10 passes. We assume
that such an operation takes 3 units of time, during which the machine is unavailable.
Hence, the dressing operation effectively introduces downtimes to the system. The
system is assumed to run on a ten-hour shift, i.e., the simulation episode time

horizon is set to be 600 minutes.

At the process level, we adopted a simplified grinding process model [145] for
demonstration purpose. The key feature of the product is characterized by the
surface roughness of the four sequential grinding processes, i.e., ¢ = [q1, 92, 43, q4]-
The final product is deemed qualified if ¥+ _; g, < 5 um, or defective otherwise.
We adopt a simplified grinding process model [13] to relate the surface roughness
and cycle time to process parameters, machining speed v, and depth of cut a,,.
Therefore, the MARL agent’s action space is U™ = {[c,, v,]}, where ¢, €{12.0,
13.5, 15.0, 16.5, 18.0} pum and v,, €{0.30, 0.35, 0.40, 0.45, 0.50} m/s. Table 6.1
shows the process model and cycle time model for each stage given the tool state

is sharp.
Table 6.1. Process models for the grinding system
Stage Process Model Cycle time
1 0N (2" s asvier) T = 01}??15
2 4,~N ((%)0'85 , 5.481722621‘35) = 01;(2);0
3 qz~N ((%)0'9, 5.48173?031'5) = 0,2?37
: e ()™ i)

In general, as grinding wheel wears, the surface of the grinding wheel becomes

finer, which could lead to lower surface roughness on product as well. However,
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its cutting efficiency drops significantly, and therefore more time is required to
remove the desired amount of material from the part to fulfil dimension standards.
Using the process models in sharp tool state as baselines, the process models under
other tool states are modelled with two series of coefficients. The coefficients for
surface roughness models and cycle times are [1.0, 0.99, 0.98, 0.96] and [1.0, 1.2,
1.4, 2.1] respectively. For example, given dull tool state and same process control
parameters, the surface roughness is 0.98 of that under sharp tool state on average,
but it needs 40% more cycle time to finish the process at that stage. Therefore,
rational process control decisions require best knowledge of the current tool state,
given which the trade-off between surface roughness and production efficiency
needs to be well balanced to achieve high system yield. Since process modeling is
not the focus of this paper, we adopt a simplified process model in this case study.
Due to the model-free nature of the MARL algorithm and hence the proposed
integrated control framework, one can fit in more accurate and specific process

models as needed.

6.6.1. GNN-MARL architecture and training process

The GNN and actor network architectures are as shown in Figure 6.4. A skip
connection is used to connect node feature to node embedding in order to preserve
more information from the local node. The critic network architecture is as shown
in Figure 6.5. The algorithm alternates between sampling experience from parallel
simulation episodes and optimizing network parameters. The training is conducted

with a step limit of 10 million.
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Figure 6.4. GNN and actor network architecture

FC FC
Dim:32 Dim: 32
V,(h)

State value

' L Vto.tal (S)
Va(he)

Dim: 64+64

Figure 6.5. Critic network architecture

The training process is halted every 10,000 steps and test episodes are rolled
out based on the policies at that moment to observe training progress. From Figure
6.6 we can see that the test return, i.e., accumulated reward, improves significantly
since the training begins. After around three to four million steps, the test return

stays stable, which strongly indicates convergence.
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Figure 6.6. Training progress shows convergence

Since return is more of an algorithm-wise term, we also monitor the training
progress in the control problem context. The outputs, yields, and defects in those
test episodes are also recorded as shown in Figure 6.7. In the beginning, the output
is high but most of them are defective parts. Over time, the overall production speed
is slowed, and system vyield is improved, which means agents learn to coordinate
with each other to improve the ratio of compliant products. When the training
converges, a high system yield is achieved, while the defect is kept at a very low
level. Therefore, the training process of GNN-MARL successfully converges, and

produces desired distributed control policies for machines.

200 1
5 150+
g Output
3 — Yield
+ 100+ —— Defect
©
o
50+
O,
0.0 0.2 0.4 0.6 0.8 1.0
Training step le7

Figure 6.7. System performance improvement throughout training process
The above shows the training process given the quality standard Y, g, <
5 um. In order to further validate the effectiveness of the proposed framework,
additional experiments are conducted with different quality standards. First, we

tighten the quality standard to 4 um and rerun the training with same
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hyperparameters. As shown in Figure 6.8(a), the convergence is reached although
taking more steps, which is reasonable since the task is more difficult than the
original one as shown in Figure 6.8(b). Similarly, we loosen the quality standard to
6 um and also reach convergence as shown in Figure 6.8(c). These additional
experiments further demonstrate that the convergence and performance of the

proposed framework.
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Figure 6.8. Convergences under different quality standards

6.6.2. Numerical analysis on reward function setting

In this paper, we propose the reward function as r, = y; — d¢, which includes
a defect penalty. There could be a more intuitive alternative: r, = y;, which is more
aligned with the problem objective of maximizing yield. In this subsection, we
conducted extra experiments with the alternative reward function, and compare its
performance with our proposal. Using the alternative reward function, we rerun the
training process for three different quality standards. The training process for 4 pm
fail to converge as shown in Figure 6.9(a). The training process for 5 um and 6 pm
do converge as shown in Figure 6.9(b) and Figure 6.9(c) respectively, but the
performance is worse than the original reward setting as shown in Figure 6.8(b) and
Figure 6.8(c).
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Figure 6.9. Training results without defect penalty in reward function
The results prove that inclusion of defect penalty is necessary. We can take a

closer look into the return improvement as shown in Figure 6.10 for 4 um quality

standard. There is barely any improvement throughout the ten million steps.
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Figure 6.10. Stalled training progress without defect penalty
In the same case, we further analyze the reward signals received by the agents

given different reward functions.
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(a) Step rewards during training with defect penalty in reward function
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Figure 6.11. Step rewards during training given different reward settings

As shown in Figure 6.11, agents receive very sparse reward in the reward setting
without defect penalty. In that case, agents have little feedback on how good/bad
their actions are. It impedes their improvements and leaves the agents exploring
blindly in random directions. Therefore, the learning process is too slow to achieve
convergence. That explains the learning curve in Figure 6.10, which does not show
divergence but very slow improvement. Therefore, the analysis on reward setting
stresses the importance of proper reward setting in RL applications within the

manufacturing industry.

6.6.3. Demonstration of RBE for tool state estimation

In this subsection, the results from tool state belief are presented. As shown in
Figure 6.12, in ten passes, the belief updated by RBE closely follows the true tool
state, which is hidden. Although the observations make errors in some of the steps,
the beliefs are able to correct that error by sticking to the true state with high
confidence. For example, in step 10 the belief rejects the wrong observation. Ther
reason is that the domain knowledge in state transition suggests that the tool is only
getting worse over time. It is not likely that the tool has a steady state after so several
observations suggesting severe deterioration. Therefore, the RBE for node feature
engineering is an effective method to link tool state inference to its practical

applications in control problems.
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Figure 6.12. Illustration of RBE applied to tool state inference
Different from the observation, the belief represents the tool state in a
probabilistic form by assigning a probability to each of the possible tool states. The
belief follows the true tool state very well. RBE is able to correct the wrong

observations. It even totally rejects the wrong observation at pass 10. This could be
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because the domain knowledge on tool state transition strongly suggests that tool
state would not become better unless a dressing/replacement takes place. The belief
over the first nine passes already indicates a worst tool state. Therefore, at pass 10
RBE directly rejects the wrong observation of a better tool state. In conclusion, the

proposed tool state estimation based on RBE in this paper is effective.

Comparing the framework with and without RBE, it is found that RBE does
improve the system performance significantly as shown in Figure 6.13. The method

with RBE has higher a system yield.

GNN-MARL
with RBE
GNN-MARL
w/o RBE
Yield @ Defect = Throughput
120 130 140 150 160 170 180 190

Product Count (parts)
Figure 6.13. Comparison of system performance with and without RBE
6.7.Summary

An integrated method for manufacturing processes and system modelling and
distributed adaptive control are developed for multi-stage manufacturing system,
based on GNN and MARL. GNN encodes complex system dynamics in machine
nodes by aggregating real-time information from the neighboring machines. MARL
models each machine as individual agent and learns adaptive process parameter
control policy to cooperatively achieve the goal of global maximization of system
yield. It is numerically proved that the use of Recursive Bayesian Network
improves the system performance significantly as it reduces the error in tool state
observations. In addition, it also demonstrates that the reward function setting is a

critical issue in control problems in the manufacturing systems.
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6.8.Related work

Part of the results shown in this chapter have been in [146].
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Chapter 7. Concluding Remarks

7.1.Summary of scientific contributions

Entering the stage of smart manufacturing, data regarding the real-time system,
process, and machine operation status are increasingly available. However, it is a
serious research problem to find ways to better use those data. Machine learning
and reinforcement learning have demonstrated success in a lot of areas outside of
manufacturing industry. However, it requires thorough understanding and domain
knowledge of the manufacturing to formulate problems and identify meaningful
solution approaches. In this dissertation, system modeling and system properties
discussion have laid the foundation for further applications of machine learning and
reinforcement learning methods to important performance prediction and control

problems. The contributions of this dissertation are listed as follows:

(1) Establish a system modeling for multi-product system considering
product-dependent cycle time and tool setup time. The model is
analytically derived from basic physics, i.e., conservation of the flow.
Using the past sensor data, one can efficiently evaluate the system states
in a recursive manner based on the state-space formulation of the system
model.

(2) Derive useful properties from the system modeling, guided by which a
recurrent prediction problem is formulated for the product completion
time prediction. We refrain from taking a pure data-driven approach to
the problem. Instead, the deep learning architecture (LSTM) is
combined with the system model to deliver more accurate prediction
result, which is critical to downstream tasks, including production

scheduling, and customer satisfaction.
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(3) Formulate the preventive maintenance control as a sequential decision-
making problem and pave the way of the application of deep
reinforcement learning technique. It demonstrates a systematic way to
formulate control problems in the manufacturing to fit in the deep
reinforcement learning domain. The reward setting is guided by system
understanding, namely, the evaluation of permanent production loss.

(4) Demonstrate the derivation process to choose appropriate reinforcement
learning algorithms for different application scenarios: single-agent
DDQN algorithm for moderate problem scale, and multi-agent VDAC
algorithm for large-scale systems considering imperfect maintenance
effects.

(5) Prove the effectiveness of the RL-based preventive maintenance
policies by observing agent’s behavior. We discover that RL agents
occasionally conduct patterns that are originally derived from human
reasoning. It reveals that state-of-the-art machine learning algorithms
are particularly promising to solve complex problems in manufacturing
industries, given correct problem formulation and appropriate method
selection.

(6) Establish the process-system multi-level control framework. The system
is modeled using a graph by treating each machine as node and material
flow as link. Graph modeling along with powerful GNN allows
integration of real-time information from multiple levels. It bridges the
gap between process, machine, and system analysis, which are typically
separate in existing research. It paves the way for smarter manufacturing

and could significantly improve the system performance.

7.2.Remarks on knowledge-guided machine learning

In recent years, machine learning, including deep learning and reinforcement
learning, have demonstrated great successes in several well-defined problems,
including image classification, natural language processing, and recommendation

systems etc. However, there are many more areas that could benefit from machine
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learning, including manufacturing systems discussed in this dissertation. Apart
from the technical details presented throughout this dissertation, there are some

further remarks on knowledge-guided machine learning:

(1) It is important to understand the source of randomness in a problem. For
example, for manufacturing systems, the major source of randomness is the
machine downtimes, which are dependent on machine reliability, while the
randomness in tool state originates from the material-wise wear. However,
the system states are evolving on a real-time and stochastic basis due to a
combination of both deterministic mechanisms and random factors. In
manufacturing systems, the changes in buffer states are deterministic if
those random factors are realized. It should be clear throughout the problem
formulation process.

(2) Problem formulation is more important than specific algorithms. There are
new machine learning algorithms emerging on a regular basis [147], [148].
It is unwise to tie the problem formulation to any specific algorithms, since
one algorithm can be outperformed by another in years if not months.
Therefore, the general framework should be employed. For example, MDP
and Dec-POMDP are two frameworks for formulating RL and MARL
respectively. Once the control problems are formulated in these frameworks,
with preset interface, the problem can be solved by any state-of-the-art
RL/MARL algorithms.

(3) Exploration is an important technique. In RL, exploration is the key to
improve RL policy. It is also true for knowledge-guided machine learning.
Since there is a lack of rigorous derivations of optimal hyperparameters in
machine learning, one should explore more possible architectures and
settings in machine learning to improve the system performance. It is also
important to test the proposed solution against more diverse system scales
and characteristics. For example, in this dissertation the MARL based PM
policy is proposed since it was found that RL agent diverges when machine
number increases. The reward setting in process-system integrated control

is also validated by changing the quality standards.
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7.3.Future work

As manufacturing systems varies from one to another, there are still a lot of
open questions regarding the applications of machine learning and reinforcement
learning, which could be addressed in the future. This dissertation will name a few

potential working directions:

(1) Human-Al collaboration [149]-[153]. Al and human have each other’s
complementary strengths. Al has the speed, scalability, and accuracy in
dealing with huge amount of data, while it lacks creativity and
adaptiveness facing situations beyond quantitative aspects. Human is
not known for its quantitative capability, but has the deductive
reasoning, specialist expertise, and social skills that are not achievable
by current Al systems. Therefore, it is promising to integrate human into
the Al system for better system performance.

(2) Continuous learning for constantly changing system dynamics and
environment. RL relies on accurate simulation environments to learn its
policies. However, the simulated environment might well deviate from
the real world due to, for example, inference error, hidden states etc.
Another factor is that manufacturing system states transition model
could change over time. Therefore, the continuous learning related
techniques [154], [155] could be a potential tool to address these
challenges.

(3) Multi-functional RL agent. Control problems in manufacturing systems
are often dealt with separately. Even though the RL could be applied to
different problems, it is common to formulate separate RL problems.
However, these decisions from different RL agents could couple with
each other, which could impair the performance regarding one or all of
the control problem objectives. It could be beneficial, if possible, to train
one multi-functional RL agent that are capable of making decisions for

multiple control tasks.
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