
Visualizing Position and Orientation in 3D Space Using Common External Controllers

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Nicholas Miller

Fall, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Visualizing Position and Orientation in 3D Space Using Common

External Controllers

CS4991 Capstone Report, 2022

Nicholas Miller

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ncm2kjm@virginia.edu

ABSTRACT
Currently, there are few easily accessible

ways to interface with common motion

control capable hardware, such as the

Nintendo JoyCon, hampering the use of

motion control and inertial sensing

technology in small, independent projects.

To make this technology available to more

users, I built an openly-accessible library to

interface with common motion control

capable devices. The library reads the

device’s inertial sensors, interprets the data,

and visualizes it as a position and orientation

in 3D space. With this library, the user is

able to receive and visualize accurate

position and orientation for short time

periods without recalibration. Additional

work on this project could add functionality

to interface with other devices and improve

length of effective use-time with automatic

error correction and calibration.

1 INTRODUCTION

Inertial motion-sensing technology, and

the systems that use it, have been around for

years with a multitude of varied

applications. Many modern devices, such as

GPS systems, vehicles, smartphones, and

game controllers, come with and use inertial

motion-sensing hardware. When you pick up

your smartphone and it automatically wakes

up, that is an example of motion sensors at

work. Yet, despite the relatively easy access

to motion-capable devices, the use of motion

controls in independent projects is

remarkably inaccessible.

The hardware that enables this motion-

sensing technology is a sensor called an

inertial measurement unit (IMU). Obtaining

and using an IMU by itself, while possible,

requires a prohibitive amount of knowledge

about hardware for the vast majority of

people. The obvious choice then becomes to

use one of the many motion-capable devices

we have access to in our daily lives.

However, the systems these devices use to

interpret the readings from their sensors

effectively are usually proprietary, impeding

their accessibility.

To make motion control technology

more commonly accessible, I designed an

open system to interpret and display IMU

sensor data. The device of choice for this

particular project is the Nintendo JoyCon

gaming controller.

2 RELATED WORKS

The work done in my project was

informed by, and in some cases directly

utilized, multiple other sources and previous

work relating to inertial measurements. A

book by Kok, et al. (2017) provides

foundational knowledge about interpreting

inertial data as well as a report on newer

techniques [1]. I was able to implement

some of the signal processing and filtering

techniques described in the text, such as an

extended Kalman filter.

mailto:ncm2kjm@virginia.edu

Next, a code library created by another

open-source developer, Smart (2022), served

as a basis for my project. This library, called

the JoyShockLibrary, is used to interface

with both the Nintendo JoyCon and

Playstation Dualshock controllers. It reads

their raw IMU data in real time and was

designed for the purpose of game

development [2]. My project employs this

library to serve the connection and reading

functions for the external JoyCon. To this

functionality, my project adds processing to

clean the raw data and convert it to position

and orientation as well as the visualization

component. I also seek to expand the target

audience beyond game development to other

areas.

Last, Skog and Handel (2006) discuss

various calibration techniques using a

statistical approach [3]. I implement some of

the basics of the calibration techniques they

describe. Additionally, some of the more

advanced techniques can be considered for

potential improvements on the project.

3 PROJECT DESIGN

The project was designed to be modular

to support future growth and can be divided

into three major components: reading the

raw data, cleaning and interpreting that data,

and visualization.

3.1 Reading Raw IMU Data

This component’s purpose was to

interface with the external device, in this

case a Nintendo JoyCon, and read raw data

from the onboard IMU. The primary

functionality for this is done by the

JoyShockLibrary library, which connects to

the joycon over Bluetooth and continuously

polls the IMU for data every 15ms [2].

Notably, the onboard IMU for a joycon

reports a new measurement every 5ms, so

the slower polling rate of the library results

in slightly decreased accuracy [2]. However,

I decided that avoiding having to implement

my own system to poll the external device

was worth the slight loss in accuracy.

3.2 Cleaning and Interpretation

The raw data received from the previous

component (3.1) is noisy and prone to error,

as is true for any sensor measuring the real

world. Additionally, the raw measurements

are initially represented as acceleration and

angular velocity, whereas we are looking to

determine position and orientation. Thus,

this component is tasked with cleaning the

noisy data and calculating the position and

orientation from the cleaned measurements.

The first portion of my data cleaning

algorithm is a low-pass filter smoothing

step. This step filters out higher frequency

signals in the data and smooths variation,

reducing the effect of noise which is

typically higher frequency than the true data.

To implement the smoothing step, I used a

3-wide moving average filter which

averages the last three recorded datapoints to

obtain the reported value at each poll. I

opted for a moving average filter, as

opposed to a more advanced low-pass filter,

because it is very simple and

computationally cheap. The IMU data is not

a heavily frequency-based signal so more

advanced methods are not necessary, given

their cost; and a moving average filter serves

well to counteract noise.

The next stage of cleaning the data is an

extended Kalman filter as described by Kok,

et al. (2017). At its core, this filter involves a

nonlinear state space model characterized by

a time update and a measurement update in a

cycle. The time update is defined by a

differentiable model that predicts what the

next state of the system will be after a span

of time. Then, when a measurement from

the sensor is taken at the measurement

update, the prediction is corrected and the

model updated to be more accurate. The

specific prediction models used for IMU

readings involve a great deal of math and are

detailed in Kok, et al’s book [1]. This

predict-update cycle results in a model that

quickly converges to accurately represent

the true representation and gives clean data.

A graph of some of the cleaned acceleration

data by each axis can be seen in Figure 1,

demonstrating a quick jerk of the controller

followed by smaller shaking movement.

Figure 1: Cleaned Acceleration Data Graph

The choice to use the extended Kalman

filter instead of one of the other, more

advanced options described by Kok, et al.

was again motivated by simplicity and

computational complexity. The Kalman

filter works well and is considerably cheaper

to compute than the other proposed

methods.

With the cleaned data, the last step of

this component is to convert the acceleration

and angular velocity readings into position

and orientation. For the orientation, this was

accomplished by converting the gyroscopic

readings to a unit quaternion format. The

unit quaternion represents a rotation in 3D

space, which is applied to the current

orientation state using quaternion

multiplication. For the position, this was

slightly more complicated as I had to

account for the effect of gravity that causes

unwanted readings of the accelerometer. To

separate a gravity vector, I used the

computed orientation to determine which

direction the device is oriented relative to

the downward gravity vector. Then, I

removed the equivalent gravity vector with

known constant magnitude from the

acceleration readings. Using these adjusted

acceleration readings, performing a numeric

double integral calculation granted a

representation of the position.

3.3 Visualization

The final component is the visualization

step. This component takes the position and

orientation state computed in the previous

component (3.2) and visualizes it in a useful

manner. The key challenge with this portion

of the project was effectively conveying

position and orientation in 3D space on a 2D

screen. To aid in this task, I utilized the

processing animation library which provides

a window and the ability to draw shapes [4].

Similarly to my use of the JoyShockLibrary,

I chose to use the processing library to avoid

having to build my own graphics backbone.

I then built a framework around this library

to convert position and orientation

coordinates to 3D shapes, which were then

projected onto the 2D processing window.

The results of this can be seen in Figure 2.

Figure 2: Visualized Device in 3D

To make the depiction clearer, I used

axis lines to help orient the user’s

perception. In addition, the colored end of

the device is used to indicate the front and

the floating purple dot helps to combat

competing perspectives from certain angles.

There is also a yellow dot showing the

center of the device and the wireframe

structure, rather than a solid shape, was

chosen to make the edge lines more

contrasted. These features were all intended

to provide a clear and unambiguous

representation of the device in 3D space.

4 RESULTS

The result of this project was a system

that can read inertial data off a Nintendo

JoyCon controller and accurately display

that data as position and orientation in 3D

space. However, due to a lack of automatic

recalibration, systematic bias did develop

over time if the system is used for too long

without manual recalibration. Additionally,

the error differed between the position and

orientation. For the orientation measure,

empirical estimates show that the error was

maintained under 5% for the first 30 seconds

of continuous operation and 15% for the

first 90 seconds. The position demonstrated

a higher rate of decay of accuracy,

estimating that the error reached 10% in the

first 30 seconds and 25% by 90 seconds.

These statistics indicate a need for

continuous recalibration methods to increase

effective time of use.

Referring to the projects original goal of

providing greater independent access to this

technology, the complete system is publicly

available on GitHub. Unfortunately, no

statistics are available for the use of the

system by others. However, I have reused

the system I built in this project for other

independent projects of my own. Thus, the

system is completely publicly available and

potentially useful.

5 CONCLUSION

The library described throughout this

paper was designed to use commonly

available inertial motion-sensing devices to

visualize position and orientation in 3D

space. The library provides functionality

across the whole pipeline of converting raw

inertial data to practical visualizations to

maximize its ease of use. Importantly,

however, the library is also modular in its

construction allowing for easy improvement

and customization to the user’s needs and

expanding its applicability in various

situations. Through these vectors, this

project seeks to increase the accessibility of

inertial motion-sensing technology and

enhance its use in independent projects,

which often serve as the starting point for

new and revolutionary ideas.

6 FUTURE WORK

To further improve on this project, there

are three primary avenues of work to be

considered. The first would be to enhance

the cleaning and interpretation component to

deal with systematic and time-increasing

bias. Notably, the system currently struggles

with a tendency to drift significantly from

the expected output after some time in use at

which point it requires recalibration.

Potential remedies to this include

implementing automatic recalibration

techniques and sensor fusion by utilizing

other sensors on the device.

The second future effort that could be

made would be to extend the list of usable

devices. Currently, the library has only been

developed to interface with the Nintendo

JoyCon controller. Augmenting the data

reading component to add support for more

common devices, such as other game

controllers or mobile phones, would make

the library more accessible and align with

the project’s goals.

Last, the third objective that might be

accomplished by future work would be an

expansion to the visualization component.

Original plans for the project included a

more robust visualization library that could

display the device’s location in a simulated

3D world. More ambitious designs included

the ability to map physical objects in the real

world into this simulated 3D world.

Additional work on the project could seek to

implement these designs in some manner.

REFERENCES

[1] Kok, M., Hol, J. D. and Schön, T. B.

2017. Using Inertial Sensors for Position

and Orientation Estimation. Foundations

and Trends in Signal Processing 11, 1-2

(2017), 1–153.

DOI:http://dx.doi.org/10.1561/2000000094

[2] Smart, J. 2022. JoyShockLibrary. (April

2002). Retrieved from

https://github.com/JibbSmart/JoyShockLibra

ry

[3] Skog, I. and Händel, P. 2006. Calibration

of A MEMS inertial measurement unit. XVII

IMEKO World Congress Metrology for a

Sustainable Development (January 2006).

