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ABSTRACT 
Currently, there are few easily accessible 

ways to interface with common motion 

control capable hardware, such as the 

Nintendo JoyCon, hampering the use of 

motion control and inertial sensing 

technology in small, independent projects. 

To make this technology available to more 

users, I built an openly-accessible library to 

interface with common motion control 

capable devices. The library reads the 

device’s inertial sensors, interprets the data, 

and visualizes it as a position and orientation 

in 3D space. With this library, the user is 

able to receive and visualize accurate 

position and orientation for short time 

periods without recalibration. Additional 

work on this project could add functionality 

to interface with other devices and improve 

length of effective use-time with automatic 

error correction and calibration. 

 

1 INTRODUCTION 

Inertial motion-sensing technology, and 

the systems that use it, have been around for 

years with a multitude of varied 

applications. Many modern devices, such as 

GPS systems, vehicles, smartphones, and 

game controllers, come with and use inertial 

motion-sensing hardware. When you pick up 

your smartphone and it automatically wakes 

up, that is an example of motion sensors at 

work. Yet, despite the relatively easy access 

to motion-capable devices, the use of motion 

controls in independent projects is 

remarkably inaccessible. 

The hardware that enables this motion-

sensing technology is a sensor called an 

inertial measurement unit (IMU). Obtaining 

and using an IMU by itself, while possible, 

requires a prohibitive amount of knowledge 

about hardware for the vast majority of 

people. The obvious choice then becomes to 

use one of the many motion-capable devices 

we have access to in our daily lives. 

However, the systems these devices use to 

interpret the readings from their sensors 

effectively are usually proprietary, impeding 

their accessibility. 

To make motion control technology 

more commonly accessible, I designed an 

open system to interpret and display IMU 

sensor data. The device of choice for this 

particular project is the Nintendo JoyCon 

gaming controller. 

 

2 RELATED WORKS 

The work done in my project was 

informed by, and in some cases directly 

utilized, multiple other sources and previous 

work relating to inertial measurements. A 

book by Kok, et al. (2017) provides 

foundational knowledge about interpreting 

inertial data as well as a report on newer 

techniques [1]. I was able to implement 

some of the signal processing and filtering 

techniques described in the text, such as an 

extended Kalman filter. 
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Next, a code library created by another 

open-source developer, Smart (2022), served 

as a basis for my project. This library, called 

the JoyShockLibrary, is used to interface 

with both the Nintendo JoyCon and 

Playstation Dualshock controllers. It reads 

their raw IMU data in real time and was 

designed for the purpose of game 

development [2]. My project employs this 

library to serve the connection and reading 

functions for the external JoyCon. To this 

functionality, my project adds processing to 

clean the raw data and convert it to position 

and orientation as well as the visualization 

component. I also seek to expand the target 

audience beyond game development to other 

areas. 

Last, Skog and Handel (2006) discuss 

various calibration techniques using a 

statistical approach [3]. I implement some of 

the basics of the calibration techniques they 

describe. Additionally, some of the more 

advanced techniques can be considered for 

potential improvements on the project. 

 

3 PROJECT DESIGN 

The project was designed to be modular 

to support future growth and can be divided 

into three major components: reading the 

raw data, cleaning and interpreting that data, 

and visualization. 

 

3.1 Reading Raw IMU Data 

This component’s purpose was to 

interface with the external device, in this 

case a Nintendo JoyCon, and read raw data 

from the onboard IMU. The primary 

functionality for this is done by the 

JoyShockLibrary library, which connects to 

the joycon over Bluetooth and continuously 

polls the IMU for data every 15ms [2]. 

Notably, the onboard IMU for a joycon 

reports a new measurement every 5ms, so 

the slower polling rate of the library results 

in slightly decreased accuracy [2]. However, 

I decided that avoiding having to implement 

my own system to poll the external device 

was worth the slight loss in accuracy. 

 

3.2 Cleaning and Interpretation 

The raw data received from the previous 

component (3.1) is noisy and prone to error, 

as is true for any sensor measuring the real 

world. Additionally, the raw measurements 

are initially represented as acceleration and 

angular velocity, whereas we are looking to 

determine position and orientation. Thus, 

this component is tasked with cleaning the 

noisy data and calculating the position and 

orientation from the cleaned measurements. 

The first portion of my data cleaning 

algorithm is a low-pass filter smoothing 

step. This step filters out higher frequency 

signals in the data and smooths variation, 

reducing the effect of noise which is 

typically higher frequency than the true data. 

To implement the smoothing step, I used a 

3-wide moving average filter which 

averages the last three recorded datapoints to 

obtain the reported value at each poll. I 

opted for a moving average filter, as 

opposed to a more advanced low-pass filter, 

because it is very simple and 

computationally cheap. The IMU data is not 

a heavily frequency-based signal so more 

advanced methods are not necessary, given 

their cost; and a moving average filter serves 

well to counteract noise. 

The next stage of cleaning the data is an 

extended Kalman filter as described by Kok, 

et al. (2017). At its core, this filter involves a 

nonlinear state space model characterized by 

a time update and a measurement update in a 

cycle. The time update is defined by a 

differentiable model that predicts what the 

next state of the system will be after a span 

of time. Then, when a measurement from 

the sensor is taken at the measurement 

update, the prediction is corrected and the 

model updated to be more accurate. The 

specific prediction models used for IMU 

readings involve a great deal of math and are 



detailed in Kok, et al’s book [1]. This 

predict-update cycle results in a model that 

quickly converges to accurately represent 

the true representation and gives clean data. 

A graph of some of the cleaned acceleration 

data by each axis can be seen in Figure 1, 

demonstrating a quick jerk of the controller 

followed by smaller shaking movement. 

Figure 1: Cleaned Acceleration Data Graph 

 

The choice to use the extended Kalman 

filter instead of one of the other, more 

advanced options described by Kok, et al. 

was again motivated by simplicity and 

computational complexity. The Kalman 

filter works well and is considerably cheaper 

to compute than the other proposed 

methods. 

With the cleaned data, the last step of 

this component is to convert the acceleration 

and angular velocity readings into position 

and orientation. For the orientation, this was 

accomplished by converting the gyroscopic 

readings to a unit quaternion format. The 

unit quaternion represents a rotation in 3D 

space, which is applied to the current 

orientation state using quaternion 

multiplication. For the position, this was 

slightly more complicated as I had to 

account for the effect of gravity that causes 

unwanted readings of the accelerometer. To 

separate a gravity vector, I used the 

computed orientation to determine which 

direction the device is oriented relative to 

the downward gravity vector. Then, I 

removed the equivalent gravity vector with 

known constant magnitude from the 

acceleration readings. Using these adjusted 

acceleration readings, performing a numeric 

double integral calculation granted a 

representation of the position. 

 

3.3 Visualization 

The final component is the visualization 

step. This component takes the position and 

orientation state computed in the previous 

component (3.2) and visualizes it in a useful 

manner. The key challenge with this portion 

of the project was effectively conveying 

position and orientation in 3D space on a 2D 

screen. To aid in this task, I utilized the 

processing animation library which provides 

a window and the ability to draw shapes [4]. 

Similarly to my use of the JoyShockLibrary, 

I chose to use the processing library to avoid 

having to build my own graphics backbone. 

I then built a framework around this library 

to convert position and orientation 

coordinates to 3D shapes, which were then 

projected onto the 2D processing window. 

The results of this can be seen in Figure 2. 

Figure 2: Visualized Device in 3D 

 

To make the depiction clearer, I used 

axis lines to help orient the user’s 

perception. In addition, the colored end of 

the device is used to indicate the front and 



the floating purple dot helps to combat 

competing perspectives from certain angles. 

There is also a yellow dot showing the 

center of the device and the wireframe 

structure, rather than a solid shape, was 

chosen to make the edge lines more 

contrasted. These features were all intended 

to provide a clear and unambiguous 

representation of the device in 3D space. 

 

4 RESULTS 

The result of this project was a system 

that can read inertial data off a Nintendo 

JoyCon controller and accurately display 

that data as position and orientation in 3D 

space. However, due to a lack of automatic 

recalibration, systematic bias did develop 

over time if the system is used for too long 

without manual recalibration. Additionally, 

the error differed between the position and 

orientation. For the orientation measure, 

empirical estimates show that the error was 

maintained under 5% for the first 30 seconds 

of continuous operation and 15% for the 

first 90 seconds. The position demonstrated 

a higher rate of decay of accuracy, 

estimating that the error reached 10% in the 

first 30 seconds and 25% by 90 seconds. 

These statistics indicate a need for 

continuous recalibration methods to increase 

effective time of use. 

Referring to the projects original goal of 

providing greater independent access to this 

technology, the complete system is publicly 

available on GitHub. Unfortunately, no 

statistics are available for the use of the 

system by others. However, I have reused 

the system I built in this project for other 

independent projects of my own. Thus, the 

system is completely publicly available and 

potentially useful. 

 

5 CONCLUSION 

The library described throughout this 

paper was designed to use commonly 

available inertial motion-sensing devices to 

visualize position and orientation in 3D 

space. The library provides functionality 

across the whole pipeline of converting raw 

inertial data to practical visualizations to 

maximize its ease of use. Importantly, 

however, the library is also modular in its 

construction allowing for easy improvement 

and customization to the user’s needs and 

expanding its applicability in various 

situations. Through these vectors, this 

project seeks to increase the accessibility of 

inertial motion-sensing technology and 

enhance its use in independent projects, 

which often serve as the starting point for 

new and revolutionary ideas. 

 

6 FUTURE WORK 

To further improve on this project, there 

are three primary avenues of work to be 

considered. The first would be to enhance 

the cleaning and interpretation component to 

deal with systematic and time-increasing 

bias. Notably, the system currently struggles 

with a tendency to drift significantly from 

the expected output after some time in use at 

which point it requires recalibration. 

Potential remedies to this include 

implementing automatic recalibration 

techniques and sensor fusion by utilizing 

other sensors on the device. 

The second future effort that could be 

made would be to extend the list of usable 

devices. Currently, the library has only been 

developed to interface with the Nintendo 

JoyCon controller. Augmenting the data 

reading component to add support for more 

common devices, such as other game 

controllers or mobile phones, would make 

the library more accessible and align with 

the project’s goals. 

Last, the third objective that might be 

accomplished by future work would be an 

expansion to the visualization component. 

Original plans for the project included a 

more robust visualization library that could 

display the device’s location in a simulated 



3D world. More ambitious designs included 

the ability to map physical objects in the real 

world into this simulated 3D world. 

Additional work on the project could seek to 

implement these designs in some manner. 
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