
Automation and Self-Sufficiency through Scripting

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

William Lambley

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

 Automation and Self-Sufficiency through Scripting

CS4991 Capstone Report, 2022

William Lambley

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

wel2vh@virginia.edu

Abstract

An accelerator facility in Virginia found its
system-info database to be out-of-date, with

many of its systems being out-of-service,

leading to problems with accelerator
measurements, unresponsive SSH requests and

confusion on which systems required support.

With hundreds of systems spread across the

campus and no engineers with the free time to
check them individually, an automated solution

was required. I created this solution in the form

of a user-friendly Bash script utilizing several
Secure Socket Shell connections across 200+

systems. The script would check the information

gained from each SSH and cross-examine it with
the information present in the database in the

database. This script presented several options to

the user in how and where data was collected to

promote its usability and convenience. The
project was successful and, with some minor

tweaks, was integrated into the workflow of

several system engineers on site as well as the
database manager, creating a much more

accurate and robust systems database, allowing

the appropriate out-of-service systems to be
replaced. However, this script was only utilized

by the Linux system management. Expanding

the script to encapsulate the Windows system

database could yield similarly positive results on
system/database management workflow.

1. Introduction
The process of software engineering (and to an
extent, all engineering) can be simplified into

two steps: the assessment of a problem, and the

creation of a function to solve that problem. The

latter step involves taking input, running the
potential solution on that input, and using the

output. But what happens when the input is
wrong or missing? No function can be made, so

no solution can be found, leaving the assessed

problem unsolved.

This is the reason accurate information is so

important to any engineering process. The sheer
amount of information present in enterprise-

level workflows, useful or not, can also create

many issues when trying to manage data for a

project. For this massive quantity of information
to be used efficiently, some sort of manager

must be assigned, either human or (more likely)

an automated script or program.

The problem I faced at the accelerator facility

was an extension of this issue. With an out-of-
date database for hundreds of systems across a

campus that stretched over several square miles,

it simply was not reasonable to have an engineer

check the information of each individual system
and update the database manually. Even if

someone had the time to check these systems,

they are updated frequently for security reasons,
so any changes made would become outdated

quickly. The volume of information,

inaccessibility of the systems, and tedium of the

work meant that an automated solution
involving information-pulls from over the

network made the most sense.

2. Literature Review
Many organizations have taken notice of the

impending impact that automation will have on

virtually every industry. Manyika, et. al. (2022)

did extensive research on the topic for
McKinsey & Company. Their research focuses

on the impact of automation on enterprise-level

mailto:wel2vh@virginia.edu

workflows and the impending consequences this
will have on jobs, wages, and desired skillsets.

Citing several statistics collected by the

McKinsey organization, the article shows the

full extent of the impact that automation could
have on many industries into the future, stating

that “…50% of current work activities are

technically automatable” [1].

While this article focuses on the consequences

of this transition, my project was more
concerned with why companies desire so much

automation and how it is being implemented in

this case, including ways implementation could

be generalized to many other uses. An integral
resource that guided me through the process of

creating my script was Shotts’ textbook, The

Linux Command Line (2019). The textbook is
formatted to be much less formal and robotic

than a traditional textbook, illustrated by the

opening line, “I want to tell you a story” [2].
This formatting made it much easier to follow as

a source of information and was my main source

of information regarding both BASH scripting

and the Linux terminal as I was starting to
develop my project. Shotts features illustrated

examples, in-depth but concise explanations of

scripting concepts and a very pragmatic
structure that is both easy to read and very good

at conveying important info. While the book

contains information on the entire Linux

terminal, I focused on the introductory and
scripting sections, which were integral to my

swift completion of this project.

3. Process Design
In order to provide a deeper understanding of

how automation can be used to aid in enterprise

scenarios, this section will focus on the problem

and solution design centered around my
previous internship. The former being the

structure of the database and its connected

systems, and the latter being the automated
script I created.

3.1 Database and System Architecture
The database that required clean-up and

management was formatted as a single JSON

file, with each entry being a single on-site Linux
system. These systems were broken into groups

based on use, location, hardware, etc. The
groups were denominated by names, and

systems within a given group were denominated

by numbers, e.g. DEV115 for the 115th

development system. Within the “block” of
information for each system were lines

containing the systems hardware, operating

system name and version, location, and other
info. The systems these blocks corresponded to

had JSON files that were formatted similarly but

NOT the same as the database. The files were
updated automatically by startup scripts as the

system’s info changed over the course of its

usage.

3.2 Script Design
The two main goals for the bash script I
developed were to be as fast and convenient as

possible. This was a response to the fact that,

while the database COULD be updated without

the script, no one was willing to do so because
of the tedium and time requirement of such a

task. The script had an intentionally simplistic

design to run as quickly and efficiently as
possible. First, it would load in a local version of

the database supplied by the user to refer to

throughout execution. Second, it would present
the user with a simple ASCII menu, a recreation

of which can be seen in Figure 1.

Figure 1: Simple ASCII Menu

The options presented were selected to keep the

script simple but give the user as much control

over the script as possible. The user would then

input the number that corresponded to their
desired choice. Furthermore, the script could be

called with several command-line arguments

that changed the behavior of the script slightly.
For instance, adding “-v” to the list of arguments

would list the information of the system that did

not match the database if such a discrepancy was

found. The first choice from the main menu
would SSH into every system held in the local

database, using the name of each system to run a
SSH “systemName” command, creating a secure

tunnel across the internal network, as shown in

Figure 2.

Figure 2: SSH Diagram [3]

Once a connection was established, the script
would navigate to the directory of the JSON file

held in the system and pull information out of

that file as a single block of ASCII text. Once

this block was obtained, the script would parse
the information out of the block by accessing

specific lines from the block and storing that

into a local variable. Since these files were all
formatted the same, the line numbers that the

script took information form were hard-coded.

The local variables holding the information from
the SSH were then checked against the

information held in the local database in

conditional statements, every time information
did not match, the user was notified with a

message that read, “SYSTEM_NAME’s info

does not match its database entry!” and at the
end of execution, the user would be prompted to

notify the database manager. If the user chose to

do this, the script would send an email to the

manager with a listing of systems that did not
match their database entries and where exactly

the entries differ. The second choice will be

covered in the ‘Challenges’ section, the third
choice is the same as the first, but the user inputs

the name of the system (or group of systems)

that they wish to check against the database.

This process is the same as when the script

checks the SSH’d info against the database; but

instead of an exact match, we search whether
any system names in the database contain the

substring entered by the user. If there is a match,

then the list of systems that match the substring
are listed and the user is given three choices: to

edit the list by either adding or removing certain

systems by name; to execute the script on the list

of systems given; or to cancel. If executed, the

process is the same as option one, but the script
would only SSH and compare info to the

systems specified by the user. The fourth option

would SSH into the server that held the

production database and replace the current local
database with the file found on the server. The

last option stops the execution of the script.

3.3 Challenges and Solutions
The most challenging part of creating this script
was reducing the large number of SSH calls that

resulted in a large amount of network traffic. In

an earlier, more naïve implementation, each
system required several SSH calls, pulling one

piece of info off the machines at a time. This

was very slow, requiring several minutes for the

execution of the script to complete. The solution
to this issue was to reduce the number of SSH

calls to a single call that pulled all the required

information at once, reducing network
utilization to the extent that the script only took

a few seconds to complete (assuming there were

no hangs) when run on all systems.

The second problem was that certain systems

that were not used frequently were either in

hibernation, turned off or no longer connected to
the network. This would cause any SSH calls to

those systems to hang, freezing the script while

it waited for a response that was never going to
come. The first solution was to implement a

simple timeout, after 30 seconds of attempting to

access a system via SSH, the system is skipped.

While this solution prevented hanging, it still
slowed down the script considerably, as many

on-site systems were asleep at any given time.

So the second solution was to include an
additional option, selection 2 on the main menu,

to “touch” each system via SSH and

immediately move on to the next. This would
wake up systems to be ready to provide

information to the script when it asked after this

wake-up routine was finished running. The

combination of these implementations sped up
the script considerably, making it extremely

quick, and therefore convenient, to use.

4. Results
With the completion of the project, the database

manager is no longer forced to take dozens of

hours out of their schedule to individually check
each system’s local info and check it against the

database, giving them more time to focus on

other responsibilities. Now, all they must do is

run the script and after a few seconds, every
discrepancy present within the database will be

available to them with as much or as little detail

as they desire.

The upkeep of this database was enough work to

warrant a part-time position but is now relegated
to a simple command-line BASH script, saving

the facility the costs of a part-time employee.

The system will be reliable until the database or

local filesystem format is changed, though even
this would only require a small adjustment to the

code of the script. As long as there are systems

to be checked and a database to check them
against, this script should be of great use to the

facility and the manager of these systems.

5. Conclusion
As companies continue to amass more
information, their databases will continue to

bloat and their workflows will continue to slow.

The solution I have outlined here is just one that
has been implemented to curb this ever-

expanding issue, and automation’s impact on our

industries and economies will only continue to
grow as more solutions are put in place. While

this adoption of automation will no doubt be a

boon to workers, the full extent of automation’s

impact is yet to be seen.

6. Future Work
The next step for my project is to extend the

script to handle on-site Windows machines,
allowing the relevant database manager to

quickly check their information. It is also

possible that it could be extended beyond

computer information, updating information
from the accelerator itself, as well, although the

process of creating such a program would be

much more involved. Beyond this, however, the
next logical step of automation is artificial

intelligence, a computer that can not only

manage information, but make decisions with

that information, as well. This technology has
the potential to create not only autonomous

programs, but fully independent systems that do
not require a human manager. As this field

continues to grow and mature, more of our

everyday lives will be managed by autonomous

systems, allowing for a more productive society.

7. Acknowledgments
A warm thank you to my colleagues and

managers at my workplace. Without them I
would have not been able to teach myself what

was necessary for this project. Their guidance

and friendship was immensely helpful, and I will

not forget what they have taught me.

References
[1] Manyika J., Lund S., Chui M., Bughin

J., Woetzel J., Batra P., Ko R., Sanghvi
S. 2022. Jobs Lost, jobs gained: What

the future of work will mean for jobs,

skills, and wages. (April 2022).

Retrieved September 19, 2022 from
https://www.mckinsey.com/featured-

insights/future-of-work/jobs-lost-jobs-

gained-what-the-future-of-work-will-
mean-for-jobs-skills-and-wages

[2] Shotts, W. 2019. The Linux Command

Line: A complete introduction, San
Francisco, California: No Starch Press.

[3] Anon. SSH Tunnel Diagram, University

of California Berkeley. Retrieved October

19, 2022 from
https://security.berkeley.edu/sites/default/f

iles/styles/panopoly_image_original/publi

c/sshtunnel1.png?itok=y6Yw7XaY&time
stamp=1438209756

https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages
https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages
https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages
https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages

	References

