

Abstract

 Additive manufacturing technologies represent the forefront of a modern industrial

revolution. New machines such as 3D printers facilitate the design and effortless creation of part

geometries that enable economic mass customization of manufactured parts. These new

machines are therefore rapidly being adopted throughout the manufacturing world for the

creation of both design prototypes and end-user parts. However, the increasingly widespread use

and dependence on this emerging technology may pose new safety and security concerns to

manufacturing, office, and home environments alike. Like other mechatronic systems, 3D

printers employ software-controlled electrical signals to produce physical motions. Nearly all

modern additive manufacturing machines incorporate an internet connection or at least have a

direct connection to a personal computer with internet access, yet little attention has been

directed toward cybersecurity solutions that could prevent malicious attackers from entering the

system and manipulating the creation of parts. Unlike most other manufacturing processes (e.g.

CNC machining), additive manufacturing allows a part to be constructed both internally and

externally. It is therefore possible for a part’s internal structure to be compromised in a way that

is not easily detectable, even through close inspection of the external surface and other

measurement techniques after fabrication.

The National Institute for Standards and Technology (NIST) has released an internal

report detailing inherent security risks associated with replication devices such as 3D printers,

stating that insufficient cyber protection exits for such machines. This research specifically

addresses these concerns and suggests and verifies the efficacy of specific solutions. Several

attack vectors have been identified through which a cyber attacker might be able to compromise

the structural integrity of 3D-printed parts in ways that would not be easily detectable after the

2

part has been completed. These types of attacks were then emulated on a commercial-grade 3D

printer, and their effects on the strength of the resulting parts were characterized using an Instron

load testing machine.

Based upon ongoing DoD-sponsored U.Va research efforts regarding cybersecurity for

cyber physical systems in general, the proposed solution for enhanced 3D printer security

incorporates a highly-secured, trusted sentinel device monitoring the mechatronic system that

operates the printer as a means for detecting potential cyber attacks. This research effort shows

the feasibility of real-time detection of illogical printer behavior through the employment of a

low-cost sentinel device that uses machine-independent sensors and transducers to monitor the

machine’s motions and other reactions to instructions throughout the printing process. The

results presented are intended to help stimulate the development of new security enhancements

to protect 3D printers already at work in the field as well as current and future products in

development.

3

Chapter 1 - Introduction ... 6

1.1 Motivation ... 6

1.2 Background.. 8

1.2.1 Additive Versus Subtractive Manufacturing .. 8

1.2.2 3D Printing Techniques .. 9

1.2.3 Additional Information on Fused Deposition Modeling ... 14

1.3 System Aware Cyber Security ..16

Chapter 2 - Identifying FDM Vulnerabilities 20

2.1 Selection of a Dimension uPrint 3D Printer for the Case Study20

2.2 CMB Architecture and Vulnerabilities ...22

2.3 Determining an Attack Strategy ..26

2.4 Covertly Modifying Build Parameters in a CMB File29

2.5 Attack Execution ...33

2.5.1 Replace Fill Material with Support Material .. 33

2.5.2 Fill Density Alteration .. 36

2.5.3 Introduction of Pre-Existing Internal Cracks .. 36

2.5.4 Print Seam Re-Location .. 37

2.5.5 Tip Temperature Modification .. 39

2.6 Detection..43

Chapter 3 - Characterizing the Effect of Attacks on Mechanical

Properties ... 44

3.1 Preparing Samples for Tensile Testing ...44

3.1.1 Choosing a Control Sample .. 44

3.2 Printing Compromised Samples ..48

3.3 Tensile Testing Procedure ...52

3.3.1 MATLAB Script Functionality ... 56

3.4 Tensile Test Results ...57

3.4.1 Support Material Swap Attack .. 59

3.4.2 Fill Density Adjustment Attack .. 61

3.4.3 Notch Insertion Attack .. 63

4

3.4.4 Seam Manipulation Attack ... 64

3.4.5 Temperature Set Point Alteration Attack .. 66

Chapter 4 - Design of a Secure System Monitor 71

4.1 Security Concerns for 3D Printers ..71

4.2 Secured Parameters for uPrint Application ...73

4.2.1 Print Material .. 74

4.2.2 Extrusion Rate ... 75

4.2.3 Height Offset ... 77

4.2.4 Extruder Tip Temperature ... 79

4.2.5 XYZ Position .. 82

4.3 Sentinel CPU Design ...87

4.4 Assembly Encoder Driver and Parameter Checking89

4.4.1 Use of Fixed-Point Notation for Waypoints ... 90

4.4.2 Assembly Checking Method Structure ... 90

4.4.3 Adding Tolerances to the Waypoints .. 91

4.5 Sentinel CPU Wiring and Sensor Interface ...92

4.6 The Importance of Cost ...95

4.7 A Robust Design ...96

Chapter 5 – Sentinel Testing .. 98

5.1 Building a Foundation – Initial Testing ..98

5.1.1 Calibrating the XYZ Axes .. 98

5.1.2 Adding Extrusion and Material Usage Detection ... 101

5.1.3 Simple Square ... 101

5.1.4 12-Layer Print Test ... 102

5.2 ASTM Sample Testing with Sentinel Detection104

5.2.1 Control Specimens .. 105

5.2.2 Switching Model Material for Support Material .. 105

5.2.3 Reducing the Road Width ... 105

5.2.4 Inserting a Notch Into the Part .. 106

5.2.5 Inserting a Seam into the Part ... 106

5.2.6 Reducing the Extruder Temperature by 20º C .. 107

5

5.3 Sentinel Testing Results ..108

5.4 Limitations of this Study ...108

Chapter 6 – Conclusions and Future Work 110

6.1 Security Concerns for Advanced Manufacturing110

6.2 Future Work...111

6.2.1 Extension to Metal Printing .. 111

6.2.2 Extrusion Rate for FDM Sentinel ... 112

6.2.3 Diverse Redundancy ... 113

6.2.4 Fault Isolation ... 113

Appendix A – Sentinel Assembly Code ... 118

Appendix B – MATLAB Code ... 137

6

Chapter 1 - Introduction

1.1 Motivation

The recent expiration of key patents related to additive manufacturing or “3D printing”

technology has helped to fuel a proliferation of new low-cost 3D printers. Access to mechanisms

and processes that were once proprietary has inspired companies such as MakerBot, Formlabs,

Afinia, and 3D Systems to enter into the hobbyist 3D printing market with their own low-cost 3D

printers. The wide distribution of such machines coupled with the relatively low cost of generic

thermoplastic filament are challenging traditional plastics manufacturing techniques. Using

additive manufacturing strategies, 3D printers can create individually customized parts as they

are needed, reducing the wait time and infrastructure costs typically associated with small-scale

production. However, the increasing use of 3D printing technology merits an investigation into

its potential for malicious use. 3D printers are computer-controlled manufacturing devices that

require no user control or supervision during the build process, and many of these machines are

currently connected to existing networks and are supplied with internet access. If these machines

are to be integrated into manufacturing facilities (either centralized or distributed), a system

should exist to protect the integrity of the models coming from these machines and prevent or

discourage malicious attacks on the machine or facility.

The 2010 Stuxnet attacks demonstrate the severity of cyber vulnerabilities in a

mechatronic environment. Through these attacks the control systems for over 1,000 Iranian

centrifuges used to enrich uranium were infected with a virus that caused the centrifuges to

exceed their rotational design parameters and eventually fail over time [1]. Computer viruses

such as these can cause major problems for industrial facilities wherein operators often have little

7

understanding of the system’s architecture. An intruder can covertly gain access to the machines

and cause them to create defective parts, damage the machines, or injure their operators and

nearby workers. Additive manufacturing facilities are at an elevated risk for such attacks due to

the potentially dangerous raw materials required for some 3D printing processes. These

materials, such as highly-combustible powdered metals, pose significant threats to the safety of

additive manufacturing facilities, machines, and operators. The recent explosion and subsequent

fire at Powderpart, an advanced manufacturing facility based in Woburn, Massachusetts,

illustrates this safety concern [2]. Vulnerabilities can be embedded into manufacturing

equipment from local or remote sources, providing a mechanism to alter prints either randomly

or selectively with a triggering device. This trigger could provide ease of entry into the system,

providing full access to an unauthorized user at strategic times. Development of both

preventative and detective techniques is therefore required for additive manufacturing systems.

The switch from traditional to additive manufacturing methods has enabled increased

complexity of industrial cyber attacks. The key difference in additive manufacturing

technologies is the ability to build hidden internal defects. With the application of 3D printing

technologies to the fabrication of critical components, it is increasingly important to verify the

absence of such defects in completed structures. With Chinese manufacturing facilities currently

using metal 3D printing technologies to create central wing spars for Comac C919 passenger

planes and front landing gear for the Chinese Navy’s Shenyang J-15 carrier-based fighter jet,

cyber attacks could result in major loss of life [3]. Early failures in either of these situations

could be catastrophic, and such examples would provide solid motives for malicious attackers

during times of war. It is therefore important to understand the current vulnerabilities in additive

manufacturing technologies and to address the existence of such weaknesses.

8

1.2 Background

1.2.1 Additive Versus Subtractive Manufacturing

The design complexity of working prototypes and end-use parts has long challenged the

capabilities of traditional subtractive manufacturing techniques. Typically, increased feature

complexity increases the difficulty and cost of production. The introduction of additive

manufacturing (AM) technologies, however, has enabled the realization of complicated new

shapes and mechanisms with geometries that were impossible to create using traditional

manufacturing techniques. The ability to discretize features and join materials together via heat

or binding agents allows the creation of much more complicated parts than those possible

through subtractive techniques.

Additive manufacturing involves fundamentally different processes than traditional

subtractive manufacturing techniques. A subtractive process such as a milling operation involves

the removal of material from an initial material stock using a cutting tool. Excess material is

removed during the operation, and when sufficient material has been removed from the stock

piece, the operation is complete. Subtractive manufacturing processes like turning or milling

fundamentally introduce kinetic energy into the work piece. Throughout the course of the

operation, this kinetic energy is dissipated as waste heat or deformed chips, causing the

temperature of the work piece to rise [4]. Additive manufacturing processes, however, do not

require the removal of stock material during the operation, as only enough material is expended

as is required to create the final model. Instead of starting with a material stock and discarding

any unwanted features, additive processes start with raw materials and build parts by joining

9

those raw materials together. The resulting part is a unification of raw materials made possible

through clever manipulation of their material properties.

3D printing is growing in popularity due to its low entry cost and high versatility. There

are virtually no limitations on the geometries of buildable features for 3D printers due to their

stratified build process and relaxation of the need for special fixturing. The only major

limitations with this process remain in the final microstructure, the types of material used in the

procedure, and the surface finish. While researchers have been pushing to print a more diverse

range of materials, some materials require special processes that require large amounts of energy

or complicated machines to print, which in turn causes printing costs to escalate. These different

technologies support different materials and each process has its own relative advantages and

disadvantages. The main disadvantage for 3D printing processes when compared to mass

production processes is that 3D-printed models can take orders of magnitude more time.

1.2.2 3D Printing Techniques

3D printing is a category of additive manufacturing (AM) techniques that encompasses

several different fabrication technologies. This category contains such processes as

Stereolithography (SLA), Three-Dimensional Printing (3DP), Fused Deposition Modeling

(FDM), Selective Laser Sintering (SLS), Laminated Object Manufacturing (LOM), Color-Jet

Printing (CJP), Electron Beam Melting (EBM), and Direct Metal Laser Sintering (DMLS) [5].

Machines that use each of these technologies are commercially available, but some of these

strategies are limited to use with certain materials. SLA printing, for example, is limited to

materials that solidify when exposed to UV light. EBM and DMLS printers are usually used with

metal powders, while 3DP is generally used with any powdered material that can be bonded with

10

an adhesive. FDM printers are some of the more robust printers, with the ability to print nearly

any material that can be liquefied and solidified by heating and cooling elements. SLA printers

are typically used to print photopolymers whereas FDM printers print thermoplastics. The low

cost of polymer-based FDM and SLA machines has led to their wide-spread application for

making plastic parts.

Stereolithography (SLA) falls under the broader category of Solid Free-Form Fabrication.

This technology was invented in 1986 by Charles W. Hull, who later founded 3D Systems, Inc.

[6]. Hull’s patent on the process specifies the hardening of liquid resin via a hardening agent,

either by an induced jet or by a bath of ultraviolet radiation. This application of ultraviolet

radiation, used to instigate photopolymerization in the resin tank, can be controlled with extreme

precision due to recent advances in laser technology and optics. This means that a typical SLA

machine has a higher resolution than a typical FDM machine (due to the precision to which

polymerization reaction can be localized). A typical SLA printer can achieve layer thicknesses of

50-100 𝜇m and minimum feature sizes of 250-380 𝜇m, while a typical FDM printer can achieve

layer thickness around 180 𝜇m with minimum feature sizes of 250 𝜇m [7]. With extremely

precise control of femtosecond laser pulses, some Micro-SLA machines have boasted feature

sizes in the nanometer scale, such as the printed model of a bull shown below:

11

Figure 1 - A Model of a Bull Printed via Micro-SLA (10 𝜇m in length)[8]

Even though SLA models have ultra-precise features, parts created from the FDM

process tend to be more durable and more suitable for end-use applications [9]. These inherent

differences come from the bonding processes used in SLA and FDM printers. SLA printers use a

series of mirrors to direct a laser beam into a vat of photopolymer resin. A computer sends

control signals to the laser, rastering the resin, resulting in photopolymerization reactions and

thereby hardening the resin from a liquid into a solid [7]. SLA printers build their parts up in

slices. To print each layer, a movable platform is positioned in the resin tank such that only a

small layer of the resin exists between the platform and the previous layer of the part. The laser

beam then cures each subsequent layer of the resin, causing it to bond to the previous layer of the

part. The use of a laser as the hardening mechanism allows for very precise part formation. Since

the part is submersed in liquid resin, it is possible for the excess resin to undergo

photopolymerization, causing a loss of dimensional tolerance or increased surface roughness.

This submersion makes the creation of support structures much more difficult as well. The bath

of liquid resin restricts the use of a separate support structure. However, printers like the

Carbon3D have found a unique solution for this support issue. Instead of using a separate

12

photopolymer material for support structures, the Carbon3D forms voids in the resin vat through

the injection of air bubbles into the vat. These controlled bubbles act as a support structure for

floating features.

Like SLA printers, FDM printers also stratify the model, printing each layer individually

and then bonding each subsequent layer to the last. Instead of using photopolymers, however,

FDM printers employ thermoplastics, a class of polymers that are glassy at low temperature, yet

can achieve viscous liquid-like flow properties at high temperature. With the addition of

sufficient heat, a thermoplastic can be pushed through an extrusion nozzle by a drive mechanism.

A typical FDM printer uses a gear drive system that pushes a strand of thermoplastic filament

with a circular cross section (typically 1.75, 1.78, or 3 mm in diameter) into a heating chamber,

as shown in Figure 2 below.

13

Figure 2 - Diagram of an FDM Extruder [10]

 As a result of the Continuity Equation and the incompressibility of molten

thermoplastics, the pressure created by the incoming filament causes liquid plastic to flow

outward from the heating chamber, usually through a nozzle of a specified geometry. Nozzles are

generally of circular cross-section, but vary in diameter for varying Z-resolution and bond

strength. FDM printers can use a much more diverse selection of polymers than SLA printers,

including several stronger, more durable polymers such as Acrylonitrile Butadiene Styrene

(ABS) and Polylactic Acid (PLA). This research focuses mainly on FDM technology and its

14

application with ABS thermoplastic because of the wide commercial application of FDM to the

manufacturing of plastic parts.

1.2.3 Additional Information on Fused Deposition Modeling

The Fused Deposition Modeling (FDM) process was developed by S. Scott Crump, now

the CEO of Stratasys, a major manufacturer of FDM and PolyJet printers [11]. This process

utilizes melt-extrudable materials and is therefore used predominantly with thermoplastics,

although it can utilize materials with alternative hardening mechanisms. Like the previously

mentioned techniques, the FDM process slices the three-dimensional model into a series of

sequential layers, converting each layer into two-dimensional toolpaths. A typical FDM printing

mechanism uses a hot melt extruder to liquefy thermoplastic filament and deposit a molten

ribbon of plastic in computer-designated locations on a build tray. Since the model is built in

slices, each layer then thermally bonds to the previous layer of the workpiece. This thermal

bonding is driven by the thermal energy stored in the incoming filament. When new filament

comes in contact with the previously-extruded ribbon, molecular diffusion bonds the two layers

at the interface, resulting in a solidified structure [12].

15

Figure 3 – Model of an FDM Extrusion Process

There are several problems that commonly arise during FDM build processes. The

majority of these issues stem from the inherent heat cycling of the working material. When a

layer of thermoplastic filament is deposited on the work piece, it must first be heated to a

temperature at which it is easily extrudable. Since ABS is an amorphous thermoplastic, it does

not have an established melting temperature. The plastic must therefore be heated high enough

above its glass transition temperature to achieve desirable extrusion properties. When the

extruder head adds this heated thermoplastic to the strata of existing material on the build

substrate, the thermal energy contained in the newly-deposited filament drives interlayer mixing

and subsequent bonding. The created structures are orthotropic composites of polymer filaments

(partial bonding between filaments) and voids [13]. The discretization aspect of the FDM process

drives the production of models with atypical material properties since complete mixing between

printed layers is unattainable. The partial bonding between adjacent filaments causes anisotropic

behavior within a given layer, while voids cause stress concentrations at their boundaries. Such

16

stress concentrations are an integral weakness and can lead to premature failure of any part built

with the FDM process.

1.3 System Aware Cyber Security

With inherent weaknesses in parts created by the FDM process, overall part strength

becomes heavily dependent on the build parameters during the print job. Many commercially

available 3D printers have minimal security measures to prevent or deter cyber attacker from

manipulating these build parameters. Even though no major additive manufacturing facilities

have yet reported being physically damaged by attacks to this date, it is important to consider the

possible entry mechanisms into the 3D printing process that could allow cyber attackers to

incapacitate additive manufacturing facilities or sabotage the parts they create. The Powderpart

explosion is indicative of the potential for malicious attacks on additive manufacturing facilities

and the scale of destruction that could ensue. In fact, the National Institute of Standards and

Technology (NIST) has released a report detailing inherent security risks with replication devices

like 3D printers, explicitly stating that insufficient cyber protection exists for such machines

[14].

As part of this research effort, a solution is proposed involving System-Aware Cyber

Security, which involves a “sentinel” device being integrated into the system for the purpose of

monitoring machine operations while comparing those operations to a set of known valid

operations for the process [15]. Such a scheme has already been applied to the operation of

Unmanned Aerial Vehicles (UAVs) by Rick Jones and Barry Horowitz at the University of

Virginia, where a microcontroller-based sentinel analyzed sensory input to determine the

reliability of flight data sent from the UAV back to the base station during flight [15]. The

17

application of a system-aware monitor (which will be called a “sentinel” in this research) to a

3D-printer could enable smart monitoring throughout the build process, allowing the

printer/sentinel pair to determine if there is any deviance from a validated build process on the

fly. Many 3D printers are internet-connected mechatronic systems with an on-board computer

controller. None of these devices currently include system security measures to maintain

unadulterated printer operation. One security option for the controller would be the addition of

strict barrier security methods throughout the printer architecture (both hardware and software

protection would be needed). This is an expensive, unreliable solution considering the vast array

of possible cyber attacks. The concept of System-Aware Cyber Security proposes a much

simpler solution: instead of securing all of the machine’s hardware and software, the security

system needs only to secure the process itself. The security system should emulate the data

transformation process performed on the printer’s circuit boards, predicting the machine’s

physical outputs resulting from the data input to the printer. The sentinel therefore requires

knowledge of the operation of the build process in order to properly defend against attacks. This

monitoring device systematically detects breaches when illogical system outputs originate from

logical data inputs:

18

Figure 4 - Logical and Illogical Process Behavior

The advanced manufacturing context provides a perfect application for the newly

developed sentinel monitoring technique. The sentinel can be interfaced with a 3D printer in

such a way that cyber attacks to the printer do not allow access to the sentinel, allowing the

sentinel to remain isolated from the main printer operations. For instance, the sentinel might read

print parameter set points from its own memory chip. The printer might be allowed write access

to this memory chip, but not to the sentinel’s program memory. In such a setup, the sentinel is

indeed purely a monitoring device; it does not impact and is not influenced by printer operation.

Physical actuations can be monitored using low-cost sensors and transducers to give the sentinel

real-time output monitoring capabilities. Additionally, the simplicity of the sentinel device’s

hardware makes it much more cost-effective to secure than the entire printer.

19

This thesis documents an additive manufacturing application of a System-Aware Cyber

Security approach for embedded security measures. A prototype sentinel device was developed

for the purpose of tracking the build process parameters for validation. Major attack vectors were

also identified and emulated using a commercial-grade 3D printer to test the sentinel prototype’s

ability to detect any malicious manipulation of the printer’s functions.

20

Chapter 2 - Identifying FDM Vulnerabilities

2.1 Selection of a Dimension uPrint 3D Printer for the Case Study

In order to further understand the implications of malicious attacks on 3D printers, cyber

attacks were emulated through manipulation of both the build files and the 3D printer hardware.

The machine selected for this study represented the majority of commercially-available FDM

printers, employing commonly found hardware and software construction. This research project

focused on FDM technology due to its widespread use and relatively low cost of entry, but the

techniques used, vulnerabilities discovered, and solutions developed here are relevant for most

types of 3D printers, including metal 3D printers.

The majority of the printers under consideration for this study were manufactured by

Stratasys Inc., the leading manufacturer of FDM 3D printers. The models varied in price from

roughly $2,500 to $40,000, with the Makerbot Replicator 2X at the low end and the Fortus

250mc at the high end of the price range. Metal printers were considered as well (both DMLS

and EBM) but their high cost of entry prohibited their use for this particular project. The decision

criteria allowed for the consideration of only industry-standard printers that might be found in a

typical engineering prototyping lab or an advanced manufacturing facility. The less expensive

Makerbot line of printers is most typically used in hobbyist applications, justifying its exclusion

from this study. Furthermore, previous iterations of this printer have been open source (freely

available to the general public) and used the common language of G-code to specify toolpaths.

Attacking such a printer would be almost trivial, and it would not demonstrate the seriousness of

this threat to commercial 3D printing systems. The Stratasys Dimension uPrint line, however, is

frequently used in engineering prototyping environments, and was therefore a top contender.

21

The Fortus line of 3D printers was also considered for this study. A Fortus printer is a much

more durable version of the uPrint and is most commonly used in advanced manufacturing

facilities for large production runs of parts. Fortus printers receive the best mechanical and

software components of all Stratasys FDM printers, but they function in almost exactly the same

way as the Dimension machines, running the same type of proprietary toolpath files using similar

motion interpolation processes.

It became apparent that entry-level models would not provide a representative sample of

the 3D printer architecture commonly in use in manufacturing facilities and engineering design

labs due to their relative lack of any complicated architecture. The choice was thus narrowed to

the uPrint SE Plus and the Fortus 250mc. Further research discovered that the uPrint and Fortus

printers differ mainly in their design software with very similar electromechanical hardware

configurations (the Fortus does have feedback from encoders on the movement axes, while the

uPrint only implements open-loop stepper motor control). The Fortus design software (Insight)

allowed more complete control of the build parameters than the uPrint software (CatalystEX),

including the ability to modify the in-fill pattern, road width (width of the extruded filament),

and other location-related controls. The most notable parameter that was excluded from both of

these software packages was control of the extrusion head temperature. Build temperatures were

pre-set on the machine with a predefined optimal build temperature for each material.

Both printers utilize the proprietary Stratasys “CMB” build file format. For the uPrint SE

Plus, its CatalystEX control software converted the STL point cloud file into a series of machine-

interpretable move commands that were then stored in the CMB file. The Fortus software

(Insight) also creates a CMB file from a given STL file, but it allows more control over the

generation and editing of toolpaths. Digging deeply into the CMB file format and deciphering it

22

resulted in the discovery that all CMB files contained the same general information, regardless of

the printer/software combination for which they were written. This enabled the manipulation of

CMB files for use in different printers and allowed direct editing of certain key build parameters

in order to emulate a cyber attack.

This discovery led to the decision to use a uPrint SE Plus for this research project since

the same exact editing techniques could be extended directly to the Fortus line of machines,

which cost several times as much. With the printer hardware selected, it was then necessary to

dig further into the CMB file format to identify any weaknesses that could possibly be exploited

by cyber attackers.

2.2 CMB Architecture and Vulnerabilities

All 3D printer build files are simply extensions of the traditional G-code files used for

Computer Numerical Control (CNC) machines. A G-code file includes the relevant build

parameters for the machine, such as spindle speeds, feed rates, etc. Along with these

declarations, the G-code also contains a series of G-commands defining the machine’s motion.

For instance, a G01 command defines a linear movement, while a G02 command defines a

circular arc movement. 3D printer build files are very similar if not identical to G-code,

containing relevant build information followed by a series of move commands. These commands

define the machine’s step-by-step motion profile, ultimately creating a three-dimensional

structure.

Attacking the build files of a given printer requires in-depth knowledge of the build file’s

architecture. Since the Stratasys CMB build file format is used for the majority of Stratasys FDM

printers, it serves as a good case study for 3D printing build files. CMB files are unencrypted

23

binary byte codes, with most data presented in four-byte longs. The architecture was interpreted

with the help of the CMB Viewer program provided with Dimension uPrint machines. This

program displays relevant print parameters contained in the CMB file as well as graphical

representation of all toolpaths. CMB files were opened in a binary editor program and viewed in

their hexadecimal representation to more easily understand their formatting. The following

image is the raw data obtained from a CMB build file:

Figure 5 - Stratasys CMB File Raw Hex Data

The CMB file consists of three main sections: header, toolpaths, and End-of-File (EOF)

commands. The composition of these sections is shown below in Figure 6:

24

Figure 6 - Composition of a Stratasys CMB Build File

The header section contains the data displayed in the “Pack Details” section of the

CatalystEX software during CMB file transfer and it is the information that the machine operator

sees while preparing files for printing. The toolpath section details the movements of all four

machine movements: x-travel, y-travel, z-travel, and plastic extrusion. Before each move is

executed, however, the printer defines the “Print Mode”, which contains definitions for which

extruder to use (model or support), what part of the model is to be printed (interior fills, exterior

shells, part roof, part floor, support raft, etc.), and other similar characteristics for the subsequent

movement commands. Once the printer completes the designated toolpaths, the next instruction

is the end-of-file. One component of the end-of-file section is the layer table. The layer table

contains the addresses within the CMB file for each layer, stored as a four-byte integer. Each

entry in the layer table points to the exact address of the beginning line of each layer, starting

25

with the declarations of the bounding box for that layer (maximum and minimum layer

dimensions). Once a layer is completed, the printer searchers the layer table for the address of the

next layer. This continues until the machine steps through all of the layers in the layer table. If

the number of entries in the layer table does not equal the number of layers declared in the

header of the CMB file, the machine returns an error with the file. The end-of-file also contains a

unique bytecode that the machine firmware designates as the signal to turn off the extrusion

mechanism and to move the head gantry and the build tray to their respective rest positions. This

move is a “presentation” movement to signify the end of the build process, finishing the

instructions obtained from the CMB file.

Floating point numbers in the CMB build file are encoded using the IEEE 754 Binary32

system standard. This requires four bytes and is presented in little endian format. Any integers

are also represented in four-byte, little endian format. Strings are represented with ASCII

encoding, so each letter is represented with one byte. A string consists of a four-byte integer

denoting how many characters the string contains followed by that number of ASCII-encoded

bytes.

One noteworthy mention is that these CMB build files do not have any form of

encryption. The data is therefore easily accessible, and once the proprietary encoding format is

understood, editing these files becomes quick and easy. Individual movements or movement

modes can be targeted to negatively affect the outcome of the print. Header data can also be

discretely manipulated to provide incorrect process data for the print, such as pack outlines and

build estimates.

26

2.3 Determining an Attack Strategy

In order to understand the dangers that cyber attackers pose to AM processes, one must

first consider the build parameters at risk for malicious hacking. In their parametric study of

FDM-printed ABS, Sood, Ohdar, and Mahapatra identified the following key process parameters

that correlate strongly to a given part’s dimensional accuracy and tensile properties [16]:

 Tip Temperature and In-Process Temperature Gradients

 Road Width

 Fill Density (Air Gap)

 Build Orientation

 Raster Angle

With the exception of the temperature, all of these parameters are defined and stored in

the CMB file, allowing direct manipulation without any specialized software. These build

parameters demonstrate the fundamental problem with CMB file security: none of the

information contained in the build file is encrypted. The security for the entire process is only as

secure as its weakest point of entry, so each point of entry must be considered. Furthermore,

even if the files were encrypted, they may still be vulnerable, but software security is a different

branch of research that lies beyond the scope of this work and falls deep within the realm of

computer science.

The identification of logical points of entry for the 3D printing process necessitates an

understanding of the individual file transfers and transformations throughout the entire process.

The process for a typical 3D printed part is shown below in Figure 7.

27

Figure 7 - 3D Printing File Transfer Process

The transformations represented above illustrate the points of entry where a hacker might

interfere with the 3D printing process. A cyber attacker could deliberately build hidden defects

into a part at several of these points. STL or build files pose the highest risk, as they are usually

transferred between machines on external storage devices. These files could be intercepted and

manipulated without the machine operator’s knowledge. A group from the DREAMS Lab at

Virginia Polytechnic Institute and State University has researched the effects of such software

attacks on 3D printers by testing an STL interception algorithm on uninformed students and

analyzing the results. They determined that changes to the STL file could go undetected by both

the students operating the printers and the STL quality-checking software that verified the

integrity of the model [17].

A more devious and covert attack methodology might target the interpretation of the

build file once it reaches the machine. In the case of a Dimension uPrint, the CMB file is passed

to an on-board move compiler. The move compiler reads the road settings from the CMB,

28

calculates a suitable extrusion rate, and then saves the combined tool path and extrusion data into

a Stratasys PCB file [18]. This move compiler is stored on the machine hardware in the Single

Board Computer’s Linux hard disk. An attacker with a basic knowledge of Unix-based operating

systems could find the software for this move compiler and cause it to offset the machine

coordinates for certain movement modes, or to change the extrusion rate calculation and

therefore the heat flux from the heater block to the extruded plastic.

It is commonplace in most 3D printing techniques for models to need post-processing to

remove support structures and extra material. An attacker could compromise a printed part by

adding some agent to the post-processing chemicals that might corrupt the integrity of that part.

For instance, many FDM parts are placed in a solution of sodium hydroxide and water (NaOH

and H2O) after printing in order to dissolve soluble support structures. The key to this bath is that

the ABS model material is not adversely affected by the NaOH solution; however, addition of a

third agent to induce semi-solubility of ABS is entirely possible. Monitoring the post-processing

steps is therefore equally as important as monitoring the build process.

From a software viewpoint, the most vulnerable print parameter format is the CMB build

file. STL files store a small amount of information regarding the location of model material, but

STL files do not include printer metadata or the majority of the key print parameters.

Additionally, some control software (like the Stratasys Catalyst EX and Insight programs)

display the toolpaths created by the slicing algorithm, making the locational changes achieved by

STL manipulation easily detectable by a competent operator.

Altering the firmware of the machine could represent another form of software attack,

especially if the machine receives firmware updates over the internet, as do both the Dimension

uPrint and Fortus machines. Modification to the Linux operating system that controls the uPrint

29

is also possible. Access to the Single-Board Computer (SBC) located in the interior of the uPrint

can be achieved either through an Ethernet connection or even by directly plugging a keyboard

and monitor into the SBC. Physical access could be limited if the machine is locked or placed

under video surveillance, but the firmware access could potentially be granted via the Ethernet

connection to the Linux SBC.

The base assumption for this project is that an attacker could find a way to gain access to

the machine’s hardware. This scenario represents an attacker modifying the machine’s firmware

definitions or installing foreign hardware into the machine. Access to the machine enables a

cyber attacker to adjust the road width, fill density, print orientation, tip temperature, raster

angle, and other important build parameters. Certain build parameters can also be controlled by

attacking the hardware of the machine and installing intermediate circuitry to adjust feedback

signal levels. The tip temperature is a good example of one of these parameters.

For this attack emulation, a validated (unhacked) build file was sent to the sentinel while

a modified (hacked) build file was returned to the PC-SBC interface software (CatalystEX). This

modified build file displayed the same print file information since the CMB header remained

unchanged. This means that the machine’s operator would not notice a difference during the file

transfer process for a modified file or an unmodified file.

2.4 Covertly Modifying Build Parameters in a CMB File

Modification of the CMB build file allowed changes to part geometry through

manipulation of machine toolpaths. For this use case, CMB files created with Catalyst EX were

altered for the Dimension uPrint SE Plus FDM printer. Custom build files were also created for a

Fortus 200mc FDM printer with the Insight design software. Using Insight provided much more

30

control over the print parameters of a given 3D model since the software allows in-depth

modification of nearly every machine movement. The Insight files were prepared for a Fortus

200mc since that printer shares the same build envelope dimensions as a Dimension uPrint SE

Plus. All models for these tests were printed from Stratasys ABSPlus/P430XL ABS

thermoplastic filament. The modifications of these build files are extremely difficult to detect if

only slight changes are made to the file. Small changes to the build file can retain the same file

metadata (file size, print estimates) while negatively affecting the part strength. These

characteristics make build file modifications an obvious way to alter the mechanical properties of

the final printed part.

Toolpaths were changed by locating the movement commands found in the section of

CMB file directly following the header. Each movement command has the hexadecimal prefix

“0B” and a hex byte containing its motion descriptor. These motion descriptors are defined as

below:

Table 1 – Print Movement Motion Descriptors

Hex Byte Code Movement Type

00 Jog/Fast Travel

01 2D Linearly-Interpolated Print (XY Plane)

02 Z-Height Change

03 Print with Road Width Alteration (Adjusts Extrusion Rate/Height Offset)

Each print layer generally contained multiple printing moves. This is due not only to the

large amount of points that comprise a typical layer, but also to the shell/interior method by

which the printer built models. A typical 3D-printed part contains five structures. The first

Note that the specific byte codes used by Stratasys FDM machines have been censored in this version of the
document so as not to provide a roadmap for would-be cyber attackers to these machines.

31

structures printed on each layer were the support structures, beginning with a support raft. The

floor, the dense bottom layer of the model, was built upon the support raft or a support structure

built on the raft. After the floor came a combination of exterior shells and interior fills. The

density of the interior fill could be controlled by the user in the CatalystEX toolpath creation.

The Insight design suite allowed for control of the prismatic structure of the internal fills, while

CatalystEX did not. Once the internal fills and the external shells for a given XY location had

been printed, the roof was printed. As the final layer for a 3D-printed model, the printing of the

roof signified the end of the build process. These structures are illustrated in the following figure:

Figure 8 - Structures in a 3D Printed Model

The toolpaths in the CMB file had printing modes denoting which part of the model is

being built by the current machine movements. This indicated to the machine which material to

print (which heating element and extruder nozzle to engage). The following table displays the

available printing modes for Stratasys FDM printers

Raft

Roof
Shells

Interior

Fill

Floor
Support

Structure

32

Table 2 - Description of Printing Modes (Obtained from CMB Viewer Info Pane)

Hex Byte Code Printing Mode

65 “Part Interior” – Used for shells on interior of model

66 “Part Surface” – Used for shells on exterior of model

67 “Sparse Raster” – Used for interior sparse fills of model

68 “Solid Raster” – Used for interior solid fills of model

6B “Part First Layer” – Internal fill of support material under raft

6E “Part First Layer Perimeter” – Shell of support material under raft

C8 “Support” – Support structures not adjacent to model structures

CA “Interface” – Support structures adjacent to model structures

CB “Sparse Bridge” – Support structure placed between two interfaces

CD “Support Bottom” – First layer of the support raft

 If cyber attackers attempted to alter a specific toolpath, first they would need to know the

toolpath type. Since each printing mode requires a mode change, targeting specific printing

modes is simple; one simply needs to identify the specific mode change and alter the ensuing

toolpaths.

With this new understanding of the CMB file’s architecture, it became evident that

altering the geometric structure of the part would not be extraordinarily difficult. The most

difficult attack would actually be the alteration of the tip temperature, since no software control

of the tip temperature was available through the CMB file. This meant that software hacking of

the temperature would need to happen through the machine’s firmware. In order to emulate such

an attack, the temperature feedback from the head temperature thermostatic control system could

33

be intercepted and manipulated, thereby altering the extrusion tip temperatures in the same

manner that a firmware attack could. Altering the temperature feedback for this closed-loop

system caused the head to maintain a temperature unsuitable for proper extrusion, leading to

either material jams or sub-par adhesion between material layers.

2.5 Attack Execution

2.5.1 Replace Fill Material with Support Material

The first attack targeted the internal fill pattern, replacing specific sections of model

material with support material. A model was designed that adhered to the ASTM D638 testing

standard for unreinforced and reinforced plastics. The model was built in the On-Edge (XZ)

orientation as shown in Figure 9, but some internal fill toolpath modes in the CMB file were

changed from the Solid Raster mode to the Support mode, changing the material type.

Figure 9 - Experimental Build Orientations [19]

34

The first step of attack emulation was locating the layer table within the build file. The

entries in the layer table give the addresses for each layer, where a “05” byte is stored,

identifying that the succeeding bytes define the minimum and maximum dimensions for that

layer. Following these minimum and maximum dimensions is the definition of the print mode. A

mode change to the Solid Raster mode signals an internal fill toolpath. By selecting this mode

change and altering the mode definition, the waypoints are retained, though the print material

usage changes. This attack can be achieved covertly with no change to material and time

estimates through the clever manipulation of the print metadata as illustrated in the figure below.

The figure shows two completely different models: the model on the left side is cubic, yet the

model on the right side is cylindrical. However, the cylinder’s build file contains metadata from

the square build file, thus incorrectly displaying the print information to the operator.

35

Figure 11 – Using the Same Metadata for Two Different Print Jobs to Hide Hacks (Left has toolpaths of a cube and right has

toolpaths of a cylinder, yet both show cubes in the pack)

F
ig

u
re

 1
0

 –
 U

si
n
g

 t
h

e
S
a

m
e

M
et

a
d

a
ta

 f
o

r
T

w
o
 D

if
fe

re
n

t
P

ri
n

t
Jo

b
s

to
 H

id
e

H
a

ck
s

(L
ef

t
h

a
s

to
o

lp
a
th

s
o

f
a
 c

u
b

e
a

n
d

 r
ig

h
t

h
a

s
to

o
lp

a
th

s
o

f
a
 c

yl
in

d
er

,

ye
t

b
o

th
 s

h
o

w
 c

u
b

es
 i

n
 t

h
e

p
a

ck
)

36

2.5.2 Fill Density Alteration

The internal density of these printed specimens also affected their mechanical behavior.

When differing fill densities were used, the tensile test specimen attained a different equivalent

stiffness. This lowered the amount of force required for a given elongation. The cross-sectional

area of the model also decreased, so the new area had to be accounted for when calculating the

instantaneous stress (mentioned in more detail later).

Fill density alterations were initially performed using a method by which the tool path

section of the solid control model was replaced with those from a sparse-built model. This

method produced undesirable results, however, as the material usage was drastically reduced.

The method for this attack was therefore changed to produce a local change in density to reduce

obvious changes in material usage. The local reduction in density was placed in the gauge

section to place the stress concentration in the highest-stress area of the model, driving fracture

there. This attack was achieved by altering the road width for internal fill paths in a certain area.

The overall file size showed no major changes, as with the material usage estimates.

2.5.3 Introduction of Pre-Existing Internal Cracks

The performance quality of a given test specimen was drastically reduced when a small

crack was introduced. Since an additive manufacturing process involves the placement of raw

materials in desired locations, 3D printers enable hidden flaws to be placed inside of the part,

such as small internal cracks. The strategic placement of a small crack can induce fracture at the

crack surface and can also severely reduce the ultimate tensile strength and fatigue life of the

37

final part. Such a crack could be deliberately placed in an area in which the part might exhibit

high stress under loading.

Emulation of this attack was performed by identifying the internal fill of the test

specimen in the CMB file, then removing a few internal nodes from the internal fill toolpaths

while adding some internal perimeter toolpaths to create a clean crack line. This could be

considered a covert attack because during processing, the operator would be shown the original

build metadata with incorrect time and material usage estimates. The overall part volume was

only altered by about 0.001%, which means that the impact on material usage is minimal.

Detecting such an attack through primitive optical inspection or weight measurements would be

virtually impossible. The pre-existing crack was placed in the center of the specimen to

encourage crack propagation in the center of the gage section, which, of course, was where the

sample ultimately broke (See Figure 23 and Figure 35).

2.5.4 Print Seam Re-Location

Another important print parameter contained in the CMB file was found to be the entry

point of the plastic extrusion. By default, the uPrint begins and ends extrusion at the same

specified location for each layer (for the ASTM test specimens). The phenomenon known as die

swelling causes radial expansion of the print bead, depositing extra material at these entry and

exit locations [20]. Since the uPrint begins and ends extrusion at consistent locations around the

part’s perimeter, a print seam is easily visible on the side of most parts, including the ASTM test

specimens. This seam relies on the polymer sintering reaction to coalesce the individual polymer

particles, causing it to be inherently weaker than the continuous polymer filament found in the

rest of the layer (see Figure 12 below) [21]. The misaligned polymer chains at this location also

38

create a stress concentration that can cause fracture to occur. Thus, by moving the part seams to

critical locations, an attacker can target a specific high-stress area and induce a brittle fracture

(low strain to failure) there.

Figure 12 - Polymer Chain Mixing During the Sintering Reaction [20]

The location of these print seams was easily moved by changing each layer’s entry point

in the Insight design software or directly in the CMB file. The CatalystEX software, however,

did not have built-in support to adjust this parameter. This attack emulation therefore required

the manipulation of a CMB file created in Insight such that it could then be imported into the

CatalystEX for transfer to the printer. The standard ASTM D638 test specimen was built in

SolidWorks, then saved as an STL file. The STL was then imported into Insight using the

definition for a Fortus 200mc (same build envelope dimensions as the uPrint SE Plus) and all of

the entry points were moved to the center of the gage section. Once the print seam had been

aligned, the toolpaths were then exported to CMB format. This CMB file was then opened in a

39

binary file editor and the header data and EOF lines were altered to agree with the format for

uPrint SE Plus build files as previously displayed in Figure 6.

2.5.5 Tip Temperature Modification

The setpoint temperature of the extruder tip is the most important build parameter for

FDM processes. The tip temperature controls the amount of thermal energy transferred to the

filament as it passes through the extruder block, as governed by the following equation, given the

assumption of constant heat flux [22]:

𝑞 = �̇�𝑐𝑝(𝑇 − 𝑇𝑖) = (
𝜌𝑣𝐴𝑐𝑝

2𝜋(
𝐷

2
)𝐿

) (𝑇 − 𝑇𝑖) (Eqn. 1)

where 𝑞 is the heat flux, �̇� is the mass flow rate of polymer through the liquefier, 𝑐𝑝 is the heat

capacity of the polymer, 𝑇 and 𝑇𝑖 are the entrance and exit temperatures of the polymer, 𝑣 is the

linear flow velocity, 𝐴 is the cross-sectional area of the extruder, 𝐷 is the diameter of the nozzle,

and 𝐿 is the length of filament in the liquefier [22]. The exit temperature of the polymer 𝑇𝑖 is

known as the extruder tip temperature.

 Tip temperature is not a parameter stored in the CMB build file, so it cannot be

manipulated using CMB alteration methodology. The Dimension uPrint SE Plus is designed to

print with only two material cartridges: Stratasys ABS P430XL model material and SR430XL

support material. This means that its temperature parameters are stored on the internals of the

machine and the move compiler fetches them when it calculates the heater duty cycle and the

40

extrusion rates. The persistent threat would therefore reside either as an embedded hardware

device that alters the thermocouple feedback signals or from a firmware attack that alters the

move compiler’s calculations for extrusion rates. For the purposes of this research, an

interception of the thermocouple feedback was employed as the method of emulating a

temperature setpoint modification attack. Stratasys Dimension FDM printers incorporate a

temperature feedback loop to maintain strict control of the build temperatures. This closed-loop

control system is shown in Figure 13 below. The attack involved the application of a feedback

gain to the closed-loop control system.

Figure 13 - Closed-Loop Temperature Control System

The gantry head of the printer contains several important circuits. The two main circuit

boards located on the head are the head board and the thermocouple amplifier board. The head

board performs key operations, such as regulating heater output signals and collecting extruder

motor encoder signals. The thermocouple amplifier board serves three main functions. First, it

contains a thermostat to send an alarm signal to the motherboard if the head overheats. It also

contains a system of comparators wired as Schmitt triggers to determine if there is an open

circuit in one of the thermocouples. Lastly, it contains Analog Devices AD597 thermocouple

amplifier chips to amplify and linearize the feedback signal from the thermocouples in the head

41

and build environment. These integrated circuit (IC) chips scale the temperature signal to an ice-

referenced analog voltage range with a slope of 10
mV

°C
. There are three thermocouples in the

uPrint: one in the model heater block, one in the support heater block, and one in the build

environment. Each of these thermocouples is wired to a unique thermocouple amplifier chip,

which then sends an output signal back to the printer’s motherboard.

In order to manipulate the build temperature, the feedback loop needed to be cut and a

device inserted to either amplify or divide the thermocouple’s temperature signal. For a given K-

type thermocouple, the thermocouple signals are on the order of 0 to 10 mV for a 0 to 300C

measurement, while the amplified temperature signal is anywhere from 0.2V to 3.5V. Since this

signal is scaled by the AD597A IC chips, the temperature signal sent to the motherboard is

between 3.0V and 3.1V when the head is heated sufficiently for extrusion. It was thus decided

that instrumentation amplifiers or voltage dividers would be more suited to adjust the output

signal of the thermocouple amplifier board than to its input signal.

Figure 14 - Block Diagram for the Temperature Interception Board

The Temperature Interception Board (TIB) was therefore strategically placed to alter the

output of the thermocouple amplifier board before it reached the motherboard, as shown in

Figure 14 above. The TIB contains circuits for both multiplying and dividing the voltage, with a

42

non-inverting amplifier to provide a gain of greater than 1 and a voltage divider circuit to provide

gains less than 1. If the gain is set higher than 1, then the temperature feedback to the

motherboard will be larger than the actual temperature in the head. Therefore, the motherboard

will lower the head temperature until the temperature feedback comes down to the set-point

temperature, which is 300°C for the support heater and 310°C for model heater. The circuit

diagram for the Temperature Interception Board is shown below:

Figure 15 - Prototype TIB Amplification Circuitry

43

 Figure 16 - Prototype TIB Division Circuitry

2.6 Detection

Comprehensive human or video monitoring of typical 3D printer build processes would

be very difficult. With plastics, even small voids can compromise the mechanical properties of

the printed model, resulting in lower stress and strain to failure. These voids can be caused by

deviations so miniscule that even a machine operator staring at the printer during its operations

might not detect any noteworthy process anomalies, as demonstrated by the temperature

alteration attack. Some printers such as the Objet Connex can print in multiple locations at once,

further complicating the monitoring process. The difficulties associated with validating printing

parameters throughout the entire build process lead to the alternate solution of creating a robust

sentinel monitor to simply observe the printer’s movements and operations.

44

Chapter 3 - Characterizing the Effect of Attacks

on Mechanical Properties

3.1 Preparing Samples for Tensile Testing

The effects of these attacks on the integrity of 3D printed models required

characterization to provide a better understanding of the motivations behind potential attacks.

The mechanical properties of specimens containing the results of these various types of attacks

were assessed by measuring the difference in ultimate tensile strength and elongation at break

between unaltered control samples and deliberately compromised specimens.

3.1.1 Choosing a Control Sample

Control specimens were chosen from the three cardinal print orientations described by

Figure 9 to exhibit the characteristic strength reductions for each attack case. Due to the weaker

flexural delamination strength of printed ABS parts, only the XZ and XY orientations were

considered for testing the first four attacks. The candidates for the control specimen are shown

below:

45

Figure 17 – ASTM Sample - On Edge Orientation (XZ)

Figure 18 – ASTM Sample - Flat Orientation (XY)

The specimens printed in the XY orientation exhibited an undesirable fracture behavior,

with all specimens breaking outside of the gauge length as shown in Figure 19. The XZ

46

specimens, however, produced a favorable fracture behavior, with each specimen breaking at

random locations.

Figure 19 – Undesirable Failure Behavior of the Broken Flat (XY) Solid-Filled Sample

This unfavorable fracture of the XY orientation specimens was due to a concentration of

air pockets in the radius of the print near the fracture surface, as shown in Figure 20. The curved

section contained large air pockets along the wall of the part due to discretization of the internal

raster pattern. This introduction of air gaps into the internal fill created a pre-existing crack

whose existence caused failure to occur at that point. The reduction of area due to these air gaps

resulted in a stress concentration, inducing a slightly higher stress at this location than elsewhere

in the part. This Flat Orientation (XY) specimen was therefore rejected in favor of the On-Edge

(XZ) specimen for the experimental control.

47

Figure 20 - Toolpath Simulation of an FDM-Printed Test Specimen (Obtained Using Stratasys Insight Design Software) – Notice

the Air Pockets Created by the Raster Pattern along the Top Edge

With the control specimen chosen for the validation case, compromised specimens were

printed containing flaws that represent each of the five attacks described in Chapter 2. These

attacks are listed in Table 3 below:

Table 3 - List of Attack Vectors

Attack Vector Description

1 Switch to Support Material During Interior Fill Paths

2 Alter Print Density Within Interior Fill Paths

3 Turn Off Extruder During Interior Fill Paths, Leaving Small Cracks

4 Add or Move Part Seams in High-Stress Areas

5 Adjust Extruder Temperature During Printing

Air Pockets

48

3.2 Printing Compromised Samples

It was determined that five specimens would provide a large enough sample size to

account for any normal printing variances. The specimens for each sample were printed in packs

of six to allow one extra sample for potential misprints while still building all specimens

correlating to a specific attack at the same time. The unbroken attack specimens are shown in the

figures below:

Figure 21 - Attack 1 - Replacement of Interior Fill Material with Support Material

49

Figure 22 - Attack 2 - Localized Reduction in Internal Fill Density (More Detailed Picture of Internal Structure Coming)

Figure 23 - Attack 3 – Introduction of Pre-Existing Internal Cracks

Internal Crack
Added Here

50

Figure 24 - Attack 4 - Print Seam Re-Location

Because of the thermally-induced sintering reaction between polymer layers, a different

test orientation was employed for the fifth attack test to magnify the effects of altering the

temperature of the extruder tip. The upright (ZX) orientation shown in Figure 9 was used for this

test to illustrate the significant effect of the extruder temperature on the flexural delamination

strength. When samples printed in this orientation were loaded in pure tension, the applied load

separated the filament strands, straining the bond between adjacent layers.

The upright orientation was the best orientation to use for this test because of its tendency

toward delamination under tensile loading, but the standard dimensions for the ASTM D638

Type II test specimen exceeded the build envelope of the Dimension uPrint SE Plus. The sample

was therefore redesigned to fit inside the printer’s build envelope (8” x 8” x 6”). The same

general shape of the test specimen was retained, but both the grip length and the gauge length

were reduced to shorten the grip-to-grip length. The figure below illustrates the difference

between the two specimens:

Seam Defect
Added Here

51

Figure 25 - Engineering Drawing of Modified Temperature Specimen (MTS) Compared to Control Specimen

All of the temperature specimens were printed according to the geometry of the Modified

Temperature Specimen (MTS) shown above. They were built with a solid in-fill in the upright

(ZX) orientation as per Figure 9. For this test, the tip temperature was altered from the default set

point of 210°C. Temperatures were modified using a combination amplifier/divider circuit as

described in Section 2.5.5. Temperature and elapsed time data were monitored and logged using

an NI 9217 RTD measurement card installed in a National Instruments cRIO data acquisition

device. The compromised build file produced the following specimens:

52

Figure 26 - Sample of Specimens Printed at Altered Tip Temperatures

The images above illustrate the difficulty for optical detection of temperature hacks to 3D

printed models. All of the test specimens exhibited the same external characteristics, yet they had

micro and nano-scale differences in the alignment of their polymer chains due to insufficient

energy addition for polymer mixing. The temperature specimens were printed with the assistance

of a precise temperature monitoring system, but some testing parameters were altered for the

tensile test (crosshead velocity, failure criteria).

3.3 Tensile Testing Procedure

The samples described in Section 3.2 were strained to fracture in an Instron 5848 Micro

Tester load testing machine fitted with a laser extensometer and an Instron ± 2 kN static load

53

cell. Initial testing was performed using D638 test specimens, as this test procedure applies to

thermoplastic materials [23]. During preliminary testing it was discovered that the standard Type

I specimen in this setup regularly broke outside the gauge section. A Type II specimen was

therefore employed, per the ASTM D638 testing procedures [23]. The Type II specimen has a

narrowed gauge section, which exhibits a more significant difference in area between the grip

section and the gauge section (larger radius of curvature). Use of the Type II specimen, along

with moving the standard part seam from within the gage section to the end of the part, produced

clean breaks in the gauge section for all parts. The Stratasys white paper discussing tensile

testing of P430 ABS also excluded this print orientation from testing for undisclosed reasons

[19].

Each specimen was elongated at a rate of five millimeters per second except for the

temperature-adjusted specimens from Attack 5, which were elongated at a rate of one millimeter

per second (due to the smaller overall specimen length). This extension rate was chosen to

encourage fracture between 30 seconds and five minutes of the start of the test, as per the ASTM

D638 standard [23]. Data was sampled from the load cell and extensometer at a rate of 200 Hz.

This data was then recorded in CSV format (comma separate values) and processed through

several custom MATLAB scripts (discussed in Section 3.3.1).

 Laser tags were placed on the ends of the gauge section of each specimen prior to testing.

These tags were aligned with the laser extensometer’s beam to measure the extension in the

specimen. This was achieved by taking an initial measurement for gauge length, zeroing the

extensometer, and then measuring the displacement between the two laser tags. The measured

displacement, 𝛿𝑙, was used to find the engineering strain in the part, calculated as follows, where

𝑙𝑔 is the gauge length prior to testing and 𝜖 is the engineering strain in the gauge section:

54

𝜖 =
δl

𝑙𝑔
 (Eqn. 2)

All measurements of gauge length, extension, and strain were obtained in millimeters.

 Engineering stress can be easily obtained as well, using the Instron ±2 kN load cell. The

load measurements were recorded in Newtons. The cross-sectional areas of the specimens were

found by measuring the samples before fracture with calipers. To account for void inclusions

during the printing process, effective cross-sectional areas were used for the stress calculations.

These effective areas for the specimens were calculated using a mass fraction approach under the

assumption that model density is linearly proportional to gauge cross-sectional area. As

demonstrated in the figures below, the void inclusions during printing can significantly alter the

cross-sectional area of the fracture surface. Effective areas were calculated for both the solid-

filled specimens and the sparse-filled specimens for this reason. The notch and local density

attacks, however, show the apparent stress in the model, so the effective area for the control

specimen is used for those calculations.

Figure 27 - Scanning Electron Microscope (SEM) Image of the Fracture Surface of a Multi-Layer Solid-Filled Part [24]

55

Figure 28 - SEM Image of a Three-Layer Sparse-Filled Part [25]

The effective cross-sectional area calculation was performed by calculating the mass

fraction of the sparse and solid-printed models as compared to the weight of an injection-molded

ABS test section (theoretically calculated using the density of P430 provided by Stratasys [26]).

This approach was applied in the following manner:

𝐴𝑒𝑓𝑓 =
𝑀𝐹𝐷

𝑀𝐼𝑀
∗ 𝐴 𝐺𝑎𝑔𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 (Eqn. 3)

The areas obtained for each specimen were applied to the engineering stress calculation,

given according to the following equation:

𝜎 =
𝑃

𝐴𝑒𝑓𝑓
 (Eqn. 4)

where 𝑃 is the tensile force measured by the load cell and 𝐴𝑒𝑓𝑓 is the effective cross-sectional

area of the specimen.

56

The effective area approach is similar to that employed by Rodriguez et al. during their

FD-ABS materials testing. They presented the idea of using optical methods to measure the void

density and applying the void density, 𝜌1, to calculate the effective cross-sectional area of the

specimen [27]:

𝐴𝑒𝑓𝑓 = (1 − 𝜌1) ∗ 𝐴𝑔𝑎𝑔𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (Eqn. 5)

 While this method would have been perfect for the sparse and solid-filled specimens’

cross-sectional area calculations, Rodriguez et al did not provide explicit 𝜌1 values for differing

part densities. The previously-described mass fraction approach was therefore used instead.

3.3.1 MATLAB Script Functionality

Three MATLAB scripts were written specifically for the processing of the tensile test

data. The first file, “Retrieve_Tensile_Test_Data.m”, imports all of the tensile test data in the

Instron CSV files into the MATLAB environment. The script begins by prompting the user for

the number of input files, followed by the file prefixes (defined by the user during file creation in

the Instron Bluehill software package). It then creates a structure for each of the CSV files to

store the following data: gauge length, width, thickness, extensometer displacement, extension

rate, and load. The script loads these values as matrices of double values, then calculates the

cross-sectional area from the measurement for thickness and width (measured with calipers just

before testing). The areas can then be manually adjusted according to Equation 3. Strain is

calculated from the extensometer displacement and the gauge length, while the stress is

calculated from the effective cross-sectional area and the measured load.

57

With these calculations completed, the stress and strain data for each sample is stored in

separate matrices within the file structure. Each structure is manually saved by the user by right-

clicking the structure and saving the data in MAT format. The next step is to run the

“Plot_Tensile_Test_Data.m” script. This script loads the .MAT file for a specific sample of data

(the script must be run once per attack sample). It then plots the stress and strain matrices for

each test sample with individual data series for each specimen within that sample.

Since the ultimate tensile strength provided a good metric of the worthiness of each

attack, the statistical mean and deviation for each sample were also calculated using a specially-

tailored MATLAB script. This script, “Statistical_Calculations_for_Tension_Testing.m”, loads

all of the MAT files for every attack sample. It then calculates the mean and standard deviation

of the ultimate tensile strength for each specimen.

3.4 Tensile Test Results

 The results including the fracture properties from the tensile for each attack were

compared against the control case and the results were informative. The specimen chosen for this

control case was used in the Stratasys-published material testing of ABS-M30, the Solid-Filled

On-Edge (XZ) orientation [19]. The fracture behavior of this control sample is illustrated below:

58

Figure 29 - Broken Solid-Filled On-Edge Specimen (Control)

The stress versus strain plot for this control specimen is shown below:

59

Figure 30 - Control Specimen Tension Testing Results

3.4.1 Support Material Swap Attack

Part material in the interior fill was replaced with support material, a much more brittle

thermoplastic that dissolves in a sodium hydroxide bath. The danger of this attack stems from the

fact that the total material usage remained the same and the apparent weight of the finished part

was roughly identical to that of the control specimen. External appearances were also unchanged.

Part strength was drastically reduced since these two polymers did not bond thoroughly to each

other, causing rapid delamination during loading and resulting in brittle failure behavior. The test

results indicated a drastic reduction in strength to failure.

60

Figure 31 - Attack No. 1 - Broken On-Edge (XZ) Specimen Filled with Support Material in the Gauge Section

Figure 32 - Attack No. 1 – Tensile Test Results for Broken On-Edge (XZ) Specimen Filled with Support Material in the Gauge

Section

61

3.4.2 Fill Density Adjustment Attack

The second attack involved adjusting the fill density of the test specimen. Initially, the

internal fill density of the entire specimen was changed from a solid in-fill pattern to a sparse,

high-density (SHD) in-fill pattern. However, the density reduction in the grip section induced

fracture outside of the gauge length for this specimen, invalidating the results. This attack method

was also difficult to execute and easily detectable through weight estimates. The attack was

therefore reformulated to produce a localized density reduction in a small area of the gauge length

through the manipulation of the road width parameters. With density reduction confined to a small

section in the gauge length, stress concentrations were no longer induced into the sections outside

the gauge length and fracture occurred in the gauge section.

The reduction in toolpath road width reduced the contact area and mixing between adjacent

filaments, further reducing the bond strength. The filaments were therefore in the correct location,

but only weakly bonded together. The result was a failure method with a premature yield strength

as well as a low ultimate tensile strength:

62

Figure 33 - Attack No. 2 - Broken On-Edge (XZ) Specimen with Fill Density Alteration

Figure 34 - Attack No. 2 – Tensile Test Results for Broken On-Edge (XZ) Specimen with Fill Density Alteration

63

3.4.3 Notch Insertion Attack

Valid tensile test results were obtained from testing the specimens that had cracks

deliberately added into the gauge section. This condition caused crack propagation at a specified

location, remaining within the gauge section. The behavior of this specimen is interesting since

the material removed from the part was unnoticeably small (only 0.001% of the total model

volume). A detailed image of the fracture is shown below:

Figure 35 - Attack No. 3 - Broken Solid-Filled On-Edge (XZ) with Notch in Center of Gauge Section

The image above shows that this specimen underwent a clean break with hardly any

strain outside of the fracture zone. The dark blue plastic in the gauge section shows a visual

confirmation that this part underwent very little strain before fracture. The attack caused a brittle

failure mode for this part, whereas the control sample exhibited a much more ductile response.

The fracture behavior is easily seen in the following stress versus strain plot:

64

Figure 36 - Third Attack Tension Testing Results

This plot shows that not only does the part fracture in a much more brittle manner, but the

part’s ultimate tensile strength is reduced due to the weak bond created by the wider gap between

adjacent filaments. Please note that this the apparent stress vs actual strain for this specimen. For

true stress, the stress calculation would have to be adjusted for the lack of a proper bonding

surface. However, the weak or missing surface bonds represent the most dangerous aspects of

this attack.

3.4.4 Seam Manipulation Attack

This attack moved the part seam from the end of the specimen (as found in the control

specimen) to the center of the gauge section. This placement was chosen to simulate the

movement of a part seam to an area of localized high stress. The majority of these samples broke

65

in a predictable manner right on the seam. However, one of these five specimens broke slightly

away from the seam at an unanticipated printing defect. This demonstrated that even though the

seam represented a printing defect, other naturally-occurring defects due to loss of extrusion

(perhaps due to a temporary tip clog) or similar errors could also have caused premature failure.

The following image shows the fracture surface:

Figure 37 - Broken Solid-Filled On-Edge (XZ) with Seam in Center of Gauge Section

 The weak bonding at the seam caused the first crack to form there. As previously stated,

polymer bonds at locations with discontinuous extrusions are thermally-induced, sintered bonds

[21]. Insufficient heat flux or variations in polymer alignment make these bonds unpredictable.

The results from the tensile tests of these specimens are shown below:

66

Figure 38 - Fourth Attack Tension Testing Results

It is clear from these plots that placement of the seam in a high-stress location led to

brittle fracture behavior, with the model experiencing a lower average strain to failure. The

specimens with the shortest strain to failure from the control case displayed similar strain values

as the specimen with the longest strain to failure from the attack case. This is due to the random

printing defects introduced in the control specimens during the printer’s normal operation. These

uncontrollable defects can be weaker than the seam defects in cases of improper alignment of the

seam bonds.

3.4.5 Temperature Set Point Alteration Attack

The final attack prescribed interference of the printer’s extruder head temperature. The

extruder head temperature was altered around the original set point by 20°C in both directions, in

increments of 10°C. This resulted in five batches of samples to test, with each batch composed of

67

five specimens. This number of test specimens was chosen to provide a sufficiently large sample

size to include any printing variations. To control printing variances, the test samples were all

obtained from the same printing pack (they were built at the same time with the same machine

settings on the same build plate). To find the default printing temperatures, control samples were

printed with the RTD temperature monitoring system in place on the model extruder. Tip

temperature data was logged throughout the build process, and the temperature variations for the

process are shown in the plot below:

Figure 39 - Temperature Log for Control Specimen Print

The temperature sensed by the RTD monitor at the extruder tip was 210°C throughout

the build process. The temperature adjustment drastically affected the tensile properties of the

specimens, as shown in the stress versus strain plots on the following page:

68

Figure 40 - Tensile Test Results for Temperature Attack

69

 The first plot shows that reduction of the tip temperature by 20º C during printing can

reduce the ultimate tensile strength by approximately 37%. The weaker lamination is evident in

the following image of the fracture surfaces of the altered specimens, as compared with the

control specimen (210º C):

Figure 41 - Fracture Surfaces of Temperature Attack Specimens

 The strongest inter-layer bond was seen in the 230°C specimens. The bonded layers

sintered properly, such that the part tore between layers instead of delaminating. The temperature

70

was still low enough, though, that the increased tip temperature did not yet thermally degrade the

polymer extrusion.

71

Chapter 4 - Design of a Secure System Monitor

4.1 Security Concerns for 3D Printers

The aforementioned tests demonstrate the feasibility of attacks on additive manufacturing

systems. More sophisticated industrial sabotage is possible with the recent inclusion of internet

connectivity in manufacturing equipment. Models created by additive manufacturing equipment

are becoming increasingly attractive for use in non-industrial environments, as mass-produced

items can now maintain some aspect of uniqueness. The current poster child for this mass-

customization movement is Invisalign, a company that manufactures orthodontic braces.

Invisalign prints plastic dental “aligners” from 3D models of the patient’s mouth (obtained from

X-ray scans), thus creating custom-fit orthodontic appliances at a mass-production level [28].

Military branches have been also using 3D printers to make custom parts at forward operating

bases with poor supply chain access in hopes of establishing procedures for repairing equipment

[29]. This diverse range of 3D printer usage provides cyber attackers with a physical

consequences for malicious attacks.

 Current defensive security techniques rely on the security of the printer’s primary

network, such as the Local Area Network (LAN) that the printer inhabits. Depending on the level

of access, this could also include the security of the servers the printer accesses over the internet.

When threats are detected on the primary network, the firewall software should be patched to

allow early detection of such attacks. Barrier security methods can provide sufficient protection

against the transfer of files that have been intercepted and infected via unauthorized network

access. The System Aware Cyber Security solution proposed in this research instead considers

the scenario in which the file is not corrupted on the network, but rather on the machine itself:

72

Figure 42 - The Flow of Information in a Sentinel-Monitored Printer with a Firmware Virus

A malicious attacker with either physical access to the machine or brief network access to

the machine’s PC controller could corrupt important hardware or software. Many of these

machines have the ability to update the printer firmware with similar methods of access. The

attacker would only need brief network access, since they could rewrite the printer’s ROM and

then terminate the connection once the file transfer had been completed. A physical alteration of

the firmware (someone swapping a hard disk or memory chip) might occur in a manner that was

undetectable to the network security software. For this reason, a new approach to securing

mechatronic systems is proposed.

By definition, mechatronics is the “synergistic integration of mechanical engineering

with electronics and intelligent computer control in the design and manufacture of industrial

products and processes” [30]. The computer controller on a 3D printer receives an input signal

and transforms it into a physical output motion. For electro-mechanical actuators, this input

signal is either an analog or digital voltage signal. Some property of the voltage signal, whether it

is the amplitude, frequency, phase, etc., dictates the mechanical output motion from the actuator.

This motion-based output outlines the fundamental difference when securing mechatronic

devices: incorrect processing of the input data stream leads to faulty motion parameters. Addition

73

of a monitoring system to track these motion parameters therefore becomes necessary in order to

guarantee the integrity of parts created by 3D printing processes. The proposed solution is a

System-Aware Cyber Security monitoring device (called a sentinel) that tracks, logs, and

predicts the behavior of the 3D printing process. This sentinel device is essentially a smart data

logger that has access to key operational parameters. This allows the sentinel to compare the data

it collects from machine sensors against data from a validated set of build parameters.

4.2 Secured Parameters for uPrint Application

In its current design, the sentinel monitor must be custom-fit to the printer for each

application. There is not currently a universal sentinel monitor; each mechatronic process in need

of protection contains unique data streams and key parameters, and the sentinel device must

therefore be custom tailored for each application. The varying printing mechanisms and build

parameters require different monitoring equipment for the sentinel, affecting both the hardware

and software interface for the sensors and controllers. For example, while a sentinel monitor for

an FDM printer might use an encoder to measure the extruder’s rotational speed, the sentinel

monitor for an SLA printer would not monitor this parameter and therefore would not require the

installation of an extra sensor. Even if some parameters among different printer technologies are

similar, they may require different types of sensors for measurement purposes. A printer utilizing

FDM technology was chosen for this case study, so the sentinel was tailored to include the

necessary sensors and monitoring equipment required for this technology. Some redundant

sensors were fitted to the machine to allow for operation independent from the monitored

machine, while other feedback data was simply probed (such as data from existing sensors). The

five major attack vectors provided in Chapter 3 affect the following operational parameters: Print

74

Material, Extrusion Rate, Height Offset, Extruder Tip Temperature, and XYZ Position. The

values for each of these print parameters is determined in different ways by measuring data

output streams from certain sensors. These are described in the following sections.

4.2.1 Print Material

The current print material was determined in the Stratasys Dimension uPrint through

measurement of the status of the toggle head sensor. The filament drive mechanism contains a

single motor that drives both filaments, as shown in the following figure:

Figure 43 - Extrusion Motor Drive Mechanism [18]

 During extrusion, the model material filament enters through the red tube (shown above),

and into the toggle head assembly. This mechanism rocks back and forth to push either the

support or part material filament against the drive motor. The gantry head fitted to this rocker

mechanism has a mechanical switch that flips during the head position toggle maneuver. The

Toggle Head

Assembly

Extruder Motor

Extruder

Tip

75

output of this switch can be used to detect the current print material. To detect the extrusion rate,

extruder motor encoder feedback must be provided to the sentinel device (see Section 4.1.2).

However, this method for print material or extrusion rate detection was unreliable, since the

motor changed rotational directions and speeds frequently during an individual toolpath between

two specified coordinates. The extruder back-drives the filament before it reaches the last

waypoint in a toolpath to reduce superfluous extrusion caused by the die swell effect, which is a

characteristic expansion of filament as it passes through a convergent nozzle such as the extruder

nozzle [31]. This phenomenon causes the plastic filament to continue extruding despite a lack of

applied pressure. This unwanted extrusion is called drool, and it is one of the reasons that all

FDM parts contain a visible seam.

 Because of this reverse rotation at the end of the toolpath, the best method for detecting

current material usage was splicing and monitoring the signal from the toggle head sensor. The

toggle sensor output was therefore provided to the sentinel monitor, where a sentinel input

channel was dedicated to monitoring the print material signal.

4.2.2 Extrusion Rate

As previously mentioned, the extrusion rate can be retrieved from the encoder signal

from the extruder motor. The extruder motor in the uPrint is a precision Maxxon gear-motor

fitted with a high-quality quadrature encoder. The inclusion of an encoder in this system allows

for closed-loop control of the extrusion speed, providing both direction and speed data to the

controller. In order to interpret this signal, however, it is important to know the structure of

encoder signals.

76

There are two main types of encoders: incremental and absolute. An incremental encoder

only provides a signal when the motor’s position changes. A trigger device moves past a sensor

inside the encoder housing, causing a pulse train in the output signal as illustrated in the right-

hand side of the following figure:

Figure 44 - The Difference between Absolute and Quadrature Encoder Signals [32]

An absolute encoder, however, transmits a number that corresponds to the angle of the

encoder shaft. The absolute encoder signal is usually formatted according to some serial transfer

protocol. Absolute encoders have a distinct advantage over incremental encoders: absolute

encoders will not lose track of their overall position if they skip steps, making absolute encoders

better in applications for measuring precise angles where the machine might move faster than the

encoder can output data. However, when using an encoder to determine angular speed,

incremental and absolute encoders work equally well. The incremental encoder implemented to

measure the angular rotation of the extruder head in these experiments was quadrature,

producing two channels with pulse trains 90˚ out of phase (see Figure 44). The staggering of the

output channels (which signal leads or lags the other) indicates the rotational direction of the

shaft. The source channel of the leading output pulse indicates which direction the motor is

77

spinning. Thus, the output of the extruder motor’s quadrature encoder contains both the

rotational direction and the rotational speed of the encoder. The rotational speed of the extruder

motor is also known as the Extrusion Rate. It can be calculated from the time between successive

encoder counts according to the equation below:

𝐸𝑅 =
(𝐷𝑟𝑜𝑙𝑙𝑒𝑟)(𝑅𝑓𝑑)

(𝑡𝑐𝑛𝑡)(𝐶𝑃𝑅𝑒𝑛𝑐)
 (Eqn. 6)

Where 𝐸𝑅 is the Extrusion Rate, 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 is the diameter of the extruder’s toothed roller,

𝑅𝑓𝑑 is the final drive ratio of the gear transmission between the drive motor and the output gear,

𝑡𝑐𝑛𝑡 is the time between successive encoder counts, and 𝐶𝑃𝑅𝑒𝑛𝑐 is the number of counts per

revolution of the encoder. The Extrusion Rate also demonstrates when the extruder turns off. If

𝐸𝑅 drops to 0, then the motor is not spinning and no material is extruding.

An initial method for extrusion detection calculated the extrusion rate in real time, but

rapid fluctuations in the extrusion rate as it followed the onboard motion control chip’s

interpretation of the CMB file’s movement commands ultimately proved this method to be

impractical. A new method was developed to monitor the rotational status of the extruder motor,

but this proved problematic in the final testing stage. For final extrusion detection, a material

usage approach was applied, which recorded the total distance traveled by the extruder motor.

This method proved to be much more reliable, but it masked the overall detail in the extrusion

data. The reasoning for this alteration is detailed in Section 5.2.

4.2.3 Height Offset

The Height Offset parameter controls the road width of the printed filament as illustrated

in the figure below:

78

Figure 45 - Diagram of an Extruded Road

ABS filament is extruded through the liquefier nozzle at the extrusion rate 𝑣, while the

extruder’s gantry head travels at translational speeds �̇� and �̇�. The current Z axis position is

denoted as 𝑧, so the road width 𝑊𝑅 is directly controlled by the height offset ℎ and the extrusion

and travel speeds. The nozzle smooths the top layer of the filament as it runs, laying down a

uniform ribbon on the build tray. When the height offset is increased, the filament is more

severely deformed, increasing the road width. The road width can also be affected by variances

in the travel and extrusion speeds, as shown in the picture below:

79

Figure 46 - The Effect of Under- and Over-Deposition (Wrong height offset or travel speed) [33]

The travel speed for the uPrint is controlled by its move compiler. This on-board chip

interprets the parameters fed into the printer in the build file and calculates the proper travel

speeds and extrusion rate from the road width. The travel speeds could be obtained from the

incoming data stream from each encoder. It was discovered, however, that road width is

controlled solely through the extrusion rate, as the height offset parameters for the uPrint only

change with the current print material. The height offset is therefore only used to adjust each

waypoint’s Z location based on the current print material.

4.2.4 Extruder Tip Temperature

The Extruder Tip Temperature is perhaps the most important print parameter for an FDM

printer. As mentioned earlier, ABS plastic is amorphous, meaning that there is no real melting

temperature. Once the glass transition temperature is reached, the material starts the flow, but not

without high shear stresses in the flow field. In fact, the fluid shear stress in the liquefier is

strongly dependent on the fluid viscosity, which is a function of temperature [22]. To reduce

these shear stresses, the temperature must be increased, but increasing the tip temperature too far

can also have detrimental effects. Not only can polymer chain interactions suffer, but it has also

80

been found that certain compositions of ABS plastics, when thermally degraded, form toxic

hydrogen cyanide gas [9, 34]. It is therefore critical to keep the temperature in a range below the

boiling point of the filament and above the glass transition temperature for significant reduction

in fluid shear forces. The possibility for the emission of cyanide gas from normal ABS hints at

chemical attack vectors for enclosed operational environments through which normal or

deliberately altered materials could be made to release dangerous substances into the air that

might damage equipment and injure nearby personnel. Tip temperatures therefore require

constant supervision to ensure safe operation of printing equipment.

A Dimension uPrint with OEM material regulates the tip temperature to 210-215º C

during a typical build process. The sentinel devices utilized a specially-designed temperature

measurement system with a platinum resistive temperature detector (RTD) sensor implanted in

the printer’s tip shields to measure the tip temperature directly. The sensor was bonded to the

extruder tip with a small amount of thermal grease for reduced thermal contact resistance.

81

Figure 47 - RTD Implanted in Tip Shield (Shown separate from tip and without thermal grease for greater detail)

The RTD was wired to an analog to digital converter (ADC) that transmitted temperature

data over a serial peripheral interface (SPI) communication link to the sentinel processor. While

the RTD was slower to respond than a thermocouple, this RTD had a time constant between 1

and 2 seconds, which was well within the required design parameters for the sentinel [35]. The

RTD sensor was calibrated prior to installation in the machine to ensure correct operation.

The RTD circuitry was calibrated by heating a 500 mL beaker of water on a hot plate and

verifying proper temperature measurement at several set points. The temperature was stabilized

with the heater control of the hot plate using thermocouple feedback to determine when a

constant temperature was achieved. This feedback was provided by an Omega Type K

thermocouple plugged into an Omega MDSSi8 benchtop thermocouple thermometer. For

improved accuracy, a mercury thermometer was also placed in the beaker. The thermometer used

was a Fisherbrand model 15-041C mercury-filled glass thermometer, manufactured by Fisher

Scientific. This particular glass thermometer has a manufacturer-specified accuracy of ±0.3°C,

RTD Sensor

82

which is superior to both the RTD and K-type thermocouple measurement systems. RTD

readings on the LabVIEW interface were compared to the readings from the glass thermometer

at five different temperatures. The data from each measurement device is shown in Table 4:

Table 4 - Preliminary RTD Calibration Data for Attack Testing

Set Point Temp.

(C)

Glass Thermometer

Temp. (C)

RTD Temp.

(C)

Thermocouple

Temp. (C)

0 0.6 ± 0.1 0.74 ± 0.01 0.4 ± 0.2

25 25 ± 0.1 25.09 ± 0.12 24.6 ± 0.05

50 50 ± 0.1 50.17 ± 0.15 49.1 ± 0.05

75 75 ± 0.25 75.21 ± 0.16 73.1 ± 0.05

100 99 ± 0.25 99.5 ± 0.3 100.1 ± 0.1

The uncertainties recorded here represent the fluctuations in the temperature readings. It

is evident from these readings that the RTD data are more accurate than the thermocouple data.

The reduced reading uncertainty in the readout from the thermocouple bench thermometer is

suspect though, and the low fluctuation in the data is most likely due to the benchtop

thermometer’s on-board filtering algorithm for reducing the variance of the data output stream.

Although the printing temperatures fall outside of this range, this calibration was performed in

the 0-100°C range for ability to use water as the reference temperature bath since the glass

thermometer requires immersion in fluid for accurate readings.

4.2.5 XYZ Position

Monitoring the printing head’s XYZ position was incredibly important for defending

against the easiest-to-execute attack: movement or deletion of waypoints. There exist many

83

different ways to alter the geometry of the toolpaths sent to the printer, with some of these

methods being virtually undetectable. However, if a printer is fitted with a sentinel monitor, it

can check to make sure that each location was reached and the print parameters were acceptable

at those locations. Most commercially-available FDM printers are equipped with stepper motors

to drive each axis, and they usually run open-loop (only expensive industrial versions like the

Stratasys Fortus line utilize encoder feedback). Thus, encoders had to be fitted to each axis for

accurate position measurement.

The first iteration of the XYZ position sensing system implemented Avago AEAT-6012

12-bit absolute encoders. After running a significant number of tests, re-writing the driver code,

and then isolating the encoders out of the system for testing, it was determined that the encoders

were simply producing an unreliable signal. This variance was ultimately found to be the fault of

the magnetic compass chip used in the AEAT-series encoders. The spacing of the magnet from

the magnetic sensor is incredibly important for reliable data readout, but this is extremely

difficult to regulate inside of the printer. It was therefore decided that switching to optical

quadrature encoders and fixing the codewheel to the motor shaft was preferable. After

researching encoder options, the Avago HEDS-series encoder was found as a reliable quadrature

option. It also afforded the ability to be mounted intermediately on a shaft, which enables direct

motor mounting for both the X and Y axes. An Avago HEDS 9140-A00 quadrature encoder was

therefore chosen as the replacement for the unreliable AEAT-series encoders:

84

Figure 48 - New Avago HEDS Series Encoders for X, Y, and Z Axes

With intermediate shaft mounting abilities, the new encoders fit into the tight spaces not

previously accessible with the AEAT-series encoders. Direct mounting to the X motor was easily

achievable, but the Y motor shaft needed an extension. The motor shaft is accessible from the

rear, but it is not long enough to extend from the housing. An extended motor shaft was turned

on a lathe to mount the codewheel to the Y axis motor shaft:

85

Figure 49 - X Motor Encoder Final Mounting Scheme

Figure 50 - Y Motor Encoder Final Mounting Scheme

Encoder

Encoder

86

Initial iterations for the Z axis positioning used the Avago AEAT-6012 encoders as well,

but their failure led to the implementation of a hacked digital caliper for digital readout on the Z

axis. The calipers initially worked well for accurate Z positioning, but they ultimately could not

operate for long periods of time in the 77º C build environment. After several days in the heated

enclosure, the caliper-based system developed a drift inaccuracy and the sampling rate dropped

significantly. With the Avago HEDS-series encoders able to withstand temperatures above 100º

C, it was decided that a new position measurement system should be designed for the Z axis

around these optical encoders. Unlike the capacitive linear encoder signal from the calipers, the

optical signals from the HEDS-series encoders are not significantly affected by elevated heat.

The difficulty for the Avago HEDS encoders lies in the ability to mount the encoders to the Z-

table. An idler shaft utilizing rack and pinion gearing was designed for the Z axis, and the system

was CNC machined from 6061-T6 aluminum. The system is shown in the figure below:

87

Figure 51 - HEDS Encoder Mounting to the Z Table

The new Z axis measurement system handled the 77º C temperature of the build

environment quite well. The backlash in the rack and pinion drive system caused a small error in

the position readout, but the overall accuracy of the encoder system after calibration was ± 4

mils, a vast improvement over that of the AEAT-series encoder system. With the new encoders

mounted to the drive mechanisms, it was necessary to write a new encoder checking code. The

assembly driver code was much simpler than that for the AEAT-series encoders due to the

simpler transfer protocol for the HEDS-series encoders. See Appendix A for this code.

4.3 Sentinel CPU Design

The logic controller for the sentinel monitor had several important performance

requirements. First, it needed a relatively fast clock frequency to enable reading of the quick

Encoder

88

quadrature encoder feedback. Ease of assembly programming was also important, since

interpreted languages can waste precious processor resources. The microcontroller also needed

parallel processing abilities. With the many different sensor readings, a single processor with

interrupts would not have achieved the speed requirements in a deterministic way. Therefore,

only multicore processors were considered.

Since feedback signals were 10, 12, and 24-bit numbers (encoders and RTD ADC

output), it was also helpful to have a 32-bit processor to enable storing these numbers in one

register, rather than having to split registers up and perform 2 to 4 times as many operations. The

processor also needed a sufficient number of General Purpose Input/Output (GPIO) pins for

sensor/controller interfacing. This was a minimum of around 20 pins.

One important function of the logic controller was to interpret the CMB files to retrieve

the build parameters. The fixed-point method for simplifying calculations removed any

requirements for the processor to have floating point hardware (which is less common and found

in more expensive digital signal processing (DSP) microcontrollers). Reading the CMB files

directly meant that there must have been some way to transfer the CMB file to the logic

controller, namely some sort of flash memory interface. The ability to read a stored file from an

SD card is desirable for this reason.

The Parallax Propeller microcontroller was chosen for these operations. The Propeller

setup was overclocked to 100 MHz, making it sufficiently fast for reading samples from each of

the sensors. The Propeller chip itself is composed of eight parallel 32-bit processors, allowing

simultaneous reading and calculation of the individual sensor data. The Propeller also boasts 32

GPIO pins, which supported the sentinel’s hardware interface. It also allowed SD card reading

and writing, enabling the transfer of CMB files from a host computer to the sentinel. The SD

89

reading method enabled the Propeller to read waypoints directly from external flash memory,

providing parallel position-checking and CMB-reading operations on large files. Most

importantly, the Propeller chip is relatively inexpensive; it can be purchased in bulk for around

$4.

The Propeller supports a variety of different languages, but the sentinel code developed

through this work was an amalgamation of interpreted Spin code and Propeller assembly code.

Spin is a proprietary language developed for the Propeller chip, and while it works well with the

Propeller chip, assembly code is executed much more quickly than Spin, with the caveat of being

much more difficult to write. Assembly code was used in the sentinel code where speed

requirements could not be met with interpreted code.

4.4 Assembly Encoder Driver and Parameter Checking

The HEDS-series quadrature encoders employ a simple interface to the sentinel CPU.

There are two square wave pulse input channels per encoder (one pulse per channel per unit

movement). Three encoder drivers were written: one for the XY encoders, one for the Z encoder,

and one for the extruder encoder. These codes ran on parallel processors to maximize the read

speed of the Z and extruder encoder driver. The XY encoder driver started by reading the state of

the X encoder’s output pins, then checking for a change from the previous output state. If there

was no change, it moved to the Y encoder. It then watched for each of the four possible

quadrature output cases (there were 2 output bits, and therefore 22 possible output cases). The

quadrature output signals from the encoder are 90º out of phase from each other, so one of the

sensors has to trigger first. The assembly code driver inferred rotation direction from these

90

signals by testing which sensor output a high pulse first. It also calculated the angular velocity of

the encoder by reading the pulse width of the encoder output channels.

4.4.1 Use of Fixed-Point Notation for Waypoints

One major feature of the encoder driver was the implementation of fixed point notation in

the code. It was determined that mil-accuracy (±0.001 in) was more than sufficient for the

checking algorithm, so a scaling factor of 1000 was chosen and all floating point values were

replaced by fixed-point values. The SD card reader code was re-written to convert and accept

this new fixed-point format. Multiplication and division functions were also written into the

assembly encoder codes to enable scaling the axial positions to the fixed-point format. The

motivation for the fixed-point conversion was this: fixed-point decimals do not require the use of

an extra processor for the floating-point driver. In fact, assembly methods can perform

operations on the fixed-point values in the code, since they are stored as signed integers. This

allowed for the removal of the floating-point driver cog (processor), the FloatMath object, and

the Spin method running the floating-point calculations. Deleting all of these methods freed a

large amount of valuable processing power and increased the speed of the operations. Converting

the positions and build file waypoints to scaled, fixed-point format allowed the parameter

checking algorithm to move into assembly code, increasing the speed dramatically from a Spin

version of the same code.

4.4.2 Assembly Checking Method Structure

Parameter checking speeds increased dramatically upon conversion of the parameter

checking method to assembly. To increase the overall speed of the parameter checking

91

algorithm, waypoint reading was also revised. The old version of the checking algorithm read the

parameter set for one point, waited until that point’s parameters were achieved, and then

retrieved the next parameter set from the SD card. These SD read operations took a fair amount

of time, and reading sequentially slowed down the algorithm considerably. A buffer was

therefore implemented into the code to help speed up parameter checking. When the SD method

was called, the code retrieved the next 50 points instead of just the next one point. Data was

loaded into global memory (Hub RAM), then the code started an assembly checking cog, loading

the parameters for each point onto the Cog RAM (local memory for that processor) where they

remained for the duration of that assembly cog’s run. Meanwhile, the next 50 points were

retrieved from the SD card and stored in Hub RAM. A second assembly checking cog was then

started with the next 50 coordinates, but it waited for a flag variable to be set by the first cog.

When the 50th data point was checked off the list, the first assembly checking cog set the flag

variable and halted execution. The second assembly cog read the flag and began checking points

51 through 100. This loop continued until the end code in the build file was reached.

4.4.3 Adding Tolerances to the Waypoints

Each waypoint in the CMB file was sent to the uPrint’s motherboard. However, the

motherboard rounded these values to the nearest thousandth of an inch (1 mil), providing a

source of rounding error, 𝐸𝑅. There was also an error associated with the random deviation from

the encoders, 𝐸𝑑𝑒𝑣,which is ± 3 mils. These errors combined according to the total variance

formula to yield the error from the curve fit for the encoder calibrations. The errors exhibited in

the X and Y calibrations, 𝐸𝑐𝑎𝑙, were rounded up to ± 4 mils. To allow for slight movement

errors, the tolerance band for accepting a given position was elevated above this 4 mil minimum

92

to a liberal 10 mils. This allowed for early acceptance of points within a 20 mil-wide square of

the expected waypoint, giving the next point time for acceptance. The minimum feature size in

the crack specimen was approximately 30 mils, so this acceptance algorithm still detected these

features. In the sparse in-fill, filaments spaced 24 mils apart will still bond to one another, so this

detection method was able to easily detect if adjacent filaments were bonded together or had an

air gap between them.

4.5 Sentinel CPU Wiring and Sensor Interface

A prototype sentinel monitor was built for testing in the 3D printer use case. This

prototype was built first on a breadboard, then soldered to perf board as a more permanent

solution. The wiring diagram is shown below:

93

Figure 52 - Wiring Diagram of Prototype Sentinel Monitor

The AD7711 RTD ADC uses an SPI interface, but it requires a few extra pins to set its

internal control registers. These control registers control the output mode of the ADC and change

certain behaviors such as filtering and sampling frequency. Pins 30 and 31 on the Propeller were

reserved as RX and TX for serial communication with the host PC. This is mainly helpful for

debugging code, since RAM-addressed registers can be sent to the host PC over this connection.

94

 The perf-board version of the sentinel CPU is shown in the figure below:

Figure 53 - Perf-Board Version of Sentinel CPU

While the sentinel was designed as a self-contained unit, it is noteworthy that this board

could be integrated into the printer’s hardware as long as proper isolation procedures are taken to

ensure the system security of the sentinel device in the event of a machine hack.

95

4.6 The Importance of Cost

The individual technologies at work inside of this sentinel device have existed for

decades, but the widespread implementation of such a sentinel device has recently become much

more feasible due to a drastic reduction in cost of implementing these technologies. It was

determined during the design stage that the entire sentinel device should not exceed $250 in parts

to maintain feasibility of the use of a sentinel monitoring device as a security measure. The costs

of all the individual parts used are listed in the following table:

Table 5 - Parts List for 3D Printer Sentinel

Quantity Description Unit Price Line Total

3 Avago 9140-A00 Encoder $ 29.53 $ 88.59

3 Avago 5140-A06 Codewheel 19.95 59.85

1 AD7711 RTD ADC 38.77 38.77

1 Propeller Chip 7.99 7.99

1 I2C EEPROM 1.50 1.50

2 Linear Voltage Regulators 1.50 3.00

1 RTD Sensor 22.00 22.00

 Subtotal $ 221.70

There are of course extra costs, such as hookup wire and circuit boards, but large scale

sentinel production would substantially reduce the overall manufacturing cost. The marginal

price increase of even $250 to this $25,000 machine justifies its inclusion for secure system

operation.

This design process encourages the application of a system monitor to 3D printing

systems to ensure proper printing behavior. The low cost of this sentinel monitor also allows for

the possibility for this system to be used in a quality assurance manner. There are currently no

96

methods for prediction of fracture behavior for 3D printed parts based on monitoring the printing

parameters.

4.7 A Robust Design

Even though low cost was a major design parameter, only trustworthy, industrial-grade

IC chips and sensors were used in the final version of the sentinel device. The flaws encountered

in the initial absolute encoder system challenged the robust nature of the design and therefore

needed to be addressed. The new HEDS-series encoders contribute to a robust mechatronic

design for the positioning system.

The thermocouple-based temperature sensor employed by the uPrint also showed signs of

irregularity. The RTD used in the sentinel was chosen for its improved accuracy and reliability

over this thermocouple measurement system. The sources of variance were actually somewhat

surprising for the thermocouple system; the Type K thermocouples used have a specified

accuracy of either ±1.1º C or ±2.2º C, while the Analog Devices thermocouple amplifier IC chip

specified another 4º C of inaccuracy [36]. The temperature experiments yielded significant

changes in strength even at 10º C change in tip temperature, proving that the thermocouple

measurement system is non-ideal for this environment. The RTD temperature measurement

device, while nearly 4 times as expensive to implement as a simple thermocouple measurement

circuit, provided much more accurate temperature feedback with less random noise in the output.

The specified accuracy for the RTD is ±0.15º C, while the accuracy for the RTD ADC chip is

±0.45º C [37]. The disadvantage of using RTDs is the slower response time, but this particular

RTD has a time constant of 1.5 seconds, which is acceptable considering the overall thermal

97

mass of the heater assembly. This hardware alteration was a trade-off: better accuracy and a

steadier output signal at the expense of a speedy response.

To maintain this high level of integrity in the sentinel device, each section of the sentinel

code was tested both individually and in combination with the entire sentinel system. Drivers for

any malfunctioning subsystems were isolated from the sentinel code for debugging. This

expedited debugging processes due to the isolation of variability.

The dynamic properties of the printer also taxed the software limitations of the sentinel,

requiring each method’s optimization for speed. The axial speeds of the gantry head caused

positions to change a few mils per millisecond, meaning that position updating and checking had

to occur even faster. Of the eight individual methods running on the sentinel device, five of those

methods were written in assembly. The faster execution time afforded by assembly code

necessitated its use, even though debugging the assembly code took much more time and effort

than debugging Spin code would have taken. Designing such a complicated system requires

sacrificing some performance characteristics to meet the performance requirements in other

areas. Thus, ease of programming and debugging was sacrificed for faster operating speed.

98

Chapter 5 – Sentinel Testing

5.1 Building a Foundation – Initial Testing

Before running initial tests on such a complicated system, it was important to test each

subsystem individually, and the first subsystem chosen for testing was the XYZ positioning

system. Bench tests were run to display the current encoder position, starting with just one axis

and then expanded to include every axis. I/O signals were monitored on an oscilloscope, and

position data was read into the Parallax Serial Terminal (PST), a simple serial interface between

the Propeller chip and the host PC. When all three encoders correctly tracked idler shafts on the

bench, they were then installed into the machine and interfaced with their respective drive

systems. Tests were then run with the encoders installed in the machine. Movement commands

were sent to the uPrint via a diagnostics port on the rear. A USB-to-RS232 converter cable was

used to bridge the host PC with the diagnostics port on the printer, allowing direct

communication with the uPrint’s motherboard. This allowed direct control of the X, Y, and Z

stepper motors with the ability to move them to a set coordinate (in inches zero-referenced from

the machine’s own zero location). Duplex communication with the uPrint was achieved through

a serial terminal (Tera Term) that was calibrated to the proper serial protocol for the machine.

5.1.1 Calibrating the XYZ Axes

While the assembly driver retrieved the XYZ positions, it returned them in units of

encoder counts. The XYZ positions had to be calibrated against machine coordinates and

converted to inches. Machine coordinates were obtained using Tera Term (a freeware serial

99

terminal interface program) and the serial diagnostics port. The head was moved to a particular

XYZ position using the “Move X”, “Move Y”, and “Absolute Z” commands in the terminal.

With the relationship between these machine coordinates and the encoder counts, it was then

time to translate the encoder position feedback into the scaled, fixed-point format. Linear fits

were taken from the data in Excel and applied to assembly-language formulas on the Propeller

chip. These fits are displayed in the plots below:

Figure 54 - X Axis HEDS Encoder Calibration with Line of Best Fit

100

Figure 55 - Y Axis HEDS Encoder Calibration with Line of Best Fit

Figure 56 - Z Axis HEDS Encoder Calibration with Line of Best Fit

101

5.1.2 Adding Extrusion and Material Usage Detection

The material and extrusion detection methods were tested upon successful calibration of

the XYZ positioning system. A low-pass filter circuit was added to the material detection circuit

to smooth out high frequency noise in the signal. Initial extrusion detection methods worked

properly, detecting proper extruder status. Testing was therefore expanded to include sentinel

monitoring of a simple print process.

5.1.3 Simple Square

A simple test part was printed with this newly-calibrated location-tracking system. A

build file was created to include seven waypoints to draw the perimeter of a square (some

waypoints are used to jog or turn the extruder on and off). XYZ position data was logged with

the encoders, and a graph of the recorded X-Y position data is shown in Figure 57:

Figure 57 - First Practice Print – Expected Outcome (Left) and Recorded Outcome (Right)

102

As shown in Figure 57, the position data was on-point, falling in the linear

interpolations between the waypoints. The extraneous points at the top were jog moves that

the sentinel was expecting at that point in the process. Since this was a single layer print, the

Z position stayed the same the whole time at a value of 0.013”. This test proved proper

operation of the XYZ encoder system so the test was repeated with the extruder and material

feedback. With these methods included, the sentinel was able to verify each point in the print

file and detect the printing faults/deviations implanted in the emulated cyber attack during

the printing process.

5.1.4 12-Layer Print Test

The square file above was then modified to include a support raft along with an extra

layer of part material. A support raft is a sparsely-filled support structure printed between the

build plate and the bottom of the model. Since a raft is a filled pattern, the extruder rasters very

103

quickly on the interior of the part. The perimeter toolpaths (without internal fill paths) of this part

are shown in the figure below:

Figure 58 - 12-Layer Print (Shown in the Insight Pre-View Window) - The internal fills in the raft are not visible in this view

The internal raster patterns are some of the fastest movements in a 3D printer’s motion

profile and they therefore set the maximum required sampling rate for the encoders. With the

assembly-driven HEDS-series encoders, all XYZ positions updated properly, and testing then

shifted towards the material and extrusion detection. With assembly checking of the current print

material, even the fast movements of the internal fill pattern were validated by the sentinel. They

were also spaced far enough apart to produce a clean on/off signal from the extrusion detection.

It was therefore time to move on to a full-scale sentinel test: the ASTM D638 Type II test

samples described in Chapter 3.

104

5.2 ASTM Sample Testing with Sentinel Detection

With sentinel detection working for the multi-layer print job, full-scale detection was

tested on the ASTM samples used during the attack testing cases. The control specimen was

tested first to ensure acceptance of the non-attacked control specimen. While the material and

XYZ location detection algorithms worked well for this case, it was determined that real-time

extrusion detection algorithm worked improperly for the full-scale case. The higher point density

of the ASTM part resulted in increased noise in the feedback signal from the extruder encoder. It

was discovered that the encoder system is driven by a PMD motion processor, which applied the

encoder feedback to PID control algorithms to provide smooth extrusion control despite the

gantry head’s acceleration and jerk. A proper extrusion prediction method would require

emulation or utilization of this motion processor chip, since it took the constant extrusion data

and calculated the required variation of the extrusion rate. For this reason development of a real-

time monitor for the extruder was abandoned. The high point density and tight concentration of

s-curves in the interior fill of the ASTM sample caused the PMD controller to rapidly ramp the

extrusion rate up and down, resulting in sporadic changes in the extruder’s rotational speed. A

new, much simpler methodology was therefore applied to monitor extruder feedback via the

sentinel. The sentinel was simply provided with the total distance that the extruder should travel

during a part. Assuming no slip between the plastic filament and the traction wheel on the

extruder, this distance is proportional to the total volume of plastic extruded by the printer.

105

5.2.1 Control Specimens

Two non-attacked ASTM control specimens were printed while the sentinel logged the

usage of model material in the aforementioned manner to calibrate the material usage. Detecting

the presence of cyber attacks during printing therefore required the sentinel to compare the

material usage of the build process to that of the validation case. From the control sample,

validated material usage falls in the range of 17,438,750 – 17,439,250 counts. A count is defined

as a change in the quadrature output signal, thus increasing or decreasing the encoder position.

With the checking algorithms working and the unhacked samples approved by the sentinel,

testing of the compromised ASTM specimens started.

5.2.2 Switching Model Material for Support Material

Execution of the first attack resulted in the sentinel’s rejection of the print job. While the

sentinel received the validated file, the printer received a file with one small portion of the

interior fill switched to support material. The sentinel failed to accept any points of the interior

fill pattern with incorrect material usage. The printing defect resulting from this cyber attack was

therefore successfully detected.

5.2.3 Reducing the Road Width

The second attack was detected using the extrusion volume method outlined above. The

file sent to printer contained an altered internal fill in a small portion of the gauge section in

which the road width was altered to half of that of the control specimen. All of the XYZ

106

positions were met during the printing process and the sentinel accepted each location. However,

at the end of the job, the overall material usage deviated from that of the control case with a

significant decrease in volumetric extrusion. The altered road width introduced into the internal

fill pattern through this cyber attack was successfully detected due to this variance in overall

extrusion.

5.2.4 Inserting a Notch Into the Part

This attack test turned off the extruder at a specified location in the internal fill pattern,

creating a small notch inside the model. When this altered file was sent to the printer, the sentinel

detected proper material usage and achievement of XYZ coordinates. The extrusion volume

parameter, however, was skewed slightly. The build process for this attack recorded an extruder

travel of approximately 17,428,000 counts. This demonstrates a reduction of approximately

11,000 counts from the unhacked sample, with the extruder travel falling outside the acceptable

range. This print job was therefore found invalid by the sentinel monitor and this cyber attack

was detected.

5.2.5 Inserting a Seam into the Part

The fourth attack proved undetectable without precise detection of the current extruder

state. To detect an additional part seam, the sentinel must be able to tell if the extruder halts

during a certain toolpath. Since the overall material usage is not affected by an additional part

seam, the extrusion volume measurement does not indicate extruder stoppage. Detection of this

attack thus requires deeper knowledge of the control system governing the extruder behavior as

107

well as more complex sentinel code. The sentinel used in these experiments was designed for

simplicity, high sampling rate, and low cost. Inclusion of reliable real-time extrusion checking

would drive the cost of the sentinel device up given the more complicated nature of system that

the printer utilizes for extruder operation. Thus, the development of a more complex sentinel

method for extruder checking is left for future research.

5.2.6 Reducing the Extruder Temperature by 20º C

Detection of the fifth and final attack requires installation of the temperature detection

equipment and interfacing the temperature-checking software with the current sentinel code. The

code required small changes for pin declarations and overall simplification of the operation, but

completion of these changes provided the sentinel monitor with accurate tip temperature

feedback. The temperature print logs and stress/strain plots from the ASTM testing were

examined to determine appropriate acceptance ranges for the sentinel definition. The shortened

samples used in the prior testing were also used for the detection experiments. Print temperatures

were found to vary by approximately 5º C throughout the build process, requiring a range to be

specified for the sentinel’s temperature acceptance criteria. With the control print temperature of

210º C, the stress and strain plots exhibit a reduction in strength and elongation at 200º C, while

the apparent strength and elongation at temperatures up to 230º C showed significant increase.

The 230º C sample showed significantly better mixing than the control sample, and the flexural

delamination (or interlayer bond) strength increased drastically. The acceptance range for the

model temperature was therefore set between 200º C and 230º C. For the control case, the model

tip temperature averaged 213º C in the grip section and 208º C in the gauge section of the

specimen, well within the acceptable range. However, when the attack case was introduced and

108

the model tip temperature was adjusted to 190º C, the sentinel failed to accept the first point that

read under 200º C, rejecting the attacked part. The sentinel therefore successfully detected a

potential cyber attack on the extruder’s temperature setpoint.

5.3 Sentinel Testing Results

These tests proved that a sentinel monitoring device can properly detect the existence of

printing faults in a 3D printing process. While the fourth attack went undetected, more

complicated sentinel hardware and software could solve this issue. Better extruder checking

methodology and understanding of the uPrint’s hardware and parameter manipulation would be

required for more robust real-time extruder feedback. The XYZ position, material, and

temperature checking systems, however, properly detected their respective attacks. The fast

sampling rate achieved through the use of assembly code combined with reliable sensors

afforded the ability to check highly point-dense files for printing faults.

5.4 Limitations of this Study

The prototype sentinel monitor described in this thesis served as an initial proof of

concept for the application of System-Aware Cyber Security solutions to additive manufacturing

techniques. However, this study focused only on one 3D printing technology: Fused Deposition

Modeling (FDM), also referred to as Fused Filament Fabrication (FFF). FDM was chosen for

this application due to its popularity and relatively low cost. FDM printers are used

predominantly for home, office, and engineering design, making them arguably the most widely-

109

used 3D printers, producing models with some of the strongest mechanical properties of any

polymer-based additive manufacturing process [9]. The principles applied to the uPrint sentinel

monitor have laid a foundation for sentinels protecting other 3D printer technologies. In its

current state, the sentinel monitoring system needs to be customized to each printer, requiring

extensive setup time and wide variances in cost from machine to machine.

Only the five most obvious attacks were considered for protection. The sentinel hardware

and software was designed to monitor only the affected parameters, leaving some attack

vulnerabilities in the prototype system. A fully-realized sentinel monitor would monitor all print

data, not just the relevant parameters monitored by the prototype system. One way to improve

these traits would be to add more precise sensor calibration or more expensive sensors and

transducers. The lab equipment used for RTD calibration was unable to replicate the 230º C

conditions seen in the extruder tip (boiling water was used for calibration, which could not

exceed 100º C). Thus, points for the calibration curve were gradually increased to the maximum

temperature that the calibration setup could support, and the RTD ADC calibration registers were

set there. A hotter and more stable heat source would yield more accurate values for the RTD

ADC calibration registers throughout the entire experimental temperature range.

110

Chapter 6 – Conclusions and Future Work

6.1 Security Concerns for Advanced Manufacturing

The work summarized here is a case study for the System-Aware Cyber Security solution

proposed by Jones and Horowitz specifically applied to an additive manufacturing system [15].

The current shift toward the use of additive manufacturing technologies from proof-of-concept

prototypes towards the fabrication of critical components necessitates the security and quality

assurance of 3D printing processes. In use cases such as 3D printed airplane wing spars, model

failure must be avoided at all costs. Malicious attacks on machines creating structural

components such as these could result in major losses of life.

A computer-based sentinel device can react to printer operations much more quickly and

precisely than any human-based monitoring system. The mechatronic nature of 3D printing

technologies requires new security procedures since physical outputs are not monitored through

traditional perimeter and network security methods. The case study previously presented by

Jones and Horowitz involved the application of a sentinel monitor to a UAV control system,

demonstrating the basic ability of the sentinel to search data streams for illogical data outputs

that resulted from logical data inputs [15]. A 3D printer, however, takes data inputs and

transforms them into physical outputs, making small process deviations difficult to detect. These

physical outputs must therefore be measured with properly-calibrated sensors implanted in the

printer. Thus, our definition of a sentinel monitor expands to include not only a logic controller

that processes input and output data streams, but also any related peripheral devices, including

sensors and instrumentation IC chips required to interpret the sensor data.

111

These findings place the security responsibility on either printer manufacturers or private

sentinel manufacturers. A typical consumer would be unable to develop the required sentinel

hardware and software without detailed knowledge of the internal working of the machine and

advanced manufacturing capabilities. For example, each encoder mount for this sentinel

application was fabricated in a machine shop on precision equipment to ensure the proper

alignment of the encoder codewheels and sensors. Temperature sensors were carefully secured

with aluminum-oxide epoxy to withstand the high temperatures experienced by the extruder tip.

The sentinel protection algorithms also required in-depth knowledge of the printer’s architecture.

For the printer manufacturer, however, inclusion of a secure monitoring system is easily

achievable. Original Equipment Manufacturer (OEM) equipment could be built with the sentinel

as a design consideration, easing the burden of custom instrumentation.

6.2 Future Work

This preliminary research effort was successful in demonstrating the risk of cyber attacks

to additive manufacturing processes and the testing of a prototype monitoring system (sentinel_

to detect such attacks. Further work is needed to explore the following related options, the study

which were beyond the scope of this project:

6.2.1 Extension to Metal Printing

With the increasing interest in 3D printing components for assemblies, the security risks

associated these mechatronic systems must be addressed. The next logical step when expanding

the System-Aware Cyber Security solutions proposed in this paper would be to apply it to the

112

design of a secure sentinel monitor for industry standard metal 3D printers, such as those made

by Arcam or EOS. The security vulnerabilities in metal 3D printing technologies are extremely

relevant to this study because they afford a cyber attacker the ability to induce catastrophic

failures in critical metal components. Modification of the uPrint sentinel designed through this

research for use in metal 3D printers would require a new array of sensors, sensor drivers, and

sensor/processor interfaces. However, the overarching concepts explored in this study are

directly applicable to metal printing techniques. Many analogous build parameters exist between

FDM and metal technologies (tip temperature versus laser intensity, beam positioning versus

extruder nozzle positioning, etc.) and the monitoring process developed for the sentinel could be

adapted for a metal printing process.

6.2.2 Extrusion Rate for FDM Sentinel

The next step in the development of a better sentinel design would involve improvement

to the current extrusion rate measurement and prediction system. The prototype sentinel was

unable to properly predict the printer’s extrusion operation because the gains used on the on-

board motion controller were not precisely known. With deeper knowledge of the printer’s

calculation of the extrusion rate based on the specified road width and the dynamic behavior of

the extruder, the sentinel would have been able to properly predict and detect all changes to the

extrusion rate during printer operation and therefore be able to successfully detect the seam

attack Further research is therefore needed for the inclusion or emulation of more complicated

system architectures on the sentinel device itself.

113

6.2.3 Diverse Redundancy

Diverse redundancy is the parallel operation of two boards of different architecture.

Dynamically hopping between outputs from each of these boards protects the security of the

system by making the entire system more difficult to enter (attackers must learn the details of

each individual system or gain influence in multiple suppliers before they can attack the system).

Printer security could be further increased through the implementation of a diversely redundant

sentinel. Since sentinel hardware is inexpensive, cost increase due to implementation of diverse

redundancy would be marginal. Further research focused on the application of diverse

redundancy techniques to a 3D printer sentinel would more effectively shield sentinel operations

from cyber attackers.

6.2.4 Fault Isolation

Another important area for further research is fault isolation. Fault isolation is defined as

the ability of the machine to precisely detect a printing fault’s origin, effects, and suggested

remedial actions. When this prototype uPrint sentinel detected a printing fault, the sentinel

ceased its operation and recorded the first point that exhibited unacceptable build parameters.

Applying fault isolation techniques might expand this behavior to alert the operator of the

subsystem in which the fault originated. However, some build parameters might carry more

weight than others, as illustrated through the tensile test results from the attack specimens. A

point system could help quantify the severity of the attack and its affect to the fracture strength

(points assigned for the amount of deviation from the expected toolpaths, temperature

differentials, etc.). More research is also needed to determine appropriate remedial actions. For

114

instance, notification of a printing fault should signify certain repairs to the machine or network

security, with attack severity governing these remedial actions. The desire to reduce machine

downtimes drives the need for fast responses to malicious attacks. In large-scale manufacturing

facilities, printer inactivity due to industrial sabotage could be catastrophic. The inclusion of

suggestive corrective actions after an attack has been detected would therefore be a desirable

feature in a next-generation sentinel monitoring system.

115

References

[1] Albright, D., Brannan, P., & Walrond, C. (2010). Did Stuxnet Take Out 1,000 Centrifuges at

the Natanz Enrichment Plant?. Institute for Science and International Security.

[2] (2014). 3D printing company cited by OSHA after explosion, facing $64,400 in penalties

[Web log post]. Retrieved from:

http://www.3ders.org/articles/20140522-3d-printing-company-cited-by-osha-after-

explosion-facing-in-penalties.html

[3] (2013). J-15 Chief Architect: 3D printing used in developing new fighter jet [Web log post].

Retrieved from

http://www.3ders.org/articles/20130304-j-15-chief-architect-3d-printing-used-in-

developing-new-fighter-jet.html

[4] An, H., Rui, Z., Wang, R., & Zhang, Z. (2014). Research on Cutting-Temperature Field and

Distribution of Heat Rates Among a Workpiece, Cutter, and Chip for High-Speed Cutting

Based on Analytical and Numerical Methods. Strength Of Materials, 46(2), 289-295.

 [5] Griffey, J. (2014). The Types of 3-D Printing. Library Technology Reports,50(5), 8-12.

[6] Hull, C. W. (1986). U.S. Patent No. 4,575,330. Washington, DC: U.S. Patent and Trademark

Office.

[7] Lifton, A.V., Lifton, G., & Simon, S. (2014). Options for additive rapid prototyping methods

(3D printing) in MEMS technology. Rapid Prototyping Journal, 20(5), 403-412.

[8] Diegel, O. (2011). Additive manufacturing: the new industrial revolution. Lancaster

University, Lancaster, UK.

[9] Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies.

Springer, New York, NY.

[10] Comb, J. W. (2003). U.S. Patent No. 6,547,995. Washington, DC: U.S. Patent and

Trademark Office.

[11] Crump, S. S. (1992). U.S. Patent No. 5,121,329. Washington, DC: U.S. Patent and

Trademark Office.

[12] Rodriguez, J. F., Thomas, J. P., & Renaud, J. E. (2000). Characterization of the

mesostructure of fused-deposition acrylonitrile-butadiene-styrene materials. Rapid

Prototyping Journal, 6(3), 175-186.

[13] Bellehumeur, C., Li, L., Sun, Q., & Gu, P. (2004). Modeling of bond formation between

polymer filaments in the fused deposition modeling process. Journal of Manufacturing

Processes, 6(2), 170-178.

116

[14] Paulsen, C., and Dempsey, K. (2014). Risk Management for Replication Devices. National

Institute for Standards and Technology.

[15] Jones, R.A. & Horowitz, B.M. (2012). System-Aware Cyber Security Architecture, Journal:

Systems Engineering, Vol. 15 (2), pp. 224-240

[16] Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2010). Parametric appraisal of fused

deposition modelling process using the grey Taguchi method. Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture, 224(1), 135-145.

[17] Paulsen, C. (2015). Direct Digital Manufacturing (DDM) Symposium. National Institute for

Standards and Technology.

[18] Stratasys, Inc. (2012). uPrint® and uPrint® Plus uPrint® SE and uPrint® SE Plus Service

Manual. Stratasys, Inc., Eden Prairie, MN.

[19] Stratasys, Inc. (2011). Characterization of Material Properties: Fortus ABS-M30. White

Paper, Stratasys, Inc., Eden Prairie, MN.

[20] N. Turner, B., Strong, R., & A. Gold, S. (2014). A review of melt extrusion additive

manufacturing processes: I. Process design and modeling. Rapid Prototyping

Journal, 20(3), 192-204.

[21] Rosenzweig, N., & Narkis, M. (1981). Sintering rheology of amorphous polymers. Polymer

Engineering & Science, 21(17), 1167-1170.

[22] Bellini, A., Guceri, S., & Bertoldi, M. (2004). Liquefier dynamics in fused

deposition. Journal of Manufacturing Science and Engineering, 126(2), 237-246.

[23] ASTM D638 – 10. (2010), Standard Test Method for Tensile Properties of Plastics, ASTM

International, West Conshohocken, PA

[24] Ziemian, S., Okwara, M., & Ziemian, C. W. (2015). Tensile and fatigue behavior of layered

acrylonitrile butadiene styrene. Rapid Prototyping Journal, 21(3), 270-278.

[25] Leong, K. F., Cheah, C. M., & Chua, C. K. (2003). Solid freeform fabrication of three-

dimensional scaffolds for engineering replacement tissues and

organs.Biomaterials, 24(13), 2363-2378.

[26] Stratasys, Inc. (2015). ABSplus-P430 Production-Grade Thermoplastic for Design Series

3D Printers. Material Spec Sheet, Stratasys, Inc., Eden Prairie, MN.

117

[27] Rodríguez, J. F., Thomas, J. P., & Renaud, J. E. (2001). Mechanical behavior of

acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental

investigation. Rapid Prototyping Journal, 7(3), 148-158.

[28] Miller, R. J., & Derakhshan, M. (2002, March). The Invisalign System: Case report of

apatient with deep bite, upper incisor flaring, and severe curve of spee. In Seminars in

Orthodontics (Vol. 8, No. 1, pp. 43-50). WB Saunders.

[29] Tadjdeh, Y. (2014). Navy Beefs Up 3D Printing Efforts With New ‘Print the Fleet’ Program

[Web log post]. Retrieved From

 http://www.nationaldefensemagazine.org/archive/2014/October/Pages/NavyBeefsUp3DP

rintingEffortsWithNewPrinttheFleetProgram.aspx

[30] Jones, R.W., Mace, B.R., & Tham, M.T. (2002). “The Evolution of Mechanical Engineering

Curricula: Mechatronics.” International Conference on Education, Manchester, UK.

[31] Rauwendaal, C. (1986). Polymer extrusion. Hanser Gardner Pubs.

[32] Gabay, J. (2012). Motor Sensing via Rotary Shaft Encoders Assures Safety and Control

[Online article]. Retrieved from

http://www.digikey.com/en/articles/techzone/2012/aug/motion-sensing-via-rotary-shaft-

encoders-assures-safety-and-control

[33] N. Turner, B., & A. Gold, S. (2015). A review of melt extrusion additive manufacturing

processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping

Journal, 21(3), 250-261.

[34] Brebu, M., Bhaskar, T., Murai, K., Muto, A., Sakata, Y., & Uddin, M. A. (2004). Thermal

degradation of PE and PS mixed with ABS-Br and debromination of pyrolysis oil by Fe-

and Ca-based catalysts. Polymer Degradation and Stability,84(3), 459-467.

[35] US Sensor. (2006, revised 2009). Platinum RTD Sensor P/N PPG101A6. PPG101A6

Datasheet.

[36] Analog Devices. (1999). Monolithic Thermocouple Amplifiers with Cold Junction

Compensation, Rev. C. AD595 Datasheet.

[37] Analog Devices. (2004). LC2MOS Signal Conditioning ADC with RTD Excitation

Currents, Rev G. AD7711 Datasheet.

118

Appendix A – Sentinel Assembly Code

{
This is the sentinel code developed for a Dimension uPrint 3D printer. This code monitors
the XYZ position of the printing head,
 the tip temperature of the model extruder, the status of the material sensor, and the
position of the extruder motor.
For proper initialization, this code must be run when the printer is physically at its
home position where X, Y, and Z are all zeroed.
The code below was originally all written in Spin, but slow refresh rates justified the
change to assembly code.

Cog Usage:

- Cog 0: Loads SD coordinates onto assembly cogs, then tells assembly cogs to run. Also
runs serial communication (Simple_Serial object) for debugging
- Cog 1: Runs SD card driver
- Cog 2: Assembly - Reads X and Y motor encoders
- Cog 3: Reserved for AC1
- Cog 4: Reserved for AC2
- Cog 5: Reads quadrature encoder on extruder motor (measures total position traveled by
extruder motor)
- Cog 6: Assembly - Reads Z axis encoder
- Cog 7: Assembly - Reads temperature data from RTD ADC chip
}
CON
 _clkmode = xtal1 + pll16x'Overclocked clock mode * crystal frequency = 100 MHz
 _xinfreq = 6_250_000

 ''Serial RTD ADC Pins
 AO=0
 SDATA=1
 DRDY=2
 RFS=3
 TFS=4
 SCLK=5

 ''Quadrature Z Encoder Pins
 zQuadA=6
 zQuadB=7
 ''Quadrature XY Encoder Pins
 xQuadA=8
 xQuadB=9
 yQuadA=10
 yQuadB=11
 ''Quadrature Extruder Encoder Pins
 Model=12
 Support=13
 ExtrQuadA=14
 ExtrQuadB=15
 ''SD Interface Pins
 DO=22
 SD_CLK=23
 SD_DI=24
 CS=25

 ''Simple_Serial Constants

119

 HOME=1
 TAB=9
 CR=13
 CLS=16

 ''RTD ADC Constants
 controlRegister=%1011_1000_1101_0001_0100_0110 'See pp. 9-10 of AD7711 datasheet

 {
 - RTD excitation current turned on
 - Background calibration mode enabled
 - Unipolar operation
 - PGA gain set to 64
 - Word Length set to 24 bits
 }

 ADCmax=16_777_215 'Max ADC unit is 2^24-1, which is 16,777,215
 Vdd=5 'Supply voltage is 5V, internal reference voltage is 2.5V
 Aexc=200 'Excitation current is 200 microamps

VAR

''CMB/SD Card Variables
long m, n, DP, cmbByte, PM
long addressPM, addressX
byte lowerByte, upperByte

''Encoder Assembly Variables
long xPosit, yPosit, zPosit, units

''Extruder Assembly Variables
long printMaterial, periodCounts, roadWidth, ExtruderPosition

''Position Checking Assembly Variables
long C1, C2, C3, flagA, flagB, DPNumber, end, loadedA, loadedB, expectedMaterial

''Failure Variables
long extruderMisses, correctMaterial, correctExtruder

''RTD Variables
long RTDtemp, ADCdata, RTDStack[100]

OBJ
 ss : "Simple_Serial"
 sd : "SD-MMC_FATEngine"
 fm : "FloatMath"

PUB Main
''Initialize all variables and start running code on the parallel processors
Initialize

''Read in the first set of points into Hub RAM
flagA:=1
flagB:=1
DPNumber:=30
ReadPoints(DPNumber)
''Start the first assembly position checking cog (AC1)

120

coginit(3,@CheckPosition,0)
waitcnt(clkfreq/200+cnt)

''Uncomment this block of code to see the list of points contained in the CMB file.
{repeat
 repeat n from 0 to DPnumber-1
 ss.hex(long[@printMode][5*n],2)
 ss.tx(TAB)
 ss.dec(long[@x][5*n])
 ss.str(string(","))
 ss.dec(long[@y][5*n])
 ss.str(string(","))
 ss.dec(long[@z][5*n])
 ss.str(string(","))
 ss.dec(long[@width][5*n])
 ss.tx(CR)
 waitcnt(clkfreq+cnt)
 ReadPoints(DPNumber)

repeat 'Output the SD data}

''Main Loop
repeat while end<>1
 ''Load CMB waypoints to Hub RAM and start AC1 with them. This only executes if AC2 is
running and Cog 3 isn't running AC1 code
 if flagA==1 AND LoadedA==0
 ReadPoints(DPNumber)
 coginit(3,@CheckPosition,0)
 waitcnt(clkfreq/200+cnt)

 ''Load CMB waypoints to Hub RAM and start AC2 with them. This only executes if AC1 is
running and Cog 4 isn't running AC2 code
 if flagB==1 AND LoadedB==0
 ReadPoints(DPNumber)
 coginit(4,@CheckPosition,0)
 waitcnt(clkfreq/200+cnt)

 ''Serial Terminal Output for Debugging
 waitcnt(clkfreq/20+cnt)
 ss.clearhome
 ss.dec(xPosit)
 ss.str(string(","))
 ss.dec(yPosit)
 ss.str(string(","))
 ss.dec(zPosit)
 ss.tx(CR)
 ss.dec(C1)
 ss.str(string(","))
 ss.dec(C2)
 ss.str(string(","))
 ss.dec(C3)
 ss.tx(CR) '}
 ss.str(string("Extruder Position: "))
 ss.dec(ExtruderPosition)
 ss.tx(CR)
 ss.str(string("Expected Extruder State: "))
 ss.dec(roadWidth)
 ss.tx(CR)
 ss.str(string("RTD Temp: "))

121

 ss.dec(RTDTemp)
 ss.str(string(" C"))
 ss.tx(CR)

 'First output type
 ss.str(string("Current Print Mode: "))
 ss.hex(PM,2)
 ss.tx(CR)
 ss.str(string("FlagA: "))
 ss.dec(flagA)
 ss.tx(CR)
 ss.str(string("FlagB: "))
 ss.dec(flagB)
 ss.tx(CR)
 ss.str(string("loadedA: "))
 ss.dec(loadedA)
 ss.tx(CR)
 ss.str(string("loadedB: "))
 ss.dec(loadedB)
 ss.tx(CR) '}
 ss.str(string("Print Material: "))
 ss.dec(printMaterial)
 ss.tx(CR)
 ss.str(string("Expected Material: "))
 ss.dec(expectedMaterial)
 ss.tx(CR)
 ss.str(string("Correct Material: "))
 ss.dec(correctMaterial)
 ss.tx(CR) '}

''Finish by closing everything
EndCode

PUB ReadPoints(Points)
''Read the parameters from the FP-version of the CMB for the total number of points and
load them to Hub RAM
repeat n from 0 to Points-1
 ''Read the Print Mode
 cmbByte:=sd.readByte
 long[@printMode][5*n]:=cmbByte
 ''Search for the $FF endcode in the FP-version of the CMB
 if cmbByte==$FF
 quit

 ''Read in the X, Y, and Z coordinates, as well as the road width, for the current point
 lowerByte:=sd.readByte
 upperByte:=sd.readByte
 ''Store these quantities in Hub RAM at the addresses declared in the checking method in
the DAT section
 long[@x][5*n]:=lowerByte+upperByte<<8
 lowerByte:=sd.readByte
 upperByte:=sd.readByte
 long[@y][5*n]:=lowerByte+upperByte<<8
 lowerByte:=sd.readByte
 upperByte:=sd.readByte
 long[@z][5*n]:=lowerByte+upperByte<<8
 lowerByte:=sd.readByte
 upperByte:=sd.readByte
 long[@width][5*n]:=lowerByte+upperByte<<8

122

 waitcnt(clkfreq/200+cnt)

PUB Initialize
''Simple Serial Intialization
ss.init(31,30,38400)
ss.clearHome

''SD Initialization
sd.FATEngineStart(DO,SD_CLK,SD_DI,CS,-1,-1,-1,-1,-1) 'Start the SD card object
sd.mountPartition(0) 'Mount the SD card
''Change the file name to the currently-printing file. Use only FP-converted CMB files.
sd.openFile(string("TEMPFP.CMB"),"R")

''Assembly Variables (for writing/reading Hub RAM)
_DP:=@DP
_PM:=@PM
_xPosit:=@xPosit
_xPosition:=@xPosit
_flagA:=@flagA
_flagB:=@flagB
_DPNumber:=@DPNumber
_end:=@end
_loadedA:=@loadedA
_loadedB:=@loadedB
_yPosit:=@yPosit
_yPosition:=@yPosit
_printMaterial:=@printMaterial
_C1:=@C1
_C2:=@C2
_C3:=@C3
_zPosit:=@zPosit
_zPosition:=@zPosit
_roadWidth:=@roadWidth
_expectedMaterial:=@expectedMaterial
_extrPosit:=@ExtruderPosition
_corrMat:=@correctMaterial
_RTDTemp:=@RTDTemp

''Start all parallel codes except for AC1 and AC2
coginit(2,@QuadEnc,0)
coginit(5,@ExtrEncoder,0)
coginit(6,@ReadZEnc,0)
coginit(7,RetrieveRTDTemp,@RTDStack)

''Make sure that the code gets past initialization
waitcnt(clkfreq+cnt)
ss.clearHome
ss.str(string("Starting.."))
waitcnt(clkfreq+cnt)
ss.clearHome

PUB EndCode

waitcnt(clkfreq+cnt)
sd.unmountPartition 'Unmount the SD card

''Display the end code
repeat

123

 ss.clearHome
 ss.str(string("End of File Reached"))
 waitcnt(clkfreq+cnt)

PUB RetrieveRTDTemp
 ''Set the direction of the RTD ADC's serial pins
 dira[SDATA..TFS]:=%0011
 dira[AO]:=1
 dira[SCLK]:=1
 outa[AO]~~ 'Hold A0 high to read output register
 SetControlRegister 'Set the 24-bit control register on the ADC chip
 repeat
 ADCdata:=GetADCdata
 ''Scale RTDtemp into C and round to the nearest number
 RTDtemp:=fm.fRound(fm.fSub(fm.fMul(fm.fFloat(ADCdata),0.000030778676060),267.47))

PUB SetControlRegister | count
 outa[AO]~ 'Hold A0 low to access the
control register
 dira[SDATA]~~ 'Hold SDATA high before data
transfer
 outa[RFS..TFS]~~ 'Hold RFS and TFS high before
data transfer
 outa[SCLK]~ 'Hold the Serial Clock low before
data transfer
 outa[TFS]~ 'Set TFS (transmit) low to begin
data write operation
 repeat count from 0 to 23 'Iterate through all 24 bits
 outa[SDATA]:=(controlRegister>>(23-count))//2 'Shift data out to the ADC's
SDATA line one bit at a time, beginning with the MSB
 outa[SCLK]~~ 'Pulse the Serial Clock once
 outa[SCLK]~
 outa[TFS]~~ 'Return TFS high to end write
operation
 outa[AO]~~ 'Return A0 high (to access output
register)
 dira[SDATA]~ 'Set SDATA low after data
transfer

PUB GetADCdata : ADCBits
 outa[RFS..TFS]~~ 'Set RFS and TFS high
 outa[SCLK]~ 'Set SCLK low initially
 repeat until ina[DRDY]==0 'Wait until Data Ready goes low
(output buffer ready)
 outa[RFS]~ 'Set RFS low to begin data read
operation
 repeat 24 'Iterate through all 24 bits
 ADCbits:=(ADCbits<<1+ina[SDATA]) 'Read in the bits from the ADC's
serial output buffer, reversing the order of the bits
 outa[SCLK]~~ 'Pulse the Serial Clock once
 outa[SCLK]~
 outa[RFS]~~ 'Return RFS high to end read
operation

DAT

''This PASM code reads the A and B channel output signals of the extruder encoder and
''returns 1 if the extruder is turning CW, 0 if the extruder isn't turning, or -1 if the
extruder is turning CCW

124

 org
ExtrEncoder mov dira,#0 'Set directions of ExtrQuadA and
ExtrQuadB to inputs
 mov extrMask,#%11 'Set the lower 2 bits of extrMask
high
 shl extrMask,#ExtrQuadA 'Shift them over to the ExtrQuadA
and ExtrQuadB position
ExtrLoop mov extrIn,ina 'Store entire ina register in
"input" register
 and extrIn,extrMask 'Chop off everything except
ina[ExtrQuadA..ExtrQuadB]
 shr extrIn,#ExtrQuadA 'Put A and B values in the 0 and
1 position
 cmp extrIn,extrPrev wz 'If input=previous, set Z-flag
 if_z jmp #ExtrLoop

 cmp extrIn,#%00 wz 'If input=%00, set Z-flag
 if_z jmp #ExtrCaseZero 'Call "ExtrCaseZero"
subroutine
 cmp extrIn,#%01 wz 'If input=%01, set Z-flag
 if_z jmp #ExtrCaseOne 'Call "ExtrCaseOne" subroutine
 cmp extrIn,#%10 wz 'If input=%10, set Z-flag
 if_z jmp #ExtrCaseTwo 'Call "ExtrCaseTwo" subroutine
 cmp extrIn,#%11 wz 'If input=%11, set Z-flag
 if_z jmp #ExtrCaseThree 'Call "ExtrCaseThree"
subroutine

ExtrCaseZero cmp extrPrev,#%10 wz 'If input=%01, movement=CW, set
Z-flag
 mov materialUse,ina
 mov matMask,#1
 shl matMask,#Support 'Make a mask to check the input
state of the support pin
 and materialUse,matMask
 shl materialUse,#Support 'Store the input state of Support
in "materialUse"
 cmp materialUse,#1 wc 'Check for model material usage
if_nz_and_c add extrPos,#1 'If movement=CW, add 1 to _xpos
if_z_and_c sub extrPos,#1 'If movement=CCW, subtract 1 from
_xpos
 jmp #StoreExtr

ExtrCaseOne cmp extrPrev,#%00 wz 'If input=%11, movement=CW, set
Z-flag
 mov materialUse,ina
 mov matMask,#1
 shl matMask,#Support 'Make a mask to check the input
state of the support pin
 and materialUse,matMask
 shl materialUse,#Support 'Store the input state of Support
in "materialUse"
 cmp materialUse,#1 wc 'Check for model material usage
if_nz_and_c add extrPos,#1 'If movement=CW, add 1 to _xpos
if_z_and_c sub extrPos,#1 'If movement=CCW, subtract 1 from
_xpos
 jmp #StoreExtr

125

ExtrCaseTwo cmp extrPrev,#%11 wz 'If input=%00, movement=CW, set
Z-flag
 mov materialUse,ina
 mov matMask,#1
 shl matMask,#Support 'Make a mask to check the input
state of the support pin
 and materialUse,matMask
 shl materialUse,#Support 'Store the input state of Support
in "materialUse"
 cmp materialUse,#1 wc 'Check for model material usage
if_nz_and_c add extrPos,#1 'If movement=CW, add 1 to _xpos
if_z_and_c sub extrPos,#1 'If movement=CCW, subtract 1 from
_xpos
 jmp #StoreExtr

ExtrCaseThree cmp extrPrev,#%01 wz 'If input=%10, movement=CW, set
Z-flag
 mov materialUse,ina
 mov matMask,#1
 shl matMask,#Support 'Make a mask to check the input
state of the support pin
 and materialUse,matMask
 shl materialUse,#Support 'Store the input state of Support
in "materialUse"
 cmp materialUse,#1 wc 'Check for model material usage
if_nz_and_c add extrPos,#1 'If movement=CW, add 1 to _xpos
if_z_and_c sub extrPos,#1 'If movement=CCW, subtract 1 from
_xpos
 jmp #StoreExtr

StoreExtr mov extrPrev,extrIn 'Store previous input value as
"prev"
OutputExtr wrlong extrPos,_extrPosit
 jmp #ExtrLoop

extrMask long 0
matMask long 0
materialUse long 0
extrIn long 0
extrPrev long 0
extrPos long 0
_extrPosit long 0
 fit

''This PASM code reads the A and B channel output signals of the X and Y quadrature
encoders.
'' It writes the X and Y axial positions in scaled fixed-point format back to Hub RAM
 org
QuadEnc mov dira,#0 'Set directions of xQuadA and xQuadB to
inputs
 mov xMask,#%11 'Set the lower 2 bits of xMask high
 shl xMask,#xQuadA 'Shift them over to the xQuadA and xQuadB
position
 mov yMask,#%11 'Set the lower 2 bits of yMask high
 shl yMask,#yQuadA 'Shift them over to the yQuadA and yQuadB
position
LoopX mov xIn,ina 'Store entire ina register in "input"
register

126

 and xIn,xMask 'Chop off everything except
ina[xQuadA..xQuadB]
 shr xIn,#xQuadA 'Put A and B values in the 0 and 1
position
 cmp xIn,xPrev wz 'If input=previous, set Z-flag
 if_z jmp #LoopY

 cmp xIn,#%00 wz 'If input=%00, set Z-flag
 if_z jmp #caseZeroX 'Call "caseZeroX" subroutine
 cmp xIn,#%01 wz 'If input=%01, set Z-flag
 if_z jmp #caseOneX 'Call "caseOneX" subroutine
 cmp xIn,#%10 wz 'If input=%10, set Z-flag
 if_z jmp #caseTwoX 'Call "caseTwoX" subroutine
 cmp xIn,#%11 wz 'If input=%11, set Z-flag
 if_z jmp #caseThreeX 'Call "caseThreeX" subroutine

caseZeroX cmp xPrev,#%10 wz 'If input=%01, movement=CW, set Z-flag
if_z add xPos,#1 'If movement=CW, add 1 to _xpos
if_nz sub xPos,#1 'If movement=CCW, subtract 1 from _xpos
 jmp #StoreX

caseOneX cmp xPrev,#%00 wz 'If input=%11, movement=CW, set Z-flag
if_z add xPos,#1 'If movement=CW, add 1 to _xpos
if_nz sub xPos,#1 'If movement=CCW, subtract 1 from _xpos
 jmp #StoreX

caseTwoX cmp xPrev,#%11 wz 'If input=%00, movement=CW, set Z-flag
if_z add xPos,#1 'If movement=CW, add 1 to _xpos
if_nz sub xPos,#1 'If movement=CCW, subtract 1 from _xpos
 jmp #StoreX

caseThreeX cmp xPrev,#%01 wz 'If input=%10, movement=CW, set Z-flag
if_z add xPos,#1 'If movement=CW, add 1 to _xpos
if_nz sub xPos,#1 'If movement=CCW, subtract 1 from _xpos
 jmp #StoreX

StoreX mov xPrev,xIn 'Store previous input value as "xPrev"

 ''Multiply xPos by the numerator. This was hard-coded to save time
 '' (old algorithm iterated and took forever).This method uses the
 '' binary-decomposed version of the numerator, as shown in the
 '' comment below by the bit-shifting section of the code.
 mov t0,xPos 'Store xPos in 6 temporary variables for bit shifting
 mov t1,xPos
 mov t2,xPos
 mov t3,xPos
 mov t4,xPos
 mov t5,xPos ' 0 1 2 3 4 5
 shl t0,#14 'x * 19_356 = x<<14 + x<<11 + x<<10 - x<<6 - x<<5 -
x<<2
 shl t1,#11
 shl t2,#10
 shl t3,#6
 shl t4,#5
 shl t5,#2
 add t0,t1 'Execute the above equation
 add t0,t2
 sub t0,t3

127

 sub t0,t4
 sub t0,t5
 mov xScaled,t0

 ''Divide xPosition by the denominator (Also hard-coded)
 mov quotient,xScaled
 cmps quotient,#0 wc
 'Convert to Two's Complement Notation in the Case of a Negative Number (C=1)
if_c mov quotient2sC,quotient 'Copy the negative quotient into quotient2sC
if_c xor quotient2sC,LargestNum 'Flip all the bits of quotient2sC
if_c add quotient2sC,#1 'Add 1 to quotient2sC
if_c mov quotient,quotient2sC 'Store the positive form of the quotient back
in "quotient"
 shr quotient,#14 'Divide by 16_384
if_c xor quotient,LargestNum 'Flip all the bits to convert back to a
negative number
if_c add quotient,#1 'Add 1 to finish the 2's Complement conversion
 mov xScaled,quotient
 wrlong xScaled,_xPosit 'Write the scaled xPosition to the xPosit
variable }

''Retrieve the Y Position from the Y Encoder
LoopY mov yIn, ina
 and yIn,yMask 'Chop off everything except
ina[yQuadA..yQuadB]
 shr yIn,#yQuadA 'Put A and B values in the 0 and 1
position
 cmp yIn,yPrev wz 'If input=previous, set Z-flag
 if_z jmp #LoopX

 cmp yIn,#%00 wz 'If input=%00, set Z-flag
 if_z jmp #caseZeroY 'Call "caseZeroX" subroutine
 cmp yIn,#%01 wz 'If input=%01, set Z-flag
 if_z jmp #caseOneY 'Call "caseOneX" subroutine
 cmp yIn,#%10 wz 'If input=%10, set Z-flag
 if_z jmp #caseTwoY 'Call "caseTwoX" subroutine
 cmp yIn,#%11 wz 'If input=%11, set Z-flag
 if_z jmp #caseThreeY 'Call "caseThreeX" subroutine

caseZeroY cmp yPrev,#%10 wz 'If input=%01, movement=CW, set Z-flag
if_z sub yPos,#1 'If movement=CW, add 1 to _xpos
if_nz add yPos,#1 'If movement=CCW, subtract 1 from _xpos
 jmp #StoreY

caseOneY cmp yPrev,#%00 wz 'If input=%11, movement=CW, set Z-flag
if_z sub yPos,#1 'If movement=CW, add 1 to _xpos
if_nz add yPos,#1 'If movement=CCW, subtract 1 from _xpos
 jmp #StoreY

caseTwoY cmp yPrev,#%11 wz 'If input=%00, movement=CW, set Z-flag
if_z sub yPos,#1 'If movement=CW, add 1 to _xpos
if_nz add yPos,#1 'If movement=CCW, subtract 1 from _xpos
 jmp #StoreY

caseThreeY cmp yPrev,#%01 wz 'If input=%10, movement=CW, set Z-flag
if_z sub yPos,#1 'If movement=CW, add 1 to _xpos

128

if_nz add yPos,#1 'If movement=CCW, subtract 1 from _xpos
 jmp #StoreY

StoreY mov yPrev,yIn 'Store previous input value as "prev"

 ''Multiply yPos by the numerator (Also hard-coded)
 mov answer,#0
 mov t0,yPos 'Store xPos in 6 temporary variables for bit shifting
 mov t1,yPos
 mov t2,yPos ' 0 1 2
 shl t0,#13 'x * 7_743 = x<<13 - x<<9 + x<<6 - x<<0
 shl t1,#9
 shl t2,#6
 sub t0,t1 'Execute the above equation
 add t0,t2
 sub t0,yPos
 mov yScaled,t0

 ''Divide xPosition by the denominator (Also hard-coded)
 mov quotient,yScaled
 cmps quotient,#0 wc
 'Convert to Two's Complement Notation in the Case of a Negative Number (C=1)
if_c mov quotient2sC,quotient 'Copy the negative quotient into quotient2sC
if_c xor quotient2sC,LargestNum 'Flip all the bits of quotient2sC
if_c add quotient2sC,#1 'Add 1 to quotient2sC
if_c mov quotient,quotient2sC 'Store the positive form of the quotient back
in "quotient"
 shr quotient,#14 'Divide by 16_384
if_c xor quotient,LargestNum 'Flip all the bits to convert back to a
negative number
if_c add quotient,#1 'Add 1 to finish the 2's Complement conversion
 mov yScaled,quotient '
 wrlong yScaled,_yPosit 'Write the scaled y position to the yPosit
variable }

 jmp #LoopX 'Restart loop at beginning

''Quadrature Variables - X Axis
xMask long 0
xIn long 0
xPrev long 0
xPos long 0
_xPosit long 0

''Quadrature Variables - Y Axis
yMask long 0
yIn long 0
yPrev long 0
yPos long 0
_yPosit long 0

''Multiplication/Division Variables
xScaled long 0
yScaled long 0
t0 long 0
t1 long 0
t2 long 0

129

t3 long 0
t4 long 0
t5 long 0
'xNumerator long 19_356
'yNumerator long 7_743
'denominator long 16_384 (Just for reference)
a long 0
b long 0
bAND long 0
answer long 0
quotient long 0
minusOne long -1
quotient2sC long 0
LargestNum long %1111_1111_1111_1111_1111_1111_1111_1111
 fit

''This PASM code checks to see off move coordinates based on the position variables
stored in Hub RAM from the encoders.

 org 0
 '' Check which cog is currently in use
CheckPosition cogID cogNum
 mov dataPoint,#0

 ''Set loadedA/loadedB (1 while running)
 cmp cogNum,#4 wz
 if_nz wrlong high,_loadedA
 if_z wrlong high,_loadedB

 ''Retrieve the flag variables from Hub RAM
WaitFlag rdlong flgA,_flagA
 rdlong flgB,_flagB
 mov flag,flgB
 and flag,flgA

 ''Wait for the flag from cogs 3 and 4 to go high (neither cog
running)
 cmp flag,#1 wz
 if_nz jmp #WaitFlag

 ''Retrieve the total number of dataPoints for this run
 rdlong DPNum,_DPNumber

 ''Operate the flags
 cmp cogNum,#4 wz
 cmp dataPoint,DPnum wc
 if_c_and_z mov flgB,#0
 if_nc_and_z mov flgB,#1
 if_c_and_nz mov flgA,#0
 if_nc_and_nz mov flgA,#1
 wrlong flgA,_flagA
 wrlong flgB,_flagB

PosLoop ''Calculate the position that we're waiting for
 ''Store the current X value in xUp and xDown
 '' and likewise for Y and Z

130

XSourceUp mov xUp,x 'Find the acceptable ranges for x
and y
XSourceDown mov xDown,x
YSourceUp mov yUp,y
YSourceDown mov yDown,y
ZSourceUp mov zUp,z
ZSourceDown mov zDown,z
PrintSource mov pMode,printMode 'See if the endCode ($FF) is
stored in the printMode variable
WidthSource mov rWidth,width

 '' Check to see if the extruder should turn (road width in the FP
CMB)
 cmp rWidth,#0 wz
 if_z mov extrTurnOff,#0
 if_nz mov extrTurnOff,#1
 wrlong extrTurnOff,_roadWidth '}

 ''Write the current printMode and waypoint coordinates back to
Hub RAM
 wrlong pMode,_PM
 cmp pMode,#255 wz
 if_z wrlong high,_end

 ''Check to see if the support head is being used (Not used for
Y!)
 cmp pMode,#$6A wc
 if_nc add xUp,XYOffset 'Offset X positions 798 mils
 if_nc add xDown,XYOffset
 if_nc mov expMat,#1 'Use 1 to represent the support
material
 if_c mov expMat,#0 'Use 0 to represent the model
material
 if_c subs zUp,partOffset 'Subtract 9 mils from z for model
material
 if_c subs zDown,partOffset 'Ditto for the lower limit

 ''Store the current waypoint as (C1, C2, C3)
 wrlong xUp,_C1
 wrlong yUp,_C2
 wrlong zUp,_C3
 wrlong expMat,_expectedMaterial

 ''Create ranges on waypoints
 subs xDown,acceptRange
 adds xUp,acceptRange
 subs yDown,acceptRange
 adds yUp,acceptRange
 subs zDown,zTolerance
 adds zUp,zTolerance

CheckLoop ''This section checks the X, Y, Z, Material, and Extrusion Rate
 'Retrieve the xPosition from Hub RAM
 rdlong xPosition,_xPosition
 rdlong yPosition,_yPosition
 rdlong zPosition,_zPosition
 'Start by setting locFound
 mov locFound,#1

131

 ''X Checking
 cmps xUp,xPosition wc 'Check if xUp is below xPosition
 if_c mov locFound,#0 'Clear locFound if the xPosition
falls out of range
 cmps xPosition,xDown wc 'Check if xPosition is below
xDown
 if_c mov locFound,#0 'Clear locFound if xPosition is
below xDown
 ''Y Checking
 cmps yUp,yPosition wc
 if_c mov locFound,#0
 cmps yPosition,yDown wc
 if_c mov locFound,#0
 ''Z Checking
 cmps zUp,zPosition wc
 if_c mov locFound,#0
 cmps zPosition,zDown wc
 if_c mov locFound,#0 '}
 ''Material Checking
 mov material,#0
 mov inMask,#%11 'Store %11 in the lower nibble of
diraMask
 shl inMask,#Model 'Shift bits over to the Model and
Support Material input pins
 mov material,ina 'Store the entire ina register as
"input"
 and material,inMask 'Retain only the input states of
Model and Support
 shr material,#Model 'Move the input states back to
the LSB
 cmp material, #%10 wz
 mov material,#0 'Set material to model
 if_z mov material,#1 'If the support channel is high,
set the material to support
 wrlong material,_printMaterial
 cmp material,expMat wz
 if_z mov corrMat,#1
 if_nz mov corrMat,#0
 and locFound, corrMat
 wrlong corrMat, _corrMat 'Write the check status of the
material sensor
 ''Temperature Checking
 rdlong tipTemp,_RTDTemp 'Retrieve the model tip
temperature from Hub RAM
 cmp material, #0 wz 'Check to see if model material
is printing currently
 cmp tipTemp,#200 wc 'Check to see if the current tip
temperature is below 200
 if_z_and_c mov locFound,#0 'If the model tip is printing
below 200 C, then reject point

 ''Loop
 cmp locFound,#1 wz 'See if the current xPosition
falls into the stored x range
 if_nz jmp #CheckLoop

 if_z add dataPoint,#1 'Increment the dataPoint
 if_z mov _x,#x

132

 if_z add _x,dataPoint 'Increment the x address by
dataPoint*4
 if_z add _x,dataPoint
 if_z add _x,dataPoint
 if_z add _x,dataPoint
 if_z add _x,dataPoint
 if_z movs XSourceUp,_x 'Update the address that xUp and
xDown are copied from
 if_z movs XSourceDown,_x
 if_z mov _y,_x
 if_z add _y,#1 'The nth y address is 1 long
after the nth x address
 if_z movs YSourceUp,_y
 if_z movs YSourceDown,_y
 if_z mov _z,_x
 if_z add _z,#2
 if_z movs ZSourceUp,_z
 if_z movs ZSourceDown,_z
 if_z mov PMaddress,_x
 if_z sub PMaddress,#2 'The nth PrintMode address is 2
longs before the nth x address
 if_z movs PrintSource,PMaddress 'Update the address that pMode
is copied from
 if_z mov _width,_x
 if_z sub _width,#1
 if_z movs WidthSource, _width

 ''Check to see if the DP num is exceeded before reading an FF end
code
 cmp cogNum,#4 wz
 cmp dataPoint,DPnum wc
 if_c jmp #PosLoop 'Loop back to the beginning
 ''Write the flags (0 for the cog that is running code, 1 for the
one that's not)
 if_c_and_z mov flgB,#0
 if_nc_and_z mov flgB,#1
 if_c_and_nz mov flgA,#0
 if_nc_and_nz mov flgA,#1
 wrlong flgA,_flagA
 wrlong flgB,_flagB

 if_nz wrlong zero,_loadedA 'Clear the loaded variables
 if_z wrlong zero,_loadedB
 cogstop cogNum

'Position Checking Variables
xPosition long 0
yPosition long 0
zPosition long 0
_C1 long 0
_C2 long 0
_C3 long 0
_ExtruderControl long 0
locFound long 0
_end long 0
_loadedA long 0
_loadedB long 0
high long 1

133

zero long 0
flag long 0
flgA long 0
XYOffset long 798
flgB long 0
_flagA long 0
_flagB long 0
cogNum long 0
DPNum long 30
_DPNumber long 0
_xPosition long 0
_yPosition long 0
_zPosition long 0
_PM long 0
_width long 0
pMode long 0
rWidth long 0
_roadWidth long 0
PMaddress long 0
inMask long 0
material long 0
corrMat long 0
_corrMat long 0
extrStatus long 0
_printMaterial long 0
expMat long 0
_expectedMaterial long 0
extrTurnOff long 0
eighty long 80_000
sixty long 60_000
forty long 40_000
twenty long 20_000
ten long 10_000
acceptRange long 10
zTolerance long 7
tipTemp long 0
_RTDTemp long 0
dataPoint long 0
_DP long 0
xUp long 0
xDown long 0
yUp long 0
yDown long 0
zUp long 0
zDown long 0
partOffset long 9
suppOffset long 2
_x long 0
_y long 0
_z long 0
printMode long 0
width long 0
x long 0
y long 0
z long
0,{

}0,{

134

}0,{

}0,{

}0,{

}0,{ Reserve 330 longs for
printMode, x, y, and z storage.

}0,{ This lets us hold
330/4=82 points maximum in Cog RAM.

Thus, AC1 and AC2 can each check up to 82 points

}0,{

}0,0
 fit

''This PASM code retrieves the zPosition from the Z encoder

 org
ReadZEnc mov dira,#0 'Set directions of zQuadA and zQuadB to zIns
 mov zMask,#%11 'Set the lower 2 bits of zMask high
 shl zMask,#zQuadA 'Shift them over to the zQuadA and zQuadB
position
Loop mov zIn,ina 'Store entire ina register in "zIn" register
 and zIn,zMask 'Chop off everything except ina[zQuadA..zQuadB]
 shr zIn,#zQuadA 'Shift the zIn zQuadA number of bits to the
right to put A and B values in the 0 and 1 position
 cmp zIn,zPrev wz 'If zIn=previous, set Z-flag
 if_z jmp #Loop

 cmp zIn,#%00 wz 'If zIn=%00, set Z-flag
 if_z jmp #caseZeroZ 'Call "caseZeroZ" subroutine
 cmp zIn,#%01 wz 'If zIn=%01, set Z-flag
 if_z jmp #caseOneZ 'Call "caseOneZ" subroutine
 cmp zIn,#%10 wz 'If zIn=%10, set Z-flag
 if_z jmp #caseTwoZ 'Call "caseTwoZ" subroutine
 cmp zIn,#%11 wz 'If zIn=%11, set Z-flag
 if_z jmp #caseThreeZ 'Call "caseThreeZ" subroutine

caseZeroZ cmp zPrev,#%10 wz 'If zIn=%01, movement=CW, set Z-flag
if_z adds zPos,#1 'If movement=CW, add 1 to zPos
if_nz subs zPos,#1 'If movement=CCW, subtract 1 from zPos
 jmp #StoreZ

caseOneZ cmp zPrev,#%00 wz 'If zIn=%11, movement=CW, set Z-flag
if_z adds zPos,#1 'If movement=CW, add 1 to zPos
if_nz subs zPos,#1 'If movement=CCW, subtract 1 from zPos
 jmp #StoreZ

caseTwoZ cmp zPrev,#%11 wz 'If zIn=%00, movement=CW, set Z-flag

135

if_z adds zPos,#1 'If movement=CW, add 1 to zPos
if_nz subs zPos,#1 'If movement=CCW, subtract 1 from zPos
 jmp #StoreZ

caseThreeZ cmp zPrev,#%01 wz 'If zIn=%10, movement=CW, set Z-flag
if_z adds zPos,#1 'If movement=CW, add 1 to zPos
if_nz subs zPos,#1 'If movement=CCW, subtract 1 from zPos
 jmp #StoreZ

StoreZ mov zPrev,zIn 'Store previous zIn value as "zPrev"

 ''Multiply xPos by the numerator. This was hard-coded to save time
 '' (old algorithm iterated and took forever). This method uses the
 '' binary-decomposed version of the numerator, as shown in the comment
 '' below by the bit-shifting section of the code.
 mov temp0,zPos 'Store xPos in 6 temporary variables for bit
shifting
 mov temp1,zPos
 mov temp2,zPos
 mov temp3,zPos
 mov temp4,zPos
 mov temp5,zPos
 mov temp6,zPos ' temp0 temp1 temp2 temp3 temp4
temp5 temp6
 shl temp0,#13 'x * 12_881 = x<<13 + x<<12 + x<<9 + x<<6 + x<<3 +
x<<1 + x<<0
 shl temp1,#12
 shl temp2,#9
 shl temp3,#6
 shl temp4,#3
 shl temp5,#1
 add temp0,temp1 'Execute the above equation
 add temp0,temp2
 add temp0,temp3
 add temp0,temp4
 add temp0,temp5
 add temp0,temp6
 mov zScaled,temp0

 ''Divide xPosition by the denominator (Also hard-coded)
 mov zQuotient,zScaled
 cmps zQuotient,#0 wc
 ''Convert to Two's Complement Notation in the Case of a Negative Number (C=1)
if_c mov zQuotient2sC,zQuotient 'Copy the negative quotient into
quotientemp2sC
if_c xor zQuotient2sC,zLargestNum 'Flip all the bits of quotientemp2sC
if_c add zQuotient2sC,#1 'Add 1 to quotientemp2sC
if_c mov zQuotient,zQuotient2sC 'Store the positive form of the quotient back
in "quotient"
 shr zQuotient,#14 'Divide by 16_384
if_c xor zQuotient,zLargestNum 'Flip all the bits to convert back to a
negative number
if_c add zQuotient,#1 'Add 1 to finish the 2's Complement conversion
 mov zScaled,zQuotient
 wrlong zScaled,_zPosit 'Write the scaled xPosition to the xPosit
variable }

 jmp #Loop 'Restart loop at beginning

136

''Quadrature Variables
zMask long 0
zIn long 0
zPrev long 0
zPos long 0
_zPosit long 0

''Multiplication/Division Variables
zScaled long 1023
zQuotient long 0
zQuotient2sC long 0
zLargestNum long %1111_1111_1111_1111_1111_1111_1111_1111
temp0 long 0
temp1 long 0
temp2 long 0
temp3 long 0
temp4 long 0
temp5 long 0
temp6 long 0
 fit

137

Appendix B – MATLAB Code

Appendix B.1 - Retrieves Data from Tensile Test Files

% This program retrieves the data from the .csv files created by the
% Instron computer. They must be formatted like the 1-28-15 test results

%Reading from .csv files with header information and 3 columns:
%--Extension is displacement of the crosshead, in mm (not used)
%--Displacement is the displacement of the laser tags, in mm (used for
 %strain calculation)
%--Load is the load cell reading, in Newtons (used for stress calculation)

clear all
clc

fileNumber=input('How many files do you have: ');
for i=1:fileNumber
 % Prefix for filename
 fileName=input('Enter the file prefix: ','s');

 % Number of specimens in the Sample
 N=6;

 %Populate Stress and Strain matrices with non-numbers
 eval([fileName,'.stress=NaN(2000,N);']);
 eval([fileName,'.strain=NaN(2000,N);']);

 for specimen=1:N
 %identify file with tension test data

fid=fopen([fileName,'.is_tens_RawData/Specimen_RawData_',num2str(specimen),'.

csv']);

 %save as gage length, in mm
 %(used to convert laser disp. into strain)
 temp(specimen)=textscan(fid,'%*s %q',1,'delimiter',',');

eval([fileName,'.gl(specimen)=str2num(cell2mat(temp{1,specimen}));']);

 %save as specimen width (in mm, converting to m)
 temp(specimen)=textscan(fid,'%*s %q %*s',1,'delimiter',',');

eval([fileName,'.w(specimen)=str2num(cell2mat(temp{1,specimen}))/1000;']);
 % save as specimen thickness (in mm, converting to m)
 temp(specimen)=textscan(fid,'%*s %q %*s',1,'delimiter',',');

eval([fileName,'.t(specimen)=str2num(cell2mat(temp{1,specimen}))/1000;']);
 %calculate cross-sectional area, in m^2

138

eval([fileName,'.A(specimen)=',fileName,'.w(specimen)*',fileName,'.t(specimen

);']);

 %extract tension test data from columns
 temp=textscan(fid,'%*q %q %q','delimiter',',','HeaderLines',6);
 for j=1:length(temp{1,1})

eval([fileName,'.displacement(j,specimen)=str2num(temp{1,1}{j,1});']); %

laser displacement in mm
 eval([fileName,'.load(j,specimen)=str2num(temp{1,2}{j,1});']);

% load in N
 eval([fileName,'.A(specimen)=3.83015E-05']);
 if strcmp(fileName,'SHD_XY')
 eval([fileName,'.A(specimen)=3.1315E-05']);
 end

eval([fileName,'.stress(j,specimen)=',fileName,'.load(j,specimen)/',fileName,

'.A(specimen)/1000000;']);

eval([fileName,'.strain(j,specimen)=',fileName,'.displacement(j,specimen)/',f

ileName,'.gl(specimen);']);
 end
 end
end
clear temp

% You must manually save the .mat file after running this code by selecting
% the structures for each file, right clicking, and then clicking "Save As"

139

Appendix B.2 - Plots Tensile Test Data Stored in the Workspace

% This program plots the tensile test data in the Tensile_Test_Data.mat
% file. The program must be run for each structure (attack).

clear all
clc

% Start by importing the Tensile_Test_Data.mat file
load Tensile_Test_Data.mat

%% Then plot the stress/strain curves
clc

N=6;
fileName='Solid_XZ_with_Notch';
linespec='''--k''';
hold on
for specimen=[1,2,3,5,6]%1:N

eval(['plot(',fileName,'.strain(:,specimen),',fileName,'.stress(:,specimen));

']);

%eval(['h.',fileName,'(i)=plot(strain.',color,'{i},stress.',color,'{i},',line

spec,')'])
end

% Now label the plots

legend('Specimen 1','Specimen 2','Specimen 3','Specimen 4','Specimen 5')
xlim([0,0.085])
ylim([0,30])
title(['Tension Testing Results for Hacked Solid XZ Specimens with a Seam'])
grid on
xlabel 'Strain'
ylabel 'Stress, MPa'

140

Appendix B.3 – Calculates Statistical Mean and Standard Deviation of Load Tests

% This program calculates the mean and deviation for a batch (attack). It

must be run once per batch

% Import all of the data batch files
for i=1:2
 eval(['load Batch_',num2str(i),'.mat'])
end

%% Calculate the statistical mean and standard deviation for each batch
clc

%Disregard one specimen because of noisy tensile test results
N=5;

M=NaN(N,1);

 for specimen=1:N
 M(specimen)=max(Solid_XZ.stress(:,specimen));
 UTS_control=mean(M);
 stDev_control=std(M);
 end

