




Abstract 

 Additive manufacturing technologies represent the forefront of a modern industrial 

revolution. New machines such as 3D printers facilitate the design and effortless creation of part 

geometries that enable economic mass customization of manufactured parts. These new 

machines are therefore rapidly being adopted throughout the manufacturing world for the 

creation of both design prototypes and end-user parts. However, the increasingly widespread use 

and dependence on this emerging technology may pose new safety and security concerns to 

manufacturing, office, and home environments alike. Like other mechatronic systems, 3D 

printers employ software-controlled electrical signals to produce physical motions. Nearly all 

modern additive manufacturing machines incorporate an internet connection or at least have a 

direct connection to a personal computer with internet access, yet little attention has been 

directed toward cybersecurity solutions that could prevent malicious attackers from entering the 

system and manipulating the creation of parts. Unlike most other manufacturing processes (e.g. 

CNC machining), additive manufacturing allows a part to be constructed both internally and 

externally. It is therefore possible for a part’s internal structure to be compromised in a way that 

is not easily detectable, even through close inspection of the external surface and other 

measurement techniques after fabrication. 

The National Institute for Standards and Technology (NIST) has released an internal 

report detailing inherent security risks associated with replication devices such as 3D printers, 

stating that insufficient cyber protection exits for such machines. This research specifically 

addresses these concerns and suggests and verifies the efficacy of specific solutions. Several 

attack vectors have been identified through which a cyber attacker might be able to compromise 

the structural integrity of 3D-printed parts in ways that would not be easily detectable after the 
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part has been completed. These types of attacks were then emulated on a commercial-grade 3D 

printer, and their effects on the strength of the resulting parts were characterized using an Instron 

load testing machine. 

Based upon ongoing DoD-sponsored U.Va research efforts regarding cybersecurity for 

cyber physical systems in general, the proposed solution for enhanced 3D printer security 

incorporates a highly-secured, trusted sentinel device monitoring the mechatronic system that 

operates the printer as a means for detecting potential cyber attacks. This research effort shows 

the feasibility of real-time detection of illogical printer behavior through the employment of a 

low-cost sentinel device that uses machine-independent sensors and transducers to monitor the 

machine’s motions and other reactions to instructions throughout the printing process. The 

results presented are intended to help stimulate the development of new security enhancements 

to protect 3D printers already at work in the field as well as current and future products in 

development. 

  



 

 

3 

Chapter 1 - Introduction ......................................................................... 6 

1.1 Motivation ..................................................................................................... 6 

1.2 Background.................................................................................................... 8 

1.2.1 Additive Versus Subtractive Manufacturing ............................................................ 8 

1.2.2 3D Printing Techniques ............................................................................................ 9 

1.2.3 Additional Information on Fused Deposition Modeling ......................................... 14 

1.3 System Aware Cyber Security ....................................................................16 

Chapter 2 - Identifying FDM Vulnerabilities ..................................... 20 

2.1 Selection of a Dimension uPrint 3D Printer for the Case Study .................20 

2.2 CMB Architecture and Vulnerabilities .......................................................22 

2.3 Determining an Attack Strategy ..................................................................26 

2.4 Covertly Modifying Build Parameters in a CMB File ................................29 

2.5 Attack Execution .........................................................................................33 

2.5.1 Replace Fill Material with Support Material .......................................................... 33 

2.5.2 Fill Density Alteration ............................................................................................ 36 

2.5.3 Introduction of Pre-Existing Internal Cracks .......................................................... 36 

2.5.4 Print Seam Re-Location .......................................................................................... 37 

2.5.5 Tip Temperature Modification ................................................................................ 39 

2.6 Detection......................................................................................................43 

Chapter 3 - Characterizing the Effect of Attacks on Mechanical 

Properties ............................................................................................... 44 

3.1 Preparing Samples for Tensile Testing .......................................................44 

3.1.1 Choosing a Control Sample .................................................................................... 44 

3.2 Printing Compromised Samples ..................................................................48 

3.3 Tensile Testing Procedure ...........................................................................52 

3.3.1 MATLAB Script Functionality ............................................................................... 56 

3.4 Tensile Test Results .....................................................................................57 

3.4.1 Support Material Swap Attack ................................................................................ 59 

3.4.2 Fill Density Adjustment Attack .............................................................................. 61 

3.4.3 Notch Insertion Attack ............................................................................................ 63 



 

 

4 

3.4.4 Seam Manipulation Attack ..................................................................................... 64 

3.4.5 Temperature Set Point Alteration Attack ................................................................ 66 

Chapter 4 - Design of a Secure System Monitor ................................ 71 

4.1 Security Concerns for 3D Printers ..............................................................71 

4.2 Secured Parameters for uPrint Application .................................................73 

4.2.1 Print Material .......................................................................................................... 74 

4.2.2 Extrusion Rate ......................................................................................................... 75 

4.2.3 Height Offset ........................................................................................................... 77 

4.2.4 Extruder Tip Temperature ....................................................................................... 79 

4.2.5 XYZ Position .......................................................................................................... 82 

4.3 Sentinel CPU Design ...................................................................................87 

4.4 Assembly Encoder Driver and Parameter Checking ...................................89 

4.4.1 Use of Fixed-Point Notation for Waypoints ........................................................... 90 

4.4.2 Assembly Checking Method Structure ................................................................... 90 

4.4.3 Adding Tolerances to the Waypoints ...................................................................... 91 

4.5 Sentinel CPU Wiring and Sensor Interface .................................................92 

4.6 The Importance of Cost ...............................................................................95 

4.7 A Robust Design .........................................................................................96 

Chapter 5 – Sentinel Testing ................................................................ 98 

5.1 Building a Foundation – Initial Testing ......................................................98 

5.1.1 Calibrating the XYZ Axes ...................................................................................... 98 

5.1.2 Adding Extrusion and Material Usage Detection ................................................. 101 

5.1.3 Simple Square ....................................................................................................... 101 

5.1.4 12-Layer Print Test ............................................................................................... 102 

5.2 ASTM Sample Testing with Sentinel Detection .......................................104 

5.2.1 Control Specimens ................................................................................................ 105 

5.2.2 Switching Model Material for Support Material .................................................. 105 

5.2.3 Reducing the Road Width ..................................................................................... 105 

5.2.4 Inserting a Notch Into the Part .............................................................................. 106 

5.2.5 Inserting a Seam into the Part ............................................................................... 106 

5.2.6 Reducing the Extruder Temperature by 20º C ...................................................... 107 



 

 

5 

5.3 Sentinel Testing Results ............................................................................108 

5.4 Limitations of this Study ...........................................................................108 

Chapter 6 – Conclusions and Future Work ..................................... 110 

6.1 Security Concerns for Advanced Manufacturing ......................................110 

6.2 Future Work...............................................................................................111 

6.2.1 Extension to Metal Printing .................................................................................. 111 

6.2.2 Extrusion Rate for FDM Sentinel ......................................................................... 112 

6.2.3 Diverse Redundancy ............................................................................................. 113 

6.2.4 Fault Isolation ....................................................................................................... 113 

Appendix A – Sentinel Assembly Code ............................................. 118 

Appendix B – MATLAB Code ........................................................... 137 

 

 

  



 

 

6 

Chapter 1 - Introduction 

 
1.1 Motivation 

The recent expiration of key patents related to additive manufacturing or “3D printing” 

technology has helped to fuel a proliferation of new low-cost 3D printers. Access to mechanisms 

and processes that were once proprietary has inspired companies such as MakerBot, Formlabs, 

Afinia, and 3D Systems to enter into the hobbyist 3D printing market with their own low-cost 3D 

printers. The wide distribution of such machines coupled with the relatively low cost of generic 

thermoplastic filament are challenging traditional plastics manufacturing techniques. Using 

additive manufacturing strategies, 3D printers can create individually customized parts as they 

are needed, reducing the wait time and infrastructure costs typically associated with small-scale 

production. However, the increasing use of 3D printing technology merits an investigation into 

its potential for malicious use. 3D printers are computer-controlled manufacturing devices that 

require no user control or supervision during the build process, and many of these machines are 

currently connected to existing networks and are supplied with internet access. If these machines 

are to be integrated into manufacturing facilities (either centralized or distributed), a system 

should exist to protect the integrity of the models coming from these machines and prevent or 

discourage malicious attacks on the machine or facility.  

The 2010 Stuxnet attacks demonstrate the severity of cyber vulnerabilities in a 

mechatronic environment. Through these attacks the control systems for over 1,000 Iranian 

centrifuges used to enrich uranium were infected with a virus that caused the centrifuges to 

exceed their rotational design parameters and eventually fail over time [1]. Computer viruses 

such as these can cause major problems for industrial facilities wherein operators often have little 
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understanding of the system’s architecture.  An intruder can covertly gain access to the machines 

and cause them to create defective parts, damage the machines, or injure their operators and 

nearby workers. Additive manufacturing facilities are at an elevated risk for such attacks due to 

the potentially dangerous raw materials required for some 3D printing processes. These 

materials, such as highly-combustible powdered metals, pose significant threats to the safety of 

additive manufacturing facilities, machines, and operators. The recent explosion and subsequent 

fire at Powderpart, an advanced manufacturing facility based in Woburn, Massachusetts, 

illustrates this safety concern [2]. Vulnerabilities can be embedded into manufacturing 

equipment from local or remote sources, providing a mechanism to alter prints either randomly 

or selectively with a triggering device. This trigger could provide ease of entry into the system, 

providing full access to an unauthorized user at strategic times. Development of both 

preventative and detective techniques is therefore required for additive manufacturing systems. 

The switch from traditional to additive manufacturing methods has enabled increased 

complexity of industrial cyber attacks. The key difference in additive manufacturing 

technologies is the ability to build hidden internal defects. With the application of 3D printing 

technologies to the fabrication of critical components, it is increasingly important to verify the 

absence of such defects in completed structures. With Chinese manufacturing facilities currently 

using metal 3D printing technologies to create central wing spars for Comac C919 passenger 

planes and front landing gear for the Chinese Navy’s Shenyang J-15 carrier-based fighter jet, 

cyber attacks could result in major loss of life [3]. Early failures in either of these situations 

could be catastrophic, and such examples would provide solid motives for malicious attackers 

during times of war. It is therefore important to understand the current vulnerabilities in additive 

manufacturing technologies and to address the existence of such weaknesses.  
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1.2 Background 

1.2.1 Additive Versus Subtractive Manufacturing 

The design complexity of working prototypes and end-use parts has long challenged the 

capabilities of traditional subtractive manufacturing techniques. Typically, increased feature 

complexity increases the difficulty and cost of production. The introduction of additive 

manufacturing (AM) technologies, however, has enabled the realization of complicated new 

shapes and mechanisms with geometries that were impossible to create using traditional 

manufacturing techniques. The ability to discretize features and join materials together via heat 

or binding agents allows the creation of much more complicated parts than those possible 

through subtractive techniques.  

Additive manufacturing involves fundamentally different processes than traditional 

subtractive manufacturing techniques. A subtractive process such as a milling operation involves 

the removal of material from an initial material stock using a cutting tool. Excess material is 

removed during the operation, and when sufficient material has been removed from the stock 

piece, the operation is complete. Subtractive manufacturing processes like turning or milling 

fundamentally introduce kinetic energy into the work piece. Throughout the course of the 

operation, this kinetic energy is dissipated as waste heat or deformed chips, causing the 

temperature of the work piece to rise [4]. Additive manufacturing processes, however, do not 

require the removal of stock material during the operation, as only enough material is expended 

as is required to create the final model. Instead of starting with a material stock and discarding 

any unwanted features, additive processes start with raw materials and build parts by joining 
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those raw materials together. The resulting part is a unification of raw materials made possible 

through clever manipulation of their material properties.  

3D printing is growing in popularity due to its low entry cost and high versatility. There 

are virtually no limitations on the geometries of buildable features for 3D printers due to their 

stratified build process and relaxation of the need for special fixturing. The only major 

limitations with this process remain in the final microstructure, the types of material used in the 

procedure, and the surface finish. While researchers have been pushing to print a more diverse 

range of materials, some materials require special processes that require large amounts of energy 

or complicated machines to print, which in turn causes printing costs to escalate. These different 

technologies support different materials and each process has its own relative advantages and 

disadvantages. The main disadvantage for 3D printing processes when compared to mass 

production processes is that 3D-printed models can take orders of magnitude more time. 

 

1.2.2 3D Printing Techniques 

3D printing is a category of additive manufacturing (AM) techniques that encompasses 

several different fabrication technologies. This category contains such processes as 

Stereolithography (SLA), Three-Dimensional Printing (3DP), Fused Deposition Modeling 

(FDM), Selective Laser Sintering (SLS), Laminated Object Manufacturing (LOM), Color-Jet 

Printing (CJP), Electron Beam Melting (EBM), and Direct Metal Laser Sintering (DMLS) [5]. 

Machines that use each of these technologies are commercially available, but some of these 

strategies are limited to use with certain materials. SLA printing, for example, is limited to 

materials that solidify when exposed to UV light. EBM and DMLS printers are usually used with 

metal powders, while 3DP is generally used with any powdered material that can be bonded with 
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an adhesive. FDM printers are some of the more robust printers, with the ability to print nearly 

any material that can be liquefied and solidified by heating and cooling elements. SLA printers 

are typically used to print photopolymers whereas FDM printers print thermoplastics. The low 

cost of polymer-based FDM and SLA machines has led to their wide-spread application for 

making plastic parts.  

Stereolithography (SLA) falls under the broader category of Solid Free-Form Fabrication. 

This technology was invented in 1986 by Charles W. Hull, who later founded 3D Systems, Inc. 

[6]. Hull’s patent on the process specifies the hardening of liquid resin via a hardening agent, 

either by an induced jet or by a bath of ultraviolet radiation. This application of ultraviolet 

radiation, used to instigate photopolymerization in the resin tank, can be controlled with extreme 

precision due to recent advances in laser technology and optics. This means that a typical SLA 

machine has a higher resolution than a typical FDM machine (due to the precision to which 

polymerization reaction can be localized). A typical SLA printer can achieve layer thicknesses of 

50-100 𝜇m and minimum feature sizes of 250-380 𝜇m, while a typical FDM printer can achieve 

layer thickness around 180 𝜇m with minimum feature sizes of 250 𝜇m [7]. With extremely 

precise control of femtosecond laser pulses, some Micro-SLA machines have boasted feature 

sizes in the nanometer scale, such as the printed model of a bull shown below: 
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Figure 1 - A Model of a Bull Printed via Micro-SLA (10 𝜇m in length)[8] 

 

Even though SLA models have ultra-precise features, parts created from the FDM 

process tend to be more durable and more suitable for end-use applications [9]. These inherent 

differences come from the bonding processes used in SLA and FDM printers. SLA printers use a 

series of mirrors to direct a laser beam into a vat of photopolymer resin. A computer sends 

control signals to the laser, rastering the resin, resulting in photopolymerization reactions and 

thereby hardening the resin from a liquid into a solid [7]. SLA printers build their parts up in 

slices. To print each layer, a movable platform is positioned in the resin tank such that only a 

small layer of the resin exists between the platform and the previous layer of the part. The laser 

beam then cures each subsequent layer of the resin, causing it to bond to the previous layer of the 

part. The use of a laser as the hardening mechanism allows for very precise part formation. Since 

the part is submersed in liquid resin, it is possible for the excess resin to undergo 

photopolymerization, causing a loss of dimensional tolerance or increased surface roughness. 

This submersion makes the creation of support structures much more difficult as well. The bath 

of liquid resin restricts the use of a separate support structure. However, printers like the 

Carbon3D have found a unique solution for this support issue. Instead of using a separate 
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photopolymer material for support structures, the Carbon3D forms voids in the resin vat through 

the injection of air bubbles into the vat. These controlled bubbles act as a support structure for 

floating features. 

Like SLA printers, FDM printers also stratify the model, printing each layer individually 

and then bonding each subsequent layer to the last. Instead of using photopolymers, however, 

FDM printers employ thermoplastics, a class of polymers that are glassy at low temperature, yet 

can achieve viscous liquid-like flow properties at high temperature. With the addition of 

sufficient heat, a thermoplastic can be pushed through an extrusion nozzle by a drive mechanism. 

A typical FDM printer uses a gear drive system that pushes a strand of thermoplastic filament 

with a circular cross section (typically 1.75, 1.78, or 3 mm in diameter) into a heating chamber, 

as shown in Figure 2 below. 
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Figure 2 - Diagram of an FDM Extruder [10] 

 

 As a result of  the Continuity Equation and the incompressibility of molten 

thermoplastics, the pressure created by the incoming filament causes liquid plastic to flow 

outward from the heating chamber, usually through a nozzle of a specified geometry. Nozzles are 

generally of circular cross-section, but vary in diameter for varying Z-resolution and bond 

strength. FDM printers can use a much more diverse selection of polymers than SLA printers, 

including several stronger, more durable polymers such as Acrylonitrile Butadiene Styrene 

(ABS) and Polylactic Acid (PLA). This research focuses mainly on FDM technology and its 
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application with ABS thermoplastic because of the wide commercial application of FDM to the 

manufacturing of plastic parts. 

 

1.2.3 Additional Information on Fused Deposition Modeling 

The Fused Deposition Modeling (FDM) process was developed by S. Scott Crump, now 

the CEO of Stratasys, a major manufacturer of FDM and PolyJet printers [11]. This process 

utilizes melt-extrudable materials and is therefore used predominantly with thermoplastics, 

although it can utilize materials with alternative hardening mechanisms. Like the previously 

mentioned techniques, the FDM process slices the three-dimensional model into a series of 

sequential layers, converting each layer into two-dimensional toolpaths. A typical FDM printing 

mechanism uses a hot melt extruder to liquefy thermoplastic filament and deposit a molten 

ribbon of plastic in computer-designated locations on a build tray. Since the model is built in 

slices, each layer then thermally bonds to the previous layer of the workpiece. This thermal 

bonding is driven by the thermal energy stored in the incoming filament. When new filament 

comes in contact with the previously-extruded ribbon, molecular diffusion bonds the two layers 

at the interface, resulting in a solidified structure [12]. 
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Figure 3 – Model of an FDM Extrusion Process 

  

There are several problems that commonly arise during FDM build processes. The 

majority of these issues stem from the inherent heat cycling of the working material. When a 

layer of thermoplastic filament is deposited on the work piece, it must first be heated to a 

temperature at which it is easily extrudable. Since ABS is an amorphous thermoplastic, it does 

not have an established melting temperature. The plastic must therefore be heated high enough 

above its glass transition temperature to achieve desirable extrusion properties.  When the 

extruder head adds this heated thermoplastic to the strata of existing material on the build 

substrate, the thermal energy contained in the newly-deposited filament drives interlayer mixing 

and subsequent bonding. The created structures are orthotropic composites of polymer filaments 

(partial bonding between filaments) and voids [13]. The discretization aspect of the FDM process 

drives the production of models with atypical material properties since complete mixing between 

printed layers is unattainable. The partial bonding between adjacent filaments causes anisotropic 

behavior within a given layer, while voids cause stress concentrations at their boundaries. Such 
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stress concentrations are an integral weakness and can lead to premature failure of any part built 

with the FDM process. 

 

1.3 System Aware Cyber Security 

With inherent weaknesses in parts created by the FDM process, overall part strength 

becomes heavily dependent on the build parameters during the print job. Many commercially 

available 3D printers have minimal security measures to prevent or deter cyber attacker from 

manipulating these build parameters. Even though no major additive manufacturing facilities 

have yet reported being physically damaged by attacks to this date, it is important to consider the 

possible entry mechanisms into the 3D printing process that could allow cyber attackers to 

incapacitate additive manufacturing facilities or sabotage the parts they create. The Powderpart 

explosion is indicative of the potential for malicious attacks on additive manufacturing facilities 

and the scale of destruction that could ensue. In fact, the National Institute of Standards and 

Technology (NIST) has released a report detailing inherent security risks with replication devices 

like 3D printers, explicitly stating that insufficient cyber protection exists for such machines 

[14].  

As part of this research effort, a solution is proposed involving System-Aware Cyber 

Security, which involves a “sentinel” device being integrated into the system for the purpose of 

monitoring machine operations while comparing those operations to a set of known valid 

operations for the process [15]. Such a scheme has already been applied to the operation of 

Unmanned Aerial Vehicles (UAVs) by Rick Jones and Barry Horowitz at the University of 

Virginia, where a microcontroller-based sentinel analyzed sensory input to determine the 

reliability of flight data sent from the UAV back to the base station during flight [15]. The 
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application of a system-aware monitor (which will be called a “sentinel” in this research) to a 

3D-printer could enable smart monitoring throughout the build process, allowing the 

printer/sentinel pair to determine if there is any deviance from a validated build process on the 

fly.  Many 3D printers are internet-connected mechatronic systems with an on-board computer 

controller. None of these devices currently include system security measures to maintain 

unadulterated printer operation. One security option for the controller would be the addition of 

strict barrier security methods throughout the printer architecture (both hardware and software 

protection would be needed). This is an expensive, unreliable solution considering the vast array 

of possible cyber attacks. The concept of System-Aware Cyber Security proposes a much 

simpler solution: instead of securing all of the machine’s hardware and software, the security 

system needs only to secure the process itself. The security system should emulate the data 

transformation process performed on the printer’s circuit boards, predicting the machine’s 

physical outputs resulting from the data input to the printer. The sentinel therefore requires 

knowledge of the operation of the build process in order to properly defend against attacks. This 

monitoring device systematically detects breaches when illogical system outputs originate from 

logical data inputs: 
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Figure 4 - Logical and Illogical Process Behavior 

 

The advanced manufacturing context provides a perfect application for the newly 

developed sentinel monitoring technique. The sentinel can be interfaced with a 3D printer in 

such a way that cyber attacks to the printer do not allow access to the sentinel, allowing the 

sentinel to remain isolated from the main printer operations. For instance, the sentinel might read 

print parameter set points from its own memory chip. The printer might be allowed write access 

to this memory chip, but not to the sentinel’s program memory. In such a setup, the sentinel is 

indeed purely a monitoring device; it does not impact and is not influenced by printer operation. 

Physical actuations can be monitored using low-cost sensors and transducers to give the sentinel 

real-time output monitoring capabilities. Additionally, the simplicity of the sentinel device’s 

hardware makes it much more cost-effective to secure than the entire printer. 
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This thesis documents an additive manufacturing application of a System-Aware Cyber 

Security approach for embedded security measures. A prototype sentinel device was developed 

for the purpose of tracking the build process parameters for validation. Major attack vectors were 

also identified and emulated using a commercial-grade 3D printer to test the sentinel prototype’s 

ability to detect any malicious manipulation of the printer’s functions.  
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Chapter 2 - Identifying FDM Vulnerabilities 

 
2.1 Selection of a Dimension uPrint 3D Printer for the Case Study 

In order to further understand the implications of malicious attacks on 3D printers, cyber 

attacks were emulated through manipulation of both the build files and the 3D printer hardware. 

The machine selected for this study represented the majority of commercially-available FDM 

printers, employing commonly found hardware and software construction. This research project 

focused on FDM technology due to its widespread use and relatively low cost of entry, but the 

techniques used, vulnerabilities discovered, and solutions developed here are relevant for most 

types of 3D printers, including metal 3D printers. 

The majority of the printers under consideration for this study were manufactured by 

Stratasys Inc., the leading manufacturer of FDM 3D printers. The models varied in price from 

roughly $2,500 to $40,000, with the Makerbot Replicator 2X at the low end and the Fortus 

250mc at the high end of the price range. Metal printers were considered as well (both DMLS 

and EBM) but their high cost of entry prohibited their use for this particular project. The decision 

criteria allowed for the consideration of only industry-standard printers that might be found in a 

typical engineering prototyping lab or an advanced manufacturing facility. The less expensive 

Makerbot line of printers is most typically used in hobbyist applications, justifying its exclusion 

from this study. Furthermore, previous iterations of this printer have been open source (freely 

available to the general public) and used the common language of G-code to specify toolpaths. 

Attacking such a printer would be almost trivial, and it would not demonstrate the seriousness of 

this threat to commercial 3D printing systems. The Stratasys Dimension uPrint line, however, is 

frequently used in engineering prototyping environments, and was therefore a top contender.  
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The Fortus line of 3D printers was also considered for this study. A Fortus printer is a much 

more durable version of the uPrint and is most commonly used in advanced manufacturing 

facilities for large production runs of parts. Fortus printers receive the best mechanical and 

software components of all Stratasys FDM printers, but they function in almost exactly the same 

way as the Dimension machines, running the same type of proprietary toolpath files using similar 

motion interpolation processes. 

It became apparent that entry-level models would not provide a representative sample of 

the 3D printer architecture commonly in use in manufacturing facilities and engineering design 

labs due to their relative lack of any complicated architecture. The choice was thus narrowed to 

the uPrint SE Plus and the Fortus 250mc. Further research discovered that the uPrint and Fortus 

printers differ mainly in their design software with very similar electromechanical hardware 

configurations (the Fortus does have feedback from encoders on the movement axes, while the 

uPrint only implements open-loop stepper motor control). The Fortus design software (Insight) 

allowed more complete control of the build parameters than the uPrint software (CatalystEX), 

including the ability to modify the in-fill pattern, road width (width of the extruded filament), 

and other location-related controls. The most notable parameter that was excluded from both of 

these software packages was control of the extrusion head temperature. Build temperatures were 

pre-set on the machine with a predefined optimal build temperature for each material. 

Both printers utilize the proprietary Stratasys “CMB” build file format. For the uPrint SE 

Plus, its CatalystEX control software converted the STL point cloud file into a series of machine-

interpretable move commands that were then stored in the CMB file. The Fortus software 

(Insight) also creates a CMB file from a given STL file, but it allows more control over the 

generation and editing of toolpaths. Digging deeply into the CMB file format and deciphering it 
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resulted in the discovery that all CMB files contained the same general information, regardless of 

the printer/software combination for which they were written. This enabled the manipulation of 

CMB files for use in different printers and allowed direct editing of certain key build parameters 

in order to emulate a cyber attack.  

This discovery led to the decision to use a uPrint SE Plus for this research project since 

the same exact editing techniques could be extended directly to the Fortus line of machines, 

which cost several times as much. With the printer hardware selected, it was then necessary to 

dig further into the CMB file format to identify any weaknesses that could possibly be exploited 

by cyber attackers. 

 

2.2 CMB Architecture and Vulnerabilities 

All 3D printer build files are simply extensions of the traditional G-code files used for 

Computer Numerical Control (CNC) machines. A G-code file includes the relevant build 

parameters for the machine, such as spindle speeds, feed rates, etc. Along with these 

declarations, the G-code also contains a series of G-commands defining the machine’s motion. 

For instance, a G01 command defines a linear movement, while a G02 command defines a 

circular arc movement. 3D printer build files are very similar if not identical to G-code, 

containing relevant build information followed by a series of move commands. These commands 

define the machine’s step-by-step motion profile, ultimately creating a three-dimensional 

structure.  

Attacking the build files of a given printer requires in-depth knowledge of the build file’s 

architecture. Since the Stratasys CMB build file format is used for the majority of Stratasys FDM 

printers, it serves as a good case study for 3D printing build files. CMB files are unencrypted 
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binary byte codes, with most data presented in four-byte longs. The architecture was interpreted 

with the help of the CMB Viewer program provided with Dimension uPrint machines. This 

program displays relevant print parameters contained in the CMB file as well as graphical 

representation of all toolpaths. CMB files were opened in a binary editor program and viewed in 

their hexadecimal representation to more easily understand their formatting. The following 

image is the raw data obtained from a CMB build file: 

 

 

Figure 5 - Stratasys CMB File Raw Hex Data 

 

The CMB file consists of three main sections: header, toolpaths, and End-of-File (EOF) 

commands. The composition of these sections is shown below in Figure 6: 
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Figure 6 - Composition of a Stratasys CMB Build File 

 

The header section contains the data displayed in the “Pack Details” section of the 

CatalystEX software during CMB file transfer and it is the information that the machine operator 

sees while preparing files for printing. The toolpath section details the movements of all four 

machine movements: x-travel, y-travel, z-travel, and plastic extrusion. Before each move is 

executed, however, the printer defines the “Print Mode”, which contains definitions for which 

extruder to use (model or support), what part of the model is to be printed (interior fills, exterior 

shells, part roof, part floor, support raft, etc.), and other similar characteristics for the subsequent 

movement commands. Once the printer completes the designated toolpaths, the next instruction 

is the end-of-file. One component of the end-of-file section is the layer table. The layer table 

contains the addresses within the CMB file for each layer, stored as a four-byte integer. Each 

entry in the layer table points to the exact address of the beginning line of each layer, starting 
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with the declarations of the bounding box for that layer (maximum and minimum layer 

dimensions). Once a layer is completed, the printer searchers the layer table for the address of the 

next layer. This continues until the machine steps through all of the layers in the layer table. If 

the number of entries in the layer table does not equal the number of layers declared in the 

header of the CMB file, the machine returns an error with the file. The end-of-file also contains a 

unique bytecode that the machine firmware designates as the signal to turn off the extrusion 

mechanism and to move the head gantry and the build tray to their respective rest positions. This 

move is a “presentation” movement to signify the end of the build process, finishing the 

instructions obtained from the CMB file.  

Floating point numbers in the CMB build file are encoded using the IEEE 754 Binary32 

system standard. This requires four bytes and is presented in little endian format. Any integers 

are also represented in four-byte, little endian format. Strings are represented with ASCII 

encoding, so each letter is represented with one byte. A string consists of a four-byte integer 

denoting how many characters the string contains followed by that number of ASCII-encoded 

bytes. 

One noteworthy mention is that these CMB build files do not have any form of 

encryption. The data is therefore easily accessible, and once the proprietary encoding format is 

understood, editing these files becomes quick and easy. Individual movements or movement 

modes can be targeted to negatively affect the outcome of the print. Header data can also be 

discretely manipulated to provide incorrect process data for the print, such as pack outlines and 

build estimates.  
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2.3 Determining an Attack Strategy 

In order to understand the dangers that cyber attackers pose to AM processes, one must 

first consider the build parameters at risk for malicious hacking. In their parametric study of 

FDM-printed ABS, Sood, Ohdar, and Mahapatra identified the following key process parameters 

that correlate strongly to a given part’s dimensional accuracy and tensile properties [16]: 

 Tip Temperature and In-Process Temperature Gradients 

 Road Width  

 Fill Density (Air Gap) 

 Build Orientation 

 Raster Angle 

With the exception of the temperature, all of these parameters are defined and stored in 

the CMB file, allowing direct manipulation without any specialized software. These build 

parameters demonstrate the fundamental problem with CMB file security: none of the 

information contained in the build file is encrypted. The security for the entire process is only as 

secure as its weakest point of entry, so each point of entry must be considered. Furthermore, 

even if the files were encrypted, they may still be vulnerable, but software security is a different 

branch of research that lies beyond the scope of this work and falls deep within the realm of 

computer science. 

The identification of logical points of entry for the 3D printing process necessitates an 

understanding of the individual file transfers and transformations throughout the entire process.  

The process for a typical 3D printed part is shown below in Figure 7. 
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Figure 7 - 3D Printing File Transfer Process 

 

The transformations represented above illustrate the points of entry where a hacker might 

interfere with the 3D printing process. A cyber attacker could deliberately build hidden defects 

into a part at several of these points. STL or build files pose the highest risk, as they are usually 

transferred between machines on external storage devices. These files could be intercepted and 

manipulated without the machine operator’s knowledge. A group from the DREAMS Lab at 

Virginia Polytechnic Institute and State University has researched the effects of such software 

attacks on 3D printers by testing an STL interception algorithm on uninformed students and 

analyzing the results. They determined that changes to the STL file could go undetected by both 

the students operating the printers and the STL quality-checking software that verified the 

integrity of the model [17].  

A more devious and covert attack methodology might target the interpretation of the 

build file once it reaches the machine.  In the case of a Dimension uPrint, the CMB file is passed 

to an on-board move compiler. The move compiler reads the road settings from the CMB, 
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calculates a suitable extrusion rate, and then saves the combined tool path and extrusion data into 

a Stratasys PCB file [18]. This move compiler is stored on the machine hardware in the Single 

Board Computer’s Linux hard disk. An attacker with a basic knowledge of Unix-based operating 

systems could find the software for this move compiler and cause it to offset the machine 

coordinates for certain movement modes, or to change the extrusion rate calculation and 

therefore the heat flux from the heater block to the extruded plastic.  

It is commonplace in most 3D printing techniques for models to need post-processing to 

remove support structures and extra material. An attacker could compromise a printed part by 

adding some agent to the post-processing chemicals that might corrupt the integrity of that part. 

For instance, many FDM parts are placed in a solution of sodium hydroxide and water (NaOH 

and H2O) after printing in order to dissolve soluble support structures. The key to this bath is that 

the ABS model material is not adversely affected by the NaOH solution; however, addition of a 

third agent to induce semi-solubility of ABS is entirely possible. Monitoring the post-processing 

steps is therefore equally as important as monitoring the build process. 

From a software viewpoint, the most vulnerable print parameter format is the CMB build 

file. STL files store a small amount of information regarding the location of model material, but 

STL files do not include printer metadata or the majority of the key print parameters. 

Additionally, some control software (like the Stratasys Catalyst EX and Insight programs) 

display the toolpaths created by the slicing algorithm, making the locational changes achieved by 

STL manipulation easily detectable by a competent operator. 

Altering the firmware of the machine could represent another form of software attack, 

especially if the machine receives firmware updates over the internet, as do both the Dimension 

uPrint and Fortus machines. Modification to the Linux operating system that controls the uPrint 



 

 

29 

is also possible. Access to the Single-Board Computer (SBC) located in the interior of the uPrint 

can be achieved either through an Ethernet connection or even by directly plugging a keyboard 

and monitor into the SBC. Physical access could be limited if the machine is locked or placed 

under video surveillance, but the firmware access could potentially be granted via the Ethernet 

connection to the Linux SBC.  

The base assumption for this project is that an attacker could find a way to gain access to 

the machine’s hardware. This scenario represents an attacker modifying the machine’s firmware 

definitions or installing foreign hardware into the machine. Access to the machine enables a 

cyber attacker to adjust the road width, fill density, print orientation, tip temperature, raster 

angle, and other important build parameters. Certain build parameters can also be controlled by 

attacking the hardware of the machine and installing intermediate circuitry to adjust feedback 

signal levels. The tip temperature is a good example of one of these parameters. 

For this attack emulation, a validated (unhacked) build file was sent to the sentinel while 

a modified (hacked) build file was returned to the PC-SBC interface software (CatalystEX). This 

modified build file displayed the same print file information since the CMB header remained 

unchanged. This means that the machine’s operator would not notice a difference during the file 

transfer process for a modified file or an unmodified file. 

 

2.4 Covertly Modifying Build Parameters in a CMB File 

Modification of the CMB build file allowed changes to part geometry through 

manipulation of machine toolpaths. For this use case, CMB files created with Catalyst EX were 

altered for the Dimension uPrint SE Plus FDM printer. Custom build files were also created for a 

Fortus 200mc FDM printer with the Insight design software. Using Insight provided much more 
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control over the print parameters of a given 3D model since the software allows in-depth 

modification of nearly every machine movement. The Insight files were prepared for a Fortus 

200mc since that printer shares the same build envelope dimensions as a Dimension uPrint SE 

Plus. All models for these tests were printed from Stratasys ABSPlus/P430XL ABS 

thermoplastic filament. The modifications of these build files are extremely difficult to detect if 

only slight changes are made to the file. Small changes to the build file can retain the same file 

metadata (file size, print estimates) while negatively affecting the part strength. These 

characteristics make build file modifications an obvious way to alter the mechanical properties of 

the final printed part. 

Toolpaths were changed by locating the movement commands found in the section of 

CMB file directly following the header. Each movement command has the hexadecimal prefix 

“0B” and a hex byte containing its motion descriptor. These motion descriptors are defined as 

below: 

Table 1 – Print Movement Motion Descriptors 

Hex Byte Code Movement Type 

00 Jog/Fast Travel 

01 2D Linearly-Interpolated Print (XY Plane) 

02 Z-Height Change 

03 Print with Road Width Alteration (Adjusts Extrusion Rate/Height Offset) 

 

Each print layer generally contained multiple printing moves. This is due not only to the 

large amount of points that comprise a typical layer, but also to the shell/interior method by 

which the printer built models. A typical 3D-printed part contains five structures. The first 

Note that the specific byte codes used by Stratasys FDM machines have been censored in this version of the 
document so as not to provide a roadmap for would-be cyber attackers to these machines. 
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structures printed on each layer were the support structures, beginning with a support raft. The 

floor, the dense bottom layer of the model, was built upon the support raft or a support structure 

built on the raft. After the floor came a combination of exterior shells and interior fills. The 

density of the interior fill could be controlled by the user in the CatalystEX toolpath creation. 

The Insight design suite allowed for control of the prismatic structure of the internal fills, while 

CatalystEX did not. Once the internal fills and the external shells for a given XY location had 

been printed, the roof was printed. As the final layer for a 3D-printed model, the printing of the 

roof signified the end of the build process. These structures are illustrated in the following figure: 

 

 

Figure 8 - Structures in a 3D Printed Model 

 

The toolpaths in the CMB file had printing modes denoting which part of the model is 

being built by the current machine movements. This indicated to the machine which material to 

print (which heating element and extruder nozzle to engage). The following table displays the 

available printing modes for Stratasys FDM printers 

 

 

 

Raft 

Roof 
Shells 

Interior 

Fill 

Floor 
Support 

Structure 
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Table 2 - Description of Printing Modes (Obtained from CMB Viewer Info Pane) 

Hex Byte Code Printing Mode 

65 “Part Interior” – Used for shells on interior of model 

66 “Part Surface” – Used for shells on exterior of model 

67 “Sparse Raster” – Used for interior sparse fills of model 

68 “Solid Raster” – Used for interior solid fills of model 

6B “Part First Layer” – Internal fill of support material under raft 

6E “Part First Layer Perimeter” – Shell of support material under raft 

C8 “Support” – Support structures not adjacent to model structures 

CA “Interface” – Support structures adjacent to model structures 

CB “Sparse Bridge” – Support structure placed between two interfaces 

CD “Support Bottom” – First layer of the support raft 

 

 If cyber attackers attempted to alter a specific toolpath, first they would need to know the 

toolpath type. Since each printing mode requires a mode change, targeting specific printing 

modes is simple; one simply needs to identify the specific mode change and alter the ensuing 

toolpaths.  

With this new understanding of the CMB file’s architecture, it became evident that 

altering the geometric structure of the part would not be extraordinarily difficult. The most 

difficult attack would actually be the alteration of the tip temperature, since no software control 

of the tip temperature was available through the CMB file. This meant that software hacking of 

the temperature would need to happen through the machine’s firmware. In order to emulate such 

an attack, the temperature feedback from the head temperature thermostatic control system could 
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be intercepted and manipulated, thereby altering the extrusion tip temperatures in the same 

manner that a firmware attack could. Altering the temperature feedback for this closed-loop 

system caused the head to maintain a temperature unsuitable for proper extrusion, leading to 

either material jams or sub-par adhesion between material layers. 

 

2.5 Attack Execution 

2.5.1 Replace Fill Material with Support Material 

The first attack targeted the internal fill pattern, replacing specific sections of model 

material with support material. A model was designed that adhered to the ASTM D638 testing 

standard for unreinforced and reinforced plastics. The model was built in the On-Edge (XZ) 

orientation as shown in Figure 9, but some internal fill toolpath modes in the CMB file were 

changed from the Solid Raster mode to the Support mode, changing the material type. 

 

 

Figure 9 - Experimental Build Orientations [19] 
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The first step of attack emulation was locating the layer table within the build file. The 

entries in the layer table give the addresses for each layer, where a “05” byte is stored, 

identifying that the succeeding bytes define the minimum and maximum dimensions for that 

layer. Following these minimum and maximum dimensions is the definition of the print mode. A 

mode change to the Solid Raster mode signals an internal fill toolpath. By selecting this mode 

change and altering the mode definition, the waypoints are retained, though the print material 

usage changes. This attack can be achieved covertly with no change to material and time 

estimates through the clever manipulation of the print metadata as illustrated in the figure below. 

The figure shows two completely different models: the model on the left side is cubic, yet the 

model on the right side is cylindrical. However, the cylinder’s build file contains metadata from 

the square build file, thus incorrectly displaying the print information to the operator. 
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Figure 11 – Using the Same Metadata for Two Different Print Jobs to Hide Hacks (Left has toolpaths of a cube and right has 

toolpaths of a cylinder, yet both show cubes in the pack) 
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2.5.2 Fill Density Alteration 

The internal density of these printed specimens also affected their mechanical behavior. 

When differing fill densities were used, the tensile test specimen attained a different equivalent 

stiffness. This lowered the amount of force required for a given elongation. The cross-sectional 

area of the model also decreased, so the new area had to be accounted for when calculating the 

instantaneous stress (mentioned in more detail later). 

Fill density alterations were initially performed using a method by which the tool path 

section of the solid control model was replaced with those from a sparse-built model. This 

method produced undesirable results, however, as the material usage was drastically reduced. 

The method for this attack was therefore changed to produce a local change in density to reduce 

obvious changes in material usage. The local reduction in density was placed in the gauge 

section to place the stress concentration in the highest-stress area of the model, driving fracture 

there. This attack was achieved by altering the road width for internal fill paths in a certain area. 

The overall file size showed no major changes, as with the material usage estimates. 

 

2.5.3 Introduction of Pre-Existing Internal Cracks 

The performance quality of a given test specimen was drastically reduced when a small 

crack was introduced. Since an additive manufacturing process involves the placement of raw 

materials in desired locations, 3D printers enable hidden flaws to be placed inside of the part, 

such as small internal cracks. The strategic placement of a small crack can induce fracture at the 

crack surface and can also severely reduce the ultimate tensile strength and fatigue life of the 
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final part. Such a crack could be deliberately placed in an area in which the part might exhibit 

high stress under loading. 

Emulation of this attack was performed by identifying the internal fill of the test 

specimen in the CMB file, then removing a few internal nodes from the internal fill toolpaths 

while adding some internal perimeter toolpaths to create a clean crack line. This could be 

considered a covert attack because during processing, the operator would be shown the original 

build metadata with incorrect time and material usage estimates. The overall part volume was 

only altered by about 0.001%, which means that the impact on material usage is minimal. 

Detecting such an attack through primitive optical inspection or weight measurements would be 

virtually impossible. The pre-existing crack was placed in the center of the specimen to 

encourage crack propagation in the center of the gage section, which, of course, was where the 

sample ultimately broke (See Figure 23 and Figure 35). 

 

2.5.4 Print Seam Re-Location 

Another important print parameter contained in the CMB file was found to be the entry 

point of the plastic extrusion. By default, the uPrint begins and ends extrusion at the same 

specified location for each layer (for the ASTM test specimens). The phenomenon known as die 

swelling causes radial expansion of the print bead, depositing extra material at these entry and 

exit locations [20]. Since the uPrint begins and ends extrusion at consistent locations around the 

part’s perimeter, a print seam is easily visible on the side of most parts, including the ASTM test 

specimens. This seam relies on the polymer sintering reaction to coalesce the individual polymer 

particles, causing it to be inherently weaker than the continuous polymer filament found in the 

rest of the layer (see Figure 12 below)  [21]. The misaligned polymer chains at this location also 
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create a stress concentration that can cause fracture to occur. Thus, by moving the part seams to 

critical locations, an attacker can target a specific high-stress area and induce a brittle fracture 

(low strain to failure) there.  

 

 

Figure 12 - Polymer Chain Mixing During the Sintering Reaction [20] 

 

The location of these print seams was easily moved by changing each layer’s entry point 

in the Insight design software or directly in the CMB file. The CatalystEX software, however, 

did not have built-in support to adjust this parameter. This attack emulation therefore required 

the manipulation of a CMB file created in Insight such that it could then be imported into the 

CatalystEX for transfer to the printer. The standard ASTM D638 test specimen was built in 

SolidWorks, then saved as an STL file. The STL was then imported into Insight using the 

definition for a Fortus 200mc (same build envelope dimensions as the uPrint SE Plus) and all of 

the entry points were moved to the center of the gage section. Once the print seam had been 

aligned, the toolpaths were then exported to CMB format. This CMB file was then opened in a 
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binary file editor and the header data and EOF lines were altered to agree with the format for 

uPrint SE Plus build files as previously displayed in Figure 6.  

 

2.5.5 Tip Temperature Modification 

The setpoint temperature of the extruder tip is the most important build parameter for 

FDM processes. The tip temperature controls the amount of thermal energy transferred to the 

filament as it passes through the extruder block, as governed by the following equation, given the 

assumption of constant heat flux [22]: 

 

𝑞 = �̇�𝑐𝑝(𝑇 − 𝑇𝑖) = (
𝜌𝑣𝐴𝑐𝑝

2𝜋(
𝐷

2
)𝐿

) (𝑇 − 𝑇𝑖)  (Eqn. 1) 

 

where 𝑞 is the heat flux,  �̇� is the mass flow rate of polymer through the liquefier, 𝑐𝑝 is the heat 

capacity of the polymer, 𝑇 and 𝑇𝑖 are the entrance and exit temperatures of the polymer, 𝑣 is the 

linear flow velocity, 𝐴 is the cross-sectional area of the extruder, 𝐷 is the diameter of the nozzle, 

and 𝐿 is the length of filament in the liquefier [22]. The exit temperature of the polymer 𝑇𝑖 is 

known as the extruder tip temperature. 

 Tip temperature is not a parameter stored in the CMB build file, so it cannot be 

manipulated using CMB alteration methodology. The Dimension uPrint SE Plus is designed to 

print with only two material cartridges: Stratasys ABS P430XL model material and SR430XL 

support material. This means that its temperature parameters are stored on the internals of the 

machine and the move compiler fetches them when it calculates the heater duty cycle and the 



 

 

40 

extrusion rates. The persistent threat would therefore reside either as an embedded hardware 

device that alters the thermocouple feedback signals or from a firmware attack that alters the 

move compiler’s calculations for extrusion rates. For the purposes of this research, an 

interception of the thermocouple feedback was employed as the method of emulating a 

temperature setpoint modification attack. Stratasys Dimension FDM printers incorporate a 

temperature feedback loop to maintain strict control of the build temperatures. This closed-loop 

control system is shown in Figure 13 below. The attack involved the application of a feedback 

gain to the closed-loop control system. 

 

 

Figure 13 - Closed-Loop Temperature Control System 

 

The gantry head of the printer contains several important circuits. The two main circuit 

boards located on the head are the head board and the thermocouple amplifier board. The head 

board performs key operations, such as regulating heater output signals and collecting extruder 

motor encoder signals. The thermocouple amplifier board serves three main functions. First, it 

contains a thermostat to send an alarm signal to the motherboard if the head overheats. It also 

contains a system of comparators wired as Schmitt triggers to determine if there is an open 

circuit in one of the thermocouples. Lastly, it contains Analog Devices AD597 thermocouple 

amplifier chips to amplify and linearize the feedback signal from the thermocouples in the head 
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and build environment. These integrated circuit (IC) chips scale the temperature signal to an ice-

referenced analog voltage range with a slope of 10
mV

°C
. There are three thermocouples in the 

uPrint: one in the model heater block, one in the support heater block, and one in the build 

environment. Each of these thermocouples is wired to a unique thermocouple amplifier chip, 

which then sends an output signal back to the printer’s motherboard.  

In order to manipulate the build temperature, the feedback loop needed to be cut and a 

device inserted to either amplify or divide the thermocouple’s temperature signal. For a given K-

type thermocouple, the thermocouple signals are on the order of 0 to 10 mV for a 0 to 300C 

measurement, while the amplified temperature signal is anywhere from 0.2V to 3.5V. Since this 

signal is scaled by the AD597A IC chips, the temperature signal sent to the motherboard is 

between 3.0V and 3.1V when the head is heated sufficiently for extrusion. It was thus decided 

that instrumentation amplifiers or voltage dividers would be more suited to adjust the output 

signal of the thermocouple amplifier board than to its input signal.   

 

Figure 14 - Block Diagram for the Temperature Interception Board 

 

The Temperature Interception Board (TIB) was therefore strategically placed to alter the 

output of the thermocouple amplifier board before it reached the motherboard, as shown in 

Figure 14 above. The TIB contains circuits for both multiplying and dividing the voltage, with a 
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non-inverting amplifier to provide a gain of greater than 1 and a voltage divider circuit to provide 

gains less than 1. If the gain is set higher than 1, then the temperature feedback to the 

motherboard will be larger than the actual temperature in the head. Therefore, the motherboard 

will lower the head temperature until the temperature feedback comes down to the set-point 

temperature, which is 300°C for the support heater and 310°C for model heater. The circuit 

diagram for the Temperature Interception Board is shown below: 

 

Figure 15 - Prototype TIB Amplification Circuitry 
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  Figure 16 - Prototype TIB Division Circuitry 

 

2.6 Detection 

Comprehensive human or video monitoring of typical 3D printer build processes would 

be very difficult. With plastics, even small voids can compromise the mechanical properties of 

the printed model, resulting in lower stress and strain to failure. These voids can be caused by 

deviations so miniscule that even a machine operator staring at the printer during its operations 

might not detect any noteworthy process anomalies, as demonstrated by the temperature 

alteration attack. Some printers such as the Objet Connex can print in multiple locations at once, 

further complicating the monitoring process. The difficulties associated with validating printing 

parameters throughout the entire build process lead to the alternate solution of creating a robust 

sentinel monitor to simply observe the printer’s movements and operations.  
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Chapter 3 - Characterizing the Effect of Attacks 

on Mechanical Properties 

 
3.1 Preparing Samples for Tensile Testing 

The effects of these attacks on the integrity of 3D printed models required 

characterization to provide a better understanding of the motivations behind potential attacks. 

The mechanical properties of specimens containing the results of these various types of attacks 

were assessed by measuring the difference in ultimate tensile strength and elongation at break 

between unaltered control samples and deliberately compromised specimens.  

 

3.1.1 Choosing a Control Sample 

Control specimens were chosen from the three cardinal print orientations described by 

Figure 9 to exhibit the characteristic strength reductions for each attack case. Due to the weaker 

flexural delamination strength of printed ABS parts, only the XZ and XY orientations were 

considered for testing the first four attacks. The candidates for the control specimen are shown 

below: 
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Figure 17 – ASTM Sample - On Edge Orientation (XZ) 

 

 

Figure 18 – ASTM Sample - Flat Orientation (XY) 

 

The specimens printed in the XY orientation exhibited an undesirable fracture behavior, 

with all specimens breaking outside of the gauge length as shown in Figure 19. The XZ 
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specimens, however, produced a favorable fracture behavior, with each specimen breaking at 

random locations.  

 

 

Figure 19 – Undesirable Failure Behavior of the Broken Flat (XY) Solid-Filled Sample 

 

This unfavorable fracture of the XY orientation specimens was due to a concentration of 

air pockets in the radius of the print near the fracture surface, as shown in Figure 20. The curved 

section contained large air pockets along the wall of the part due to discretization of the internal 

raster pattern. This introduction of air gaps into the internal fill created a pre-existing crack 

whose existence caused failure to occur at that point. The reduction of area due to these air gaps 

resulted in a stress concentration, inducing a slightly higher stress at this location than elsewhere 

in the part. This Flat Orientation (XY) specimen was therefore rejected in favor of the On-Edge 

(XZ) specimen for the experimental control. 
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Figure 20 - Toolpath Simulation of an FDM-Printed Test Specimen (Obtained Using Stratasys Insight Design Software) – Notice 

the Air Pockets Created by the Raster Pattern along the Top Edge 

 

With the control specimen chosen for the validation case, compromised specimens were 

printed containing flaws that represent each of the five attacks described in Chapter 2. These 

attacks are listed in Table 3 below: 

 

Table 3 - List of Attack Vectors 

Attack Vector Description 

1 Switch to Support Material During Interior Fill Paths 

2 Alter Print Density Within Interior Fill Paths 

3 Turn Off Extruder During Interior Fill Paths, Leaving Small Cracks 

4 Add or Move Part Seams in High-Stress Areas 

5 Adjust Extruder Temperature During Printing 

 

 

 

Air Pockets 
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3.2 Printing Compromised Samples 

It was determined that five specimens would provide a large enough sample size to 

account for any normal printing variances. The specimens for each sample were printed in packs 

of six to allow one extra sample for potential misprints while still building all specimens 

correlating to a specific attack at the same time. The unbroken attack specimens are shown in the 

figures below: 

 

 

Figure 21 - Attack 1 - Replacement of Interior Fill Material with Support Material 
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Figure 22 - Attack 2 - Localized Reduction in Internal Fill Density (More Detailed Picture of Internal Structure Coming) 

 

 

Figure 23 - Attack 3 – Introduction of Pre-Existing Internal Cracks 

 

Internal Crack 
Added Here 
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Figure 24 - Attack 4 - Print Seam Re-Location 

 

Because of the thermally-induced sintering reaction between polymer layers, a different 

test orientation was employed for the fifth attack test to magnify the effects of altering the 

temperature of the extruder tip. The upright (ZX) orientation shown in Figure 9 was used for this 

test to illustrate the significant effect of the extruder temperature on the flexural delamination 

strength. When samples printed in this orientation were loaded in pure tension, the applied load 

separated the filament strands, straining the bond between adjacent layers. 

The upright orientation was the best orientation to use for this test because of its tendency 

toward delamination under tensile loading, but the standard dimensions for the ASTM D638 

Type II test specimen exceeded the build envelope of the Dimension uPrint SE Plus. The sample 

was therefore redesigned to fit inside the printer’s build envelope (8” x 8” x 6”). The same 

general shape of the test specimen was retained, but both the grip length and the gauge length 

were reduced to shorten the grip-to-grip length. The figure below illustrates the difference 

between the two specimens: 

Seam Defect 
Added Here 
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Figure 25 - Engineering Drawing of Modified Temperature Specimen (MTS) Compared to Control Specimen 

 

All of the temperature specimens were printed according to the geometry of the Modified 

Temperature Specimen (MTS) shown above. They were built with a solid in-fill in the upright 

(ZX) orientation as per Figure 9. For this test, the tip temperature was altered from the default set 

point of 210°C. Temperatures were modified using a combination amplifier/divider circuit as 

described in Section 2.5.5. Temperature and elapsed time data were monitored and logged using 

an NI 9217 RTD measurement card installed in a National Instruments cRIO data acquisition 

device. The compromised build file produced the following specimens: 
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Figure 26 - Sample of Specimens Printed at Altered Tip Temperatures 

 

The images above illustrate the difficulty for optical detection of temperature hacks to 3D 

printed models. All of the test specimens exhibited the same external characteristics, yet they had 

micro and nano-scale differences in the alignment of their polymer chains due to insufficient 

energy addition for polymer mixing. The temperature specimens were printed with the assistance 

of a precise temperature monitoring system, but some testing parameters were altered for the 

tensile test (crosshead velocity, failure criteria). 

 

3.3 Tensile Testing Procedure  

The samples described in Section 3.2 were strained to fracture in an Instron 5848 Micro 

Tester load testing machine fitted with a laser extensometer and an Instron ± 2 kN static load 
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cell. Initial testing was performed using D638 test specimens, as this test procedure applies to 

thermoplastic materials [23]. During preliminary testing it was discovered that the standard Type 

I specimen in this setup regularly broke outside the gauge section. A Type II specimen was 

therefore employed, per the ASTM D638 testing procedures [23]. The Type II specimen has a 

narrowed gauge section, which exhibits a more significant difference in area between the grip 

section and the gauge section (larger radius of curvature). Use of the Type II specimen, along 

with moving the standard part seam from within the gage section to the end of the part, produced 

clean breaks in the gauge section for all parts. The Stratasys white paper discussing tensile 

testing of P430 ABS also excluded this print orientation from testing for undisclosed reasons 

[19].  

Each specimen was elongated at a rate of five millimeters per second except for the 

temperature-adjusted specimens from Attack 5, which were elongated at a rate of one millimeter 

per second (due to the smaller overall specimen length). This extension rate was chosen to 

encourage fracture between 30 seconds and five minutes of the start of the test, as per the ASTM 

D638 standard [23]. Data was sampled from the load cell and extensometer at a rate of 200 Hz. 

This data was then recorded in CSV format (comma separate values) and processed through 

several custom MATLAB scripts (discussed in Section 3.3.1).  

 Laser tags were placed on the ends of the gauge section of each specimen prior to testing.  

These tags were aligned with the laser extensometer’s beam to measure the extension in the 

specimen. This was achieved by taking an initial measurement for gauge length, zeroing the 

extensometer, and then measuring the displacement between the two laser tags. The measured 

displacement, 𝛿𝑙, was used to find the engineering strain in the part, calculated as follows, where 

𝑙𝑔 is the gauge length prior to testing and 𝜖 is the engineering strain in the gauge section: 
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𝜖 =
δl

𝑙𝑔
 (Eqn. 2) 

All measurements of gauge length, extension, and strain were obtained in millimeters. 

 Engineering stress can be easily obtained as well, using the Instron ±2 kN load cell. The 

load measurements were recorded in Newtons. The cross-sectional areas of the specimens were 

found by measuring the samples before fracture with calipers. To account for void inclusions 

during the printing process, effective cross-sectional areas were used for the stress calculations. 

These effective areas for the specimens were calculated using a mass fraction approach under the 

assumption that model density is linearly proportional to gauge cross-sectional area. As 

demonstrated in the figures below, the void inclusions during printing can significantly alter the 

cross-sectional area of the fracture surface. Effective areas were calculated for both the solid-

filled specimens and the sparse-filled specimens for this reason. The notch and local density 

attacks, however, show the apparent stress in the model, so the effective area for the control 

specimen is used for those calculations.  

 

 

Figure 27 - Scanning Electron Microscope (SEM) Image of the Fracture Surface of a Multi-Layer Solid-Filled Part [24]  
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Figure 28 - SEM Image of a Three-Layer Sparse-Filled Part [25] 

 

The effective cross-sectional area calculation was performed by calculating the mass 

fraction of the sparse and solid-printed models as compared to the weight of an injection-molded 

ABS test section (theoretically calculated using the density of P430 provided by Stratasys [26]). 

This approach was applied in the following manner: 

𝐴𝑒𝑓𝑓 =
𝑀𝐹𝐷

𝑀𝐼𝑀
∗ 𝐴 𝐺𝑎𝑔𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 (Eqn. 3) 

The areas obtained for each specimen were applied to the engineering stress calculation, 

given according to the following equation: 

𝜎 =
𝑃

𝐴𝑒𝑓𝑓
  (Eqn. 4) 

where 𝑃 is the tensile force measured by the load cell and 𝐴𝑒𝑓𝑓 is the effective cross-sectional 

area of the specimen.  
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The effective area approach is similar to that employed by Rodriguez et al. during their 

FD-ABS materials testing. They presented the idea of using optical methods to measure the void 

density and applying the void density, 𝜌1, to calculate the effective cross-sectional area of the 

specimen [27]: 

 

𝐴𝑒𝑓𝑓 = (1 − 𝜌1) ∗ 𝐴𝑔𝑎𝑔𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛  (Eqn. 5) 

 

 While this method would have been perfect for the sparse and solid-filled specimens’ 

cross-sectional area calculations, Rodriguez et al did not provide explicit 𝜌1 values for differing 

part densities. The previously-described mass fraction approach was therefore used instead. 

 

3.3.1  MATLAB Script Functionality 

Three MATLAB scripts were written specifically for the processing of the tensile test 

data. The first file, “Retrieve_Tensile_Test_Data.m”, imports all of the tensile test data in the 

Instron CSV files into the MATLAB environment. The script begins by prompting the user for 

the number of input files, followed by the file prefixes (defined by the user during file creation in 

the Instron Bluehill software package). It then creates a structure for each of the CSV files to 

store the following data: gauge length, width, thickness, extensometer displacement, extension 

rate, and load. The script loads these values as matrices of double values, then calculates the 

cross-sectional area from the measurement for thickness and width (measured with calipers just 

before testing). The areas can then be manually adjusted according to Equation 3. Strain is 

calculated from the extensometer displacement and the gauge length, while the stress is 

calculated from the effective cross-sectional area and the measured load.  
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With these calculations completed, the stress and strain data for each sample is stored in 

separate matrices within the file structure. Each structure is manually saved by the user by right-

clicking the structure and saving the data in MAT format. The next step is to run the 

“Plot_Tensile_Test_Data.m” script. This script loads the .MAT file for a specific sample of data 

(the script must be run once per attack sample). It then plots the stress and strain matrices for 

each test sample with individual data series for each specimen within that sample.  

Since the ultimate tensile strength provided a good metric of the worthiness of each 

attack, the statistical mean and deviation for each sample were also calculated using a specially-

tailored MATLAB script. This script, “Statistical_Calculations_for_Tension_Testing.m”, loads 

all of the MAT files for every attack sample. It then calculates the mean and standard deviation 

of the ultimate tensile strength for each specimen.     

 

3.4 Tensile Test Results 

 The results including the fracture properties from the tensile for each attack were 

compared against the control case and the results were informative. The specimen chosen for this 

control case was used in the Stratasys-published material testing of ABS-M30, the Solid-Filled 

On-Edge (XZ) orientation [19]. The fracture behavior of this control sample is illustrated below: 
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Figure 29 - Broken Solid-Filled On-Edge Specimen (Control) 

 

The stress versus strain plot for this control specimen is shown below: 
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Figure 30 - Control Specimen Tension Testing Results 

 

3.4.1 Support Material Swap Attack 

Part material in the interior fill was replaced with support material, a much more brittle 

thermoplastic that dissolves in a sodium hydroxide bath. The danger of this attack stems from the 

fact that the total material usage remained the same and the apparent weight of the finished part 

was roughly identical to that of the control specimen. External appearances were also unchanged. 

Part strength was drastically reduced since these two polymers did not bond thoroughly to each 

other, causing rapid delamination during loading and resulting in brittle failure behavior. The test 

results indicated a drastic reduction in strength to failure. 
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Figure 31 - Attack No. 1 - Broken On-Edge (XZ) Specimen Filled with Support Material in the Gauge Section 

 

 

Figure 32 - Attack No. 1 – Tensile Test Results for Broken On-Edge (XZ) Specimen Filled with Support Material in the Gauge 

Section 
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3.4.2 Fill Density Adjustment Attack 

The second attack involved adjusting the fill density of the test specimen. Initially, the 

internal fill density of the entire specimen was changed from a solid in-fill pattern to a sparse, 

high-density (SHD) in-fill pattern. However, the density reduction in the grip section induced 

fracture outside of the gauge length for this specimen, invalidating the results. This attack method 

was also difficult to execute and easily detectable through weight estimates. The attack was 

therefore reformulated to produce a localized density reduction in a small area of the gauge length 

through the manipulation of the road width parameters. With density reduction confined to a small 

section in the gauge length, stress concentrations were no longer induced into the sections outside 

the gauge length and fracture occurred in the gauge section.  

The reduction in toolpath road width reduced the contact area and mixing between adjacent 

filaments, further reducing the bond strength. The filaments were therefore in the correct location, 

but only weakly bonded together. The result was a failure method with a premature yield strength 

as well as a low ultimate tensile strength: 
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Figure 33 - Attack No. 2 - Broken On-Edge (XZ) Specimen with Fill Density Alteration 

 

 

Figure 34 - Attack No. 2 – Tensile Test Results for Broken On-Edge (XZ) Specimen with Fill Density Alteration 
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3.4.3 Notch Insertion Attack 

Valid tensile test results were obtained from testing the specimens that had cracks 

deliberately added into the gauge section. This condition caused crack propagation at a specified 

location, remaining within the gauge section. The behavior of this specimen is interesting since 

the material removed from the part was unnoticeably small (only 0.001% of the total model 

volume). A detailed image of the fracture is shown below: 

 

 

Figure 35 - Attack No. 3 - Broken Solid-Filled On-Edge (XZ) with Notch in Center of Gauge Section 

 

The image above shows that this specimen underwent a clean break with hardly any 

strain outside of the fracture zone. The dark blue plastic in the gauge section shows a visual 

confirmation that this part underwent very little strain before fracture. The attack caused a brittle 

failure mode for this part, whereas the control sample exhibited a much more ductile response. 

The fracture behavior is easily seen in the following stress versus strain plot: 
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Figure 36 - Third Attack Tension Testing Results 

 

This plot shows that not only does the part fracture in a much more brittle manner, but the 

part’s ultimate tensile strength is reduced due to the weak bond created by the wider gap between 

adjacent filaments. Please note that this the apparent stress vs actual strain for this specimen. For 

true stress, the stress calculation would have to be adjusted for the lack of a proper bonding 

surface. However, the weak or missing surface bonds represent the most dangerous aspects of 

this attack. 

 

3.4.4 Seam Manipulation Attack 

This attack moved the part seam from the end of the specimen (as found in the control 

specimen) to the center of the gauge section. This placement was chosen to simulate the 

movement of a part seam to an area of localized high stress. The majority of these samples broke 
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in a predictable manner right on the seam. However, one of these five specimens broke slightly 

away from the seam at an unanticipated printing defect. This demonstrated that even though the 

seam represented a printing defect, other naturally-occurring defects due to loss of extrusion 

(perhaps due to a temporary tip clog) or similar errors could also have caused premature failure. 

The following image shows the fracture surface: 

 

 

Figure 37 - Broken Solid-Filled On-Edge (XZ) with Seam in Center of Gauge Section 

 

 The weak bonding at the seam caused the first crack to form there. As previously stated, 

polymer bonds at locations with discontinuous extrusions are thermally-induced, sintered bonds 

[21]. Insufficient heat flux or variations in polymer alignment make these bonds unpredictable. 

The results from the tensile tests of these specimens are shown below: 
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Figure 38 - Fourth Attack Tension Testing Results 

 

It is clear from these plots that placement of the seam in a high-stress location led to 

brittle fracture behavior, with the model experiencing a lower average strain to failure. The 

specimens with the shortest strain to failure from the control case displayed similar strain values 

as the specimen with the longest strain to failure from the attack case. This is due to the random 

printing defects introduced in the control specimens during the printer’s normal operation. These 

uncontrollable defects can be weaker than the seam defects in cases of improper alignment of the 

seam bonds. 

 

3.4.5 Temperature Set Point Alteration Attack 

The final attack prescribed interference of the printer’s extruder head temperature. The 

extruder head temperature was altered around the original set point by 20°C in both directions, in 

increments of 10°C. This resulted in five batches of samples to test, with each batch composed of 
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five specimens. This number of test specimens was chosen to provide a sufficiently large sample 

size to include any printing variations. To control printing variances, the test samples were all 

obtained from the same printing pack (they were built at the same time with the same machine 

settings on the same build plate).  To find the default printing temperatures, control samples were 

printed with the RTD temperature monitoring system in place on the model extruder. Tip 

temperature data was logged throughout the build process, and the temperature variations for the 

process are shown in the plot below: 

 

 

Figure 39 - Temperature Log for Control Specimen Print 

 

The  temperature sensed by the RTD monitor at the extruder tip was 210°C throughout 

the build process. The temperature adjustment drastically affected the tensile properties of the 

specimens, as shown in the stress versus strain plots on the following page: 
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Figure 40 - Tensile Test Results for Temperature Attack 
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 The first plot shows that reduction of the tip temperature by 20º C during printing can 

reduce the ultimate tensile strength by approximately 37%. The weaker lamination is evident in 

the following image of the fracture surfaces of the altered specimens, as compared with the 

control specimen (210º C): 

 

 

Figure 41 - Fracture Surfaces of Temperature Attack Specimens 

  

 The strongest inter-layer bond was seen in the 230°C specimens. The bonded layers 

sintered properly, such that the part tore between layers instead of delaminating. The temperature 
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was still low enough, though, that the increased tip temperature did not yet thermally degrade the 

polymer extrusion. 
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Chapter 4 - Design of a Secure System Monitor 
  

4.1 Security Concerns for 3D Printers 

The aforementioned tests demonstrate the feasibility of attacks on additive manufacturing 

systems. More sophisticated industrial sabotage is possible with the recent inclusion of internet 

connectivity in manufacturing equipment. Models created by additive manufacturing equipment 

are becoming increasingly attractive for use in non-industrial environments, as mass-produced 

items can now maintain some aspect of uniqueness. The current poster child for this mass-

customization movement is Invisalign, a company that manufactures orthodontic braces. 

Invisalign prints plastic dental “aligners” from 3D models of the patient’s mouth (obtained from 

X-ray scans), thus creating custom-fit orthodontic appliances at a mass-production level [28]. 

Military branches have been also using 3D printers to make custom parts at forward operating 

bases with poor supply chain access in hopes of establishing procedures for repairing equipment 

[29]. This diverse range of 3D printer usage provides cyber attackers with a physical 

consequences for malicious attacks.  

 Current defensive security techniques rely on the security of the printer’s primary 

network, such as the Local Area Network (LAN) that the printer inhabits. Depending on the level 

of access, this could also include the security of the servers the printer accesses over the internet. 

When threats are detected on the primary network, the firewall software should be patched to 

allow early detection of such attacks. Barrier security methods can provide sufficient protection 

against the transfer of files that have been intercepted and infected via unauthorized network 

access. The System Aware Cyber Security solution proposed in this research instead considers 

the scenario in which the file is not corrupted on the network, but rather on the machine itself: 
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Figure 42 - The Flow of Information in a Sentinel-Monitored Printer with a Firmware Virus 

 

A malicious attacker with either physical access to the machine or brief network access to 

the machine’s PC controller could corrupt important hardware or software. Many of these 

machines have the ability to update the printer firmware with similar methods of access. The 

attacker would only need brief network access, since they could rewrite the printer’s ROM and 

then terminate the connection once the file transfer had been completed. A physical alteration of 

the firmware (someone swapping a hard disk or memory chip) might occur in a manner that was 

undetectable to the network security software. For this reason, a new approach to securing 

mechatronic systems is proposed.  

By definition, mechatronics is the “synergistic integration of mechanical engineering 

with electronics and intelligent computer control in the design and manufacture of industrial 

products and processes” [30]. The computer controller on a 3D printer receives an input signal 

and transforms it into a physical output motion. For electro-mechanical actuators, this input 

signal is either an analog or digital voltage signal. Some property of the voltage signal, whether it 

is the amplitude, frequency, phase, etc., dictates the mechanical output motion from the actuator. 

This motion-based output outlines the fundamental difference when securing mechatronic 

devices: incorrect processing of the input data stream leads to faulty motion parameters. Addition 
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of a monitoring system to track these motion parameters therefore becomes necessary in order to 

guarantee the integrity of parts created by 3D printing processes. The proposed solution is a 

System-Aware Cyber Security monitoring device (called a sentinel) that tracks, logs, and 

predicts the behavior of the 3D printing process. This sentinel device is essentially a smart data 

logger that has access to key operational parameters. This allows the sentinel to compare the data 

it collects from machine sensors against data from a validated set of build parameters.  

 

4.2 Secured Parameters for uPrint Application 

In its current design, the sentinel monitor must be custom-fit to the printer for each 

application. There is not currently a universal sentinel monitor; each mechatronic process in need 

of protection contains unique data streams and key parameters, and the sentinel device must 

therefore be custom tailored for each application. The varying printing mechanisms and build 

parameters require different monitoring equipment for the sentinel, affecting both the hardware 

and software interface for the sensors and controllers. For example, while a sentinel monitor for 

an FDM printer might use an encoder to measure the extruder’s rotational speed, the sentinel 

monitor for an SLA printer would not monitor this parameter and therefore would not require the 

installation of an extra sensor. Even if some parameters among different printer technologies are 

similar, they may require different types of sensors for measurement purposes. A printer utilizing 

FDM technology was chosen for this case study, so the sentinel was tailored to include the 

necessary sensors and monitoring equipment required for this technology. Some redundant 

sensors were fitted to the machine to allow for operation independent from the monitored 

machine, while other feedback data was simply probed (such as data from existing sensors). The 

five major attack vectors provided in Chapter 3 affect the following operational parameters: Print 
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Material, Extrusion Rate, Height Offset, Extruder Tip Temperature, and XYZ Position. The 

values for each of these print parameters is determined in different ways by measuring data 

output streams from certain sensors. These are described in the following sections. 

 

4.2.1 Print Material 

The current print material was determined in the Stratasys Dimension uPrint through 

measurement of the status of the toggle head sensor. The filament drive mechanism contains a 

single motor that drives both filaments, as shown in the following figure:  

 

Figure 43 - Extrusion Motor Drive Mechanism [18] 

 

 During extrusion, the model material filament enters through the red tube (shown above), 

and into the toggle head assembly. This mechanism rocks back and forth to push either the 

support or part material filament against the drive motor. The gantry head fitted to this rocker 

mechanism has a mechanical switch that flips during the head position toggle maneuver. The 

Toggle Head 

Assembly 

Extruder Motor 

Extruder 

Tip 
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output of this switch can be used to detect the current print material. To detect the extrusion rate, 

extruder motor encoder feedback must be provided to the sentinel device (see Section 4.1.2). 

However, this method for print material or extrusion rate detection was unreliable, since the 

motor changed rotational directions and speeds frequently during an individual toolpath between 

two specified coordinates. The extruder back-drives the filament before it reaches the last 

waypoint in a toolpath to reduce superfluous extrusion caused by the die swell effect, which is a 

characteristic expansion of filament as it passes through a convergent nozzle such as the extruder 

nozzle [31]. This phenomenon causes the plastic filament to continue extruding despite a lack of 

applied pressure. This unwanted extrusion is called drool, and it is one of the reasons that all 

FDM parts contain a visible seam. 

 Because of this reverse rotation at the end of the toolpath, the best method for detecting 

current material usage was splicing and monitoring the signal from the toggle head sensor. The 

toggle sensor output was therefore provided to the sentinel monitor, where a sentinel input 

channel was dedicated to monitoring the print material signal. 

 

4.2.2 Extrusion Rate 

As previously mentioned, the extrusion rate can be retrieved from the encoder signal 

from the extruder motor. The extruder motor in the uPrint is a precision Maxxon gear-motor 

fitted with a high-quality quadrature encoder. The inclusion of an encoder in this system allows 

for closed-loop control of the extrusion speed, providing both direction and speed data to the 

controller. In order to interpret this signal, however, it is important to know the structure of 

encoder signals.  
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There are two main types of encoders: incremental and absolute. An incremental encoder 

only provides a signal when the motor’s position changes. A trigger device moves past a sensor 

inside the encoder housing, causing a pulse train in the output signal as illustrated in the right-

hand side of the following figure: 

 

 

Figure 44 - The Difference between Absolute and Quadrature Encoder Signals [32] 

 

An absolute encoder, however, transmits a number that corresponds to the angle of the 

encoder shaft. The absolute encoder signal is usually formatted according to some serial transfer 

protocol. Absolute encoders have a distinct advantage over incremental encoders: absolute 

encoders will not lose track of their overall position if they skip steps, making absolute encoders 

better in applications for measuring precise angles where the machine might move faster than the 

encoder can output data. However, when using an encoder to determine angular speed, 

incremental and absolute encoders work equally well. The incremental encoder implemented to 

measure the angular rotation of the extruder head in these experiments was quadrature, 

producing two channels with pulse trains 90˚ out of phase (see Figure 44). The staggering of the 

output channels (which signal leads or lags the other) indicates the rotational direction of the 

shaft. The source channel of the leading output pulse indicates which direction the motor is 
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spinning. Thus, the output of the extruder motor’s quadrature encoder contains both the 

rotational direction and the rotational speed of the encoder. The rotational speed of the extruder 

motor is also known as the Extrusion Rate. It can be calculated from the time between successive 

encoder counts according to the equation below: 

𝐸𝑅 =
(𝐷𝑟𝑜𝑙𝑙𝑒𝑟)(𝑅𝑓𝑑)

(𝑡𝑐𝑛𝑡)(𝐶𝑃𝑅𝑒𝑛𝑐)
  (Eqn. 6) 

Where 𝐸𝑅 is the Extrusion Rate, 𝐷𝑟𝑜𝑙𝑙𝑒𝑟 is the diameter of the extruder’s toothed roller, 

𝑅𝑓𝑑 is the final drive ratio of the gear transmission between the drive motor and the output gear, 

𝑡𝑐𝑛𝑡 is the time between successive encoder counts, and 𝐶𝑃𝑅𝑒𝑛𝑐 is the number of counts per 

revolution of the encoder. The Extrusion Rate also demonstrates when the extruder turns off. If 

𝐸𝑅 drops to 0, then the motor is not spinning and no material is extruding. 

An initial method for extrusion detection calculated the extrusion rate in real time, but 

rapid fluctuations in the extrusion rate as it followed the onboard motion control chip’s 

interpretation of the CMB file’s movement commands ultimately proved this method to be 

impractical. A new method was developed to monitor the rotational status of the extruder motor, 

but this proved problematic in the final testing stage. For final extrusion detection, a material 

usage approach was applied, which recorded the total distance traveled by the extruder motor. 

This method proved to be much more reliable, but it masked the overall detail in the extrusion 

data. The reasoning for this alteration is detailed in Section 5.2. 

 

4.2.3 Height Offset 

The Height Offset parameter controls the road width of the printed filament as illustrated 

in the figure below: 
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Figure 45 - Diagram of an Extruded Road 

 

ABS filament is extruded through the liquefier nozzle at the extrusion rate 𝑣, while the 

extruder’s gantry head travels at translational speeds �̇� and �̇�. The current Z axis position is 

denoted as 𝑧, so the road width 𝑊𝑅 is directly controlled by the height offset ℎ and the extrusion 

and travel speeds. The nozzle smooths the top layer of the filament as it runs, laying down a 

uniform ribbon on the build tray. When the height offset is increased, the filament is more 

severely deformed, increasing the road width. The road width can also be affected by variances 

in the travel and extrusion speeds, as shown in the picture below: 

 



 

 

79 

 

Figure 46 - The Effect of Under- and Over-Deposition (Wrong height offset or travel speed) [33] 

 

The travel speed for the uPrint is controlled by its move compiler. This on-board chip 

interprets the parameters fed into the printer in the build file and calculates the proper travel 

speeds and extrusion rate from the road width. The travel speeds could be obtained from the 

incoming data stream from each encoder. It was discovered, however, that road width is 

controlled solely through the extrusion rate, as the height offset parameters for the uPrint only 

change with the current print material. The height offset is therefore only used to adjust each 

waypoint’s Z location based on the current print material. 

 

4.2.4 Extruder Tip Temperature 

The Extruder Tip Temperature is perhaps the most important print parameter for an FDM 

printer. As mentioned earlier, ABS plastic is amorphous, meaning that there is no real melting 

temperature. Once the glass transition temperature is reached, the material starts the flow, but not 

without high shear stresses in the flow field.  In fact, the fluid shear stress in the liquefier is 

strongly dependent on the fluid viscosity, which is a function of temperature [22]. To reduce 

these shear stresses, the temperature must be increased, but increasing the tip temperature too far 

can also have detrimental effects. Not only can polymer chain interactions suffer, but it has also 
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been found that certain compositions of ABS plastics, when thermally degraded, form toxic 

hydrogen cyanide gas [9, 34]. It is therefore critical to keep the temperature in a range below the 

boiling point of the filament and above the glass transition temperature for significant reduction 

in fluid shear forces. The possibility for the emission of cyanide gas from normal ABS hints at 

chemical attack vectors for enclosed operational environments through which normal or 

deliberately altered materials could be made to release dangerous substances into the air that 

might damage equipment and injure nearby personnel. Tip temperatures therefore require 

constant supervision to ensure safe operation of printing equipment. 

A Dimension uPrint with OEM material regulates the tip temperature to 210-215º C 

during a typical build process. The sentinel devices utilized a specially-designed temperature 

measurement system with a platinum resistive temperature detector (RTD) sensor implanted in 

the printer’s tip shields to measure the tip temperature directly. The sensor was bonded to the 

extruder tip with a small amount of thermal grease for reduced thermal contact resistance.  
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Figure 47 - RTD Implanted in Tip Shield (Shown separate from tip and without thermal grease for greater detail) 

The RTD was wired to an analog to digital converter (ADC) that transmitted temperature 

data over a serial peripheral interface (SPI) communication link to the sentinel processor. While 

the RTD was slower to respond than a thermocouple, this RTD had a time constant between 1 

and 2 seconds, which was well within the required design parameters for the sentinel [35]. The 

RTD sensor was calibrated prior to installation in the machine to ensure correct operation.  

The RTD circuitry was calibrated by heating a 500 mL beaker of water on a hot plate and 

verifying proper temperature measurement at several set points. The temperature was stabilized 

with the heater control of the hot plate using thermocouple feedback to determine when a 

constant temperature was achieved. This feedback was provided by an Omega Type K 

thermocouple plugged into an Omega MDSSi8 benchtop thermocouple thermometer. For 

improved accuracy, a mercury thermometer was also placed in the beaker. The thermometer used 

was a Fisherbrand model 15-041C mercury-filled glass thermometer, manufactured by Fisher 

Scientific.  This particular glass thermometer has a manufacturer-specified accuracy of ±0.3°C, 

RTD Sensor 
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which is superior to both the RTD and K-type thermocouple measurement systems. RTD 

readings on the LabVIEW interface were compared to the readings from the glass thermometer 

at five different temperatures. The data from each measurement device is shown in Table 4: 

Table 4 - Preliminary RTD Calibration Data for Attack Testing 

Set Point Temp. 

(C) 

Glass Thermometer 

Temp. (C) 

RTD Temp. 

(C) 

Thermocouple 

Temp. (C) 

0 0.6 ± 0.1 0.74 ± 0.01 0.4 ± 0.2 

25 25 ± 0.1 25.09 ± 0.12 24.6 ± 0.05 

50 50 ± 0.1 50.17 ± 0.15 49.1 ± 0.05 

75 75 ± 0.25 75.21 ± 0.16 73.1 ± 0.05 

100 99 ± 0.25 99.5 ± 0.3 100.1 ± 0.1 

  

The uncertainties recorded here represent the fluctuations in the temperature readings. It 

is evident from these readings that the RTD data are more accurate than the thermocouple data. 

The reduced reading uncertainty in the readout from the thermocouple bench thermometer is 

suspect though, and the low fluctuation in the data is most likely due to the benchtop 

thermometer’s on-board filtering algorithm for reducing the variance of the data output stream. 

Although the printing temperatures fall outside of this range, this calibration was performed in 

the 0-100°C range for ability to use water as the reference temperature bath since the glass 

thermometer requires immersion in fluid for accurate readings.  

 

4.2.5 XYZ Position 

Monitoring the printing head’s XYZ position was incredibly important for defending 

against the easiest-to-execute attack: movement or deletion of waypoints. There exist many 
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different ways to alter the geometry of the toolpaths sent to the printer, with some of these 

methods being virtually undetectable. However, if a printer is fitted with a sentinel monitor, it 

can check to make sure that each location was reached and the print parameters were acceptable 

at those locations. Most commercially-available FDM printers are equipped with stepper motors 

to drive each axis, and they usually run open-loop (only expensive industrial versions like the 

Stratasys Fortus line utilize encoder feedback). Thus, encoders had to be fitted to each axis for 

accurate position measurement.  

The first iteration of the XYZ position sensing system implemented Avago AEAT-6012 

12-bit absolute encoders. After running a significant number of tests, re-writing the driver code, 

and then isolating the encoders out of the system for testing, it was determined that the encoders 

were simply producing an unreliable signal. This variance was ultimately found to be the fault of 

the magnetic compass chip used in the AEAT-series encoders. The spacing of the magnet from 

the magnetic sensor is incredibly important for reliable data readout, but this is extremely 

difficult to regulate inside of the printer. It was therefore decided that switching to optical 

quadrature encoders and fixing the codewheel to the motor shaft was preferable. After 

researching encoder options, the Avago HEDS-series encoder was found as a reliable quadrature 

option. It also afforded the ability to be mounted intermediately on a shaft, which enables direct 

motor mounting for both the X and Y axes. An Avago HEDS 9140-A00 quadrature encoder was 

therefore chosen as the replacement for the unreliable AEAT-series encoders: 
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Figure 48 - New Avago HEDS Series Encoders for X, Y, and Z Axes 

 

With intermediate shaft mounting abilities, the new encoders fit into the tight spaces not 

previously accessible with the AEAT-series encoders. Direct mounting to the X motor was easily 

achievable, but the Y motor shaft needed an extension. The motor shaft is accessible from the 

rear, but it is not long enough to extend from the housing. An extended motor shaft was turned 

on a lathe to mount the codewheel to the Y axis motor shaft: 
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Figure 49 - X Motor Encoder Final Mounting Scheme 

 

 

Figure 50 - Y Motor Encoder Final Mounting Scheme 

 

Encoder 

Encoder 
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Initial iterations for the Z axis positioning used the Avago AEAT-6012 encoders as well, 

but their failure led to the implementation of a hacked digital caliper for digital readout on the Z 

axis. The calipers initially worked well for accurate Z positioning, but they ultimately could not 

operate for long periods of time in the 77º C build environment. After several days in the heated 

enclosure, the caliper-based system developed a drift inaccuracy and the sampling rate dropped 

significantly. With the Avago HEDS-series encoders able to withstand temperatures above 100º 

C, it was decided that a new position measurement system should be designed for the Z axis 

around these optical encoders. Unlike the capacitive linear encoder signal from the calipers, the 

optical signals from the HEDS-series encoders are not significantly affected by elevated heat. 

The difficulty for the Avago HEDS encoders lies in the ability to mount the encoders to the Z-

table. An idler shaft utilizing rack and pinion gearing was designed for the Z axis, and the system 

was CNC machined from 6061-T6 aluminum. The system is shown in the figure below: 
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Figure 51 - HEDS Encoder Mounting to the Z Table 

 

The new Z axis measurement system handled the 77º C temperature of the build 

environment quite well. The backlash in the rack and pinion drive system caused a small error in 

the position readout, but the overall accuracy of the encoder system after calibration was ± 4 

mils, a vast improvement over that of the AEAT-series encoder system. With the new encoders 

mounted to the drive mechanisms, it was necessary to write a new encoder checking code. The 

assembly driver code was much simpler than that for the AEAT-series encoders due to the 

simpler transfer protocol for the HEDS-series encoders.  See Appendix A for this code. 

 

4.3 Sentinel CPU Design 

The logic controller for the sentinel monitor had several important performance 

requirements. First, it needed a relatively fast clock frequency to enable reading of the quick 

Encoder 
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quadrature encoder feedback. Ease of assembly programming was also important, since 

interpreted languages can waste precious processor resources. The microcontroller also needed 

parallel processing abilities. With the many different sensor readings, a single processor with 

interrupts would not have achieved the speed requirements in a deterministic way. Therefore, 

only multicore processors were considered. 

Since feedback signals were 10, 12, and 24-bit numbers (encoders and RTD ADC 

output), it was also helpful to have a 32-bit processor to enable storing these numbers in one 

register, rather than having to split registers up and perform 2 to 4 times as many operations. The 

processor also needed a sufficient number of General Purpose Input/Output (GPIO) pins for 

sensor/controller interfacing. This was a minimum of around 20 pins. 

One important function of the logic controller was to interpret the CMB files to retrieve 

the build parameters. The fixed-point method for simplifying calculations removed any 

requirements for the processor to have floating point hardware (which is less common and found 

in more expensive digital signal processing (DSP) microcontrollers). Reading the CMB files 

directly meant that there must have been some way to transfer the CMB file to the logic 

controller, namely some sort of flash memory interface. The ability to read a stored file from an 

SD card is desirable for this reason. 

The Parallax Propeller microcontroller was chosen for these operations. The Propeller 

setup was overclocked to 100 MHz, making it sufficiently fast for reading samples from each of 

the sensors. The Propeller chip itself is composed of eight parallel 32-bit processors, allowing 

simultaneous reading and calculation of the individual sensor data. The Propeller also boasts 32 

GPIO pins, which supported the sentinel’s hardware interface. It also allowed SD card reading 

and writing, enabling the transfer of CMB files from a host computer to the sentinel. The SD 
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reading method enabled the Propeller to read waypoints directly from external flash memory, 

providing parallel position-checking and CMB-reading operations on large files. Most 

importantly, the Propeller chip is relatively inexpensive; it can be purchased in bulk for around 

$4. 

The Propeller supports a variety of different languages, but the sentinel code developed 

through this work was an amalgamation of interpreted Spin code and Propeller assembly code. 

Spin is a proprietary language developed for the Propeller chip, and while it works well with the 

Propeller chip, assembly code is executed much more quickly than Spin, with the caveat of being 

much more difficult to write. Assembly code was used in the sentinel code where speed 

requirements could not be met with interpreted code.  

 

4.4 Assembly Encoder Driver and Parameter Checking 

The HEDS-series quadrature encoders employ a simple interface to the sentinel CPU. 

There are two square wave pulse input channels per encoder (one pulse per channel per unit 

movement). Three encoder drivers were written: one for the XY encoders, one for the Z encoder, 

and one for the extruder encoder. These codes ran on parallel processors to maximize the read 

speed of the Z and extruder encoder driver. The XY encoder driver started by reading the state of 

the X encoder’s output pins, then checking for a change from the previous output state. If there 

was no change, it moved to the Y encoder. It then watched for each of the four possible 

quadrature output cases (there were 2 output bits, and therefore 22 possible output cases). The 

quadrature output signals from the encoder are 90º out of phase from each other, so one of the 

sensors has to trigger first. The assembly code driver inferred rotation direction from these 
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signals by testing which sensor output a high pulse first. It also calculated the angular velocity of 

the encoder by reading the pulse width of the encoder output channels.  

4.4.1 Use of Fixed-Point Notation for Waypoints 

One major feature of the encoder driver was the implementation of fixed point notation in 

the code. It was determined that mil-accuracy (±0.001 in) was more than sufficient for the 

checking algorithm, so a scaling factor of 1000 was chosen and all floating point values were 

replaced by fixed-point values. The SD card reader code was re-written to convert and accept 

this new fixed-point format. Multiplication and division functions were also written into the 

assembly encoder codes to enable scaling the axial positions to the fixed-point format. The 

motivation for the fixed-point conversion was this: fixed-point decimals do not require the use of 

an extra processor for the floating-point driver. In fact, assembly methods can perform 

operations on the fixed-point values in the code, since they are stored as signed integers. This 

allowed for the removal of the floating-point driver cog (processor), the FloatMath object, and 

the Spin method running the floating-point calculations. Deleting all of these methods freed a 

large amount of valuable processing power and increased the speed of the operations. Converting 

the positions and build file waypoints to scaled, fixed-point format allowed the parameter 

checking algorithm to move into assembly code, increasing the speed dramatically from a Spin 

version of the same code. 

 

4.4.2 Assembly Checking Method Structure 

Parameter checking speeds increased dramatically upon conversion of the parameter 

checking method to assembly. To increase the overall speed of the parameter checking 
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algorithm, waypoint reading was also revised. The old version of the checking algorithm read the 

parameter set for one point, waited until that point’s parameters were achieved, and then 

retrieved the next parameter set from the SD card. These SD read operations took a fair amount 

of time, and reading sequentially slowed down the algorithm considerably. A buffer was 

therefore implemented into the code to help speed up parameter checking. When the SD method 

was called, the code retrieved the next 50 points instead of just the next one point. Data was 

loaded into global memory (Hub RAM), then the code started an assembly checking cog, loading 

the parameters for each point onto the Cog RAM (local memory for that processor) where they 

remained for the duration of that assembly cog’s run. Meanwhile, the next 50 points were 

retrieved from the SD card and stored in Hub RAM. A second assembly checking cog was then 

started with the next 50 coordinates, but it waited for a flag variable to be set by the first cog. 

When the 50th data point was checked off the list, the first assembly checking cog set the flag 

variable and halted execution. The second assembly cog read the flag and began checking points 

51 through 100. This loop continued until the end code in the build file was reached. 

 

4.4.3 Adding Tolerances to the Waypoints 

Each waypoint in the CMB file was sent to the uPrint’s motherboard. However, the 

motherboard rounded these values to the nearest thousandth of an inch (1 mil), providing a 

source of rounding error, 𝐸𝑅. There was also an error associated with the random deviation from 

the encoders, 𝐸𝑑𝑒𝑣,which is ± 3 mils. These errors combined according to the total variance 

formula to yield the error from the curve fit for the encoder calibrations. The errors exhibited in 

the X and Y calibrations, 𝐸𝑐𝑎𝑙, were rounded up to ± 4 mils. To allow for slight movement 

errors, the tolerance band for accepting a given position was elevated above this 4 mil minimum 
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to a liberal 10 mils. This allowed for early acceptance of points within a 20 mil-wide square of 

the expected waypoint, giving the next point time for acceptance. The minimum feature size in 

the crack specimen was approximately 30 mils, so this acceptance algorithm still detected these 

features. In the sparse in-fill, filaments spaced 24 mils apart will still bond to one another, so this 

detection method was able to easily detect if adjacent filaments were bonded together or had an 

air gap between them. 

 

4.5 Sentinel CPU Wiring and Sensor Interface 

A prototype sentinel monitor was built for testing in the 3D printer use case. This 

prototype was built first on a breadboard, then soldered to perf board as a more permanent 

solution. The wiring diagram is shown below: 
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Figure 52 - Wiring Diagram of Prototype Sentinel Monitor 

 

The AD7711 RTD ADC uses an SPI interface, but it requires a few extra pins to set its 

internal control registers. These control registers control the output mode of the ADC and change 

certain behaviors such as filtering and sampling frequency. Pins 30 and 31 on the Propeller were 

reserved as RX and TX for serial communication with the host PC. This is mainly helpful for 

debugging code, since RAM-addressed registers can be sent to the host PC over this connection. 
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 The perf-board version of the sentinel CPU is shown in the figure below: 

 

 

Figure 53 - Perf-Board Version of Sentinel CPU 

 

While the sentinel was designed as a self-contained unit, it is noteworthy that this board 

could be integrated into the printer’s hardware as long as proper isolation procedures are taken to 

ensure the system security of the sentinel device in the event of a machine hack. 
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4.6 The Importance of Cost 

The individual technologies at work inside of this sentinel device have existed for 

decades, but the widespread implementation of such a sentinel device has recently become much 

more feasible due to a drastic reduction in cost of implementing these technologies.  It was 

determined during the design stage that the entire sentinel device should not exceed $250 in parts 

to maintain feasibility of the use of a sentinel monitoring device as a security measure.  The costs 

of all the individual parts used are listed in the following table: 

 

Table 5 - Parts List for 3D Printer Sentinel 

Quantity Description Unit Price Line Total 

3 Avago 9140-A00 Encoder  $             29.53   $        88.59 

3 Avago 5140-A06 Codewheel                 19.95  59.85 

1 AD7711 RTD ADC                 38.77             38.77  

1 Propeller Chip                   7.99               7.99  

1 I2C EEPROM                   1.50               1.50  

2 Linear Voltage Regulators                   1.50               3.00  

1 RTD Sensor                 22.00             22.00  

    Subtotal  $      221.70  

 

There are of course extra costs, such as hookup wire and circuit boards, but large scale 

sentinel production would substantially reduce the overall manufacturing cost. The marginal 

price increase of even $250 to this $25,000 machine justifies its inclusion for secure system 

operation. 

This design process encourages the application of a system monitor to 3D printing 

systems to ensure proper printing behavior. The low cost of this sentinel monitor also allows for 

the possibility for this system to be used in a quality assurance manner. There are currently no 
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methods for prediction of fracture behavior for 3D printed parts based on monitoring the printing 

parameters.  

 

4.7 A Robust Design 

Even though low cost was a major design parameter, only trustworthy, industrial-grade 

IC chips and sensors were used in the final version of the sentinel device. The flaws encountered 

in the initial absolute encoder system challenged the robust nature of the design and therefore 

needed to be addressed. The new HEDS-series encoders contribute to a robust mechatronic 

design for the positioning system.  

The thermocouple-based temperature sensor employed by the uPrint also showed signs of 

irregularity. The RTD used in the sentinel was chosen for its improved accuracy and reliability 

over this thermocouple measurement system. The sources of variance were actually somewhat 

surprising for the thermocouple system; the Type K thermocouples used have a specified 

accuracy of either ±1.1º C or ±2.2º C, while the Analog Devices thermocouple amplifier IC chip 

specified another 4º C of inaccuracy [36]. The temperature experiments yielded significant 

changes in strength even at 10º C change in tip temperature, proving that the thermocouple 

measurement system is non-ideal for this environment. The RTD temperature measurement 

device, while nearly 4 times as expensive to implement as a simple thermocouple measurement 

circuit, provided much more accurate temperature feedback with less random noise in the output. 

The specified accuracy for the RTD is ±0.15º C, while the accuracy for the RTD ADC chip is 

±0.45º C [37]. The disadvantage of using RTDs is the slower response time, but this particular 

RTD has a time constant of 1.5 seconds, which is acceptable considering the overall thermal 
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mass of the heater assembly. This hardware alteration was a trade-off: better accuracy and a 

steadier output signal at the expense of a speedy response.  

To maintain this high level of integrity in the sentinel device, each section of the sentinel 

code was tested both individually and in combination with the entire sentinel system. Drivers for 

any malfunctioning subsystems were isolated from the sentinel code for debugging. This 

expedited debugging processes due to the isolation of variability.  

The dynamic properties of the printer also taxed the software limitations of the sentinel, 

requiring each method’s optimization for speed. The axial speeds of the gantry head caused 

positions to change a few mils per millisecond, meaning that position updating and checking had 

to occur even faster. Of the eight individual methods running on the sentinel device, five of those 

methods were written in assembly. The faster execution time afforded by assembly code 

necessitated its use, even though debugging the assembly code took much more time and effort 

than debugging Spin code would have taken. Designing such a complicated system requires 

sacrificing some performance characteristics to meet the performance requirements in other 

areas. Thus, ease of programming and debugging was sacrificed for faster operating speed. 
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Chapter 5 – Sentinel Testing 
 

 

5.1 Building a Foundation – Initial Testing 

Before running initial tests on such a complicated system, it was important to test each 

subsystem individually, and the first subsystem chosen for testing was the XYZ positioning 

system. Bench tests were run to display the current encoder position, starting with just one axis 

and then expanded to include every axis. I/O signals were monitored on an oscilloscope, and 

position data was read into the Parallax Serial Terminal (PST), a simple serial interface between 

the Propeller chip and the host PC. When all three encoders correctly tracked idler shafts on the 

bench, they were then installed into the machine and interfaced with their respective drive 

systems. Tests were then run with the encoders installed in the machine. Movement commands 

were sent to the uPrint via a diagnostics port on the rear. A USB-to-RS232 converter cable was 

used to bridge the host PC with the diagnostics port on the printer, allowing direct 

communication with the uPrint’s motherboard. This allowed direct control of the X, Y, and Z 

stepper motors with the ability to move them to a set coordinate (in inches zero-referenced from 

the machine’s own zero location). Duplex communication with the uPrint was achieved through 

a serial terminal (Tera Term) that was calibrated to the proper serial protocol for the machine. 

 

5.1.1 Calibrating the XYZ Axes 

While the assembly driver retrieved the XYZ positions, it returned them in units of 

encoder counts. The XYZ positions had to be calibrated against machine coordinates and 

converted to inches. Machine coordinates were obtained using Tera Term (a freeware serial 
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terminal interface program) and the serial diagnostics port. The head was moved to a particular 

XYZ position using the “Move X”, “Move Y”, and “Absolute Z” commands in the terminal. 

With the relationship between these machine coordinates and the encoder counts, it was then 

time to translate the encoder position feedback into the scaled, fixed-point format. Linear fits 

were taken from the data in Excel and applied to assembly-language formulas on the Propeller 

chip. These fits are displayed in the plots below: 

 

 

Figure 54 - X Axis HEDS Encoder Calibration with Line of Best Fit 
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Figure 55 - Y Axis HEDS Encoder Calibration with Line of Best Fit 

 

 

Figure 56 - Z Axis HEDS Encoder Calibration with Line of Best Fit 
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5.1.2 Adding Extrusion and Material Usage Detection  

The material and extrusion detection methods were tested upon successful calibration of 

the XYZ positioning system. A low-pass filter circuit was added to the material detection circuit 

to smooth out high frequency noise in the signal. Initial extrusion detection methods worked 

properly, detecting proper extruder status. Testing was therefore expanded to include sentinel 

monitoring of a simple print process. 

 

5.1.3 Simple Square 

A simple test part was printed with this newly-calibrated location-tracking system. A 

build file was created to include seven waypoints to draw the perimeter of a square (some 

waypoints are used to jog or turn the extruder on and off). XYZ position data was logged with 

the encoders, and a graph of the recorded X-Y position data is shown in Figure 57: 

 

 

Figure 57 - First Practice Print – Expected Outcome (Left) and Recorded Outcome (Right) 
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As shown in Figure 57, the position data was on-point, falling in the linear 

interpolations between the waypoints. The extraneous points at the top were jog moves that 

the sentinel was expecting at that point in the process. Since this was a single layer print, the 

Z position stayed the same the whole time at a value of 0.013”. This test proved proper 

operation of the XYZ encoder system so the test was repeated with the extruder and material 

feedback. With these methods included, the sentinel was able to verify each point in the print 

file and detect the printing faults/deviations implanted in the emulated cyber attack during 

the printing process. 

 

5.1.4 12-Layer Print Test 

The square file above was then modified to include a support raft along with an extra 

layer of part material. A support raft is a sparsely-filled support structure printed between the 

build plate and the bottom of the model. Since a raft is a filled pattern, the extruder rasters very 
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quickly on the interior of the part. The perimeter toolpaths (without internal fill paths) of this part 

are shown in the figure below: 

 

 

Figure 58 - 12-Layer Print (Shown in the Insight Pre-View Window) - The internal fills in the raft are not visible in this view 

 

The internal raster patterns are some of the fastest movements in a 3D printer’s motion 

profile and they therefore set the maximum required sampling rate for the encoders. With the 

assembly-driven HEDS-series encoders, all XYZ positions updated properly, and testing then 

shifted towards the material and extrusion detection. With assembly checking of the current print 

material, even the fast movements of the internal fill pattern were validated by the sentinel. They 

were also spaced far enough apart to produce a clean on/off signal from the extrusion detection. 

It was therefore time to move on to a full-scale sentinel test: the ASTM D638 Type II test 

samples described in Chapter 3. 
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5.2 ASTM Sample Testing with Sentinel Detection 

With sentinel detection working for the multi-layer print job, full-scale detection was 

tested on the ASTM samples used during the attack testing cases. The control specimen was 

tested first to ensure acceptance of the non-attacked control specimen. While the material and 

XYZ location detection algorithms worked well for this case, it was determined that real-time 

extrusion detection algorithm worked improperly for the full-scale case. The higher point density 

of the ASTM part resulted in increased noise in the feedback signal from the extruder encoder. It 

was discovered that the encoder system is driven by a PMD motion processor, which applied the 

encoder feedback to PID control algorithms to provide smooth extrusion control despite the 

gantry head’s acceleration and jerk. A proper extrusion prediction method would require 

emulation or utilization of this motion processor chip, since it took the constant extrusion data 

and calculated the required variation of the extrusion rate. For this reason development of a real-

time monitor for the extruder was abandoned. The high point density and tight concentration of 

s-curves in the interior fill of the ASTM sample caused the PMD controller to rapidly ramp the 

extrusion rate up and down, resulting in sporadic changes in the extruder’s rotational speed. A 

new, much simpler methodology was therefore applied to monitor extruder feedback via the 

sentinel. The sentinel was simply provided with the total distance that the extruder should travel 

during a part. Assuming no slip between the plastic filament and the traction wheel on the 

extruder, this distance is proportional to the total volume of plastic extruded by the printer.  
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5.2.1 Control Specimens 

Two non-attacked ASTM control specimens were printed while the sentinel logged the 

usage of model material in the aforementioned manner to calibrate the material usage. Detecting 

the presence of cyber attacks during printing therefore required the sentinel to compare the 

material usage of the build process to that of the validation case. From the control sample, 

validated material usage falls in the range of 17,438,750 – 17,439,250 counts. A count is defined 

as a change in the quadrature output signal, thus increasing or decreasing the encoder position. 

With the checking algorithms working and the unhacked samples approved by the sentinel, 

testing of the compromised ASTM specimens started.  

 

5.2.2 Switching Model Material for Support Material 

Execution of the first attack resulted in the sentinel’s rejection of the print job. While the 

sentinel received the validated file, the printer received a file with one small portion of the 

interior fill switched to support material. The sentinel failed to accept any points of the interior 

fill pattern with incorrect material usage. The printing defect resulting from this cyber attack was 

therefore successfully detected.  

 

5.2.3 Reducing the Road Width 

The second attack was detected using the extrusion volume method outlined above. The 

file sent to printer contained an altered internal fill in a small portion of the gauge section in 

which the road width was altered to half of that of the control specimen. All of the XYZ 
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positions were met during the printing process and the sentinel accepted each location. However, 

at the end of the job, the overall material usage deviated from that of the control case with a 

significant decrease in volumetric extrusion. The altered road width introduced into the internal 

fill pattern through this cyber attack was successfully detected due to this variance in overall 

extrusion.  

 

5.2.4 Inserting a Notch Into the Part 

This attack test turned off the extruder at a specified location in the internal fill pattern, 

creating a small notch inside the model. When this altered file was sent to the printer, the sentinel 

detected proper material usage and achievement of XYZ coordinates. The extrusion volume 

parameter, however, was skewed slightly. The build process for this attack recorded an extruder 

travel of approximately 17,428,000 counts. This demonstrates a reduction of approximately 

11,000 counts from the unhacked sample, with the extruder travel falling outside the acceptable 

range. This print job was therefore found invalid by the sentinel monitor and this cyber attack 

was detected.  

 

5.2.5 Inserting a Seam into the Part 

The fourth attack proved undetectable without precise detection of the current extruder 

state. To detect an additional part seam, the sentinel must be able to tell if the extruder halts 

during a certain toolpath. Since the overall material usage is not affected by an additional part 

seam, the extrusion volume measurement does not indicate extruder stoppage. Detection of this 

attack thus requires deeper knowledge of the control system governing the extruder behavior as 
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well as more complex sentinel code. The sentinel used in these experiments was designed for 

simplicity, high sampling rate, and low cost. Inclusion of reliable real-time extrusion checking 

would drive the cost of the sentinel device up given the more complicated nature of system that 

the printer utilizes for extruder operation. Thus, the development of a more complex sentinel 

method for extruder checking is left for future research.  

 

5.2.6 Reducing the Extruder Temperature by 20º C 

Detection of the fifth and final attack requires installation of the temperature detection 

equipment and interfacing the temperature-checking software with the current sentinel code. The 

code required small changes for pin declarations and overall simplification of the operation, but 

completion of these changes provided the sentinel monitor with accurate tip temperature 

feedback. The temperature print logs and stress/strain plots from the ASTM testing were 

examined to determine appropriate acceptance ranges for the sentinel definition. The shortened 

samples used in the prior testing were also used for the detection experiments. Print temperatures 

were found to vary by approximately 5º C throughout the build process, requiring a range to be 

specified for the sentinel’s temperature acceptance criteria. With the control print temperature of 

210º C, the stress and strain plots exhibit a reduction in strength and elongation at 200º C, while 

the apparent strength and elongation at temperatures up to 230º C showed significant increase. 

The 230º C sample showed significantly better mixing than the control sample, and the flexural 

delamination (or interlayer bond) strength increased drastically. The acceptance range for the 

model temperature was therefore set between 200º C and 230º C. For the control case, the model 

tip temperature averaged 213º C in the grip section and 208º C in the gauge section of the 

specimen, well within the acceptable range. However, when the attack case was introduced and 
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the model tip temperature was adjusted to 190º C, the sentinel failed to accept the first point that 

read under 200º C, rejecting the attacked part. The sentinel therefore successfully detected a 

potential cyber attack on the extruder’s temperature setpoint. 

 

5.3 Sentinel Testing Results 

These tests proved that a sentinel monitoring device can properly detect the existence of 

printing faults in a 3D printing process. While the fourth attack went undetected, more 

complicated sentinel hardware and software could solve this issue. Better extruder checking 

methodology and understanding of the uPrint’s hardware and parameter manipulation would be 

required for more robust real-time extruder feedback. The XYZ position, material, and 

temperature checking systems, however, properly detected their respective attacks. The fast 

sampling rate achieved through the use of assembly code combined with reliable sensors 

afforded the ability to check highly point-dense files for printing faults.  

 

5.4 Limitations of this Study 

The prototype sentinel monitor described in this thesis served as an initial proof of 

concept for the application of System-Aware Cyber Security solutions to additive manufacturing 

techniques. However, this study focused only on one 3D printing technology: Fused Deposition 

Modeling (FDM), also referred to as Fused Filament Fabrication (FFF). FDM was chosen for 

this application due to its popularity and relatively low cost. FDM printers are used 

predominantly for home, office, and engineering design, making them arguably the most widely-
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used 3D printers, producing models with some of the strongest mechanical properties of any 

polymer-based additive manufacturing process [9]. The principles applied to the uPrint sentinel 

monitor have laid a foundation for sentinels protecting other 3D printer technologies. In its 

current state, the sentinel monitoring system needs to be customized to each printer, requiring 

extensive setup time and wide variances in cost from machine to machine.  

Only the five most obvious attacks were considered for protection. The sentinel hardware 

and software was designed to monitor only the affected parameters, leaving some attack 

vulnerabilities in the prototype system. A fully-realized sentinel monitor would monitor all print 

data, not just the relevant parameters monitored by the prototype system. One way to improve 

these traits would be to add more precise sensor calibration or more expensive sensors and 

transducers. The lab equipment used for RTD calibration was unable to replicate the 230º C 

conditions seen in the extruder tip (boiling water was used for calibration, which could not 

exceed 100º C). Thus, points for the calibration curve were gradually increased to the maximum 

temperature that the calibration setup could support, and the RTD ADC calibration registers were 

set there. A hotter and more stable heat source would yield more accurate values for the RTD 

ADC calibration registers throughout the entire experimental temperature range. 
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Chapter 6 – Conclusions and Future Work 
 

6.1 Security Concerns for Advanced Manufacturing 

The work summarized here is a case study for the System-Aware Cyber Security solution 

proposed by Jones and Horowitz specifically applied to an additive manufacturing system [15]. 

The current shift toward the use of additive manufacturing technologies from proof-of-concept 

prototypes towards the fabrication of critical components necessitates the security and quality 

assurance of 3D printing processes. In use cases such as 3D printed airplane wing spars, model 

failure must be avoided at all costs. Malicious attacks on machines creating structural 

components such as these could result in major losses of life.  

A computer-based sentinel device can react to printer operations much more quickly and 

precisely than any human-based monitoring system. The mechatronic nature of 3D printing 

technologies requires new security procedures since physical outputs are not monitored through 

traditional perimeter and network security methods. The case study previously presented by 

Jones and Horowitz involved the application of a sentinel monitor to a UAV control system, 

demonstrating the basic ability of the sentinel to search data streams for illogical data outputs 

that resulted from logical data inputs [15]. A 3D printer, however, takes data inputs and 

transforms them into physical outputs, making small process deviations difficult to detect. These 

physical outputs must therefore be measured with properly-calibrated sensors implanted in the 

printer. Thus, our definition of a sentinel monitor expands to include not only a logic controller 

that processes input and output data streams, but also any related peripheral devices, including 

sensors and instrumentation IC chips required to interpret the sensor data. 
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These findings place the security responsibility on either printer manufacturers or private 

sentinel manufacturers. A typical consumer would be unable to develop the required sentinel 

hardware and software without detailed knowledge of the internal working of the machine and 

advanced manufacturing capabilities. For example, each encoder mount for this sentinel 

application was fabricated in a machine shop on precision equipment to ensure the proper 

alignment of the encoder codewheels and sensors. Temperature sensors were carefully secured 

with aluminum-oxide epoxy to withstand the high temperatures experienced by the extruder tip.  

The sentinel protection algorithms also required in-depth knowledge of the printer’s architecture. 

For the printer manufacturer, however, inclusion of a secure monitoring system is easily 

achievable. Original Equipment Manufacturer (OEM) equipment could be built with the sentinel 

as a design consideration, easing the burden of custom instrumentation. 

 

6.2 Future Work 

This preliminary research effort was successful in demonstrating the risk of cyber attacks 

to additive manufacturing processes and the testing of a prototype monitoring system (sentinel_ 

to detect such attacks. Further work is needed to explore the following related options, the study 

which were beyond the scope of this project: 

 

6.2.1 Extension to Metal Printing 

With the increasing interest in 3D printing components for assemblies, the security risks 

associated these mechatronic systems must be addressed. The next logical step when expanding 

the System-Aware Cyber Security solutions proposed in this paper would be to apply it to the 
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design of a secure sentinel monitor for industry standard metal 3D printers, such as those made 

by Arcam or EOS. The security vulnerabilities in metal 3D printing technologies are extremely 

relevant to this study because they afford a cyber attacker the ability to induce catastrophic 

failures in critical metal components. Modification of the uPrint sentinel designed through this 

research for use in metal 3D printers would require a new array of sensors, sensor drivers, and 

sensor/processor interfaces. However, the overarching concepts explored in this study are 

directly applicable to metal printing techniques. Many analogous build parameters exist between 

FDM and metal technologies (tip temperature versus laser intensity, beam positioning versus 

extruder nozzle positioning, etc.) and the monitoring process developed for the sentinel could be 

adapted for a metal printing process. 

 

6.2.2 Extrusion Rate for FDM Sentinel 

The next step in the development of a better sentinel design would involve improvement 

to the current extrusion rate measurement and prediction system. The prototype sentinel was 

unable to properly predict the printer’s extrusion operation because the gains used on the on-

board motion controller were not precisely known. With deeper knowledge of the printer’s 

calculation of the extrusion rate based on the specified road width and the dynamic behavior of 

the extruder, the sentinel would have been able to properly predict and detect all changes to the 

extrusion rate during printer operation and therefore be able to successfully detect the seam 

attack Further research is therefore needed for the inclusion or emulation of more complicated 

system architectures on the sentinel device itself.  

 

 



 

 

113 

6.2.3 Diverse Redundancy 

Diverse redundancy is the parallel operation of two boards of different architecture. 

Dynamically hopping between outputs from each of these boards protects the security of the 

system by making the entire system more difficult to enter (attackers must learn the details of 

each individual system or gain influence in multiple suppliers before they can attack the system). 

Printer security could be further increased through the implementation of a diversely redundant 

sentinel. Since sentinel hardware is inexpensive, cost increase due to implementation of diverse 

redundancy would be marginal. Further research focused on the application of diverse 

redundancy techniques to a 3D printer sentinel would more effectively shield sentinel operations 

from cyber attackers. 

 

6.2.4 Fault Isolation 

Another important area for further research is fault isolation. Fault isolation is defined as 

the ability of the machine to precisely detect a printing fault’s origin, effects, and suggested 

remedial actions. When this prototype uPrint sentinel detected a printing fault, the sentinel 

ceased its operation and recorded the first point that exhibited unacceptable build parameters. 

Applying fault isolation techniques might expand this behavior to alert the operator of the 

subsystem in which the fault originated. However, some build parameters might carry more 

weight than others, as illustrated through the tensile test results from the attack specimens. A 

point system could help quantify the severity of the attack and its affect to the fracture strength 

(points assigned for the amount of deviation from the expected toolpaths, temperature 

differentials, etc.). More research is also needed to determine appropriate remedial actions. For 
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instance, notification of a printing fault should signify certain repairs to the machine or network 

security, with attack severity governing these remedial actions. The desire to reduce machine 

downtimes drives the need for fast responses to malicious attacks. In large-scale manufacturing 

facilities, printer inactivity due to industrial sabotage could be catastrophic. The inclusion of 

suggestive corrective actions after an attack has been detected would therefore be a desirable 

feature in a next-generation sentinel monitoring system.  
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Appendix A – Sentinel Assembly Code 
 
{ 
This is the sentinel code developed for a Dimension uPrint 3D printer. This code monitors 
the XYZ position of the printing head, 
  the tip temperature of the model extruder, the status of the material sensor, and the 
position of the extruder motor. 
For proper initialization, this code must be run when the printer is physically at its 
home position where X, Y, and Z are all zeroed.  
The code below was originally all written in Spin, but slow refresh rates justified the 
change to assembly code. 
 
Cog Usage: 
 
- Cog 0: Loads SD coordinates onto assembly cogs, then tells assembly cogs to run. Also 
runs serial communication (Simple_Serial object) for debugging 
- Cog 1: Runs SD card driver 
- Cog 2: Assembly - Reads X and Y motor encoders  
- Cog 3: Reserved for AC1 
- Cog 4: Reserved for AC2 
- Cog 5: Reads quadrature encoder on extruder motor (measures total position traveled by 
extruder motor) 
- Cog 6: Assembly - Reads Z axis encoder 
- Cog 7: Assembly - Reads temperature data from RTD ADC chip  
} 
CON 
        _clkmode = xtal1 + pll16x'Overclocked clock mode * crystal frequency = 100 MHz 
        _xinfreq = 6_250_000 
         
  ''Serial RTD ADC Pins 
  AO=0 
  SDATA=1 
  DRDY=2                                                 
  RFS=3 
  TFS=4    
  SCLK=5                                             
 
  ''Quadrature Z Encoder Pins 
  zQuadA=6 
  zQuadB=7 
  ''Quadrature XY Encoder Pins 
  xQuadA=8 
  xQuadB=9 
  yQuadA=10 
  yQuadB=11 
  ''Quadrature Extruder Encoder Pins 
  Model=12 
  Support=13 
  ExtrQuadA=14 
  ExtrQuadB=15 
  ''SD Interface Pins 
  DO=22 
  SD_CLK=23   
  SD_DI=24 
  CS=25     
 
  ''Simple_Serial Constants 



 

 

119 

  HOME=1                                
  TAB=9 
  CR=13 
  CLS=16 
 
   
  ''RTD ADC Constants 
  controlRegister=%1011_1000_1101_0001_0100_0110        'See pp. 9-10 of AD7711 datasheet 
    
 { 
    - RTD excitation current turned on 
    - Background calibration mode enabled 
    - Unipolar operation 
    - PGA gain set to 64 
    - Word Length set to 24 bits 
    }       
 
  ADCmax=16_777_215          'Max ADC unit is 2^24-1, which is 16,777,215 
  Vdd=5                      'Supply voltage is 5V, internal reference voltage is 2.5V 
  Aexc=200                   'Excitation current is 200 microamps 
    
         
VAR 
 
''CMB/SD Card Variables 
long    m, n, DP, cmbByte, PM 
long    addressPM, addressX 
byte    lowerByte, upperByte 
 
''Encoder Assembly Variables 
long    xPosit, yPosit, zPosit, units 
 
''Extruder Assembly Variables 
long    printMaterial, periodCounts, roadWidth, ExtruderPosition  
 
''Position Checking Assembly Variables 
long    C1, C2, C3, flagA, flagB, DPNumber, end, loadedA, loadedB, expectedMaterial 
 
''Failure Variables 
long    extruderMisses, correctMaterial, correctExtruder 
 
''RTD Variables 
long    RTDtemp, ADCdata, RTDStack[100] 
 
OBJ 
  ss    : "Simple_Serial" 
  sd    : "SD-MMC_FATEngine" 
  fm    : "FloatMath"      
 
PUB Main 
''Initialize all variables and start running code on the parallel processors 
Initialize 
 
''Read in the first set of points into Hub RAM 
flagA:=1 
flagB:=1 
DPNumber:=30 
ReadPoints(DPNumber) 
''Start the first assembly position checking cog (AC1) 
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coginit(3,@CheckPosition,0) 
waitcnt(clkfreq/200+cnt)         
 
''Uncomment this block of code to see the list of points contained in the CMB file. 
{repeat  
  repeat n from 0 to DPnumber-1 
    ss.hex(long[@printMode][5*n],2) 
    ss.tx(TAB) 
    ss.dec(long[@x][5*n]) 
    ss.str(string(",")) 
    ss.dec(long[@y][5*n]) 
    ss.str(string(",")) 
    ss.dec(long[@z][5*n]) 
    ss.str(string(",")) 
    ss.dec(long[@width][5*n]) 
    ss.tx(CR) 
  waitcnt(clkfreq+cnt) 
  ReadPoints(DPNumber) 
 
repeat                         'Output the SD data} 
 
''Main Loop 
repeat while end<>1 
  ''Load CMB waypoints to Hub RAM and start AC1 with them. This only executes if AC2 is 
running and Cog 3 isn't running AC1 code 
  if flagA==1 AND LoadedA==0 
    ReadPoints(DPNumber) 
    coginit(3,@CheckPosition,0) 
    waitcnt(clkfreq/200+cnt)  
 
  ''Load CMB waypoints to Hub RAM and start AC2 with them. This only executes if AC1 is 
running and Cog 4 isn't running AC2 code    
  if flagB==1 AND LoadedB==0 
    ReadPoints(DPNumber) 
    coginit(4,@CheckPosition,0) 
    waitcnt(clkfreq/200+cnt)                             
   
  ''Serial Terminal Output for Debugging 
  waitcnt(clkfreq/20+cnt) 
  ss.clearhome  
  ss.dec(xPosit) 
  ss.str(string(",")) 
  ss.dec(yPosit) 
  ss.str(string(",")) 
  ss.dec(zPosit) 
  ss.tx(CR) 
  ss.dec(C1) 
  ss.str(string(",")) 
  ss.dec(C2) 
  ss.str(string(",")) 
  ss.dec(C3) 
  ss.tx(CR)                '} 
  ss.str(string("Extruder Position: ")) 
  ss.dec(ExtruderPosition) 
  ss.tx(CR) 
  ss.str(string("Expected Extruder State: ")) 
  ss.dec(roadWidth) 
  ss.tx(CR) 
  ss.str(string("RTD Temp: ")) 
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  ss.dec(RTDTemp) 
  ss.str(string(" C")) 
  ss.tx(CR) 
   
  'First output type  
  ss.str(string("Current Print Mode: ")) 
  ss.hex(PM,2) 
  ss.tx(CR) 
  ss.str(string("FlagA: ")) 
  ss.dec(flagA)                                                             
  ss.tx(CR) 
  ss.str(string("FlagB: ")) 
  ss.dec(flagB) 
  ss.tx(CR) 
  ss.str(string("loadedA: ")) 
  ss.dec(loadedA) 
  ss.tx(CR) 
  ss.str(string("loadedB: ")) 
  ss.dec(loadedB) 
  ss.tx(CR)                '} 
  ss.str(string("Print Material: ")) 
  ss.dec(printMaterial) 
  ss.tx(CR) 
  ss.str(string("Expected Material: ")) 
  ss.dec(expectedMaterial) 
  ss.tx(CR) 
  ss.str(string("Correct Material: ")) 
  ss.dec(correctMaterial) 
  ss.tx(CR)          '} 
 
''Finish by closing everything 
EndCode 
     
PUB ReadPoints(Points) 
''Read the parameters from the FP-version of the CMB for the total number of points and 
load them to Hub RAM   
repeat n from 0 to Points-1 
  ''Read the Print Mode 
  cmbByte:=sd.readByte 
  long[@printMode][5*n]:=cmbByte 
  ''Search for the $FF endcode in the FP-version of the CMB   
  if cmbByte==$FF 
    quit             
   
  ''Read in the X, Y, and Z coordinates, as well as the road width, for the current point 
  lowerByte:=sd.readByte 
  upperByte:=sd.readByte 
  ''Store these quantities in Hub RAM at the addresses declared in the checking method in 
the DAT section 
  long[@x][5*n]:=lowerByte+upperByte<<8 
  lowerByte:=sd.readByte 
  upperByte:=sd.readByte  
  long[@y][5*n]:=lowerByte+upperByte<<8 
  lowerByte:=sd.readByte 
  upperByte:=sd.readByte  
  long[@z][5*n]:=lowerByte+upperByte<<8 
  lowerByte:=sd.readByte 
  upperByte:=sd.readByte  
  long[@width][5*n]:=lowerByte+upperByte<<8    
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  waitcnt(clkfreq/200+cnt) 
                                 
PUB Initialize 
''Simple Serial Intialization 
ss.init(31,30,38400) 
ss.clearHome 
 
''SD Initialization 
sd.FATEngineStart(DO,SD_CLK,SD_DI,CS,-1,-1,-1,-1,-1)         'Start the SD card object 
sd.mountPartition(0)                                  'Mount the SD card 
''Change the file name to the currently-printing file. Use only FP-converted CMB files. 
sd.openFile(string("TEMPFP.CMB"),"R")                   
          
''Assembly Variables (for writing/reading Hub RAM) 
_DP:=@DP 
_PM:=@PM 
_xPosit:=@xPosit 
_xPosition:=@xPosit 
_flagA:=@flagA 
_flagB:=@flagB 
_DPNumber:=@DPNumber 
_end:=@end 
_loadedA:=@loadedA 
_loadedB:=@loadedB 
_yPosit:=@yPosit 
_yPosition:=@yPosit 
_printMaterial:=@printMaterial 
_C1:=@C1 
_C2:=@C2 
_C3:=@C3 
_zPosit:=@zPosit 
_zPosition:=@zPosit 
_roadWidth:=@roadWidth 
_expectedMaterial:=@expectedMaterial 
_extrPosit:=@ExtruderPosition 
_corrMat:=@correctMaterial 
_RTDTemp:=@RTDTemp 
 
''Start all parallel codes except for AC1 and AC2  
coginit(2,@QuadEnc,0) 
coginit(5,@ExtrEncoder,0) 
coginit(6,@ReadZEnc,0) 
coginit(7,RetrieveRTDTemp,@RTDStack) 
 
 
''Make sure that the code gets past initialization 
waitcnt(clkfreq+cnt) 
ss.clearHome 
ss.str(string("Starting..")) 
waitcnt(clkfreq+cnt) 
ss.clearHome 
 
PUB EndCode 
 
waitcnt(clkfreq+cnt) 
sd.unmountPartition                                   'Unmount the SD card 
 
''Display the end code 
repeat 
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  ss.clearHome 
  ss.str(string("End of File Reached")) 
  waitcnt(clkfreq+cnt) 
 
PUB RetrieveRTDTemp 
  ''Set the direction of the RTD ADC's serial pins 
  dira[SDATA..TFS]:=%0011 
  dira[AO]:=1 
  dira[SCLK]:=1 
  outa[AO]~~                  'Hold A0 high to read output register 
  SetControlRegister          'Set the 24-bit control register on the ADC chip 
  repeat 
    ADCdata:=GetADCdata        
    ''Scale RTDtemp into C and round to the nearest number 
    RTDtemp:=fm.fRound(fm.fSub(fm.fMul(fm.fFloat(ADCdata),0.000030778676060),267.47)) 
 
PUB SetControlRegister | count 
  outa[AO]~                                             'Hold A0 low to access the 
control register 
  dira[SDATA]~~                                         'Hold SDATA high before data 
transfer 
  outa[RFS..TFS]~~                                      'Hold RFS and TFS high before 
data transfer 
  outa[SCLK]~                                           'Hold the Serial Clock low before 
data transfer 
  outa[TFS]~                                            'Set TFS (transmit) low to begin 
data write operation 
  repeat count from 0 to 23                             'Iterate through all 24 bits 
    outa[SDATA]:=(controlRegister>>(23-count))//2       'Shift data out to the ADC's 
SDATA line one bit at a time, beginning with the MSB 
    outa[SCLK]~~                                        'Pulse the Serial Clock once 
    outa[SCLK]~ 
  outa[TFS]~~                                           'Return TFS high to end write 
operation 
  outa[AO]~~                                            'Return A0 high (to access output 
register) 
  dira[SDATA]~                                          'Set SDATA low after data 
transfer 
 
PUB GetADCdata : ADCBits 
  outa[RFS..TFS]~~                                      'Set RFS and TFS high 
  outa[SCLK]~                                           'Set SCLK low initially 
  repeat until ina[DRDY]==0                             'Wait until Data Ready goes low 
(output buffer ready) 
  outa[RFS]~                                            'Set RFS low to begin data read 
operation 
  repeat 24                                             'Iterate through all 24 bits 
    ADCbits:=(ADCbits<<1+ina[SDATA])                    'Read in the bits from the ADC's 
serial output buffer, reversing the order of the bits 
    outa[SCLK]~~                                        'Pulse the Serial Clock once 
    outa[SCLK]~ 
  outa[RFS]~~                                           'Return RFS high to end read 
operation 
   
DAT 
 
''This PASM code reads the A and B channel output signals of the extruder encoder and 
''returns 1 if the extruder is turning CW, 0 if the extruder isn't turning, or -1 if the 
extruder is turning CCW 
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              org 
ExtrEncoder   mov       dira,#0                         'Set directions of ExtrQuadA and 
ExtrQuadB to inputs 
              mov       extrMask,#%11                   'Set the lower 2 bits of extrMask 
high  
              shl       extrMask,#ExtrQuadA             'Shift them over to the ExtrQuadA 
and ExtrQuadB position 
ExtrLoop      mov       extrIn,ina                      'Store entire ina register in 
"input" register 
              and       extrIn,extrMask                 'Chop off everything except 
ina[ExtrQuadA..ExtrQuadB] 
              shr       extrIn,#ExtrQuadA               'Put A and B values in the 0 and 
1 position   
              cmp       extrIn,extrPrev      wz         'If input=previous, set Z-flag 
       if_z   jmp       #ExtrLoop 
        
              cmp       extrIn,#%00       wz            'If input=%00, set Z-flag 
       if_z   jmp       #ExtrCaseZero                      'Call "ExtrCaseZero" 
subroutine 
              cmp       extrIn,#%01       wz            'If input=%01, set Z-flag 
       if_z   jmp       #ExtrCaseOne                       'Call "ExtrCaseOne" subroutine 
              cmp       extrIn,#%10       wz            'If input=%10, set Z-flag 
       if_z   jmp       #ExtrCaseTwo                       'Call "ExtrCaseTwo" subroutine 
              cmp       extrIn,#%11       wz            'If input=%11, set Z-flag 
       if_z   jmp       #ExtrCaseThree                     'Call "ExtrCaseThree" 
subroutine 
               
 
ExtrCaseZero  cmp       extrPrev,#%10     wz            'If input=%01, movement=CW, set 
Z-flag 
              mov       materialUse,ina                  
              mov       matMask,#1                       
              shl       matMask,#Support                'Make a mask to check the input 
state of the support pin 
              and       materialUse,matMask 
              shl       materialUse,#Support            'Store the input state of Support 
in "materialUse" 
              cmp       materialUse,#1 wc               'Check for model material usage                  
if_nz_and_c   add       extrPos,#1                      'If movement=CW, add 1 to _xpos 
if_z_and_c    sub       extrPos,#1                      'If movement=CCW, subtract 1 from 
_xpos 
              jmp       #StoreExtr                       
                                                         
ExtrCaseOne   cmp       extrPrev,#%00     wz            'If input=%11, movement=CW, set 
Z-flag 
              mov       materialUse,ina                  
              mov       matMask,#1                       
              shl       matMask,#Support                'Make a mask to check the input 
state of the support pin 
              and       materialUse,matMask 
              shl       materialUse,#Support            'Store the input state of Support 
in "materialUse" 
              cmp       materialUse,#1 wc               'Check for model material usage 
if_nz_and_c   add       extrPos,#1                      'If movement=CW, add 1 to _xpos 
if_z_and_c    sub       extrPos,#1                      'If movement=CCW, subtract 1 from 
_xpos 
              jmp       #StoreExtr                       
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ExtrCaseTwo   cmp       extrPrev,#%11     wz            'If input=%00, movement=CW, set 
Z-flag 
              mov       materialUse,ina                  
              mov       matMask,#1                       
              shl       matMask,#Support                'Make a mask to check the input 
state of the support pin 
              and       materialUse,matMask 
              shl       materialUse,#Support            'Store the input state of Support 
in "materialUse" 
              cmp       materialUse,#1 wc               'Check for model material usage 
if_nz_and_c   add       extrPos,#1                      'If movement=CW, add 1 to _xpos 
if_z_and_c    sub       extrPos,#1                      'If movement=CCW, subtract 1 from 
_xpos 
              jmp       #StoreExtr                       
                                                         
ExtrCaseThree cmp       extrPrev,#%01     wz            'If input=%10, movement=CW, set 
Z-flag 
              mov       materialUse,ina                  
              mov       matMask,#1                       
              shl       matMask,#Support                'Make a mask to check the input 
state of the support pin 
              and       materialUse,matMask 
              shl       materialUse,#Support            'Store the input state of Support 
in "materialUse" 
              cmp       materialUse,#1 wc               'Check for model material usage  
if_nz_and_c   add       extrPos,#1                      'If movement=CW, add 1 to _xpos 
if_z_and_c    sub       extrPos,#1                      'If movement=CCW, subtract 1 from 
_xpos 
              jmp       #StoreExtr                        
                                                          
StoreExtr     mov       extrPrev,extrIn                 'Store previous input value as 
"prev" 
OutputExtr    wrlong    extrPos,_extrPosit                
              jmp       #ExtrLoop 
 
extrMask                long    0 
matMask                 long    0 
materialUse             long    0 
extrIn                  long    0 
extrPrev                long    0 
extrPos                 long    0 
_extrPosit              long    0 
                        fit 
                    
''This PASM code reads the A and B channel output signals of the X and Y quadrature 
encoders. 
''  It writes the X and Y axial positions in scaled fixed-point format back to Hub RAM 
              org 
QuadEnc       mov       dira,#0                 'Set directions of xQuadA and xQuadB to 
inputs 
              mov       xMask,#%11              'Set the lower 2 bits of xMask high  
              shl       xMask,#xQuadA           'Shift them over to the xQuadA and xQuadB 
position 
              mov       yMask,#%11              'Set the lower 2 bits of yMask high 
              shl       yMask,#yQuadA           'Shift them over to the yQuadA and yQuadB 
position 
LoopX         mov       xIn,ina                 'Store entire ina register in "input" 
register 
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              and       xIn,xMask               'Chop off everything except 
ina[xQuadA..xQuadB] 
              shr       xIn,#xQuadA             'Put A and B values in the 0 and 1 
position   
              cmp       xIn,xPrev      wz       'If input=previous, set Z-flag 
       if_z   jmp       #LoopY 
        
              cmp       xIn,#%00       wz       'If input=%00, set Z-flag 
       if_z   jmp       #caseZeroX                      'Call "caseZeroX" subroutine 
              cmp       xIn,#%01       wz       'If input=%01, set Z-flag 
       if_z   jmp       #caseOneX                       'Call "caseOneX" subroutine 
              cmp       xIn,#%10       wz       'If input=%10, set Z-flag 
       if_z   jmp       #caseTwoX                       'Call "caseTwoX" subroutine 
              cmp       xIn,#%11       wz       'If input=%11, set Z-flag 
       if_z   jmp       #caseThreeX                     'Call "caseThreeX" subroutine 
               
 
caseZeroX     cmp       xPrev,#%10     wz       'If input=%01, movement=CW, set Z-flag               
if_z          add       xPos,#1                 'If movement=CW, add 1 to _xpos 
if_nz         sub       xPos,#1                 'If movement=CCW, subtract 1 from _xpos 
              jmp       #StoreX 
 
caseOneX      cmp       xPrev,#%00     wz       'If input=%11, movement=CW, set Z-flag   
if_z          add       xPos,#1                 'If movement=CW, add 1 to _xpos 
if_nz         sub       xPos,#1                 'If movement=CCW, subtract 1 from _xpos 
              jmp       #StoreX   
 
caseTwoX      cmp       xPrev,#%11     wz       'If input=%00, movement=CW, set Z-flag  
if_z          add       xPos,#1                 'If movement=CW, add 1 to _xpos 
if_nz         sub       xPos,#1                 'If movement=CCW, subtract 1 from _xpos 
              jmp       #StoreX   
 
caseThreeX    cmp       xPrev,#%01     wz       'If input=%10, movement=CW, set Z-flag 
if_z          add       xPos,#1                 'If movement=CW, add 1 to _xpos 
if_nz         sub       xPos,#1                 'If movement=CCW, subtract 1 from _xpos 
              jmp       #StoreX 
 
StoreX        mov       xPrev,xIn           'Store previous input value as "xPrev" 
                                  
          ''Multiply xPos by the numerator. This was hard-coded to save time 
          ''  (old algorithm iterated and took forever).This method uses the 
          ''   binary-decomposed version of the numerator, as shown in the 
          ''   comment below by the bit-shifting section of the code. 
          mov     t0,xPos         'Store xPos in 6 temporary variables for bit shifting 
          mov     t1,xPos 
          mov     t2,xPos 
          mov     t3,xPos 
          mov     t4,xPos 
          mov     t5,xPos         '              0       1       2       3      4      5 
          shl     t0,#14          'x * 19_356 = x<<14 + x<<11 + x<<10 - x<<6 - x<<5 - 
x<<2 
          shl     t1,#11 
          shl     t2,#10 
          shl     t3,#6 
          shl     t4,#5            
          shl     t5,#2 
          add     t0,t1           'Execute the above equation 
          add     t0,t2 
          sub     t0,t3 
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          sub     t0,t4 
          sub     t0,t5 
          mov     xScaled,t0             
                                  
          ''Divide xPosition by the denominator (Also hard-coded)                                          
          mov     quotient,xScaled                                                                         
          cmps    quotient,#0 wc                                                                           
          'Convert to Two's Complement Notation in the Case of a Negative Number (C=1)                         
if_c      mov     quotient2sC,quotient    'Copy the negative quotient into quotient2sC                         
if_c      xor     quotient2sC,LargestNum  'Flip all the bits of quotient2sC                                    
if_c      add     quotient2sC,#1          'Add 1 to quotient2sC                                                
if_c      mov     quotient,quotient2sC    'Store the positive form of the quotient back 
in "quotient"          
          shr     quotient,#14            'Divide by 16_384                                                    
if_c      xor     quotient,LargestNum     'Flip all the bits to convert back to a 
negative number              
if_c      add     quotient,#1             'Add 1 to finish the 2's Complement conversion                       
          mov     xScaled,quotient               
          wrlong  xScaled,_xPosit         'Write the scaled xPosition to the xPosit 
variable } 
 
 
 
''Retrieve the Y Position from the Y Encoder 
LoopY         mov       yIn, ina 
              and       yIn,yMask               'Chop off everything except 
ina[yQuadA..yQuadB] 
              shr       yIn,#yQuadA             'Put A and B values in the 0 and 1 
position 
              cmp       yIn,yPrev      wz       'If input=previous, set Z-flag 
       if_z   jmp       #LoopX 
        
              cmp       yIn,#%00       wz       'If input=%00, set Z-flag 
       if_z   jmp       #caseZeroY                      'Call "caseZeroX" subroutine 
              cmp       yIn,#%01       wz       'If input=%01, set Z-flag 
       if_z   jmp       #caseOneY                       'Call "caseOneX" subroutine 
              cmp       yIn,#%10       wz       'If input=%10, set Z-flag 
       if_z   jmp       #caseTwoY                       'Call "caseTwoX" subroutine 
              cmp       yIn,#%11       wz       'If input=%11, set Z-flag 
       if_z   jmp       #caseThreeY                     'Call "caseThreeX" subroutine 
               
 
caseZeroY     cmp       yPrev,#%10     wz       'If input=%01, movement=CW, set Z-flag              
if_z          sub       yPos,#1                 'If movement=CW, add 1 to _xpos 
if_nz         add       yPos,#1                 'If movement=CCW, subtract 1 from _xpos 
              jmp       #StoreY 
 
caseOneY      cmp       yPrev,#%00     wz       'If input=%11, movement=CW, set Z-flag   
if_z          sub       yPos,#1                 'If movement=CW, add 1 to _xpos 
if_nz         add       yPos,#1                 'If movement=CCW, subtract 1 from _xpos 
              jmp       #StoreY   
 
caseTwoY      cmp       yPrev,#%11     wz       'If input=%00, movement=CW, set Z-flag  
if_z          sub       yPos,#1                 'If movement=CW, add 1 to _xpos 
if_nz         add       yPos,#1                 'If movement=CCW, subtract 1 from _xpos 
              jmp       #StoreY   
 
caseThreeY    cmp       yPrev,#%01     wz       'If input=%10, movement=CW, set Z-flag 
if_z          sub       yPos,#1                 'If movement=CW, add 1 to _xpos 
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if_nz         add       yPos,#1                 'If movement=CCW, subtract 1 from _xpos 
              jmp       #StoreY 
 
StoreY        mov       yPrev,yIn               'Store previous input value as "prev" 
 
 
          ''Multiply yPos by the numerator (Also hard-coded) 
          mov     answer,#0 
          mov     t0,yPos         'Store xPos in 6 temporary variables for bit shifting 
          mov     t1,yPos         
          mov     t2,yPos        '             0       1      2       
          shl     t0,#13          'x * 7_743 = x<<13 - x<<9 + x<<6 - x<<0 
          shl     t1,#9 
          shl     t2,#6 
          sub     t0,t1           'Execute the above equation 
          add     t0,t2 
          sub     t0,yPos 
          mov     yScaled,t0              
                              
          ''Divide xPosition by the denominator (Also hard-coded)                                       
          mov     quotient,yScaled                                                                      
          cmps    quotient,#0 wc                                                                        
          'Convert to Two's Complement Notation in the Case of a Negative Number (C=1)                    
if_c      mov     quotient2sC,quotient    'Copy the negative quotient into quotient2sC                    
if_c      xor     quotient2sC,LargestNum  'Flip all the bits of quotient2sC                               
if_c      add     quotient2sC,#1          'Add 1 to quotient2sC                                           
if_c      mov     quotient,quotient2sC    'Store the positive form of the quotient back 
in "quotient"     
          shr     quotient,#14            'Divide by 16_384                                               
if_c      xor     quotient,LargestNum     'Flip all the bits to convert back to a 
negative number         
if_c      add     quotient,#1             'Add 1 to finish the 2's Complement conversion 
          mov     yScaled,quotient            '                                           
          wrlong  yScaled,_yPosit         'Write the scaled y position to the yPosit 
variable } 
 
 
          jmp       #LoopX              'Restart loop at beginning 
 
''Quadrature Variables - X Axis 
xMask                   long    0 
xIn                     long    0 
xPrev                   long    0 
xPos                    long    0 
_xPosit                 long    0 
 
''Quadrature Variables - Y Axis 
yMask                   long    0 
yIn                     long    0 
yPrev                   long    0 
yPos                    long    0 
_yPosit                 long    0  
 
''Multiplication/Division Variables 
xScaled                 long    0 
yScaled                 long    0 
t0                      long    0 
t1                      long    0 
t2                      long    0 
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t3                      long    0 
t4                      long    0 
t5                      long    0 
'xNumerator              long    19_356 
'yNumerator              long    7_743 
'denominator             long    16_384    (Just for reference) 
a                       long    0 
b                       long    0 
bAND                    long    0 
answer                  long    0 
quotient                long    0  
minusOne                long    -1 
quotient2sC             long    0 
LargestNum              long    %1111_1111_1111_1111_1111_1111_1111_1111 
                        fit                        
 
                       
''This PASM code checks to see off move coordinates based on the position variables 
stored in Hub RAM from the encoders. 
                        
                        org 0 
                        '' Check which cog is currently in use 
CheckPosition           cogID   cogNum                   
                        mov     dataPoint,#0 
 
                        ''Set loadedA/loadedB (1 while running) 
                        cmp     cogNum,#4 wz 
              if_nz     wrlong  high,_loadedA 
              if_z      wrlong  high,_loadedB   
                         
                        ''Retrieve the flag variables from Hub RAM 
WaitFlag                rdlong  flgA,_flagA 
                        rdlong  flgB,_flagB 
                        mov     flag,flgB 
                        and     flag,flgA 
                    
                        ''Wait for the flag from cogs 3 and 4 to go high (neither cog 
running) 
                        cmp     flag,#1 wz 
              if_nz     jmp     #WaitFlag 
 
                        ''Retrieve the total number of dataPoints for this run 
                        rdlong  DPNum,_DPNumber 
 
                        ''Operate the flags 
                        cmp     cogNum,#4 wz 
                        cmp     dataPoint,DPnum wc 
        if_c_and_z      mov     flgB,#0 
        if_nc_and_z     mov     flgB,#1 
        if_c_and_nz     mov     flgA,#0 
        if_nc_and_nz    mov     flgA,#1 
                        wrlong  flgA,_flagA 
                        wrlong  flgB,_flagB 
 
 
PosLoop                 ''Calculate the position that we're waiting for 
                        ''Store the current X value in xUp and xDown 
                        ''  and likewise for Y and Z 
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XSourceUp               mov     xUp,x                   'Find the acceptable ranges for x 
and y 
XSourceDown             mov     xDown,x 
YSourceUp               mov     yUp,y 
YSourceDown             mov     yDown,y 
ZSourceUp               mov     zUp,z 
ZSourceDown             mov     zDown,z 
PrintSource             mov     pMode,printMode         'See if the endCode ($FF) is 
stored in the printMode variable 
WidthSource             mov     rWidth,width 
 
                        '' Check to see if the extruder should turn (road width in the FP 
CMB) 
                        cmp     rWidth,#0 wz 
              if_z      mov     extrTurnOff,#0 
              if_nz     mov     extrTurnOff,#1 
                        wrlong  extrTurnOff,_roadWidth      '} 
 
                        ''Write the current printMode and waypoint coordinates back to 
Hub RAM 
                        wrlong  pMode,_PM 
                        cmp     pMode,#255 wz 
        if_z            wrlong  high,_end      
 
                        ''Check to see if the support head is being used (Not used for 
Y!) 
                        cmp     pMode,#$6A wc            
              if_nc     add     xUp,XYOffset          'Offset X positions 798 mils  
              if_nc     add     xDown,XYOffset 
              if_nc     mov     expMat,#1             'Use 1 to represent the support 
material 
              if_c      mov     expMat,#0             'Use 0 to represent the model 
material 
              if_c      subs    zUp,partOffset        'Subtract 9 mils from z for model 
material 
              if_c      subs    zDown,partOffset      'Ditto for the lower limit  
 
                        ''Store the current waypoint as (C1, C2, C3) 
                        wrlong  xUp,_C1 
                        wrlong  yUp,_C2 
                        wrlong  zUp,_C3 
                        wrlong  expMat,_expectedMaterial 
                         
 
                        ''Create ranges on waypoints 
                        subs    xDown,acceptRange        
                        adds    xUp,acceptRange 
                        subs    yDown,acceptRange 
                        adds    yUp,acceptRange 
                        subs    zDown,zTolerance 
                        adds    zUp,zTolerance      
                         
CheckLoop               ''This section checks the X, Y, Z, Material, and Extrusion Rate 
                        'Retrieve the xPosition from Hub RAM 
                        rdlong  xPosition,_xPosition 
                        rdlong  yPosition,_yPosition 
                        rdlong  zPosition,_zPosition 
                        'Start by setting locFound      
                        mov     locFound,#1 
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                        ''X Checking       
                        cmps    xUp,xPosition wc        'Check if xUp is below xPosition 
              if_c      mov     locFound,#0             'Clear locFound if the xPosition 
falls out of range 
                        cmps    xPosition,xDown wc      'Check if xPosition is below 
xDown 
              if_c      mov     locFound,#0             'Clear locFound if xPosition is 
below xDown 
                        ''Y Checking 
                        cmps    yUp,yPosition wc 
              if_c      mov     locFound,#0 
                        cmps    yPosition,yDown wc 
              if_c      mov     locFound,#0 
                        ''Z Checking     
                        cmps    zUp,zPosition wc 
              if_c      mov     locFound,#0 
                        cmps    zPosition,zDown wc 
              if_c      mov     locFound,#0           '} 
                        ''Material Checking 
                        mov     material,#0             
                        mov     inMask,#%11             'Store %11 in the lower nibble of 
diraMask 
                        shl     inMask,#Model           'Shift bits over to the Model and 
Support Material input pins 
                        mov     material,ina            'Store the entire ina register as 
"input" 
                        and     material,inMask         'Retain only the input states of 
Model and Support 
                        shr     material,#Model         'Move the input states back to 
the LSB 
                        cmp     material, #%10 wz        
                        mov     material,#0             'Set material to model 
              if_z      mov     material,#1             'If the support channel is high, 
set the material to support 
                        wrlong  material,_printMaterial 
                        cmp     material,expMat wz 
              if_z      mov     corrMat,#1 
              if_nz     mov     corrMat,#0 
                        and     locFound, corrMat 
                        wrlong  corrMat, _corrMat       'Write the check status of the 
material sensor 
                        ''Temperature Checking 
                        rdlong  tipTemp,_RTDTemp        'Retrieve the model tip 
temperature from Hub RAM 
                        cmp     material, #0 wz         'Check to see if model material 
is printing currently  
                        cmp     tipTemp,#200 wc         'Check to see if the current tip 
temperature is below 200 
        if_z_and_c      mov     locFound,#0             'If the model tip is printing 
below 200 C, then reject point 
 
                         
                        ''Loop 
                        cmp     locFound,#1 wz          'See if the current xPosition 
falls into the stored x range       
              if_nz     jmp     #CheckLoop 
               
        if_z            add     dataPoint,#1            'Increment the dataPoint 
        if_z            mov     _x,#x 
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        if_z            add     _x,dataPoint            'Increment the x address by 
dataPoint*4  
        if_z            add     _x,dataPoint 
        if_z            add     _x,dataPoint 
        if_z            add     _x,dataPoint 
        if_z            add     _x,dataPoint 
        if_z            movs    XSourceUp,_x            'Update the address that xUp and 
xDown are copied from 
        if_z            movs    XSourceDown,_x 
        if_z            mov     _y,_x 
        if_z            add     _y,#1                   'The nth y address is 1 long 
after the nth x address 
        if_z            movs    YSourceUp,_y 
        if_z            movs    YSourceDown,_y 
        if_z            mov     _z,_x 
        if_z            add     _z,#2 
        if_z            movs    ZSourceUp,_z 
        if_z            movs    ZSourceDown,_z 
        if_z            mov     PMaddress,_x     
        if_z            sub     PMaddress,#2             'The nth PrintMode address is 2 
longs before the nth x address 
        if_z            movs    PrintSource,PMaddress    'Update the address that pMode 
is copied from 
        if_z            mov     _width,_x 
        if_z            sub     _width,#1 
        if_z            movs    WidthSource, _width 
 
 
                        ''Check to see if the DP num is exceeded before reading an FF end 
code 
                        cmp     cogNum,#4 wz 
                        cmp     dataPoint,DPnum wc 
        if_c            jmp     #PosLoop                'Loop back to the beginning 
                        ''Write the flags (0 for the cog that is running code, 1 for the 
one that's not) 
        if_c_and_z      mov     flgB,#0 
        if_nc_and_z     mov     flgB,#1 
        if_c_and_nz     mov     flgA,#0 
        if_nc_and_nz    mov     flgA,#1 
                        wrlong  flgA,_flagA 
                        wrlong  flgB,_flagB 
                         
        if_nz           wrlong  zero,_loadedA           'Clear the loaded variables 
        if_z            wrlong  zero,_loadedB 
                        cogstop cogNum 
                               
'Position Checking Variables 
xPosition               long    0 
yPosition               long    0 
zPosition               long    0 
_C1                     long    0 
_C2                     long    0 
_C3                     long    0 
_ExtruderControl        long    0 
locFound                long    0 
_end                    long    0 
_loadedA                long    0 
_loadedB                long    0 
high                    long    1 
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zero                    long    0 
flag                    long    0 
flgA                    long    0 
XYOffset                long    798  
flgB                    long    0 
_flagA                  long    0 
_flagB                  long    0 
cogNum                  long    0 
DPNum                   long    30 
_DPNumber               long    0 
_xPosition              long    0 
_yPosition              long    0 
_zPosition              long    0 
_PM                     long    0 
_width                  long    0 
pMode                   long    0 
rWidth                  long    0 
_roadWidth              long    0 
PMaddress               long    0 
inMask                  long    0 
material                long    0 
corrMat                 long    0 
_corrMat                long    0 
extrStatus              long    0        
_printMaterial          long    0 
expMat                  long    0 
_expectedMaterial       long    0 
extrTurnOff             long    0 
eighty                  long    80_000 
sixty                   long    60_000 
forty                   long    40_000 
twenty                  long    20_000 
ten                     long    10_000 
acceptRange             long    10 
zTolerance              long    7 
tipTemp                 long    0 
_RTDTemp                long    0 
dataPoint               long    0 
_DP                     long    0 
xUp                     long    0 
xDown                   long    0 
yUp                     long    0 
yDown                   long    0 
zUp                     long    0 
zDown                   long    0 
partOffset              long    9 
suppOffset              long    2 
_x                      long    0 
_y                      long    0 
_z                      long    0 
printMode               long    0 
width                   long    0 
x                       long    0 
y                       long    0 
z                       long    
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,{ 
                               
}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,{ 
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}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,{ 
                               
}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,{ 
 
                               
}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,{ 
                               
}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,{    Reserve 330 longs for 
printMode, x, y, and z storage.  
                               
}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,{    This lets us hold 
330/4=82 points maximum in Cog RAM. 
                                                                                                 
Thus, AC1 and AC2 can each check up to 82 points 
                               
}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,{  
 
 
                               
}0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0                                
                        fit 
 
 
''This PASM code retrieves the zPosition from the Z encoder 
 
              org        
ReadZEnc      mov       dira,#0           'Set directions of zQuadA and zQuadB to zIns 
              mov       zMask,#%11        'Set the lower 2 bits of zMask high  
              shl       zMask,#zQuadA     'Shift them over to the zQuadA and zQuadB 
position 
Loop          mov       zIn,ina           'Store entire ina register in "zIn" register 
              and       zIn,zMask         'Chop off everything except ina[zQuadA..zQuadB] 
              shr       zIn,#zQuadA       'Shift the zIn zQuadA number of bits to the 
right to put A and B values in the 0 and 1 position 
              cmp       zIn,zPrev     wz  'If zIn=previous, set Z-flag 
       if_z   jmp       #Loop 
        
              cmp       zIn,#%00     wz   'If zIn=%00, set Z-flag 
       if_z   jmp       #caseZeroZ               'Call "caseZeroZ" subroutine 
              cmp       zIn,#%01     wz   'If zIn=%01, set Z-flag 
       if_z   jmp       #caseOneZ                'Call "caseOneZ" subroutine 
              cmp       zIn,#%10     wz   'If zIn=%10, set Z-flag 
       if_z   jmp       #caseTwoZ                'Call "caseTwoZ" subroutine 
              cmp       zIn,#%11     wz   'If zIn=%11, set Z-flag 
       if_z   jmp       #caseThreeZ              'Call "caseThreeZ" subroutine 
               
 
caseZeroZ     cmp       zPrev,#%10     wz  'If zIn=%01, movement=CW, set Z-flag              
if_z          adds      zPos,#1            'If movement=CW, add 1 to zPos 
if_nz         subs      zPos,#1            'If movement=CCW, subtract 1 from zPos 
              jmp       #StoreZ 
 
caseOneZ      cmp       zPrev,#%00     wz  'If zIn=%11, movement=CW, set Z-flag   
if_z          adds      zPos,#1            'If movement=CW, add 1 to zPos 
if_nz         subs      zPos,#1            'If movement=CCW, subtract 1 from zPos 
              jmp       #StoreZ   
 
caseTwoZ      cmp       zPrev,#%11     wz  'If zIn=%00, movement=CW, set Z-flag  
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if_z          adds      zPos,#1            'If movement=CW, add 1 to zPos 
if_nz         subs      zPos,#1            'If movement=CCW, subtract 1 from zPos 
              jmp       #StoreZ   
 
caseThreeZ    cmp       zPrev,#%01     wz     'If zIn=%10, movement=CW, set Z-flag 
if_z          adds      zPos,#1            'If movement=CW, add 1 to zPos 
if_nz         subs      zPos,#1            'If movement=CCW, subtract 1 from zPos 
              jmp       #StoreZ 
 
StoreZ        mov       zPrev,zIn           'Store previous zIn value as "zPrev" 
                                  
           ''Multiply xPos by the numerator. This was hard-coded to save time 
           ''  (old algorithm iterated and took forever). This method uses the 
           ''  binary-decomposed version of the numerator, as shown in the comment 
           ''  below by the bit-shifting section of the code. 
          mov     temp0,zPos         'Store xPos in 6 temporary variables for bit 
shifting 
          mov     temp1,zPos 
          mov     temp2,zPos 
          mov     temp3,zPos 
          mov     temp4,zPos 
          mov     temp5,zPos 
          mov     temp6,zPos         '             temp0   temp1   temp2  temp3  temp4  
temp5  temp6 
          shl     temp0,#13          'x * 12_881 = x<<13 + x<<12 + x<<9 + x<<6 + x<<3 + 
x<<1 + x<<0 
          shl     temp1,#12 
          shl     temp2,#9 
          shl     temp3,#6 
          shl     temp4,#3 
          shl     temp5,#1 
          add     temp0,temp1           'Execute the above equation 
          add     temp0,temp2 
          add     temp0,temp3 
          add     temp0,temp4 
          add     temp0,temp5 
          add     temp0,temp6 
          mov     zScaled,temp0             
                                  
          ''Divide xPosition by the denominator (Also hard-coded)                                                           
          mov     zQuotient,zScaled                                                                          
          cmps    zQuotient,#0 wc                                                                            
          ''Convert to Two's Complement Notation in the Case of a Negative Number (C=1)                               
if_c      mov     zQuotient2sC,zQuotient   'Copy the negative quotient into 
quotientemp2sC                               
if_c      xor     zQuotient2sC,zLargestNum 'Flip all the bits of quotientemp2sC                                          
if_c      add     zQuotient2sC,#1          'Add 1 to quotientemp2sC                                                      
if_c      mov     zQuotient,zQuotient2sC   'Store the positive form of the quotient back 
in "quotient"                
          shr     zQuotient,#14            'Divide by 16_384                                                          
if_c      xor     zQuotient,zLargestNum    'Flip all the bits to convert back to a 
negative number                    
if_c      add     zQuotient,#1             'Add 1 to finish the 2's Complement conversion                             
          mov     zScaled,zQuotient               
          wrlong  zScaled,_zPosit          'Write the scaled xPosition to the xPosit 
variable } 
 
          jmp     #Loop                    'Restart loop at beginning 
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''Quadrature Variables 
zMask                   long    0 
zIn                     long    0 
zPrev                   long    0 
zPos                    long    0  
_zPosit                 long    0 
 
''Multiplication/Division Variables 
zScaled                 long    1023 
zQuotient               long    0 
zQuotient2sC            long    0 
zLargestNum             long    %1111_1111_1111_1111_1111_1111_1111_1111 
temp0                   long    0 
temp1                   long    0 
temp2                   long    0 
temp3                   long    0 
temp4                   long    0 
temp5                   long    0 
temp6                   long    0 
                        fit                
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Appendix B – MATLAB Code  
 

 

Appendix B.1 - Retrieves Data from Tensile Test Files 

 
% This program retrieves the data from the .csv files created by the 
% Instron computer. They must be formatted like the 1-28-15 test results 

  
%Reading from .csv files with header information and 3 columns: 
%--Extension is displacement of the crosshead, in mm (not used) 
%--Displacement is the displacement of the laser tags, in mm (used for 
    %strain calculation) 
%--Load is the load cell reading, in Newtons (used for stress calculation) 

  
clear all 
clc 

  
fileNumber=input('How many files do you have: '); 
for i=1:fileNumber 
    % Prefix for filename 
    fileName=input('Enter the file prefix: ','s'); 

     
    % Number of specimens in the Sample 
    N=6; 

     
    %Populate Stress and Strain matrices with non-numbers 
    eval([fileName,'.stress=NaN(2000,N);']); 
    eval([fileName,'.strain=NaN(2000,N);']); 

     
    for specimen=1:N 
        %identify file with tension test data 
        

fid=fopen([fileName,'.is_tens_RawData/Specimen_RawData_',num2str(specimen),'.

csv']); 

         
        %save as gage length, in mm 
        %(used to convert laser disp. into strain) 
        temp(specimen)=textscan(fid,'%*s %q',1,'delimiter',','); 
        

eval([fileName,'.gl(specimen)=str2num(cell2mat(temp{1,specimen}));']); 

         

         
        %save as specimen width (in mm, converting to m) 
        temp(specimen)=textscan(fid,'%*s %q %*s',1,'delimiter',','); 
         

eval([fileName,'.w(specimen)=str2num(cell2mat(temp{1,specimen}))/1000;']); 
        % save as specimen thickness (in mm, converting to m) 
        temp(specimen)=textscan(fid,'%*s %q %*s',1,'delimiter',','); 
        

eval([fileName,'.t(specimen)=str2num(cell2mat(temp{1,specimen}))/1000;']); 
        %calculate cross-sectional area, in m^2 
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eval([fileName,'.A(specimen)=',fileName,'.w(specimen)*',fileName,'.t(specimen

);']); 

                 
        %extract tension test data from columns 
        temp=textscan(fid,'%*q %q %q','delimiter',',','HeaderLines',6); 
        for j=1:length(temp{1,1}) 
            

eval([fileName,'.displacement(j,specimen)=str2num(temp{1,1}{j,1});']); % 

laser displacement in mm 
            eval([fileName,'.load(j,specimen)=str2num(temp{1,2}{j,1});']);         

% load in N 
            eval([fileName,'.A(specimen)=3.83015E-05']); 
            if strcmp(fileName,'SHD_XY') 
                eval([fileName,'.A(specimen)=3.1315E-05']); 
            end 
            

eval([fileName,'.stress(j,specimen)=',fileName,'.load(j,specimen)/',fileName,

'.A(specimen)/1000000;']); 
            

eval([fileName,'.strain(j,specimen)=',fileName,'.displacement(j,specimen)/',f

ileName,'.gl(specimen);']); 
        end 
    end 
end 
clear temp 

  
% You must manually save the .mat file after running this code by selecting 
% the structures for each file, right clicking, and then clicking "Save As" 
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Appendix B.2 - Plots Tensile Test Data Stored in the Workspace 
 
% This program plots the tensile test data in the Tensile_Test_Data.mat 
% file. The program must be run for each structure (attack). 
  

clear all  
clc 

 
% Start by importing the Tensile_Test_Data.mat file 
load Tensile_Test_Data.mat 

  
%% Then plot the stress/strain curves 
clc 

  
N=6; 
fileName='Solid_XZ_with_Notch'; 
linespec='''--k'''; 
hold on 
for specimen=[1,2,3,5,6]%1:N     
    

eval(['plot(',fileName,'.strain(:,specimen),',fileName,'.stress(:,specimen));

']); 
    

%eval(['h.',fileName,'(i)=plot(strain.',color,'{i},stress.',color,'{i},',line

spec,')']) 
end 

  
% Now label the plots 

  
legend('Specimen 1','Specimen 2','Specimen 3','Specimen 4','Specimen 5') 
xlim([0,0.085]) 
ylim([0,30]) 
title(['Tension Testing Results for Hacked Solid XZ Specimens with a Seam']) 
grid on 
xlabel 'Strain' 
ylabel 'Stress, MPa' 
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Appendix B.3 – Calculates Statistical Mean and Standard Deviation of Load Tests 

 
% This program calculates the mean and deviation for a batch (attack). It 

must be run once per batch 

  
% Import all of the data batch files 
for i=1:2 
    eval(['load Batch_',num2str(i),'.mat']) 
end 

  
%% Calculate the statistical mean and standard deviation for each batch 
clc 

  
%Disregard one specimen because of noisy tensile test results 
N=5; 

  
M=NaN(N,1); 

  
   for specimen=1:N 
        M(specimen)=max(Solid_XZ.stress(:,specimen)); 
        UTS_control=mean(M); 
        stDev_control=std(M); 
    end     

 


